]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/signal.c
Merge tag 'powerpc-5.7-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[thirdparty/linux.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 !klp_patch_pending(current))
186 clear_thread_flag(TIF_SIGPENDING);
187
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190
191 void calculate_sigpending(void)
192 {
193 /* Have any signals or users of TIF_SIGPENDING been delayed
194 * until after fork?
195 */
196 spin_lock_irq(&current->sighand->siglock);
197 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 recalc_sigpending();
199 spin_unlock_irq(&current->sighand->siglock);
200 }
201
202 /* Given the mask, find the first available signal that should be serviced. */
203
204 #define SYNCHRONOUS_MASK \
205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 unsigned long i, *s, *m, x;
211 int sig = 0;
212
213 s = pending->signal.sig;
214 m = mask->sig;
215
216 /*
217 * Handle the first word specially: it contains the
218 * synchronous signals that need to be dequeued first.
219 */
220 x = *s &~ *m;
221 if (x) {
222 if (x & SYNCHRONOUS_MASK)
223 x &= SYNCHRONOUS_MASK;
224 sig = ffz(~x) + 1;
225 return sig;
226 }
227
228 switch (_NSIG_WORDS) {
229 default:
230 for (i = 1; i < _NSIG_WORDS; ++i) {
231 x = *++s &~ *++m;
232 if (!x)
233 continue;
234 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 break;
236 }
237 break;
238
239 case 2:
240 x = s[1] &~ m[1];
241 if (!x)
242 break;
243 sig = ffz(~x) + _NSIG_BPW + 1;
244 break;
245
246 case 1:
247 /* Nothing to do */
248 break;
249 }
250
251 return sig;
252 }
253
254 static inline void print_dropped_signal(int sig)
255 {
256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257
258 if (!print_fatal_signals)
259 return;
260
261 if (!__ratelimit(&ratelimit_state))
262 return;
263
264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 current->comm, current->pid, sig);
266 }
267
268 /**
269 * task_set_jobctl_pending - set jobctl pending bits
270 * @task: target task
271 * @mask: pending bits to set
272 *
273 * Clear @mask from @task->jobctl. @mask must be subset of
274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
276 * cleared. If @task is already being killed or exiting, this function
277 * becomes noop.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 *
282 * RETURNS:
283 * %true if @mask is set, %false if made noop because @task was dying.
284 */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290
291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 return false;
293
294 if (mask & JOBCTL_STOP_SIGMASK)
295 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296
297 task->jobctl |= mask;
298 return true;
299 }
300
301 /**
302 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * @task: target task
304 *
305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306 * Clear it and wake up the ptracer. Note that we don't need any further
307 * locking. @task->siglock guarantees that @task->parent points to the
308 * ptracer.
309 *
310 * CONTEXT:
311 * Must be called with @task->sighand->siglock held.
312 */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 task->jobctl &= ~JOBCTL_TRAPPING;
317 smp_mb(); /* advised by wake_up_bit() */
318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 }
320 }
321
322 /**
323 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @task: target task
325 * @mask: pending bits to clear
326 *
327 * Clear @mask from @task->jobctl. @mask must be subset of
328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
329 * STOP bits are cleared together.
330 *
331 * If clearing of @mask leaves no stop or trap pending, this function calls
332 * task_clear_jobctl_trapping().
333 *
334 * CONTEXT:
335 * Must be called with @task->sighand->siglock held.
336 */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340
341 if (mask & JOBCTL_STOP_PENDING)
342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343
344 task->jobctl &= ~mask;
345
346 if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 task_clear_jobctl_trapping(task);
348 }
349
350 /**
351 * task_participate_group_stop - participate in a group stop
352 * @task: task participating in a group stop
353 *
354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355 * Group stop states are cleared and the group stop count is consumed if
356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
357 * stop, the appropriate `SIGNAL_*` flags are set.
358 *
359 * CONTEXT:
360 * Must be called with @task->sighand->siglock held.
361 *
362 * RETURNS:
363 * %true if group stop completion should be notified to the parent, %false
364 * otherwise.
365 */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 struct signal_struct *sig = task->signal;
369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370
371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372
373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374
375 if (!consume)
376 return false;
377
378 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 sig->group_stop_count--;
380
381 /*
382 * Tell the caller to notify completion iff we are entering into a
383 * fresh group stop. Read comment in do_signal_stop() for details.
384 */
385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 return true;
388 }
389 return false;
390 }
391
392 void task_join_group_stop(struct task_struct *task)
393 {
394 /* Have the new thread join an on-going signal group stop */
395 unsigned long jobctl = current->jobctl;
396 if (jobctl & JOBCTL_STOP_PENDING) {
397 struct signal_struct *sig = current->signal;
398 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 if (task_set_jobctl_pending(task, signr | gstop)) {
401 sig->group_stop_count++;
402 }
403 }
404 }
405
406 /*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413 {
414 struct sigqueue *q = NULL;
415 struct user_struct *user;
416 int sigpending;
417
418 /*
419 * Protect access to @t credentials. This can go away when all
420 * callers hold rcu read lock.
421 *
422 * NOTE! A pending signal will hold on to the user refcount,
423 * and we get/put the refcount only when the sigpending count
424 * changes from/to zero.
425 */
426 rcu_read_lock();
427 user = __task_cred(t)->user;
428 sigpending = atomic_inc_return(&user->sigpending);
429 if (sigpending == 1)
430 get_uid(user);
431 rcu_read_unlock();
432
433 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
434 q = kmem_cache_alloc(sigqueue_cachep, flags);
435 } else {
436 print_dropped_signal(sig);
437 }
438
439 if (unlikely(q == NULL)) {
440 if (atomic_dec_and_test(&user->sigpending))
441 free_uid(user);
442 } else {
443 INIT_LIST_HEAD(&q->list);
444 q->flags = 0;
445 q->user = user;
446 }
447
448 return q;
449 }
450
451 static void __sigqueue_free(struct sigqueue *q)
452 {
453 if (q->flags & SIGQUEUE_PREALLOC)
454 return;
455 if (atomic_dec_and_test(&q->user->sigpending))
456 free_uid(q->user);
457 kmem_cache_free(sigqueue_cachep, q);
458 }
459
460 void flush_sigqueue(struct sigpending *queue)
461 {
462 struct sigqueue *q;
463
464 sigemptyset(&queue->signal);
465 while (!list_empty(&queue->list)) {
466 q = list_entry(queue->list.next, struct sigqueue , list);
467 list_del_init(&q->list);
468 __sigqueue_free(q);
469 }
470 }
471
472 /*
473 * Flush all pending signals for this kthread.
474 */
475 void flush_signals(struct task_struct *t)
476 {
477 unsigned long flags;
478
479 spin_lock_irqsave(&t->sighand->siglock, flags);
480 clear_tsk_thread_flag(t, TIF_SIGPENDING);
481 flush_sigqueue(&t->pending);
482 flush_sigqueue(&t->signal->shared_pending);
483 spin_unlock_irqrestore(&t->sighand->siglock, flags);
484 }
485 EXPORT_SYMBOL(flush_signals);
486
487 #ifdef CONFIG_POSIX_TIMERS
488 static void __flush_itimer_signals(struct sigpending *pending)
489 {
490 sigset_t signal, retain;
491 struct sigqueue *q, *n;
492
493 signal = pending->signal;
494 sigemptyset(&retain);
495
496 list_for_each_entry_safe(q, n, &pending->list, list) {
497 int sig = q->info.si_signo;
498
499 if (likely(q->info.si_code != SI_TIMER)) {
500 sigaddset(&retain, sig);
501 } else {
502 sigdelset(&signal, sig);
503 list_del_init(&q->list);
504 __sigqueue_free(q);
505 }
506 }
507
508 sigorsets(&pending->signal, &signal, &retain);
509 }
510
511 void flush_itimer_signals(void)
512 {
513 struct task_struct *tsk = current;
514 unsigned long flags;
515
516 spin_lock_irqsave(&tsk->sighand->siglock, flags);
517 __flush_itimer_signals(&tsk->pending);
518 __flush_itimer_signals(&tsk->signal->shared_pending);
519 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
520 }
521 #endif
522
523 void ignore_signals(struct task_struct *t)
524 {
525 int i;
526
527 for (i = 0; i < _NSIG; ++i)
528 t->sighand->action[i].sa.sa_handler = SIG_IGN;
529
530 flush_signals(t);
531 }
532
533 /*
534 * Flush all handlers for a task.
535 */
536
537 void
538 flush_signal_handlers(struct task_struct *t, int force_default)
539 {
540 int i;
541 struct k_sigaction *ka = &t->sighand->action[0];
542 for (i = _NSIG ; i != 0 ; i--) {
543 if (force_default || ka->sa.sa_handler != SIG_IGN)
544 ka->sa.sa_handler = SIG_DFL;
545 ka->sa.sa_flags = 0;
546 #ifdef __ARCH_HAS_SA_RESTORER
547 ka->sa.sa_restorer = NULL;
548 #endif
549 sigemptyset(&ka->sa.sa_mask);
550 ka++;
551 }
552 }
553
554 bool unhandled_signal(struct task_struct *tsk, int sig)
555 {
556 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
557 if (is_global_init(tsk))
558 return true;
559
560 if (handler != SIG_IGN && handler != SIG_DFL)
561 return false;
562
563 /* if ptraced, let the tracer determine */
564 return !tsk->ptrace;
565 }
566
567 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
568 bool *resched_timer)
569 {
570 struct sigqueue *q, *first = NULL;
571
572 /*
573 * Collect the siginfo appropriate to this signal. Check if
574 * there is another siginfo for the same signal.
575 */
576 list_for_each_entry(q, &list->list, list) {
577 if (q->info.si_signo == sig) {
578 if (first)
579 goto still_pending;
580 first = q;
581 }
582 }
583
584 sigdelset(&list->signal, sig);
585
586 if (first) {
587 still_pending:
588 list_del_init(&first->list);
589 copy_siginfo(info, &first->info);
590
591 *resched_timer =
592 (first->flags & SIGQUEUE_PREALLOC) &&
593 (info->si_code == SI_TIMER) &&
594 (info->si_sys_private);
595
596 __sigqueue_free(first);
597 } else {
598 /*
599 * Ok, it wasn't in the queue. This must be
600 * a fast-pathed signal or we must have been
601 * out of queue space. So zero out the info.
602 */
603 clear_siginfo(info);
604 info->si_signo = sig;
605 info->si_errno = 0;
606 info->si_code = SI_USER;
607 info->si_pid = 0;
608 info->si_uid = 0;
609 }
610 }
611
612 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
613 kernel_siginfo_t *info, bool *resched_timer)
614 {
615 int sig = next_signal(pending, mask);
616
617 if (sig)
618 collect_signal(sig, pending, info, resched_timer);
619 return sig;
620 }
621
622 /*
623 * Dequeue a signal and return the element to the caller, which is
624 * expected to free it.
625 *
626 * All callers have to hold the siglock.
627 */
628 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
629 {
630 bool resched_timer = false;
631 int signr;
632
633 /* We only dequeue private signals from ourselves, we don't let
634 * signalfd steal them
635 */
636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 if (!signr) {
638 signr = __dequeue_signal(&tsk->signal->shared_pending,
639 mask, info, &resched_timer);
640 #ifdef CONFIG_POSIX_TIMERS
641 /*
642 * itimer signal ?
643 *
644 * itimers are process shared and we restart periodic
645 * itimers in the signal delivery path to prevent DoS
646 * attacks in the high resolution timer case. This is
647 * compliant with the old way of self-restarting
648 * itimers, as the SIGALRM is a legacy signal and only
649 * queued once. Changing the restart behaviour to
650 * restart the timer in the signal dequeue path is
651 * reducing the timer noise on heavy loaded !highres
652 * systems too.
653 */
654 if (unlikely(signr == SIGALRM)) {
655 struct hrtimer *tmr = &tsk->signal->real_timer;
656
657 if (!hrtimer_is_queued(tmr) &&
658 tsk->signal->it_real_incr != 0) {
659 hrtimer_forward(tmr, tmr->base->get_time(),
660 tsk->signal->it_real_incr);
661 hrtimer_restart(tmr);
662 }
663 }
664 #endif
665 }
666
667 recalc_sigpending();
668 if (!signr)
669 return 0;
670
671 if (unlikely(sig_kernel_stop(signr))) {
672 /*
673 * Set a marker that we have dequeued a stop signal. Our
674 * caller might release the siglock and then the pending
675 * stop signal it is about to process is no longer in the
676 * pending bitmasks, but must still be cleared by a SIGCONT
677 * (and overruled by a SIGKILL). So those cases clear this
678 * shared flag after we've set it. Note that this flag may
679 * remain set after the signal we return is ignored or
680 * handled. That doesn't matter because its only purpose
681 * is to alert stop-signal processing code when another
682 * processor has come along and cleared the flag.
683 */
684 current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 }
686 #ifdef CONFIG_POSIX_TIMERS
687 if (resched_timer) {
688 /*
689 * Release the siglock to ensure proper locking order
690 * of timer locks outside of siglocks. Note, we leave
691 * irqs disabled here, since the posix-timers code is
692 * about to disable them again anyway.
693 */
694 spin_unlock(&tsk->sighand->siglock);
695 posixtimer_rearm(info);
696 spin_lock(&tsk->sighand->siglock);
697
698 /* Don't expose the si_sys_private value to userspace */
699 info->si_sys_private = 0;
700 }
701 #endif
702 return signr;
703 }
704 EXPORT_SYMBOL_GPL(dequeue_signal);
705
706 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707 {
708 struct task_struct *tsk = current;
709 struct sigpending *pending = &tsk->pending;
710 struct sigqueue *q, *sync = NULL;
711
712 /*
713 * Might a synchronous signal be in the queue?
714 */
715 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716 return 0;
717
718 /*
719 * Return the first synchronous signal in the queue.
720 */
721 list_for_each_entry(q, &pending->list, list) {
722 /* Synchronous signals have a postive si_code */
723 if ((q->info.si_code > SI_USER) &&
724 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725 sync = q;
726 goto next;
727 }
728 }
729 return 0;
730 next:
731 /*
732 * Check if there is another siginfo for the same signal.
733 */
734 list_for_each_entry_continue(q, &pending->list, list) {
735 if (q->info.si_signo == sync->info.si_signo)
736 goto still_pending;
737 }
738
739 sigdelset(&pending->signal, sync->info.si_signo);
740 recalc_sigpending();
741 still_pending:
742 list_del_init(&sync->list);
743 copy_siginfo(info, &sync->info);
744 __sigqueue_free(sync);
745 return info->si_signo;
746 }
747
748 /*
749 * Tell a process that it has a new active signal..
750 *
751 * NOTE! we rely on the previous spin_lock to
752 * lock interrupts for us! We can only be called with
753 * "siglock" held, and the local interrupt must
754 * have been disabled when that got acquired!
755 *
756 * No need to set need_resched since signal event passing
757 * goes through ->blocked
758 */
759 void signal_wake_up_state(struct task_struct *t, unsigned int state)
760 {
761 set_tsk_thread_flag(t, TIF_SIGPENDING);
762 /*
763 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
764 * case. We don't check t->state here because there is a race with it
765 * executing another processor and just now entering stopped state.
766 * By using wake_up_state, we ensure the process will wake up and
767 * handle its death signal.
768 */
769 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
770 kick_process(t);
771 }
772
773 /*
774 * Remove signals in mask from the pending set and queue.
775 * Returns 1 if any signals were found.
776 *
777 * All callers must be holding the siglock.
778 */
779 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
780 {
781 struct sigqueue *q, *n;
782 sigset_t m;
783
784 sigandsets(&m, mask, &s->signal);
785 if (sigisemptyset(&m))
786 return;
787
788 sigandnsets(&s->signal, &s->signal, mask);
789 list_for_each_entry_safe(q, n, &s->list, list) {
790 if (sigismember(mask, q->info.si_signo)) {
791 list_del_init(&q->list);
792 __sigqueue_free(q);
793 }
794 }
795 }
796
797 static inline int is_si_special(const struct kernel_siginfo *info)
798 {
799 return info <= SEND_SIG_PRIV;
800 }
801
802 static inline bool si_fromuser(const struct kernel_siginfo *info)
803 {
804 return info == SEND_SIG_NOINFO ||
805 (!is_si_special(info) && SI_FROMUSER(info));
806 }
807
808 /*
809 * called with RCU read lock from check_kill_permission()
810 */
811 static bool kill_ok_by_cred(struct task_struct *t)
812 {
813 const struct cred *cred = current_cred();
814 const struct cred *tcred = __task_cred(t);
815
816 return uid_eq(cred->euid, tcred->suid) ||
817 uid_eq(cred->euid, tcred->uid) ||
818 uid_eq(cred->uid, tcred->suid) ||
819 uid_eq(cred->uid, tcred->uid) ||
820 ns_capable(tcred->user_ns, CAP_KILL);
821 }
822
823 /*
824 * Bad permissions for sending the signal
825 * - the caller must hold the RCU read lock
826 */
827 static int check_kill_permission(int sig, struct kernel_siginfo *info,
828 struct task_struct *t)
829 {
830 struct pid *sid;
831 int error;
832
833 if (!valid_signal(sig))
834 return -EINVAL;
835
836 if (!si_fromuser(info))
837 return 0;
838
839 error = audit_signal_info(sig, t); /* Let audit system see the signal */
840 if (error)
841 return error;
842
843 if (!same_thread_group(current, t) &&
844 !kill_ok_by_cred(t)) {
845 switch (sig) {
846 case SIGCONT:
847 sid = task_session(t);
848 /*
849 * We don't return the error if sid == NULL. The
850 * task was unhashed, the caller must notice this.
851 */
852 if (!sid || sid == task_session(current))
853 break;
854 /* fall through */
855 default:
856 return -EPERM;
857 }
858 }
859
860 return security_task_kill(t, info, sig, NULL);
861 }
862
863 /**
864 * ptrace_trap_notify - schedule trap to notify ptracer
865 * @t: tracee wanting to notify tracer
866 *
867 * This function schedules sticky ptrace trap which is cleared on the next
868 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
869 * ptracer.
870 *
871 * If @t is running, STOP trap will be taken. If trapped for STOP and
872 * ptracer is listening for events, tracee is woken up so that it can
873 * re-trap for the new event. If trapped otherwise, STOP trap will be
874 * eventually taken without returning to userland after the existing traps
875 * are finished by PTRACE_CONT.
876 *
877 * CONTEXT:
878 * Must be called with @task->sighand->siglock held.
879 */
880 static void ptrace_trap_notify(struct task_struct *t)
881 {
882 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
883 assert_spin_locked(&t->sighand->siglock);
884
885 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
886 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
887 }
888
889 /*
890 * Handle magic process-wide effects of stop/continue signals. Unlike
891 * the signal actions, these happen immediately at signal-generation
892 * time regardless of blocking, ignoring, or handling. This does the
893 * actual continuing for SIGCONT, but not the actual stopping for stop
894 * signals. The process stop is done as a signal action for SIG_DFL.
895 *
896 * Returns true if the signal should be actually delivered, otherwise
897 * it should be dropped.
898 */
899 static bool prepare_signal(int sig, struct task_struct *p, bool force)
900 {
901 struct signal_struct *signal = p->signal;
902 struct task_struct *t;
903 sigset_t flush;
904
905 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
906 if (!(signal->flags & SIGNAL_GROUP_EXIT))
907 return sig == SIGKILL;
908 /*
909 * The process is in the middle of dying, nothing to do.
910 */
911 } else if (sig_kernel_stop(sig)) {
912 /*
913 * This is a stop signal. Remove SIGCONT from all queues.
914 */
915 siginitset(&flush, sigmask(SIGCONT));
916 flush_sigqueue_mask(&flush, &signal->shared_pending);
917 for_each_thread(p, t)
918 flush_sigqueue_mask(&flush, &t->pending);
919 } else if (sig == SIGCONT) {
920 unsigned int why;
921 /*
922 * Remove all stop signals from all queues, wake all threads.
923 */
924 siginitset(&flush, SIG_KERNEL_STOP_MASK);
925 flush_sigqueue_mask(&flush, &signal->shared_pending);
926 for_each_thread(p, t) {
927 flush_sigqueue_mask(&flush, &t->pending);
928 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
929 if (likely(!(t->ptrace & PT_SEIZED)))
930 wake_up_state(t, __TASK_STOPPED);
931 else
932 ptrace_trap_notify(t);
933 }
934
935 /*
936 * Notify the parent with CLD_CONTINUED if we were stopped.
937 *
938 * If we were in the middle of a group stop, we pretend it
939 * was already finished, and then continued. Since SIGCHLD
940 * doesn't queue we report only CLD_STOPPED, as if the next
941 * CLD_CONTINUED was dropped.
942 */
943 why = 0;
944 if (signal->flags & SIGNAL_STOP_STOPPED)
945 why |= SIGNAL_CLD_CONTINUED;
946 else if (signal->group_stop_count)
947 why |= SIGNAL_CLD_STOPPED;
948
949 if (why) {
950 /*
951 * The first thread which returns from do_signal_stop()
952 * will take ->siglock, notice SIGNAL_CLD_MASK, and
953 * notify its parent. See get_signal().
954 */
955 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
956 signal->group_stop_count = 0;
957 signal->group_exit_code = 0;
958 }
959 }
960
961 return !sig_ignored(p, sig, force);
962 }
963
964 /*
965 * Test if P wants to take SIG. After we've checked all threads with this,
966 * it's equivalent to finding no threads not blocking SIG. Any threads not
967 * blocking SIG were ruled out because they are not running and already
968 * have pending signals. Such threads will dequeue from the shared queue
969 * as soon as they're available, so putting the signal on the shared queue
970 * will be equivalent to sending it to one such thread.
971 */
972 static inline bool wants_signal(int sig, struct task_struct *p)
973 {
974 if (sigismember(&p->blocked, sig))
975 return false;
976
977 if (p->flags & PF_EXITING)
978 return false;
979
980 if (sig == SIGKILL)
981 return true;
982
983 if (task_is_stopped_or_traced(p))
984 return false;
985
986 return task_curr(p) || !signal_pending(p);
987 }
988
989 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
990 {
991 struct signal_struct *signal = p->signal;
992 struct task_struct *t;
993
994 /*
995 * Now find a thread we can wake up to take the signal off the queue.
996 *
997 * If the main thread wants the signal, it gets first crack.
998 * Probably the least surprising to the average bear.
999 */
1000 if (wants_signal(sig, p))
1001 t = p;
1002 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003 /*
1004 * There is just one thread and it does not need to be woken.
1005 * It will dequeue unblocked signals before it runs again.
1006 */
1007 return;
1008 else {
1009 /*
1010 * Otherwise try to find a suitable thread.
1011 */
1012 t = signal->curr_target;
1013 while (!wants_signal(sig, t)) {
1014 t = next_thread(t);
1015 if (t == signal->curr_target)
1016 /*
1017 * No thread needs to be woken.
1018 * Any eligible threads will see
1019 * the signal in the queue soon.
1020 */
1021 return;
1022 }
1023 signal->curr_target = t;
1024 }
1025
1026 /*
1027 * Found a killable thread. If the signal will be fatal,
1028 * then start taking the whole group down immediately.
1029 */
1030 if (sig_fatal(p, sig) &&
1031 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032 !sigismember(&t->real_blocked, sig) &&
1033 (sig == SIGKILL || !p->ptrace)) {
1034 /*
1035 * This signal will be fatal to the whole group.
1036 */
1037 if (!sig_kernel_coredump(sig)) {
1038 /*
1039 * Start a group exit and wake everybody up.
1040 * This way we don't have other threads
1041 * running and doing things after a slower
1042 * thread has the fatal signal pending.
1043 */
1044 signal->flags = SIGNAL_GROUP_EXIT;
1045 signal->group_exit_code = sig;
1046 signal->group_stop_count = 0;
1047 t = p;
1048 do {
1049 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050 sigaddset(&t->pending.signal, SIGKILL);
1051 signal_wake_up(t, 1);
1052 } while_each_thread(p, t);
1053 return;
1054 }
1055 }
1056
1057 /*
1058 * The signal is already in the shared-pending queue.
1059 * Tell the chosen thread to wake up and dequeue it.
1060 */
1061 signal_wake_up(t, sig == SIGKILL);
1062 return;
1063 }
1064
1065 static inline bool legacy_queue(struct sigpending *signals, int sig)
1066 {
1067 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068 }
1069
1070 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071 enum pid_type type, bool force)
1072 {
1073 struct sigpending *pending;
1074 struct sigqueue *q;
1075 int override_rlimit;
1076 int ret = 0, result;
1077
1078 assert_spin_locked(&t->sighand->siglock);
1079
1080 result = TRACE_SIGNAL_IGNORED;
1081 if (!prepare_signal(sig, t, force))
1082 goto ret;
1083
1084 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085 /*
1086 * Short-circuit ignored signals and support queuing
1087 * exactly one non-rt signal, so that we can get more
1088 * detailed information about the cause of the signal.
1089 */
1090 result = TRACE_SIGNAL_ALREADY_PENDING;
1091 if (legacy_queue(pending, sig))
1092 goto ret;
1093
1094 result = TRACE_SIGNAL_DELIVERED;
1095 /*
1096 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097 */
1098 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099 goto out_set;
1100
1101 /*
1102 * Real-time signals must be queued if sent by sigqueue, or
1103 * some other real-time mechanism. It is implementation
1104 * defined whether kill() does so. We attempt to do so, on
1105 * the principle of least surprise, but since kill is not
1106 * allowed to fail with EAGAIN when low on memory we just
1107 * make sure at least one signal gets delivered and don't
1108 * pass on the info struct.
1109 */
1110 if (sig < SIGRTMIN)
1111 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112 else
1113 override_rlimit = 0;
1114
1115 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116 if (q) {
1117 list_add_tail(&q->list, &pending->list);
1118 switch ((unsigned long) info) {
1119 case (unsigned long) SEND_SIG_NOINFO:
1120 clear_siginfo(&q->info);
1121 q->info.si_signo = sig;
1122 q->info.si_errno = 0;
1123 q->info.si_code = SI_USER;
1124 q->info.si_pid = task_tgid_nr_ns(current,
1125 task_active_pid_ns(t));
1126 rcu_read_lock();
1127 q->info.si_uid =
1128 from_kuid_munged(task_cred_xxx(t, user_ns),
1129 current_uid());
1130 rcu_read_unlock();
1131 break;
1132 case (unsigned long) SEND_SIG_PRIV:
1133 clear_siginfo(&q->info);
1134 q->info.si_signo = sig;
1135 q->info.si_errno = 0;
1136 q->info.si_code = SI_KERNEL;
1137 q->info.si_pid = 0;
1138 q->info.si_uid = 0;
1139 break;
1140 default:
1141 copy_siginfo(&q->info, info);
1142 break;
1143 }
1144 } else if (!is_si_special(info) &&
1145 sig >= SIGRTMIN && info->si_code != SI_USER) {
1146 /*
1147 * Queue overflow, abort. We may abort if the
1148 * signal was rt and sent by user using something
1149 * other than kill().
1150 */
1151 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152 ret = -EAGAIN;
1153 goto ret;
1154 } else {
1155 /*
1156 * This is a silent loss of information. We still
1157 * send the signal, but the *info bits are lost.
1158 */
1159 result = TRACE_SIGNAL_LOSE_INFO;
1160 }
1161
1162 out_set:
1163 signalfd_notify(t, sig);
1164 sigaddset(&pending->signal, sig);
1165
1166 /* Let multiprocess signals appear after on-going forks */
1167 if (type > PIDTYPE_TGID) {
1168 struct multiprocess_signals *delayed;
1169 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170 sigset_t *signal = &delayed->signal;
1171 /* Can't queue both a stop and a continue signal */
1172 if (sig == SIGCONT)
1173 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174 else if (sig_kernel_stop(sig))
1175 sigdelset(signal, SIGCONT);
1176 sigaddset(signal, sig);
1177 }
1178 }
1179
1180 complete_signal(sig, t, type);
1181 ret:
1182 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183 return ret;
1184 }
1185
1186 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187 {
1188 bool ret = false;
1189 switch (siginfo_layout(info->si_signo, info->si_code)) {
1190 case SIL_KILL:
1191 case SIL_CHLD:
1192 case SIL_RT:
1193 ret = true;
1194 break;
1195 case SIL_TIMER:
1196 case SIL_POLL:
1197 case SIL_FAULT:
1198 case SIL_FAULT_MCEERR:
1199 case SIL_FAULT_BNDERR:
1200 case SIL_FAULT_PKUERR:
1201 case SIL_SYS:
1202 ret = false;
1203 break;
1204 }
1205 return ret;
1206 }
1207
1208 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209 enum pid_type type)
1210 {
1211 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212 bool force = false;
1213
1214 if (info == SEND_SIG_NOINFO) {
1215 /* Force if sent from an ancestor pid namespace */
1216 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217 } else if (info == SEND_SIG_PRIV) {
1218 /* Don't ignore kernel generated signals */
1219 force = true;
1220 } else if (has_si_pid_and_uid(info)) {
1221 /* SIGKILL and SIGSTOP is special or has ids */
1222 struct user_namespace *t_user_ns;
1223
1224 rcu_read_lock();
1225 t_user_ns = task_cred_xxx(t, user_ns);
1226 if (current_user_ns() != t_user_ns) {
1227 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228 info->si_uid = from_kuid_munged(t_user_ns, uid);
1229 }
1230 rcu_read_unlock();
1231
1232 /* A kernel generated signal? */
1233 force = (info->si_code == SI_KERNEL);
1234
1235 /* From an ancestor pid namespace? */
1236 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237 info->si_pid = 0;
1238 force = true;
1239 }
1240 }
1241 return __send_signal(sig, info, t, type, force);
1242 }
1243
1244 static void print_fatal_signal(int signr)
1245 {
1246 struct pt_regs *regs = signal_pt_regs();
1247 pr_info("potentially unexpected fatal signal %d.\n", signr);
1248
1249 #if defined(__i386__) && !defined(__arch_um__)
1250 pr_info("code at %08lx: ", regs->ip);
1251 {
1252 int i;
1253 for (i = 0; i < 16; i++) {
1254 unsigned char insn;
1255
1256 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257 break;
1258 pr_cont("%02x ", insn);
1259 }
1260 }
1261 pr_cont("\n");
1262 #endif
1263 preempt_disable();
1264 show_regs(regs);
1265 preempt_enable();
1266 }
1267
1268 static int __init setup_print_fatal_signals(char *str)
1269 {
1270 get_option (&str, &print_fatal_signals);
1271
1272 return 1;
1273 }
1274
1275 __setup("print-fatal-signals=", setup_print_fatal_signals);
1276
1277 int
1278 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279 {
1280 return send_signal(sig, info, p, PIDTYPE_TGID);
1281 }
1282
1283 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284 enum pid_type type)
1285 {
1286 unsigned long flags;
1287 int ret = -ESRCH;
1288
1289 if (lock_task_sighand(p, &flags)) {
1290 ret = send_signal(sig, info, p, type);
1291 unlock_task_sighand(p, &flags);
1292 }
1293
1294 return ret;
1295 }
1296
1297 /*
1298 * Force a signal that the process can't ignore: if necessary
1299 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300 *
1301 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302 * since we do not want to have a signal handler that was blocked
1303 * be invoked when user space had explicitly blocked it.
1304 *
1305 * We don't want to have recursive SIGSEGV's etc, for example,
1306 * that is why we also clear SIGNAL_UNKILLABLE.
1307 */
1308 static int
1309 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1310 {
1311 unsigned long int flags;
1312 int ret, blocked, ignored;
1313 struct k_sigaction *action;
1314 int sig = info->si_signo;
1315
1316 spin_lock_irqsave(&t->sighand->siglock, flags);
1317 action = &t->sighand->action[sig-1];
1318 ignored = action->sa.sa_handler == SIG_IGN;
1319 blocked = sigismember(&t->blocked, sig);
1320 if (blocked || ignored) {
1321 action->sa.sa_handler = SIG_DFL;
1322 if (blocked) {
1323 sigdelset(&t->blocked, sig);
1324 recalc_sigpending_and_wake(t);
1325 }
1326 }
1327 /*
1328 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329 * debugging to leave init killable.
1330 */
1331 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1332 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333 ret = send_signal(sig, info, t, PIDTYPE_PID);
1334 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335
1336 return ret;
1337 }
1338
1339 int force_sig_info(struct kernel_siginfo *info)
1340 {
1341 return force_sig_info_to_task(info, current);
1342 }
1343
1344 /*
1345 * Nuke all other threads in the group.
1346 */
1347 int zap_other_threads(struct task_struct *p)
1348 {
1349 struct task_struct *t = p;
1350 int count = 0;
1351
1352 p->signal->group_stop_count = 0;
1353
1354 while_each_thread(p, t) {
1355 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356 count++;
1357
1358 /* Don't bother with already dead threads */
1359 if (t->exit_state)
1360 continue;
1361 sigaddset(&t->pending.signal, SIGKILL);
1362 signal_wake_up(t, 1);
1363 }
1364
1365 return count;
1366 }
1367
1368 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369 unsigned long *flags)
1370 {
1371 struct sighand_struct *sighand;
1372
1373 rcu_read_lock();
1374 for (;;) {
1375 sighand = rcu_dereference(tsk->sighand);
1376 if (unlikely(sighand == NULL))
1377 break;
1378
1379 /*
1380 * This sighand can be already freed and even reused, but
1381 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382 * initializes ->siglock: this slab can't go away, it has
1383 * the same object type, ->siglock can't be reinitialized.
1384 *
1385 * We need to ensure that tsk->sighand is still the same
1386 * after we take the lock, we can race with de_thread() or
1387 * __exit_signal(). In the latter case the next iteration
1388 * must see ->sighand == NULL.
1389 */
1390 spin_lock_irqsave(&sighand->siglock, *flags);
1391 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392 break;
1393 spin_unlock_irqrestore(&sighand->siglock, *flags);
1394 }
1395 rcu_read_unlock();
1396
1397 return sighand;
1398 }
1399
1400 /*
1401 * send signal info to all the members of a group
1402 */
1403 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404 struct task_struct *p, enum pid_type type)
1405 {
1406 int ret;
1407
1408 rcu_read_lock();
1409 ret = check_kill_permission(sig, info, p);
1410 rcu_read_unlock();
1411
1412 if (!ret && sig)
1413 ret = do_send_sig_info(sig, info, p, type);
1414
1415 return ret;
1416 }
1417
1418 /*
1419 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420 * control characters do (^C, ^Z etc)
1421 * - the caller must hold at least a readlock on tasklist_lock
1422 */
1423 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424 {
1425 struct task_struct *p = NULL;
1426 int retval, success;
1427
1428 success = 0;
1429 retval = -ESRCH;
1430 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432 success |= !err;
1433 retval = err;
1434 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435 return success ? 0 : retval;
1436 }
1437
1438 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439 {
1440 int error = -ESRCH;
1441 struct task_struct *p;
1442
1443 for (;;) {
1444 rcu_read_lock();
1445 p = pid_task(pid, PIDTYPE_PID);
1446 if (p)
1447 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448 rcu_read_unlock();
1449 if (likely(!p || error != -ESRCH))
1450 return error;
1451
1452 /*
1453 * The task was unhashed in between, try again. If it
1454 * is dead, pid_task() will return NULL, if we race with
1455 * de_thread() it will find the new leader.
1456 */
1457 }
1458 }
1459
1460 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461 {
1462 int error;
1463 rcu_read_lock();
1464 error = kill_pid_info(sig, info, find_vpid(pid));
1465 rcu_read_unlock();
1466 return error;
1467 }
1468
1469 static inline bool kill_as_cred_perm(const struct cred *cred,
1470 struct task_struct *target)
1471 {
1472 const struct cred *pcred = __task_cred(target);
1473
1474 return uid_eq(cred->euid, pcred->suid) ||
1475 uid_eq(cred->euid, pcred->uid) ||
1476 uid_eq(cred->uid, pcred->suid) ||
1477 uid_eq(cred->uid, pcred->uid);
1478 }
1479
1480 /*
1481 * The usb asyncio usage of siginfo is wrong. The glibc support
1482 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483 * AKA after the generic fields:
1484 * kernel_pid_t si_pid;
1485 * kernel_uid32_t si_uid;
1486 * sigval_t si_value;
1487 *
1488 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489 * after the generic fields is:
1490 * void __user *si_addr;
1491 *
1492 * This is a practical problem when there is a 64bit big endian kernel
1493 * and a 32bit userspace. As the 32bit address will encoded in the low
1494 * 32bits of the pointer. Those low 32bits will be stored at higher
1495 * address than appear in a 32 bit pointer. So userspace will not
1496 * see the address it was expecting for it's completions.
1497 *
1498 * There is nothing in the encoding that can allow
1499 * copy_siginfo_to_user32 to detect this confusion of formats, so
1500 * handle this by requiring the caller of kill_pid_usb_asyncio to
1501 * notice when this situration takes place and to store the 32bit
1502 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503 * parameter.
1504 */
1505 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506 struct pid *pid, const struct cred *cred)
1507 {
1508 struct kernel_siginfo info;
1509 struct task_struct *p;
1510 unsigned long flags;
1511 int ret = -EINVAL;
1512
1513 if (!valid_signal(sig))
1514 return ret;
1515
1516 clear_siginfo(&info);
1517 info.si_signo = sig;
1518 info.si_errno = errno;
1519 info.si_code = SI_ASYNCIO;
1520 *((sigval_t *)&info.si_pid) = addr;
1521
1522 rcu_read_lock();
1523 p = pid_task(pid, PIDTYPE_PID);
1524 if (!p) {
1525 ret = -ESRCH;
1526 goto out_unlock;
1527 }
1528 if (!kill_as_cred_perm(cred, p)) {
1529 ret = -EPERM;
1530 goto out_unlock;
1531 }
1532 ret = security_task_kill(p, &info, sig, cred);
1533 if (ret)
1534 goto out_unlock;
1535
1536 if (sig) {
1537 if (lock_task_sighand(p, &flags)) {
1538 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539 unlock_task_sighand(p, &flags);
1540 } else
1541 ret = -ESRCH;
1542 }
1543 out_unlock:
1544 rcu_read_unlock();
1545 return ret;
1546 }
1547 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548
1549 /*
1550 * kill_something_info() interprets pid in interesting ways just like kill(2).
1551 *
1552 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553 * is probably wrong. Should make it like BSD or SYSV.
1554 */
1555
1556 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557 {
1558 int ret;
1559
1560 if (pid > 0)
1561 return kill_proc_info(sig, info, pid);
1562
1563 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1564 if (pid == INT_MIN)
1565 return -ESRCH;
1566
1567 read_lock(&tasklist_lock);
1568 if (pid != -1) {
1569 ret = __kill_pgrp_info(sig, info,
1570 pid ? find_vpid(-pid) : task_pgrp(current));
1571 } else {
1572 int retval = 0, count = 0;
1573 struct task_struct * p;
1574
1575 for_each_process(p) {
1576 if (task_pid_vnr(p) > 1 &&
1577 !same_thread_group(p, current)) {
1578 int err = group_send_sig_info(sig, info, p,
1579 PIDTYPE_MAX);
1580 ++count;
1581 if (err != -EPERM)
1582 retval = err;
1583 }
1584 }
1585 ret = count ? retval : -ESRCH;
1586 }
1587 read_unlock(&tasklist_lock);
1588
1589 return ret;
1590 }
1591
1592 /*
1593 * These are for backward compatibility with the rest of the kernel source.
1594 */
1595
1596 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597 {
1598 /*
1599 * Make sure legacy kernel users don't send in bad values
1600 * (normal paths check this in check_kill_permission).
1601 */
1602 if (!valid_signal(sig))
1603 return -EINVAL;
1604
1605 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606 }
1607 EXPORT_SYMBOL(send_sig_info);
1608
1609 #define __si_special(priv) \
1610 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611
1612 int
1613 send_sig(int sig, struct task_struct *p, int priv)
1614 {
1615 return send_sig_info(sig, __si_special(priv), p);
1616 }
1617 EXPORT_SYMBOL(send_sig);
1618
1619 void force_sig(int sig)
1620 {
1621 struct kernel_siginfo info;
1622
1623 clear_siginfo(&info);
1624 info.si_signo = sig;
1625 info.si_errno = 0;
1626 info.si_code = SI_KERNEL;
1627 info.si_pid = 0;
1628 info.si_uid = 0;
1629 force_sig_info(&info);
1630 }
1631 EXPORT_SYMBOL(force_sig);
1632
1633 /*
1634 * When things go south during signal handling, we
1635 * will force a SIGSEGV. And if the signal that caused
1636 * the problem was already a SIGSEGV, we'll want to
1637 * make sure we don't even try to deliver the signal..
1638 */
1639 void force_sigsegv(int sig)
1640 {
1641 struct task_struct *p = current;
1642
1643 if (sig == SIGSEGV) {
1644 unsigned long flags;
1645 spin_lock_irqsave(&p->sighand->siglock, flags);
1646 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648 }
1649 force_sig(SIGSEGV);
1650 }
1651
1652 int force_sig_fault_to_task(int sig, int code, void __user *addr
1653 ___ARCH_SI_TRAPNO(int trapno)
1654 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655 , struct task_struct *t)
1656 {
1657 struct kernel_siginfo info;
1658
1659 clear_siginfo(&info);
1660 info.si_signo = sig;
1661 info.si_errno = 0;
1662 info.si_code = code;
1663 info.si_addr = addr;
1664 #ifdef __ARCH_SI_TRAPNO
1665 info.si_trapno = trapno;
1666 #endif
1667 #ifdef __ia64__
1668 info.si_imm = imm;
1669 info.si_flags = flags;
1670 info.si_isr = isr;
1671 #endif
1672 return force_sig_info_to_task(&info, t);
1673 }
1674
1675 int force_sig_fault(int sig, int code, void __user *addr
1676 ___ARCH_SI_TRAPNO(int trapno)
1677 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678 {
1679 return force_sig_fault_to_task(sig, code, addr
1680 ___ARCH_SI_TRAPNO(trapno)
1681 ___ARCH_SI_IA64(imm, flags, isr), current);
1682 }
1683
1684 int send_sig_fault(int sig, int code, void __user *addr
1685 ___ARCH_SI_TRAPNO(int trapno)
1686 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687 , struct task_struct *t)
1688 {
1689 struct kernel_siginfo info;
1690
1691 clear_siginfo(&info);
1692 info.si_signo = sig;
1693 info.si_errno = 0;
1694 info.si_code = code;
1695 info.si_addr = addr;
1696 #ifdef __ARCH_SI_TRAPNO
1697 info.si_trapno = trapno;
1698 #endif
1699 #ifdef __ia64__
1700 info.si_imm = imm;
1701 info.si_flags = flags;
1702 info.si_isr = isr;
1703 #endif
1704 return send_sig_info(info.si_signo, &info, t);
1705 }
1706
1707 int force_sig_mceerr(int code, void __user *addr, short lsb)
1708 {
1709 struct kernel_siginfo info;
1710
1711 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712 clear_siginfo(&info);
1713 info.si_signo = SIGBUS;
1714 info.si_errno = 0;
1715 info.si_code = code;
1716 info.si_addr = addr;
1717 info.si_addr_lsb = lsb;
1718 return force_sig_info(&info);
1719 }
1720
1721 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722 {
1723 struct kernel_siginfo info;
1724
1725 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726 clear_siginfo(&info);
1727 info.si_signo = SIGBUS;
1728 info.si_errno = 0;
1729 info.si_code = code;
1730 info.si_addr = addr;
1731 info.si_addr_lsb = lsb;
1732 return send_sig_info(info.si_signo, &info, t);
1733 }
1734 EXPORT_SYMBOL(send_sig_mceerr);
1735
1736 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737 {
1738 struct kernel_siginfo info;
1739
1740 clear_siginfo(&info);
1741 info.si_signo = SIGSEGV;
1742 info.si_errno = 0;
1743 info.si_code = SEGV_BNDERR;
1744 info.si_addr = addr;
1745 info.si_lower = lower;
1746 info.si_upper = upper;
1747 return force_sig_info(&info);
1748 }
1749
1750 #ifdef SEGV_PKUERR
1751 int force_sig_pkuerr(void __user *addr, u32 pkey)
1752 {
1753 struct kernel_siginfo info;
1754
1755 clear_siginfo(&info);
1756 info.si_signo = SIGSEGV;
1757 info.si_errno = 0;
1758 info.si_code = SEGV_PKUERR;
1759 info.si_addr = addr;
1760 info.si_pkey = pkey;
1761 return force_sig_info(&info);
1762 }
1763 #endif
1764
1765 /* For the crazy architectures that include trap information in
1766 * the errno field, instead of an actual errno value.
1767 */
1768 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769 {
1770 struct kernel_siginfo info;
1771
1772 clear_siginfo(&info);
1773 info.si_signo = SIGTRAP;
1774 info.si_errno = errno;
1775 info.si_code = TRAP_HWBKPT;
1776 info.si_addr = addr;
1777 return force_sig_info(&info);
1778 }
1779
1780 int kill_pgrp(struct pid *pid, int sig, int priv)
1781 {
1782 int ret;
1783
1784 read_lock(&tasklist_lock);
1785 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786 read_unlock(&tasklist_lock);
1787
1788 return ret;
1789 }
1790 EXPORT_SYMBOL(kill_pgrp);
1791
1792 int kill_pid(struct pid *pid, int sig, int priv)
1793 {
1794 return kill_pid_info(sig, __si_special(priv), pid);
1795 }
1796 EXPORT_SYMBOL(kill_pid);
1797
1798 /*
1799 * These functions support sending signals using preallocated sigqueue
1800 * structures. This is needed "because realtime applications cannot
1801 * afford to lose notifications of asynchronous events, like timer
1802 * expirations or I/O completions". In the case of POSIX Timers
1803 * we allocate the sigqueue structure from the timer_create. If this
1804 * allocation fails we are able to report the failure to the application
1805 * with an EAGAIN error.
1806 */
1807 struct sigqueue *sigqueue_alloc(void)
1808 {
1809 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810
1811 if (q)
1812 q->flags |= SIGQUEUE_PREALLOC;
1813
1814 return q;
1815 }
1816
1817 void sigqueue_free(struct sigqueue *q)
1818 {
1819 unsigned long flags;
1820 spinlock_t *lock = &current->sighand->siglock;
1821
1822 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823 /*
1824 * We must hold ->siglock while testing q->list
1825 * to serialize with collect_signal() or with
1826 * __exit_signal()->flush_sigqueue().
1827 */
1828 spin_lock_irqsave(lock, flags);
1829 q->flags &= ~SIGQUEUE_PREALLOC;
1830 /*
1831 * If it is queued it will be freed when dequeued,
1832 * like the "regular" sigqueue.
1833 */
1834 if (!list_empty(&q->list))
1835 q = NULL;
1836 spin_unlock_irqrestore(lock, flags);
1837
1838 if (q)
1839 __sigqueue_free(q);
1840 }
1841
1842 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843 {
1844 int sig = q->info.si_signo;
1845 struct sigpending *pending;
1846 struct task_struct *t;
1847 unsigned long flags;
1848 int ret, result;
1849
1850 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851
1852 ret = -1;
1853 rcu_read_lock();
1854 t = pid_task(pid, type);
1855 if (!t || !likely(lock_task_sighand(t, &flags)))
1856 goto ret;
1857
1858 ret = 1; /* the signal is ignored */
1859 result = TRACE_SIGNAL_IGNORED;
1860 if (!prepare_signal(sig, t, false))
1861 goto out;
1862
1863 ret = 0;
1864 if (unlikely(!list_empty(&q->list))) {
1865 /*
1866 * If an SI_TIMER entry is already queue just increment
1867 * the overrun count.
1868 */
1869 BUG_ON(q->info.si_code != SI_TIMER);
1870 q->info.si_overrun++;
1871 result = TRACE_SIGNAL_ALREADY_PENDING;
1872 goto out;
1873 }
1874 q->info.si_overrun = 0;
1875
1876 signalfd_notify(t, sig);
1877 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878 list_add_tail(&q->list, &pending->list);
1879 sigaddset(&pending->signal, sig);
1880 complete_signal(sig, t, type);
1881 result = TRACE_SIGNAL_DELIVERED;
1882 out:
1883 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884 unlock_task_sighand(t, &flags);
1885 ret:
1886 rcu_read_unlock();
1887 return ret;
1888 }
1889
1890 static void do_notify_pidfd(struct task_struct *task)
1891 {
1892 struct pid *pid;
1893
1894 WARN_ON(task->exit_state == 0);
1895 pid = task_pid(task);
1896 wake_up_all(&pid->wait_pidfd);
1897 }
1898
1899 /*
1900 * Let a parent know about the death of a child.
1901 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902 *
1903 * Returns true if our parent ignored us and so we've switched to
1904 * self-reaping.
1905 */
1906 bool do_notify_parent(struct task_struct *tsk, int sig)
1907 {
1908 struct kernel_siginfo info;
1909 unsigned long flags;
1910 struct sighand_struct *psig;
1911 bool autoreap = false;
1912 u64 utime, stime;
1913
1914 BUG_ON(sig == -1);
1915
1916 /* do_notify_parent_cldstop should have been called instead. */
1917 BUG_ON(task_is_stopped_or_traced(tsk));
1918
1919 BUG_ON(!tsk->ptrace &&
1920 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921
1922 /* Wake up all pidfd waiters */
1923 do_notify_pidfd(tsk);
1924
1925 if (sig != SIGCHLD) {
1926 /*
1927 * This is only possible if parent == real_parent.
1928 * Check if it has changed security domain.
1929 */
1930 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931 sig = SIGCHLD;
1932 }
1933
1934 clear_siginfo(&info);
1935 info.si_signo = sig;
1936 info.si_errno = 0;
1937 /*
1938 * We are under tasklist_lock here so our parent is tied to
1939 * us and cannot change.
1940 *
1941 * task_active_pid_ns will always return the same pid namespace
1942 * until a task passes through release_task.
1943 *
1944 * write_lock() currently calls preempt_disable() which is the
1945 * same as rcu_read_lock(), but according to Oleg, this is not
1946 * correct to rely on this
1947 */
1948 rcu_read_lock();
1949 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951 task_uid(tsk));
1952 rcu_read_unlock();
1953
1954 task_cputime(tsk, &utime, &stime);
1955 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957
1958 info.si_status = tsk->exit_code & 0x7f;
1959 if (tsk->exit_code & 0x80)
1960 info.si_code = CLD_DUMPED;
1961 else if (tsk->exit_code & 0x7f)
1962 info.si_code = CLD_KILLED;
1963 else {
1964 info.si_code = CLD_EXITED;
1965 info.si_status = tsk->exit_code >> 8;
1966 }
1967
1968 psig = tsk->parent->sighand;
1969 spin_lock_irqsave(&psig->siglock, flags);
1970 if (!tsk->ptrace && sig == SIGCHLD &&
1971 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973 /*
1974 * We are exiting and our parent doesn't care. POSIX.1
1975 * defines special semantics for setting SIGCHLD to SIG_IGN
1976 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977 * automatically and not left for our parent's wait4 call.
1978 * Rather than having the parent do it as a magic kind of
1979 * signal handler, we just set this to tell do_exit that we
1980 * can be cleaned up without becoming a zombie. Note that
1981 * we still call __wake_up_parent in this case, because a
1982 * blocked sys_wait4 might now return -ECHILD.
1983 *
1984 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985 * is implementation-defined: we do (if you don't want
1986 * it, just use SIG_IGN instead).
1987 */
1988 autoreap = true;
1989 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990 sig = 0;
1991 }
1992 /*
1993 * Send with __send_signal as si_pid and si_uid are in the
1994 * parent's namespaces.
1995 */
1996 if (valid_signal(sig) && sig)
1997 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1998 __wake_up_parent(tsk, tsk->parent);
1999 spin_unlock_irqrestore(&psig->siglock, flags);
2000
2001 return autoreap;
2002 }
2003
2004 /**
2005 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2006 * @tsk: task reporting the state change
2007 * @for_ptracer: the notification is for ptracer
2008 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2009 *
2010 * Notify @tsk's parent that the stopped/continued state has changed. If
2011 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2012 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2013 *
2014 * CONTEXT:
2015 * Must be called with tasklist_lock at least read locked.
2016 */
2017 static void do_notify_parent_cldstop(struct task_struct *tsk,
2018 bool for_ptracer, int why)
2019 {
2020 struct kernel_siginfo info;
2021 unsigned long flags;
2022 struct task_struct *parent;
2023 struct sighand_struct *sighand;
2024 u64 utime, stime;
2025
2026 if (for_ptracer) {
2027 parent = tsk->parent;
2028 } else {
2029 tsk = tsk->group_leader;
2030 parent = tsk->real_parent;
2031 }
2032
2033 clear_siginfo(&info);
2034 info.si_signo = SIGCHLD;
2035 info.si_errno = 0;
2036 /*
2037 * see comment in do_notify_parent() about the following 4 lines
2038 */
2039 rcu_read_lock();
2040 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2041 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2042 rcu_read_unlock();
2043
2044 task_cputime(tsk, &utime, &stime);
2045 info.si_utime = nsec_to_clock_t(utime);
2046 info.si_stime = nsec_to_clock_t(stime);
2047
2048 info.si_code = why;
2049 switch (why) {
2050 case CLD_CONTINUED:
2051 info.si_status = SIGCONT;
2052 break;
2053 case CLD_STOPPED:
2054 info.si_status = tsk->signal->group_exit_code & 0x7f;
2055 break;
2056 case CLD_TRAPPED:
2057 info.si_status = tsk->exit_code & 0x7f;
2058 break;
2059 default:
2060 BUG();
2061 }
2062
2063 sighand = parent->sighand;
2064 spin_lock_irqsave(&sighand->siglock, flags);
2065 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2066 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2067 __group_send_sig_info(SIGCHLD, &info, parent);
2068 /*
2069 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2070 */
2071 __wake_up_parent(tsk, parent);
2072 spin_unlock_irqrestore(&sighand->siglock, flags);
2073 }
2074
2075 static inline bool may_ptrace_stop(void)
2076 {
2077 if (!likely(current->ptrace))
2078 return false;
2079 /*
2080 * Are we in the middle of do_coredump?
2081 * If so and our tracer is also part of the coredump stopping
2082 * is a deadlock situation, and pointless because our tracer
2083 * is dead so don't allow us to stop.
2084 * If SIGKILL was already sent before the caller unlocked
2085 * ->siglock we must see ->core_state != NULL. Otherwise it
2086 * is safe to enter schedule().
2087 *
2088 * This is almost outdated, a task with the pending SIGKILL can't
2089 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2090 * after SIGKILL was already dequeued.
2091 */
2092 if (unlikely(current->mm->core_state) &&
2093 unlikely(current->mm == current->parent->mm))
2094 return false;
2095
2096 return true;
2097 }
2098
2099 /*
2100 * Return non-zero if there is a SIGKILL that should be waking us up.
2101 * Called with the siglock held.
2102 */
2103 static bool sigkill_pending(struct task_struct *tsk)
2104 {
2105 return sigismember(&tsk->pending.signal, SIGKILL) ||
2106 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2107 }
2108
2109 /*
2110 * This must be called with current->sighand->siglock held.
2111 *
2112 * This should be the path for all ptrace stops.
2113 * We always set current->last_siginfo while stopped here.
2114 * That makes it a way to test a stopped process for
2115 * being ptrace-stopped vs being job-control-stopped.
2116 *
2117 * If we actually decide not to stop at all because the tracer
2118 * is gone, we keep current->exit_code unless clear_code.
2119 */
2120 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2121 __releases(&current->sighand->siglock)
2122 __acquires(&current->sighand->siglock)
2123 {
2124 bool gstop_done = false;
2125
2126 if (arch_ptrace_stop_needed(exit_code, info)) {
2127 /*
2128 * The arch code has something special to do before a
2129 * ptrace stop. This is allowed to block, e.g. for faults
2130 * on user stack pages. We can't keep the siglock while
2131 * calling arch_ptrace_stop, so we must release it now.
2132 * To preserve proper semantics, we must do this before
2133 * any signal bookkeeping like checking group_stop_count.
2134 * Meanwhile, a SIGKILL could come in before we retake the
2135 * siglock. That must prevent us from sleeping in TASK_TRACED.
2136 * So after regaining the lock, we must check for SIGKILL.
2137 */
2138 spin_unlock_irq(&current->sighand->siglock);
2139 arch_ptrace_stop(exit_code, info);
2140 spin_lock_irq(&current->sighand->siglock);
2141 if (sigkill_pending(current))
2142 return;
2143 }
2144
2145 set_special_state(TASK_TRACED);
2146
2147 /*
2148 * We're committing to trapping. TRACED should be visible before
2149 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2150 * Also, transition to TRACED and updates to ->jobctl should be
2151 * atomic with respect to siglock and should be done after the arch
2152 * hook as siglock is released and regrabbed across it.
2153 *
2154 * TRACER TRACEE
2155 *
2156 * ptrace_attach()
2157 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2158 * do_wait()
2159 * set_current_state() smp_wmb();
2160 * ptrace_do_wait()
2161 * wait_task_stopped()
2162 * task_stopped_code()
2163 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2164 */
2165 smp_wmb();
2166
2167 current->last_siginfo = info;
2168 current->exit_code = exit_code;
2169
2170 /*
2171 * If @why is CLD_STOPPED, we're trapping to participate in a group
2172 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2173 * across siglock relocks since INTERRUPT was scheduled, PENDING
2174 * could be clear now. We act as if SIGCONT is received after
2175 * TASK_TRACED is entered - ignore it.
2176 */
2177 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2178 gstop_done = task_participate_group_stop(current);
2179
2180 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2181 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2182 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2183 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2184
2185 /* entering a trap, clear TRAPPING */
2186 task_clear_jobctl_trapping(current);
2187
2188 spin_unlock_irq(&current->sighand->siglock);
2189 read_lock(&tasklist_lock);
2190 if (may_ptrace_stop()) {
2191 /*
2192 * Notify parents of the stop.
2193 *
2194 * While ptraced, there are two parents - the ptracer and
2195 * the real_parent of the group_leader. The ptracer should
2196 * know about every stop while the real parent is only
2197 * interested in the completion of group stop. The states
2198 * for the two don't interact with each other. Notify
2199 * separately unless they're gonna be duplicates.
2200 */
2201 do_notify_parent_cldstop(current, true, why);
2202 if (gstop_done && ptrace_reparented(current))
2203 do_notify_parent_cldstop(current, false, why);
2204
2205 /*
2206 * Don't want to allow preemption here, because
2207 * sys_ptrace() needs this task to be inactive.
2208 *
2209 * XXX: implement read_unlock_no_resched().
2210 */
2211 preempt_disable();
2212 read_unlock(&tasklist_lock);
2213 cgroup_enter_frozen();
2214 preempt_enable_no_resched();
2215 freezable_schedule();
2216 cgroup_leave_frozen(true);
2217 } else {
2218 /*
2219 * By the time we got the lock, our tracer went away.
2220 * Don't drop the lock yet, another tracer may come.
2221 *
2222 * If @gstop_done, the ptracer went away between group stop
2223 * completion and here. During detach, it would have set
2224 * JOBCTL_STOP_PENDING on us and we'll re-enter
2225 * TASK_STOPPED in do_signal_stop() on return, so notifying
2226 * the real parent of the group stop completion is enough.
2227 */
2228 if (gstop_done)
2229 do_notify_parent_cldstop(current, false, why);
2230
2231 /* tasklist protects us from ptrace_freeze_traced() */
2232 __set_current_state(TASK_RUNNING);
2233 if (clear_code)
2234 current->exit_code = 0;
2235 read_unlock(&tasklist_lock);
2236 }
2237
2238 /*
2239 * We are back. Now reacquire the siglock before touching
2240 * last_siginfo, so that we are sure to have synchronized with
2241 * any signal-sending on another CPU that wants to examine it.
2242 */
2243 spin_lock_irq(&current->sighand->siglock);
2244 current->last_siginfo = NULL;
2245
2246 /* LISTENING can be set only during STOP traps, clear it */
2247 current->jobctl &= ~JOBCTL_LISTENING;
2248
2249 /*
2250 * Queued signals ignored us while we were stopped for tracing.
2251 * So check for any that we should take before resuming user mode.
2252 * This sets TIF_SIGPENDING, but never clears it.
2253 */
2254 recalc_sigpending_tsk(current);
2255 }
2256
2257 static void ptrace_do_notify(int signr, int exit_code, int why)
2258 {
2259 kernel_siginfo_t info;
2260
2261 clear_siginfo(&info);
2262 info.si_signo = signr;
2263 info.si_code = exit_code;
2264 info.si_pid = task_pid_vnr(current);
2265 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2266
2267 /* Let the debugger run. */
2268 ptrace_stop(exit_code, why, 1, &info);
2269 }
2270
2271 void ptrace_notify(int exit_code)
2272 {
2273 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2274 if (unlikely(current->task_works))
2275 task_work_run();
2276
2277 spin_lock_irq(&current->sighand->siglock);
2278 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2279 spin_unlock_irq(&current->sighand->siglock);
2280 }
2281
2282 /**
2283 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2284 * @signr: signr causing group stop if initiating
2285 *
2286 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2287 * and participate in it. If already set, participate in the existing
2288 * group stop. If participated in a group stop (and thus slept), %true is
2289 * returned with siglock released.
2290 *
2291 * If ptraced, this function doesn't handle stop itself. Instead,
2292 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2293 * untouched. The caller must ensure that INTERRUPT trap handling takes
2294 * places afterwards.
2295 *
2296 * CONTEXT:
2297 * Must be called with @current->sighand->siglock held, which is released
2298 * on %true return.
2299 *
2300 * RETURNS:
2301 * %false if group stop is already cancelled or ptrace trap is scheduled.
2302 * %true if participated in group stop.
2303 */
2304 static bool do_signal_stop(int signr)
2305 __releases(&current->sighand->siglock)
2306 {
2307 struct signal_struct *sig = current->signal;
2308
2309 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2310 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2311 struct task_struct *t;
2312
2313 /* signr will be recorded in task->jobctl for retries */
2314 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2315
2316 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2317 unlikely(signal_group_exit(sig)))
2318 return false;
2319 /*
2320 * There is no group stop already in progress. We must
2321 * initiate one now.
2322 *
2323 * While ptraced, a task may be resumed while group stop is
2324 * still in effect and then receive a stop signal and
2325 * initiate another group stop. This deviates from the
2326 * usual behavior as two consecutive stop signals can't
2327 * cause two group stops when !ptraced. That is why we
2328 * also check !task_is_stopped(t) below.
2329 *
2330 * The condition can be distinguished by testing whether
2331 * SIGNAL_STOP_STOPPED is already set. Don't generate
2332 * group_exit_code in such case.
2333 *
2334 * This is not necessary for SIGNAL_STOP_CONTINUED because
2335 * an intervening stop signal is required to cause two
2336 * continued events regardless of ptrace.
2337 */
2338 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2339 sig->group_exit_code = signr;
2340
2341 sig->group_stop_count = 0;
2342
2343 if (task_set_jobctl_pending(current, signr | gstop))
2344 sig->group_stop_count++;
2345
2346 t = current;
2347 while_each_thread(current, t) {
2348 /*
2349 * Setting state to TASK_STOPPED for a group
2350 * stop is always done with the siglock held,
2351 * so this check has no races.
2352 */
2353 if (!task_is_stopped(t) &&
2354 task_set_jobctl_pending(t, signr | gstop)) {
2355 sig->group_stop_count++;
2356 if (likely(!(t->ptrace & PT_SEIZED)))
2357 signal_wake_up(t, 0);
2358 else
2359 ptrace_trap_notify(t);
2360 }
2361 }
2362 }
2363
2364 if (likely(!current->ptrace)) {
2365 int notify = 0;
2366
2367 /*
2368 * If there are no other threads in the group, or if there
2369 * is a group stop in progress and we are the last to stop,
2370 * report to the parent.
2371 */
2372 if (task_participate_group_stop(current))
2373 notify = CLD_STOPPED;
2374
2375 set_special_state(TASK_STOPPED);
2376 spin_unlock_irq(&current->sighand->siglock);
2377
2378 /*
2379 * Notify the parent of the group stop completion. Because
2380 * we're not holding either the siglock or tasklist_lock
2381 * here, ptracer may attach inbetween; however, this is for
2382 * group stop and should always be delivered to the real
2383 * parent of the group leader. The new ptracer will get
2384 * its notification when this task transitions into
2385 * TASK_TRACED.
2386 */
2387 if (notify) {
2388 read_lock(&tasklist_lock);
2389 do_notify_parent_cldstop(current, false, notify);
2390 read_unlock(&tasklist_lock);
2391 }
2392
2393 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2394 cgroup_enter_frozen();
2395 freezable_schedule();
2396 return true;
2397 } else {
2398 /*
2399 * While ptraced, group stop is handled by STOP trap.
2400 * Schedule it and let the caller deal with it.
2401 */
2402 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2403 return false;
2404 }
2405 }
2406
2407 /**
2408 * do_jobctl_trap - take care of ptrace jobctl traps
2409 *
2410 * When PT_SEIZED, it's used for both group stop and explicit
2411 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2412 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2413 * the stop signal; otherwise, %SIGTRAP.
2414 *
2415 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2416 * number as exit_code and no siginfo.
2417 *
2418 * CONTEXT:
2419 * Must be called with @current->sighand->siglock held, which may be
2420 * released and re-acquired before returning with intervening sleep.
2421 */
2422 static void do_jobctl_trap(void)
2423 {
2424 struct signal_struct *signal = current->signal;
2425 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2426
2427 if (current->ptrace & PT_SEIZED) {
2428 if (!signal->group_stop_count &&
2429 !(signal->flags & SIGNAL_STOP_STOPPED))
2430 signr = SIGTRAP;
2431 WARN_ON_ONCE(!signr);
2432 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2433 CLD_STOPPED);
2434 } else {
2435 WARN_ON_ONCE(!signr);
2436 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2437 current->exit_code = 0;
2438 }
2439 }
2440
2441 /**
2442 * do_freezer_trap - handle the freezer jobctl trap
2443 *
2444 * Puts the task into frozen state, if only the task is not about to quit.
2445 * In this case it drops JOBCTL_TRAP_FREEZE.
2446 *
2447 * CONTEXT:
2448 * Must be called with @current->sighand->siglock held,
2449 * which is always released before returning.
2450 */
2451 static void do_freezer_trap(void)
2452 __releases(&current->sighand->siglock)
2453 {
2454 /*
2455 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2456 * let's make another loop to give it a chance to be handled.
2457 * In any case, we'll return back.
2458 */
2459 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2460 JOBCTL_TRAP_FREEZE) {
2461 spin_unlock_irq(&current->sighand->siglock);
2462 return;
2463 }
2464
2465 /*
2466 * Now we're sure that there is no pending fatal signal and no
2467 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2468 * immediately (if there is a non-fatal signal pending), and
2469 * put the task into sleep.
2470 */
2471 __set_current_state(TASK_INTERRUPTIBLE);
2472 clear_thread_flag(TIF_SIGPENDING);
2473 spin_unlock_irq(&current->sighand->siglock);
2474 cgroup_enter_frozen();
2475 freezable_schedule();
2476 }
2477
2478 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2479 {
2480 /*
2481 * We do not check sig_kernel_stop(signr) but set this marker
2482 * unconditionally because we do not know whether debugger will
2483 * change signr. This flag has no meaning unless we are going
2484 * to stop after return from ptrace_stop(). In this case it will
2485 * be checked in do_signal_stop(), we should only stop if it was
2486 * not cleared by SIGCONT while we were sleeping. See also the
2487 * comment in dequeue_signal().
2488 */
2489 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2490 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2491
2492 /* We're back. Did the debugger cancel the sig? */
2493 signr = current->exit_code;
2494 if (signr == 0)
2495 return signr;
2496
2497 current->exit_code = 0;
2498
2499 /*
2500 * Update the siginfo structure if the signal has
2501 * changed. If the debugger wanted something
2502 * specific in the siginfo structure then it should
2503 * have updated *info via PTRACE_SETSIGINFO.
2504 */
2505 if (signr != info->si_signo) {
2506 clear_siginfo(info);
2507 info->si_signo = signr;
2508 info->si_errno = 0;
2509 info->si_code = SI_USER;
2510 rcu_read_lock();
2511 info->si_pid = task_pid_vnr(current->parent);
2512 info->si_uid = from_kuid_munged(current_user_ns(),
2513 task_uid(current->parent));
2514 rcu_read_unlock();
2515 }
2516
2517 /* If the (new) signal is now blocked, requeue it. */
2518 if (sigismember(&current->blocked, signr)) {
2519 send_signal(signr, info, current, PIDTYPE_PID);
2520 signr = 0;
2521 }
2522
2523 return signr;
2524 }
2525
2526 bool get_signal(struct ksignal *ksig)
2527 {
2528 struct sighand_struct *sighand = current->sighand;
2529 struct signal_struct *signal = current->signal;
2530 int signr;
2531
2532 if (unlikely(current->task_works))
2533 task_work_run();
2534
2535 if (unlikely(uprobe_deny_signal()))
2536 return false;
2537
2538 /*
2539 * Do this once, we can't return to user-mode if freezing() == T.
2540 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2541 * thus do not need another check after return.
2542 */
2543 try_to_freeze();
2544
2545 relock:
2546 spin_lock_irq(&sighand->siglock);
2547 /*
2548 * Every stopped thread goes here after wakeup. Check to see if
2549 * we should notify the parent, prepare_signal(SIGCONT) encodes
2550 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2551 */
2552 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2553 int why;
2554
2555 if (signal->flags & SIGNAL_CLD_CONTINUED)
2556 why = CLD_CONTINUED;
2557 else
2558 why = CLD_STOPPED;
2559
2560 signal->flags &= ~SIGNAL_CLD_MASK;
2561
2562 spin_unlock_irq(&sighand->siglock);
2563
2564 /*
2565 * Notify the parent that we're continuing. This event is
2566 * always per-process and doesn't make whole lot of sense
2567 * for ptracers, who shouldn't consume the state via
2568 * wait(2) either, but, for backward compatibility, notify
2569 * the ptracer of the group leader too unless it's gonna be
2570 * a duplicate.
2571 */
2572 read_lock(&tasklist_lock);
2573 do_notify_parent_cldstop(current, false, why);
2574
2575 if (ptrace_reparented(current->group_leader))
2576 do_notify_parent_cldstop(current->group_leader,
2577 true, why);
2578 read_unlock(&tasklist_lock);
2579
2580 goto relock;
2581 }
2582
2583 /* Has this task already been marked for death? */
2584 if (signal_group_exit(signal)) {
2585 ksig->info.si_signo = signr = SIGKILL;
2586 sigdelset(&current->pending.signal, SIGKILL);
2587 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2588 &sighand->action[SIGKILL - 1]);
2589 recalc_sigpending();
2590 goto fatal;
2591 }
2592
2593 for (;;) {
2594 struct k_sigaction *ka;
2595
2596 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2597 do_signal_stop(0))
2598 goto relock;
2599
2600 if (unlikely(current->jobctl &
2601 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2602 if (current->jobctl & JOBCTL_TRAP_MASK) {
2603 do_jobctl_trap();
2604 spin_unlock_irq(&sighand->siglock);
2605 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2606 do_freezer_trap();
2607
2608 goto relock;
2609 }
2610
2611 /*
2612 * If the task is leaving the frozen state, let's update
2613 * cgroup counters and reset the frozen bit.
2614 */
2615 if (unlikely(cgroup_task_frozen(current))) {
2616 spin_unlock_irq(&sighand->siglock);
2617 cgroup_leave_frozen(false);
2618 goto relock;
2619 }
2620
2621 /*
2622 * Signals generated by the execution of an instruction
2623 * need to be delivered before any other pending signals
2624 * so that the instruction pointer in the signal stack
2625 * frame points to the faulting instruction.
2626 */
2627 signr = dequeue_synchronous_signal(&ksig->info);
2628 if (!signr)
2629 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2630
2631 if (!signr)
2632 break; /* will return 0 */
2633
2634 if (unlikely(current->ptrace) && signr != SIGKILL) {
2635 signr = ptrace_signal(signr, &ksig->info);
2636 if (!signr)
2637 continue;
2638 }
2639
2640 ka = &sighand->action[signr-1];
2641
2642 /* Trace actually delivered signals. */
2643 trace_signal_deliver(signr, &ksig->info, ka);
2644
2645 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2646 continue;
2647 if (ka->sa.sa_handler != SIG_DFL) {
2648 /* Run the handler. */
2649 ksig->ka = *ka;
2650
2651 if (ka->sa.sa_flags & SA_ONESHOT)
2652 ka->sa.sa_handler = SIG_DFL;
2653
2654 break; /* will return non-zero "signr" value */
2655 }
2656
2657 /*
2658 * Now we are doing the default action for this signal.
2659 */
2660 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2661 continue;
2662
2663 /*
2664 * Global init gets no signals it doesn't want.
2665 * Container-init gets no signals it doesn't want from same
2666 * container.
2667 *
2668 * Note that if global/container-init sees a sig_kernel_only()
2669 * signal here, the signal must have been generated internally
2670 * or must have come from an ancestor namespace. In either
2671 * case, the signal cannot be dropped.
2672 */
2673 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2674 !sig_kernel_only(signr))
2675 continue;
2676
2677 if (sig_kernel_stop(signr)) {
2678 /*
2679 * The default action is to stop all threads in
2680 * the thread group. The job control signals
2681 * do nothing in an orphaned pgrp, but SIGSTOP
2682 * always works. Note that siglock needs to be
2683 * dropped during the call to is_orphaned_pgrp()
2684 * because of lock ordering with tasklist_lock.
2685 * This allows an intervening SIGCONT to be posted.
2686 * We need to check for that and bail out if necessary.
2687 */
2688 if (signr != SIGSTOP) {
2689 spin_unlock_irq(&sighand->siglock);
2690
2691 /* signals can be posted during this window */
2692
2693 if (is_current_pgrp_orphaned())
2694 goto relock;
2695
2696 spin_lock_irq(&sighand->siglock);
2697 }
2698
2699 if (likely(do_signal_stop(ksig->info.si_signo))) {
2700 /* It released the siglock. */
2701 goto relock;
2702 }
2703
2704 /*
2705 * We didn't actually stop, due to a race
2706 * with SIGCONT or something like that.
2707 */
2708 continue;
2709 }
2710
2711 fatal:
2712 spin_unlock_irq(&sighand->siglock);
2713 if (unlikely(cgroup_task_frozen(current)))
2714 cgroup_leave_frozen(true);
2715
2716 /*
2717 * Anything else is fatal, maybe with a core dump.
2718 */
2719 current->flags |= PF_SIGNALED;
2720
2721 if (sig_kernel_coredump(signr)) {
2722 if (print_fatal_signals)
2723 print_fatal_signal(ksig->info.si_signo);
2724 proc_coredump_connector(current);
2725 /*
2726 * If it was able to dump core, this kills all
2727 * other threads in the group and synchronizes with
2728 * their demise. If we lost the race with another
2729 * thread getting here, it set group_exit_code
2730 * first and our do_group_exit call below will use
2731 * that value and ignore the one we pass it.
2732 */
2733 do_coredump(&ksig->info);
2734 }
2735
2736 /*
2737 * Death signals, no core dump.
2738 */
2739 do_group_exit(ksig->info.si_signo);
2740 /* NOTREACHED */
2741 }
2742 spin_unlock_irq(&sighand->siglock);
2743
2744 ksig->sig = signr;
2745 return ksig->sig > 0;
2746 }
2747
2748 /**
2749 * signal_delivered -
2750 * @ksig: kernel signal struct
2751 * @stepping: nonzero if debugger single-step or block-step in use
2752 *
2753 * This function should be called when a signal has successfully been
2754 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2755 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2756 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2757 */
2758 static void signal_delivered(struct ksignal *ksig, int stepping)
2759 {
2760 sigset_t blocked;
2761
2762 /* A signal was successfully delivered, and the
2763 saved sigmask was stored on the signal frame,
2764 and will be restored by sigreturn. So we can
2765 simply clear the restore sigmask flag. */
2766 clear_restore_sigmask();
2767
2768 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2769 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2770 sigaddset(&blocked, ksig->sig);
2771 set_current_blocked(&blocked);
2772 tracehook_signal_handler(stepping);
2773 }
2774
2775 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2776 {
2777 if (failed)
2778 force_sigsegv(ksig->sig);
2779 else
2780 signal_delivered(ksig, stepping);
2781 }
2782
2783 /*
2784 * It could be that complete_signal() picked us to notify about the
2785 * group-wide signal. Other threads should be notified now to take
2786 * the shared signals in @which since we will not.
2787 */
2788 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2789 {
2790 sigset_t retarget;
2791 struct task_struct *t;
2792
2793 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2794 if (sigisemptyset(&retarget))
2795 return;
2796
2797 t = tsk;
2798 while_each_thread(tsk, t) {
2799 if (t->flags & PF_EXITING)
2800 continue;
2801
2802 if (!has_pending_signals(&retarget, &t->blocked))
2803 continue;
2804 /* Remove the signals this thread can handle. */
2805 sigandsets(&retarget, &retarget, &t->blocked);
2806
2807 if (!signal_pending(t))
2808 signal_wake_up(t, 0);
2809
2810 if (sigisemptyset(&retarget))
2811 break;
2812 }
2813 }
2814
2815 void exit_signals(struct task_struct *tsk)
2816 {
2817 int group_stop = 0;
2818 sigset_t unblocked;
2819
2820 /*
2821 * @tsk is about to have PF_EXITING set - lock out users which
2822 * expect stable threadgroup.
2823 */
2824 cgroup_threadgroup_change_begin(tsk);
2825
2826 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2827 tsk->flags |= PF_EXITING;
2828 cgroup_threadgroup_change_end(tsk);
2829 return;
2830 }
2831
2832 spin_lock_irq(&tsk->sighand->siglock);
2833 /*
2834 * From now this task is not visible for group-wide signals,
2835 * see wants_signal(), do_signal_stop().
2836 */
2837 tsk->flags |= PF_EXITING;
2838
2839 cgroup_threadgroup_change_end(tsk);
2840
2841 if (!signal_pending(tsk))
2842 goto out;
2843
2844 unblocked = tsk->blocked;
2845 signotset(&unblocked);
2846 retarget_shared_pending(tsk, &unblocked);
2847
2848 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2849 task_participate_group_stop(tsk))
2850 group_stop = CLD_STOPPED;
2851 out:
2852 spin_unlock_irq(&tsk->sighand->siglock);
2853
2854 /*
2855 * If group stop has completed, deliver the notification. This
2856 * should always go to the real parent of the group leader.
2857 */
2858 if (unlikely(group_stop)) {
2859 read_lock(&tasklist_lock);
2860 do_notify_parent_cldstop(tsk, false, group_stop);
2861 read_unlock(&tasklist_lock);
2862 }
2863 }
2864
2865 /*
2866 * System call entry points.
2867 */
2868
2869 /**
2870 * sys_restart_syscall - restart a system call
2871 */
2872 SYSCALL_DEFINE0(restart_syscall)
2873 {
2874 struct restart_block *restart = &current->restart_block;
2875 return restart->fn(restart);
2876 }
2877
2878 long do_no_restart_syscall(struct restart_block *param)
2879 {
2880 return -EINTR;
2881 }
2882
2883 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2884 {
2885 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2886 sigset_t newblocked;
2887 /* A set of now blocked but previously unblocked signals. */
2888 sigandnsets(&newblocked, newset, &current->blocked);
2889 retarget_shared_pending(tsk, &newblocked);
2890 }
2891 tsk->blocked = *newset;
2892 recalc_sigpending();
2893 }
2894
2895 /**
2896 * set_current_blocked - change current->blocked mask
2897 * @newset: new mask
2898 *
2899 * It is wrong to change ->blocked directly, this helper should be used
2900 * to ensure the process can't miss a shared signal we are going to block.
2901 */
2902 void set_current_blocked(sigset_t *newset)
2903 {
2904 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2905 __set_current_blocked(newset);
2906 }
2907
2908 void __set_current_blocked(const sigset_t *newset)
2909 {
2910 struct task_struct *tsk = current;
2911
2912 /*
2913 * In case the signal mask hasn't changed, there is nothing we need
2914 * to do. The current->blocked shouldn't be modified by other task.
2915 */
2916 if (sigequalsets(&tsk->blocked, newset))
2917 return;
2918
2919 spin_lock_irq(&tsk->sighand->siglock);
2920 __set_task_blocked(tsk, newset);
2921 spin_unlock_irq(&tsk->sighand->siglock);
2922 }
2923
2924 /*
2925 * This is also useful for kernel threads that want to temporarily
2926 * (or permanently) block certain signals.
2927 *
2928 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2929 * interface happily blocks "unblockable" signals like SIGKILL
2930 * and friends.
2931 */
2932 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2933 {
2934 struct task_struct *tsk = current;
2935 sigset_t newset;
2936
2937 /* Lockless, only current can change ->blocked, never from irq */
2938 if (oldset)
2939 *oldset = tsk->blocked;
2940
2941 switch (how) {
2942 case SIG_BLOCK:
2943 sigorsets(&newset, &tsk->blocked, set);
2944 break;
2945 case SIG_UNBLOCK:
2946 sigandnsets(&newset, &tsk->blocked, set);
2947 break;
2948 case SIG_SETMASK:
2949 newset = *set;
2950 break;
2951 default:
2952 return -EINVAL;
2953 }
2954
2955 __set_current_blocked(&newset);
2956 return 0;
2957 }
2958 EXPORT_SYMBOL(sigprocmask);
2959
2960 /*
2961 * The api helps set app-provided sigmasks.
2962 *
2963 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2964 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2965 *
2966 * Note that it does set_restore_sigmask() in advance, so it must be always
2967 * paired with restore_saved_sigmask_unless() before return from syscall.
2968 */
2969 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2970 {
2971 sigset_t kmask;
2972
2973 if (!umask)
2974 return 0;
2975 if (sigsetsize != sizeof(sigset_t))
2976 return -EINVAL;
2977 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2978 return -EFAULT;
2979
2980 set_restore_sigmask();
2981 current->saved_sigmask = current->blocked;
2982 set_current_blocked(&kmask);
2983
2984 return 0;
2985 }
2986
2987 #ifdef CONFIG_COMPAT
2988 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2989 size_t sigsetsize)
2990 {
2991 sigset_t kmask;
2992
2993 if (!umask)
2994 return 0;
2995 if (sigsetsize != sizeof(compat_sigset_t))
2996 return -EINVAL;
2997 if (get_compat_sigset(&kmask, umask))
2998 return -EFAULT;
2999
3000 set_restore_sigmask();
3001 current->saved_sigmask = current->blocked;
3002 set_current_blocked(&kmask);
3003
3004 return 0;
3005 }
3006 #endif
3007
3008 /**
3009 * sys_rt_sigprocmask - change the list of currently blocked signals
3010 * @how: whether to add, remove, or set signals
3011 * @nset: stores pending signals
3012 * @oset: previous value of signal mask if non-null
3013 * @sigsetsize: size of sigset_t type
3014 */
3015 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3016 sigset_t __user *, oset, size_t, sigsetsize)
3017 {
3018 sigset_t old_set, new_set;
3019 int error;
3020
3021 /* XXX: Don't preclude handling different sized sigset_t's. */
3022 if (sigsetsize != sizeof(sigset_t))
3023 return -EINVAL;
3024
3025 old_set = current->blocked;
3026
3027 if (nset) {
3028 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3029 return -EFAULT;
3030 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3031
3032 error = sigprocmask(how, &new_set, NULL);
3033 if (error)
3034 return error;
3035 }
3036
3037 if (oset) {
3038 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3039 return -EFAULT;
3040 }
3041
3042 return 0;
3043 }
3044
3045 #ifdef CONFIG_COMPAT
3046 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3047 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3048 {
3049 sigset_t old_set = current->blocked;
3050
3051 /* XXX: Don't preclude handling different sized sigset_t's. */
3052 if (sigsetsize != sizeof(sigset_t))
3053 return -EINVAL;
3054
3055 if (nset) {
3056 sigset_t new_set;
3057 int error;
3058 if (get_compat_sigset(&new_set, nset))
3059 return -EFAULT;
3060 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3061
3062 error = sigprocmask(how, &new_set, NULL);
3063 if (error)
3064 return error;
3065 }
3066 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3067 }
3068 #endif
3069
3070 static void do_sigpending(sigset_t *set)
3071 {
3072 spin_lock_irq(&current->sighand->siglock);
3073 sigorsets(set, &current->pending.signal,
3074 &current->signal->shared_pending.signal);
3075 spin_unlock_irq(&current->sighand->siglock);
3076
3077 /* Outside the lock because only this thread touches it. */
3078 sigandsets(set, &current->blocked, set);
3079 }
3080
3081 /**
3082 * sys_rt_sigpending - examine a pending signal that has been raised
3083 * while blocked
3084 * @uset: stores pending signals
3085 * @sigsetsize: size of sigset_t type or larger
3086 */
3087 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3088 {
3089 sigset_t set;
3090
3091 if (sigsetsize > sizeof(*uset))
3092 return -EINVAL;
3093
3094 do_sigpending(&set);
3095
3096 if (copy_to_user(uset, &set, sigsetsize))
3097 return -EFAULT;
3098
3099 return 0;
3100 }
3101
3102 #ifdef CONFIG_COMPAT
3103 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3104 compat_size_t, sigsetsize)
3105 {
3106 sigset_t set;
3107
3108 if (sigsetsize > sizeof(*uset))
3109 return -EINVAL;
3110
3111 do_sigpending(&set);
3112
3113 return put_compat_sigset(uset, &set, sigsetsize);
3114 }
3115 #endif
3116
3117 static const struct {
3118 unsigned char limit, layout;
3119 } sig_sicodes[] = {
3120 [SIGILL] = { NSIGILL, SIL_FAULT },
3121 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3122 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3123 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3124 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3125 #if defined(SIGEMT)
3126 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3127 #endif
3128 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3129 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3130 [SIGSYS] = { NSIGSYS, SIL_SYS },
3131 };
3132
3133 static bool known_siginfo_layout(unsigned sig, int si_code)
3134 {
3135 if (si_code == SI_KERNEL)
3136 return true;
3137 else if ((si_code > SI_USER)) {
3138 if (sig_specific_sicodes(sig)) {
3139 if (si_code <= sig_sicodes[sig].limit)
3140 return true;
3141 }
3142 else if (si_code <= NSIGPOLL)
3143 return true;
3144 }
3145 else if (si_code >= SI_DETHREAD)
3146 return true;
3147 else if (si_code == SI_ASYNCNL)
3148 return true;
3149 return false;
3150 }
3151
3152 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3153 {
3154 enum siginfo_layout layout = SIL_KILL;
3155 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3156 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3157 (si_code <= sig_sicodes[sig].limit)) {
3158 layout = sig_sicodes[sig].layout;
3159 /* Handle the exceptions */
3160 if ((sig == SIGBUS) &&
3161 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3162 layout = SIL_FAULT_MCEERR;
3163 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3164 layout = SIL_FAULT_BNDERR;
3165 #ifdef SEGV_PKUERR
3166 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3167 layout = SIL_FAULT_PKUERR;
3168 #endif
3169 }
3170 else if (si_code <= NSIGPOLL)
3171 layout = SIL_POLL;
3172 } else {
3173 if (si_code == SI_TIMER)
3174 layout = SIL_TIMER;
3175 else if (si_code == SI_SIGIO)
3176 layout = SIL_POLL;
3177 else if (si_code < 0)
3178 layout = SIL_RT;
3179 }
3180 return layout;
3181 }
3182
3183 static inline char __user *si_expansion(const siginfo_t __user *info)
3184 {
3185 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3186 }
3187
3188 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3189 {
3190 char __user *expansion = si_expansion(to);
3191 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3192 return -EFAULT;
3193 if (clear_user(expansion, SI_EXPANSION_SIZE))
3194 return -EFAULT;
3195 return 0;
3196 }
3197
3198 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3199 const siginfo_t __user *from)
3200 {
3201 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3202 char __user *expansion = si_expansion(from);
3203 char buf[SI_EXPANSION_SIZE];
3204 int i;
3205 /*
3206 * An unknown si_code might need more than
3207 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3208 * extra bytes are 0. This guarantees copy_siginfo_to_user
3209 * will return this data to userspace exactly.
3210 */
3211 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3212 return -EFAULT;
3213 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3214 if (buf[i] != 0)
3215 return -E2BIG;
3216 }
3217 }
3218 return 0;
3219 }
3220
3221 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3222 const siginfo_t __user *from)
3223 {
3224 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3225 return -EFAULT;
3226 to->si_signo = signo;
3227 return post_copy_siginfo_from_user(to, from);
3228 }
3229
3230 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3231 {
3232 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3233 return -EFAULT;
3234 return post_copy_siginfo_from_user(to, from);
3235 }
3236
3237 #ifdef CONFIG_COMPAT
3238 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3239 const struct kernel_siginfo *from)
3240 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3241 {
3242 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3243 }
3244 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3245 const struct kernel_siginfo *from, bool x32_ABI)
3246 #endif
3247 {
3248 struct compat_siginfo new;
3249 memset(&new, 0, sizeof(new));
3250
3251 new.si_signo = from->si_signo;
3252 new.si_errno = from->si_errno;
3253 new.si_code = from->si_code;
3254 switch(siginfo_layout(from->si_signo, from->si_code)) {
3255 case SIL_KILL:
3256 new.si_pid = from->si_pid;
3257 new.si_uid = from->si_uid;
3258 break;
3259 case SIL_TIMER:
3260 new.si_tid = from->si_tid;
3261 new.si_overrun = from->si_overrun;
3262 new.si_int = from->si_int;
3263 break;
3264 case SIL_POLL:
3265 new.si_band = from->si_band;
3266 new.si_fd = from->si_fd;
3267 break;
3268 case SIL_FAULT:
3269 new.si_addr = ptr_to_compat(from->si_addr);
3270 #ifdef __ARCH_SI_TRAPNO
3271 new.si_trapno = from->si_trapno;
3272 #endif
3273 break;
3274 case SIL_FAULT_MCEERR:
3275 new.si_addr = ptr_to_compat(from->si_addr);
3276 #ifdef __ARCH_SI_TRAPNO
3277 new.si_trapno = from->si_trapno;
3278 #endif
3279 new.si_addr_lsb = from->si_addr_lsb;
3280 break;
3281 case SIL_FAULT_BNDERR:
3282 new.si_addr = ptr_to_compat(from->si_addr);
3283 #ifdef __ARCH_SI_TRAPNO
3284 new.si_trapno = from->si_trapno;
3285 #endif
3286 new.si_lower = ptr_to_compat(from->si_lower);
3287 new.si_upper = ptr_to_compat(from->si_upper);
3288 break;
3289 case SIL_FAULT_PKUERR:
3290 new.si_addr = ptr_to_compat(from->si_addr);
3291 #ifdef __ARCH_SI_TRAPNO
3292 new.si_trapno = from->si_trapno;
3293 #endif
3294 new.si_pkey = from->si_pkey;
3295 break;
3296 case SIL_CHLD:
3297 new.si_pid = from->si_pid;
3298 new.si_uid = from->si_uid;
3299 new.si_status = from->si_status;
3300 #ifdef CONFIG_X86_X32_ABI
3301 if (x32_ABI) {
3302 new._sifields._sigchld_x32._utime = from->si_utime;
3303 new._sifields._sigchld_x32._stime = from->si_stime;
3304 } else
3305 #endif
3306 {
3307 new.si_utime = from->si_utime;
3308 new.si_stime = from->si_stime;
3309 }
3310 break;
3311 case SIL_RT:
3312 new.si_pid = from->si_pid;
3313 new.si_uid = from->si_uid;
3314 new.si_int = from->si_int;
3315 break;
3316 case SIL_SYS:
3317 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3318 new.si_syscall = from->si_syscall;
3319 new.si_arch = from->si_arch;
3320 break;
3321 }
3322
3323 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3324 return -EFAULT;
3325
3326 return 0;
3327 }
3328
3329 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3330 const struct compat_siginfo *from)
3331 {
3332 clear_siginfo(to);
3333 to->si_signo = from->si_signo;
3334 to->si_errno = from->si_errno;
3335 to->si_code = from->si_code;
3336 switch(siginfo_layout(from->si_signo, from->si_code)) {
3337 case SIL_KILL:
3338 to->si_pid = from->si_pid;
3339 to->si_uid = from->si_uid;
3340 break;
3341 case SIL_TIMER:
3342 to->si_tid = from->si_tid;
3343 to->si_overrun = from->si_overrun;
3344 to->si_int = from->si_int;
3345 break;
3346 case SIL_POLL:
3347 to->si_band = from->si_band;
3348 to->si_fd = from->si_fd;
3349 break;
3350 case SIL_FAULT:
3351 to->si_addr = compat_ptr(from->si_addr);
3352 #ifdef __ARCH_SI_TRAPNO
3353 to->si_trapno = from->si_trapno;
3354 #endif
3355 break;
3356 case SIL_FAULT_MCEERR:
3357 to->si_addr = compat_ptr(from->si_addr);
3358 #ifdef __ARCH_SI_TRAPNO
3359 to->si_trapno = from->si_trapno;
3360 #endif
3361 to->si_addr_lsb = from->si_addr_lsb;
3362 break;
3363 case SIL_FAULT_BNDERR:
3364 to->si_addr = compat_ptr(from->si_addr);
3365 #ifdef __ARCH_SI_TRAPNO
3366 to->si_trapno = from->si_trapno;
3367 #endif
3368 to->si_lower = compat_ptr(from->si_lower);
3369 to->si_upper = compat_ptr(from->si_upper);
3370 break;
3371 case SIL_FAULT_PKUERR:
3372 to->si_addr = compat_ptr(from->si_addr);
3373 #ifdef __ARCH_SI_TRAPNO
3374 to->si_trapno = from->si_trapno;
3375 #endif
3376 to->si_pkey = from->si_pkey;
3377 break;
3378 case SIL_CHLD:
3379 to->si_pid = from->si_pid;
3380 to->si_uid = from->si_uid;
3381 to->si_status = from->si_status;
3382 #ifdef CONFIG_X86_X32_ABI
3383 if (in_x32_syscall()) {
3384 to->si_utime = from->_sifields._sigchld_x32._utime;
3385 to->si_stime = from->_sifields._sigchld_x32._stime;
3386 } else
3387 #endif
3388 {
3389 to->si_utime = from->si_utime;
3390 to->si_stime = from->si_stime;
3391 }
3392 break;
3393 case SIL_RT:
3394 to->si_pid = from->si_pid;
3395 to->si_uid = from->si_uid;
3396 to->si_int = from->si_int;
3397 break;
3398 case SIL_SYS:
3399 to->si_call_addr = compat_ptr(from->si_call_addr);
3400 to->si_syscall = from->si_syscall;
3401 to->si_arch = from->si_arch;
3402 break;
3403 }
3404 return 0;
3405 }
3406
3407 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3408 const struct compat_siginfo __user *ufrom)
3409 {
3410 struct compat_siginfo from;
3411
3412 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3413 return -EFAULT;
3414
3415 from.si_signo = signo;
3416 return post_copy_siginfo_from_user32(to, &from);
3417 }
3418
3419 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3420 const struct compat_siginfo __user *ufrom)
3421 {
3422 struct compat_siginfo from;
3423
3424 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3425 return -EFAULT;
3426
3427 return post_copy_siginfo_from_user32(to, &from);
3428 }
3429 #endif /* CONFIG_COMPAT */
3430
3431 /**
3432 * do_sigtimedwait - wait for queued signals specified in @which
3433 * @which: queued signals to wait for
3434 * @info: if non-null, the signal's siginfo is returned here
3435 * @ts: upper bound on process time suspension
3436 */
3437 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3438 const struct timespec64 *ts)
3439 {
3440 ktime_t *to = NULL, timeout = KTIME_MAX;
3441 struct task_struct *tsk = current;
3442 sigset_t mask = *which;
3443 int sig, ret = 0;
3444
3445 if (ts) {
3446 if (!timespec64_valid(ts))
3447 return -EINVAL;
3448 timeout = timespec64_to_ktime(*ts);
3449 to = &timeout;
3450 }
3451
3452 /*
3453 * Invert the set of allowed signals to get those we want to block.
3454 */
3455 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3456 signotset(&mask);
3457
3458 spin_lock_irq(&tsk->sighand->siglock);
3459 sig = dequeue_signal(tsk, &mask, info);
3460 if (!sig && timeout) {
3461 /*
3462 * None ready, temporarily unblock those we're interested
3463 * while we are sleeping in so that we'll be awakened when
3464 * they arrive. Unblocking is always fine, we can avoid
3465 * set_current_blocked().
3466 */
3467 tsk->real_blocked = tsk->blocked;
3468 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3469 recalc_sigpending();
3470 spin_unlock_irq(&tsk->sighand->siglock);
3471
3472 __set_current_state(TASK_INTERRUPTIBLE);
3473 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3474 HRTIMER_MODE_REL);
3475 spin_lock_irq(&tsk->sighand->siglock);
3476 __set_task_blocked(tsk, &tsk->real_blocked);
3477 sigemptyset(&tsk->real_blocked);
3478 sig = dequeue_signal(tsk, &mask, info);
3479 }
3480 spin_unlock_irq(&tsk->sighand->siglock);
3481
3482 if (sig)
3483 return sig;
3484 return ret ? -EINTR : -EAGAIN;
3485 }
3486
3487 /**
3488 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3489 * in @uthese
3490 * @uthese: queued signals to wait for
3491 * @uinfo: if non-null, the signal's siginfo is returned here
3492 * @uts: upper bound on process time suspension
3493 * @sigsetsize: size of sigset_t type
3494 */
3495 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3496 siginfo_t __user *, uinfo,
3497 const struct __kernel_timespec __user *, uts,
3498 size_t, sigsetsize)
3499 {
3500 sigset_t these;
3501 struct timespec64 ts;
3502 kernel_siginfo_t info;
3503 int ret;
3504
3505 /* XXX: Don't preclude handling different sized sigset_t's. */
3506 if (sigsetsize != sizeof(sigset_t))
3507 return -EINVAL;
3508
3509 if (copy_from_user(&these, uthese, sizeof(these)))
3510 return -EFAULT;
3511
3512 if (uts) {
3513 if (get_timespec64(&ts, uts))
3514 return -EFAULT;
3515 }
3516
3517 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3518
3519 if (ret > 0 && uinfo) {
3520 if (copy_siginfo_to_user(uinfo, &info))
3521 ret = -EFAULT;
3522 }
3523
3524 return ret;
3525 }
3526
3527 #ifdef CONFIG_COMPAT_32BIT_TIME
3528 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3529 siginfo_t __user *, uinfo,
3530 const struct old_timespec32 __user *, uts,
3531 size_t, sigsetsize)
3532 {
3533 sigset_t these;
3534 struct timespec64 ts;
3535 kernel_siginfo_t info;
3536 int ret;
3537
3538 if (sigsetsize != sizeof(sigset_t))
3539 return -EINVAL;
3540
3541 if (copy_from_user(&these, uthese, sizeof(these)))
3542 return -EFAULT;
3543
3544 if (uts) {
3545 if (get_old_timespec32(&ts, uts))
3546 return -EFAULT;
3547 }
3548
3549 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3550
3551 if (ret > 0 && uinfo) {
3552 if (copy_siginfo_to_user(uinfo, &info))
3553 ret = -EFAULT;
3554 }
3555
3556 return ret;
3557 }
3558 #endif
3559
3560 #ifdef CONFIG_COMPAT
3561 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3562 struct compat_siginfo __user *, uinfo,
3563 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3564 {
3565 sigset_t s;
3566 struct timespec64 t;
3567 kernel_siginfo_t info;
3568 long ret;
3569
3570 if (sigsetsize != sizeof(sigset_t))
3571 return -EINVAL;
3572
3573 if (get_compat_sigset(&s, uthese))
3574 return -EFAULT;
3575
3576 if (uts) {
3577 if (get_timespec64(&t, uts))
3578 return -EFAULT;
3579 }
3580
3581 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3582
3583 if (ret > 0 && uinfo) {
3584 if (copy_siginfo_to_user32(uinfo, &info))
3585 ret = -EFAULT;
3586 }
3587
3588 return ret;
3589 }
3590
3591 #ifdef CONFIG_COMPAT_32BIT_TIME
3592 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3593 struct compat_siginfo __user *, uinfo,
3594 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3595 {
3596 sigset_t s;
3597 struct timespec64 t;
3598 kernel_siginfo_t info;
3599 long ret;
3600
3601 if (sigsetsize != sizeof(sigset_t))
3602 return -EINVAL;
3603
3604 if (get_compat_sigset(&s, uthese))
3605 return -EFAULT;
3606
3607 if (uts) {
3608 if (get_old_timespec32(&t, uts))
3609 return -EFAULT;
3610 }
3611
3612 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3613
3614 if (ret > 0 && uinfo) {
3615 if (copy_siginfo_to_user32(uinfo, &info))
3616 ret = -EFAULT;
3617 }
3618
3619 return ret;
3620 }
3621 #endif
3622 #endif
3623
3624 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3625 {
3626 clear_siginfo(info);
3627 info->si_signo = sig;
3628 info->si_errno = 0;
3629 info->si_code = SI_USER;
3630 info->si_pid = task_tgid_vnr(current);
3631 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3632 }
3633
3634 /**
3635 * sys_kill - send a signal to a process
3636 * @pid: the PID of the process
3637 * @sig: signal to be sent
3638 */
3639 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3640 {
3641 struct kernel_siginfo info;
3642
3643 prepare_kill_siginfo(sig, &info);
3644
3645 return kill_something_info(sig, &info, pid);
3646 }
3647
3648 /*
3649 * Verify that the signaler and signalee either are in the same pid namespace
3650 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3651 * namespace.
3652 */
3653 static bool access_pidfd_pidns(struct pid *pid)
3654 {
3655 struct pid_namespace *active = task_active_pid_ns(current);
3656 struct pid_namespace *p = ns_of_pid(pid);
3657
3658 for (;;) {
3659 if (!p)
3660 return false;
3661 if (p == active)
3662 break;
3663 p = p->parent;
3664 }
3665
3666 return true;
3667 }
3668
3669 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3670 {
3671 #ifdef CONFIG_COMPAT
3672 /*
3673 * Avoid hooking up compat syscalls and instead handle necessary
3674 * conversions here. Note, this is a stop-gap measure and should not be
3675 * considered a generic solution.
3676 */
3677 if (in_compat_syscall())
3678 return copy_siginfo_from_user32(
3679 kinfo, (struct compat_siginfo __user *)info);
3680 #endif
3681 return copy_siginfo_from_user(kinfo, info);
3682 }
3683
3684 static struct pid *pidfd_to_pid(const struct file *file)
3685 {
3686 struct pid *pid;
3687
3688 pid = pidfd_pid(file);
3689 if (!IS_ERR(pid))
3690 return pid;
3691
3692 return tgid_pidfd_to_pid(file);
3693 }
3694
3695 /**
3696 * sys_pidfd_send_signal - Signal a process through a pidfd
3697 * @pidfd: file descriptor of the process
3698 * @sig: signal to send
3699 * @info: signal info
3700 * @flags: future flags
3701 *
3702 * The syscall currently only signals via PIDTYPE_PID which covers
3703 * kill(<positive-pid>, <signal>. It does not signal threads or process
3704 * groups.
3705 * In order to extend the syscall to threads and process groups the @flags
3706 * argument should be used. In essence, the @flags argument will determine
3707 * what is signaled and not the file descriptor itself. Put in other words,
3708 * grouping is a property of the flags argument not a property of the file
3709 * descriptor.
3710 *
3711 * Return: 0 on success, negative errno on failure
3712 */
3713 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3714 siginfo_t __user *, info, unsigned int, flags)
3715 {
3716 int ret;
3717 struct fd f;
3718 struct pid *pid;
3719 kernel_siginfo_t kinfo;
3720
3721 /* Enforce flags be set to 0 until we add an extension. */
3722 if (flags)
3723 return -EINVAL;
3724
3725 f = fdget(pidfd);
3726 if (!f.file)
3727 return -EBADF;
3728
3729 /* Is this a pidfd? */
3730 pid = pidfd_to_pid(f.file);
3731 if (IS_ERR(pid)) {
3732 ret = PTR_ERR(pid);
3733 goto err;
3734 }
3735
3736 ret = -EINVAL;
3737 if (!access_pidfd_pidns(pid))
3738 goto err;
3739
3740 if (info) {
3741 ret = copy_siginfo_from_user_any(&kinfo, info);
3742 if (unlikely(ret))
3743 goto err;
3744
3745 ret = -EINVAL;
3746 if (unlikely(sig != kinfo.si_signo))
3747 goto err;
3748
3749 /* Only allow sending arbitrary signals to yourself. */
3750 ret = -EPERM;
3751 if ((task_pid(current) != pid) &&
3752 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3753 goto err;
3754 } else {
3755 prepare_kill_siginfo(sig, &kinfo);
3756 }
3757
3758 ret = kill_pid_info(sig, &kinfo, pid);
3759
3760 err:
3761 fdput(f);
3762 return ret;
3763 }
3764
3765 static int
3766 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3767 {
3768 struct task_struct *p;
3769 int error = -ESRCH;
3770
3771 rcu_read_lock();
3772 p = find_task_by_vpid(pid);
3773 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3774 error = check_kill_permission(sig, info, p);
3775 /*
3776 * The null signal is a permissions and process existence
3777 * probe. No signal is actually delivered.
3778 */
3779 if (!error && sig) {
3780 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3781 /*
3782 * If lock_task_sighand() failed we pretend the task
3783 * dies after receiving the signal. The window is tiny,
3784 * and the signal is private anyway.
3785 */
3786 if (unlikely(error == -ESRCH))
3787 error = 0;
3788 }
3789 }
3790 rcu_read_unlock();
3791
3792 return error;
3793 }
3794
3795 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3796 {
3797 struct kernel_siginfo info;
3798
3799 clear_siginfo(&info);
3800 info.si_signo = sig;
3801 info.si_errno = 0;
3802 info.si_code = SI_TKILL;
3803 info.si_pid = task_tgid_vnr(current);
3804 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3805
3806 return do_send_specific(tgid, pid, sig, &info);
3807 }
3808
3809 /**
3810 * sys_tgkill - send signal to one specific thread
3811 * @tgid: the thread group ID of the thread
3812 * @pid: the PID of the thread
3813 * @sig: signal to be sent
3814 *
3815 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3816 * exists but it's not belonging to the target process anymore. This
3817 * method solves the problem of threads exiting and PIDs getting reused.
3818 */
3819 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3820 {
3821 /* This is only valid for single tasks */
3822 if (pid <= 0 || tgid <= 0)
3823 return -EINVAL;
3824
3825 return do_tkill(tgid, pid, sig);
3826 }
3827
3828 /**
3829 * sys_tkill - send signal to one specific task
3830 * @pid: the PID of the task
3831 * @sig: signal to be sent
3832 *
3833 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3834 */
3835 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3836 {
3837 /* This is only valid for single tasks */
3838 if (pid <= 0)
3839 return -EINVAL;
3840
3841 return do_tkill(0, pid, sig);
3842 }
3843
3844 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3845 {
3846 /* Not even root can pretend to send signals from the kernel.
3847 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3848 */
3849 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3850 (task_pid_vnr(current) != pid))
3851 return -EPERM;
3852
3853 /* POSIX.1b doesn't mention process groups. */
3854 return kill_proc_info(sig, info, pid);
3855 }
3856
3857 /**
3858 * sys_rt_sigqueueinfo - send signal information to a signal
3859 * @pid: the PID of the thread
3860 * @sig: signal to be sent
3861 * @uinfo: signal info to be sent
3862 */
3863 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3864 siginfo_t __user *, uinfo)
3865 {
3866 kernel_siginfo_t info;
3867 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3868 if (unlikely(ret))
3869 return ret;
3870 return do_rt_sigqueueinfo(pid, sig, &info);
3871 }
3872
3873 #ifdef CONFIG_COMPAT
3874 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3875 compat_pid_t, pid,
3876 int, sig,
3877 struct compat_siginfo __user *, uinfo)
3878 {
3879 kernel_siginfo_t info;
3880 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3881 if (unlikely(ret))
3882 return ret;
3883 return do_rt_sigqueueinfo(pid, sig, &info);
3884 }
3885 #endif
3886
3887 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3888 {
3889 /* This is only valid for single tasks */
3890 if (pid <= 0 || tgid <= 0)
3891 return -EINVAL;
3892
3893 /* Not even root can pretend to send signals from the kernel.
3894 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3895 */
3896 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3897 (task_pid_vnr(current) != pid))
3898 return -EPERM;
3899
3900 return do_send_specific(tgid, pid, sig, info);
3901 }
3902
3903 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3904 siginfo_t __user *, uinfo)
3905 {
3906 kernel_siginfo_t info;
3907 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3908 if (unlikely(ret))
3909 return ret;
3910 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3911 }
3912
3913 #ifdef CONFIG_COMPAT
3914 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3915 compat_pid_t, tgid,
3916 compat_pid_t, pid,
3917 int, sig,
3918 struct compat_siginfo __user *, uinfo)
3919 {
3920 kernel_siginfo_t info;
3921 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3922 if (unlikely(ret))
3923 return ret;
3924 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3925 }
3926 #endif
3927
3928 /*
3929 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3930 */
3931 void kernel_sigaction(int sig, __sighandler_t action)
3932 {
3933 spin_lock_irq(&current->sighand->siglock);
3934 current->sighand->action[sig - 1].sa.sa_handler = action;
3935 if (action == SIG_IGN) {
3936 sigset_t mask;
3937
3938 sigemptyset(&mask);
3939 sigaddset(&mask, sig);
3940
3941 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3942 flush_sigqueue_mask(&mask, &current->pending);
3943 recalc_sigpending();
3944 }
3945 spin_unlock_irq(&current->sighand->siglock);
3946 }
3947 EXPORT_SYMBOL(kernel_sigaction);
3948
3949 void __weak sigaction_compat_abi(struct k_sigaction *act,
3950 struct k_sigaction *oact)
3951 {
3952 }
3953
3954 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3955 {
3956 struct task_struct *p = current, *t;
3957 struct k_sigaction *k;
3958 sigset_t mask;
3959
3960 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3961 return -EINVAL;
3962
3963 k = &p->sighand->action[sig-1];
3964
3965 spin_lock_irq(&p->sighand->siglock);
3966 if (oact)
3967 *oact = *k;
3968
3969 sigaction_compat_abi(act, oact);
3970
3971 if (act) {
3972 sigdelsetmask(&act->sa.sa_mask,
3973 sigmask(SIGKILL) | sigmask(SIGSTOP));
3974 *k = *act;
3975 /*
3976 * POSIX 3.3.1.3:
3977 * "Setting a signal action to SIG_IGN for a signal that is
3978 * pending shall cause the pending signal to be discarded,
3979 * whether or not it is blocked."
3980 *
3981 * "Setting a signal action to SIG_DFL for a signal that is
3982 * pending and whose default action is to ignore the signal
3983 * (for example, SIGCHLD), shall cause the pending signal to
3984 * be discarded, whether or not it is blocked"
3985 */
3986 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3987 sigemptyset(&mask);
3988 sigaddset(&mask, sig);
3989 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3990 for_each_thread(p, t)
3991 flush_sigqueue_mask(&mask, &t->pending);
3992 }
3993 }
3994
3995 spin_unlock_irq(&p->sighand->siglock);
3996 return 0;
3997 }
3998
3999 static int
4000 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4001 size_t min_ss_size)
4002 {
4003 struct task_struct *t = current;
4004
4005 if (oss) {
4006 memset(oss, 0, sizeof(stack_t));
4007 oss->ss_sp = (void __user *) t->sas_ss_sp;
4008 oss->ss_size = t->sas_ss_size;
4009 oss->ss_flags = sas_ss_flags(sp) |
4010 (current->sas_ss_flags & SS_FLAG_BITS);
4011 }
4012
4013 if (ss) {
4014 void __user *ss_sp = ss->ss_sp;
4015 size_t ss_size = ss->ss_size;
4016 unsigned ss_flags = ss->ss_flags;
4017 int ss_mode;
4018
4019 if (unlikely(on_sig_stack(sp)))
4020 return -EPERM;
4021
4022 ss_mode = ss_flags & ~SS_FLAG_BITS;
4023 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4024 ss_mode != 0))
4025 return -EINVAL;
4026
4027 if (ss_mode == SS_DISABLE) {
4028 ss_size = 0;
4029 ss_sp = NULL;
4030 } else {
4031 if (unlikely(ss_size < min_ss_size))
4032 return -ENOMEM;
4033 }
4034
4035 t->sas_ss_sp = (unsigned long) ss_sp;
4036 t->sas_ss_size = ss_size;
4037 t->sas_ss_flags = ss_flags;
4038 }
4039 return 0;
4040 }
4041
4042 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4043 {
4044 stack_t new, old;
4045 int err;
4046 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4047 return -EFAULT;
4048 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4049 current_user_stack_pointer(),
4050 MINSIGSTKSZ);
4051 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4052 err = -EFAULT;
4053 return err;
4054 }
4055
4056 int restore_altstack(const stack_t __user *uss)
4057 {
4058 stack_t new;
4059 if (copy_from_user(&new, uss, sizeof(stack_t)))
4060 return -EFAULT;
4061 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4062 MINSIGSTKSZ);
4063 /* squash all but EFAULT for now */
4064 return 0;
4065 }
4066
4067 int __save_altstack(stack_t __user *uss, unsigned long sp)
4068 {
4069 struct task_struct *t = current;
4070 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4071 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4072 __put_user(t->sas_ss_size, &uss->ss_size);
4073 if (err)
4074 return err;
4075 if (t->sas_ss_flags & SS_AUTODISARM)
4076 sas_ss_reset(t);
4077 return 0;
4078 }
4079
4080 #ifdef CONFIG_COMPAT
4081 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4082 compat_stack_t __user *uoss_ptr)
4083 {
4084 stack_t uss, uoss;
4085 int ret;
4086
4087 if (uss_ptr) {
4088 compat_stack_t uss32;
4089 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4090 return -EFAULT;
4091 uss.ss_sp = compat_ptr(uss32.ss_sp);
4092 uss.ss_flags = uss32.ss_flags;
4093 uss.ss_size = uss32.ss_size;
4094 }
4095 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4096 compat_user_stack_pointer(),
4097 COMPAT_MINSIGSTKSZ);
4098 if (ret >= 0 && uoss_ptr) {
4099 compat_stack_t old;
4100 memset(&old, 0, sizeof(old));
4101 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4102 old.ss_flags = uoss.ss_flags;
4103 old.ss_size = uoss.ss_size;
4104 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4105 ret = -EFAULT;
4106 }
4107 return ret;
4108 }
4109
4110 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4111 const compat_stack_t __user *, uss_ptr,
4112 compat_stack_t __user *, uoss_ptr)
4113 {
4114 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4115 }
4116
4117 int compat_restore_altstack(const compat_stack_t __user *uss)
4118 {
4119 int err = do_compat_sigaltstack(uss, NULL);
4120 /* squash all but -EFAULT for now */
4121 return err == -EFAULT ? err : 0;
4122 }
4123
4124 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4125 {
4126 int err;
4127 struct task_struct *t = current;
4128 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4129 &uss->ss_sp) |
4130 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4131 __put_user(t->sas_ss_size, &uss->ss_size);
4132 if (err)
4133 return err;
4134 if (t->sas_ss_flags & SS_AUTODISARM)
4135 sas_ss_reset(t);
4136 return 0;
4137 }
4138 #endif
4139
4140 #ifdef __ARCH_WANT_SYS_SIGPENDING
4141
4142 /**
4143 * sys_sigpending - examine pending signals
4144 * @uset: where mask of pending signal is returned
4145 */
4146 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4147 {
4148 sigset_t set;
4149
4150 if (sizeof(old_sigset_t) > sizeof(*uset))
4151 return -EINVAL;
4152
4153 do_sigpending(&set);
4154
4155 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4156 return -EFAULT;
4157
4158 return 0;
4159 }
4160
4161 #ifdef CONFIG_COMPAT
4162 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4163 {
4164 sigset_t set;
4165
4166 do_sigpending(&set);
4167
4168 return put_user(set.sig[0], set32);
4169 }
4170 #endif
4171
4172 #endif
4173
4174 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4175 /**
4176 * sys_sigprocmask - examine and change blocked signals
4177 * @how: whether to add, remove, or set signals
4178 * @nset: signals to add or remove (if non-null)
4179 * @oset: previous value of signal mask if non-null
4180 *
4181 * Some platforms have their own version with special arguments;
4182 * others support only sys_rt_sigprocmask.
4183 */
4184
4185 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4186 old_sigset_t __user *, oset)
4187 {
4188 old_sigset_t old_set, new_set;
4189 sigset_t new_blocked;
4190
4191 old_set = current->blocked.sig[0];
4192
4193 if (nset) {
4194 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4195 return -EFAULT;
4196
4197 new_blocked = current->blocked;
4198
4199 switch (how) {
4200 case SIG_BLOCK:
4201 sigaddsetmask(&new_blocked, new_set);
4202 break;
4203 case SIG_UNBLOCK:
4204 sigdelsetmask(&new_blocked, new_set);
4205 break;
4206 case SIG_SETMASK:
4207 new_blocked.sig[0] = new_set;
4208 break;
4209 default:
4210 return -EINVAL;
4211 }
4212
4213 set_current_blocked(&new_blocked);
4214 }
4215
4216 if (oset) {
4217 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4218 return -EFAULT;
4219 }
4220
4221 return 0;
4222 }
4223 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4224
4225 #ifndef CONFIG_ODD_RT_SIGACTION
4226 /**
4227 * sys_rt_sigaction - alter an action taken by a process
4228 * @sig: signal to be sent
4229 * @act: new sigaction
4230 * @oact: used to save the previous sigaction
4231 * @sigsetsize: size of sigset_t type
4232 */
4233 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4234 const struct sigaction __user *, act,
4235 struct sigaction __user *, oact,
4236 size_t, sigsetsize)
4237 {
4238 struct k_sigaction new_sa, old_sa;
4239 int ret;
4240
4241 /* XXX: Don't preclude handling different sized sigset_t's. */
4242 if (sigsetsize != sizeof(sigset_t))
4243 return -EINVAL;
4244
4245 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4246 return -EFAULT;
4247
4248 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4249 if (ret)
4250 return ret;
4251
4252 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4253 return -EFAULT;
4254
4255 return 0;
4256 }
4257 #ifdef CONFIG_COMPAT
4258 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4259 const struct compat_sigaction __user *, act,
4260 struct compat_sigaction __user *, oact,
4261 compat_size_t, sigsetsize)
4262 {
4263 struct k_sigaction new_ka, old_ka;
4264 #ifdef __ARCH_HAS_SA_RESTORER
4265 compat_uptr_t restorer;
4266 #endif
4267 int ret;
4268
4269 /* XXX: Don't preclude handling different sized sigset_t's. */
4270 if (sigsetsize != sizeof(compat_sigset_t))
4271 return -EINVAL;
4272
4273 if (act) {
4274 compat_uptr_t handler;
4275 ret = get_user(handler, &act->sa_handler);
4276 new_ka.sa.sa_handler = compat_ptr(handler);
4277 #ifdef __ARCH_HAS_SA_RESTORER
4278 ret |= get_user(restorer, &act->sa_restorer);
4279 new_ka.sa.sa_restorer = compat_ptr(restorer);
4280 #endif
4281 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4282 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4283 if (ret)
4284 return -EFAULT;
4285 }
4286
4287 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4288 if (!ret && oact) {
4289 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4290 &oact->sa_handler);
4291 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4292 sizeof(oact->sa_mask));
4293 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4294 #ifdef __ARCH_HAS_SA_RESTORER
4295 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4296 &oact->sa_restorer);
4297 #endif
4298 }
4299 return ret;
4300 }
4301 #endif
4302 #endif /* !CONFIG_ODD_RT_SIGACTION */
4303
4304 #ifdef CONFIG_OLD_SIGACTION
4305 SYSCALL_DEFINE3(sigaction, int, sig,
4306 const struct old_sigaction __user *, act,
4307 struct old_sigaction __user *, oact)
4308 {
4309 struct k_sigaction new_ka, old_ka;
4310 int ret;
4311
4312 if (act) {
4313 old_sigset_t mask;
4314 if (!access_ok(act, sizeof(*act)) ||
4315 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4316 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4317 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4318 __get_user(mask, &act->sa_mask))
4319 return -EFAULT;
4320 #ifdef __ARCH_HAS_KA_RESTORER
4321 new_ka.ka_restorer = NULL;
4322 #endif
4323 siginitset(&new_ka.sa.sa_mask, mask);
4324 }
4325
4326 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4327
4328 if (!ret && oact) {
4329 if (!access_ok(oact, sizeof(*oact)) ||
4330 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4331 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4332 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4333 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4334 return -EFAULT;
4335 }
4336
4337 return ret;
4338 }
4339 #endif
4340 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4341 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4342 const struct compat_old_sigaction __user *, act,
4343 struct compat_old_sigaction __user *, oact)
4344 {
4345 struct k_sigaction new_ka, old_ka;
4346 int ret;
4347 compat_old_sigset_t mask;
4348 compat_uptr_t handler, restorer;
4349
4350 if (act) {
4351 if (!access_ok(act, sizeof(*act)) ||
4352 __get_user(handler, &act->sa_handler) ||
4353 __get_user(restorer, &act->sa_restorer) ||
4354 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4355 __get_user(mask, &act->sa_mask))
4356 return -EFAULT;
4357
4358 #ifdef __ARCH_HAS_KA_RESTORER
4359 new_ka.ka_restorer = NULL;
4360 #endif
4361 new_ka.sa.sa_handler = compat_ptr(handler);
4362 new_ka.sa.sa_restorer = compat_ptr(restorer);
4363 siginitset(&new_ka.sa.sa_mask, mask);
4364 }
4365
4366 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4367
4368 if (!ret && oact) {
4369 if (!access_ok(oact, sizeof(*oact)) ||
4370 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4371 &oact->sa_handler) ||
4372 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4373 &oact->sa_restorer) ||
4374 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4375 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4376 return -EFAULT;
4377 }
4378 return ret;
4379 }
4380 #endif
4381
4382 #ifdef CONFIG_SGETMASK_SYSCALL
4383
4384 /*
4385 * For backwards compatibility. Functionality superseded by sigprocmask.
4386 */
4387 SYSCALL_DEFINE0(sgetmask)
4388 {
4389 /* SMP safe */
4390 return current->blocked.sig[0];
4391 }
4392
4393 SYSCALL_DEFINE1(ssetmask, int, newmask)
4394 {
4395 int old = current->blocked.sig[0];
4396 sigset_t newset;
4397
4398 siginitset(&newset, newmask);
4399 set_current_blocked(&newset);
4400
4401 return old;
4402 }
4403 #endif /* CONFIG_SGETMASK_SYSCALL */
4404
4405 #ifdef __ARCH_WANT_SYS_SIGNAL
4406 /*
4407 * For backwards compatibility. Functionality superseded by sigaction.
4408 */
4409 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4410 {
4411 struct k_sigaction new_sa, old_sa;
4412 int ret;
4413
4414 new_sa.sa.sa_handler = handler;
4415 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4416 sigemptyset(&new_sa.sa.sa_mask);
4417
4418 ret = do_sigaction(sig, &new_sa, &old_sa);
4419
4420 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4421 }
4422 #endif /* __ARCH_WANT_SYS_SIGNAL */
4423
4424 #ifdef __ARCH_WANT_SYS_PAUSE
4425
4426 SYSCALL_DEFINE0(pause)
4427 {
4428 while (!signal_pending(current)) {
4429 __set_current_state(TASK_INTERRUPTIBLE);
4430 schedule();
4431 }
4432 return -ERESTARTNOHAND;
4433 }
4434
4435 #endif
4436
4437 static int sigsuspend(sigset_t *set)
4438 {
4439 current->saved_sigmask = current->blocked;
4440 set_current_blocked(set);
4441
4442 while (!signal_pending(current)) {
4443 __set_current_state(TASK_INTERRUPTIBLE);
4444 schedule();
4445 }
4446 set_restore_sigmask();
4447 return -ERESTARTNOHAND;
4448 }
4449
4450 /**
4451 * sys_rt_sigsuspend - replace the signal mask for a value with the
4452 * @unewset value until a signal is received
4453 * @unewset: new signal mask value
4454 * @sigsetsize: size of sigset_t type
4455 */
4456 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4457 {
4458 sigset_t newset;
4459
4460 /* XXX: Don't preclude handling different sized sigset_t's. */
4461 if (sigsetsize != sizeof(sigset_t))
4462 return -EINVAL;
4463
4464 if (copy_from_user(&newset, unewset, sizeof(newset)))
4465 return -EFAULT;
4466 return sigsuspend(&newset);
4467 }
4468
4469 #ifdef CONFIG_COMPAT
4470 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4471 {
4472 sigset_t newset;
4473
4474 /* XXX: Don't preclude handling different sized sigset_t's. */
4475 if (sigsetsize != sizeof(sigset_t))
4476 return -EINVAL;
4477
4478 if (get_compat_sigset(&newset, unewset))
4479 return -EFAULT;
4480 return sigsuspend(&newset);
4481 }
4482 #endif
4483
4484 #ifdef CONFIG_OLD_SIGSUSPEND
4485 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4486 {
4487 sigset_t blocked;
4488 siginitset(&blocked, mask);
4489 return sigsuspend(&blocked);
4490 }
4491 #endif
4492 #ifdef CONFIG_OLD_SIGSUSPEND3
4493 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4494 {
4495 sigset_t blocked;
4496 siginitset(&blocked, mask);
4497 return sigsuspend(&blocked);
4498 }
4499 #endif
4500
4501 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4502 {
4503 return NULL;
4504 }
4505
4506 static inline void siginfo_buildtime_checks(void)
4507 {
4508 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4509
4510 /* Verify the offsets in the two siginfos match */
4511 #define CHECK_OFFSET(field) \
4512 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4513
4514 /* kill */
4515 CHECK_OFFSET(si_pid);
4516 CHECK_OFFSET(si_uid);
4517
4518 /* timer */
4519 CHECK_OFFSET(si_tid);
4520 CHECK_OFFSET(si_overrun);
4521 CHECK_OFFSET(si_value);
4522
4523 /* rt */
4524 CHECK_OFFSET(si_pid);
4525 CHECK_OFFSET(si_uid);
4526 CHECK_OFFSET(si_value);
4527
4528 /* sigchld */
4529 CHECK_OFFSET(si_pid);
4530 CHECK_OFFSET(si_uid);
4531 CHECK_OFFSET(si_status);
4532 CHECK_OFFSET(si_utime);
4533 CHECK_OFFSET(si_stime);
4534
4535 /* sigfault */
4536 CHECK_OFFSET(si_addr);
4537 CHECK_OFFSET(si_addr_lsb);
4538 CHECK_OFFSET(si_lower);
4539 CHECK_OFFSET(si_upper);
4540 CHECK_OFFSET(si_pkey);
4541
4542 /* sigpoll */
4543 CHECK_OFFSET(si_band);
4544 CHECK_OFFSET(si_fd);
4545
4546 /* sigsys */
4547 CHECK_OFFSET(si_call_addr);
4548 CHECK_OFFSET(si_syscall);
4549 CHECK_OFFSET(si_arch);
4550 #undef CHECK_OFFSET
4551
4552 /* usb asyncio */
4553 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4554 offsetof(struct siginfo, si_addr));
4555 if (sizeof(int) == sizeof(void __user *)) {
4556 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4557 sizeof(void __user *));
4558 } else {
4559 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4560 sizeof_field(struct siginfo, si_uid)) !=
4561 sizeof(void __user *));
4562 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4563 offsetof(struct siginfo, si_uid));
4564 }
4565 #ifdef CONFIG_COMPAT
4566 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4567 offsetof(struct compat_siginfo, si_addr));
4568 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4569 sizeof(compat_uptr_t));
4570 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4571 sizeof_field(struct siginfo, si_pid));
4572 #endif
4573 }
4574
4575 void __init signals_init(void)
4576 {
4577 siginfo_buildtime_checks();
4578
4579 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4580 }
4581
4582 #ifdef CONFIG_KGDB_KDB
4583 #include <linux/kdb.h>
4584 /*
4585 * kdb_send_sig - Allows kdb to send signals without exposing
4586 * signal internals. This function checks if the required locks are
4587 * available before calling the main signal code, to avoid kdb
4588 * deadlocks.
4589 */
4590 void kdb_send_sig(struct task_struct *t, int sig)
4591 {
4592 static struct task_struct *kdb_prev_t;
4593 int new_t, ret;
4594 if (!spin_trylock(&t->sighand->siglock)) {
4595 kdb_printf("Can't do kill command now.\n"
4596 "The sigmask lock is held somewhere else in "
4597 "kernel, try again later\n");
4598 return;
4599 }
4600 new_t = kdb_prev_t != t;
4601 kdb_prev_t = t;
4602 if (t->state != TASK_RUNNING && new_t) {
4603 spin_unlock(&t->sighand->siglock);
4604 kdb_printf("Process is not RUNNING, sending a signal from "
4605 "kdb risks deadlock\n"
4606 "on the run queue locks. "
4607 "The signal has _not_ been sent.\n"
4608 "Reissue the kill command if you want to risk "
4609 "the deadlock.\n");
4610 return;
4611 }
4612 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4613 spin_unlock(&t->sighand->siglock);
4614 if (ret)
4615 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4616 sig, t->pid);
4617 else
4618 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4619 }
4620 #endif /* CONFIG_KGDB_KDB */