]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/signal.c
aio: fix spectre gadget in lookup_ioctx
[thirdparty/linux.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h" /* audit_signal_info() */
54
55 /*
56 * SLAB caches for signal bits.
57 */
58
59 static struct kmem_cache *sigqueue_cachep;
60
61 int print_fatal_signals __read_mostly;
62
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67
68 static inline bool sig_handler_ignored(void __user *handler, int sig)
69 {
70 /* Is it explicitly or implicitly ignored? */
71 return handler == SIG_IGN ||
72 (handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74
75 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 void __user *handler;
78
79 handler = sig_handler(t, sig);
80
81 /* SIGKILL and SIGSTOP may not be sent to the global init */
82 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
83 return true;
84
85 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
86 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
87 return true;
88
89 return sig_handler_ignored(handler, sig);
90 }
91
92 static bool sig_ignored(struct task_struct *t, int sig, bool force)
93 {
94 /*
95 * Blocked signals are never ignored, since the
96 * signal handler may change by the time it is
97 * unblocked.
98 */
99 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
100 return false;
101
102 /*
103 * Tracers may want to know about even ignored signal unless it
104 * is SIGKILL which can't be reported anyway but can be ignored
105 * by SIGNAL_UNKILLABLE task.
106 */
107 if (t->ptrace && sig != SIGKILL)
108 return false;
109
110 return sig_task_ignored(t, sig, force);
111 }
112
113 /*
114 * Re-calculate pending state from the set of locally pending
115 * signals, globally pending signals, and blocked signals.
116 */
117 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
118 {
119 unsigned long ready;
120 long i;
121
122 switch (_NSIG_WORDS) {
123 default:
124 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
125 ready |= signal->sig[i] &~ blocked->sig[i];
126 break;
127
128 case 4: ready = signal->sig[3] &~ blocked->sig[3];
129 ready |= signal->sig[2] &~ blocked->sig[2];
130 ready |= signal->sig[1] &~ blocked->sig[1];
131 ready |= signal->sig[0] &~ blocked->sig[0];
132 break;
133
134 case 2: ready = signal->sig[1] &~ blocked->sig[1];
135 ready |= signal->sig[0] &~ blocked->sig[0];
136 break;
137
138 case 1: ready = signal->sig[0] &~ blocked->sig[0];
139 }
140 return ready != 0;
141 }
142
143 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
144
145 static bool recalc_sigpending_tsk(struct task_struct *t)
146 {
147 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
148 PENDING(&t->pending, &t->blocked) ||
149 PENDING(&t->signal->shared_pending, &t->blocked)) {
150 set_tsk_thread_flag(t, TIF_SIGPENDING);
151 return true;
152 }
153
154 /*
155 * We must never clear the flag in another thread, or in current
156 * when it's possible the current syscall is returning -ERESTART*.
157 * So we don't clear it here, and only callers who know they should do.
158 */
159 return false;
160 }
161
162 /*
163 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
164 * This is superfluous when called on current, the wakeup is a harmless no-op.
165 */
166 void recalc_sigpending_and_wake(struct task_struct *t)
167 {
168 if (recalc_sigpending_tsk(t))
169 signal_wake_up(t, 0);
170 }
171
172 void recalc_sigpending(void)
173 {
174 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
175 !klp_patch_pending(current))
176 clear_thread_flag(TIF_SIGPENDING);
177
178 }
179 EXPORT_SYMBOL(recalc_sigpending);
180
181 void calculate_sigpending(void)
182 {
183 /* Have any signals or users of TIF_SIGPENDING been delayed
184 * until after fork?
185 */
186 spin_lock_irq(&current->sighand->siglock);
187 set_tsk_thread_flag(current, TIF_SIGPENDING);
188 recalc_sigpending();
189 spin_unlock_irq(&current->sighand->siglock);
190 }
191
192 /* Given the mask, find the first available signal that should be serviced. */
193
194 #define SYNCHRONOUS_MASK \
195 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
196 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
197
198 int next_signal(struct sigpending *pending, sigset_t *mask)
199 {
200 unsigned long i, *s, *m, x;
201 int sig = 0;
202
203 s = pending->signal.sig;
204 m = mask->sig;
205
206 /*
207 * Handle the first word specially: it contains the
208 * synchronous signals that need to be dequeued first.
209 */
210 x = *s &~ *m;
211 if (x) {
212 if (x & SYNCHRONOUS_MASK)
213 x &= SYNCHRONOUS_MASK;
214 sig = ffz(~x) + 1;
215 return sig;
216 }
217
218 switch (_NSIG_WORDS) {
219 default:
220 for (i = 1; i < _NSIG_WORDS; ++i) {
221 x = *++s &~ *++m;
222 if (!x)
223 continue;
224 sig = ffz(~x) + i*_NSIG_BPW + 1;
225 break;
226 }
227 break;
228
229 case 2:
230 x = s[1] &~ m[1];
231 if (!x)
232 break;
233 sig = ffz(~x) + _NSIG_BPW + 1;
234 break;
235
236 case 1:
237 /* Nothing to do */
238 break;
239 }
240
241 return sig;
242 }
243
244 static inline void print_dropped_signal(int sig)
245 {
246 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
247
248 if (!print_fatal_signals)
249 return;
250
251 if (!__ratelimit(&ratelimit_state))
252 return;
253
254 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
255 current->comm, current->pid, sig);
256 }
257
258 /**
259 * task_set_jobctl_pending - set jobctl pending bits
260 * @task: target task
261 * @mask: pending bits to set
262 *
263 * Clear @mask from @task->jobctl. @mask must be subset of
264 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
265 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
266 * cleared. If @task is already being killed or exiting, this function
267 * becomes noop.
268 *
269 * CONTEXT:
270 * Must be called with @task->sighand->siglock held.
271 *
272 * RETURNS:
273 * %true if @mask is set, %false if made noop because @task was dying.
274 */
275 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
276 {
277 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
278 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
279 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
280
281 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
282 return false;
283
284 if (mask & JOBCTL_STOP_SIGMASK)
285 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
286
287 task->jobctl |= mask;
288 return true;
289 }
290
291 /**
292 * task_clear_jobctl_trapping - clear jobctl trapping bit
293 * @task: target task
294 *
295 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
296 * Clear it and wake up the ptracer. Note that we don't need any further
297 * locking. @task->siglock guarantees that @task->parent points to the
298 * ptracer.
299 *
300 * CONTEXT:
301 * Must be called with @task->sighand->siglock held.
302 */
303 void task_clear_jobctl_trapping(struct task_struct *task)
304 {
305 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
306 task->jobctl &= ~JOBCTL_TRAPPING;
307 smp_mb(); /* advised by wake_up_bit() */
308 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
309 }
310 }
311
312 /**
313 * task_clear_jobctl_pending - clear jobctl pending bits
314 * @task: target task
315 * @mask: pending bits to clear
316 *
317 * Clear @mask from @task->jobctl. @mask must be subset of
318 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
319 * STOP bits are cleared together.
320 *
321 * If clearing of @mask leaves no stop or trap pending, this function calls
322 * task_clear_jobctl_trapping().
323 *
324 * CONTEXT:
325 * Must be called with @task->sighand->siglock held.
326 */
327 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
328 {
329 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
330
331 if (mask & JOBCTL_STOP_PENDING)
332 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
333
334 task->jobctl &= ~mask;
335
336 if (!(task->jobctl & JOBCTL_PENDING_MASK))
337 task_clear_jobctl_trapping(task);
338 }
339
340 /**
341 * task_participate_group_stop - participate in a group stop
342 * @task: task participating in a group stop
343 *
344 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
345 * Group stop states are cleared and the group stop count is consumed if
346 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
347 * stop, the appropriate %SIGNAL_* flags are set.
348 *
349 * CONTEXT:
350 * Must be called with @task->sighand->siglock held.
351 *
352 * RETURNS:
353 * %true if group stop completion should be notified to the parent, %false
354 * otherwise.
355 */
356 static bool task_participate_group_stop(struct task_struct *task)
357 {
358 struct signal_struct *sig = task->signal;
359 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
360
361 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
362
363 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
364
365 if (!consume)
366 return false;
367
368 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
369 sig->group_stop_count--;
370
371 /*
372 * Tell the caller to notify completion iff we are entering into a
373 * fresh group stop. Read comment in do_signal_stop() for details.
374 */
375 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
376 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
377 return true;
378 }
379 return false;
380 }
381
382 void task_join_group_stop(struct task_struct *task)
383 {
384 /* Have the new thread join an on-going signal group stop */
385 unsigned long jobctl = current->jobctl;
386 if (jobctl & JOBCTL_STOP_PENDING) {
387 struct signal_struct *sig = current->signal;
388 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
389 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
390 if (task_set_jobctl_pending(task, signr | gstop)) {
391 sig->group_stop_count++;
392 }
393 }
394 }
395
396 /*
397 * allocate a new signal queue record
398 * - this may be called without locks if and only if t == current, otherwise an
399 * appropriate lock must be held to stop the target task from exiting
400 */
401 static struct sigqueue *
402 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
403 {
404 struct sigqueue *q = NULL;
405 struct user_struct *user;
406
407 /*
408 * Protect access to @t credentials. This can go away when all
409 * callers hold rcu read lock.
410 */
411 rcu_read_lock();
412 user = get_uid(__task_cred(t)->user);
413 atomic_inc(&user->sigpending);
414 rcu_read_unlock();
415
416 if (override_rlimit ||
417 atomic_read(&user->sigpending) <=
418 task_rlimit(t, RLIMIT_SIGPENDING)) {
419 q = kmem_cache_alloc(sigqueue_cachep, flags);
420 } else {
421 print_dropped_signal(sig);
422 }
423
424 if (unlikely(q == NULL)) {
425 atomic_dec(&user->sigpending);
426 free_uid(user);
427 } else {
428 INIT_LIST_HEAD(&q->list);
429 q->flags = 0;
430 q->user = user;
431 }
432
433 return q;
434 }
435
436 static void __sigqueue_free(struct sigqueue *q)
437 {
438 if (q->flags & SIGQUEUE_PREALLOC)
439 return;
440 atomic_dec(&q->user->sigpending);
441 free_uid(q->user);
442 kmem_cache_free(sigqueue_cachep, q);
443 }
444
445 void flush_sigqueue(struct sigpending *queue)
446 {
447 struct sigqueue *q;
448
449 sigemptyset(&queue->signal);
450 while (!list_empty(&queue->list)) {
451 q = list_entry(queue->list.next, struct sigqueue , list);
452 list_del_init(&q->list);
453 __sigqueue_free(q);
454 }
455 }
456
457 /*
458 * Flush all pending signals for this kthread.
459 */
460 void flush_signals(struct task_struct *t)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&t->sighand->siglock, flags);
465 clear_tsk_thread_flag(t, TIF_SIGPENDING);
466 flush_sigqueue(&t->pending);
467 flush_sigqueue(&t->signal->shared_pending);
468 spin_unlock_irqrestore(&t->sighand->siglock, flags);
469 }
470 EXPORT_SYMBOL(flush_signals);
471
472 #ifdef CONFIG_POSIX_TIMERS
473 static void __flush_itimer_signals(struct sigpending *pending)
474 {
475 sigset_t signal, retain;
476 struct sigqueue *q, *n;
477
478 signal = pending->signal;
479 sigemptyset(&retain);
480
481 list_for_each_entry_safe(q, n, &pending->list, list) {
482 int sig = q->info.si_signo;
483
484 if (likely(q->info.si_code != SI_TIMER)) {
485 sigaddset(&retain, sig);
486 } else {
487 sigdelset(&signal, sig);
488 list_del_init(&q->list);
489 __sigqueue_free(q);
490 }
491 }
492
493 sigorsets(&pending->signal, &signal, &retain);
494 }
495
496 void flush_itimer_signals(void)
497 {
498 struct task_struct *tsk = current;
499 unsigned long flags;
500
501 spin_lock_irqsave(&tsk->sighand->siglock, flags);
502 __flush_itimer_signals(&tsk->pending);
503 __flush_itimer_signals(&tsk->signal->shared_pending);
504 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
505 }
506 #endif
507
508 void ignore_signals(struct task_struct *t)
509 {
510 int i;
511
512 for (i = 0; i < _NSIG; ++i)
513 t->sighand->action[i].sa.sa_handler = SIG_IGN;
514
515 flush_signals(t);
516 }
517
518 /*
519 * Flush all handlers for a task.
520 */
521
522 void
523 flush_signal_handlers(struct task_struct *t, int force_default)
524 {
525 int i;
526 struct k_sigaction *ka = &t->sighand->action[0];
527 for (i = _NSIG ; i != 0 ; i--) {
528 if (force_default || ka->sa.sa_handler != SIG_IGN)
529 ka->sa.sa_handler = SIG_DFL;
530 ka->sa.sa_flags = 0;
531 #ifdef __ARCH_HAS_SA_RESTORER
532 ka->sa.sa_restorer = NULL;
533 #endif
534 sigemptyset(&ka->sa.sa_mask);
535 ka++;
536 }
537 }
538
539 bool unhandled_signal(struct task_struct *tsk, int sig)
540 {
541 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
542 if (is_global_init(tsk))
543 return true;
544
545 if (handler != SIG_IGN && handler != SIG_DFL)
546 return false;
547
548 /* if ptraced, let the tracer determine */
549 return !tsk->ptrace;
550 }
551
552 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 bool *resched_timer)
554 {
555 struct sigqueue *q, *first = NULL;
556
557 /*
558 * Collect the siginfo appropriate to this signal. Check if
559 * there is another siginfo for the same signal.
560 */
561 list_for_each_entry(q, &list->list, list) {
562 if (q->info.si_signo == sig) {
563 if (first)
564 goto still_pending;
565 first = q;
566 }
567 }
568
569 sigdelset(&list->signal, sig);
570
571 if (first) {
572 still_pending:
573 list_del_init(&first->list);
574 copy_siginfo(info, &first->info);
575
576 *resched_timer =
577 (first->flags & SIGQUEUE_PREALLOC) &&
578 (info->si_code == SI_TIMER) &&
579 (info->si_sys_private);
580
581 __sigqueue_free(first);
582 } else {
583 /*
584 * Ok, it wasn't in the queue. This must be
585 * a fast-pathed signal or we must have been
586 * out of queue space. So zero out the info.
587 */
588 clear_siginfo(info);
589 info->si_signo = sig;
590 info->si_errno = 0;
591 info->si_code = SI_USER;
592 info->si_pid = 0;
593 info->si_uid = 0;
594 }
595 }
596
597 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
598 kernel_siginfo_t *info, bool *resched_timer)
599 {
600 int sig = next_signal(pending, mask);
601
602 if (sig)
603 collect_signal(sig, pending, info, resched_timer);
604 return sig;
605 }
606
607 /*
608 * Dequeue a signal and return the element to the caller, which is
609 * expected to free it.
610 *
611 * All callers have to hold the siglock.
612 */
613 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
614 {
615 bool resched_timer = false;
616 int signr;
617
618 /* We only dequeue private signals from ourselves, we don't let
619 * signalfd steal them
620 */
621 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
622 if (!signr) {
623 signr = __dequeue_signal(&tsk->signal->shared_pending,
624 mask, info, &resched_timer);
625 #ifdef CONFIG_POSIX_TIMERS
626 /*
627 * itimer signal ?
628 *
629 * itimers are process shared and we restart periodic
630 * itimers in the signal delivery path to prevent DoS
631 * attacks in the high resolution timer case. This is
632 * compliant with the old way of self-restarting
633 * itimers, as the SIGALRM is a legacy signal and only
634 * queued once. Changing the restart behaviour to
635 * restart the timer in the signal dequeue path is
636 * reducing the timer noise on heavy loaded !highres
637 * systems too.
638 */
639 if (unlikely(signr == SIGALRM)) {
640 struct hrtimer *tmr = &tsk->signal->real_timer;
641
642 if (!hrtimer_is_queued(tmr) &&
643 tsk->signal->it_real_incr != 0) {
644 hrtimer_forward(tmr, tmr->base->get_time(),
645 tsk->signal->it_real_incr);
646 hrtimer_restart(tmr);
647 }
648 }
649 #endif
650 }
651
652 recalc_sigpending();
653 if (!signr)
654 return 0;
655
656 if (unlikely(sig_kernel_stop(signr))) {
657 /*
658 * Set a marker that we have dequeued a stop signal. Our
659 * caller might release the siglock and then the pending
660 * stop signal it is about to process is no longer in the
661 * pending bitmasks, but must still be cleared by a SIGCONT
662 * (and overruled by a SIGKILL). So those cases clear this
663 * shared flag after we've set it. Note that this flag may
664 * remain set after the signal we return is ignored or
665 * handled. That doesn't matter because its only purpose
666 * is to alert stop-signal processing code when another
667 * processor has come along and cleared the flag.
668 */
669 current->jobctl |= JOBCTL_STOP_DEQUEUED;
670 }
671 #ifdef CONFIG_POSIX_TIMERS
672 if (resched_timer) {
673 /*
674 * Release the siglock to ensure proper locking order
675 * of timer locks outside of siglocks. Note, we leave
676 * irqs disabled here, since the posix-timers code is
677 * about to disable them again anyway.
678 */
679 spin_unlock(&tsk->sighand->siglock);
680 posixtimer_rearm(info);
681 spin_lock(&tsk->sighand->siglock);
682
683 /* Don't expose the si_sys_private value to userspace */
684 info->si_sys_private = 0;
685 }
686 #endif
687 return signr;
688 }
689 EXPORT_SYMBOL_GPL(dequeue_signal);
690
691 /*
692 * Tell a process that it has a new active signal..
693 *
694 * NOTE! we rely on the previous spin_lock to
695 * lock interrupts for us! We can only be called with
696 * "siglock" held, and the local interrupt must
697 * have been disabled when that got acquired!
698 *
699 * No need to set need_resched since signal event passing
700 * goes through ->blocked
701 */
702 void signal_wake_up_state(struct task_struct *t, unsigned int state)
703 {
704 set_tsk_thread_flag(t, TIF_SIGPENDING);
705 /*
706 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
707 * case. We don't check t->state here because there is a race with it
708 * executing another processor and just now entering stopped state.
709 * By using wake_up_state, we ensure the process will wake up and
710 * handle its death signal.
711 */
712 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
713 kick_process(t);
714 }
715
716 /*
717 * Remove signals in mask from the pending set and queue.
718 * Returns 1 if any signals were found.
719 *
720 * All callers must be holding the siglock.
721 */
722 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
723 {
724 struct sigqueue *q, *n;
725 sigset_t m;
726
727 sigandsets(&m, mask, &s->signal);
728 if (sigisemptyset(&m))
729 return;
730
731 sigandnsets(&s->signal, &s->signal, mask);
732 list_for_each_entry_safe(q, n, &s->list, list) {
733 if (sigismember(mask, q->info.si_signo)) {
734 list_del_init(&q->list);
735 __sigqueue_free(q);
736 }
737 }
738 }
739
740 static inline int is_si_special(const struct kernel_siginfo *info)
741 {
742 return info <= SEND_SIG_PRIV;
743 }
744
745 static inline bool si_fromuser(const struct kernel_siginfo *info)
746 {
747 return info == SEND_SIG_NOINFO ||
748 (!is_si_special(info) && SI_FROMUSER(info));
749 }
750
751 /*
752 * called with RCU read lock from check_kill_permission()
753 */
754 static bool kill_ok_by_cred(struct task_struct *t)
755 {
756 const struct cred *cred = current_cred();
757 const struct cred *tcred = __task_cred(t);
758
759 return uid_eq(cred->euid, tcred->suid) ||
760 uid_eq(cred->euid, tcred->uid) ||
761 uid_eq(cred->uid, tcred->suid) ||
762 uid_eq(cred->uid, tcred->uid) ||
763 ns_capable(tcred->user_ns, CAP_KILL);
764 }
765
766 /*
767 * Bad permissions for sending the signal
768 * - the caller must hold the RCU read lock
769 */
770 static int check_kill_permission(int sig, struct kernel_siginfo *info,
771 struct task_struct *t)
772 {
773 struct pid *sid;
774 int error;
775
776 if (!valid_signal(sig))
777 return -EINVAL;
778
779 if (!si_fromuser(info))
780 return 0;
781
782 error = audit_signal_info(sig, t); /* Let audit system see the signal */
783 if (error)
784 return error;
785
786 if (!same_thread_group(current, t) &&
787 !kill_ok_by_cred(t)) {
788 switch (sig) {
789 case SIGCONT:
790 sid = task_session(t);
791 /*
792 * We don't return the error if sid == NULL. The
793 * task was unhashed, the caller must notice this.
794 */
795 if (!sid || sid == task_session(current))
796 break;
797 default:
798 return -EPERM;
799 }
800 }
801
802 return security_task_kill(t, info, sig, NULL);
803 }
804
805 /**
806 * ptrace_trap_notify - schedule trap to notify ptracer
807 * @t: tracee wanting to notify tracer
808 *
809 * This function schedules sticky ptrace trap which is cleared on the next
810 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
811 * ptracer.
812 *
813 * If @t is running, STOP trap will be taken. If trapped for STOP and
814 * ptracer is listening for events, tracee is woken up so that it can
815 * re-trap for the new event. If trapped otherwise, STOP trap will be
816 * eventually taken without returning to userland after the existing traps
817 * are finished by PTRACE_CONT.
818 *
819 * CONTEXT:
820 * Must be called with @task->sighand->siglock held.
821 */
822 static void ptrace_trap_notify(struct task_struct *t)
823 {
824 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
825 assert_spin_locked(&t->sighand->siglock);
826
827 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
828 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
829 }
830
831 /*
832 * Handle magic process-wide effects of stop/continue signals. Unlike
833 * the signal actions, these happen immediately at signal-generation
834 * time regardless of blocking, ignoring, or handling. This does the
835 * actual continuing for SIGCONT, but not the actual stopping for stop
836 * signals. The process stop is done as a signal action for SIG_DFL.
837 *
838 * Returns true if the signal should be actually delivered, otherwise
839 * it should be dropped.
840 */
841 static bool prepare_signal(int sig, struct task_struct *p, bool force)
842 {
843 struct signal_struct *signal = p->signal;
844 struct task_struct *t;
845 sigset_t flush;
846
847 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
848 if (!(signal->flags & SIGNAL_GROUP_EXIT))
849 return sig == SIGKILL;
850 /*
851 * The process is in the middle of dying, nothing to do.
852 */
853 } else if (sig_kernel_stop(sig)) {
854 /*
855 * This is a stop signal. Remove SIGCONT from all queues.
856 */
857 siginitset(&flush, sigmask(SIGCONT));
858 flush_sigqueue_mask(&flush, &signal->shared_pending);
859 for_each_thread(p, t)
860 flush_sigqueue_mask(&flush, &t->pending);
861 } else if (sig == SIGCONT) {
862 unsigned int why;
863 /*
864 * Remove all stop signals from all queues, wake all threads.
865 */
866 siginitset(&flush, SIG_KERNEL_STOP_MASK);
867 flush_sigqueue_mask(&flush, &signal->shared_pending);
868 for_each_thread(p, t) {
869 flush_sigqueue_mask(&flush, &t->pending);
870 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
871 if (likely(!(t->ptrace & PT_SEIZED)))
872 wake_up_state(t, __TASK_STOPPED);
873 else
874 ptrace_trap_notify(t);
875 }
876
877 /*
878 * Notify the parent with CLD_CONTINUED if we were stopped.
879 *
880 * If we were in the middle of a group stop, we pretend it
881 * was already finished, and then continued. Since SIGCHLD
882 * doesn't queue we report only CLD_STOPPED, as if the next
883 * CLD_CONTINUED was dropped.
884 */
885 why = 0;
886 if (signal->flags & SIGNAL_STOP_STOPPED)
887 why |= SIGNAL_CLD_CONTINUED;
888 else if (signal->group_stop_count)
889 why |= SIGNAL_CLD_STOPPED;
890
891 if (why) {
892 /*
893 * The first thread which returns from do_signal_stop()
894 * will take ->siglock, notice SIGNAL_CLD_MASK, and
895 * notify its parent. See get_signal().
896 */
897 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
898 signal->group_stop_count = 0;
899 signal->group_exit_code = 0;
900 }
901 }
902
903 return !sig_ignored(p, sig, force);
904 }
905
906 /*
907 * Test if P wants to take SIG. After we've checked all threads with this,
908 * it's equivalent to finding no threads not blocking SIG. Any threads not
909 * blocking SIG were ruled out because they are not running and already
910 * have pending signals. Such threads will dequeue from the shared queue
911 * as soon as they're available, so putting the signal on the shared queue
912 * will be equivalent to sending it to one such thread.
913 */
914 static inline bool wants_signal(int sig, struct task_struct *p)
915 {
916 if (sigismember(&p->blocked, sig))
917 return false;
918
919 if (p->flags & PF_EXITING)
920 return false;
921
922 if (sig == SIGKILL)
923 return true;
924
925 if (task_is_stopped_or_traced(p))
926 return false;
927
928 return task_curr(p) || !signal_pending(p);
929 }
930
931 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
932 {
933 struct signal_struct *signal = p->signal;
934 struct task_struct *t;
935
936 /*
937 * Now find a thread we can wake up to take the signal off the queue.
938 *
939 * If the main thread wants the signal, it gets first crack.
940 * Probably the least surprising to the average bear.
941 */
942 if (wants_signal(sig, p))
943 t = p;
944 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
945 /*
946 * There is just one thread and it does not need to be woken.
947 * It will dequeue unblocked signals before it runs again.
948 */
949 return;
950 else {
951 /*
952 * Otherwise try to find a suitable thread.
953 */
954 t = signal->curr_target;
955 while (!wants_signal(sig, t)) {
956 t = next_thread(t);
957 if (t == signal->curr_target)
958 /*
959 * No thread needs to be woken.
960 * Any eligible threads will see
961 * the signal in the queue soon.
962 */
963 return;
964 }
965 signal->curr_target = t;
966 }
967
968 /*
969 * Found a killable thread. If the signal will be fatal,
970 * then start taking the whole group down immediately.
971 */
972 if (sig_fatal(p, sig) &&
973 !(signal->flags & SIGNAL_GROUP_EXIT) &&
974 !sigismember(&t->real_blocked, sig) &&
975 (sig == SIGKILL || !p->ptrace)) {
976 /*
977 * This signal will be fatal to the whole group.
978 */
979 if (!sig_kernel_coredump(sig)) {
980 /*
981 * Start a group exit and wake everybody up.
982 * This way we don't have other threads
983 * running and doing things after a slower
984 * thread has the fatal signal pending.
985 */
986 signal->flags = SIGNAL_GROUP_EXIT;
987 signal->group_exit_code = sig;
988 signal->group_stop_count = 0;
989 t = p;
990 do {
991 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
992 sigaddset(&t->pending.signal, SIGKILL);
993 signal_wake_up(t, 1);
994 } while_each_thread(p, t);
995 return;
996 }
997 }
998
999 /*
1000 * The signal is already in the shared-pending queue.
1001 * Tell the chosen thread to wake up and dequeue it.
1002 */
1003 signal_wake_up(t, sig == SIGKILL);
1004 return;
1005 }
1006
1007 static inline bool legacy_queue(struct sigpending *signals, int sig)
1008 {
1009 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1010 }
1011
1012 #ifdef CONFIG_USER_NS
1013 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1014 {
1015 if (current_user_ns() == task_cred_xxx(t, user_ns))
1016 return;
1017
1018 if (SI_FROMKERNEL(info))
1019 return;
1020
1021 rcu_read_lock();
1022 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1023 make_kuid(current_user_ns(), info->si_uid));
1024 rcu_read_unlock();
1025 }
1026 #else
1027 static inline void userns_fixup_signal_uid(struct kernel_siginfo *info, struct task_struct *t)
1028 {
1029 return;
1030 }
1031 #endif
1032
1033 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1034 enum pid_type type, int from_ancestor_ns)
1035 {
1036 struct sigpending *pending;
1037 struct sigqueue *q;
1038 int override_rlimit;
1039 int ret = 0, result;
1040
1041 assert_spin_locked(&t->sighand->siglock);
1042
1043 result = TRACE_SIGNAL_IGNORED;
1044 if (!prepare_signal(sig, t,
1045 from_ancestor_ns || (info == SEND_SIG_PRIV)))
1046 goto ret;
1047
1048 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1049 /*
1050 * Short-circuit ignored signals and support queuing
1051 * exactly one non-rt signal, so that we can get more
1052 * detailed information about the cause of the signal.
1053 */
1054 result = TRACE_SIGNAL_ALREADY_PENDING;
1055 if (legacy_queue(pending, sig))
1056 goto ret;
1057
1058 result = TRACE_SIGNAL_DELIVERED;
1059 /*
1060 * Skip useless siginfo allocation for SIGKILL SIGSTOP,
1061 * and kernel threads.
1062 */
1063 if (sig_kernel_only(sig) || (t->flags & PF_KTHREAD))
1064 goto out_set;
1065
1066 /*
1067 * Real-time signals must be queued if sent by sigqueue, or
1068 * some other real-time mechanism. It is implementation
1069 * defined whether kill() does so. We attempt to do so, on
1070 * the principle of least surprise, but since kill is not
1071 * allowed to fail with EAGAIN when low on memory we just
1072 * make sure at least one signal gets delivered and don't
1073 * pass on the info struct.
1074 */
1075 if (sig < SIGRTMIN)
1076 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1077 else
1078 override_rlimit = 0;
1079
1080 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1081 if (q) {
1082 list_add_tail(&q->list, &pending->list);
1083 switch ((unsigned long) info) {
1084 case (unsigned long) SEND_SIG_NOINFO:
1085 clear_siginfo(&q->info);
1086 q->info.si_signo = sig;
1087 q->info.si_errno = 0;
1088 q->info.si_code = SI_USER;
1089 q->info.si_pid = task_tgid_nr_ns(current,
1090 task_active_pid_ns(t));
1091 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1092 break;
1093 case (unsigned long) SEND_SIG_PRIV:
1094 clear_siginfo(&q->info);
1095 q->info.si_signo = sig;
1096 q->info.si_errno = 0;
1097 q->info.si_code = SI_KERNEL;
1098 q->info.si_pid = 0;
1099 q->info.si_uid = 0;
1100 break;
1101 default:
1102 copy_siginfo(&q->info, info);
1103 if (from_ancestor_ns)
1104 q->info.si_pid = 0;
1105 break;
1106 }
1107
1108 userns_fixup_signal_uid(&q->info, t);
1109
1110 } else if (!is_si_special(info)) {
1111 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1112 /*
1113 * Queue overflow, abort. We may abort if the
1114 * signal was rt and sent by user using something
1115 * other than kill().
1116 */
1117 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1118 ret = -EAGAIN;
1119 goto ret;
1120 } else {
1121 /*
1122 * This is a silent loss of information. We still
1123 * send the signal, but the *info bits are lost.
1124 */
1125 result = TRACE_SIGNAL_LOSE_INFO;
1126 }
1127 }
1128
1129 out_set:
1130 signalfd_notify(t, sig);
1131 sigaddset(&pending->signal, sig);
1132
1133 /* Let multiprocess signals appear after on-going forks */
1134 if (type > PIDTYPE_TGID) {
1135 struct multiprocess_signals *delayed;
1136 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1137 sigset_t *signal = &delayed->signal;
1138 /* Can't queue both a stop and a continue signal */
1139 if (sig == SIGCONT)
1140 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1141 else if (sig_kernel_stop(sig))
1142 sigdelset(signal, SIGCONT);
1143 sigaddset(signal, sig);
1144 }
1145 }
1146
1147 complete_signal(sig, t, type);
1148 ret:
1149 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1150 return ret;
1151 }
1152
1153 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1154 enum pid_type type)
1155 {
1156 int from_ancestor_ns = 0;
1157
1158 #ifdef CONFIG_PID_NS
1159 from_ancestor_ns = si_fromuser(info) &&
1160 !task_pid_nr_ns(current, task_active_pid_ns(t));
1161 #endif
1162
1163 return __send_signal(sig, info, t, type, from_ancestor_ns);
1164 }
1165
1166 static void print_fatal_signal(int signr)
1167 {
1168 struct pt_regs *regs = signal_pt_regs();
1169 pr_info("potentially unexpected fatal signal %d.\n", signr);
1170
1171 #if defined(__i386__) && !defined(__arch_um__)
1172 pr_info("code at %08lx: ", regs->ip);
1173 {
1174 int i;
1175 for (i = 0; i < 16; i++) {
1176 unsigned char insn;
1177
1178 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1179 break;
1180 pr_cont("%02x ", insn);
1181 }
1182 }
1183 pr_cont("\n");
1184 #endif
1185 preempt_disable();
1186 show_regs(regs);
1187 preempt_enable();
1188 }
1189
1190 static int __init setup_print_fatal_signals(char *str)
1191 {
1192 get_option (&str, &print_fatal_signals);
1193
1194 return 1;
1195 }
1196
1197 __setup("print-fatal-signals=", setup_print_fatal_signals);
1198
1199 int
1200 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1201 {
1202 return send_signal(sig, info, p, PIDTYPE_TGID);
1203 }
1204
1205 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1206 enum pid_type type)
1207 {
1208 unsigned long flags;
1209 int ret = -ESRCH;
1210
1211 if (lock_task_sighand(p, &flags)) {
1212 ret = send_signal(sig, info, p, type);
1213 unlock_task_sighand(p, &flags);
1214 }
1215
1216 return ret;
1217 }
1218
1219 /*
1220 * Force a signal that the process can't ignore: if necessary
1221 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1222 *
1223 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1224 * since we do not want to have a signal handler that was blocked
1225 * be invoked when user space had explicitly blocked it.
1226 *
1227 * We don't want to have recursive SIGSEGV's etc, for example,
1228 * that is why we also clear SIGNAL_UNKILLABLE.
1229 */
1230 int
1231 force_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *t)
1232 {
1233 unsigned long int flags;
1234 int ret, blocked, ignored;
1235 struct k_sigaction *action;
1236
1237 spin_lock_irqsave(&t->sighand->siglock, flags);
1238 action = &t->sighand->action[sig-1];
1239 ignored = action->sa.sa_handler == SIG_IGN;
1240 blocked = sigismember(&t->blocked, sig);
1241 if (blocked || ignored) {
1242 action->sa.sa_handler = SIG_DFL;
1243 if (blocked) {
1244 sigdelset(&t->blocked, sig);
1245 recalc_sigpending_and_wake(t);
1246 }
1247 }
1248 /*
1249 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1250 * debugging to leave init killable.
1251 */
1252 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1253 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1254 ret = send_signal(sig, info, t, PIDTYPE_PID);
1255 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1256
1257 return ret;
1258 }
1259
1260 /*
1261 * Nuke all other threads in the group.
1262 */
1263 int zap_other_threads(struct task_struct *p)
1264 {
1265 struct task_struct *t = p;
1266 int count = 0;
1267
1268 p->signal->group_stop_count = 0;
1269
1270 while_each_thread(p, t) {
1271 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1272 count++;
1273
1274 /* Don't bother with already dead threads */
1275 if (t->exit_state)
1276 continue;
1277 sigaddset(&t->pending.signal, SIGKILL);
1278 signal_wake_up(t, 1);
1279 }
1280
1281 return count;
1282 }
1283
1284 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1285 unsigned long *flags)
1286 {
1287 struct sighand_struct *sighand;
1288
1289 rcu_read_lock();
1290 for (;;) {
1291 sighand = rcu_dereference(tsk->sighand);
1292 if (unlikely(sighand == NULL))
1293 break;
1294
1295 /*
1296 * This sighand can be already freed and even reused, but
1297 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1298 * initializes ->siglock: this slab can't go away, it has
1299 * the same object type, ->siglock can't be reinitialized.
1300 *
1301 * We need to ensure that tsk->sighand is still the same
1302 * after we take the lock, we can race with de_thread() or
1303 * __exit_signal(). In the latter case the next iteration
1304 * must see ->sighand == NULL.
1305 */
1306 spin_lock_irqsave(&sighand->siglock, *flags);
1307 if (likely(sighand == tsk->sighand))
1308 break;
1309 spin_unlock_irqrestore(&sighand->siglock, *flags);
1310 }
1311 rcu_read_unlock();
1312
1313 return sighand;
1314 }
1315
1316 /*
1317 * send signal info to all the members of a group
1318 */
1319 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1320 struct task_struct *p, enum pid_type type)
1321 {
1322 int ret;
1323
1324 rcu_read_lock();
1325 ret = check_kill_permission(sig, info, p);
1326 rcu_read_unlock();
1327
1328 if (!ret && sig)
1329 ret = do_send_sig_info(sig, info, p, type);
1330
1331 return ret;
1332 }
1333
1334 /*
1335 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1336 * control characters do (^C, ^Z etc)
1337 * - the caller must hold at least a readlock on tasklist_lock
1338 */
1339 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1340 {
1341 struct task_struct *p = NULL;
1342 int retval, success;
1343
1344 success = 0;
1345 retval = -ESRCH;
1346 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1347 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1348 success |= !err;
1349 retval = err;
1350 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1351 return success ? 0 : retval;
1352 }
1353
1354 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1355 {
1356 int error = -ESRCH;
1357 struct task_struct *p;
1358
1359 for (;;) {
1360 rcu_read_lock();
1361 p = pid_task(pid, PIDTYPE_PID);
1362 if (p)
1363 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1364 rcu_read_unlock();
1365 if (likely(!p || error != -ESRCH))
1366 return error;
1367
1368 /*
1369 * The task was unhashed in between, try again. If it
1370 * is dead, pid_task() will return NULL, if we race with
1371 * de_thread() it will find the new leader.
1372 */
1373 }
1374 }
1375
1376 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1377 {
1378 int error;
1379 rcu_read_lock();
1380 error = kill_pid_info(sig, info, find_vpid(pid));
1381 rcu_read_unlock();
1382 return error;
1383 }
1384
1385 static inline bool kill_as_cred_perm(const struct cred *cred,
1386 struct task_struct *target)
1387 {
1388 const struct cred *pcred = __task_cred(target);
1389
1390 return uid_eq(cred->euid, pcred->suid) ||
1391 uid_eq(cred->euid, pcred->uid) ||
1392 uid_eq(cred->uid, pcred->suid) ||
1393 uid_eq(cred->uid, pcred->uid);
1394 }
1395
1396 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1397 int kill_pid_info_as_cred(int sig, struct kernel_siginfo *info, struct pid *pid,
1398 const struct cred *cred)
1399 {
1400 int ret = -EINVAL;
1401 struct task_struct *p;
1402 unsigned long flags;
1403
1404 if (!valid_signal(sig))
1405 return ret;
1406
1407 rcu_read_lock();
1408 p = pid_task(pid, PIDTYPE_PID);
1409 if (!p) {
1410 ret = -ESRCH;
1411 goto out_unlock;
1412 }
1413 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1414 ret = -EPERM;
1415 goto out_unlock;
1416 }
1417 ret = security_task_kill(p, info, sig, cred);
1418 if (ret)
1419 goto out_unlock;
1420
1421 if (sig) {
1422 if (lock_task_sighand(p, &flags)) {
1423 ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1424 unlock_task_sighand(p, &flags);
1425 } else
1426 ret = -ESRCH;
1427 }
1428 out_unlock:
1429 rcu_read_unlock();
1430 return ret;
1431 }
1432 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1433
1434 /*
1435 * kill_something_info() interprets pid in interesting ways just like kill(2).
1436 *
1437 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1438 * is probably wrong. Should make it like BSD or SYSV.
1439 */
1440
1441 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1442 {
1443 int ret;
1444
1445 if (pid > 0) {
1446 rcu_read_lock();
1447 ret = kill_pid_info(sig, info, find_vpid(pid));
1448 rcu_read_unlock();
1449 return ret;
1450 }
1451
1452 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1453 if (pid == INT_MIN)
1454 return -ESRCH;
1455
1456 read_lock(&tasklist_lock);
1457 if (pid != -1) {
1458 ret = __kill_pgrp_info(sig, info,
1459 pid ? find_vpid(-pid) : task_pgrp(current));
1460 } else {
1461 int retval = 0, count = 0;
1462 struct task_struct * p;
1463
1464 for_each_process(p) {
1465 if (task_pid_vnr(p) > 1 &&
1466 !same_thread_group(p, current)) {
1467 int err = group_send_sig_info(sig, info, p,
1468 PIDTYPE_MAX);
1469 ++count;
1470 if (err != -EPERM)
1471 retval = err;
1472 }
1473 }
1474 ret = count ? retval : -ESRCH;
1475 }
1476 read_unlock(&tasklist_lock);
1477
1478 return ret;
1479 }
1480
1481 /*
1482 * These are for backward compatibility with the rest of the kernel source.
1483 */
1484
1485 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1486 {
1487 /*
1488 * Make sure legacy kernel users don't send in bad values
1489 * (normal paths check this in check_kill_permission).
1490 */
1491 if (!valid_signal(sig))
1492 return -EINVAL;
1493
1494 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1495 }
1496 EXPORT_SYMBOL(send_sig_info);
1497
1498 #define __si_special(priv) \
1499 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1500
1501 int
1502 send_sig(int sig, struct task_struct *p, int priv)
1503 {
1504 return send_sig_info(sig, __si_special(priv), p);
1505 }
1506 EXPORT_SYMBOL(send_sig);
1507
1508 void force_sig(int sig, struct task_struct *p)
1509 {
1510 force_sig_info(sig, SEND_SIG_PRIV, p);
1511 }
1512 EXPORT_SYMBOL(force_sig);
1513
1514 /*
1515 * When things go south during signal handling, we
1516 * will force a SIGSEGV. And if the signal that caused
1517 * the problem was already a SIGSEGV, we'll want to
1518 * make sure we don't even try to deliver the signal..
1519 */
1520 void force_sigsegv(int sig, struct task_struct *p)
1521 {
1522 if (sig == SIGSEGV) {
1523 unsigned long flags;
1524 spin_lock_irqsave(&p->sighand->siglock, flags);
1525 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1526 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1527 }
1528 force_sig(SIGSEGV, p);
1529 }
1530
1531 int force_sig_fault(int sig, int code, void __user *addr
1532 ___ARCH_SI_TRAPNO(int trapno)
1533 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1534 , struct task_struct *t)
1535 {
1536 struct kernel_siginfo info;
1537
1538 clear_siginfo(&info);
1539 info.si_signo = sig;
1540 info.si_errno = 0;
1541 info.si_code = code;
1542 info.si_addr = addr;
1543 #ifdef __ARCH_SI_TRAPNO
1544 info.si_trapno = trapno;
1545 #endif
1546 #ifdef __ia64__
1547 info.si_imm = imm;
1548 info.si_flags = flags;
1549 info.si_isr = isr;
1550 #endif
1551 return force_sig_info(info.si_signo, &info, t);
1552 }
1553
1554 int send_sig_fault(int sig, int code, void __user *addr
1555 ___ARCH_SI_TRAPNO(int trapno)
1556 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1557 , struct task_struct *t)
1558 {
1559 struct kernel_siginfo info;
1560
1561 clear_siginfo(&info);
1562 info.si_signo = sig;
1563 info.si_errno = 0;
1564 info.si_code = code;
1565 info.si_addr = addr;
1566 #ifdef __ARCH_SI_TRAPNO
1567 info.si_trapno = trapno;
1568 #endif
1569 #ifdef __ia64__
1570 info.si_imm = imm;
1571 info.si_flags = flags;
1572 info.si_isr = isr;
1573 #endif
1574 return send_sig_info(info.si_signo, &info, t);
1575 }
1576
1577 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1578 {
1579 struct kernel_siginfo info;
1580
1581 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1582 clear_siginfo(&info);
1583 info.si_signo = SIGBUS;
1584 info.si_errno = 0;
1585 info.si_code = code;
1586 info.si_addr = addr;
1587 info.si_addr_lsb = lsb;
1588 return force_sig_info(info.si_signo, &info, t);
1589 }
1590
1591 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1592 {
1593 struct kernel_siginfo info;
1594
1595 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1596 clear_siginfo(&info);
1597 info.si_signo = SIGBUS;
1598 info.si_errno = 0;
1599 info.si_code = code;
1600 info.si_addr = addr;
1601 info.si_addr_lsb = lsb;
1602 return send_sig_info(info.si_signo, &info, t);
1603 }
1604 EXPORT_SYMBOL(send_sig_mceerr);
1605
1606 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1607 {
1608 struct kernel_siginfo info;
1609
1610 clear_siginfo(&info);
1611 info.si_signo = SIGSEGV;
1612 info.si_errno = 0;
1613 info.si_code = SEGV_BNDERR;
1614 info.si_addr = addr;
1615 info.si_lower = lower;
1616 info.si_upper = upper;
1617 return force_sig_info(info.si_signo, &info, current);
1618 }
1619
1620 #ifdef SEGV_PKUERR
1621 int force_sig_pkuerr(void __user *addr, u32 pkey)
1622 {
1623 struct kernel_siginfo info;
1624
1625 clear_siginfo(&info);
1626 info.si_signo = SIGSEGV;
1627 info.si_errno = 0;
1628 info.si_code = SEGV_PKUERR;
1629 info.si_addr = addr;
1630 info.si_pkey = pkey;
1631 return force_sig_info(info.si_signo, &info, current);
1632 }
1633 #endif
1634
1635 /* For the crazy architectures that include trap information in
1636 * the errno field, instead of an actual errno value.
1637 */
1638 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1639 {
1640 struct kernel_siginfo info;
1641
1642 clear_siginfo(&info);
1643 info.si_signo = SIGTRAP;
1644 info.si_errno = errno;
1645 info.si_code = TRAP_HWBKPT;
1646 info.si_addr = addr;
1647 return force_sig_info(info.si_signo, &info, current);
1648 }
1649
1650 int kill_pgrp(struct pid *pid, int sig, int priv)
1651 {
1652 int ret;
1653
1654 read_lock(&tasklist_lock);
1655 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1656 read_unlock(&tasklist_lock);
1657
1658 return ret;
1659 }
1660 EXPORT_SYMBOL(kill_pgrp);
1661
1662 int kill_pid(struct pid *pid, int sig, int priv)
1663 {
1664 return kill_pid_info(sig, __si_special(priv), pid);
1665 }
1666 EXPORT_SYMBOL(kill_pid);
1667
1668 /*
1669 * These functions support sending signals using preallocated sigqueue
1670 * structures. This is needed "because realtime applications cannot
1671 * afford to lose notifications of asynchronous events, like timer
1672 * expirations or I/O completions". In the case of POSIX Timers
1673 * we allocate the sigqueue structure from the timer_create. If this
1674 * allocation fails we are able to report the failure to the application
1675 * with an EAGAIN error.
1676 */
1677 struct sigqueue *sigqueue_alloc(void)
1678 {
1679 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1680
1681 if (q)
1682 q->flags |= SIGQUEUE_PREALLOC;
1683
1684 return q;
1685 }
1686
1687 void sigqueue_free(struct sigqueue *q)
1688 {
1689 unsigned long flags;
1690 spinlock_t *lock = &current->sighand->siglock;
1691
1692 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1693 /*
1694 * We must hold ->siglock while testing q->list
1695 * to serialize with collect_signal() or with
1696 * __exit_signal()->flush_sigqueue().
1697 */
1698 spin_lock_irqsave(lock, flags);
1699 q->flags &= ~SIGQUEUE_PREALLOC;
1700 /*
1701 * If it is queued it will be freed when dequeued,
1702 * like the "regular" sigqueue.
1703 */
1704 if (!list_empty(&q->list))
1705 q = NULL;
1706 spin_unlock_irqrestore(lock, flags);
1707
1708 if (q)
1709 __sigqueue_free(q);
1710 }
1711
1712 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1713 {
1714 int sig = q->info.si_signo;
1715 struct sigpending *pending;
1716 struct task_struct *t;
1717 unsigned long flags;
1718 int ret, result;
1719
1720 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1721
1722 ret = -1;
1723 rcu_read_lock();
1724 t = pid_task(pid, type);
1725 if (!t || !likely(lock_task_sighand(t, &flags)))
1726 goto ret;
1727
1728 ret = 1; /* the signal is ignored */
1729 result = TRACE_SIGNAL_IGNORED;
1730 if (!prepare_signal(sig, t, false))
1731 goto out;
1732
1733 ret = 0;
1734 if (unlikely(!list_empty(&q->list))) {
1735 /*
1736 * If an SI_TIMER entry is already queue just increment
1737 * the overrun count.
1738 */
1739 BUG_ON(q->info.si_code != SI_TIMER);
1740 q->info.si_overrun++;
1741 result = TRACE_SIGNAL_ALREADY_PENDING;
1742 goto out;
1743 }
1744 q->info.si_overrun = 0;
1745
1746 signalfd_notify(t, sig);
1747 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1748 list_add_tail(&q->list, &pending->list);
1749 sigaddset(&pending->signal, sig);
1750 complete_signal(sig, t, type);
1751 result = TRACE_SIGNAL_DELIVERED;
1752 out:
1753 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1754 unlock_task_sighand(t, &flags);
1755 ret:
1756 rcu_read_unlock();
1757 return ret;
1758 }
1759
1760 /*
1761 * Let a parent know about the death of a child.
1762 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1763 *
1764 * Returns true if our parent ignored us and so we've switched to
1765 * self-reaping.
1766 */
1767 bool do_notify_parent(struct task_struct *tsk, int sig)
1768 {
1769 struct kernel_siginfo info;
1770 unsigned long flags;
1771 struct sighand_struct *psig;
1772 bool autoreap = false;
1773 u64 utime, stime;
1774
1775 BUG_ON(sig == -1);
1776
1777 /* do_notify_parent_cldstop should have been called instead. */
1778 BUG_ON(task_is_stopped_or_traced(tsk));
1779
1780 BUG_ON(!tsk->ptrace &&
1781 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1782
1783 if (sig != SIGCHLD) {
1784 /*
1785 * This is only possible if parent == real_parent.
1786 * Check if it has changed security domain.
1787 */
1788 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1789 sig = SIGCHLD;
1790 }
1791
1792 clear_siginfo(&info);
1793 info.si_signo = sig;
1794 info.si_errno = 0;
1795 /*
1796 * We are under tasklist_lock here so our parent is tied to
1797 * us and cannot change.
1798 *
1799 * task_active_pid_ns will always return the same pid namespace
1800 * until a task passes through release_task.
1801 *
1802 * write_lock() currently calls preempt_disable() which is the
1803 * same as rcu_read_lock(), but according to Oleg, this is not
1804 * correct to rely on this
1805 */
1806 rcu_read_lock();
1807 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1808 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1809 task_uid(tsk));
1810 rcu_read_unlock();
1811
1812 task_cputime(tsk, &utime, &stime);
1813 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1814 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1815
1816 info.si_status = tsk->exit_code & 0x7f;
1817 if (tsk->exit_code & 0x80)
1818 info.si_code = CLD_DUMPED;
1819 else if (tsk->exit_code & 0x7f)
1820 info.si_code = CLD_KILLED;
1821 else {
1822 info.si_code = CLD_EXITED;
1823 info.si_status = tsk->exit_code >> 8;
1824 }
1825
1826 psig = tsk->parent->sighand;
1827 spin_lock_irqsave(&psig->siglock, flags);
1828 if (!tsk->ptrace && sig == SIGCHLD &&
1829 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1830 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1831 /*
1832 * We are exiting and our parent doesn't care. POSIX.1
1833 * defines special semantics for setting SIGCHLD to SIG_IGN
1834 * or setting the SA_NOCLDWAIT flag: we should be reaped
1835 * automatically and not left for our parent's wait4 call.
1836 * Rather than having the parent do it as a magic kind of
1837 * signal handler, we just set this to tell do_exit that we
1838 * can be cleaned up without becoming a zombie. Note that
1839 * we still call __wake_up_parent in this case, because a
1840 * blocked sys_wait4 might now return -ECHILD.
1841 *
1842 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1843 * is implementation-defined: we do (if you don't want
1844 * it, just use SIG_IGN instead).
1845 */
1846 autoreap = true;
1847 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1848 sig = 0;
1849 }
1850 if (valid_signal(sig) && sig)
1851 __group_send_sig_info(sig, &info, tsk->parent);
1852 __wake_up_parent(tsk, tsk->parent);
1853 spin_unlock_irqrestore(&psig->siglock, flags);
1854
1855 return autoreap;
1856 }
1857
1858 /**
1859 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1860 * @tsk: task reporting the state change
1861 * @for_ptracer: the notification is for ptracer
1862 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1863 *
1864 * Notify @tsk's parent that the stopped/continued state has changed. If
1865 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1866 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1867 *
1868 * CONTEXT:
1869 * Must be called with tasklist_lock at least read locked.
1870 */
1871 static void do_notify_parent_cldstop(struct task_struct *tsk,
1872 bool for_ptracer, int why)
1873 {
1874 struct kernel_siginfo info;
1875 unsigned long flags;
1876 struct task_struct *parent;
1877 struct sighand_struct *sighand;
1878 u64 utime, stime;
1879
1880 if (for_ptracer) {
1881 parent = tsk->parent;
1882 } else {
1883 tsk = tsk->group_leader;
1884 parent = tsk->real_parent;
1885 }
1886
1887 clear_siginfo(&info);
1888 info.si_signo = SIGCHLD;
1889 info.si_errno = 0;
1890 /*
1891 * see comment in do_notify_parent() about the following 4 lines
1892 */
1893 rcu_read_lock();
1894 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1895 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1896 rcu_read_unlock();
1897
1898 task_cputime(tsk, &utime, &stime);
1899 info.si_utime = nsec_to_clock_t(utime);
1900 info.si_stime = nsec_to_clock_t(stime);
1901
1902 info.si_code = why;
1903 switch (why) {
1904 case CLD_CONTINUED:
1905 info.si_status = SIGCONT;
1906 break;
1907 case CLD_STOPPED:
1908 info.si_status = tsk->signal->group_exit_code & 0x7f;
1909 break;
1910 case CLD_TRAPPED:
1911 info.si_status = tsk->exit_code & 0x7f;
1912 break;
1913 default:
1914 BUG();
1915 }
1916
1917 sighand = parent->sighand;
1918 spin_lock_irqsave(&sighand->siglock, flags);
1919 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1920 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1921 __group_send_sig_info(SIGCHLD, &info, parent);
1922 /*
1923 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1924 */
1925 __wake_up_parent(tsk, parent);
1926 spin_unlock_irqrestore(&sighand->siglock, flags);
1927 }
1928
1929 static inline bool may_ptrace_stop(void)
1930 {
1931 if (!likely(current->ptrace))
1932 return false;
1933 /*
1934 * Are we in the middle of do_coredump?
1935 * If so and our tracer is also part of the coredump stopping
1936 * is a deadlock situation, and pointless because our tracer
1937 * is dead so don't allow us to stop.
1938 * If SIGKILL was already sent before the caller unlocked
1939 * ->siglock we must see ->core_state != NULL. Otherwise it
1940 * is safe to enter schedule().
1941 *
1942 * This is almost outdated, a task with the pending SIGKILL can't
1943 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1944 * after SIGKILL was already dequeued.
1945 */
1946 if (unlikely(current->mm->core_state) &&
1947 unlikely(current->mm == current->parent->mm))
1948 return false;
1949
1950 return true;
1951 }
1952
1953 /*
1954 * Return non-zero if there is a SIGKILL that should be waking us up.
1955 * Called with the siglock held.
1956 */
1957 static bool sigkill_pending(struct task_struct *tsk)
1958 {
1959 return sigismember(&tsk->pending.signal, SIGKILL) ||
1960 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1961 }
1962
1963 /*
1964 * This must be called with current->sighand->siglock held.
1965 *
1966 * This should be the path for all ptrace stops.
1967 * We always set current->last_siginfo while stopped here.
1968 * That makes it a way to test a stopped process for
1969 * being ptrace-stopped vs being job-control-stopped.
1970 *
1971 * If we actually decide not to stop at all because the tracer
1972 * is gone, we keep current->exit_code unless clear_code.
1973 */
1974 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
1975 __releases(&current->sighand->siglock)
1976 __acquires(&current->sighand->siglock)
1977 {
1978 bool gstop_done = false;
1979
1980 if (arch_ptrace_stop_needed(exit_code, info)) {
1981 /*
1982 * The arch code has something special to do before a
1983 * ptrace stop. This is allowed to block, e.g. for faults
1984 * on user stack pages. We can't keep the siglock while
1985 * calling arch_ptrace_stop, so we must release it now.
1986 * To preserve proper semantics, we must do this before
1987 * any signal bookkeeping like checking group_stop_count.
1988 * Meanwhile, a SIGKILL could come in before we retake the
1989 * siglock. That must prevent us from sleeping in TASK_TRACED.
1990 * So after regaining the lock, we must check for SIGKILL.
1991 */
1992 spin_unlock_irq(&current->sighand->siglock);
1993 arch_ptrace_stop(exit_code, info);
1994 spin_lock_irq(&current->sighand->siglock);
1995 if (sigkill_pending(current))
1996 return;
1997 }
1998
1999 set_special_state(TASK_TRACED);
2000
2001 /*
2002 * We're committing to trapping. TRACED should be visible before
2003 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2004 * Also, transition to TRACED and updates to ->jobctl should be
2005 * atomic with respect to siglock and should be done after the arch
2006 * hook as siglock is released and regrabbed across it.
2007 *
2008 * TRACER TRACEE
2009 *
2010 * ptrace_attach()
2011 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2012 * do_wait()
2013 * set_current_state() smp_wmb();
2014 * ptrace_do_wait()
2015 * wait_task_stopped()
2016 * task_stopped_code()
2017 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2018 */
2019 smp_wmb();
2020
2021 current->last_siginfo = info;
2022 current->exit_code = exit_code;
2023
2024 /*
2025 * If @why is CLD_STOPPED, we're trapping to participate in a group
2026 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2027 * across siglock relocks since INTERRUPT was scheduled, PENDING
2028 * could be clear now. We act as if SIGCONT is received after
2029 * TASK_TRACED is entered - ignore it.
2030 */
2031 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2032 gstop_done = task_participate_group_stop(current);
2033
2034 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2035 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2036 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2037 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2038
2039 /* entering a trap, clear TRAPPING */
2040 task_clear_jobctl_trapping(current);
2041
2042 spin_unlock_irq(&current->sighand->siglock);
2043 read_lock(&tasklist_lock);
2044 if (may_ptrace_stop()) {
2045 /*
2046 * Notify parents of the stop.
2047 *
2048 * While ptraced, there are two parents - the ptracer and
2049 * the real_parent of the group_leader. The ptracer should
2050 * know about every stop while the real parent is only
2051 * interested in the completion of group stop. The states
2052 * for the two don't interact with each other. Notify
2053 * separately unless they're gonna be duplicates.
2054 */
2055 do_notify_parent_cldstop(current, true, why);
2056 if (gstop_done && ptrace_reparented(current))
2057 do_notify_parent_cldstop(current, false, why);
2058
2059 /*
2060 * Don't want to allow preemption here, because
2061 * sys_ptrace() needs this task to be inactive.
2062 *
2063 * XXX: implement read_unlock_no_resched().
2064 */
2065 preempt_disable();
2066 read_unlock(&tasklist_lock);
2067 preempt_enable_no_resched();
2068 freezable_schedule();
2069 } else {
2070 /*
2071 * By the time we got the lock, our tracer went away.
2072 * Don't drop the lock yet, another tracer may come.
2073 *
2074 * If @gstop_done, the ptracer went away between group stop
2075 * completion and here. During detach, it would have set
2076 * JOBCTL_STOP_PENDING on us and we'll re-enter
2077 * TASK_STOPPED in do_signal_stop() on return, so notifying
2078 * the real parent of the group stop completion is enough.
2079 */
2080 if (gstop_done)
2081 do_notify_parent_cldstop(current, false, why);
2082
2083 /* tasklist protects us from ptrace_freeze_traced() */
2084 __set_current_state(TASK_RUNNING);
2085 if (clear_code)
2086 current->exit_code = 0;
2087 read_unlock(&tasklist_lock);
2088 }
2089
2090 /*
2091 * We are back. Now reacquire the siglock before touching
2092 * last_siginfo, so that we are sure to have synchronized with
2093 * any signal-sending on another CPU that wants to examine it.
2094 */
2095 spin_lock_irq(&current->sighand->siglock);
2096 current->last_siginfo = NULL;
2097
2098 /* LISTENING can be set only during STOP traps, clear it */
2099 current->jobctl &= ~JOBCTL_LISTENING;
2100
2101 /*
2102 * Queued signals ignored us while we were stopped for tracing.
2103 * So check for any that we should take before resuming user mode.
2104 * This sets TIF_SIGPENDING, but never clears it.
2105 */
2106 recalc_sigpending_tsk(current);
2107 }
2108
2109 static void ptrace_do_notify(int signr, int exit_code, int why)
2110 {
2111 kernel_siginfo_t info;
2112
2113 clear_siginfo(&info);
2114 info.si_signo = signr;
2115 info.si_code = exit_code;
2116 info.si_pid = task_pid_vnr(current);
2117 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2118
2119 /* Let the debugger run. */
2120 ptrace_stop(exit_code, why, 1, &info);
2121 }
2122
2123 void ptrace_notify(int exit_code)
2124 {
2125 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2126 if (unlikely(current->task_works))
2127 task_work_run();
2128
2129 spin_lock_irq(&current->sighand->siglock);
2130 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2131 spin_unlock_irq(&current->sighand->siglock);
2132 }
2133
2134 /**
2135 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2136 * @signr: signr causing group stop if initiating
2137 *
2138 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2139 * and participate in it. If already set, participate in the existing
2140 * group stop. If participated in a group stop (and thus slept), %true is
2141 * returned with siglock released.
2142 *
2143 * If ptraced, this function doesn't handle stop itself. Instead,
2144 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2145 * untouched. The caller must ensure that INTERRUPT trap handling takes
2146 * places afterwards.
2147 *
2148 * CONTEXT:
2149 * Must be called with @current->sighand->siglock held, which is released
2150 * on %true return.
2151 *
2152 * RETURNS:
2153 * %false if group stop is already cancelled or ptrace trap is scheduled.
2154 * %true if participated in group stop.
2155 */
2156 static bool do_signal_stop(int signr)
2157 __releases(&current->sighand->siglock)
2158 {
2159 struct signal_struct *sig = current->signal;
2160
2161 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2162 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2163 struct task_struct *t;
2164
2165 /* signr will be recorded in task->jobctl for retries */
2166 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2167
2168 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2169 unlikely(signal_group_exit(sig)))
2170 return false;
2171 /*
2172 * There is no group stop already in progress. We must
2173 * initiate one now.
2174 *
2175 * While ptraced, a task may be resumed while group stop is
2176 * still in effect and then receive a stop signal and
2177 * initiate another group stop. This deviates from the
2178 * usual behavior as two consecutive stop signals can't
2179 * cause two group stops when !ptraced. That is why we
2180 * also check !task_is_stopped(t) below.
2181 *
2182 * The condition can be distinguished by testing whether
2183 * SIGNAL_STOP_STOPPED is already set. Don't generate
2184 * group_exit_code in such case.
2185 *
2186 * This is not necessary for SIGNAL_STOP_CONTINUED because
2187 * an intervening stop signal is required to cause two
2188 * continued events regardless of ptrace.
2189 */
2190 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2191 sig->group_exit_code = signr;
2192
2193 sig->group_stop_count = 0;
2194
2195 if (task_set_jobctl_pending(current, signr | gstop))
2196 sig->group_stop_count++;
2197
2198 t = current;
2199 while_each_thread(current, t) {
2200 /*
2201 * Setting state to TASK_STOPPED for a group
2202 * stop is always done with the siglock held,
2203 * so this check has no races.
2204 */
2205 if (!task_is_stopped(t) &&
2206 task_set_jobctl_pending(t, signr | gstop)) {
2207 sig->group_stop_count++;
2208 if (likely(!(t->ptrace & PT_SEIZED)))
2209 signal_wake_up(t, 0);
2210 else
2211 ptrace_trap_notify(t);
2212 }
2213 }
2214 }
2215
2216 if (likely(!current->ptrace)) {
2217 int notify = 0;
2218
2219 /*
2220 * If there are no other threads in the group, or if there
2221 * is a group stop in progress and we are the last to stop,
2222 * report to the parent.
2223 */
2224 if (task_participate_group_stop(current))
2225 notify = CLD_STOPPED;
2226
2227 set_special_state(TASK_STOPPED);
2228 spin_unlock_irq(&current->sighand->siglock);
2229
2230 /*
2231 * Notify the parent of the group stop completion. Because
2232 * we're not holding either the siglock or tasklist_lock
2233 * here, ptracer may attach inbetween; however, this is for
2234 * group stop and should always be delivered to the real
2235 * parent of the group leader. The new ptracer will get
2236 * its notification when this task transitions into
2237 * TASK_TRACED.
2238 */
2239 if (notify) {
2240 read_lock(&tasklist_lock);
2241 do_notify_parent_cldstop(current, false, notify);
2242 read_unlock(&tasklist_lock);
2243 }
2244
2245 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2246 freezable_schedule();
2247 return true;
2248 } else {
2249 /*
2250 * While ptraced, group stop is handled by STOP trap.
2251 * Schedule it and let the caller deal with it.
2252 */
2253 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2254 return false;
2255 }
2256 }
2257
2258 /**
2259 * do_jobctl_trap - take care of ptrace jobctl traps
2260 *
2261 * When PT_SEIZED, it's used for both group stop and explicit
2262 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2263 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2264 * the stop signal; otherwise, %SIGTRAP.
2265 *
2266 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2267 * number as exit_code and no siginfo.
2268 *
2269 * CONTEXT:
2270 * Must be called with @current->sighand->siglock held, which may be
2271 * released and re-acquired before returning with intervening sleep.
2272 */
2273 static void do_jobctl_trap(void)
2274 {
2275 struct signal_struct *signal = current->signal;
2276 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2277
2278 if (current->ptrace & PT_SEIZED) {
2279 if (!signal->group_stop_count &&
2280 !(signal->flags & SIGNAL_STOP_STOPPED))
2281 signr = SIGTRAP;
2282 WARN_ON_ONCE(!signr);
2283 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2284 CLD_STOPPED);
2285 } else {
2286 WARN_ON_ONCE(!signr);
2287 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2288 current->exit_code = 0;
2289 }
2290 }
2291
2292 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2293 {
2294 /*
2295 * We do not check sig_kernel_stop(signr) but set this marker
2296 * unconditionally because we do not know whether debugger will
2297 * change signr. This flag has no meaning unless we are going
2298 * to stop after return from ptrace_stop(). In this case it will
2299 * be checked in do_signal_stop(), we should only stop if it was
2300 * not cleared by SIGCONT while we were sleeping. See also the
2301 * comment in dequeue_signal().
2302 */
2303 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2304 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2305
2306 /* We're back. Did the debugger cancel the sig? */
2307 signr = current->exit_code;
2308 if (signr == 0)
2309 return signr;
2310
2311 current->exit_code = 0;
2312
2313 /*
2314 * Update the siginfo structure if the signal has
2315 * changed. If the debugger wanted something
2316 * specific in the siginfo structure then it should
2317 * have updated *info via PTRACE_SETSIGINFO.
2318 */
2319 if (signr != info->si_signo) {
2320 clear_siginfo(info);
2321 info->si_signo = signr;
2322 info->si_errno = 0;
2323 info->si_code = SI_USER;
2324 rcu_read_lock();
2325 info->si_pid = task_pid_vnr(current->parent);
2326 info->si_uid = from_kuid_munged(current_user_ns(),
2327 task_uid(current->parent));
2328 rcu_read_unlock();
2329 }
2330
2331 /* If the (new) signal is now blocked, requeue it. */
2332 if (sigismember(&current->blocked, signr)) {
2333 send_signal(signr, info, current, PIDTYPE_PID);
2334 signr = 0;
2335 }
2336
2337 return signr;
2338 }
2339
2340 bool get_signal(struct ksignal *ksig)
2341 {
2342 struct sighand_struct *sighand = current->sighand;
2343 struct signal_struct *signal = current->signal;
2344 int signr;
2345
2346 if (unlikely(current->task_works))
2347 task_work_run();
2348
2349 if (unlikely(uprobe_deny_signal()))
2350 return false;
2351
2352 /*
2353 * Do this once, we can't return to user-mode if freezing() == T.
2354 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2355 * thus do not need another check after return.
2356 */
2357 try_to_freeze();
2358
2359 relock:
2360 spin_lock_irq(&sighand->siglock);
2361 /*
2362 * Every stopped thread goes here after wakeup. Check to see if
2363 * we should notify the parent, prepare_signal(SIGCONT) encodes
2364 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2365 */
2366 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2367 int why;
2368
2369 if (signal->flags & SIGNAL_CLD_CONTINUED)
2370 why = CLD_CONTINUED;
2371 else
2372 why = CLD_STOPPED;
2373
2374 signal->flags &= ~SIGNAL_CLD_MASK;
2375
2376 spin_unlock_irq(&sighand->siglock);
2377
2378 /*
2379 * Notify the parent that we're continuing. This event is
2380 * always per-process and doesn't make whole lot of sense
2381 * for ptracers, who shouldn't consume the state via
2382 * wait(2) either, but, for backward compatibility, notify
2383 * the ptracer of the group leader too unless it's gonna be
2384 * a duplicate.
2385 */
2386 read_lock(&tasklist_lock);
2387 do_notify_parent_cldstop(current, false, why);
2388
2389 if (ptrace_reparented(current->group_leader))
2390 do_notify_parent_cldstop(current->group_leader,
2391 true, why);
2392 read_unlock(&tasklist_lock);
2393
2394 goto relock;
2395 }
2396
2397 for (;;) {
2398 struct k_sigaction *ka;
2399
2400 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2401 do_signal_stop(0))
2402 goto relock;
2403
2404 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2405 do_jobctl_trap();
2406 spin_unlock_irq(&sighand->siglock);
2407 goto relock;
2408 }
2409
2410 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2411
2412 if (!signr)
2413 break; /* will return 0 */
2414
2415 if (unlikely(current->ptrace) && signr != SIGKILL) {
2416 signr = ptrace_signal(signr, &ksig->info);
2417 if (!signr)
2418 continue;
2419 }
2420
2421 ka = &sighand->action[signr-1];
2422
2423 /* Trace actually delivered signals. */
2424 trace_signal_deliver(signr, &ksig->info, ka);
2425
2426 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2427 continue;
2428 if (ka->sa.sa_handler != SIG_DFL) {
2429 /* Run the handler. */
2430 ksig->ka = *ka;
2431
2432 if (ka->sa.sa_flags & SA_ONESHOT)
2433 ka->sa.sa_handler = SIG_DFL;
2434
2435 break; /* will return non-zero "signr" value */
2436 }
2437
2438 /*
2439 * Now we are doing the default action for this signal.
2440 */
2441 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2442 continue;
2443
2444 /*
2445 * Global init gets no signals it doesn't want.
2446 * Container-init gets no signals it doesn't want from same
2447 * container.
2448 *
2449 * Note that if global/container-init sees a sig_kernel_only()
2450 * signal here, the signal must have been generated internally
2451 * or must have come from an ancestor namespace. In either
2452 * case, the signal cannot be dropped.
2453 */
2454 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2455 !sig_kernel_only(signr))
2456 continue;
2457
2458 if (sig_kernel_stop(signr)) {
2459 /*
2460 * The default action is to stop all threads in
2461 * the thread group. The job control signals
2462 * do nothing in an orphaned pgrp, but SIGSTOP
2463 * always works. Note that siglock needs to be
2464 * dropped during the call to is_orphaned_pgrp()
2465 * because of lock ordering with tasklist_lock.
2466 * This allows an intervening SIGCONT to be posted.
2467 * We need to check for that and bail out if necessary.
2468 */
2469 if (signr != SIGSTOP) {
2470 spin_unlock_irq(&sighand->siglock);
2471
2472 /* signals can be posted during this window */
2473
2474 if (is_current_pgrp_orphaned())
2475 goto relock;
2476
2477 spin_lock_irq(&sighand->siglock);
2478 }
2479
2480 if (likely(do_signal_stop(ksig->info.si_signo))) {
2481 /* It released the siglock. */
2482 goto relock;
2483 }
2484
2485 /*
2486 * We didn't actually stop, due to a race
2487 * with SIGCONT or something like that.
2488 */
2489 continue;
2490 }
2491
2492 spin_unlock_irq(&sighand->siglock);
2493
2494 /*
2495 * Anything else is fatal, maybe with a core dump.
2496 */
2497 current->flags |= PF_SIGNALED;
2498
2499 if (sig_kernel_coredump(signr)) {
2500 if (print_fatal_signals)
2501 print_fatal_signal(ksig->info.si_signo);
2502 proc_coredump_connector(current);
2503 /*
2504 * If it was able to dump core, this kills all
2505 * other threads in the group and synchronizes with
2506 * their demise. If we lost the race with another
2507 * thread getting here, it set group_exit_code
2508 * first and our do_group_exit call below will use
2509 * that value and ignore the one we pass it.
2510 */
2511 do_coredump(&ksig->info);
2512 }
2513
2514 /*
2515 * Death signals, no core dump.
2516 */
2517 do_group_exit(ksig->info.si_signo);
2518 /* NOTREACHED */
2519 }
2520 spin_unlock_irq(&sighand->siglock);
2521
2522 ksig->sig = signr;
2523 return ksig->sig > 0;
2524 }
2525
2526 /**
2527 * signal_delivered -
2528 * @ksig: kernel signal struct
2529 * @stepping: nonzero if debugger single-step or block-step in use
2530 *
2531 * This function should be called when a signal has successfully been
2532 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2533 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2534 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2535 */
2536 static void signal_delivered(struct ksignal *ksig, int stepping)
2537 {
2538 sigset_t blocked;
2539
2540 /* A signal was successfully delivered, and the
2541 saved sigmask was stored on the signal frame,
2542 and will be restored by sigreturn. So we can
2543 simply clear the restore sigmask flag. */
2544 clear_restore_sigmask();
2545
2546 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2547 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2548 sigaddset(&blocked, ksig->sig);
2549 set_current_blocked(&blocked);
2550 tracehook_signal_handler(stepping);
2551 }
2552
2553 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2554 {
2555 if (failed)
2556 force_sigsegv(ksig->sig, current);
2557 else
2558 signal_delivered(ksig, stepping);
2559 }
2560
2561 /*
2562 * It could be that complete_signal() picked us to notify about the
2563 * group-wide signal. Other threads should be notified now to take
2564 * the shared signals in @which since we will not.
2565 */
2566 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2567 {
2568 sigset_t retarget;
2569 struct task_struct *t;
2570
2571 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2572 if (sigisemptyset(&retarget))
2573 return;
2574
2575 t = tsk;
2576 while_each_thread(tsk, t) {
2577 if (t->flags & PF_EXITING)
2578 continue;
2579
2580 if (!has_pending_signals(&retarget, &t->blocked))
2581 continue;
2582 /* Remove the signals this thread can handle. */
2583 sigandsets(&retarget, &retarget, &t->blocked);
2584
2585 if (!signal_pending(t))
2586 signal_wake_up(t, 0);
2587
2588 if (sigisemptyset(&retarget))
2589 break;
2590 }
2591 }
2592
2593 void exit_signals(struct task_struct *tsk)
2594 {
2595 int group_stop = 0;
2596 sigset_t unblocked;
2597
2598 /*
2599 * @tsk is about to have PF_EXITING set - lock out users which
2600 * expect stable threadgroup.
2601 */
2602 cgroup_threadgroup_change_begin(tsk);
2603
2604 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2605 tsk->flags |= PF_EXITING;
2606 cgroup_threadgroup_change_end(tsk);
2607 return;
2608 }
2609
2610 spin_lock_irq(&tsk->sighand->siglock);
2611 /*
2612 * From now this task is not visible for group-wide signals,
2613 * see wants_signal(), do_signal_stop().
2614 */
2615 tsk->flags |= PF_EXITING;
2616
2617 cgroup_threadgroup_change_end(tsk);
2618
2619 if (!signal_pending(tsk))
2620 goto out;
2621
2622 unblocked = tsk->blocked;
2623 signotset(&unblocked);
2624 retarget_shared_pending(tsk, &unblocked);
2625
2626 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2627 task_participate_group_stop(tsk))
2628 group_stop = CLD_STOPPED;
2629 out:
2630 spin_unlock_irq(&tsk->sighand->siglock);
2631
2632 /*
2633 * If group stop has completed, deliver the notification. This
2634 * should always go to the real parent of the group leader.
2635 */
2636 if (unlikely(group_stop)) {
2637 read_lock(&tasklist_lock);
2638 do_notify_parent_cldstop(tsk, false, group_stop);
2639 read_unlock(&tasklist_lock);
2640 }
2641 }
2642
2643 /*
2644 * System call entry points.
2645 */
2646
2647 /**
2648 * sys_restart_syscall - restart a system call
2649 */
2650 SYSCALL_DEFINE0(restart_syscall)
2651 {
2652 struct restart_block *restart = &current->restart_block;
2653 return restart->fn(restart);
2654 }
2655
2656 long do_no_restart_syscall(struct restart_block *param)
2657 {
2658 return -EINTR;
2659 }
2660
2661 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2662 {
2663 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2664 sigset_t newblocked;
2665 /* A set of now blocked but previously unblocked signals. */
2666 sigandnsets(&newblocked, newset, &current->blocked);
2667 retarget_shared_pending(tsk, &newblocked);
2668 }
2669 tsk->blocked = *newset;
2670 recalc_sigpending();
2671 }
2672
2673 /**
2674 * set_current_blocked - change current->blocked mask
2675 * @newset: new mask
2676 *
2677 * It is wrong to change ->blocked directly, this helper should be used
2678 * to ensure the process can't miss a shared signal we are going to block.
2679 */
2680 void set_current_blocked(sigset_t *newset)
2681 {
2682 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2683 __set_current_blocked(newset);
2684 }
2685
2686 void __set_current_blocked(const sigset_t *newset)
2687 {
2688 struct task_struct *tsk = current;
2689
2690 /*
2691 * In case the signal mask hasn't changed, there is nothing we need
2692 * to do. The current->blocked shouldn't be modified by other task.
2693 */
2694 if (sigequalsets(&tsk->blocked, newset))
2695 return;
2696
2697 spin_lock_irq(&tsk->sighand->siglock);
2698 __set_task_blocked(tsk, newset);
2699 spin_unlock_irq(&tsk->sighand->siglock);
2700 }
2701
2702 /*
2703 * This is also useful for kernel threads that want to temporarily
2704 * (or permanently) block certain signals.
2705 *
2706 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2707 * interface happily blocks "unblockable" signals like SIGKILL
2708 * and friends.
2709 */
2710 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2711 {
2712 struct task_struct *tsk = current;
2713 sigset_t newset;
2714
2715 /* Lockless, only current can change ->blocked, never from irq */
2716 if (oldset)
2717 *oldset = tsk->blocked;
2718
2719 switch (how) {
2720 case SIG_BLOCK:
2721 sigorsets(&newset, &tsk->blocked, set);
2722 break;
2723 case SIG_UNBLOCK:
2724 sigandnsets(&newset, &tsk->blocked, set);
2725 break;
2726 case SIG_SETMASK:
2727 newset = *set;
2728 break;
2729 default:
2730 return -EINVAL;
2731 }
2732
2733 __set_current_blocked(&newset);
2734 return 0;
2735 }
2736 EXPORT_SYMBOL(sigprocmask);
2737
2738 /**
2739 * sys_rt_sigprocmask - change the list of currently blocked signals
2740 * @how: whether to add, remove, or set signals
2741 * @nset: stores pending signals
2742 * @oset: previous value of signal mask if non-null
2743 * @sigsetsize: size of sigset_t type
2744 */
2745 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2746 sigset_t __user *, oset, size_t, sigsetsize)
2747 {
2748 sigset_t old_set, new_set;
2749 int error;
2750
2751 /* XXX: Don't preclude handling different sized sigset_t's. */
2752 if (sigsetsize != sizeof(sigset_t))
2753 return -EINVAL;
2754
2755 old_set = current->blocked;
2756
2757 if (nset) {
2758 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2759 return -EFAULT;
2760 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2761
2762 error = sigprocmask(how, &new_set, NULL);
2763 if (error)
2764 return error;
2765 }
2766
2767 if (oset) {
2768 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2769 return -EFAULT;
2770 }
2771
2772 return 0;
2773 }
2774
2775 #ifdef CONFIG_COMPAT
2776 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2777 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2778 {
2779 sigset_t old_set = current->blocked;
2780
2781 /* XXX: Don't preclude handling different sized sigset_t's. */
2782 if (sigsetsize != sizeof(sigset_t))
2783 return -EINVAL;
2784
2785 if (nset) {
2786 sigset_t new_set;
2787 int error;
2788 if (get_compat_sigset(&new_set, nset))
2789 return -EFAULT;
2790 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2791
2792 error = sigprocmask(how, &new_set, NULL);
2793 if (error)
2794 return error;
2795 }
2796 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2797 }
2798 #endif
2799
2800 static void do_sigpending(sigset_t *set)
2801 {
2802 spin_lock_irq(&current->sighand->siglock);
2803 sigorsets(set, &current->pending.signal,
2804 &current->signal->shared_pending.signal);
2805 spin_unlock_irq(&current->sighand->siglock);
2806
2807 /* Outside the lock because only this thread touches it. */
2808 sigandsets(set, &current->blocked, set);
2809 }
2810
2811 /**
2812 * sys_rt_sigpending - examine a pending signal that has been raised
2813 * while blocked
2814 * @uset: stores pending signals
2815 * @sigsetsize: size of sigset_t type or larger
2816 */
2817 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2818 {
2819 sigset_t set;
2820
2821 if (sigsetsize > sizeof(*uset))
2822 return -EINVAL;
2823
2824 do_sigpending(&set);
2825
2826 if (copy_to_user(uset, &set, sigsetsize))
2827 return -EFAULT;
2828
2829 return 0;
2830 }
2831
2832 #ifdef CONFIG_COMPAT
2833 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2834 compat_size_t, sigsetsize)
2835 {
2836 sigset_t set;
2837
2838 if (sigsetsize > sizeof(*uset))
2839 return -EINVAL;
2840
2841 do_sigpending(&set);
2842
2843 return put_compat_sigset(uset, &set, sigsetsize);
2844 }
2845 #endif
2846
2847 static const struct {
2848 unsigned char limit, layout;
2849 } sig_sicodes[] = {
2850 [SIGILL] = { NSIGILL, SIL_FAULT },
2851 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2852 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2853 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2854 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2855 #if defined(SIGEMT)
2856 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2857 #endif
2858 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2859 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2860 [SIGSYS] = { NSIGSYS, SIL_SYS },
2861 };
2862
2863 static bool known_siginfo_layout(unsigned sig, int si_code)
2864 {
2865 if (si_code == SI_KERNEL)
2866 return true;
2867 else if ((si_code > SI_USER)) {
2868 if (sig_specific_sicodes(sig)) {
2869 if (si_code <= sig_sicodes[sig].limit)
2870 return true;
2871 }
2872 else if (si_code <= NSIGPOLL)
2873 return true;
2874 }
2875 else if (si_code >= SI_DETHREAD)
2876 return true;
2877 else if (si_code == SI_ASYNCNL)
2878 return true;
2879 return false;
2880 }
2881
2882 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
2883 {
2884 enum siginfo_layout layout = SIL_KILL;
2885 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2886 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
2887 (si_code <= sig_sicodes[sig].limit)) {
2888 layout = sig_sicodes[sig].layout;
2889 /* Handle the exceptions */
2890 if ((sig == SIGBUS) &&
2891 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
2892 layout = SIL_FAULT_MCEERR;
2893 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
2894 layout = SIL_FAULT_BNDERR;
2895 #ifdef SEGV_PKUERR
2896 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
2897 layout = SIL_FAULT_PKUERR;
2898 #endif
2899 }
2900 else if (si_code <= NSIGPOLL)
2901 layout = SIL_POLL;
2902 } else {
2903 if (si_code == SI_TIMER)
2904 layout = SIL_TIMER;
2905 else if (si_code == SI_SIGIO)
2906 layout = SIL_POLL;
2907 else if (si_code < 0)
2908 layout = SIL_RT;
2909 }
2910 return layout;
2911 }
2912
2913 static inline char __user *si_expansion(const siginfo_t __user *info)
2914 {
2915 return ((char __user *)info) + sizeof(struct kernel_siginfo);
2916 }
2917
2918 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
2919 {
2920 char __user *expansion = si_expansion(to);
2921 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
2922 return -EFAULT;
2923 if (clear_user(expansion, SI_EXPANSION_SIZE))
2924 return -EFAULT;
2925 return 0;
2926 }
2927
2928 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
2929 const siginfo_t __user *from)
2930 {
2931 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
2932 char __user *expansion = si_expansion(from);
2933 char buf[SI_EXPANSION_SIZE];
2934 int i;
2935 /*
2936 * An unknown si_code might need more than
2937 * sizeof(struct kernel_siginfo) bytes. Verify all of the
2938 * extra bytes are 0. This guarantees copy_siginfo_to_user
2939 * will return this data to userspace exactly.
2940 */
2941 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
2942 return -EFAULT;
2943 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
2944 if (buf[i] != 0)
2945 return -E2BIG;
2946 }
2947 }
2948 return 0;
2949 }
2950
2951 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
2952 const siginfo_t __user *from)
2953 {
2954 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
2955 return -EFAULT;
2956 to->si_signo = signo;
2957 return post_copy_siginfo_from_user(to, from);
2958 }
2959
2960 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
2961 {
2962 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
2963 return -EFAULT;
2964 return post_copy_siginfo_from_user(to, from);
2965 }
2966
2967 #ifdef CONFIG_COMPAT
2968 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2969 const struct kernel_siginfo *from)
2970 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2971 {
2972 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2973 }
2974 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2975 const struct kernel_siginfo *from, bool x32_ABI)
2976 #endif
2977 {
2978 struct compat_siginfo new;
2979 memset(&new, 0, sizeof(new));
2980
2981 new.si_signo = from->si_signo;
2982 new.si_errno = from->si_errno;
2983 new.si_code = from->si_code;
2984 switch(siginfo_layout(from->si_signo, from->si_code)) {
2985 case SIL_KILL:
2986 new.si_pid = from->si_pid;
2987 new.si_uid = from->si_uid;
2988 break;
2989 case SIL_TIMER:
2990 new.si_tid = from->si_tid;
2991 new.si_overrun = from->si_overrun;
2992 new.si_int = from->si_int;
2993 break;
2994 case SIL_POLL:
2995 new.si_band = from->si_band;
2996 new.si_fd = from->si_fd;
2997 break;
2998 case SIL_FAULT:
2999 new.si_addr = ptr_to_compat(from->si_addr);
3000 #ifdef __ARCH_SI_TRAPNO
3001 new.si_trapno = from->si_trapno;
3002 #endif
3003 break;
3004 case SIL_FAULT_MCEERR:
3005 new.si_addr = ptr_to_compat(from->si_addr);
3006 #ifdef __ARCH_SI_TRAPNO
3007 new.si_trapno = from->si_trapno;
3008 #endif
3009 new.si_addr_lsb = from->si_addr_lsb;
3010 break;
3011 case SIL_FAULT_BNDERR:
3012 new.si_addr = ptr_to_compat(from->si_addr);
3013 #ifdef __ARCH_SI_TRAPNO
3014 new.si_trapno = from->si_trapno;
3015 #endif
3016 new.si_lower = ptr_to_compat(from->si_lower);
3017 new.si_upper = ptr_to_compat(from->si_upper);
3018 break;
3019 case SIL_FAULT_PKUERR:
3020 new.si_addr = ptr_to_compat(from->si_addr);
3021 #ifdef __ARCH_SI_TRAPNO
3022 new.si_trapno = from->si_trapno;
3023 #endif
3024 new.si_pkey = from->si_pkey;
3025 break;
3026 case SIL_CHLD:
3027 new.si_pid = from->si_pid;
3028 new.si_uid = from->si_uid;
3029 new.si_status = from->si_status;
3030 #ifdef CONFIG_X86_X32_ABI
3031 if (x32_ABI) {
3032 new._sifields._sigchld_x32._utime = from->si_utime;
3033 new._sifields._sigchld_x32._stime = from->si_stime;
3034 } else
3035 #endif
3036 {
3037 new.si_utime = from->si_utime;
3038 new.si_stime = from->si_stime;
3039 }
3040 break;
3041 case SIL_RT:
3042 new.si_pid = from->si_pid;
3043 new.si_uid = from->si_uid;
3044 new.si_int = from->si_int;
3045 break;
3046 case SIL_SYS:
3047 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3048 new.si_syscall = from->si_syscall;
3049 new.si_arch = from->si_arch;
3050 break;
3051 }
3052
3053 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3054 return -EFAULT;
3055
3056 return 0;
3057 }
3058
3059 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3060 const struct compat_siginfo *from)
3061 {
3062 clear_siginfo(to);
3063 to->si_signo = from->si_signo;
3064 to->si_errno = from->si_errno;
3065 to->si_code = from->si_code;
3066 switch(siginfo_layout(from->si_signo, from->si_code)) {
3067 case SIL_KILL:
3068 to->si_pid = from->si_pid;
3069 to->si_uid = from->si_uid;
3070 break;
3071 case SIL_TIMER:
3072 to->si_tid = from->si_tid;
3073 to->si_overrun = from->si_overrun;
3074 to->si_int = from->si_int;
3075 break;
3076 case SIL_POLL:
3077 to->si_band = from->si_band;
3078 to->si_fd = from->si_fd;
3079 break;
3080 case SIL_FAULT:
3081 to->si_addr = compat_ptr(from->si_addr);
3082 #ifdef __ARCH_SI_TRAPNO
3083 to->si_trapno = from->si_trapno;
3084 #endif
3085 break;
3086 case SIL_FAULT_MCEERR:
3087 to->si_addr = compat_ptr(from->si_addr);
3088 #ifdef __ARCH_SI_TRAPNO
3089 to->si_trapno = from->si_trapno;
3090 #endif
3091 to->si_addr_lsb = from->si_addr_lsb;
3092 break;
3093 case SIL_FAULT_BNDERR:
3094 to->si_addr = compat_ptr(from->si_addr);
3095 #ifdef __ARCH_SI_TRAPNO
3096 to->si_trapno = from->si_trapno;
3097 #endif
3098 to->si_lower = compat_ptr(from->si_lower);
3099 to->si_upper = compat_ptr(from->si_upper);
3100 break;
3101 case SIL_FAULT_PKUERR:
3102 to->si_addr = compat_ptr(from->si_addr);
3103 #ifdef __ARCH_SI_TRAPNO
3104 to->si_trapno = from->si_trapno;
3105 #endif
3106 to->si_pkey = from->si_pkey;
3107 break;
3108 case SIL_CHLD:
3109 to->si_pid = from->si_pid;
3110 to->si_uid = from->si_uid;
3111 to->si_status = from->si_status;
3112 #ifdef CONFIG_X86_X32_ABI
3113 if (in_x32_syscall()) {
3114 to->si_utime = from->_sifields._sigchld_x32._utime;
3115 to->si_stime = from->_sifields._sigchld_x32._stime;
3116 } else
3117 #endif
3118 {
3119 to->si_utime = from->si_utime;
3120 to->si_stime = from->si_stime;
3121 }
3122 break;
3123 case SIL_RT:
3124 to->si_pid = from->si_pid;
3125 to->si_uid = from->si_uid;
3126 to->si_int = from->si_int;
3127 break;
3128 case SIL_SYS:
3129 to->si_call_addr = compat_ptr(from->si_call_addr);
3130 to->si_syscall = from->si_syscall;
3131 to->si_arch = from->si_arch;
3132 break;
3133 }
3134 return 0;
3135 }
3136
3137 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3138 const struct compat_siginfo __user *ufrom)
3139 {
3140 struct compat_siginfo from;
3141
3142 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3143 return -EFAULT;
3144
3145 from.si_signo = signo;
3146 return post_copy_siginfo_from_user32(to, &from);
3147 }
3148
3149 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3150 const struct compat_siginfo __user *ufrom)
3151 {
3152 struct compat_siginfo from;
3153
3154 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3155 return -EFAULT;
3156
3157 return post_copy_siginfo_from_user32(to, &from);
3158 }
3159 #endif /* CONFIG_COMPAT */
3160
3161 /**
3162 * do_sigtimedwait - wait for queued signals specified in @which
3163 * @which: queued signals to wait for
3164 * @info: if non-null, the signal's siginfo is returned here
3165 * @ts: upper bound on process time suspension
3166 */
3167 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3168 const struct timespec64 *ts)
3169 {
3170 ktime_t *to = NULL, timeout = KTIME_MAX;
3171 struct task_struct *tsk = current;
3172 sigset_t mask = *which;
3173 int sig, ret = 0;
3174
3175 if (ts) {
3176 if (!timespec64_valid(ts))
3177 return -EINVAL;
3178 timeout = timespec64_to_ktime(*ts);
3179 to = &timeout;
3180 }
3181
3182 /*
3183 * Invert the set of allowed signals to get those we want to block.
3184 */
3185 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3186 signotset(&mask);
3187
3188 spin_lock_irq(&tsk->sighand->siglock);
3189 sig = dequeue_signal(tsk, &mask, info);
3190 if (!sig && timeout) {
3191 /*
3192 * None ready, temporarily unblock those we're interested
3193 * while we are sleeping in so that we'll be awakened when
3194 * they arrive. Unblocking is always fine, we can avoid
3195 * set_current_blocked().
3196 */
3197 tsk->real_blocked = tsk->blocked;
3198 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3199 recalc_sigpending();
3200 spin_unlock_irq(&tsk->sighand->siglock);
3201
3202 __set_current_state(TASK_INTERRUPTIBLE);
3203 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3204 HRTIMER_MODE_REL);
3205 spin_lock_irq(&tsk->sighand->siglock);
3206 __set_task_blocked(tsk, &tsk->real_blocked);
3207 sigemptyset(&tsk->real_blocked);
3208 sig = dequeue_signal(tsk, &mask, info);
3209 }
3210 spin_unlock_irq(&tsk->sighand->siglock);
3211
3212 if (sig)
3213 return sig;
3214 return ret ? -EINTR : -EAGAIN;
3215 }
3216
3217 /**
3218 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3219 * in @uthese
3220 * @uthese: queued signals to wait for
3221 * @uinfo: if non-null, the signal's siginfo is returned here
3222 * @uts: upper bound on process time suspension
3223 * @sigsetsize: size of sigset_t type
3224 */
3225 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3226 siginfo_t __user *, uinfo,
3227 const struct __kernel_timespec __user *, uts,
3228 size_t, sigsetsize)
3229 {
3230 sigset_t these;
3231 struct timespec64 ts;
3232 kernel_siginfo_t info;
3233 int ret;
3234
3235 /* XXX: Don't preclude handling different sized sigset_t's. */
3236 if (sigsetsize != sizeof(sigset_t))
3237 return -EINVAL;
3238
3239 if (copy_from_user(&these, uthese, sizeof(these)))
3240 return -EFAULT;
3241
3242 if (uts) {
3243 if (get_timespec64(&ts, uts))
3244 return -EFAULT;
3245 }
3246
3247 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3248
3249 if (ret > 0 && uinfo) {
3250 if (copy_siginfo_to_user(uinfo, &info))
3251 ret = -EFAULT;
3252 }
3253
3254 return ret;
3255 }
3256
3257 #ifdef CONFIG_COMPAT
3258 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3259 struct compat_siginfo __user *, uinfo,
3260 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3261 {
3262 sigset_t s;
3263 struct timespec64 t;
3264 kernel_siginfo_t info;
3265 long ret;
3266
3267 if (sigsetsize != sizeof(sigset_t))
3268 return -EINVAL;
3269
3270 if (get_compat_sigset(&s, uthese))
3271 return -EFAULT;
3272
3273 if (uts) {
3274 if (get_old_timespec32(&t, uts))
3275 return -EFAULT;
3276 }
3277
3278 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3279
3280 if (ret > 0 && uinfo) {
3281 if (copy_siginfo_to_user32(uinfo, &info))
3282 ret = -EFAULT;
3283 }
3284
3285 return ret;
3286 }
3287 #endif
3288
3289 /**
3290 * sys_kill - send a signal to a process
3291 * @pid: the PID of the process
3292 * @sig: signal to be sent
3293 */
3294 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3295 {
3296 struct kernel_siginfo info;
3297
3298 clear_siginfo(&info);
3299 info.si_signo = sig;
3300 info.si_errno = 0;
3301 info.si_code = SI_USER;
3302 info.si_pid = task_tgid_vnr(current);
3303 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3304
3305 return kill_something_info(sig, &info, pid);
3306 }
3307
3308 static int
3309 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3310 {
3311 struct task_struct *p;
3312 int error = -ESRCH;
3313
3314 rcu_read_lock();
3315 p = find_task_by_vpid(pid);
3316 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3317 error = check_kill_permission(sig, info, p);
3318 /*
3319 * The null signal is a permissions and process existence
3320 * probe. No signal is actually delivered.
3321 */
3322 if (!error && sig) {
3323 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3324 /*
3325 * If lock_task_sighand() failed we pretend the task
3326 * dies after receiving the signal. The window is tiny,
3327 * and the signal is private anyway.
3328 */
3329 if (unlikely(error == -ESRCH))
3330 error = 0;
3331 }
3332 }
3333 rcu_read_unlock();
3334
3335 return error;
3336 }
3337
3338 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3339 {
3340 struct kernel_siginfo info;
3341
3342 clear_siginfo(&info);
3343 info.si_signo = sig;
3344 info.si_errno = 0;
3345 info.si_code = SI_TKILL;
3346 info.si_pid = task_tgid_vnr(current);
3347 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3348
3349 return do_send_specific(tgid, pid, sig, &info);
3350 }
3351
3352 /**
3353 * sys_tgkill - send signal to one specific thread
3354 * @tgid: the thread group ID of the thread
3355 * @pid: the PID of the thread
3356 * @sig: signal to be sent
3357 *
3358 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3359 * exists but it's not belonging to the target process anymore. This
3360 * method solves the problem of threads exiting and PIDs getting reused.
3361 */
3362 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3363 {
3364 /* This is only valid for single tasks */
3365 if (pid <= 0 || tgid <= 0)
3366 return -EINVAL;
3367
3368 return do_tkill(tgid, pid, sig);
3369 }
3370
3371 /**
3372 * sys_tkill - send signal to one specific task
3373 * @pid: the PID of the task
3374 * @sig: signal to be sent
3375 *
3376 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3377 */
3378 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3379 {
3380 /* This is only valid for single tasks */
3381 if (pid <= 0)
3382 return -EINVAL;
3383
3384 return do_tkill(0, pid, sig);
3385 }
3386
3387 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3388 {
3389 /* Not even root can pretend to send signals from the kernel.
3390 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3391 */
3392 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3393 (task_pid_vnr(current) != pid))
3394 return -EPERM;
3395
3396 /* POSIX.1b doesn't mention process groups. */
3397 return kill_proc_info(sig, info, pid);
3398 }
3399
3400 /**
3401 * sys_rt_sigqueueinfo - send signal information to a signal
3402 * @pid: the PID of the thread
3403 * @sig: signal to be sent
3404 * @uinfo: signal info to be sent
3405 */
3406 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3407 siginfo_t __user *, uinfo)
3408 {
3409 kernel_siginfo_t info;
3410 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3411 if (unlikely(ret))
3412 return ret;
3413 return do_rt_sigqueueinfo(pid, sig, &info);
3414 }
3415
3416 #ifdef CONFIG_COMPAT
3417 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3418 compat_pid_t, pid,
3419 int, sig,
3420 struct compat_siginfo __user *, uinfo)
3421 {
3422 kernel_siginfo_t info;
3423 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3424 if (unlikely(ret))
3425 return ret;
3426 return do_rt_sigqueueinfo(pid, sig, &info);
3427 }
3428 #endif
3429
3430 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3431 {
3432 /* This is only valid for single tasks */
3433 if (pid <= 0 || tgid <= 0)
3434 return -EINVAL;
3435
3436 /* Not even root can pretend to send signals from the kernel.
3437 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3438 */
3439 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3440 (task_pid_vnr(current) != pid))
3441 return -EPERM;
3442
3443 return do_send_specific(tgid, pid, sig, info);
3444 }
3445
3446 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3447 siginfo_t __user *, uinfo)
3448 {
3449 kernel_siginfo_t info;
3450 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3451 if (unlikely(ret))
3452 return ret;
3453 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3454 }
3455
3456 #ifdef CONFIG_COMPAT
3457 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3458 compat_pid_t, tgid,
3459 compat_pid_t, pid,
3460 int, sig,
3461 struct compat_siginfo __user *, uinfo)
3462 {
3463 kernel_siginfo_t info;
3464 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3465 if (unlikely(ret))
3466 return ret;
3467 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3468 }
3469 #endif
3470
3471 /*
3472 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3473 */
3474 void kernel_sigaction(int sig, __sighandler_t action)
3475 {
3476 spin_lock_irq(&current->sighand->siglock);
3477 current->sighand->action[sig - 1].sa.sa_handler = action;
3478 if (action == SIG_IGN) {
3479 sigset_t mask;
3480
3481 sigemptyset(&mask);
3482 sigaddset(&mask, sig);
3483
3484 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3485 flush_sigqueue_mask(&mask, &current->pending);
3486 recalc_sigpending();
3487 }
3488 spin_unlock_irq(&current->sighand->siglock);
3489 }
3490 EXPORT_SYMBOL(kernel_sigaction);
3491
3492 void __weak sigaction_compat_abi(struct k_sigaction *act,
3493 struct k_sigaction *oact)
3494 {
3495 }
3496
3497 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3498 {
3499 struct task_struct *p = current, *t;
3500 struct k_sigaction *k;
3501 sigset_t mask;
3502
3503 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3504 return -EINVAL;
3505
3506 k = &p->sighand->action[sig-1];
3507
3508 spin_lock_irq(&p->sighand->siglock);
3509 if (oact)
3510 *oact = *k;
3511
3512 sigaction_compat_abi(act, oact);
3513
3514 if (act) {
3515 sigdelsetmask(&act->sa.sa_mask,
3516 sigmask(SIGKILL) | sigmask(SIGSTOP));
3517 *k = *act;
3518 /*
3519 * POSIX 3.3.1.3:
3520 * "Setting a signal action to SIG_IGN for a signal that is
3521 * pending shall cause the pending signal to be discarded,
3522 * whether or not it is blocked."
3523 *
3524 * "Setting a signal action to SIG_DFL for a signal that is
3525 * pending and whose default action is to ignore the signal
3526 * (for example, SIGCHLD), shall cause the pending signal to
3527 * be discarded, whether or not it is blocked"
3528 */
3529 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3530 sigemptyset(&mask);
3531 sigaddset(&mask, sig);
3532 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3533 for_each_thread(p, t)
3534 flush_sigqueue_mask(&mask, &t->pending);
3535 }
3536 }
3537
3538 spin_unlock_irq(&p->sighand->siglock);
3539 return 0;
3540 }
3541
3542 static int
3543 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3544 size_t min_ss_size)
3545 {
3546 struct task_struct *t = current;
3547
3548 if (oss) {
3549 memset(oss, 0, sizeof(stack_t));
3550 oss->ss_sp = (void __user *) t->sas_ss_sp;
3551 oss->ss_size = t->sas_ss_size;
3552 oss->ss_flags = sas_ss_flags(sp) |
3553 (current->sas_ss_flags & SS_FLAG_BITS);
3554 }
3555
3556 if (ss) {
3557 void __user *ss_sp = ss->ss_sp;
3558 size_t ss_size = ss->ss_size;
3559 unsigned ss_flags = ss->ss_flags;
3560 int ss_mode;
3561
3562 if (unlikely(on_sig_stack(sp)))
3563 return -EPERM;
3564
3565 ss_mode = ss_flags & ~SS_FLAG_BITS;
3566 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3567 ss_mode != 0))
3568 return -EINVAL;
3569
3570 if (ss_mode == SS_DISABLE) {
3571 ss_size = 0;
3572 ss_sp = NULL;
3573 } else {
3574 if (unlikely(ss_size < min_ss_size))
3575 return -ENOMEM;
3576 }
3577
3578 t->sas_ss_sp = (unsigned long) ss_sp;
3579 t->sas_ss_size = ss_size;
3580 t->sas_ss_flags = ss_flags;
3581 }
3582 return 0;
3583 }
3584
3585 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3586 {
3587 stack_t new, old;
3588 int err;
3589 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3590 return -EFAULT;
3591 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3592 current_user_stack_pointer(),
3593 MINSIGSTKSZ);
3594 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3595 err = -EFAULT;
3596 return err;
3597 }
3598
3599 int restore_altstack(const stack_t __user *uss)
3600 {
3601 stack_t new;
3602 if (copy_from_user(&new, uss, sizeof(stack_t)))
3603 return -EFAULT;
3604 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3605 MINSIGSTKSZ);
3606 /* squash all but EFAULT for now */
3607 return 0;
3608 }
3609
3610 int __save_altstack(stack_t __user *uss, unsigned long sp)
3611 {
3612 struct task_struct *t = current;
3613 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3614 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3615 __put_user(t->sas_ss_size, &uss->ss_size);
3616 if (err)
3617 return err;
3618 if (t->sas_ss_flags & SS_AUTODISARM)
3619 sas_ss_reset(t);
3620 return 0;
3621 }
3622
3623 #ifdef CONFIG_COMPAT
3624 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3625 compat_stack_t __user *uoss_ptr)
3626 {
3627 stack_t uss, uoss;
3628 int ret;
3629
3630 if (uss_ptr) {
3631 compat_stack_t uss32;
3632 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3633 return -EFAULT;
3634 uss.ss_sp = compat_ptr(uss32.ss_sp);
3635 uss.ss_flags = uss32.ss_flags;
3636 uss.ss_size = uss32.ss_size;
3637 }
3638 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3639 compat_user_stack_pointer(),
3640 COMPAT_MINSIGSTKSZ);
3641 if (ret >= 0 && uoss_ptr) {
3642 compat_stack_t old;
3643 memset(&old, 0, sizeof(old));
3644 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3645 old.ss_flags = uoss.ss_flags;
3646 old.ss_size = uoss.ss_size;
3647 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3648 ret = -EFAULT;
3649 }
3650 return ret;
3651 }
3652
3653 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3654 const compat_stack_t __user *, uss_ptr,
3655 compat_stack_t __user *, uoss_ptr)
3656 {
3657 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3658 }
3659
3660 int compat_restore_altstack(const compat_stack_t __user *uss)
3661 {
3662 int err = do_compat_sigaltstack(uss, NULL);
3663 /* squash all but -EFAULT for now */
3664 return err == -EFAULT ? err : 0;
3665 }
3666
3667 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3668 {
3669 int err;
3670 struct task_struct *t = current;
3671 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3672 &uss->ss_sp) |
3673 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3674 __put_user(t->sas_ss_size, &uss->ss_size);
3675 if (err)
3676 return err;
3677 if (t->sas_ss_flags & SS_AUTODISARM)
3678 sas_ss_reset(t);
3679 return 0;
3680 }
3681 #endif
3682
3683 #ifdef __ARCH_WANT_SYS_SIGPENDING
3684
3685 /**
3686 * sys_sigpending - examine pending signals
3687 * @uset: where mask of pending signal is returned
3688 */
3689 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3690 {
3691 sigset_t set;
3692
3693 if (sizeof(old_sigset_t) > sizeof(*uset))
3694 return -EINVAL;
3695
3696 do_sigpending(&set);
3697
3698 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
3699 return -EFAULT;
3700
3701 return 0;
3702 }
3703
3704 #ifdef CONFIG_COMPAT
3705 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3706 {
3707 sigset_t set;
3708
3709 do_sigpending(&set);
3710
3711 return put_user(set.sig[0], set32);
3712 }
3713 #endif
3714
3715 #endif
3716
3717 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3718 /**
3719 * sys_sigprocmask - examine and change blocked signals
3720 * @how: whether to add, remove, or set signals
3721 * @nset: signals to add or remove (if non-null)
3722 * @oset: previous value of signal mask if non-null
3723 *
3724 * Some platforms have their own version with special arguments;
3725 * others support only sys_rt_sigprocmask.
3726 */
3727
3728 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3729 old_sigset_t __user *, oset)
3730 {
3731 old_sigset_t old_set, new_set;
3732 sigset_t new_blocked;
3733
3734 old_set = current->blocked.sig[0];
3735
3736 if (nset) {
3737 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3738 return -EFAULT;
3739
3740 new_blocked = current->blocked;
3741
3742 switch (how) {
3743 case SIG_BLOCK:
3744 sigaddsetmask(&new_blocked, new_set);
3745 break;
3746 case SIG_UNBLOCK:
3747 sigdelsetmask(&new_blocked, new_set);
3748 break;
3749 case SIG_SETMASK:
3750 new_blocked.sig[0] = new_set;
3751 break;
3752 default:
3753 return -EINVAL;
3754 }
3755
3756 set_current_blocked(&new_blocked);
3757 }
3758
3759 if (oset) {
3760 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3761 return -EFAULT;
3762 }
3763
3764 return 0;
3765 }
3766 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3767
3768 #ifndef CONFIG_ODD_RT_SIGACTION
3769 /**
3770 * sys_rt_sigaction - alter an action taken by a process
3771 * @sig: signal to be sent
3772 * @act: new sigaction
3773 * @oact: used to save the previous sigaction
3774 * @sigsetsize: size of sigset_t type
3775 */
3776 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3777 const struct sigaction __user *, act,
3778 struct sigaction __user *, oact,
3779 size_t, sigsetsize)
3780 {
3781 struct k_sigaction new_sa, old_sa;
3782 int ret;
3783
3784 /* XXX: Don't preclude handling different sized sigset_t's. */
3785 if (sigsetsize != sizeof(sigset_t))
3786 return -EINVAL;
3787
3788 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3789 return -EFAULT;
3790
3791 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3792 if (ret)
3793 return ret;
3794
3795 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3796 return -EFAULT;
3797
3798 return 0;
3799 }
3800 #ifdef CONFIG_COMPAT
3801 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3802 const struct compat_sigaction __user *, act,
3803 struct compat_sigaction __user *, oact,
3804 compat_size_t, sigsetsize)
3805 {
3806 struct k_sigaction new_ka, old_ka;
3807 #ifdef __ARCH_HAS_SA_RESTORER
3808 compat_uptr_t restorer;
3809 #endif
3810 int ret;
3811
3812 /* XXX: Don't preclude handling different sized sigset_t's. */
3813 if (sigsetsize != sizeof(compat_sigset_t))
3814 return -EINVAL;
3815
3816 if (act) {
3817 compat_uptr_t handler;
3818 ret = get_user(handler, &act->sa_handler);
3819 new_ka.sa.sa_handler = compat_ptr(handler);
3820 #ifdef __ARCH_HAS_SA_RESTORER
3821 ret |= get_user(restorer, &act->sa_restorer);
3822 new_ka.sa.sa_restorer = compat_ptr(restorer);
3823 #endif
3824 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3825 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3826 if (ret)
3827 return -EFAULT;
3828 }
3829
3830 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3831 if (!ret && oact) {
3832 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3833 &oact->sa_handler);
3834 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3835 sizeof(oact->sa_mask));
3836 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3837 #ifdef __ARCH_HAS_SA_RESTORER
3838 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3839 &oact->sa_restorer);
3840 #endif
3841 }
3842 return ret;
3843 }
3844 #endif
3845 #endif /* !CONFIG_ODD_RT_SIGACTION */
3846
3847 #ifdef CONFIG_OLD_SIGACTION
3848 SYSCALL_DEFINE3(sigaction, int, sig,
3849 const struct old_sigaction __user *, act,
3850 struct old_sigaction __user *, oact)
3851 {
3852 struct k_sigaction new_ka, old_ka;
3853 int ret;
3854
3855 if (act) {
3856 old_sigset_t mask;
3857 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3858 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3859 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3860 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3861 __get_user(mask, &act->sa_mask))
3862 return -EFAULT;
3863 #ifdef __ARCH_HAS_KA_RESTORER
3864 new_ka.ka_restorer = NULL;
3865 #endif
3866 siginitset(&new_ka.sa.sa_mask, mask);
3867 }
3868
3869 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3870
3871 if (!ret && oact) {
3872 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3873 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3874 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3875 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3876 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3877 return -EFAULT;
3878 }
3879
3880 return ret;
3881 }
3882 #endif
3883 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3884 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3885 const struct compat_old_sigaction __user *, act,
3886 struct compat_old_sigaction __user *, oact)
3887 {
3888 struct k_sigaction new_ka, old_ka;
3889 int ret;
3890 compat_old_sigset_t mask;
3891 compat_uptr_t handler, restorer;
3892
3893 if (act) {
3894 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3895 __get_user(handler, &act->sa_handler) ||
3896 __get_user(restorer, &act->sa_restorer) ||
3897 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3898 __get_user(mask, &act->sa_mask))
3899 return -EFAULT;
3900
3901 #ifdef __ARCH_HAS_KA_RESTORER
3902 new_ka.ka_restorer = NULL;
3903 #endif
3904 new_ka.sa.sa_handler = compat_ptr(handler);
3905 new_ka.sa.sa_restorer = compat_ptr(restorer);
3906 siginitset(&new_ka.sa.sa_mask, mask);
3907 }
3908
3909 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3910
3911 if (!ret && oact) {
3912 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3913 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3914 &oact->sa_handler) ||
3915 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3916 &oact->sa_restorer) ||
3917 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3918 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3919 return -EFAULT;
3920 }
3921 return ret;
3922 }
3923 #endif
3924
3925 #ifdef CONFIG_SGETMASK_SYSCALL
3926
3927 /*
3928 * For backwards compatibility. Functionality superseded by sigprocmask.
3929 */
3930 SYSCALL_DEFINE0(sgetmask)
3931 {
3932 /* SMP safe */
3933 return current->blocked.sig[0];
3934 }
3935
3936 SYSCALL_DEFINE1(ssetmask, int, newmask)
3937 {
3938 int old = current->blocked.sig[0];
3939 sigset_t newset;
3940
3941 siginitset(&newset, newmask);
3942 set_current_blocked(&newset);
3943
3944 return old;
3945 }
3946 #endif /* CONFIG_SGETMASK_SYSCALL */
3947
3948 #ifdef __ARCH_WANT_SYS_SIGNAL
3949 /*
3950 * For backwards compatibility. Functionality superseded by sigaction.
3951 */
3952 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3953 {
3954 struct k_sigaction new_sa, old_sa;
3955 int ret;
3956
3957 new_sa.sa.sa_handler = handler;
3958 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3959 sigemptyset(&new_sa.sa.sa_mask);
3960
3961 ret = do_sigaction(sig, &new_sa, &old_sa);
3962
3963 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3964 }
3965 #endif /* __ARCH_WANT_SYS_SIGNAL */
3966
3967 #ifdef __ARCH_WANT_SYS_PAUSE
3968
3969 SYSCALL_DEFINE0(pause)
3970 {
3971 while (!signal_pending(current)) {
3972 __set_current_state(TASK_INTERRUPTIBLE);
3973 schedule();
3974 }
3975 return -ERESTARTNOHAND;
3976 }
3977
3978 #endif
3979
3980 static int sigsuspend(sigset_t *set)
3981 {
3982 current->saved_sigmask = current->blocked;
3983 set_current_blocked(set);
3984
3985 while (!signal_pending(current)) {
3986 __set_current_state(TASK_INTERRUPTIBLE);
3987 schedule();
3988 }
3989 set_restore_sigmask();
3990 return -ERESTARTNOHAND;
3991 }
3992
3993 /**
3994 * sys_rt_sigsuspend - replace the signal mask for a value with the
3995 * @unewset value until a signal is received
3996 * @unewset: new signal mask value
3997 * @sigsetsize: size of sigset_t type
3998 */
3999 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4000 {
4001 sigset_t newset;
4002
4003 /* XXX: Don't preclude handling different sized sigset_t's. */
4004 if (sigsetsize != sizeof(sigset_t))
4005 return -EINVAL;
4006
4007 if (copy_from_user(&newset, unewset, sizeof(newset)))
4008 return -EFAULT;
4009 return sigsuspend(&newset);
4010 }
4011
4012 #ifdef CONFIG_COMPAT
4013 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4014 {
4015 sigset_t newset;
4016
4017 /* XXX: Don't preclude handling different sized sigset_t's. */
4018 if (sigsetsize != sizeof(sigset_t))
4019 return -EINVAL;
4020
4021 if (get_compat_sigset(&newset, unewset))
4022 return -EFAULT;
4023 return sigsuspend(&newset);
4024 }
4025 #endif
4026
4027 #ifdef CONFIG_OLD_SIGSUSPEND
4028 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4029 {
4030 sigset_t blocked;
4031 siginitset(&blocked, mask);
4032 return sigsuspend(&blocked);
4033 }
4034 #endif
4035 #ifdef CONFIG_OLD_SIGSUSPEND3
4036 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4037 {
4038 sigset_t blocked;
4039 siginitset(&blocked, mask);
4040 return sigsuspend(&blocked);
4041 }
4042 #endif
4043
4044 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4045 {
4046 return NULL;
4047 }
4048
4049 static inline void siginfo_buildtime_checks(void)
4050 {
4051 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4052
4053 /* Verify the offsets in the two siginfos match */
4054 #define CHECK_OFFSET(field) \
4055 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4056
4057 /* kill */
4058 CHECK_OFFSET(si_pid);
4059 CHECK_OFFSET(si_uid);
4060
4061 /* timer */
4062 CHECK_OFFSET(si_tid);
4063 CHECK_OFFSET(si_overrun);
4064 CHECK_OFFSET(si_value);
4065
4066 /* rt */
4067 CHECK_OFFSET(si_pid);
4068 CHECK_OFFSET(si_uid);
4069 CHECK_OFFSET(si_value);
4070
4071 /* sigchld */
4072 CHECK_OFFSET(si_pid);
4073 CHECK_OFFSET(si_uid);
4074 CHECK_OFFSET(si_status);
4075 CHECK_OFFSET(si_utime);
4076 CHECK_OFFSET(si_stime);
4077
4078 /* sigfault */
4079 CHECK_OFFSET(si_addr);
4080 CHECK_OFFSET(si_addr_lsb);
4081 CHECK_OFFSET(si_lower);
4082 CHECK_OFFSET(si_upper);
4083 CHECK_OFFSET(si_pkey);
4084
4085 /* sigpoll */
4086 CHECK_OFFSET(si_band);
4087 CHECK_OFFSET(si_fd);
4088
4089 /* sigsys */
4090 CHECK_OFFSET(si_call_addr);
4091 CHECK_OFFSET(si_syscall);
4092 CHECK_OFFSET(si_arch);
4093 #undef CHECK_OFFSET
4094 }
4095
4096 void __init signals_init(void)
4097 {
4098 siginfo_buildtime_checks();
4099
4100 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4101 }
4102
4103 #ifdef CONFIG_KGDB_KDB
4104 #include <linux/kdb.h>
4105 /*
4106 * kdb_send_sig - Allows kdb to send signals without exposing
4107 * signal internals. This function checks if the required locks are
4108 * available before calling the main signal code, to avoid kdb
4109 * deadlocks.
4110 */
4111 void kdb_send_sig(struct task_struct *t, int sig)
4112 {
4113 static struct task_struct *kdb_prev_t;
4114 int new_t, ret;
4115 if (!spin_trylock(&t->sighand->siglock)) {
4116 kdb_printf("Can't do kill command now.\n"
4117 "The sigmask lock is held somewhere else in "
4118 "kernel, try again later\n");
4119 return;
4120 }
4121 new_t = kdb_prev_t != t;
4122 kdb_prev_t = t;
4123 if (t->state != TASK_RUNNING && new_t) {
4124 spin_unlock(&t->sighand->siglock);
4125 kdb_printf("Process is not RUNNING, sending a signal from "
4126 "kdb risks deadlock\n"
4127 "on the run queue locks. "
4128 "The signal has _not_ been sent.\n"
4129 "Reissue the kill command if you want to risk "
4130 "the deadlock.\n");
4131 return;
4132 }
4133 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4134 spin_unlock(&t->sighand->siglock);
4135 if (ret)
4136 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4137 sig, t->pid);
4138 else
4139 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4140 }
4141 #endif /* CONFIG_KGDB_KDB */