]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/signal.c
bdca529f0f7b7aa23e377afca0bf9cc6d04a6473
[thirdparty/linux.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
54
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h> /* for syscall_get_* */
61
62 /*
63 * SLAB caches for signal bits.
64 */
65
66 static struct kmem_cache *sigqueue_cachep;
67
68 int print_fatal_signals __read_mostly;
69
70 static void __user *sig_handler(struct task_struct *t, int sig)
71 {
72 return t->sighand->action[sig - 1].sa.sa_handler;
73 }
74
75 static inline bool sig_handler_ignored(void __user *handler, int sig)
76 {
77 /* Is it explicitly or implicitly ignored? */
78 return handler == SIG_IGN ||
79 (handler == SIG_DFL && sig_kernel_ignore(sig));
80 }
81
82 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
83 {
84 void __user *handler;
85
86 handler = sig_handler(t, sig);
87
88 /* SIGKILL and SIGSTOP may not be sent to the global init */
89 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
90 return true;
91
92 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
93 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
94 return true;
95
96 /* Only allow kernel generated signals to this kthread */
97 if (unlikely((t->flags & PF_KTHREAD) &&
98 (handler == SIG_KTHREAD_KERNEL) && !force))
99 return true;
100
101 return sig_handler_ignored(handler, sig);
102 }
103
104 static bool sig_ignored(struct task_struct *t, int sig, bool force)
105 {
106 /*
107 * Blocked signals are never ignored, since the
108 * signal handler may change by the time it is
109 * unblocked.
110 */
111 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
112 return false;
113
114 /*
115 * Tracers may want to know about even ignored signal unless it
116 * is SIGKILL which can't be reported anyway but can be ignored
117 * by SIGNAL_UNKILLABLE task.
118 */
119 if (t->ptrace && sig != SIGKILL)
120 return false;
121
122 return sig_task_ignored(t, sig, force);
123 }
124
125 /*
126 * Re-calculate pending state from the set of locally pending
127 * signals, globally pending signals, and blocked signals.
128 */
129 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
130 {
131 unsigned long ready;
132 long i;
133
134 switch (_NSIG_WORDS) {
135 default:
136 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
137 ready |= signal->sig[i] &~ blocked->sig[i];
138 break;
139
140 case 4: ready = signal->sig[3] &~ blocked->sig[3];
141 ready |= signal->sig[2] &~ blocked->sig[2];
142 ready |= signal->sig[1] &~ blocked->sig[1];
143 ready |= signal->sig[0] &~ blocked->sig[0];
144 break;
145
146 case 2: ready = signal->sig[1] &~ blocked->sig[1];
147 ready |= signal->sig[0] &~ blocked->sig[0];
148 break;
149
150 case 1: ready = signal->sig[0] &~ blocked->sig[0];
151 }
152 return ready != 0;
153 }
154
155 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
156
157 static bool recalc_sigpending_tsk(struct task_struct *t)
158 {
159 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
160 PENDING(&t->pending, &t->blocked) ||
161 PENDING(&t->signal->shared_pending, &t->blocked) ||
162 cgroup_task_frozen(t)) {
163 set_tsk_thread_flag(t, TIF_SIGPENDING);
164 return true;
165 }
166
167 /*
168 * We must never clear the flag in another thread, or in current
169 * when it's possible the current syscall is returning -ERESTART*.
170 * So we don't clear it here, and only callers who know they should do.
171 */
172 return false;
173 }
174
175 void recalc_sigpending(void)
176 {
177 if (!recalc_sigpending_tsk(current) && !freezing(current))
178 clear_thread_flag(TIF_SIGPENDING);
179
180 }
181 EXPORT_SYMBOL(recalc_sigpending);
182
183 void calculate_sigpending(void)
184 {
185 /* Have any signals or users of TIF_SIGPENDING been delayed
186 * until after fork?
187 */
188 spin_lock_irq(&current->sighand->siglock);
189 set_tsk_thread_flag(current, TIF_SIGPENDING);
190 recalc_sigpending();
191 spin_unlock_irq(&current->sighand->siglock);
192 }
193
194 /* Given the mask, find the first available signal that should be serviced. */
195
196 #define SYNCHRONOUS_MASK \
197 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
198 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
199
200 int next_signal(struct sigpending *pending, sigset_t *mask)
201 {
202 unsigned long i, *s, *m, x;
203 int sig = 0;
204
205 s = pending->signal.sig;
206 m = mask->sig;
207
208 /*
209 * Handle the first word specially: it contains the
210 * synchronous signals that need to be dequeued first.
211 */
212 x = *s &~ *m;
213 if (x) {
214 if (x & SYNCHRONOUS_MASK)
215 x &= SYNCHRONOUS_MASK;
216 sig = ffz(~x) + 1;
217 return sig;
218 }
219
220 switch (_NSIG_WORDS) {
221 default:
222 for (i = 1; i < _NSIG_WORDS; ++i) {
223 x = *++s &~ *++m;
224 if (!x)
225 continue;
226 sig = ffz(~x) + i*_NSIG_BPW + 1;
227 break;
228 }
229 break;
230
231 case 2:
232 x = s[1] &~ m[1];
233 if (!x)
234 break;
235 sig = ffz(~x) + _NSIG_BPW + 1;
236 break;
237
238 case 1:
239 /* Nothing to do */
240 break;
241 }
242
243 return sig;
244 }
245
246 static inline void print_dropped_signal(int sig)
247 {
248 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
249
250 if (!print_fatal_signals)
251 return;
252
253 if (!__ratelimit(&ratelimit_state))
254 return;
255
256 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
257 current->comm, current->pid, sig);
258 }
259
260 /**
261 * task_set_jobctl_pending - set jobctl pending bits
262 * @task: target task
263 * @mask: pending bits to set
264 *
265 * Clear @mask from @task->jobctl. @mask must be subset of
266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
267 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
268 * cleared. If @task is already being killed or exiting, this function
269 * becomes noop.
270 *
271 * CONTEXT:
272 * Must be called with @task->sighand->siglock held.
273 *
274 * RETURNS:
275 * %true if @mask is set, %false if made noop because @task was dying.
276 */
277 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
278 {
279 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
280 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
281 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
282
283 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
284 return false;
285
286 if (mask & JOBCTL_STOP_SIGMASK)
287 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
288
289 task->jobctl |= mask;
290 return true;
291 }
292
293 /**
294 * task_clear_jobctl_trapping - clear jobctl trapping bit
295 * @task: target task
296 *
297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
298 * Clear it and wake up the ptracer. Note that we don't need any further
299 * locking. @task->siglock guarantees that @task->parent points to the
300 * ptracer.
301 *
302 * CONTEXT:
303 * Must be called with @task->sighand->siglock held.
304 */
305 void task_clear_jobctl_trapping(struct task_struct *task)
306 {
307 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
308 task->jobctl &= ~JOBCTL_TRAPPING;
309 smp_mb(); /* advised by wake_up_bit() */
310 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
311 }
312 }
313
314 /**
315 * task_clear_jobctl_pending - clear jobctl pending bits
316 * @task: target task
317 * @mask: pending bits to clear
318 *
319 * Clear @mask from @task->jobctl. @mask must be subset of
320 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
321 * STOP bits are cleared together.
322 *
323 * If clearing of @mask leaves no stop or trap pending, this function calls
324 * task_clear_jobctl_trapping().
325 *
326 * CONTEXT:
327 * Must be called with @task->sighand->siglock held.
328 */
329 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
330 {
331 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
332
333 if (mask & JOBCTL_STOP_PENDING)
334 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
335
336 task->jobctl &= ~mask;
337
338 if (!(task->jobctl & JOBCTL_PENDING_MASK))
339 task_clear_jobctl_trapping(task);
340 }
341
342 /**
343 * task_participate_group_stop - participate in a group stop
344 * @task: task participating in a group stop
345 *
346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
347 * Group stop states are cleared and the group stop count is consumed if
348 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
349 * stop, the appropriate `SIGNAL_*` flags are set.
350 *
351 * CONTEXT:
352 * Must be called with @task->sighand->siglock held.
353 *
354 * RETURNS:
355 * %true if group stop completion should be notified to the parent, %false
356 * otherwise.
357 */
358 static bool task_participate_group_stop(struct task_struct *task)
359 {
360 struct signal_struct *sig = task->signal;
361 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
362
363 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
364
365 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
366
367 if (!consume)
368 return false;
369
370 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
371 sig->group_stop_count--;
372
373 /*
374 * Tell the caller to notify completion iff we are entering into a
375 * fresh group stop. Read comment in do_signal_stop() for details.
376 */
377 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
378 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
379 return true;
380 }
381 return false;
382 }
383
384 void task_join_group_stop(struct task_struct *task)
385 {
386 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
387 struct signal_struct *sig = current->signal;
388
389 if (sig->group_stop_count) {
390 sig->group_stop_count++;
391 mask |= JOBCTL_STOP_CONSUME;
392 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
393 return;
394
395 /* Have the new thread join an on-going signal group stop */
396 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
397 }
398
399 /*
400 * allocate a new signal queue record
401 * - this may be called without locks if and only if t == current, otherwise an
402 * appropriate lock must be held to stop the target task from exiting
403 */
404 static struct sigqueue *
405 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
406 int override_rlimit, const unsigned int sigqueue_flags)
407 {
408 struct sigqueue *q = NULL;
409 struct ucounts *ucounts;
410 long sigpending;
411
412 /*
413 * Protect access to @t credentials. This can go away when all
414 * callers hold rcu read lock.
415 *
416 * NOTE! A pending signal will hold on to the user refcount,
417 * and we get/put the refcount only when the sigpending count
418 * changes from/to zero.
419 */
420 rcu_read_lock();
421 ucounts = task_ucounts(t);
422 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
423 rcu_read_unlock();
424 if (!sigpending)
425 return NULL;
426
427 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
428 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
429 } else {
430 print_dropped_signal(sig);
431 }
432
433 if (unlikely(q == NULL)) {
434 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
435 } else {
436 INIT_LIST_HEAD(&q->list);
437 q->flags = sigqueue_flags;
438 q->ucounts = ucounts;
439 }
440 return q;
441 }
442
443 static void __sigqueue_free(struct sigqueue *q)
444 {
445 if (q->flags & SIGQUEUE_PREALLOC)
446 return;
447 if (q->ucounts) {
448 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
449 q->ucounts = NULL;
450 }
451 kmem_cache_free(sigqueue_cachep, q);
452 }
453
454 void flush_sigqueue(struct sigpending *queue)
455 {
456 struct sigqueue *q;
457
458 sigemptyset(&queue->signal);
459 while (!list_empty(&queue->list)) {
460 q = list_entry(queue->list.next, struct sigqueue , list);
461 list_del_init(&q->list);
462 __sigqueue_free(q);
463 }
464 }
465
466 /*
467 * Flush all pending signals for this kthread.
468 */
469 void flush_signals(struct task_struct *t)
470 {
471 unsigned long flags;
472
473 spin_lock_irqsave(&t->sighand->siglock, flags);
474 clear_tsk_thread_flag(t, TIF_SIGPENDING);
475 flush_sigqueue(&t->pending);
476 flush_sigqueue(&t->signal->shared_pending);
477 spin_unlock_irqrestore(&t->sighand->siglock, flags);
478 }
479 EXPORT_SYMBOL(flush_signals);
480
481 #ifdef CONFIG_POSIX_TIMERS
482 static void __flush_itimer_signals(struct sigpending *pending)
483 {
484 sigset_t signal, retain;
485 struct sigqueue *q, *n;
486
487 signal = pending->signal;
488 sigemptyset(&retain);
489
490 list_for_each_entry_safe(q, n, &pending->list, list) {
491 int sig = q->info.si_signo;
492
493 if (likely(q->info.si_code != SI_TIMER)) {
494 sigaddset(&retain, sig);
495 } else {
496 sigdelset(&signal, sig);
497 list_del_init(&q->list);
498 __sigqueue_free(q);
499 }
500 }
501
502 sigorsets(&pending->signal, &signal, &retain);
503 }
504
505 void flush_itimer_signals(void)
506 {
507 struct task_struct *tsk = current;
508 unsigned long flags;
509
510 spin_lock_irqsave(&tsk->sighand->siglock, flags);
511 __flush_itimer_signals(&tsk->pending);
512 __flush_itimer_signals(&tsk->signal->shared_pending);
513 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
514 }
515 #endif
516
517 void ignore_signals(struct task_struct *t)
518 {
519 int i;
520
521 for (i = 0; i < _NSIG; ++i)
522 t->sighand->action[i].sa.sa_handler = SIG_IGN;
523
524 flush_signals(t);
525 }
526
527 /*
528 * Flush all handlers for a task.
529 */
530
531 void
532 flush_signal_handlers(struct task_struct *t, int force_default)
533 {
534 int i;
535 struct k_sigaction *ka = &t->sighand->action[0];
536 for (i = _NSIG ; i != 0 ; i--) {
537 if (force_default || ka->sa.sa_handler != SIG_IGN)
538 ka->sa.sa_handler = SIG_DFL;
539 ka->sa.sa_flags = 0;
540 #ifdef __ARCH_HAS_SA_RESTORER
541 ka->sa.sa_restorer = NULL;
542 #endif
543 sigemptyset(&ka->sa.sa_mask);
544 ka++;
545 }
546 }
547
548 bool unhandled_signal(struct task_struct *tsk, int sig)
549 {
550 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
551 if (is_global_init(tsk))
552 return true;
553
554 if (handler != SIG_IGN && handler != SIG_DFL)
555 return false;
556
557 /* If dying, we handle all new signals by ignoring them */
558 if (fatal_signal_pending(tsk))
559 return false;
560
561 /* if ptraced, let the tracer determine */
562 return !tsk->ptrace;
563 }
564
565 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
566 bool *resched_timer)
567 {
568 struct sigqueue *q, *first = NULL;
569
570 /*
571 * Collect the siginfo appropriate to this signal. Check if
572 * there is another siginfo for the same signal.
573 */
574 list_for_each_entry(q, &list->list, list) {
575 if (q->info.si_signo == sig) {
576 if (first)
577 goto still_pending;
578 first = q;
579 }
580 }
581
582 sigdelset(&list->signal, sig);
583
584 if (first) {
585 still_pending:
586 list_del_init(&first->list);
587 copy_siginfo(info, &first->info);
588
589 *resched_timer =
590 (first->flags & SIGQUEUE_PREALLOC) &&
591 (info->si_code == SI_TIMER) &&
592 (info->si_sys_private);
593
594 __sigqueue_free(first);
595 } else {
596 /*
597 * Ok, it wasn't in the queue. This must be
598 * a fast-pathed signal or we must have been
599 * out of queue space. So zero out the info.
600 */
601 clear_siginfo(info);
602 info->si_signo = sig;
603 info->si_errno = 0;
604 info->si_code = SI_USER;
605 info->si_pid = 0;
606 info->si_uid = 0;
607 }
608 }
609
610 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
611 kernel_siginfo_t *info, bool *resched_timer)
612 {
613 int sig = next_signal(pending, mask);
614
615 if (sig)
616 collect_signal(sig, pending, info, resched_timer);
617 return sig;
618 }
619
620 /*
621 * Dequeue a signal and return the element to the caller, which is
622 * expected to free it.
623 *
624 * All callers have to hold the siglock.
625 */
626 int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
627 kernel_siginfo_t *info, enum pid_type *type)
628 {
629 bool resched_timer = false;
630 int signr;
631
632 /* We only dequeue private signals from ourselves, we don't let
633 * signalfd steal them
634 */
635 *type = PIDTYPE_PID;
636 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
637 if (!signr) {
638 *type = PIDTYPE_TGID;
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 /*
643 * itimer signal ?
644 *
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
653 * systems too.
654 */
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
657
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
663 }
664 }
665 #endif
666 }
667
668 recalc_sigpending();
669 if (!signr)
670 return 0;
671
672 if (unlikely(sig_kernel_stop(signr))) {
673 /*
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
684 */
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 }
687 #ifdef CONFIG_POSIX_TIMERS
688 if (resched_timer) {
689 /*
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
694 */
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
698
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
701 }
702 #endif
703 return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
712
713 /*
714 * Might a synchronous signal be in the queue?
715 */
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 return 0;
718
719 /*
720 * Return the first synchronous signal in the queue.
721 */
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a positive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 sync = q;
727 goto next;
728 }
729 }
730 return 0;
731 next:
732 /*
733 * Check if there is another siginfo for the same signal.
734 */
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
737 goto still_pending;
738 }
739
740 sigdelset(&pending->signal, sync->info.si_signo);
741 recalc_sigpending();
742 still_pending:
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
747 }
748
749 /*
750 * Tell a process that it has a new active signal..
751 *
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
756 *
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
759 */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 lockdep_assert_held(&t->sighand->siglock);
763
764 set_tsk_thread_flag(t, TIF_SIGPENDING);
765
766 /*
767 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
768 * case. We don't check t->state here because there is a race with it
769 * executing another processor and just now entering stopped state.
770 * By using wake_up_state, we ensure the process will wake up and
771 * handle its death signal.
772 */
773 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
774 kick_process(t);
775 }
776
777 /*
778 * Remove signals in mask from the pending set and queue.
779 * Returns 1 if any signals were found.
780 *
781 * All callers must be holding the siglock.
782 */
783 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
784 {
785 struct sigqueue *q, *n;
786 sigset_t m;
787
788 sigandsets(&m, mask, &s->signal);
789 if (sigisemptyset(&m))
790 return;
791
792 sigandnsets(&s->signal, &s->signal, mask);
793 list_for_each_entry_safe(q, n, &s->list, list) {
794 if (sigismember(mask, q->info.si_signo)) {
795 list_del_init(&q->list);
796 __sigqueue_free(q);
797 }
798 }
799 }
800
801 static inline int is_si_special(const struct kernel_siginfo *info)
802 {
803 return info <= SEND_SIG_PRIV;
804 }
805
806 static inline bool si_fromuser(const struct kernel_siginfo *info)
807 {
808 return info == SEND_SIG_NOINFO ||
809 (!is_si_special(info) && SI_FROMUSER(info));
810 }
811
812 /*
813 * called with RCU read lock from check_kill_permission()
814 */
815 static bool kill_ok_by_cred(struct task_struct *t)
816 {
817 const struct cred *cred = current_cred();
818 const struct cred *tcred = __task_cred(t);
819
820 return uid_eq(cred->euid, tcred->suid) ||
821 uid_eq(cred->euid, tcred->uid) ||
822 uid_eq(cred->uid, tcred->suid) ||
823 uid_eq(cred->uid, tcred->uid) ||
824 ns_capable(tcred->user_ns, CAP_KILL);
825 }
826
827 /*
828 * Bad permissions for sending the signal
829 * - the caller must hold the RCU read lock
830 */
831 static int check_kill_permission(int sig, struct kernel_siginfo *info,
832 struct task_struct *t)
833 {
834 struct pid *sid;
835 int error;
836
837 if (!valid_signal(sig))
838 return -EINVAL;
839
840 if (!si_fromuser(info))
841 return 0;
842
843 error = audit_signal_info(sig, t); /* Let audit system see the signal */
844 if (error)
845 return error;
846
847 if (!same_thread_group(current, t) &&
848 !kill_ok_by_cred(t)) {
849 switch (sig) {
850 case SIGCONT:
851 sid = task_session(t);
852 /*
853 * We don't return the error if sid == NULL. The
854 * task was unhashed, the caller must notice this.
855 */
856 if (!sid || sid == task_session(current))
857 break;
858 fallthrough;
859 default:
860 return -EPERM;
861 }
862 }
863
864 return security_task_kill(t, info, sig, NULL);
865 }
866
867 /**
868 * ptrace_trap_notify - schedule trap to notify ptracer
869 * @t: tracee wanting to notify tracer
870 *
871 * This function schedules sticky ptrace trap which is cleared on the next
872 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
873 * ptracer.
874 *
875 * If @t is running, STOP trap will be taken. If trapped for STOP and
876 * ptracer is listening for events, tracee is woken up so that it can
877 * re-trap for the new event. If trapped otherwise, STOP trap will be
878 * eventually taken without returning to userland after the existing traps
879 * are finished by PTRACE_CONT.
880 *
881 * CONTEXT:
882 * Must be called with @task->sighand->siglock held.
883 */
884 static void ptrace_trap_notify(struct task_struct *t)
885 {
886 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
887 lockdep_assert_held(&t->sighand->siglock);
888
889 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
890 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
891 }
892
893 /*
894 * Handle magic process-wide effects of stop/continue signals. Unlike
895 * the signal actions, these happen immediately at signal-generation
896 * time regardless of blocking, ignoring, or handling. This does the
897 * actual continuing for SIGCONT, but not the actual stopping for stop
898 * signals. The process stop is done as a signal action for SIG_DFL.
899 *
900 * Returns true if the signal should be actually delivered, otherwise
901 * it should be dropped.
902 */
903 static bool prepare_signal(int sig, struct task_struct *p, bool force)
904 {
905 struct signal_struct *signal = p->signal;
906 struct task_struct *t;
907 sigset_t flush;
908
909 if (signal->flags & SIGNAL_GROUP_EXIT) {
910 if (signal->core_state)
911 return sig == SIGKILL;
912 /*
913 * The process is in the middle of dying, drop the signal.
914 */
915 return false;
916 } else if (sig_kernel_stop(sig)) {
917 /*
918 * This is a stop signal. Remove SIGCONT from all queues.
919 */
920 siginitset(&flush, sigmask(SIGCONT));
921 flush_sigqueue_mask(&flush, &signal->shared_pending);
922 for_each_thread(p, t)
923 flush_sigqueue_mask(&flush, &t->pending);
924 } else if (sig == SIGCONT) {
925 unsigned int why;
926 /*
927 * Remove all stop signals from all queues, wake all threads.
928 */
929 siginitset(&flush, SIG_KERNEL_STOP_MASK);
930 flush_sigqueue_mask(&flush, &signal->shared_pending);
931 for_each_thread(p, t) {
932 flush_sigqueue_mask(&flush, &t->pending);
933 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
934 if (likely(!(t->ptrace & PT_SEIZED))) {
935 t->jobctl &= ~JOBCTL_STOPPED;
936 wake_up_state(t, __TASK_STOPPED);
937 } else
938 ptrace_trap_notify(t);
939 }
940
941 /*
942 * Notify the parent with CLD_CONTINUED if we were stopped.
943 *
944 * If we were in the middle of a group stop, we pretend it
945 * was already finished, and then continued. Since SIGCHLD
946 * doesn't queue we report only CLD_STOPPED, as if the next
947 * CLD_CONTINUED was dropped.
948 */
949 why = 0;
950 if (signal->flags & SIGNAL_STOP_STOPPED)
951 why |= SIGNAL_CLD_CONTINUED;
952 else if (signal->group_stop_count)
953 why |= SIGNAL_CLD_STOPPED;
954
955 if (why) {
956 /*
957 * The first thread which returns from do_signal_stop()
958 * will take ->siglock, notice SIGNAL_CLD_MASK, and
959 * notify its parent. See get_signal().
960 */
961 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
962 signal->group_stop_count = 0;
963 signal->group_exit_code = 0;
964 }
965 }
966
967 return !sig_ignored(p, sig, force);
968 }
969
970 /*
971 * Test if P wants to take SIG. After we've checked all threads with this,
972 * it's equivalent to finding no threads not blocking SIG. Any threads not
973 * blocking SIG were ruled out because they are not running and already
974 * have pending signals. Such threads will dequeue from the shared queue
975 * as soon as they're available, so putting the signal on the shared queue
976 * will be equivalent to sending it to one such thread.
977 */
978 static inline bool wants_signal(int sig, struct task_struct *p)
979 {
980 if (sigismember(&p->blocked, sig))
981 return false;
982
983 if (p->flags & PF_EXITING)
984 return false;
985
986 if (sig == SIGKILL)
987 return true;
988
989 if (task_is_stopped_or_traced(p))
990 return false;
991
992 return task_curr(p) || !task_sigpending(p);
993 }
994
995 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
996 {
997 struct signal_struct *signal = p->signal;
998 struct task_struct *t;
999
1000 /*
1001 * Now find a thread we can wake up to take the signal off the queue.
1002 *
1003 * Try the suggested task first (may or may not be the main thread).
1004 */
1005 if (wants_signal(sig, p))
1006 t = p;
1007 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008 /*
1009 * There is just one thread and it does not need to be woken.
1010 * It will dequeue unblocked signals before it runs again.
1011 */
1012 return;
1013 else {
1014 /*
1015 * Otherwise try to find a suitable thread.
1016 */
1017 t = signal->curr_target;
1018 while (!wants_signal(sig, t)) {
1019 t = next_thread(t);
1020 if (t == signal->curr_target)
1021 /*
1022 * No thread needs to be woken.
1023 * Any eligible threads will see
1024 * the signal in the queue soon.
1025 */
1026 return;
1027 }
1028 signal->curr_target = t;
1029 }
1030
1031 /*
1032 * Found a killable thread. If the signal will be fatal,
1033 * then start taking the whole group down immediately.
1034 */
1035 if (sig_fatal(p, sig) &&
1036 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037 !sigismember(&t->real_blocked, sig) &&
1038 (sig == SIGKILL || !p->ptrace)) {
1039 /*
1040 * This signal will be fatal to the whole group.
1041 */
1042 if (!sig_kernel_coredump(sig)) {
1043 /*
1044 * Start a group exit and wake everybody up.
1045 * This way we don't have other threads
1046 * running and doing things after a slower
1047 * thread has the fatal signal pending.
1048 */
1049 signal->flags = SIGNAL_GROUP_EXIT;
1050 signal->group_exit_code = sig;
1051 signal->group_stop_count = 0;
1052 __for_each_thread(signal, t) {
1053 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054 sigaddset(&t->pending.signal, SIGKILL);
1055 signal_wake_up(t, 1);
1056 }
1057 return;
1058 }
1059 }
1060
1061 /*
1062 * The signal is already in the shared-pending queue.
1063 * Tell the chosen thread to wake up and dequeue it.
1064 */
1065 signal_wake_up(t, sig == SIGKILL);
1066 return;
1067 }
1068
1069 static inline bool legacy_queue(struct sigpending *signals, int sig)
1070 {
1071 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072 }
1073
1074 static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075 struct task_struct *t, enum pid_type type, bool force)
1076 {
1077 struct sigpending *pending;
1078 struct sigqueue *q;
1079 int override_rlimit;
1080 int ret = 0, result;
1081
1082 lockdep_assert_held(&t->sighand->siglock);
1083
1084 result = TRACE_SIGNAL_IGNORED;
1085 if (!prepare_signal(sig, t, force))
1086 goto ret;
1087
1088 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089 /*
1090 * Short-circuit ignored signals and support queuing
1091 * exactly one non-rt signal, so that we can get more
1092 * detailed information about the cause of the signal.
1093 */
1094 result = TRACE_SIGNAL_ALREADY_PENDING;
1095 if (legacy_queue(pending, sig))
1096 goto ret;
1097
1098 result = TRACE_SIGNAL_DELIVERED;
1099 /*
1100 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101 */
1102 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103 goto out_set;
1104
1105 /*
1106 * Real-time signals must be queued if sent by sigqueue, or
1107 * some other real-time mechanism. It is implementation
1108 * defined whether kill() does so. We attempt to do so, on
1109 * the principle of least surprise, but since kill is not
1110 * allowed to fail with EAGAIN when low on memory we just
1111 * make sure at least one signal gets delivered and don't
1112 * pass on the info struct.
1113 */
1114 if (sig < SIGRTMIN)
1115 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116 else
1117 override_rlimit = 0;
1118
1119 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120
1121 if (q) {
1122 list_add_tail(&q->list, &pending->list);
1123 switch ((unsigned long) info) {
1124 case (unsigned long) SEND_SIG_NOINFO:
1125 clear_siginfo(&q->info);
1126 q->info.si_signo = sig;
1127 q->info.si_errno = 0;
1128 q->info.si_code = SI_USER;
1129 q->info.si_pid = task_tgid_nr_ns(current,
1130 task_active_pid_ns(t));
1131 rcu_read_lock();
1132 q->info.si_uid =
1133 from_kuid_munged(task_cred_xxx(t, user_ns),
1134 current_uid());
1135 rcu_read_unlock();
1136 break;
1137 case (unsigned long) SEND_SIG_PRIV:
1138 clear_siginfo(&q->info);
1139 q->info.si_signo = sig;
1140 q->info.si_errno = 0;
1141 q->info.si_code = SI_KERNEL;
1142 q->info.si_pid = 0;
1143 q->info.si_uid = 0;
1144 break;
1145 default:
1146 copy_siginfo(&q->info, info);
1147 break;
1148 }
1149 } else if (!is_si_special(info) &&
1150 sig >= SIGRTMIN && info->si_code != SI_USER) {
1151 /*
1152 * Queue overflow, abort. We may abort if the
1153 * signal was rt and sent by user using something
1154 * other than kill().
1155 */
1156 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157 ret = -EAGAIN;
1158 goto ret;
1159 } else {
1160 /*
1161 * This is a silent loss of information. We still
1162 * send the signal, but the *info bits are lost.
1163 */
1164 result = TRACE_SIGNAL_LOSE_INFO;
1165 }
1166
1167 out_set:
1168 signalfd_notify(t, sig);
1169 sigaddset(&pending->signal, sig);
1170
1171 /* Let multiprocess signals appear after on-going forks */
1172 if (type > PIDTYPE_TGID) {
1173 struct multiprocess_signals *delayed;
1174 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175 sigset_t *signal = &delayed->signal;
1176 /* Can't queue both a stop and a continue signal */
1177 if (sig == SIGCONT)
1178 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179 else if (sig_kernel_stop(sig))
1180 sigdelset(signal, SIGCONT);
1181 sigaddset(signal, sig);
1182 }
1183 }
1184
1185 complete_signal(sig, t, type);
1186 ret:
1187 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188 return ret;
1189 }
1190
1191 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192 {
1193 bool ret = false;
1194 switch (siginfo_layout(info->si_signo, info->si_code)) {
1195 case SIL_KILL:
1196 case SIL_CHLD:
1197 case SIL_RT:
1198 ret = true;
1199 break;
1200 case SIL_TIMER:
1201 case SIL_POLL:
1202 case SIL_FAULT:
1203 case SIL_FAULT_TRAPNO:
1204 case SIL_FAULT_MCEERR:
1205 case SIL_FAULT_BNDERR:
1206 case SIL_FAULT_PKUERR:
1207 case SIL_FAULT_PERF_EVENT:
1208 case SIL_SYS:
1209 ret = false;
1210 break;
1211 }
1212 return ret;
1213 }
1214
1215 int send_signal_locked(int sig, struct kernel_siginfo *info,
1216 struct task_struct *t, enum pid_type type)
1217 {
1218 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219 bool force = false;
1220
1221 if (info == SEND_SIG_NOINFO) {
1222 /* Force if sent from an ancestor pid namespace */
1223 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224 } else if (info == SEND_SIG_PRIV) {
1225 /* Don't ignore kernel generated signals */
1226 force = true;
1227 } else if (has_si_pid_and_uid(info)) {
1228 /* SIGKILL and SIGSTOP is special or has ids */
1229 struct user_namespace *t_user_ns;
1230
1231 rcu_read_lock();
1232 t_user_ns = task_cred_xxx(t, user_ns);
1233 if (current_user_ns() != t_user_ns) {
1234 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235 info->si_uid = from_kuid_munged(t_user_ns, uid);
1236 }
1237 rcu_read_unlock();
1238
1239 /* A kernel generated signal? */
1240 force = (info->si_code == SI_KERNEL);
1241
1242 /* From an ancestor pid namespace? */
1243 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244 info->si_pid = 0;
1245 force = true;
1246 }
1247 }
1248 return __send_signal_locked(sig, info, t, type, force);
1249 }
1250
1251 static void print_fatal_signal(int signr)
1252 {
1253 struct pt_regs *regs = task_pt_regs(current);
1254 struct file *exe_file;
1255
1256 exe_file = get_task_exe_file(current);
1257 if (exe_file) {
1258 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259 exe_file, current->comm, signr);
1260 fput(exe_file);
1261 } else {
1262 pr_info("%s: potentially unexpected fatal signal %d.\n",
1263 current->comm, signr);
1264 }
1265
1266 #if defined(__i386__) && !defined(__arch_um__)
1267 pr_info("code at %08lx: ", regs->ip);
1268 {
1269 int i;
1270 for (i = 0; i < 16; i++) {
1271 unsigned char insn;
1272
1273 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274 break;
1275 pr_cont("%02x ", insn);
1276 }
1277 }
1278 pr_cont("\n");
1279 #endif
1280 preempt_disable();
1281 show_regs(regs);
1282 preempt_enable();
1283 }
1284
1285 static int __init setup_print_fatal_signals(char *str)
1286 {
1287 get_option (&str, &print_fatal_signals);
1288
1289 return 1;
1290 }
1291
1292 __setup("print-fatal-signals=", setup_print_fatal_signals);
1293
1294 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295 enum pid_type type)
1296 {
1297 unsigned long flags;
1298 int ret = -ESRCH;
1299
1300 if (lock_task_sighand(p, &flags)) {
1301 ret = send_signal_locked(sig, info, p, type);
1302 unlock_task_sighand(p, &flags);
1303 }
1304
1305 return ret;
1306 }
1307
1308 enum sig_handler {
1309 HANDLER_CURRENT, /* If reachable use the current handler */
1310 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311 HANDLER_EXIT, /* Only visible as the process exit code */
1312 };
1313
1314 /*
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 *
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1321 *
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1324 */
1325 static int
1326 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327 enum sig_handler handler)
1328 {
1329 unsigned long int flags;
1330 int ret, blocked, ignored;
1331 struct k_sigaction *action;
1332 int sig = info->si_signo;
1333
1334 spin_lock_irqsave(&t->sighand->siglock, flags);
1335 action = &t->sighand->action[sig-1];
1336 ignored = action->sa.sa_handler == SIG_IGN;
1337 blocked = sigismember(&t->blocked, sig);
1338 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339 action->sa.sa_handler = SIG_DFL;
1340 if (handler == HANDLER_EXIT)
1341 action->sa.sa_flags |= SA_IMMUTABLE;
1342 if (blocked)
1343 sigdelset(&t->blocked, sig);
1344 }
1345 /*
1346 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348 */
1349 if (action->sa.sa_handler == SIG_DFL &&
1350 (!t->ptrace || (handler == HANDLER_EXIT)))
1351 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353 /* This can happen if the signal was already pending and blocked */
1354 if (!task_sigpending(t))
1355 signal_wake_up(t, 0);
1356 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357
1358 return ret;
1359 }
1360
1361 int force_sig_info(struct kernel_siginfo *info)
1362 {
1363 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364 }
1365
1366 /*
1367 * Nuke all other threads in the group.
1368 */
1369 int zap_other_threads(struct task_struct *p)
1370 {
1371 struct task_struct *t;
1372 int count = 0;
1373
1374 p->signal->group_stop_count = 0;
1375
1376 for_other_threads(p, t) {
1377 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378 /* Don't require de_thread to wait for the vhost_worker */
1379 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380 count++;
1381
1382 /* Don't bother with already dead threads */
1383 if (t->exit_state)
1384 continue;
1385 sigaddset(&t->pending.signal, SIGKILL);
1386 signal_wake_up(t, 1);
1387 }
1388
1389 return count;
1390 }
1391
1392 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1393 unsigned long *flags)
1394 {
1395 struct sighand_struct *sighand;
1396
1397 rcu_read_lock();
1398 for (;;) {
1399 sighand = rcu_dereference(tsk->sighand);
1400 if (unlikely(sighand == NULL))
1401 break;
1402
1403 /*
1404 * This sighand can be already freed and even reused, but
1405 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1406 * initializes ->siglock: this slab can't go away, it has
1407 * the same object type, ->siglock can't be reinitialized.
1408 *
1409 * We need to ensure that tsk->sighand is still the same
1410 * after we take the lock, we can race with de_thread() or
1411 * __exit_signal(). In the latter case the next iteration
1412 * must see ->sighand == NULL.
1413 */
1414 spin_lock_irqsave(&sighand->siglock, *flags);
1415 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1416 break;
1417 spin_unlock_irqrestore(&sighand->siglock, *flags);
1418 }
1419 rcu_read_unlock();
1420
1421 return sighand;
1422 }
1423
1424 #ifdef CONFIG_LOCKDEP
1425 void lockdep_assert_task_sighand_held(struct task_struct *task)
1426 {
1427 struct sighand_struct *sighand;
1428
1429 rcu_read_lock();
1430 sighand = rcu_dereference(task->sighand);
1431 if (sighand)
1432 lockdep_assert_held(&sighand->siglock);
1433 else
1434 WARN_ON_ONCE(1);
1435 rcu_read_unlock();
1436 }
1437 #endif
1438
1439 /*
1440 * send signal info to all the members of a thread group or to the
1441 * individual thread if type == PIDTYPE_PID.
1442 */
1443 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1444 struct task_struct *p, enum pid_type type)
1445 {
1446 int ret;
1447
1448 rcu_read_lock();
1449 ret = check_kill_permission(sig, info, p);
1450 rcu_read_unlock();
1451
1452 if (!ret && sig)
1453 ret = do_send_sig_info(sig, info, p, type);
1454
1455 return ret;
1456 }
1457
1458 /*
1459 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1460 * control characters do (^C, ^Z etc)
1461 * - the caller must hold at least a readlock on tasklist_lock
1462 */
1463 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1464 {
1465 struct task_struct *p = NULL;
1466 int ret = -ESRCH;
1467
1468 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1469 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1470 /*
1471 * If group_send_sig_info() succeeds at least once ret
1472 * becomes 0 and after that the code below has no effect.
1473 * Otherwise we return the last err or -ESRCH if this
1474 * process group is empty.
1475 */
1476 if (ret)
1477 ret = err;
1478 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479
1480 return ret;
1481 }
1482
1483 static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1484 struct pid *pid, enum pid_type type)
1485 {
1486 int error = -ESRCH;
1487 struct task_struct *p;
1488
1489 for (;;) {
1490 rcu_read_lock();
1491 p = pid_task(pid, PIDTYPE_PID);
1492 if (p)
1493 error = group_send_sig_info(sig, info, p, type);
1494 rcu_read_unlock();
1495 if (likely(!p || error != -ESRCH))
1496 return error;
1497 /*
1498 * The task was unhashed in between, try again. If it
1499 * is dead, pid_task() will return NULL, if we race with
1500 * de_thread() it will find the new leader.
1501 */
1502 }
1503 }
1504
1505 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1506 {
1507 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508 }
1509
1510 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1511 {
1512 int error;
1513 rcu_read_lock();
1514 error = kill_pid_info(sig, info, find_vpid(pid));
1515 rcu_read_unlock();
1516 return error;
1517 }
1518
1519 static inline bool kill_as_cred_perm(const struct cred *cred,
1520 struct task_struct *target)
1521 {
1522 const struct cred *pcred = __task_cred(target);
1523
1524 return uid_eq(cred->euid, pcred->suid) ||
1525 uid_eq(cred->euid, pcred->uid) ||
1526 uid_eq(cred->uid, pcred->suid) ||
1527 uid_eq(cred->uid, pcred->uid);
1528 }
1529
1530 /*
1531 * The usb asyncio usage of siginfo is wrong. The glibc support
1532 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1533 * AKA after the generic fields:
1534 * kernel_pid_t si_pid;
1535 * kernel_uid32_t si_uid;
1536 * sigval_t si_value;
1537 *
1538 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1539 * after the generic fields is:
1540 * void __user *si_addr;
1541 *
1542 * This is a practical problem when there is a 64bit big endian kernel
1543 * and a 32bit userspace. As the 32bit address will encoded in the low
1544 * 32bits of the pointer. Those low 32bits will be stored at higher
1545 * address than appear in a 32 bit pointer. So userspace will not
1546 * see the address it was expecting for it's completions.
1547 *
1548 * There is nothing in the encoding that can allow
1549 * copy_siginfo_to_user32 to detect this confusion of formats, so
1550 * handle this by requiring the caller of kill_pid_usb_asyncio to
1551 * notice when this situration takes place and to store the 32bit
1552 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 * parameter.
1554 */
1555 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1556 struct pid *pid, const struct cred *cred)
1557 {
1558 struct kernel_siginfo info;
1559 struct task_struct *p;
1560 unsigned long flags;
1561 int ret = -EINVAL;
1562
1563 if (!valid_signal(sig))
1564 return ret;
1565
1566 clear_siginfo(&info);
1567 info.si_signo = sig;
1568 info.si_errno = errno;
1569 info.si_code = SI_ASYNCIO;
1570 *((sigval_t *)&info.si_pid) = addr;
1571
1572 rcu_read_lock();
1573 p = pid_task(pid, PIDTYPE_PID);
1574 if (!p) {
1575 ret = -ESRCH;
1576 goto out_unlock;
1577 }
1578 if (!kill_as_cred_perm(cred, p)) {
1579 ret = -EPERM;
1580 goto out_unlock;
1581 }
1582 ret = security_task_kill(p, &info, sig, cred);
1583 if (ret)
1584 goto out_unlock;
1585
1586 if (sig) {
1587 if (lock_task_sighand(p, &flags)) {
1588 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1589 unlock_task_sighand(p, &flags);
1590 } else
1591 ret = -ESRCH;
1592 }
1593 out_unlock:
1594 rcu_read_unlock();
1595 return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598
1599 /*
1600 * kill_something_info() interprets pid in interesting ways just like kill(2).
1601 *
1602 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1603 * is probably wrong. Should make it like BSD or SYSV.
1604 */
1605
1606 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607 {
1608 int ret;
1609
1610 if (pid > 0)
1611 return kill_proc_info(sig, info, pid);
1612
1613 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1614 if (pid == INT_MIN)
1615 return -ESRCH;
1616
1617 read_lock(&tasklist_lock);
1618 if (pid != -1) {
1619 ret = __kill_pgrp_info(sig, info,
1620 pid ? find_vpid(-pid) : task_pgrp(current));
1621 } else {
1622 int retval = 0, count = 0;
1623 struct task_struct * p;
1624
1625 for_each_process(p) {
1626 if (task_pid_vnr(p) > 1 &&
1627 !same_thread_group(p, current)) {
1628 int err = group_send_sig_info(sig, info, p,
1629 PIDTYPE_MAX);
1630 ++count;
1631 if (err != -EPERM)
1632 retval = err;
1633 }
1634 }
1635 ret = count ? retval : -ESRCH;
1636 }
1637 read_unlock(&tasklist_lock);
1638
1639 return ret;
1640 }
1641
1642 /*
1643 * These are for backward compatibility with the rest of the kernel source.
1644 */
1645
1646 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647 {
1648 /*
1649 * Make sure legacy kernel users don't send in bad values
1650 * (normal paths check this in check_kill_permission).
1651 */
1652 if (!valid_signal(sig))
1653 return -EINVAL;
1654
1655 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1656 }
1657 EXPORT_SYMBOL(send_sig_info);
1658
1659 #define __si_special(priv) \
1660 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661
1662 int
1663 send_sig(int sig, struct task_struct *p, int priv)
1664 {
1665 return send_sig_info(sig, __si_special(priv), p);
1666 }
1667 EXPORT_SYMBOL(send_sig);
1668
1669 void force_sig(int sig)
1670 {
1671 struct kernel_siginfo info;
1672
1673 clear_siginfo(&info);
1674 info.si_signo = sig;
1675 info.si_errno = 0;
1676 info.si_code = SI_KERNEL;
1677 info.si_pid = 0;
1678 info.si_uid = 0;
1679 force_sig_info(&info);
1680 }
1681 EXPORT_SYMBOL(force_sig);
1682
1683 void force_fatal_sig(int sig)
1684 {
1685 struct kernel_siginfo info;
1686
1687 clear_siginfo(&info);
1688 info.si_signo = sig;
1689 info.si_errno = 0;
1690 info.si_code = SI_KERNEL;
1691 info.si_pid = 0;
1692 info.si_uid = 0;
1693 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694 }
1695
1696 void force_exit_sig(int sig)
1697 {
1698 struct kernel_siginfo info;
1699
1700 clear_siginfo(&info);
1701 info.si_signo = sig;
1702 info.si_errno = 0;
1703 info.si_code = SI_KERNEL;
1704 info.si_pid = 0;
1705 info.si_uid = 0;
1706 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1707 }
1708
1709 /*
1710 * When things go south during signal handling, we
1711 * will force a SIGSEGV. And if the signal that caused
1712 * the problem was already a SIGSEGV, we'll want to
1713 * make sure we don't even try to deliver the signal..
1714 */
1715 void force_sigsegv(int sig)
1716 {
1717 if (sig == SIGSEGV)
1718 force_fatal_sig(SIGSEGV);
1719 else
1720 force_sig(SIGSEGV);
1721 }
1722
1723 int force_sig_fault_to_task(int sig, int code, void __user *addr,
1724 struct task_struct *t)
1725 {
1726 struct kernel_siginfo info;
1727
1728 clear_siginfo(&info);
1729 info.si_signo = sig;
1730 info.si_errno = 0;
1731 info.si_code = code;
1732 info.si_addr = addr;
1733 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734 }
1735
1736 int force_sig_fault(int sig, int code, void __user *addr)
1737 {
1738 return force_sig_fault_to_task(sig, code, addr, current);
1739 }
1740
1741 int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1742 {
1743 struct kernel_siginfo info;
1744
1745 clear_siginfo(&info);
1746 info.si_signo = sig;
1747 info.si_errno = 0;
1748 info.si_code = code;
1749 info.si_addr = addr;
1750 return send_sig_info(info.si_signo, &info, t);
1751 }
1752
1753 int force_sig_mceerr(int code, void __user *addr, short lsb)
1754 {
1755 struct kernel_siginfo info;
1756
1757 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1758 clear_siginfo(&info);
1759 info.si_signo = SIGBUS;
1760 info.si_errno = 0;
1761 info.si_code = code;
1762 info.si_addr = addr;
1763 info.si_addr_lsb = lsb;
1764 return force_sig_info(&info);
1765 }
1766
1767 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1768 {
1769 struct kernel_siginfo info;
1770
1771 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772 clear_siginfo(&info);
1773 info.si_signo = SIGBUS;
1774 info.si_errno = 0;
1775 info.si_code = code;
1776 info.si_addr = addr;
1777 info.si_addr_lsb = lsb;
1778 return send_sig_info(info.si_signo, &info, t);
1779 }
1780 EXPORT_SYMBOL(send_sig_mceerr);
1781
1782 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1783 {
1784 struct kernel_siginfo info;
1785
1786 clear_siginfo(&info);
1787 info.si_signo = SIGSEGV;
1788 info.si_errno = 0;
1789 info.si_code = SEGV_BNDERR;
1790 info.si_addr = addr;
1791 info.si_lower = lower;
1792 info.si_upper = upper;
1793 return force_sig_info(&info);
1794 }
1795
1796 #ifdef SEGV_PKUERR
1797 int force_sig_pkuerr(void __user *addr, u32 pkey)
1798 {
1799 struct kernel_siginfo info;
1800
1801 clear_siginfo(&info);
1802 info.si_signo = SIGSEGV;
1803 info.si_errno = 0;
1804 info.si_code = SEGV_PKUERR;
1805 info.si_addr = addr;
1806 info.si_pkey = pkey;
1807 return force_sig_info(&info);
1808 }
1809 #endif
1810
1811 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1812 {
1813 struct kernel_siginfo info;
1814
1815 clear_siginfo(&info);
1816 info.si_signo = SIGTRAP;
1817 info.si_errno = 0;
1818 info.si_code = TRAP_PERF;
1819 info.si_addr = addr;
1820 info.si_perf_data = sig_data;
1821 info.si_perf_type = type;
1822
1823 /*
1824 * Signals generated by perf events should not terminate the whole
1825 * process if SIGTRAP is blocked, however, delivering the signal
1826 * asynchronously is better than not delivering at all. But tell user
1827 * space if the signal was asynchronous, so it can clearly be
1828 * distinguished from normal synchronous ones.
1829 */
1830 info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1831 TRAP_PERF_FLAG_ASYNC :
1832 0;
1833
1834 return send_sig_info(info.si_signo, &info, current);
1835 }
1836
1837 /**
1838 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1839 * @syscall: syscall number to send to userland
1840 * @reason: filter-supplied reason code to send to userland (via si_errno)
1841 * @force_coredump: true to trigger a coredump
1842 *
1843 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1844 */
1845 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1846 {
1847 struct kernel_siginfo info;
1848
1849 clear_siginfo(&info);
1850 info.si_signo = SIGSYS;
1851 info.si_code = SYS_SECCOMP;
1852 info.si_call_addr = (void __user *)KSTK_EIP(current);
1853 info.si_errno = reason;
1854 info.si_arch = syscall_get_arch(current);
1855 info.si_syscall = syscall;
1856 return force_sig_info_to_task(&info, current,
1857 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858 }
1859
1860 /* For the crazy architectures that include trap information in
1861 * the errno field, instead of an actual errno value.
1862 */
1863 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1864 {
1865 struct kernel_siginfo info;
1866
1867 clear_siginfo(&info);
1868 info.si_signo = SIGTRAP;
1869 info.si_errno = errno;
1870 info.si_code = TRAP_HWBKPT;
1871 info.si_addr = addr;
1872 return force_sig_info(&info);
1873 }
1874
1875 /* For the rare architectures that include trap information using
1876 * si_trapno.
1877 */
1878 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1879 {
1880 struct kernel_siginfo info;
1881
1882 clear_siginfo(&info);
1883 info.si_signo = sig;
1884 info.si_errno = 0;
1885 info.si_code = code;
1886 info.si_addr = addr;
1887 info.si_trapno = trapno;
1888 return force_sig_info(&info);
1889 }
1890
1891 /* For the rare architectures that include trap information using
1892 * si_trapno.
1893 */
1894 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1895 struct task_struct *t)
1896 {
1897 struct kernel_siginfo info;
1898
1899 clear_siginfo(&info);
1900 info.si_signo = sig;
1901 info.si_errno = 0;
1902 info.si_code = code;
1903 info.si_addr = addr;
1904 info.si_trapno = trapno;
1905 return send_sig_info(info.si_signo, &info, t);
1906 }
1907
1908 static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909 {
1910 int ret;
1911 read_lock(&tasklist_lock);
1912 ret = __kill_pgrp_info(sig, info, pgrp);
1913 read_unlock(&tasklist_lock);
1914 return ret;
1915 }
1916
1917 int kill_pgrp(struct pid *pid, int sig, int priv)
1918 {
1919 return kill_pgrp_info(sig, __si_special(priv), pid);
1920 }
1921 EXPORT_SYMBOL(kill_pgrp);
1922
1923 int kill_pid(struct pid *pid, int sig, int priv)
1924 {
1925 return kill_pid_info(sig, __si_special(priv), pid);
1926 }
1927 EXPORT_SYMBOL(kill_pid);
1928
1929 /*
1930 * These functions support sending signals using preallocated sigqueue
1931 * structures. This is needed "because realtime applications cannot
1932 * afford to lose notifications of asynchronous events, like timer
1933 * expirations or I/O completions". In the case of POSIX Timers
1934 * we allocate the sigqueue structure from the timer_create. If this
1935 * allocation fails we are able to report the failure to the application
1936 * with an EAGAIN error.
1937 */
1938 struct sigqueue *sigqueue_alloc(void)
1939 {
1940 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1941 }
1942
1943 void sigqueue_free(struct sigqueue *q)
1944 {
1945 unsigned long flags;
1946 spinlock_t *lock = &current->sighand->siglock;
1947
1948 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949 /*
1950 * We must hold ->siglock while testing q->list
1951 * to serialize with collect_signal() or with
1952 * __exit_signal()->flush_sigqueue().
1953 */
1954 spin_lock_irqsave(lock, flags);
1955 q->flags &= ~SIGQUEUE_PREALLOC;
1956 /*
1957 * If it is queued it will be freed when dequeued,
1958 * like the "regular" sigqueue.
1959 */
1960 if (!list_empty(&q->list))
1961 q = NULL;
1962 spin_unlock_irqrestore(lock, flags);
1963
1964 if (q)
1965 __sigqueue_free(q);
1966 }
1967
1968 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969 {
1970 int sig = q->info.si_signo;
1971 struct sigpending *pending;
1972 struct task_struct *t;
1973 unsigned long flags;
1974 int ret, result;
1975
1976 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1977
1978 ret = -1;
1979 rcu_read_lock();
1980
1981 /*
1982 * This function is used by POSIX timers to deliver a timer signal.
1983 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984 * set), the signal must be delivered to the specific thread (queues
1985 * into t->pending).
1986 *
1987 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988 * process. In this case, prefer to deliver to current if it is in
1989 * the same thread group as the target process, which avoids
1990 * unnecessarily waking up a potentially idle task.
1991 */
1992 t = pid_task(pid, type);
1993 if (!t)
1994 goto ret;
1995 if (type != PIDTYPE_PID && same_thread_group(t, current))
1996 t = current;
1997 if (!likely(lock_task_sighand(t, &flags)))
1998 goto ret;
1999
2000 ret = 1; /* the signal is ignored */
2001 result = TRACE_SIGNAL_IGNORED;
2002 if (!prepare_signal(sig, t, false))
2003 goto out;
2004
2005 ret = 0;
2006 if (unlikely(!list_empty(&q->list))) {
2007 /*
2008 * If an SI_TIMER entry is already queue just increment
2009 * the overrun count.
2010 */
2011 BUG_ON(q->info.si_code != SI_TIMER);
2012 q->info.si_overrun++;
2013 result = TRACE_SIGNAL_ALREADY_PENDING;
2014 goto out;
2015 }
2016 q->info.si_overrun = 0;
2017
2018 signalfd_notify(t, sig);
2019 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2020 list_add_tail(&q->list, &pending->list);
2021 sigaddset(&pending->signal, sig);
2022 complete_signal(sig, t, type);
2023 result = TRACE_SIGNAL_DELIVERED;
2024 out:
2025 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2026 unlock_task_sighand(t, &flags);
2027 ret:
2028 rcu_read_unlock();
2029 return ret;
2030 }
2031
2032 void do_notify_pidfd(struct task_struct *task)
2033 {
2034 struct pid *pid = task_pid(task);
2035
2036 WARN_ON(task->exit_state == 0);
2037
2038 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2039 poll_to_key(EPOLLIN | EPOLLRDNORM));
2040 }
2041
2042 /*
2043 * Let a parent know about the death of a child.
2044 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045 *
2046 * Returns true if our parent ignored us and so we've switched to
2047 * self-reaping.
2048 */
2049 bool do_notify_parent(struct task_struct *tsk, int sig)
2050 {
2051 struct kernel_siginfo info;
2052 unsigned long flags;
2053 struct sighand_struct *psig;
2054 bool autoreap = false;
2055 u64 utime, stime;
2056
2057 WARN_ON_ONCE(sig == -1);
2058
2059 /* do_notify_parent_cldstop should have been called instead. */
2060 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061
2062 WARN_ON_ONCE(!tsk->ptrace &&
2063 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064 /*
2065 * tsk is a group leader and has no threads, wake up the
2066 * non-PIDFD_THREAD waiters.
2067 */
2068 if (thread_group_empty(tsk))
2069 do_notify_pidfd(tsk);
2070
2071 if (sig != SIGCHLD) {
2072 /*
2073 * This is only possible if parent == real_parent.
2074 * Check if it has changed security domain.
2075 */
2076 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2077 sig = SIGCHLD;
2078 }
2079
2080 clear_siginfo(&info);
2081 info.si_signo = sig;
2082 info.si_errno = 0;
2083 /*
2084 * We are under tasklist_lock here so our parent is tied to
2085 * us and cannot change.
2086 *
2087 * task_active_pid_ns will always return the same pid namespace
2088 * until a task passes through release_task.
2089 *
2090 * write_lock() currently calls preempt_disable() which is the
2091 * same as rcu_read_lock(), but according to Oleg, this is not
2092 * correct to rely on this
2093 */
2094 rcu_read_lock();
2095 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2096 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2097 task_uid(tsk));
2098 rcu_read_unlock();
2099
2100 task_cputime(tsk, &utime, &stime);
2101 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2102 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103
2104 info.si_status = tsk->exit_code & 0x7f;
2105 if (tsk->exit_code & 0x80)
2106 info.si_code = CLD_DUMPED;
2107 else if (tsk->exit_code & 0x7f)
2108 info.si_code = CLD_KILLED;
2109 else {
2110 info.si_code = CLD_EXITED;
2111 info.si_status = tsk->exit_code >> 8;
2112 }
2113
2114 psig = tsk->parent->sighand;
2115 spin_lock_irqsave(&psig->siglock, flags);
2116 if (!tsk->ptrace && sig == SIGCHLD &&
2117 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2118 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119 /*
2120 * We are exiting and our parent doesn't care. POSIX.1
2121 * defines special semantics for setting SIGCHLD to SIG_IGN
2122 * or setting the SA_NOCLDWAIT flag: we should be reaped
2123 * automatically and not left for our parent's wait4 call.
2124 * Rather than having the parent do it as a magic kind of
2125 * signal handler, we just set this to tell do_exit that we
2126 * can be cleaned up without becoming a zombie. Note that
2127 * we still call __wake_up_parent in this case, because a
2128 * blocked sys_wait4 might now return -ECHILD.
2129 *
2130 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2131 * is implementation-defined: we do (if you don't want
2132 * it, just use SIG_IGN instead).
2133 */
2134 autoreap = true;
2135 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2136 sig = 0;
2137 }
2138 /*
2139 * Send with __send_signal as si_pid and si_uid are in the
2140 * parent's namespaces.
2141 */
2142 if (valid_signal(sig) && sig)
2143 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2144 __wake_up_parent(tsk, tsk->parent);
2145 spin_unlock_irqrestore(&psig->siglock, flags);
2146
2147 return autoreap;
2148 }
2149
2150 /**
2151 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2152 * @tsk: task reporting the state change
2153 * @for_ptracer: the notification is for ptracer
2154 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155 *
2156 * Notify @tsk's parent that the stopped/continued state has changed. If
2157 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2158 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159 *
2160 * CONTEXT:
2161 * Must be called with tasklist_lock at least read locked.
2162 */
2163 static void do_notify_parent_cldstop(struct task_struct *tsk,
2164 bool for_ptracer, int why)
2165 {
2166 struct kernel_siginfo info;
2167 unsigned long flags;
2168 struct task_struct *parent;
2169 struct sighand_struct *sighand;
2170 u64 utime, stime;
2171
2172 if (for_ptracer) {
2173 parent = tsk->parent;
2174 } else {
2175 tsk = tsk->group_leader;
2176 parent = tsk->real_parent;
2177 }
2178
2179 clear_siginfo(&info);
2180 info.si_signo = SIGCHLD;
2181 info.si_errno = 0;
2182 /*
2183 * see comment in do_notify_parent() about the following 4 lines
2184 */
2185 rcu_read_lock();
2186 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2187 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188 rcu_read_unlock();
2189
2190 task_cputime(tsk, &utime, &stime);
2191 info.si_utime = nsec_to_clock_t(utime);
2192 info.si_stime = nsec_to_clock_t(stime);
2193
2194 info.si_code = why;
2195 switch (why) {
2196 case CLD_CONTINUED:
2197 info.si_status = SIGCONT;
2198 break;
2199 case CLD_STOPPED:
2200 info.si_status = tsk->signal->group_exit_code & 0x7f;
2201 break;
2202 case CLD_TRAPPED:
2203 info.si_status = tsk->exit_code & 0x7f;
2204 break;
2205 default:
2206 BUG();
2207 }
2208
2209 sighand = parent->sighand;
2210 spin_lock_irqsave(&sighand->siglock, flags);
2211 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2212 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2213 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214 /*
2215 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216 */
2217 __wake_up_parent(tsk, parent);
2218 spin_unlock_irqrestore(&sighand->siglock, flags);
2219 }
2220
2221 /*
2222 * This must be called with current->sighand->siglock held.
2223 *
2224 * This should be the path for all ptrace stops.
2225 * We always set current->last_siginfo while stopped here.
2226 * That makes it a way to test a stopped process for
2227 * being ptrace-stopped vs being job-control-stopped.
2228 *
2229 * Returns the signal the ptracer requested the code resume
2230 * with. If the code did not stop because the tracer is gone,
2231 * the stop signal remains unchanged unless clear_code.
2232 */
2233 static int ptrace_stop(int exit_code, int why, unsigned long message,
2234 kernel_siginfo_t *info)
2235 __releases(&current->sighand->siglock)
2236 __acquires(&current->sighand->siglock)
2237 {
2238 bool gstop_done = false;
2239
2240 if (arch_ptrace_stop_needed()) {
2241 /*
2242 * The arch code has something special to do before a
2243 * ptrace stop. This is allowed to block, e.g. for faults
2244 * on user stack pages. We can't keep the siglock while
2245 * calling arch_ptrace_stop, so we must release it now.
2246 * To preserve proper semantics, we must do this before
2247 * any signal bookkeeping like checking group_stop_count.
2248 */
2249 spin_unlock_irq(&current->sighand->siglock);
2250 arch_ptrace_stop();
2251 spin_lock_irq(&current->sighand->siglock);
2252 }
2253
2254 /*
2255 * After this point ptrace_signal_wake_up or signal_wake_up
2256 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2257 * signal comes in. Handle previous ptrace_unlinks and fatal
2258 * signals here to prevent ptrace_stop sleeping in schedule.
2259 */
2260 if (!current->ptrace || __fatal_signal_pending(current))
2261 return exit_code;
2262
2263 set_special_state(TASK_TRACED);
2264 current->jobctl |= JOBCTL_TRACED;
2265
2266 /*
2267 * We're committing to trapping. TRACED should be visible before
2268 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2269 * Also, transition to TRACED and updates to ->jobctl should be
2270 * atomic with respect to siglock and should be done after the arch
2271 * hook as siglock is released and regrabbed across it.
2272 *
2273 * TRACER TRACEE
2274 *
2275 * ptrace_attach()
2276 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2277 * do_wait()
2278 * set_current_state() smp_wmb();
2279 * ptrace_do_wait()
2280 * wait_task_stopped()
2281 * task_stopped_code()
2282 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2283 */
2284 smp_wmb();
2285
2286 current->ptrace_message = message;
2287 current->last_siginfo = info;
2288 current->exit_code = exit_code;
2289
2290 /*
2291 * If @why is CLD_STOPPED, we're trapping to participate in a group
2292 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2293 * across siglock relocks since INTERRUPT was scheduled, PENDING
2294 * could be clear now. We act as if SIGCONT is received after
2295 * TASK_TRACED is entered - ignore it.
2296 */
2297 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2298 gstop_done = task_participate_group_stop(current);
2299
2300 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2301 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2303 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304
2305 /* entering a trap, clear TRAPPING */
2306 task_clear_jobctl_trapping(current);
2307
2308 spin_unlock_irq(&current->sighand->siglock);
2309 read_lock(&tasklist_lock);
2310 /*
2311 * Notify parents of the stop.
2312 *
2313 * While ptraced, there are two parents - the ptracer and
2314 * the real_parent of the group_leader. The ptracer should
2315 * know about every stop while the real parent is only
2316 * interested in the completion of group stop. The states
2317 * for the two don't interact with each other. Notify
2318 * separately unless they're gonna be duplicates.
2319 */
2320 if (current->ptrace)
2321 do_notify_parent_cldstop(current, true, why);
2322 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2323 do_notify_parent_cldstop(current, false, why);
2324
2325 /*
2326 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2327 * One a PREEMPTION kernel this can result in preemption requirement
2328 * which will be fulfilled after read_unlock() and the ptracer will be
2329 * put on the CPU.
2330 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2331 * this task wait in schedule(). If this task gets preempted then it
2332 * remains enqueued on the runqueue. The ptracer will observe this and
2333 * then sleep for a delay of one HZ tick. In the meantime this task
2334 * gets scheduled, enters schedule() and will wait for the ptracer.
2335 *
2336 * This preemption point is not bad from a correctness point of
2337 * view but extends the runtime by one HZ tick time due to the
2338 * ptracer's sleep. The preempt-disable section ensures that there
2339 * will be no preemption between unlock and schedule() and so
2340 * improving the performance since the ptracer will observe that
2341 * the tracee is scheduled out once it gets on the CPU.
2342 *
2343 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2344 * Therefore the task can be preempted after do_notify_parent_cldstop()
2345 * before unlocking tasklist_lock so there is no benefit in doing this.
2346 *
2347 * In fact disabling preemption is harmful on PREEMPT_RT because
2348 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2349 * with preemption disabled due to the 'sleeping' spinlock
2350 * substitution of RT.
2351 */
2352 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353 preempt_disable();
2354 read_unlock(&tasklist_lock);
2355 cgroup_enter_frozen();
2356 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2357 preempt_enable_no_resched();
2358 schedule();
2359 cgroup_leave_frozen(true);
2360
2361 /*
2362 * We are back. Now reacquire the siglock before touching
2363 * last_siginfo, so that we are sure to have synchronized with
2364 * any signal-sending on another CPU that wants to examine it.
2365 */
2366 spin_lock_irq(&current->sighand->siglock);
2367 exit_code = current->exit_code;
2368 current->last_siginfo = NULL;
2369 current->ptrace_message = 0;
2370 current->exit_code = 0;
2371
2372 /* LISTENING can be set only during STOP traps, clear it */
2373 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374
2375 /*
2376 * Queued signals ignored us while we were stopped for tracing.
2377 * So check for any that we should take before resuming user mode.
2378 * This sets TIF_SIGPENDING, but never clears it.
2379 */
2380 recalc_sigpending_tsk(current);
2381 return exit_code;
2382 }
2383
2384 static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385 {
2386 kernel_siginfo_t info;
2387
2388 clear_siginfo(&info);
2389 info.si_signo = signr;
2390 info.si_code = exit_code;
2391 info.si_pid = task_pid_vnr(current);
2392 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393
2394 /* Let the debugger run. */
2395 return ptrace_stop(exit_code, why, message, &info);
2396 }
2397
2398 int ptrace_notify(int exit_code, unsigned long message)
2399 {
2400 int signr;
2401
2402 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2403 if (unlikely(task_work_pending(current)))
2404 task_work_run();
2405
2406 spin_lock_irq(&current->sighand->siglock);
2407 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2408 spin_unlock_irq(&current->sighand->siglock);
2409 return signr;
2410 }
2411
2412 /**
2413 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2414 * @signr: signr causing group stop if initiating
2415 *
2416 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2417 * and participate in it. If already set, participate in the existing
2418 * group stop. If participated in a group stop (and thus slept), %true is
2419 * returned with siglock released.
2420 *
2421 * If ptraced, this function doesn't handle stop itself. Instead,
2422 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2423 * untouched. The caller must ensure that INTERRUPT trap handling takes
2424 * places afterwards.
2425 *
2426 * CONTEXT:
2427 * Must be called with @current->sighand->siglock held, which is released
2428 * on %true return.
2429 *
2430 * RETURNS:
2431 * %false if group stop is already cancelled or ptrace trap is scheduled.
2432 * %true if participated in group stop.
2433 */
2434 static bool do_signal_stop(int signr)
2435 __releases(&current->sighand->siglock)
2436 {
2437 struct signal_struct *sig = current->signal;
2438
2439 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2440 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2441 struct task_struct *t;
2442
2443 /* signr will be recorded in task->jobctl for retries */
2444 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445
2446 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2447 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2448 unlikely(sig->group_exec_task))
2449 return false;
2450 /*
2451 * There is no group stop already in progress. We must
2452 * initiate one now.
2453 *
2454 * While ptraced, a task may be resumed while group stop is
2455 * still in effect and then receive a stop signal and
2456 * initiate another group stop. This deviates from the
2457 * usual behavior as two consecutive stop signals can't
2458 * cause two group stops when !ptraced. That is why we
2459 * also check !task_is_stopped(t) below.
2460 *
2461 * The condition can be distinguished by testing whether
2462 * SIGNAL_STOP_STOPPED is already set. Don't generate
2463 * group_exit_code in such case.
2464 *
2465 * This is not necessary for SIGNAL_STOP_CONTINUED because
2466 * an intervening stop signal is required to cause two
2467 * continued events regardless of ptrace.
2468 */
2469 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2470 sig->group_exit_code = signr;
2471
2472 sig->group_stop_count = 0;
2473 if (task_set_jobctl_pending(current, signr | gstop))
2474 sig->group_stop_count++;
2475
2476 for_other_threads(current, t) {
2477 /*
2478 * Setting state to TASK_STOPPED for a group
2479 * stop is always done with the siglock held,
2480 * so this check has no races.
2481 */
2482 if (!task_is_stopped(t) &&
2483 task_set_jobctl_pending(t, signr | gstop)) {
2484 sig->group_stop_count++;
2485 if (likely(!(t->ptrace & PT_SEIZED)))
2486 signal_wake_up(t, 0);
2487 else
2488 ptrace_trap_notify(t);
2489 }
2490 }
2491 }
2492
2493 if (likely(!current->ptrace)) {
2494 int notify = 0;
2495
2496 /*
2497 * If there are no other threads in the group, or if there
2498 * is a group stop in progress and we are the last to stop,
2499 * report to the parent.
2500 */
2501 if (task_participate_group_stop(current))
2502 notify = CLD_STOPPED;
2503
2504 current->jobctl |= JOBCTL_STOPPED;
2505 set_special_state(TASK_STOPPED);
2506 spin_unlock_irq(&current->sighand->siglock);
2507
2508 /*
2509 * Notify the parent of the group stop completion. Because
2510 * we're not holding either the siglock or tasklist_lock
2511 * here, ptracer may attach inbetween; however, this is for
2512 * group stop and should always be delivered to the real
2513 * parent of the group leader. The new ptracer will get
2514 * its notification when this task transitions into
2515 * TASK_TRACED.
2516 */
2517 if (notify) {
2518 read_lock(&tasklist_lock);
2519 do_notify_parent_cldstop(current, false, notify);
2520 read_unlock(&tasklist_lock);
2521 }
2522
2523 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2524 cgroup_enter_frozen();
2525 schedule();
2526 return true;
2527 } else {
2528 /*
2529 * While ptraced, group stop is handled by STOP trap.
2530 * Schedule it and let the caller deal with it.
2531 */
2532 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2533 return false;
2534 }
2535 }
2536
2537 /**
2538 * do_jobctl_trap - take care of ptrace jobctl traps
2539 *
2540 * When PT_SEIZED, it's used for both group stop and explicit
2541 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2542 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2543 * the stop signal; otherwise, %SIGTRAP.
2544 *
2545 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2546 * number as exit_code and no siginfo.
2547 *
2548 * CONTEXT:
2549 * Must be called with @current->sighand->siglock held, which may be
2550 * released and re-acquired before returning with intervening sleep.
2551 */
2552 static void do_jobctl_trap(void)
2553 {
2554 struct signal_struct *signal = current->signal;
2555 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556
2557 if (current->ptrace & PT_SEIZED) {
2558 if (!signal->group_stop_count &&
2559 !(signal->flags & SIGNAL_STOP_STOPPED))
2560 signr = SIGTRAP;
2561 WARN_ON_ONCE(!signr);
2562 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563 CLD_STOPPED, 0);
2564 } else {
2565 WARN_ON_ONCE(!signr);
2566 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2567 }
2568 }
2569
2570 /**
2571 * do_freezer_trap - handle the freezer jobctl trap
2572 *
2573 * Puts the task into frozen state, if only the task is not about to quit.
2574 * In this case it drops JOBCTL_TRAP_FREEZE.
2575 *
2576 * CONTEXT:
2577 * Must be called with @current->sighand->siglock held,
2578 * which is always released before returning.
2579 */
2580 static void do_freezer_trap(void)
2581 __releases(&current->sighand->siglock)
2582 {
2583 /*
2584 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2585 * let's make another loop to give it a chance to be handled.
2586 * In any case, we'll return back.
2587 */
2588 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2589 JOBCTL_TRAP_FREEZE) {
2590 spin_unlock_irq(&current->sighand->siglock);
2591 return;
2592 }
2593
2594 /*
2595 * Now we're sure that there is no pending fatal signal and no
2596 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2597 * immediately (if there is a non-fatal signal pending), and
2598 * put the task into sleep.
2599 */
2600 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2601 clear_thread_flag(TIF_SIGPENDING);
2602 spin_unlock_irq(&current->sighand->siglock);
2603 cgroup_enter_frozen();
2604 schedule();
2605 }
2606
2607 static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608 {
2609 /*
2610 * We do not check sig_kernel_stop(signr) but set this marker
2611 * unconditionally because we do not know whether debugger will
2612 * change signr. This flag has no meaning unless we are going
2613 * to stop after return from ptrace_stop(). In this case it will
2614 * be checked in do_signal_stop(), we should only stop if it was
2615 * not cleared by SIGCONT while we were sleeping. See also the
2616 * comment in dequeue_signal().
2617 */
2618 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2619 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2620
2621 /* We're back. Did the debugger cancel the sig? */
2622 if (signr == 0)
2623 return signr;
2624
2625 /*
2626 * Update the siginfo structure if the signal has
2627 * changed. If the debugger wanted something
2628 * specific in the siginfo structure then it should
2629 * have updated *info via PTRACE_SETSIGINFO.
2630 */
2631 if (signr != info->si_signo) {
2632 clear_siginfo(info);
2633 info->si_signo = signr;
2634 info->si_errno = 0;
2635 info->si_code = SI_USER;
2636 rcu_read_lock();
2637 info->si_pid = task_pid_vnr(current->parent);
2638 info->si_uid = from_kuid_munged(current_user_ns(),
2639 task_uid(current->parent));
2640 rcu_read_unlock();
2641 }
2642
2643 /* If the (new) signal is now blocked, requeue it. */
2644 if (sigismember(&current->blocked, signr) ||
2645 fatal_signal_pending(current)) {
2646 send_signal_locked(signr, info, current, type);
2647 signr = 0;
2648 }
2649
2650 return signr;
2651 }
2652
2653 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2654 {
2655 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2656 case SIL_FAULT:
2657 case SIL_FAULT_TRAPNO:
2658 case SIL_FAULT_MCEERR:
2659 case SIL_FAULT_BNDERR:
2660 case SIL_FAULT_PKUERR:
2661 case SIL_FAULT_PERF_EVENT:
2662 ksig->info.si_addr = arch_untagged_si_addr(
2663 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664 break;
2665 case SIL_KILL:
2666 case SIL_TIMER:
2667 case SIL_POLL:
2668 case SIL_CHLD:
2669 case SIL_RT:
2670 case SIL_SYS:
2671 break;
2672 }
2673 }
2674
2675 bool get_signal(struct ksignal *ksig)
2676 {
2677 struct sighand_struct *sighand = current->sighand;
2678 struct signal_struct *signal = current->signal;
2679 int signr;
2680
2681 clear_notify_signal();
2682 if (unlikely(task_work_pending(current)))
2683 task_work_run();
2684
2685 if (!task_sigpending(current))
2686 return false;
2687
2688 if (unlikely(uprobe_deny_signal()))
2689 return false;
2690
2691 /*
2692 * Do this once, we can't return to user-mode if freezing() == T.
2693 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2694 * thus do not need another check after return.
2695 */
2696 try_to_freeze();
2697
2698 relock:
2699 spin_lock_irq(&sighand->siglock);
2700
2701 /*
2702 * Every stopped thread goes here after wakeup. Check to see if
2703 * we should notify the parent, prepare_signal(SIGCONT) encodes
2704 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2705 */
2706 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707 int why;
2708
2709 if (signal->flags & SIGNAL_CLD_CONTINUED)
2710 why = CLD_CONTINUED;
2711 else
2712 why = CLD_STOPPED;
2713
2714 signal->flags &= ~SIGNAL_CLD_MASK;
2715
2716 spin_unlock_irq(&sighand->siglock);
2717
2718 /*
2719 * Notify the parent that we're continuing. This event is
2720 * always per-process and doesn't make whole lot of sense
2721 * for ptracers, who shouldn't consume the state via
2722 * wait(2) either, but, for backward compatibility, notify
2723 * the ptracer of the group leader too unless it's gonna be
2724 * a duplicate.
2725 */
2726 read_lock(&tasklist_lock);
2727 do_notify_parent_cldstop(current, false, why);
2728
2729 if (ptrace_reparented(current->group_leader))
2730 do_notify_parent_cldstop(current->group_leader,
2731 true, why);
2732 read_unlock(&tasklist_lock);
2733
2734 goto relock;
2735 }
2736
2737 for (;;) {
2738 struct k_sigaction *ka;
2739 enum pid_type type;
2740
2741 /* Has this task already been marked for death? */
2742 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2743 signal->group_exec_task) {
2744 clear_siginfo(&ksig->info);
2745 ksig->info.si_signo = signr = SIGKILL;
2746 sigdelset(&current->pending.signal, SIGKILL);
2747 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2748 &sighand->action[SIGKILL - 1]);
2749 recalc_sigpending();
2750 goto fatal;
2751 }
2752
2753 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2754 do_signal_stop(0))
2755 goto relock;
2756
2757 if (unlikely(current->jobctl &
2758 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2759 if (current->jobctl & JOBCTL_TRAP_MASK) {
2760 do_jobctl_trap();
2761 spin_unlock_irq(&sighand->siglock);
2762 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2763 do_freezer_trap();
2764
2765 goto relock;
2766 }
2767
2768 /*
2769 * If the task is leaving the frozen state, let's update
2770 * cgroup counters and reset the frozen bit.
2771 */
2772 if (unlikely(cgroup_task_frozen(current))) {
2773 spin_unlock_irq(&sighand->siglock);
2774 cgroup_leave_frozen(false);
2775 goto relock;
2776 }
2777
2778 /*
2779 * Signals generated by the execution of an instruction
2780 * need to be delivered before any other pending signals
2781 * so that the instruction pointer in the signal stack
2782 * frame points to the faulting instruction.
2783 */
2784 type = PIDTYPE_PID;
2785 signr = dequeue_synchronous_signal(&ksig->info);
2786 if (!signr)
2787 signr = dequeue_signal(current, &current->blocked,
2788 &ksig->info, &type);
2789
2790 if (!signr)
2791 break; /* will return 0 */
2792
2793 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2794 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2795 signr = ptrace_signal(signr, &ksig->info, type);
2796 if (!signr)
2797 continue;
2798 }
2799
2800 ka = &sighand->action[signr-1];
2801
2802 /* Trace actually delivered signals. */
2803 trace_signal_deliver(signr, &ksig->info, ka);
2804
2805 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2806 continue;
2807 if (ka->sa.sa_handler != SIG_DFL) {
2808 /* Run the handler. */
2809 ksig->ka = *ka;
2810
2811 if (ka->sa.sa_flags & SA_ONESHOT)
2812 ka->sa.sa_handler = SIG_DFL;
2813
2814 break; /* will return non-zero "signr" value */
2815 }
2816
2817 /*
2818 * Now we are doing the default action for this signal.
2819 */
2820 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2821 continue;
2822
2823 /*
2824 * Global init gets no signals it doesn't want.
2825 * Container-init gets no signals it doesn't want from same
2826 * container.
2827 *
2828 * Note that if global/container-init sees a sig_kernel_only()
2829 * signal here, the signal must have been generated internally
2830 * or must have come from an ancestor namespace. In either
2831 * case, the signal cannot be dropped.
2832 */
2833 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2834 !sig_kernel_only(signr))
2835 continue;
2836
2837 if (sig_kernel_stop(signr)) {
2838 /*
2839 * The default action is to stop all threads in
2840 * the thread group. The job control signals
2841 * do nothing in an orphaned pgrp, but SIGSTOP
2842 * always works. Note that siglock needs to be
2843 * dropped during the call to is_orphaned_pgrp()
2844 * because of lock ordering with tasklist_lock.
2845 * This allows an intervening SIGCONT to be posted.
2846 * We need to check for that and bail out if necessary.
2847 */
2848 if (signr != SIGSTOP) {
2849 spin_unlock_irq(&sighand->siglock);
2850
2851 /* signals can be posted during this window */
2852
2853 if (is_current_pgrp_orphaned())
2854 goto relock;
2855
2856 spin_lock_irq(&sighand->siglock);
2857 }
2858
2859 if (likely(do_signal_stop(ksig->info.si_signo))) {
2860 /* It released the siglock. */
2861 goto relock;
2862 }
2863
2864 /*
2865 * We didn't actually stop, due to a race
2866 * with SIGCONT or something like that.
2867 */
2868 continue;
2869 }
2870
2871 fatal:
2872 spin_unlock_irq(&sighand->siglock);
2873 if (unlikely(cgroup_task_frozen(current)))
2874 cgroup_leave_frozen(true);
2875
2876 /*
2877 * Anything else is fatal, maybe with a core dump.
2878 */
2879 current->flags |= PF_SIGNALED;
2880
2881 if (sig_kernel_coredump(signr)) {
2882 if (print_fatal_signals)
2883 print_fatal_signal(ksig->info.si_signo);
2884 proc_coredump_connector(current);
2885 /*
2886 * If it was able to dump core, this kills all
2887 * other threads in the group and synchronizes with
2888 * their demise. If we lost the race with another
2889 * thread getting here, it set group_exit_code
2890 * first and our do_group_exit call below will use
2891 * that value and ignore the one we pass it.
2892 */
2893 do_coredump(&ksig->info);
2894 }
2895
2896 /*
2897 * PF_USER_WORKER threads will catch and exit on fatal signals
2898 * themselves. They have cleanup that must be performed, so
2899 * we cannot call do_exit() on their behalf.
2900 */
2901 if (current->flags & PF_USER_WORKER)
2902 goto out;
2903
2904 /*
2905 * Death signals, no core dump.
2906 */
2907 do_group_exit(ksig->info.si_signo);
2908 /* NOTREACHED */
2909 }
2910 spin_unlock_irq(&sighand->siglock);
2911 out:
2912 ksig->sig = signr;
2913
2914 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2915 hide_si_addr_tag_bits(ksig);
2916
2917 return ksig->sig > 0;
2918 }
2919
2920 /**
2921 * signal_delivered - called after signal delivery to update blocked signals
2922 * @ksig: kernel signal struct
2923 * @stepping: nonzero if debugger single-step or block-step in use
2924 *
2925 * This function should be called when a signal has successfully been
2926 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2927 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2928 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2929 */
2930 static void signal_delivered(struct ksignal *ksig, int stepping)
2931 {
2932 sigset_t blocked;
2933
2934 /* A signal was successfully delivered, and the
2935 saved sigmask was stored on the signal frame,
2936 and will be restored by sigreturn. So we can
2937 simply clear the restore sigmask flag. */
2938 clear_restore_sigmask();
2939
2940 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2941 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2942 sigaddset(&blocked, ksig->sig);
2943 set_current_blocked(&blocked);
2944 if (current->sas_ss_flags & SS_AUTODISARM)
2945 sas_ss_reset(current);
2946 if (stepping)
2947 ptrace_notify(SIGTRAP, 0);
2948 }
2949
2950 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2951 {
2952 if (failed)
2953 force_sigsegv(ksig->sig);
2954 else
2955 signal_delivered(ksig, stepping);
2956 }
2957
2958 /*
2959 * It could be that complete_signal() picked us to notify about the
2960 * group-wide signal. Other threads should be notified now to take
2961 * the shared signals in @which since we will not.
2962 */
2963 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2964 {
2965 sigset_t retarget;
2966 struct task_struct *t;
2967
2968 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2969 if (sigisemptyset(&retarget))
2970 return;
2971
2972 for_other_threads(tsk, t) {
2973 if (t->flags & PF_EXITING)
2974 continue;
2975
2976 if (!has_pending_signals(&retarget, &t->blocked))
2977 continue;
2978 /* Remove the signals this thread can handle. */
2979 sigandsets(&retarget, &retarget, &t->blocked);
2980
2981 if (!task_sigpending(t))
2982 signal_wake_up(t, 0);
2983
2984 if (sigisemptyset(&retarget))
2985 break;
2986 }
2987 }
2988
2989 void exit_signals(struct task_struct *tsk)
2990 {
2991 int group_stop = 0;
2992 sigset_t unblocked;
2993
2994 /*
2995 * @tsk is about to have PF_EXITING set - lock out users which
2996 * expect stable threadgroup.
2997 */
2998 cgroup_threadgroup_change_begin(tsk);
2999
3000 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3001 sched_mm_cid_exit_signals(tsk);
3002 tsk->flags |= PF_EXITING;
3003 cgroup_threadgroup_change_end(tsk);
3004 return;
3005 }
3006
3007 spin_lock_irq(&tsk->sighand->siglock);
3008 /*
3009 * From now this task is not visible for group-wide signals,
3010 * see wants_signal(), do_signal_stop().
3011 */
3012 sched_mm_cid_exit_signals(tsk);
3013 tsk->flags |= PF_EXITING;
3014
3015 cgroup_threadgroup_change_end(tsk);
3016
3017 if (!task_sigpending(tsk))
3018 goto out;
3019
3020 unblocked = tsk->blocked;
3021 signotset(&unblocked);
3022 retarget_shared_pending(tsk, &unblocked);
3023
3024 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3025 task_participate_group_stop(tsk))
3026 group_stop = CLD_STOPPED;
3027 out:
3028 spin_unlock_irq(&tsk->sighand->siglock);
3029
3030 /*
3031 * If group stop has completed, deliver the notification. This
3032 * should always go to the real parent of the group leader.
3033 */
3034 if (unlikely(group_stop)) {
3035 read_lock(&tasklist_lock);
3036 do_notify_parent_cldstop(tsk, false, group_stop);
3037 read_unlock(&tasklist_lock);
3038 }
3039 }
3040
3041 /*
3042 * System call entry points.
3043 */
3044
3045 /**
3046 * sys_restart_syscall - restart a system call
3047 */
3048 SYSCALL_DEFINE0(restart_syscall)
3049 {
3050 struct restart_block *restart = &current->restart_block;
3051 return restart->fn(restart);
3052 }
3053
3054 long do_no_restart_syscall(struct restart_block *param)
3055 {
3056 return -EINTR;
3057 }
3058
3059 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3060 {
3061 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3062 sigset_t newblocked;
3063 /* A set of now blocked but previously unblocked signals. */
3064 sigandnsets(&newblocked, newset, &current->blocked);
3065 retarget_shared_pending(tsk, &newblocked);
3066 }
3067 tsk->blocked = *newset;
3068 recalc_sigpending();
3069 }
3070
3071 /**
3072 * set_current_blocked - change current->blocked mask
3073 * @newset: new mask
3074 *
3075 * It is wrong to change ->blocked directly, this helper should be used
3076 * to ensure the process can't miss a shared signal we are going to block.
3077 */
3078 void set_current_blocked(sigset_t *newset)
3079 {
3080 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3081 __set_current_blocked(newset);
3082 }
3083
3084 void __set_current_blocked(const sigset_t *newset)
3085 {
3086 struct task_struct *tsk = current;
3087
3088 /*
3089 * In case the signal mask hasn't changed, there is nothing we need
3090 * to do. The current->blocked shouldn't be modified by other task.
3091 */
3092 if (sigequalsets(&tsk->blocked, newset))
3093 return;
3094
3095 spin_lock_irq(&tsk->sighand->siglock);
3096 __set_task_blocked(tsk, newset);
3097 spin_unlock_irq(&tsk->sighand->siglock);
3098 }
3099
3100 /*
3101 * This is also useful for kernel threads that want to temporarily
3102 * (or permanently) block certain signals.
3103 *
3104 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3105 * interface happily blocks "unblockable" signals like SIGKILL
3106 * and friends.
3107 */
3108 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3109 {
3110 struct task_struct *tsk = current;
3111 sigset_t newset;
3112
3113 /* Lockless, only current can change ->blocked, never from irq */
3114 if (oldset)
3115 *oldset = tsk->blocked;
3116
3117 switch (how) {
3118 case SIG_BLOCK:
3119 sigorsets(&newset, &tsk->blocked, set);
3120 break;
3121 case SIG_UNBLOCK:
3122 sigandnsets(&newset, &tsk->blocked, set);
3123 break;
3124 case SIG_SETMASK:
3125 newset = *set;
3126 break;
3127 default:
3128 return -EINVAL;
3129 }
3130
3131 __set_current_blocked(&newset);
3132 return 0;
3133 }
3134 EXPORT_SYMBOL(sigprocmask);
3135
3136 /*
3137 * The api helps set app-provided sigmasks.
3138 *
3139 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3140 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3141 *
3142 * Note that it does set_restore_sigmask() in advance, so it must be always
3143 * paired with restore_saved_sigmask_unless() before return from syscall.
3144 */
3145 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3146 {
3147 sigset_t kmask;
3148
3149 if (!umask)
3150 return 0;
3151 if (sigsetsize != sizeof(sigset_t))
3152 return -EINVAL;
3153 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3154 return -EFAULT;
3155
3156 set_restore_sigmask();
3157 current->saved_sigmask = current->blocked;
3158 set_current_blocked(&kmask);
3159
3160 return 0;
3161 }
3162
3163 #ifdef CONFIG_COMPAT
3164 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3165 size_t sigsetsize)
3166 {
3167 sigset_t kmask;
3168
3169 if (!umask)
3170 return 0;
3171 if (sigsetsize != sizeof(compat_sigset_t))
3172 return -EINVAL;
3173 if (get_compat_sigset(&kmask, umask))
3174 return -EFAULT;
3175
3176 set_restore_sigmask();
3177 current->saved_sigmask = current->blocked;
3178 set_current_blocked(&kmask);
3179
3180 return 0;
3181 }
3182 #endif
3183
3184 /**
3185 * sys_rt_sigprocmask - change the list of currently blocked signals
3186 * @how: whether to add, remove, or set signals
3187 * @nset: stores pending signals
3188 * @oset: previous value of signal mask if non-null
3189 * @sigsetsize: size of sigset_t type
3190 */
3191 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3192 sigset_t __user *, oset, size_t, sigsetsize)
3193 {
3194 sigset_t old_set, new_set;
3195 int error;
3196
3197 /* XXX: Don't preclude handling different sized sigset_t's. */
3198 if (sigsetsize != sizeof(sigset_t))
3199 return -EINVAL;
3200
3201 old_set = current->blocked;
3202
3203 if (nset) {
3204 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3205 return -EFAULT;
3206 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3207
3208 error = sigprocmask(how, &new_set, NULL);
3209 if (error)
3210 return error;
3211 }
3212
3213 if (oset) {
3214 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3215 return -EFAULT;
3216 }
3217
3218 return 0;
3219 }
3220
3221 #ifdef CONFIG_COMPAT
3222 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3223 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3224 {
3225 sigset_t old_set = current->blocked;
3226
3227 /* XXX: Don't preclude handling different sized sigset_t's. */
3228 if (sigsetsize != sizeof(sigset_t))
3229 return -EINVAL;
3230
3231 if (nset) {
3232 sigset_t new_set;
3233 int error;
3234 if (get_compat_sigset(&new_set, nset))
3235 return -EFAULT;
3236 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3237
3238 error = sigprocmask(how, &new_set, NULL);
3239 if (error)
3240 return error;
3241 }
3242 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3243 }
3244 #endif
3245
3246 static void do_sigpending(sigset_t *set)
3247 {
3248 spin_lock_irq(&current->sighand->siglock);
3249 sigorsets(set, &current->pending.signal,
3250 &current->signal->shared_pending.signal);
3251 spin_unlock_irq(&current->sighand->siglock);
3252
3253 /* Outside the lock because only this thread touches it. */
3254 sigandsets(set, &current->blocked, set);
3255 }
3256
3257 /**
3258 * sys_rt_sigpending - examine a pending signal that has been raised
3259 * while blocked
3260 * @uset: stores pending signals
3261 * @sigsetsize: size of sigset_t type or larger
3262 */
3263 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3264 {
3265 sigset_t set;
3266
3267 if (sigsetsize > sizeof(*uset))
3268 return -EINVAL;
3269
3270 do_sigpending(&set);
3271
3272 if (copy_to_user(uset, &set, sigsetsize))
3273 return -EFAULT;
3274
3275 return 0;
3276 }
3277
3278 #ifdef CONFIG_COMPAT
3279 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3280 compat_size_t, sigsetsize)
3281 {
3282 sigset_t set;
3283
3284 if (sigsetsize > sizeof(*uset))
3285 return -EINVAL;
3286
3287 do_sigpending(&set);
3288
3289 return put_compat_sigset(uset, &set, sigsetsize);
3290 }
3291 #endif
3292
3293 static const struct {
3294 unsigned char limit, layout;
3295 } sig_sicodes[] = {
3296 [SIGILL] = { NSIGILL, SIL_FAULT },
3297 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3298 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3299 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3300 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3301 #if defined(SIGEMT)
3302 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3303 #endif
3304 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3305 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3306 [SIGSYS] = { NSIGSYS, SIL_SYS },
3307 };
3308
3309 static bool known_siginfo_layout(unsigned sig, int si_code)
3310 {
3311 if (si_code == SI_KERNEL)
3312 return true;
3313 else if ((si_code > SI_USER)) {
3314 if (sig_specific_sicodes(sig)) {
3315 if (si_code <= sig_sicodes[sig].limit)
3316 return true;
3317 }
3318 else if (si_code <= NSIGPOLL)
3319 return true;
3320 }
3321 else if (si_code >= SI_DETHREAD)
3322 return true;
3323 else if (si_code == SI_ASYNCNL)
3324 return true;
3325 return false;
3326 }
3327
3328 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3329 {
3330 enum siginfo_layout layout = SIL_KILL;
3331 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3332 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3333 (si_code <= sig_sicodes[sig].limit)) {
3334 layout = sig_sicodes[sig].layout;
3335 /* Handle the exceptions */
3336 if ((sig == SIGBUS) &&
3337 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3338 layout = SIL_FAULT_MCEERR;
3339 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3340 layout = SIL_FAULT_BNDERR;
3341 #ifdef SEGV_PKUERR
3342 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3343 layout = SIL_FAULT_PKUERR;
3344 #endif
3345 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3346 layout = SIL_FAULT_PERF_EVENT;
3347 else if (IS_ENABLED(CONFIG_SPARC) &&
3348 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3349 layout = SIL_FAULT_TRAPNO;
3350 else if (IS_ENABLED(CONFIG_ALPHA) &&
3351 ((sig == SIGFPE) ||
3352 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3353 layout = SIL_FAULT_TRAPNO;
3354 }
3355 else if (si_code <= NSIGPOLL)
3356 layout = SIL_POLL;
3357 } else {
3358 if (si_code == SI_TIMER)
3359 layout = SIL_TIMER;
3360 else if (si_code == SI_SIGIO)
3361 layout = SIL_POLL;
3362 else if (si_code < 0)
3363 layout = SIL_RT;
3364 }
3365 return layout;
3366 }
3367
3368 static inline char __user *si_expansion(const siginfo_t __user *info)
3369 {
3370 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3371 }
3372
3373 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3374 {
3375 char __user *expansion = si_expansion(to);
3376 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3377 return -EFAULT;
3378 if (clear_user(expansion, SI_EXPANSION_SIZE))
3379 return -EFAULT;
3380 return 0;
3381 }
3382
3383 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3384 const siginfo_t __user *from)
3385 {
3386 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3387 char __user *expansion = si_expansion(from);
3388 char buf[SI_EXPANSION_SIZE];
3389 int i;
3390 /*
3391 * An unknown si_code might need more than
3392 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3393 * extra bytes are 0. This guarantees copy_siginfo_to_user
3394 * will return this data to userspace exactly.
3395 */
3396 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3397 return -EFAULT;
3398 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3399 if (buf[i] != 0)
3400 return -E2BIG;
3401 }
3402 }
3403 return 0;
3404 }
3405
3406 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3407 const siginfo_t __user *from)
3408 {
3409 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3410 return -EFAULT;
3411 to->si_signo = signo;
3412 return post_copy_siginfo_from_user(to, from);
3413 }
3414
3415 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3416 {
3417 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3418 return -EFAULT;
3419 return post_copy_siginfo_from_user(to, from);
3420 }
3421
3422 #ifdef CONFIG_COMPAT
3423 /**
3424 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3425 * @to: compat siginfo destination
3426 * @from: kernel siginfo source
3427 *
3428 * Note: This function does not work properly for the SIGCHLD on x32, but
3429 * fortunately it doesn't have to. The only valid callers for this function are
3430 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3431 * The latter does not care because SIGCHLD will never cause a coredump.
3432 */
3433 void copy_siginfo_to_external32(struct compat_siginfo *to,
3434 const struct kernel_siginfo *from)
3435 {
3436 memset(to, 0, sizeof(*to));
3437
3438 to->si_signo = from->si_signo;
3439 to->si_errno = from->si_errno;
3440 to->si_code = from->si_code;
3441 switch(siginfo_layout(from->si_signo, from->si_code)) {
3442 case SIL_KILL:
3443 to->si_pid = from->si_pid;
3444 to->si_uid = from->si_uid;
3445 break;
3446 case SIL_TIMER:
3447 to->si_tid = from->si_tid;
3448 to->si_overrun = from->si_overrun;
3449 to->si_int = from->si_int;
3450 break;
3451 case SIL_POLL:
3452 to->si_band = from->si_band;
3453 to->si_fd = from->si_fd;
3454 break;
3455 case SIL_FAULT:
3456 to->si_addr = ptr_to_compat(from->si_addr);
3457 break;
3458 case SIL_FAULT_TRAPNO:
3459 to->si_addr = ptr_to_compat(from->si_addr);
3460 to->si_trapno = from->si_trapno;
3461 break;
3462 case SIL_FAULT_MCEERR:
3463 to->si_addr = ptr_to_compat(from->si_addr);
3464 to->si_addr_lsb = from->si_addr_lsb;
3465 break;
3466 case SIL_FAULT_BNDERR:
3467 to->si_addr = ptr_to_compat(from->si_addr);
3468 to->si_lower = ptr_to_compat(from->si_lower);
3469 to->si_upper = ptr_to_compat(from->si_upper);
3470 break;
3471 case SIL_FAULT_PKUERR:
3472 to->si_addr = ptr_to_compat(from->si_addr);
3473 to->si_pkey = from->si_pkey;
3474 break;
3475 case SIL_FAULT_PERF_EVENT:
3476 to->si_addr = ptr_to_compat(from->si_addr);
3477 to->si_perf_data = from->si_perf_data;
3478 to->si_perf_type = from->si_perf_type;
3479 to->si_perf_flags = from->si_perf_flags;
3480 break;
3481 case SIL_CHLD:
3482 to->si_pid = from->si_pid;
3483 to->si_uid = from->si_uid;
3484 to->si_status = from->si_status;
3485 to->si_utime = from->si_utime;
3486 to->si_stime = from->si_stime;
3487 break;
3488 case SIL_RT:
3489 to->si_pid = from->si_pid;
3490 to->si_uid = from->si_uid;
3491 to->si_int = from->si_int;
3492 break;
3493 case SIL_SYS:
3494 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3495 to->si_syscall = from->si_syscall;
3496 to->si_arch = from->si_arch;
3497 break;
3498 }
3499 }
3500
3501 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3502 const struct kernel_siginfo *from)
3503 {
3504 struct compat_siginfo new;
3505
3506 copy_siginfo_to_external32(&new, from);
3507 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3508 return -EFAULT;
3509 return 0;
3510 }
3511
3512 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3513 const struct compat_siginfo *from)
3514 {
3515 clear_siginfo(to);
3516 to->si_signo = from->si_signo;
3517 to->si_errno = from->si_errno;
3518 to->si_code = from->si_code;
3519 switch(siginfo_layout(from->si_signo, from->si_code)) {
3520 case SIL_KILL:
3521 to->si_pid = from->si_pid;
3522 to->si_uid = from->si_uid;
3523 break;
3524 case SIL_TIMER:
3525 to->si_tid = from->si_tid;
3526 to->si_overrun = from->si_overrun;
3527 to->si_int = from->si_int;
3528 break;
3529 case SIL_POLL:
3530 to->si_band = from->si_band;
3531 to->si_fd = from->si_fd;
3532 break;
3533 case SIL_FAULT:
3534 to->si_addr = compat_ptr(from->si_addr);
3535 break;
3536 case SIL_FAULT_TRAPNO:
3537 to->si_addr = compat_ptr(from->si_addr);
3538 to->si_trapno = from->si_trapno;
3539 break;
3540 case SIL_FAULT_MCEERR:
3541 to->si_addr = compat_ptr(from->si_addr);
3542 to->si_addr_lsb = from->si_addr_lsb;
3543 break;
3544 case SIL_FAULT_BNDERR:
3545 to->si_addr = compat_ptr(from->si_addr);
3546 to->si_lower = compat_ptr(from->si_lower);
3547 to->si_upper = compat_ptr(from->si_upper);
3548 break;
3549 case SIL_FAULT_PKUERR:
3550 to->si_addr = compat_ptr(from->si_addr);
3551 to->si_pkey = from->si_pkey;
3552 break;
3553 case SIL_FAULT_PERF_EVENT:
3554 to->si_addr = compat_ptr(from->si_addr);
3555 to->si_perf_data = from->si_perf_data;
3556 to->si_perf_type = from->si_perf_type;
3557 to->si_perf_flags = from->si_perf_flags;
3558 break;
3559 case SIL_CHLD:
3560 to->si_pid = from->si_pid;
3561 to->si_uid = from->si_uid;
3562 to->si_status = from->si_status;
3563 #ifdef CONFIG_X86_X32_ABI
3564 if (in_x32_syscall()) {
3565 to->si_utime = from->_sifields._sigchld_x32._utime;
3566 to->si_stime = from->_sifields._sigchld_x32._stime;
3567 } else
3568 #endif
3569 {
3570 to->si_utime = from->si_utime;
3571 to->si_stime = from->si_stime;
3572 }
3573 break;
3574 case SIL_RT:
3575 to->si_pid = from->si_pid;
3576 to->si_uid = from->si_uid;
3577 to->si_int = from->si_int;
3578 break;
3579 case SIL_SYS:
3580 to->si_call_addr = compat_ptr(from->si_call_addr);
3581 to->si_syscall = from->si_syscall;
3582 to->si_arch = from->si_arch;
3583 break;
3584 }
3585 return 0;
3586 }
3587
3588 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3589 const struct compat_siginfo __user *ufrom)
3590 {
3591 struct compat_siginfo from;
3592
3593 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3594 return -EFAULT;
3595
3596 from.si_signo = signo;
3597 return post_copy_siginfo_from_user32(to, &from);
3598 }
3599
3600 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3601 const struct compat_siginfo __user *ufrom)
3602 {
3603 struct compat_siginfo from;
3604
3605 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3606 return -EFAULT;
3607
3608 return post_copy_siginfo_from_user32(to, &from);
3609 }
3610 #endif /* CONFIG_COMPAT */
3611
3612 /**
3613 * do_sigtimedwait - wait for queued signals specified in @which
3614 * @which: queued signals to wait for
3615 * @info: if non-null, the signal's siginfo is returned here
3616 * @ts: upper bound on process time suspension
3617 */
3618 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3619 const struct timespec64 *ts)
3620 {
3621 ktime_t *to = NULL, timeout = KTIME_MAX;
3622 struct task_struct *tsk = current;
3623 sigset_t mask = *which;
3624 enum pid_type type;
3625 int sig, ret = 0;
3626
3627 if (ts) {
3628 if (!timespec64_valid(ts))
3629 return -EINVAL;
3630 timeout = timespec64_to_ktime(*ts);
3631 to = &timeout;
3632 }
3633
3634 /*
3635 * Invert the set of allowed signals to get those we want to block.
3636 */
3637 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3638 signotset(&mask);
3639
3640 spin_lock_irq(&tsk->sighand->siglock);
3641 sig = dequeue_signal(tsk, &mask, info, &type);
3642 if (!sig && timeout) {
3643 /*
3644 * None ready, temporarily unblock those we're interested
3645 * while we are sleeping in so that we'll be awakened when
3646 * they arrive. Unblocking is always fine, we can avoid
3647 * set_current_blocked().
3648 */
3649 tsk->real_blocked = tsk->blocked;
3650 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3651 recalc_sigpending();
3652 spin_unlock_irq(&tsk->sighand->siglock);
3653
3654 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3655 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3656 HRTIMER_MODE_REL);
3657 spin_lock_irq(&tsk->sighand->siglock);
3658 __set_task_blocked(tsk, &tsk->real_blocked);
3659 sigemptyset(&tsk->real_blocked);
3660 sig = dequeue_signal(tsk, &mask, info, &type);
3661 }
3662 spin_unlock_irq(&tsk->sighand->siglock);
3663
3664 if (sig)
3665 return sig;
3666 return ret ? -EINTR : -EAGAIN;
3667 }
3668
3669 /**
3670 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3671 * in @uthese
3672 * @uthese: queued signals to wait for
3673 * @uinfo: if non-null, the signal's siginfo is returned here
3674 * @uts: upper bound on process time suspension
3675 * @sigsetsize: size of sigset_t type
3676 */
3677 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3678 siginfo_t __user *, uinfo,
3679 const struct __kernel_timespec __user *, uts,
3680 size_t, sigsetsize)
3681 {
3682 sigset_t these;
3683 struct timespec64 ts;
3684 kernel_siginfo_t info;
3685 int ret;
3686
3687 /* XXX: Don't preclude handling different sized sigset_t's. */
3688 if (sigsetsize != sizeof(sigset_t))
3689 return -EINVAL;
3690
3691 if (copy_from_user(&these, uthese, sizeof(these)))
3692 return -EFAULT;
3693
3694 if (uts) {
3695 if (get_timespec64(&ts, uts))
3696 return -EFAULT;
3697 }
3698
3699 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3700
3701 if (ret > 0 && uinfo) {
3702 if (copy_siginfo_to_user(uinfo, &info))
3703 ret = -EFAULT;
3704 }
3705
3706 return ret;
3707 }
3708
3709 #ifdef CONFIG_COMPAT_32BIT_TIME
3710 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3711 siginfo_t __user *, uinfo,
3712 const struct old_timespec32 __user *, uts,
3713 size_t, sigsetsize)
3714 {
3715 sigset_t these;
3716 struct timespec64 ts;
3717 kernel_siginfo_t info;
3718 int ret;
3719
3720 if (sigsetsize != sizeof(sigset_t))
3721 return -EINVAL;
3722
3723 if (copy_from_user(&these, uthese, sizeof(these)))
3724 return -EFAULT;
3725
3726 if (uts) {
3727 if (get_old_timespec32(&ts, uts))
3728 return -EFAULT;
3729 }
3730
3731 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3732
3733 if (ret > 0 && uinfo) {
3734 if (copy_siginfo_to_user(uinfo, &info))
3735 ret = -EFAULT;
3736 }
3737
3738 return ret;
3739 }
3740 #endif
3741
3742 #ifdef CONFIG_COMPAT
3743 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3744 struct compat_siginfo __user *, uinfo,
3745 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3746 {
3747 sigset_t s;
3748 struct timespec64 t;
3749 kernel_siginfo_t info;
3750 long ret;
3751
3752 if (sigsetsize != sizeof(sigset_t))
3753 return -EINVAL;
3754
3755 if (get_compat_sigset(&s, uthese))
3756 return -EFAULT;
3757
3758 if (uts) {
3759 if (get_timespec64(&t, uts))
3760 return -EFAULT;
3761 }
3762
3763 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3764
3765 if (ret > 0 && uinfo) {
3766 if (copy_siginfo_to_user32(uinfo, &info))
3767 ret = -EFAULT;
3768 }
3769
3770 return ret;
3771 }
3772
3773 #ifdef CONFIG_COMPAT_32BIT_TIME
3774 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3775 struct compat_siginfo __user *, uinfo,
3776 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3777 {
3778 sigset_t s;
3779 struct timespec64 t;
3780 kernel_siginfo_t info;
3781 long ret;
3782
3783 if (sigsetsize != sizeof(sigset_t))
3784 return -EINVAL;
3785
3786 if (get_compat_sigset(&s, uthese))
3787 return -EFAULT;
3788
3789 if (uts) {
3790 if (get_old_timespec32(&t, uts))
3791 return -EFAULT;
3792 }
3793
3794 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3795
3796 if (ret > 0 && uinfo) {
3797 if (copy_siginfo_to_user32(uinfo, &info))
3798 ret = -EFAULT;
3799 }
3800
3801 return ret;
3802 }
3803 #endif
3804 #endif
3805
3806 static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3807 enum pid_type type)
3808 {
3809 clear_siginfo(info);
3810 info->si_signo = sig;
3811 info->si_errno = 0;
3812 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3813 info->si_pid = task_tgid_vnr(current);
3814 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3815 }
3816
3817 /**
3818 * sys_kill - send a signal to a process
3819 * @pid: the PID of the process
3820 * @sig: signal to be sent
3821 */
3822 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3823 {
3824 struct kernel_siginfo info;
3825
3826 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3827
3828 return kill_something_info(sig, &info, pid);
3829 }
3830
3831 /*
3832 * Verify that the signaler and signalee either are in the same pid namespace
3833 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3834 * namespace.
3835 */
3836 static bool access_pidfd_pidns(struct pid *pid)
3837 {
3838 struct pid_namespace *active = task_active_pid_ns(current);
3839 struct pid_namespace *p = ns_of_pid(pid);
3840
3841 for (;;) {
3842 if (!p)
3843 return false;
3844 if (p == active)
3845 break;
3846 p = p->parent;
3847 }
3848
3849 return true;
3850 }
3851
3852 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3853 siginfo_t __user *info)
3854 {
3855 #ifdef CONFIG_COMPAT
3856 /*
3857 * Avoid hooking up compat syscalls and instead handle necessary
3858 * conversions here. Note, this is a stop-gap measure and should not be
3859 * considered a generic solution.
3860 */
3861 if (in_compat_syscall())
3862 return copy_siginfo_from_user32(
3863 kinfo, (struct compat_siginfo __user *)info);
3864 #endif
3865 return copy_siginfo_from_user(kinfo, info);
3866 }
3867
3868 static struct pid *pidfd_to_pid(const struct file *file)
3869 {
3870 struct pid *pid;
3871
3872 pid = pidfd_pid(file);
3873 if (!IS_ERR(pid))
3874 return pid;
3875
3876 return tgid_pidfd_to_pid(file);
3877 }
3878
3879 #define PIDFD_SEND_SIGNAL_FLAGS \
3880 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3881 PIDFD_SIGNAL_PROCESS_GROUP)
3882
3883 /**
3884 * sys_pidfd_send_signal - Signal a process through a pidfd
3885 * @pidfd: file descriptor of the process
3886 * @sig: signal to send
3887 * @info: signal info
3888 * @flags: future flags
3889 *
3890 * Send the signal to the thread group or to the individual thread depending
3891 * on PIDFD_THREAD.
3892 * In the future extension to @flags may be used to override the default scope
3893 * of @pidfd.
3894 *
3895 * Return: 0 on success, negative errno on failure
3896 */
3897 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3898 siginfo_t __user *, info, unsigned int, flags)
3899 {
3900 int ret;
3901 struct fd f;
3902 struct pid *pid;
3903 kernel_siginfo_t kinfo;
3904 enum pid_type type;
3905
3906 /* Enforce flags be set to 0 until we add an extension. */
3907 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3908 return -EINVAL;
3909
3910 /* Ensure that only a single signal scope determining flag is set. */
3911 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3912 return -EINVAL;
3913
3914 f = fdget(pidfd);
3915 if (!f.file)
3916 return -EBADF;
3917
3918 /* Is this a pidfd? */
3919 pid = pidfd_to_pid(f.file);
3920 if (IS_ERR(pid)) {
3921 ret = PTR_ERR(pid);
3922 goto err;
3923 }
3924
3925 ret = -EINVAL;
3926 if (!access_pidfd_pidns(pid))
3927 goto err;
3928
3929 switch (flags) {
3930 case 0:
3931 /* Infer scope from the type of pidfd. */
3932 if (f.file->f_flags & PIDFD_THREAD)
3933 type = PIDTYPE_PID;
3934 else
3935 type = PIDTYPE_TGID;
3936 break;
3937 case PIDFD_SIGNAL_THREAD:
3938 type = PIDTYPE_PID;
3939 break;
3940 case PIDFD_SIGNAL_THREAD_GROUP:
3941 type = PIDTYPE_TGID;
3942 break;
3943 case PIDFD_SIGNAL_PROCESS_GROUP:
3944 type = PIDTYPE_PGID;
3945 break;
3946 }
3947
3948 if (info) {
3949 ret = copy_siginfo_from_user_any(&kinfo, info);
3950 if (unlikely(ret))
3951 goto err;
3952
3953 ret = -EINVAL;
3954 if (unlikely(sig != kinfo.si_signo))
3955 goto err;
3956
3957 /* Only allow sending arbitrary signals to yourself. */
3958 ret = -EPERM;
3959 if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3960 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3961 goto err;
3962 } else {
3963 prepare_kill_siginfo(sig, &kinfo, type);
3964 }
3965
3966 if (type == PIDTYPE_PGID)
3967 ret = kill_pgrp_info(sig, &kinfo, pid);
3968 else
3969 ret = kill_pid_info_type(sig, &kinfo, pid, type);
3970 err:
3971 fdput(f);
3972 return ret;
3973 }
3974
3975 static int
3976 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3977 {
3978 struct task_struct *p;
3979 int error = -ESRCH;
3980
3981 rcu_read_lock();
3982 p = find_task_by_vpid(pid);
3983 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3984 error = check_kill_permission(sig, info, p);
3985 /*
3986 * The null signal is a permissions and process existence
3987 * probe. No signal is actually delivered.
3988 */
3989 if (!error && sig) {
3990 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3991 /*
3992 * If lock_task_sighand() failed we pretend the task
3993 * dies after receiving the signal. The window is tiny,
3994 * and the signal is private anyway.
3995 */
3996 if (unlikely(error == -ESRCH))
3997 error = 0;
3998 }
3999 }
4000 rcu_read_unlock();
4001
4002 return error;
4003 }
4004
4005 static int do_tkill(pid_t tgid, pid_t pid, int sig)
4006 {
4007 struct kernel_siginfo info;
4008
4009 prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4010
4011 return do_send_specific(tgid, pid, sig, &info);
4012 }
4013
4014 /**
4015 * sys_tgkill - send signal to one specific thread
4016 * @tgid: the thread group ID of the thread
4017 * @pid: the PID of the thread
4018 * @sig: signal to be sent
4019 *
4020 * This syscall also checks the @tgid and returns -ESRCH even if the PID
4021 * exists but it's not belonging to the target process anymore. This
4022 * method solves the problem of threads exiting and PIDs getting reused.
4023 */
4024 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4025 {
4026 /* This is only valid for single tasks */
4027 if (pid <= 0 || tgid <= 0)
4028 return -EINVAL;
4029
4030 return do_tkill(tgid, pid, sig);
4031 }
4032
4033 /**
4034 * sys_tkill - send signal to one specific task
4035 * @pid: the PID of the task
4036 * @sig: signal to be sent
4037 *
4038 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4039 */
4040 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4041 {
4042 /* This is only valid for single tasks */
4043 if (pid <= 0)
4044 return -EINVAL;
4045
4046 return do_tkill(0, pid, sig);
4047 }
4048
4049 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4050 {
4051 /* Not even root can pretend to send signals from the kernel.
4052 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4053 */
4054 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4055 (task_pid_vnr(current) != pid))
4056 return -EPERM;
4057
4058 /* POSIX.1b doesn't mention process groups. */
4059 return kill_proc_info(sig, info, pid);
4060 }
4061
4062 /**
4063 * sys_rt_sigqueueinfo - send signal information to a signal
4064 * @pid: the PID of the thread
4065 * @sig: signal to be sent
4066 * @uinfo: signal info to be sent
4067 */
4068 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4069 siginfo_t __user *, uinfo)
4070 {
4071 kernel_siginfo_t info;
4072 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4073 if (unlikely(ret))
4074 return ret;
4075 return do_rt_sigqueueinfo(pid, sig, &info);
4076 }
4077
4078 #ifdef CONFIG_COMPAT
4079 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4080 compat_pid_t, pid,
4081 int, sig,
4082 struct compat_siginfo __user *, uinfo)
4083 {
4084 kernel_siginfo_t info;
4085 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4086 if (unlikely(ret))
4087 return ret;
4088 return do_rt_sigqueueinfo(pid, sig, &info);
4089 }
4090 #endif
4091
4092 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4093 {
4094 /* This is only valid for single tasks */
4095 if (pid <= 0 || tgid <= 0)
4096 return -EINVAL;
4097
4098 /* Not even root can pretend to send signals from the kernel.
4099 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4100 */
4101 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4102 (task_pid_vnr(current) != pid))
4103 return -EPERM;
4104
4105 return do_send_specific(tgid, pid, sig, info);
4106 }
4107
4108 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4109 siginfo_t __user *, uinfo)
4110 {
4111 kernel_siginfo_t info;
4112 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4113 if (unlikely(ret))
4114 return ret;
4115 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4116 }
4117
4118 #ifdef CONFIG_COMPAT
4119 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4120 compat_pid_t, tgid,
4121 compat_pid_t, pid,
4122 int, sig,
4123 struct compat_siginfo __user *, uinfo)
4124 {
4125 kernel_siginfo_t info;
4126 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4127 if (unlikely(ret))
4128 return ret;
4129 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4130 }
4131 #endif
4132
4133 /*
4134 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4135 */
4136 void kernel_sigaction(int sig, __sighandler_t action)
4137 {
4138 spin_lock_irq(&current->sighand->siglock);
4139 current->sighand->action[sig - 1].sa.sa_handler = action;
4140 if (action == SIG_IGN) {
4141 sigset_t mask;
4142
4143 sigemptyset(&mask);
4144 sigaddset(&mask, sig);
4145
4146 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4147 flush_sigqueue_mask(&mask, &current->pending);
4148 recalc_sigpending();
4149 }
4150 spin_unlock_irq(&current->sighand->siglock);
4151 }
4152 EXPORT_SYMBOL(kernel_sigaction);
4153
4154 void __weak sigaction_compat_abi(struct k_sigaction *act,
4155 struct k_sigaction *oact)
4156 {
4157 }
4158
4159 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4160 {
4161 struct task_struct *p = current, *t;
4162 struct k_sigaction *k;
4163 sigset_t mask;
4164
4165 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4166 return -EINVAL;
4167
4168 k = &p->sighand->action[sig-1];
4169
4170 spin_lock_irq(&p->sighand->siglock);
4171 if (k->sa.sa_flags & SA_IMMUTABLE) {
4172 spin_unlock_irq(&p->sighand->siglock);
4173 return -EINVAL;
4174 }
4175 if (oact)
4176 *oact = *k;
4177
4178 /*
4179 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4180 * e.g. by having an architecture use the bit in their uapi.
4181 */
4182 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4183
4184 /*
4185 * Clear unknown flag bits in order to allow userspace to detect missing
4186 * support for flag bits and to allow the kernel to use non-uapi bits
4187 * internally.
4188 */
4189 if (act)
4190 act->sa.sa_flags &= UAPI_SA_FLAGS;
4191 if (oact)
4192 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4193
4194 sigaction_compat_abi(act, oact);
4195
4196 if (act) {
4197 sigdelsetmask(&act->sa.sa_mask,
4198 sigmask(SIGKILL) | sigmask(SIGSTOP));
4199 *k = *act;
4200 /*
4201 * POSIX 3.3.1.3:
4202 * "Setting a signal action to SIG_IGN for a signal that is
4203 * pending shall cause the pending signal to be discarded,
4204 * whether or not it is blocked."
4205 *
4206 * "Setting a signal action to SIG_DFL for a signal that is
4207 * pending and whose default action is to ignore the signal
4208 * (for example, SIGCHLD), shall cause the pending signal to
4209 * be discarded, whether or not it is blocked"
4210 */
4211 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4212 sigemptyset(&mask);
4213 sigaddset(&mask, sig);
4214 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4215 for_each_thread(p, t)
4216 flush_sigqueue_mask(&mask, &t->pending);
4217 }
4218 }
4219
4220 spin_unlock_irq(&p->sighand->siglock);
4221 return 0;
4222 }
4223
4224 #ifdef CONFIG_DYNAMIC_SIGFRAME
4225 static inline void sigaltstack_lock(void)
4226 __acquires(&current->sighand->siglock)
4227 {
4228 spin_lock_irq(&current->sighand->siglock);
4229 }
4230
4231 static inline void sigaltstack_unlock(void)
4232 __releases(&current->sighand->siglock)
4233 {
4234 spin_unlock_irq(&current->sighand->siglock);
4235 }
4236 #else
4237 static inline void sigaltstack_lock(void) { }
4238 static inline void sigaltstack_unlock(void) { }
4239 #endif
4240
4241 static int
4242 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4243 size_t min_ss_size)
4244 {
4245 struct task_struct *t = current;
4246 int ret = 0;
4247
4248 if (oss) {
4249 memset(oss, 0, sizeof(stack_t));
4250 oss->ss_sp = (void __user *) t->sas_ss_sp;
4251 oss->ss_size = t->sas_ss_size;
4252 oss->ss_flags = sas_ss_flags(sp) |
4253 (current->sas_ss_flags & SS_FLAG_BITS);
4254 }
4255
4256 if (ss) {
4257 void __user *ss_sp = ss->ss_sp;
4258 size_t ss_size = ss->ss_size;
4259 unsigned ss_flags = ss->ss_flags;
4260 int ss_mode;
4261
4262 if (unlikely(on_sig_stack(sp)))
4263 return -EPERM;
4264
4265 ss_mode = ss_flags & ~SS_FLAG_BITS;
4266 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4267 ss_mode != 0))
4268 return -EINVAL;
4269
4270 /*
4271 * Return before taking any locks if no actual
4272 * sigaltstack changes were requested.
4273 */
4274 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4275 t->sas_ss_size == ss_size &&
4276 t->sas_ss_flags == ss_flags)
4277 return 0;
4278
4279 sigaltstack_lock();
4280 if (ss_mode == SS_DISABLE) {
4281 ss_size = 0;
4282 ss_sp = NULL;
4283 } else {
4284 if (unlikely(ss_size < min_ss_size))
4285 ret = -ENOMEM;
4286 if (!sigaltstack_size_valid(ss_size))
4287 ret = -ENOMEM;
4288 }
4289 if (!ret) {
4290 t->sas_ss_sp = (unsigned long) ss_sp;
4291 t->sas_ss_size = ss_size;
4292 t->sas_ss_flags = ss_flags;
4293 }
4294 sigaltstack_unlock();
4295 }
4296 return ret;
4297 }
4298
4299 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4300 {
4301 stack_t new, old;
4302 int err;
4303 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4304 return -EFAULT;
4305 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4306 current_user_stack_pointer(),
4307 MINSIGSTKSZ);
4308 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4309 err = -EFAULT;
4310 return err;
4311 }
4312
4313 int restore_altstack(const stack_t __user *uss)
4314 {
4315 stack_t new;
4316 if (copy_from_user(&new, uss, sizeof(stack_t)))
4317 return -EFAULT;
4318 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4319 MINSIGSTKSZ);
4320 /* squash all but EFAULT for now */
4321 return 0;
4322 }
4323
4324 int __save_altstack(stack_t __user *uss, unsigned long sp)
4325 {
4326 struct task_struct *t = current;
4327 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4328 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4329 __put_user(t->sas_ss_size, &uss->ss_size);
4330 return err;
4331 }
4332
4333 #ifdef CONFIG_COMPAT
4334 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4335 compat_stack_t __user *uoss_ptr)
4336 {
4337 stack_t uss, uoss;
4338 int ret;
4339
4340 if (uss_ptr) {
4341 compat_stack_t uss32;
4342 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4343 return -EFAULT;
4344 uss.ss_sp = compat_ptr(uss32.ss_sp);
4345 uss.ss_flags = uss32.ss_flags;
4346 uss.ss_size = uss32.ss_size;
4347 }
4348 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4349 compat_user_stack_pointer(),
4350 COMPAT_MINSIGSTKSZ);
4351 if (ret >= 0 && uoss_ptr) {
4352 compat_stack_t old;
4353 memset(&old, 0, sizeof(old));
4354 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4355 old.ss_flags = uoss.ss_flags;
4356 old.ss_size = uoss.ss_size;
4357 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4358 ret = -EFAULT;
4359 }
4360 return ret;
4361 }
4362
4363 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4364 const compat_stack_t __user *, uss_ptr,
4365 compat_stack_t __user *, uoss_ptr)
4366 {
4367 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4368 }
4369
4370 int compat_restore_altstack(const compat_stack_t __user *uss)
4371 {
4372 int err = do_compat_sigaltstack(uss, NULL);
4373 /* squash all but -EFAULT for now */
4374 return err == -EFAULT ? err : 0;
4375 }
4376
4377 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4378 {
4379 int err;
4380 struct task_struct *t = current;
4381 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4382 &uss->ss_sp) |
4383 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4384 __put_user(t->sas_ss_size, &uss->ss_size);
4385 return err;
4386 }
4387 #endif
4388
4389 #ifdef __ARCH_WANT_SYS_SIGPENDING
4390
4391 /**
4392 * sys_sigpending - examine pending signals
4393 * @uset: where mask of pending signal is returned
4394 */
4395 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4396 {
4397 sigset_t set;
4398
4399 if (sizeof(old_sigset_t) > sizeof(*uset))
4400 return -EINVAL;
4401
4402 do_sigpending(&set);
4403
4404 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4405 return -EFAULT;
4406
4407 return 0;
4408 }
4409
4410 #ifdef CONFIG_COMPAT
4411 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4412 {
4413 sigset_t set;
4414
4415 do_sigpending(&set);
4416
4417 return put_user(set.sig[0], set32);
4418 }
4419 #endif
4420
4421 #endif
4422
4423 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4424 /**
4425 * sys_sigprocmask - examine and change blocked signals
4426 * @how: whether to add, remove, or set signals
4427 * @nset: signals to add or remove (if non-null)
4428 * @oset: previous value of signal mask if non-null
4429 *
4430 * Some platforms have their own version with special arguments;
4431 * others support only sys_rt_sigprocmask.
4432 */
4433
4434 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4435 old_sigset_t __user *, oset)
4436 {
4437 old_sigset_t old_set, new_set;
4438 sigset_t new_blocked;
4439
4440 old_set = current->blocked.sig[0];
4441
4442 if (nset) {
4443 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4444 return -EFAULT;
4445
4446 new_blocked = current->blocked;
4447
4448 switch (how) {
4449 case SIG_BLOCK:
4450 sigaddsetmask(&new_blocked, new_set);
4451 break;
4452 case SIG_UNBLOCK:
4453 sigdelsetmask(&new_blocked, new_set);
4454 break;
4455 case SIG_SETMASK:
4456 new_blocked.sig[0] = new_set;
4457 break;
4458 default:
4459 return -EINVAL;
4460 }
4461
4462 set_current_blocked(&new_blocked);
4463 }
4464
4465 if (oset) {
4466 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4467 return -EFAULT;
4468 }
4469
4470 return 0;
4471 }
4472 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4473
4474 #ifndef CONFIG_ODD_RT_SIGACTION
4475 /**
4476 * sys_rt_sigaction - alter an action taken by a process
4477 * @sig: signal to be sent
4478 * @act: new sigaction
4479 * @oact: used to save the previous sigaction
4480 * @sigsetsize: size of sigset_t type
4481 */
4482 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4483 const struct sigaction __user *, act,
4484 struct sigaction __user *, oact,
4485 size_t, sigsetsize)
4486 {
4487 struct k_sigaction new_sa, old_sa;
4488 int ret;
4489
4490 /* XXX: Don't preclude handling different sized sigset_t's. */
4491 if (sigsetsize != sizeof(sigset_t))
4492 return -EINVAL;
4493
4494 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4495 return -EFAULT;
4496
4497 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4498 if (ret)
4499 return ret;
4500
4501 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4502 return -EFAULT;
4503
4504 return 0;
4505 }
4506 #ifdef CONFIG_COMPAT
4507 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4508 const struct compat_sigaction __user *, act,
4509 struct compat_sigaction __user *, oact,
4510 compat_size_t, sigsetsize)
4511 {
4512 struct k_sigaction new_ka, old_ka;
4513 #ifdef __ARCH_HAS_SA_RESTORER
4514 compat_uptr_t restorer;
4515 #endif
4516 int ret;
4517
4518 /* XXX: Don't preclude handling different sized sigset_t's. */
4519 if (sigsetsize != sizeof(compat_sigset_t))
4520 return -EINVAL;
4521
4522 if (act) {
4523 compat_uptr_t handler;
4524 ret = get_user(handler, &act->sa_handler);
4525 new_ka.sa.sa_handler = compat_ptr(handler);
4526 #ifdef __ARCH_HAS_SA_RESTORER
4527 ret |= get_user(restorer, &act->sa_restorer);
4528 new_ka.sa.sa_restorer = compat_ptr(restorer);
4529 #endif
4530 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4531 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4532 if (ret)
4533 return -EFAULT;
4534 }
4535
4536 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4537 if (!ret && oact) {
4538 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4539 &oact->sa_handler);
4540 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4541 sizeof(oact->sa_mask));
4542 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4543 #ifdef __ARCH_HAS_SA_RESTORER
4544 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4545 &oact->sa_restorer);
4546 #endif
4547 }
4548 return ret;
4549 }
4550 #endif
4551 #endif /* !CONFIG_ODD_RT_SIGACTION */
4552
4553 #ifdef CONFIG_OLD_SIGACTION
4554 SYSCALL_DEFINE3(sigaction, int, sig,
4555 const struct old_sigaction __user *, act,
4556 struct old_sigaction __user *, oact)
4557 {
4558 struct k_sigaction new_ka, old_ka;
4559 int ret;
4560
4561 if (act) {
4562 old_sigset_t mask;
4563 if (!access_ok(act, sizeof(*act)) ||
4564 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4565 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4566 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4567 __get_user(mask, &act->sa_mask))
4568 return -EFAULT;
4569 #ifdef __ARCH_HAS_KA_RESTORER
4570 new_ka.ka_restorer = NULL;
4571 #endif
4572 siginitset(&new_ka.sa.sa_mask, mask);
4573 }
4574
4575 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4576
4577 if (!ret && oact) {
4578 if (!access_ok(oact, sizeof(*oact)) ||
4579 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4580 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4581 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4582 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4583 return -EFAULT;
4584 }
4585
4586 return ret;
4587 }
4588 #endif
4589 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4590 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4591 const struct compat_old_sigaction __user *, act,
4592 struct compat_old_sigaction __user *, oact)
4593 {
4594 struct k_sigaction new_ka, old_ka;
4595 int ret;
4596 compat_old_sigset_t mask;
4597 compat_uptr_t handler, restorer;
4598
4599 if (act) {
4600 if (!access_ok(act, sizeof(*act)) ||
4601 __get_user(handler, &act->sa_handler) ||
4602 __get_user(restorer, &act->sa_restorer) ||
4603 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4604 __get_user(mask, &act->sa_mask))
4605 return -EFAULT;
4606
4607 #ifdef __ARCH_HAS_KA_RESTORER
4608 new_ka.ka_restorer = NULL;
4609 #endif
4610 new_ka.sa.sa_handler = compat_ptr(handler);
4611 new_ka.sa.sa_restorer = compat_ptr(restorer);
4612 siginitset(&new_ka.sa.sa_mask, mask);
4613 }
4614
4615 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4616
4617 if (!ret && oact) {
4618 if (!access_ok(oact, sizeof(*oact)) ||
4619 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4620 &oact->sa_handler) ||
4621 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4622 &oact->sa_restorer) ||
4623 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4624 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4625 return -EFAULT;
4626 }
4627 return ret;
4628 }
4629 #endif
4630
4631 #ifdef CONFIG_SGETMASK_SYSCALL
4632
4633 /*
4634 * For backwards compatibility. Functionality superseded by sigprocmask.
4635 */
4636 SYSCALL_DEFINE0(sgetmask)
4637 {
4638 /* SMP safe */
4639 return current->blocked.sig[0];
4640 }
4641
4642 SYSCALL_DEFINE1(ssetmask, int, newmask)
4643 {
4644 int old = current->blocked.sig[0];
4645 sigset_t newset;
4646
4647 siginitset(&newset, newmask);
4648 set_current_blocked(&newset);
4649
4650 return old;
4651 }
4652 #endif /* CONFIG_SGETMASK_SYSCALL */
4653
4654 #ifdef __ARCH_WANT_SYS_SIGNAL
4655 /*
4656 * For backwards compatibility. Functionality superseded by sigaction.
4657 */
4658 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4659 {
4660 struct k_sigaction new_sa, old_sa;
4661 int ret;
4662
4663 new_sa.sa.sa_handler = handler;
4664 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4665 sigemptyset(&new_sa.sa.sa_mask);
4666
4667 ret = do_sigaction(sig, &new_sa, &old_sa);
4668
4669 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4670 }
4671 #endif /* __ARCH_WANT_SYS_SIGNAL */
4672
4673 #ifdef __ARCH_WANT_SYS_PAUSE
4674
4675 SYSCALL_DEFINE0(pause)
4676 {
4677 while (!signal_pending(current)) {
4678 __set_current_state(TASK_INTERRUPTIBLE);
4679 schedule();
4680 }
4681 return -ERESTARTNOHAND;
4682 }
4683
4684 #endif
4685
4686 static int sigsuspend(sigset_t *set)
4687 {
4688 current->saved_sigmask = current->blocked;
4689 set_current_blocked(set);
4690
4691 while (!signal_pending(current)) {
4692 __set_current_state(TASK_INTERRUPTIBLE);
4693 schedule();
4694 }
4695 set_restore_sigmask();
4696 return -ERESTARTNOHAND;
4697 }
4698
4699 /**
4700 * sys_rt_sigsuspend - replace the signal mask for a value with the
4701 * @unewset value until a signal is received
4702 * @unewset: new signal mask value
4703 * @sigsetsize: size of sigset_t type
4704 */
4705 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4706 {
4707 sigset_t newset;
4708
4709 /* XXX: Don't preclude handling different sized sigset_t's. */
4710 if (sigsetsize != sizeof(sigset_t))
4711 return -EINVAL;
4712
4713 if (copy_from_user(&newset, unewset, sizeof(newset)))
4714 return -EFAULT;
4715 return sigsuspend(&newset);
4716 }
4717
4718 #ifdef CONFIG_COMPAT
4719 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4720 {
4721 sigset_t newset;
4722
4723 /* XXX: Don't preclude handling different sized sigset_t's. */
4724 if (sigsetsize != sizeof(sigset_t))
4725 return -EINVAL;
4726
4727 if (get_compat_sigset(&newset, unewset))
4728 return -EFAULT;
4729 return sigsuspend(&newset);
4730 }
4731 #endif
4732
4733 #ifdef CONFIG_OLD_SIGSUSPEND
4734 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4735 {
4736 sigset_t blocked;
4737 siginitset(&blocked, mask);
4738 return sigsuspend(&blocked);
4739 }
4740 #endif
4741 #ifdef CONFIG_OLD_SIGSUSPEND3
4742 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4743 {
4744 sigset_t blocked;
4745 siginitset(&blocked, mask);
4746 return sigsuspend(&blocked);
4747 }
4748 #endif
4749
4750 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4751 {
4752 return NULL;
4753 }
4754
4755 static inline void siginfo_buildtime_checks(void)
4756 {
4757 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4758
4759 /* Verify the offsets in the two siginfos match */
4760 #define CHECK_OFFSET(field) \
4761 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4762
4763 /* kill */
4764 CHECK_OFFSET(si_pid);
4765 CHECK_OFFSET(si_uid);
4766
4767 /* timer */
4768 CHECK_OFFSET(si_tid);
4769 CHECK_OFFSET(si_overrun);
4770 CHECK_OFFSET(si_value);
4771
4772 /* rt */
4773 CHECK_OFFSET(si_pid);
4774 CHECK_OFFSET(si_uid);
4775 CHECK_OFFSET(si_value);
4776
4777 /* sigchld */
4778 CHECK_OFFSET(si_pid);
4779 CHECK_OFFSET(si_uid);
4780 CHECK_OFFSET(si_status);
4781 CHECK_OFFSET(si_utime);
4782 CHECK_OFFSET(si_stime);
4783
4784 /* sigfault */
4785 CHECK_OFFSET(si_addr);
4786 CHECK_OFFSET(si_trapno);
4787 CHECK_OFFSET(si_addr_lsb);
4788 CHECK_OFFSET(si_lower);
4789 CHECK_OFFSET(si_upper);
4790 CHECK_OFFSET(si_pkey);
4791 CHECK_OFFSET(si_perf_data);
4792 CHECK_OFFSET(si_perf_type);
4793 CHECK_OFFSET(si_perf_flags);
4794
4795 /* sigpoll */
4796 CHECK_OFFSET(si_band);
4797 CHECK_OFFSET(si_fd);
4798
4799 /* sigsys */
4800 CHECK_OFFSET(si_call_addr);
4801 CHECK_OFFSET(si_syscall);
4802 CHECK_OFFSET(si_arch);
4803 #undef CHECK_OFFSET
4804
4805 /* usb asyncio */
4806 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4807 offsetof(struct siginfo, si_addr));
4808 if (sizeof(int) == sizeof(void __user *)) {
4809 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4810 sizeof(void __user *));
4811 } else {
4812 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4813 sizeof_field(struct siginfo, si_uid)) !=
4814 sizeof(void __user *));
4815 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4816 offsetof(struct siginfo, si_uid));
4817 }
4818 #ifdef CONFIG_COMPAT
4819 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4820 offsetof(struct compat_siginfo, si_addr));
4821 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4822 sizeof(compat_uptr_t));
4823 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4824 sizeof_field(struct siginfo, si_pid));
4825 #endif
4826 }
4827
4828 #if defined(CONFIG_SYSCTL)
4829 static struct ctl_table signal_debug_table[] = {
4830 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4831 {
4832 .procname = "exception-trace",
4833 .data = &show_unhandled_signals,
4834 .maxlen = sizeof(int),
4835 .mode = 0644,
4836 .proc_handler = proc_dointvec
4837 },
4838 #endif
4839 { }
4840 };
4841
4842 static int __init init_signal_sysctls(void)
4843 {
4844 register_sysctl_init("debug", signal_debug_table);
4845 return 0;
4846 }
4847 early_initcall(init_signal_sysctls);
4848 #endif /* CONFIG_SYSCTL */
4849
4850 void __init signals_init(void)
4851 {
4852 siginfo_buildtime_checks();
4853
4854 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4855 }
4856
4857 #ifdef CONFIG_KGDB_KDB
4858 #include <linux/kdb.h>
4859 /*
4860 * kdb_send_sig - Allows kdb to send signals without exposing
4861 * signal internals. This function checks if the required locks are
4862 * available before calling the main signal code, to avoid kdb
4863 * deadlocks.
4864 */
4865 void kdb_send_sig(struct task_struct *t, int sig)
4866 {
4867 static struct task_struct *kdb_prev_t;
4868 int new_t, ret;
4869 if (!spin_trylock(&t->sighand->siglock)) {
4870 kdb_printf("Can't do kill command now.\n"
4871 "The sigmask lock is held somewhere else in "
4872 "kernel, try again later\n");
4873 return;
4874 }
4875 new_t = kdb_prev_t != t;
4876 kdb_prev_t = t;
4877 if (!task_is_running(t) && new_t) {
4878 spin_unlock(&t->sighand->siglock);
4879 kdb_printf("Process is not RUNNING, sending a signal from "
4880 "kdb risks deadlock\n"
4881 "on the run queue locks. "
4882 "The signal has _not_ been sent.\n"
4883 "Reissue the kill command if you want to risk "
4884 "the deadlock.\n");
4885 return;
4886 }
4887 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4888 spin_unlock(&t->sighand->siglock);
4889 if (ret)
4890 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4891 sig, t->pid);
4892 else
4893 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4894 }
4895 #endif /* CONFIG_KGDB_KDB */