]> git.ipfire.org Git - people/ms/linux.git/blob - kernel/smpboot.c
Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[people/ms/linux.git] / kernel / smpboot.c
1 /*
2 * Common SMP CPU bringup/teardown functions
3 */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16
17 #include "smpboot.h"
18
19 #ifdef CONFIG_SMP
20
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23 * For the hotplug case we keep the task structs around and reuse
24 * them.
25 */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30 struct task_struct *tsk = per_cpu(idle_threads, cpu);
31
32 if (!tsk)
33 return ERR_PTR(-ENOMEM);
34 init_idle(tsk, cpu);
35 return tsk;
36 }
37
38 void __init idle_thread_set_boot_cpu(void)
39 {
40 per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42
43 /**
44 * idle_init - Initialize the idle thread for a cpu
45 * @cpu: The cpu for which the idle thread should be initialized
46 *
47 * Creates the thread if it does not exist.
48 */
49 static inline void idle_init(unsigned int cpu)
50 {
51 struct task_struct *tsk = per_cpu(idle_threads, cpu);
52
53 if (!tsk) {
54 tsk = fork_idle(cpu);
55 if (IS_ERR(tsk))
56 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57 else
58 per_cpu(idle_threads, cpu) = tsk;
59 }
60 }
61
62 /**
63 * idle_threads_init - Initialize idle threads for all cpus
64 */
65 void __init idle_threads_init(void)
66 {
67 unsigned int cpu, boot_cpu;
68
69 boot_cpu = smp_processor_id();
70
71 for_each_possible_cpu(cpu) {
72 if (cpu != boot_cpu)
73 idle_init(cpu);
74 }
75 }
76 #endif
77
78 #endif /* #ifdef CONFIG_SMP */
79
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82
83 struct smpboot_thread_data {
84 unsigned int cpu;
85 unsigned int status;
86 struct smp_hotplug_thread *ht;
87 };
88
89 enum {
90 HP_THREAD_NONE = 0,
91 HP_THREAD_ACTIVE,
92 HP_THREAD_PARKED,
93 };
94
95 /**
96 * smpboot_thread_fn - percpu hotplug thread loop function
97 * @data: thread data pointer
98 *
99 * Checks for thread stop and park conditions. Calls the necessary
100 * setup, cleanup, park and unpark functions for the registered
101 * thread.
102 *
103 * Returns 1 when the thread should exit, 0 otherwise.
104 */
105 static int smpboot_thread_fn(void *data)
106 {
107 struct smpboot_thread_data *td = data;
108 struct smp_hotplug_thread *ht = td->ht;
109
110 while (1) {
111 set_current_state(TASK_INTERRUPTIBLE);
112 preempt_disable();
113 if (kthread_should_stop()) {
114 __set_current_state(TASK_RUNNING);
115 preempt_enable();
116 /* cleanup must mirror setup */
117 if (ht->cleanup && td->status != HP_THREAD_NONE)
118 ht->cleanup(td->cpu, cpu_online(td->cpu));
119 kfree(td);
120 return 0;
121 }
122
123 if (kthread_should_park()) {
124 __set_current_state(TASK_RUNNING);
125 preempt_enable();
126 if (ht->park && td->status == HP_THREAD_ACTIVE) {
127 BUG_ON(td->cpu != smp_processor_id());
128 ht->park(td->cpu);
129 td->status = HP_THREAD_PARKED;
130 }
131 kthread_parkme();
132 /* We might have been woken for stop */
133 continue;
134 }
135
136 BUG_ON(td->cpu != smp_processor_id());
137
138 /* Check for state change setup */
139 switch (td->status) {
140 case HP_THREAD_NONE:
141 __set_current_state(TASK_RUNNING);
142 preempt_enable();
143 if (ht->setup)
144 ht->setup(td->cpu);
145 td->status = HP_THREAD_ACTIVE;
146 continue;
147
148 case HP_THREAD_PARKED:
149 __set_current_state(TASK_RUNNING);
150 preempt_enable();
151 if (ht->unpark)
152 ht->unpark(td->cpu);
153 td->status = HP_THREAD_ACTIVE;
154 continue;
155 }
156
157 if (!ht->thread_should_run(td->cpu)) {
158 preempt_enable_no_resched();
159 schedule();
160 } else {
161 __set_current_state(TASK_RUNNING);
162 preempt_enable();
163 ht->thread_fn(td->cpu);
164 }
165 }
166 }
167
168 static int
169 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
170 {
171 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172 struct smpboot_thread_data *td;
173
174 if (tsk)
175 return 0;
176
177 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178 if (!td)
179 return -ENOMEM;
180 td->cpu = cpu;
181 td->ht = ht;
182
183 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184 ht->thread_comm);
185 if (IS_ERR(tsk)) {
186 kfree(td);
187 return PTR_ERR(tsk);
188 }
189 get_task_struct(tsk);
190 *per_cpu_ptr(ht->store, cpu) = tsk;
191 if (ht->create) {
192 /*
193 * Make sure that the task has actually scheduled out
194 * into park position, before calling the create
195 * callback. At least the migration thread callback
196 * requires that the task is off the runqueue.
197 */
198 if (!wait_task_inactive(tsk, TASK_PARKED))
199 WARN_ON(1);
200 else
201 ht->create(cpu);
202 }
203 return 0;
204 }
205
206 int smpboot_create_threads(unsigned int cpu)
207 {
208 struct smp_hotplug_thread *cur;
209 int ret = 0;
210
211 mutex_lock(&smpboot_threads_lock);
212 list_for_each_entry(cur, &hotplug_threads, list) {
213 ret = __smpboot_create_thread(cur, cpu);
214 if (ret)
215 break;
216 }
217 mutex_unlock(&smpboot_threads_lock);
218 return ret;
219 }
220
221 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
222 {
223 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
224
225 if (!ht->selfparking)
226 kthread_unpark(tsk);
227 }
228
229 void smpboot_unpark_threads(unsigned int cpu)
230 {
231 struct smp_hotplug_thread *cur;
232
233 mutex_lock(&smpboot_threads_lock);
234 list_for_each_entry(cur, &hotplug_threads, list)
235 if (cpumask_test_cpu(cpu, cur->cpumask))
236 smpboot_unpark_thread(cur, cpu);
237 mutex_unlock(&smpboot_threads_lock);
238 }
239
240 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
241 {
242 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
243
244 if (tsk && !ht->selfparking)
245 kthread_park(tsk);
246 }
247
248 void smpboot_park_threads(unsigned int cpu)
249 {
250 struct smp_hotplug_thread *cur;
251
252 mutex_lock(&smpboot_threads_lock);
253 list_for_each_entry_reverse(cur, &hotplug_threads, list)
254 smpboot_park_thread(cur, cpu);
255 mutex_unlock(&smpboot_threads_lock);
256 }
257
258 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
259 {
260 unsigned int cpu;
261
262 /* We need to destroy also the parked threads of offline cpus */
263 for_each_possible_cpu(cpu) {
264 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
265
266 if (tsk) {
267 kthread_stop(tsk);
268 put_task_struct(tsk);
269 *per_cpu_ptr(ht->store, cpu) = NULL;
270 }
271 }
272 }
273
274 /**
275 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
276 * to hotplug
277 * @plug_thread: Hotplug thread descriptor
278 * @cpumask: The cpumask where threads run
279 *
280 * Creates and starts the threads on all online cpus.
281 */
282 int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
283 const struct cpumask *cpumask)
284 {
285 unsigned int cpu;
286 int ret = 0;
287
288 if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
289 return -ENOMEM;
290 cpumask_copy(plug_thread->cpumask, cpumask);
291
292 get_online_cpus();
293 mutex_lock(&smpboot_threads_lock);
294 for_each_online_cpu(cpu) {
295 ret = __smpboot_create_thread(plug_thread, cpu);
296 if (ret) {
297 smpboot_destroy_threads(plug_thread);
298 free_cpumask_var(plug_thread->cpumask);
299 goto out;
300 }
301 if (cpumask_test_cpu(cpu, cpumask))
302 smpboot_unpark_thread(plug_thread, cpu);
303 }
304 list_add(&plug_thread->list, &hotplug_threads);
305 out:
306 mutex_unlock(&smpboot_threads_lock);
307 put_online_cpus();
308 return ret;
309 }
310 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
311
312 /**
313 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
314 * @plug_thread: Hotplug thread descriptor
315 *
316 * Stops all threads on all possible cpus.
317 */
318 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
319 {
320 get_online_cpus();
321 mutex_lock(&smpboot_threads_lock);
322 list_del(&plug_thread->list);
323 smpboot_destroy_threads(plug_thread);
324 mutex_unlock(&smpboot_threads_lock);
325 put_online_cpus();
326 free_cpumask_var(plug_thread->cpumask);
327 }
328 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
329
330 /**
331 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
332 * @plug_thread: Hotplug thread descriptor
333 * @new: Revised mask to use
334 *
335 * The cpumask field in the smp_hotplug_thread must not be updated directly
336 * by the client, but only by calling this function.
337 * This function can only be called on a registered smp_hotplug_thread.
338 */
339 int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
340 const struct cpumask *new)
341 {
342 struct cpumask *old = plug_thread->cpumask;
343 cpumask_var_t tmp;
344 unsigned int cpu;
345
346 if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
347 return -ENOMEM;
348
349 get_online_cpus();
350 mutex_lock(&smpboot_threads_lock);
351
352 /* Park threads that were exclusively enabled on the old mask. */
353 cpumask_andnot(tmp, old, new);
354 for_each_cpu_and(cpu, tmp, cpu_online_mask)
355 smpboot_park_thread(plug_thread, cpu);
356
357 /* Unpark threads that are exclusively enabled on the new mask. */
358 cpumask_andnot(tmp, new, old);
359 for_each_cpu_and(cpu, tmp, cpu_online_mask)
360 smpboot_unpark_thread(plug_thread, cpu);
361
362 cpumask_copy(old, new);
363
364 mutex_unlock(&smpboot_threads_lock);
365 put_online_cpus();
366
367 free_cpumask_var(tmp);
368
369 return 0;
370 }
371 EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
372
373 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
374
375 /*
376 * Called to poll specified CPU's state, for example, when waiting for
377 * a CPU to come online.
378 */
379 int cpu_report_state(int cpu)
380 {
381 return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
382 }
383
384 /*
385 * If CPU has died properly, set its state to CPU_UP_PREPARE and
386 * return success. Otherwise, return -EBUSY if the CPU died after
387 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN
388 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
389 * to dying. In the latter two cases, the CPU might not be set up
390 * properly, but it is up to the arch-specific code to decide.
391 * Finally, -EIO indicates an unanticipated problem.
392 *
393 * Note that it is permissible to omit this call entirely, as is
394 * done in architectures that do no CPU-hotplug error checking.
395 */
396 int cpu_check_up_prepare(int cpu)
397 {
398 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
399 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
400 return 0;
401 }
402
403 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
404
405 case CPU_POST_DEAD:
406
407 /* The CPU died properly, so just start it up again. */
408 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
409 return 0;
410
411 case CPU_DEAD_FROZEN:
412
413 /*
414 * Timeout during CPU death, so let caller know.
415 * The outgoing CPU completed its processing, but after
416 * cpu_wait_death() timed out and reported the error. The
417 * caller is free to proceed, in which case the state
418 * will be reset properly by cpu_set_state_online().
419 * Proceeding despite this -EBUSY return makes sense
420 * for systems where the outgoing CPUs take themselves
421 * offline, with no post-death manipulation required from
422 * a surviving CPU.
423 */
424 return -EBUSY;
425
426 case CPU_BROKEN:
427
428 /*
429 * The most likely reason we got here is that there was
430 * a timeout during CPU death, and the outgoing CPU never
431 * did complete its processing. This could happen on
432 * a virtualized system if the outgoing VCPU gets preempted
433 * for more than five seconds, and the user attempts to
434 * immediately online that same CPU. Trying again later
435 * might return -EBUSY above, hence -EAGAIN.
436 */
437 return -EAGAIN;
438
439 default:
440
441 /* Should not happen. Famous last words. */
442 return -EIO;
443 }
444 }
445
446 /*
447 * Mark the specified CPU online.
448 *
449 * Note that it is permissible to omit this call entirely, as is
450 * done in architectures that do no CPU-hotplug error checking.
451 */
452 void cpu_set_state_online(int cpu)
453 {
454 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
455 }
456
457 #ifdef CONFIG_HOTPLUG_CPU
458
459 /*
460 * Wait for the specified CPU to exit the idle loop and die.
461 */
462 bool cpu_wait_death(unsigned int cpu, int seconds)
463 {
464 int jf_left = seconds * HZ;
465 int oldstate;
466 bool ret = true;
467 int sleep_jf = 1;
468
469 might_sleep();
470
471 /* The outgoing CPU will normally get done quite quickly. */
472 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
473 goto update_state;
474 udelay(5);
475
476 /* But if the outgoing CPU dawdles, wait increasingly long times. */
477 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
478 schedule_timeout_uninterruptible(sleep_jf);
479 jf_left -= sleep_jf;
480 if (jf_left <= 0)
481 break;
482 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
483 }
484 update_state:
485 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
486 if (oldstate == CPU_DEAD) {
487 /* Outgoing CPU died normally, update state. */
488 smp_mb(); /* atomic_read() before update. */
489 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
490 } else {
491 /* Outgoing CPU still hasn't died, set state accordingly. */
492 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
493 oldstate, CPU_BROKEN) != oldstate)
494 goto update_state;
495 ret = false;
496 }
497 return ret;
498 }
499
500 /*
501 * Called by the outgoing CPU to report its successful death. Return
502 * false if this report follows the surviving CPU's timing out.
503 *
504 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
505 * timed out. This approach allows architectures to omit calls to
506 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
507 * the next cpu_wait_death()'s polling loop.
508 */
509 bool cpu_report_death(void)
510 {
511 int oldstate;
512 int newstate;
513 int cpu = smp_processor_id();
514
515 do {
516 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
517 if (oldstate != CPU_BROKEN)
518 newstate = CPU_DEAD;
519 else
520 newstate = CPU_DEAD_FROZEN;
521 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
522 oldstate, newstate) != oldstate);
523 return newstate == CPU_DEAD;
524 }
525
526 #endif /* #ifdef CONFIG_HOTPLUG_CPU */