]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/sys.c
x86/speculation: Provide IBPB always command line options
[thirdparty/kernel/stable.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
50
51 #include <linux/sched.h>
52 #include <linux/rcupdate.h>
53 #include <linux/uidgid.h>
54 #include <linux/cred.h>
55
56 #include <linux/nospec.h>
57
58 #include <linux/kmsg_dump.h>
59 /* Move somewhere else to avoid recompiling? */
60 #include <generated/utsrelease.h>
61
62 #include <asm/uaccess.h>
63 #include <asm/io.h>
64 #include <asm/unistd.h>
65
66 /* Hardening for Spectre-v1 */
67 #include <linux/nospec.h>
68
69 #ifndef SET_UNALIGN_CTL
70 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
71 #endif
72 #ifndef GET_UNALIGN_CTL
73 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
74 #endif
75 #ifndef SET_FPEMU_CTL
76 # define SET_FPEMU_CTL(a,b) (-EINVAL)
77 #endif
78 #ifndef GET_FPEMU_CTL
79 # define GET_FPEMU_CTL(a,b) (-EINVAL)
80 #endif
81 #ifndef SET_FPEXC_CTL
82 # define SET_FPEXC_CTL(a,b) (-EINVAL)
83 #endif
84 #ifndef GET_FPEXC_CTL
85 # define GET_FPEXC_CTL(a,b) (-EINVAL)
86 #endif
87 #ifndef GET_ENDIAN
88 # define GET_ENDIAN(a,b) (-EINVAL)
89 #endif
90 #ifndef SET_ENDIAN
91 # define SET_ENDIAN(a,b) (-EINVAL)
92 #endif
93 #ifndef GET_TSC_CTL
94 # define GET_TSC_CTL(a) (-EINVAL)
95 #endif
96 #ifndef SET_TSC_CTL
97 # define SET_TSC_CTL(a) (-EINVAL)
98 #endif
99
100 /*
101 * this is where the system-wide overflow UID and GID are defined, for
102 * architectures that now have 32-bit UID/GID but didn't in the past
103 */
104
105 int overflowuid = DEFAULT_OVERFLOWUID;
106 int overflowgid = DEFAULT_OVERFLOWGID;
107
108 EXPORT_SYMBOL(overflowuid);
109 EXPORT_SYMBOL(overflowgid);
110
111 /*
112 * the same as above, but for filesystems which can only store a 16-bit
113 * UID and GID. as such, this is needed on all architectures
114 */
115
116 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
117 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
118
119 EXPORT_SYMBOL(fs_overflowuid);
120 EXPORT_SYMBOL(fs_overflowgid);
121
122 /*
123 * Returns true if current's euid is same as p's uid or euid,
124 * or has CAP_SYS_NICE to p's user_ns.
125 *
126 * Called with rcu_read_lock, creds are safe
127 */
128 static bool set_one_prio_perm(struct task_struct *p)
129 {
130 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
131
132 if (uid_eq(pcred->uid, cred->euid) ||
133 uid_eq(pcred->euid, cred->euid))
134 return true;
135 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
136 return true;
137 return false;
138 }
139
140 /*
141 * set the priority of a task
142 * - the caller must hold the RCU read lock
143 */
144 static int set_one_prio(struct task_struct *p, int niceval, int error)
145 {
146 int no_nice;
147
148 if (!set_one_prio_perm(p)) {
149 error = -EPERM;
150 goto out;
151 }
152 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
153 error = -EACCES;
154 goto out;
155 }
156 no_nice = security_task_setnice(p, niceval);
157 if (no_nice) {
158 error = no_nice;
159 goto out;
160 }
161 if (error == -ESRCH)
162 error = 0;
163 set_user_nice(p, niceval);
164 out:
165 return error;
166 }
167
168 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
169 {
170 struct task_struct *g, *p;
171 struct user_struct *user;
172 const struct cred *cred = current_cred();
173 int error = -EINVAL;
174 struct pid *pgrp;
175 kuid_t uid;
176
177 if (which > PRIO_USER || which < PRIO_PROCESS)
178 goto out;
179
180 /* normalize: avoid signed division (rounding problems) */
181 error = -ESRCH;
182 if (niceval < MIN_NICE)
183 niceval = MIN_NICE;
184 if (niceval > MAX_NICE)
185 niceval = MAX_NICE;
186
187 rcu_read_lock();
188 read_lock(&tasklist_lock);
189 switch (which) {
190 case PRIO_PROCESS:
191 if (who)
192 p = find_task_by_vpid(who);
193 else
194 p = current;
195 if (p)
196 error = set_one_prio(p, niceval, error);
197 break;
198 case PRIO_PGRP:
199 if (who)
200 pgrp = find_vpid(who);
201 else
202 pgrp = task_pgrp(current);
203 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
204 error = set_one_prio(p, niceval, error);
205 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
206 break;
207 case PRIO_USER:
208 uid = make_kuid(cred->user_ns, who);
209 user = cred->user;
210 if (!who)
211 uid = cred->uid;
212 else if (!uid_eq(uid, cred->uid) &&
213 !(user = find_user(uid)))
214 goto out_unlock; /* No processes for this user */
215
216 do_each_thread(g, p) {
217 if (uid_eq(task_uid(p), uid))
218 error = set_one_prio(p, niceval, error);
219 } while_each_thread(g, p);
220 if (!uid_eq(uid, cred->uid))
221 free_uid(user); /* For find_user() */
222 break;
223 }
224 out_unlock:
225 read_unlock(&tasklist_lock);
226 rcu_read_unlock();
227 out:
228 return error;
229 }
230
231 /*
232 * Ugh. To avoid negative return values, "getpriority()" will
233 * not return the normal nice-value, but a negated value that
234 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
235 * to stay compatible.
236 */
237 SYSCALL_DEFINE2(getpriority, int, which, int, who)
238 {
239 struct task_struct *g, *p;
240 struct user_struct *user;
241 const struct cred *cred = current_cred();
242 long niceval, retval = -ESRCH;
243 struct pid *pgrp;
244 kuid_t uid;
245
246 if (which > PRIO_USER || which < PRIO_PROCESS)
247 return -EINVAL;
248
249 rcu_read_lock();
250 read_lock(&tasklist_lock);
251 switch (which) {
252 case PRIO_PROCESS:
253 if (who)
254 p = find_task_by_vpid(who);
255 else
256 p = current;
257 if (p) {
258 niceval = nice_to_rlimit(task_nice(p));
259 if (niceval > retval)
260 retval = niceval;
261 }
262 break;
263 case PRIO_PGRP:
264 if (who)
265 pgrp = find_vpid(who);
266 else
267 pgrp = task_pgrp(current);
268 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
269 niceval = nice_to_rlimit(task_nice(p));
270 if (niceval > retval)
271 retval = niceval;
272 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
273 break;
274 case PRIO_USER:
275 uid = make_kuid(cred->user_ns, who);
276 user = cred->user;
277 if (!who)
278 uid = cred->uid;
279 else if (!uid_eq(uid, cred->uid) &&
280 !(user = find_user(uid)))
281 goto out_unlock; /* No processes for this user */
282
283 do_each_thread(g, p) {
284 if (uid_eq(task_uid(p), uid)) {
285 niceval = nice_to_rlimit(task_nice(p));
286 if (niceval > retval)
287 retval = niceval;
288 }
289 } while_each_thread(g, p);
290 if (!uid_eq(uid, cred->uid))
291 free_uid(user); /* for find_user() */
292 break;
293 }
294 out_unlock:
295 read_unlock(&tasklist_lock);
296 rcu_read_unlock();
297
298 return retval;
299 }
300
301 /*
302 * Unprivileged users may change the real gid to the effective gid
303 * or vice versa. (BSD-style)
304 *
305 * If you set the real gid at all, or set the effective gid to a value not
306 * equal to the real gid, then the saved gid is set to the new effective gid.
307 *
308 * This makes it possible for a setgid program to completely drop its
309 * privileges, which is often a useful assertion to make when you are doing
310 * a security audit over a program.
311 *
312 * The general idea is that a program which uses just setregid() will be
313 * 100% compatible with BSD. A program which uses just setgid() will be
314 * 100% compatible with POSIX with saved IDs.
315 *
316 * SMP: There are not races, the GIDs are checked only by filesystem
317 * operations (as far as semantic preservation is concerned).
318 */
319 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
320 {
321 struct user_namespace *ns = current_user_ns();
322 const struct cred *old;
323 struct cred *new;
324 int retval;
325 kgid_t krgid, kegid;
326
327 krgid = make_kgid(ns, rgid);
328 kegid = make_kgid(ns, egid);
329
330 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
331 return -EINVAL;
332 if ((egid != (gid_t) -1) && !gid_valid(kegid))
333 return -EINVAL;
334
335 new = prepare_creds();
336 if (!new)
337 return -ENOMEM;
338 old = current_cred();
339
340 retval = -EPERM;
341 if (rgid != (gid_t) -1) {
342 if (gid_eq(old->gid, krgid) ||
343 gid_eq(old->egid, krgid) ||
344 ns_capable(old->user_ns, CAP_SETGID))
345 new->gid = krgid;
346 else
347 goto error;
348 }
349 if (egid != (gid_t) -1) {
350 if (gid_eq(old->gid, kegid) ||
351 gid_eq(old->egid, kegid) ||
352 gid_eq(old->sgid, kegid) ||
353 ns_capable(old->user_ns, CAP_SETGID))
354 new->egid = kegid;
355 else
356 goto error;
357 }
358
359 if (rgid != (gid_t) -1 ||
360 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
361 new->sgid = new->egid;
362 new->fsgid = new->egid;
363
364 return commit_creds(new);
365
366 error:
367 abort_creds(new);
368 return retval;
369 }
370
371 /*
372 * setgid() is implemented like SysV w/ SAVED_IDS
373 *
374 * SMP: Same implicit races as above.
375 */
376 SYSCALL_DEFINE1(setgid, gid_t, gid)
377 {
378 struct user_namespace *ns = current_user_ns();
379 const struct cred *old;
380 struct cred *new;
381 int retval;
382 kgid_t kgid;
383
384 kgid = make_kgid(ns, gid);
385 if (!gid_valid(kgid))
386 return -EINVAL;
387
388 new = prepare_creds();
389 if (!new)
390 return -ENOMEM;
391 old = current_cred();
392
393 retval = -EPERM;
394 if (ns_capable(old->user_ns, CAP_SETGID))
395 new->gid = new->egid = new->sgid = new->fsgid = kgid;
396 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
397 new->egid = new->fsgid = kgid;
398 else
399 goto error;
400
401 return commit_creds(new);
402
403 error:
404 abort_creds(new);
405 return retval;
406 }
407
408 /*
409 * change the user struct in a credentials set to match the new UID
410 */
411 static int set_user(struct cred *new)
412 {
413 struct user_struct *new_user;
414
415 new_user = alloc_uid(new->uid);
416 if (!new_user)
417 return -EAGAIN;
418
419 /*
420 * We don't fail in case of NPROC limit excess here because too many
421 * poorly written programs don't check set*uid() return code, assuming
422 * it never fails if called by root. We may still enforce NPROC limit
423 * for programs doing set*uid()+execve() by harmlessly deferring the
424 * failure to the execve() stage.
425 */
426 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
427 new_user != INIT_USER)
428 current->flags |= PF_NPROC_EXCEEDED;
429 else
430 current->flags &= ~PF_NPROC_EXCEEDED;
431
432 free_uid(new->user);
433 new->user = new_user;
434 return 0;
435 }
436
437 /*
438 * Unprivileged users may change the real uid to the effective uid
439 * or vice versa. (BSD-style)
440 *
441 * If you set the real uid at all, or set the effective uid to a value not
442 * equal to the real uid, then the saved uid is set to the new effective uid.
443 *
444 * This makes it possible for a setuid program to completely drop its
445 * privileges, which is often a useful assertion to make when you are doing
446 * a security audit over a program.
447 *
448 * The general idea is that a program which uses just setreuid() will be
449 * 100% compatible with BSD. A program which uses just setuid() will be
450 * 100% compatible with POSIX with saved IDs.
451 */
452 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
453 {
454 struct user_namespace *ns = current_user_ns();
455 const struct cred *old;
456 struct cred *new;
457 int retval;
458 kuid_t kruid, keuid;
459
460 kruid = make_kuid(ns, ruid);
461 keuid = make_kuid(ns, euid);
462
463 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
464 return -EINVAL;
465 if ((euid != (uid_t) -1) && !uid_valid(keuid))
466 return -EINVAL;
467
468 new = prepare_creds();
469 if (!new)
470 return -ENOMEM;
471 old = current_cred();
472
473 retval = -EPERM;
474 if (ruid != (uid_t) -1) {
475 new->uid = kruid;
476 if (!uid_eq(old->uid, kruid) &&
477 !uid_eq(old->euid, kruid) &&
478 !ns_capable(old->user_ns, CAP_SETUID))
479 goto error;
480 }
481
482 if (euid != (uid_t) -1) {
483 new->euid = keuid;
484 if (!uid_eq(old->uid, keuid) &&
485 !uid_eq(old->euid, keuid) &&
486 !uid_eq(old->suid, keuid) &&
487 !ns_capable(old->user_ns, CAP_SETUID))
488 goto error;
489 }
490
491 if (!uid_eq(new->uid, old->uid)) {
492 retval = set_user(new);
493 if (retval < 0)
494 goto error;
495 }
496 if (ruid != (uid_t) -1 ||
497 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
498 new->suid = new->euid;
499 new->fsuid = new->euid;
500
501 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
502 if (retval < 0)
503 goto error;
504
505 return commit_creds(new);
506
507 error:
508 abort_creds(new);
509 return retval;
510 }
511
512 /*
513 * setuid() is implemented like SysV with SAVED_IDS
514 *
515 * Note that SAVED_ID's is deficient in that a setuid root program
516 * like sendmail, for example, cannot set its uid to be a normal
517 * user and then switch back, because if you're root, setuid() sets
518 * the saved uid too. If you don't like this, blame the bright people
519 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
520 * will allow a root program to temporarily drop privileges and be able to
521 * regain them by swapping the real and effective uid.
522 */
523 SYSCALL_DEFINE1(setuid, uid_t, uid)
524 {
525 struct user_namespace *ns = current_user_ns();
526 const struct cred *old;
527 struct cred *new;
528 int retval;
529 kuid_t kuid;
530
531 kuid = make_kuid(ns, uid);
532 if (!uid_valid(kuid))
533 return -EINVAL;
534
535 new = prepare_creds();
536 if (!new)
537 return -ENOMEM;
538 old = current_cred();
539
540 retval = -EPERM;
541 if (ns_capable(old->user_ns, CAP_SETUID)) {
542 new->suid = new->uid = kuid;
543 if (!uid_eq(kuid, old->uid)) {
544 retval = set_user(new);
545 if (retval < 0)
546 goto error;
547 }
548 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
549 goto error;
550 }
551
552 new->fsuid = new->euid = kuid;
553
554 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
555 if (retval < 0)
556 goto error;
557
558 return commit_creds(new);
559
560 error:
561 abort_creds(new);
562 return retval;
563 }
564
565
566 /*
567 * This function implements a generic ability to update ruid, euid,
568 * and suid. This allows you to implement the 4.4 compatible seteuid().
569 */
570 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
571 {
572 struct user_namespace *ns = current_user_ns();
573 const struct cred *old;
574 struct cred *new;
575 int retval;
576 kuid_t kruid, keuid, ksuid;
577
578 kruid = make_kuid(ns, ruid);
579 keuid = make_kuid(ns, euid);
580 ksuid = make_kuid(ns, suid);
581
582 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
583 return -EINVAL;
584
585 if ((euid != (uid_t) -1) && !uid_valid(keuid))
586 return -EINVAL;
587
588 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
589 return -EINVAL;
590
591 new = prepare_creds();
592 if (!new)
593 return -ENOMEM;
594
595 old = current_cred();
596
597 retval = -EPERM;
598 if (!ns_capable(old->user_ns, CAP_SETUID)) {
599 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
600 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
601 goto error;
602 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
603 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
604 goto error;
605 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
606 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
607 goto error;
608 }
609
610 if (ruid != (uid_t) -1) {
611 new->uid = kruid;
612 if (!uid_eq(kruid, old->uid)) {
613 retval = set_user(new);
614 if (retval < 0)
615 goto error;
616 }
617 }
618 if (euid != (uid_t) -1)
619 new->euid = keuid;
620 if (suid != (uid_t) -1)
621 new->suid = ksuid;
622 new->fsuid = new->euid;
623
624 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
625 if (retval < 0)
626 goto error;
627
628 return commit_creds(new);
629
630 error:
631 abort_creds(new);
632 return retval;
633 }
634
635 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
636 {
637 const struct cred *cred = current_cred();
638 int retval;
639 uid_t ruid, euid, suid;
640
641 ruid = from_kuid_munged(cred->user_ns, cred->uid);
642 euid = from_kuid_munged(cred->user_ns, cred->euid);
643 suid = from_kuid_munged(cred->user_ns, cred->suid);
644
645 if (!(retval = put_user(ruid, ruidp)) &&
646 !(retval = put_user(euid, euidp)))
647 retval = put_user(suid, suidp);
648
649 return retval;
650 }
651
652 /*
653 * Same as above, but for rgid, egid, sgid.
654 */
655 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
656 {
657 struct user_namespace *ns = current_user_ns();
658 const struct cred *old;
659 struct cred *new;
660 int retval;
661 kgid_t krgid, kegid, ksgid;
662
663 krgid = make_kgid(ns, rgid);
664 kegid = make_kgid(ns, egid);
665 ksgid = make_kgid(ns, sgid);
666
667 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
668 return -EINVAL;
669 if ((egid != (gid_t) -1) && !gid_valid(kegid))
670 return -EINVAL;
671 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
672 return -EINVAL;
673
674 new = prepare_creds();
675 if (!new)
676 return -ENOMEM;
677 old = current_cred();
678
679 retval = -EPERM;
680 if (!ns_capable(old->user_ns, CAP_SETGID)) {
681 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
682 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
683 goto error;
684 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
685 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
686 goto error;
687 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
688 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
689 goto error;
690 }
691
692 if (rgid != (gid_t) -1)
693 new->gid = krgid;
694 if (egid != (gid_t) -1)
695 new->egid = kegid;
696 if (sgid != (gid_t) -1)
697 new->sgid = ksgid;
698 new->fsgid = new->egid;
699
700 return commit_creds(new);
701
702 error:
703 abort_creds(new);
704 return retval;
705 }
706
707 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
708 {
709 const struct cred *cred = current_cred();
710 int retval;
711 gid_t rgid, egid, sgid;
712
713 rgid = from_kgid_munged(cred->user_ns, cred->gid);
714 egid = from_kgid_munged(cred->user_ns, cred->egid);
715 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
716
717 if (!(retval = put_user(rgid, rgidp)) &&
718 !(retval = put_user(egid, egidp)))
719 retval = put_user(sgid, sgidp);
720
721 return retval;
722 }
723
724
725 /*
726 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
727 * is used for "access()" and for the NFS daemon (letting nfsd stay at
728 * whatever uid it wants to). It normally shadows "euid", except when
729 * explicitly set by setfsuid() or for access..
730 */
731 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
732 {
733 const struct cred *old;
734 struct cred *new;
735 uid_t old_fsuid;
736 kuid_t kuid;
737
738 old = current_cred();
739 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
740
741 kuid = make_kuid(old->user_ns, uid);
742 if (!uid_valid(kuid))
743 return old_fsuid;
744
745 new = prepare_creds();
746 if (!new)
747 return old_fsuid;
748
749 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
750 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
751 ns_capable(old->user_ns, CAP_SETUID)) {
752 if (!uid_eq(kuid, old->fsuid)) {
753 new->fsuid = kuid;
754 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
755 goto change_okay;
756 }
757 }
758
759 abort_creds(new);
760 return old_fsuid;
761
762 change_okay:
763 commit_creds(new);
764 return old_fsuid;
765 }
766
767 /*
768 * Samma på svenska..
769 */
770 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
771 {
772 const struct cred *old;
773 struct cred *new;
774 gid_t old_fsgid;
775 kgid_t kgid;
776
777 old = current_cred();
778 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
779
780 kgid = make_kgid(old->user_ns, gid);
781 if (!gid_valid(kgid))
782 return old_fsgid;
783
784 new = prepare_creds();
785 if (!new)
786 return old_fsgid;
787
788 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
789 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
790 ns_capable(old->user_ns, CAP_SETGID)) {
791 if (!gid_eq(kgid, old->fsgid)) {
792 new->fsgid = kgid;
793 goto change_okay;
794 }
795 }
796
797 abort_creds(new);
798 return old_fsgid;
799
800 change_okay:
801 commit_creds(new);
802 return old_fsgid;
803 }
804
805 /**
806 * sys_getpid - return the thread group id of the current process
807 *
808 * Note, despite the name, this returns the tgid not the pid. The tgid and
809 * the pid are identical unless CLONE_THREAD was specified on clone() in
810 * which case the tgid is the same in all threads of the same group.
811 *
812 * This is SMP safe as current->tgid does not change.
813 */
814 SYSCALL_DEFINE0(getpid)
815 {
816 return task_tgid_vnr(current);
817 }
818
819 /* Thread ID - the internal kernel "pid" */
820 SYSCALL_DEFINE0(gettid)
821 {
822 return task_pid_vnr(current);
823 }
824
825 /*
826 * Accessing ->real_parent is not SMP-safe, it could
827 * change from under us. However, we can use a stale
828 * value of ->real_parent under rcu_read_lock(), see
829 * release_task()->call_rcu(delayed_put_task_struct).
830 */
831 SYSCALL_DEFINE0(getppid)
832 {
833 int pid;
834
835 rcu_read_lock();
836 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
837 rcu_read_unlock();
838
839 return pid;
840 }
841
842 SYSCALL_DEFINE0(getuid)
843 {
844 /* Only we change this so SMP safe */
845 return from_kuid_munged(current_user_ns(), current_uid());
846 }
847
848 SYSCALL_DEFINE0(geteuid)
849 {
850 /* Only we change this so SMP safe */
851 return from_kuid_munged(current_user_ns(), current_euid());
852 }
853
854 SYSCALL_DEFINE0(getgid)
855 {
856 /* Only we change this so SMP safe */
857 return from_kgid_munged(current_user_ns(), current_gid());
858 }
859
860 SYSCALL_DEFINE0(getegid)
861 {
862 /* Only we change this so SMP safe */
863 return from_kgid_munged(current_user_ns(), current_egid());
864 }
865
866 void do_sys_times(struct tms *tms)
867 {
868 cputime_t tgutime, tgstime, cutime, cstime;
869
870 spin_lock_irq(&current->sighand->siglock);
871 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
872 cutime = current->signal->cutime;
873 cstime = current->signal->cstime;
874 spin_unlock_irq(&current->sighand->siglock);
875 tms->tms_utime = cputime_to_clock_t(tgutime);
876 tms->tms_stime = cputime_to_clock_t(tgstime);
877 tms->tms_cutime = cputime_to_clock_t(cutime);
878 tms->tms_cstime = cputime_to_clock_t(cstime);
879 }
880
881 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
882 {
883 if (tbuf) {
884 struct tms tmp;
885
886 do_sys_times(&tmp);
887 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
888 return -EFAULT;
889 }
890 force_successful_syscall_return();
891 return (long) jiffies_64_to_clock_t(get_jiffies_64());
892 }
893
894 /*
895 * This needs some heavy checking ...
896 * I just haven't the stomach for it. I also don't fully
897 * understand sessions/pgrp etc. Let somebody who does explain it.
898 *
899 * OK, I think I have the protection semantics right.... this is really
900 * only important on a multi-user system anyway, to make sure one user
901 * can't send a signal to a process owned by another. -TYT, 12/12/91
902 *
903 * !PF_FORKNOEXEC check to conform completely to POSIX.
904 */
905 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
906 {
907 struct task_struct *p;
908 struct task_struct *group_leader = current->group_leader;
909 struct pid *pgrp;
910 int err;
911
912 if (!pid)
913 pid = task_pid_vnr(group_leader);
914 if (!pgid)
915 pgid = pid;
916 if (pgid < 0)
917 return -EINVAL;
918 rcu_read_lock();
919
920 /* From this point forward we keep holding onto the tasklist lock
921 * so that our parent does not change from under us. -DaveM
922 */
923 write_lock_irq(&tasklist_lock);
924
925 err = -ESRCH;
926 p = find_task_by_vpid(pid);
927 if (!p)
928 goto out;
929
930 err = -EINVAL;
931 if (!thread_group_leader(p))
932 goto out;
933
934 if (same_thread_group(p->real_parent, group_leader)) {
935 err = -EPERM;
936 if (task_session(p) != task_session(group_leader))
937 goto out;
938 err = -EACCES;
939 if (!(p->flags & PF_FORKNOEXEC))
940 goto out;
941 } else {
942 err = -ESRCH;
943 if (p != group_leader)
944 goto out;
945 }
946
947 err = -EPERM;
948 if (p->signal->leader)
949 goto out;
950
951 pgrp = task_pid(p);
952 if (pgid != pid) {
953 struct task_struct *g;
954
955 pgrp = find_vpid(pgid);
956 g = pid_task(pgrp, PIDTYPE_PGID);
957 if (!g || task_session(g) != task_session(group_leader))
958 goto out;
959 }
960
961 err = security_task_setpgid(p, pgid);
962 if (err)
963 goto out;
964
965 if (task_pgrp(p) != pgrp)
966 change_pid(p, PIDTYPE_PGID, pgrp);
967
968 err = 0;
969 out:
970 /* All paths lead to here, thus we are safe. -DaveM */
971 write_unlock_irq(&tasklist_lock);
972 rcu_read_unlock();
973 return err;
974 }
975
976 SYSCALL_DEFINE1(getpgid, pid_t, pid)
977 {
978 struct task_struct *p;
979 struct pid *grp;
980 int retval;
981
982 rcu_read_lock();
983 if (!pid)
984 grp = task_pgrp(current);
985 else {
986 retval = -ESRCH;
987 p = find_task_by_vpid(pid);
988 if (!p)
989 goto out;
990 grp = task_pgrp(p);
991 if (!grp)
992 goto out;
993
994 retval = security_task_getpgid(p);
995 if (retval)
996 goto out;
997 }
998 retval = pid_vnr(grp);
999 out:
1000 rcu_read_unlock();
1001 return retval;
1002 }
1003
1004 #ifdef __ARCH_WANT_SYS_GETPGRP
1005
1006 SYSCALL_DEFINE0(getpgrp)
1007 {
1008 return sys_getpgid(0);
1009 }
1010
1011 #endif
1012
1013 SYSCALL_DEFINE1(getsid, pid_t, pid)
1014 {
1015 struct task_struct *p;
1016 struct pid *sid;
1017 int retval;
1018
1019 rcu_read_lock();
1020 if (!pid)
1021 sid = task_session(current);
1022 else {
1023 retval = -ESRCH;
1024 p = find_task_by_vpid(pid);
1025 if (!p)
1026 goto out;
1027 sid = task_session(p);
1028 if (!sid)
1029 goto out;
1030
1031 retval = security_task_getsid(p);
1032 if (retval)
1033 goto out;
1034 }
1035 retval = pid_vnr(sid);
1036 out:
1037 rcu_read_unlock();
1038 return retval;
1039 }
1040
1041 static void set_special_pids(struct pid *pid)
1042 {
1043 struct task_struct *curr = current->group_leader;
1044
1045 if (task_session(curr) != pid)
1046 change_pid(curr, PIDTYPE_SID, pid);
1047
1048 if (task_pgrp(curr) != pid)
1049 change_pid(curr, PIDTYPE_PGID, pid);
1050 }
1051
1052 SYSCALL_DEFINE0(setsid)
1053 {
1054 struct task_struct *group_leader = current->group_leader;
1055 struct pid *sid = task_pid(group_leader);
1056 pid_t session = pid_vnr(sid);
1057 int err = -EPERM;
1058
1059 write_lock_irq(&tasklist_lock);
1060 /* Fail if I am already a session leader */
1061 if (group_leader->signal->leader)
1062 goto out;
1063
1064 /* Fail if a process group id already exists that equals the
1065 * proposed session id.
1066 */
1067 if (pid_task(sid, PIDTYPE_PGID))
1068 goto out;
1069
1070 group_leader->signal->leader = 1;
1071 set_special_pids(sid);
1072
1073 proc_clear_tty(group_leader);
1074
1075 err = session;
1076 out:
1077 write_unlock_irq(&tasklist_lock);
1078 if (err > 0) {
1079 proc_sid_connector(group_leader);
1080 sched_autogroup_create_attach(group_leader);
1081 }
1082 return err;
1083 }
1084
1085 DECLARE_RWSEM(uts_sem);
1086
1087 #ifdef COMPAT_UTS_MACHINE
1088 #define override_architecture(name) \
1089 (personality(current->personality) == PER_LINUX32 && \
1090 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1091 sizeof(COMPAT_UTS_MACHINE)))
1092 #else
1093 #define override_architecture(name) 0
1094 #endif
1095
1096 /*
1097 * Work around broken programs that cannot handle "Linux 3.0".
1098 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1099 */
1100 static int override_release(char __user *release, size_t len)
1101 {
1102 int ret = 0;
1103
1104 if (current->personality & UNAME26) {
1105 const char *rest = UTS_RELEASE;
1106 char buf[65] = { 0 };
1107 int ndots = 0;
1108 unsigned v;
1109 size_t copy;
1110
1111 while (*rest) {
1112 if (*rest == '.' && ++ndots >= 3)
1113 break;
1114 if (!isdigit(*rest) && *rest != '.')
1115 break;
1116 rest++;
1117 }
1118 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1119 copy = clamp_t(size_t, len, 1, sizeof(buf));
1120 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1121 ret = copy_to_user(release, buf, copy + 1);
1122 }
1123 return ret;
1124 }
1125
1126 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1127 {
1128 int errno = 0;
1129
1130 down_read(&uts_sem);
1131 if (copy_to_user(name, utsname(), sizeof *name))
1132 errno = -EFAULT;
1133 up_read(&uts_sem);
1134
1135 if (!errno && override_release(name->release, sizeof(name->release)))
1136 errno = -EFAULT;
1137 if (!errno && override_architecture(name))
1138 errno = -EFAULT;
1139 return errno;
1140 }
1141
1142 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1143 /*
1144 * Old cruft
1145 */
1146 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1147 {
1148 int error = 0;
1149
1150 if (!name)
1151 return -EFAULT;
1152
1153 down_read(&uts_sem);
1154 if (copy_to_user(name, utsname(), sizeof(*name)))
1155 error = -EFAULT;
1156 up_read(&uts_sem);
1157
1158 if (!error && override_release(name->release, sizeof(name->release)))
1159 error = -EFAULT;
1160 if (!error && override_architecture(name))
1161 error = -EFAULT;
1162 return error;
1163 }
1164
1165 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1166 {
1167 int error;
1168
1169 if (!name)
1170 return -EFAULT;
1171 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1172 return -EFAULT;
1173
1174 down_read(&uts_sem);
1175 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1176 __OLD_UTS_LEN);
1177 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1178 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1179 __OLD_UTS_LEN);
1180 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1181 error |= __copy_to_user(&name->release, &utsname()->release,
1182 __OLD_UTS_LEN);
1183 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1184 error |= __copy_to_user(&name->version, &utsname()->version,
1185 __OLD_UTS_LEN);
1186 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1187 error |= __copy_to_user(&name->machine, &utsname()->machine,
1188 __OLD_UTS_LEN);
1189 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1190 up_read(&uts_sem);
1191
1192 if (!error && override_architecture(name))
1193 error = -EFAULT;
1194 if (!error && override_release(name->release, sizeof(name->release)))
1195 error = -EFAULT;
1196 return error ? -EFAULT : 0;
1197 }
1198 #endif
1199
1200 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1201 {
1202 int errno;
1203 char tmp[__NEW_UTS_LEN];
1204
1205 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1206 return -EPERM;
1207
1208 if (len < 0 || len > __NEW_UTS_LEN)
1209 return -EINVAL;
1210 down_write(&uts_sem);
1211 errno = -EFAULT;
1212 if (!copy_from_user(tmp, name, len)) {
1213 struct new_utsname *u = utsname();
1214
1215 memcpy(u->nodename, tmp, len);
1216 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1217 errno = 0;
1218 uts_proc_notify(UTS_PROC_HOSTNAME);
1219 }
1220 up_write(&uts_sem);
1221 return errno;
1222 }
1223
1224 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1225
1226 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1227 {
1228 int i, errno;
1229 struct new_utsname *u;
1230
1231 if (len < 0)
1232 return -EINVAL;
1233 down_read(&uts_sem);
1234 u = utsname();
1235 i = 1 + strlen(u->nodename);
1236 if (i > len)
1237 i = len;
1238 errno = 0;
1239 if (copy_to_user(name, u->nodename, i))
1240 errno = -EFAULT;
1241 up_read(&uts_sem);
1242 return errno;
1243 }
1244
1245 #endif
1246
1247 /*
1248 * Only setdomainname; getdomainname can be implemented by calling
1249 * uname()
1250 */
1251 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1252 {
1253 int errno;
1254 char tmp[__NEW_UTS_LEN];
1255
1256 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1257 return -EPERM;
1258 if (len < 0 || len > __NEW_UTS_LEN)
1259 return -EINVAL;
1260
1261 down_write(&uts_sem);
1262 errno = -EFAULT;
1263 if (!copy_from_user(tmp, name, len)) {
1264 struct new_utsname *u = utsname();
1265
1266 memcpy(u->domainname, tmp, len);
1267 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1268 errno = 0;
1269 uts_proc_notify(UTS_PROC_DOMAINNAME);
1270 }
1271 up_write(&uts_sem);
1272 return errno;
1273 }
1274
1275 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1276 {
1277 struct rlimit value;
1278 int ret;
1279
1280 ret = do_prlimit(current, resource, NULL, &value);
1281 if (!ret)
1282 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1283
1284 return ret;
1285 }
1286
1287 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1288
1289 /*
1290 * Back compatibility for getrlimit. Needed for some apps.
1291 */
1292
1293 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1294 struct rlimit __user *, rlim)
1295 {
1296 struct rlimit x;
1297 if (resource >= RLIM_NLIMITS)
1298 return -EINVAL;
1299
1300 resource = array_index_nospec(resource, RLIM_NLIMITS);
1301 task_lock(current->group_leader);
1302 x = current->signal->rlim[resource];
1303 task_unlock(current->group_leader);
1304 if (x.rlim_cur > 0x7FFFFFFF)
1305 x.rlim_cur = 0x7FFFFFFF;
1306 if (x.rlim_max > 0x7FFFFFFF)
1307 x.rlim_max = 0x7FFFFFFF;
1308 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1309 }
1310
1311 #endif
1312
1313 static inline bool rlim64_is_infinity(__u64 rlim64)
1314 {
1315 #if BITS_PER_LONG < 64
1316 return rlim64 >= ULONG_MAX;
1317 #else
1318 return rlim64 == RLIM64_INFINITY;
1319 #endif
1320 }
1321
1322 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1323 {
1324 if (rlim->rlim_cur == RLIM_INFINITY)
1325 rlim64->rlim_cur = RLIM64_INFINITY;
1326 else
1327 rlim64->rlim_cur = rlim->rlim_cur;
1328 if (rlim->rlim_max == RLIM_INFINITY)
1329 rlim64->rlim_max = RLIM64_INFINITY;
1330 else
1331 rlim64->rlim_max = rlim->rlim_max;
1332 }
1333
1334 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1335 {
1336 if (rlim64_is_infinity(rlim64->rlim_cur))
1337 rlim->rlim_cur = RLIM_INFINITY;
1338 else
1339 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1340 if (rlim64_is_infinity(rlim64->rlim_max))
1341 rlim->rlim_max = RLIM_INFINITY;
1342 else
1343 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1344 }
1345
1346 /* make sure you are allowed to change @tsk limits before calling this */
1347 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1348 struct rlimit *new_rlim, struct rlimit *old_rlim)
1349 {
1350 struct rlimit *rlim;
1351 int retval = 0;
1352
1353 if (resource >= RLIM_NLIMITS)
1354 return -EINVAL;
1355 if (new_rlim) {
1356 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1357 return -EINVAL;
1358 if (resource == RLIMIT_NOFILE &&
1359 new_rlim->rlim_max > sysctl_nr_open)
1360 return -EPERM;
1361 }
1362
1363 /* protect tsk->signal and tsk->sighand from disappearing */
1364 read_lock(&tasklist_lock);
1365 if (!tsk->sighand) {
1366 retval = -ESRCH;
1367 goto out;
1368 }
1369
1370 rlim = tsk->signal->rlim + resource;
1371 task_lock(tsk->group_leader);
1372 if (new_rlim) {
1373 /* Keep the capable check against init_user_ns until
1374 cgroups can contain all limits */
1375 if (new_rlim->rlim_max > rlim->rlim_max &&
1376 !capable(CAP_SYS_RESOURCE))
1377 retval = -EPERM;
1378 if (!retval)
1379 retval = security_task_setrlimit(tsk->group_leader,
1380 resource, new_rlim);
1381 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1382 /*
1383 * The caller is asking for an immediate RLIMIT_CPU
1384 * expiry. But we use the zero value to mean "it was
1385 * never set". So let's cheat and make it one second
1386 * instead
1387 */
1388 new_rlim->rlim_cur = 1;
1389 }
1390 }
1391 if (!retval) {
1392 if (old_rlim)
1393 *old_rlim = *rlim;
1394 if (new_rlim)
1395 *rlim = *new_rlim;
1396 }
1397 task_unlock(tsk->group_leader);
1398
1399 /*
1400 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1401 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1402 * very long-standing error, and fixing it now risks breakage of
1403 * applications, so we live with it
1404 */
1405 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1406 new_rlim->rlim_cur != RLIM_INFINITY)
1407 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1408 out:
1409 read_unlock(&tasklist_lock);
1410 return retval;
1411 }
1412
1413 /* rcu lock must be held */
1414 static int check_prlimit_permission(struct task_struct *task)
1415 {
1416 const struct cred *cred = current_cred(), *tcred;
1417
1418 if (current == task)
1419 return 0;
1420
1421 tcred = __task_cred(task);
1422 if (uid_eq(cred->uid, tcred->euid) &&
1423 uid_eq(cred->uid, tcred->suid) &&
1424 uid_eq(cred->uid, tcred->uid) &&
1425 gid_eq(cred->gid, tcred->egid) &&
1426 gid_eq(cred->gid, tcred->sgid) &&
1427 gid_eq(cred->gid, tcred->gid))
1428 return 0;
1429 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1430 return 0;
1431
1432 return -EPERM;
1433 }
1434
1435 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1436 const struct rlimit64 __user *, new_rlim,
1437 struct rlimit64 __user *, old_rlim)
1438 {
1439 struct rlimit64 old64, new64;
1440 struct rlimit old, new;
1441 struct task_struct *tsk;
1442 int ret;
1443
1444 if (new_rlim) {
1445 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1446 return -EFAULT;
1447 rlim64_to_rlim(&new64, &new);
1448 }
1449
1450 rcu_read_lock();
1451 tsk = pid ? find_task_by_vpid(pid) : current;
1452 if (!tsk) {
1453 rcu_read_unlock();
1454 return -ESRCH;
1455 }
1456 ret = check_prlimit_permission(tsk);
1457 if (ret) {
1458 rcu_read_unlock();
1459 return ret;
1460 }
1461 get_task_struct(tsk);
1462 rcu_read_unlock();
1463
1464 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1465 old_rlim ? &old : NULL);
1466
1467 if (!ret && old_rlim) {
1468 rlim_to_rlim64(&old, &old64);
1469 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1470 ret = -EFAULT;
1471 }
1472
1473 put_task_struct(tsk);
1474 return ret;
1475 }
1476
1477 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1478 {
1479 struct rlimit new_rlim;
1480
1481 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1482 return -EFAULT;
1483 return do_prlimit(current, resource, &new_rlim, NULL);
1484 }
1485
1486 /*
1487 * It would make sense to put struct rusage in the task_struct,
1488 * except that would make the task_struct be *really big*. After
1489 * task_struct gets moved into malloc'ed memory, it would
1490 * make sense to do this. It will make moving the rest of the information
1491 * a lot simpler! (Which we're not doing right now because we're not
1492 * measuring them yet).
1493 *
1494 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1495 * races with threads incrementing their own counters. But since word
1496 * reads are atomic, we either get new values or old values and we don't
1497 * care which for the sums. We always take the siglock to protect reading
1498 * the c* fields from p->signal from races with exit.c updating those
1499 * fields when reaping, so a sample either gets all the additions of a
1500 * given child after it's reaped, or none so this sample is before reaping.
1501 *
1502 * Locking:
1503 * We need to take the siglock for CHILDEREN, SELF and BOTH
1504 * for the cases current multithreaded, non-current single threaded
1505 * non-current multithreaded. Thread traversal is now safe with
1506 * the siglock held.
1507 * Strictly speaking, we donot need to take the siglock if we are current and
1508 * single threaded, as no one else can take our signal_struct away, no one
1509 * else can reap the children to update signal->c* counters, and no one else
1510 * can race with the signal-> fields. If we do not take any lock, the
1511 * signal-> fields could be read out of order while another thread was just
1512 * exiting. So we should place a read memory barrier when we avoid the lock.
1513 * On the writer side, write memory barrier is implied in __exit_signal
1514 * as __exit_signal releases the siglock spinlock after updating the signal->
1515 * fields. But we don't do this yet to keep things simple.
1516 *
1517 */
1518
1519 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1520 {
1521 r->ru_nvcsw += t->nvcsw;
1522 r->ru_nivcsw += t->nivcsw;
1523 r->ru_minflt += t->min_flt;
1524 r->ru_majflt += t->maj_flt;
1525 r->ru_inblock += task_io_get_inblock(t);
1526 r->ru_oublock += task_io_get_oublock(t);
1527 }
1528
1529 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1530 {
1531 struct task_struct *t;
1532 unsigned long flags;
1533 cputime_t tgutime, tgstime, utime, stime;
1534 unsigned long maxrss = 0;
1535
1536 memset((char *) r, 0, sizeof *r);
1537 utime = stime = 0;
1538
1539 if (who == RUSAGE_THREAD) {
1540 task_cputime_adjusted(current, &utime, &stime);
1541 accumulate_thread_rusage(p, r);
1542 maxrss = p->signal->maxrss;
1543 goto out;
1544 }
1545
1546 if (!lock_task_sighand(p, &flags))
1547 return;
1548
1549 switch (who) {
1550 case RUSAGE_BOTH:
1551 case RUSAGE_CHILDREN:
1552 utime = p->signal->cutime;
1553 stime = p->signal->cstime;
1554 r->ru_nvcsw = p->signal->cnvcsw;
1555 r->ru_nivcsw = p->signal->cnivcsw;
1556 r->ru_minflt = p->signal->cmin_flt;
1557 r->ru_majflt = p->signal->cmaj_flt;
1558 r->ru_inblock = p->signal->cinblock;
1559 r->ru_oublock = p->signal->coublock;
1560 maxrss = p->signal->cmaxrss;
1561
1562 if (who == RUSAGE_CHILDREN)
1563 break;
1564
1565 case RUSAGE_SELF:
1566 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1567 utime += tgutime;
1568 stime += tgstime;
1569 r->ru_nvcsw += p->signal->nvcsw;
1570 r->ru_nivcsw += p->signal->nivcsw;
1571 r->ru_minflt += p->signal->min_flt;
1572 r->ru_majflt += p->signal->maj_flt;
1573 r->ru_inblock += p->signal->inblock;
1574 r->ru_oublock += p->signal->oublock;
1575 if (maxrss < p->signal->maxrss)
1576 maxrss = p->signal->maxrss;
1577 t = p;
1578 do {
1579 accumulate_thread_rusage(t, r);
1580 } while_each_thread(p, t);
1581 break;
1582
1583 default:
1584 BUG();
1585 }
1586 unlock_task_sighand(p, &flags);
1587
1588 out:
1589 cputime_to_timeval(utime, &r->ru_utime);
1590 cputime_to_timeval(stime, &r->ru_stime);
1591
1592 if (who != RUSAGE_CHILDREN) {
1593 struct mm_struct *mm = get_task_mm(p);
1594 if (mm) {
1595 setmax_mm_hiwater_rss(&maxrss, mm);
1596 mmput(mm);
1597 }
1598 }
1599 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1600 }
1601
1602 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1603 {
1604 struct rusage r;
1605 k_getrusage(p, who, &r);
1606 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1607 }
1608
1609 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1610 {
1611 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1612 who != RUSAGE_THREAD)
1613 return -EINVAL;
1614 return getrusage(current, who, ru);
1615 }
1616
1617 #ifdef CONFIG_COMPAT
1618 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1619 {
1620 struct rusage r;
1621
1622 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1623 who != RUSAGE_THREAD)
1624 return -EINVAL;
1625
1626 k_getrusage(current, who, &r);
1627 return put_compat_rusage(&r, ru);
1628 }
1629 #endif
1630
1631 SYSCALL_DEFINE1(umask, int, mask)
1632 {
1633 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1634 return mask;
1635 }
1636
1637 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1638 {
1639 struct fd exe;
1640 struct inode *inode;
1641 int err;
1642
1643 exe = fdget(fd);
1644 if (!exe.file)
1645 return -EBADF;
1646
1647 inode = file_inode(exe.file);
1648
1649 /*
1650 * Because the original mm->exe_file points to executable file, make
1651 * sure that this one is executable as well, to avoid breaking an
1652 * overall picture.
1653 */
1654 err = -EACCES;
1655 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1656 goto exit;
1657
1658 err = inode_permission(inode, MAY_EXEC);
1659 if (err)
1660 goto exit;
1661
1662 down_write(&mm->mmap_sem);
1663
1664 /*
1665 * Forbid mm->exe_file change if old file still mapped.
1666 */
1667 err = -EBUSY;
1668 if (mm->exe_file) {
1669 struct vm_area_struct *vma;
1670
1671 for (vma = mm->mmap; vma; vma = vma->vm_next)
1672 if (vma->vm_file &&
1673 path_equal(&vma->vm_file->f_path,
1674 &mm->exe_file->f_path))
1675 goto exit_unlock;
1676 }
1677
1678 /*
1679 * The symlink can be changed only once, just to disallow arbitrary
1680 * transitions malicious software might bring in. This means one
1681 * could make a snapshot over all processes running and monitor
1682 * /proc/pid/exe changes to notice unusual activity if needed.
1683 */
1684 err = -EPERM;
1685 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1686 goto exit_unlock;
1687
1688 err = 0;
1689 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1690 exit_unlock:
1691 up_write(&mm->mmap_sem);
1692
1693 exit:
1694 fdput(exe);
1695 return err;
1696 }
1697
1698 static int prctl_set_mm(int opt, unsigned long addr,
1699 unsigned long arg4, unsigned long arg5)
1700 {
1701 unsigned long rlim = rlimit(RLIMIT_DATA);
1702 struct mm_struct *mm = current->mm;
1703 struct vm_area_struct *vma;
1704 int error;
1705
1706 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1707 return -EINVAL;
1708
1709 if (!capable(CAP_SYS_RESOURCE))
1710 return -EPERM;
1711
1712 if (opt == PR_SET_MM_EXE_FILE)
1713 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1714
1715 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1716 return -EINVAL;
1717
1718 error = -EINVAL;
1719
1720 down_read(&mm->mmap_sem);
1721 vma = find_vma(mm, addr);
1722
1723 switch (opt) {
1724 case PR_SET_MM_START_CODE:
1725 mm->start_code = addr;
1726 break;
1727 case PR_SET_MM_END_CODE:
1728 mm->end_code = addr;
1729 break;
1730 case PR_SET_MM_START_DATA:
1731 mm->start_data = addr;
1732 break;
1733 case PR_SET_MM_END_DATA:
1734 mm->end_data = addr;
1735 break;
1736
1737 case PR_SET_MM_START_BRK:
1738 if (addr <= mm->end_data)
1739 goto out;
1740
1741 if (rlim < RLIM_INFINITY &&
1742 (mm->brk - addr) +
1743 (mm->end_data - mm->start_data) > rlim)
1744 goto out;
1745
1746 mm->start_brk = addr;
1747 break;
1748
1749 case PR_SET_MM_BRK:
1750 if (addr <= mm->end_data)
1751 goto out;
1752
1753 if (rlim < RLIM_INFINITY &&
1754 (addr - mm->start_brk) +
1755 (mm->end_data - mm->start_data) > rlim)
1756 goto out;
1757
1758 mm->brk = addr;
1759 break;
1760
1761 /*
1762 * If command line arguments and environment
1763 * are placed somewhere else on stack, we can
1764 * set them up here, ARG_START/END to setup
1765 * command line argumets and ENV_START/END
1766 * for environment.
1767 */
1768 case PR_SET_MM_START_STACK:
1769 case PR_SET_MM_ARG_START:
1770 case PR_SET_MM_ARG_END:
1771 case PR_SET_MM_ENV_START:
1772 case PR_SET_MM_ENV_END:
1773 if (!vma) {
1774 error = -EFAULT;
1775 goto out;
1776 }
1777 if (opt == PR_SET_MM_START_STACK)
1778 mm->start_stack = addr;
1779 else if (opt == PR_SET_MM_ARG_START)
1780 mm->arg_start = addr;
1781 else if (opt == PR_SET_MM_ARG_END)
1782 mm->arg_end = addr;
1783 else if (opt == PR_SET_MM_ENV_START)
1784 mm->env_start = addr;
1785 else if (opt == PR_SET_MM_ENV_END)
1786 mm->env_end = addr;
1787 break;
1788
1789 /*
1790 * This doesn't move auxiliary vector itself
1791 * since it's pinned to mm_struct, but allow
1792 * to fill vector with new values. It's up
1793 * to a caller to provide sane values here
1794 * otherwise user space tools which use this
1795 * vector might be unhappy.
1796 */
1797 case PR_SET_MM_AUXV: {
1798 unsigned long user_auxv[AT_VECTOR_SIZE];
1799
1800 if (arg4 > sizeof(user_auxv))
1801 goto out;
1802 up_read(&mm->mmap_sem);
1803
1804 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1805 return -EFAULT;
1806
1807 /* Make sure the last entry is always AT_NULL */
1808 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1809 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1810
1811 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1812
1813 task_lock(current);
1814 memcpy(mm->saved_auxv, user_auxv, arg4);
1815 task_unlock(current);
1816
1817 return 0;
1818 }
1819 default:
1820 goto out;
1821 }
1822
1823 error = 0;
1824 out:
1825 up_read(&mm->mmap_sem);
1826 return error;
1827 }
1828
1829 #ifdef CONFIG_CHECKPOINT_RESTORE
1830 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1831 {
1832 return put_user(me->clear_child_tid, tid_addr);
1833 }
1834 #else
1835 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1836 {
1837 return -EINVAL;
1838 }
1839 #endif
1840
1841 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
1842 {
1843 return -EINVAL;
1844 }
1845
1846 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
1847 unsigned long ctrl)
1848 {
1849 return -EINVAL;
1850 }
1851
1852 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1853 unsigned long, arg4, unsigned long, arg5)
1854 {
1855 struct task_struct *me = current;
1856 unsigned char comm[sizeof(me->comm)];
1857 long error;
1858
1859 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1860 if (error != -ENOSYS)
1861 return error;
1862
1863 error = 0;
1864 switch (option) {
1865 case PR_SET_PDEATHSIG:
1866 if (!valid_signal(arg2)) {
1867 error = -EINVAL;
1868 break;
1869 }
1870 me->pdeath_signal = arg2;
1871 break;
1872 case PR_GET_PDEATHSIG:
1873 error = put_user(me->pdeath_signal, (int __user *)arg2);
1874 break;
1875 case PR_GET_DUMPABLE:
1876 error = get_dumpable(me->mm);
1877 break;
1878 case PR_SET_DUMPABLE:
1879 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1880 error = -EINVAL;
1881 break;
1882 }
1883 set_dumpable(me->mm, arg2);
1884 break;
1885
1886 case PR_SET_UNALIGN:
1887 error = SET_UNALIGN_CTL(me, arg2);
1888 break;
1889 case PR_GET_UNALIGN:
1890 error = GET_UNALIGN_CTL(me, arg2);
1891 break;
1892 case PR_SET_FPEMU:
1893 error = SET_FPEMU_CTL(me, arg2);
1894 break;
1895 case PR_GET_FPEMU:
1896 error = GET_FPEMU_CTL(me, arg2);
1897 break;
1898 case PR_SET_FPEXC:
1899 error = SET_FPEXC_CTL(me, arg2);
1900 break;
1901 case PR_GET_FPEXC:
1902 error = GET_FPEXC_CTL(me, arg2);
1903 break;
1904 case PR_GET_TIMING:
1905 error = PR_TIMING_STATISTICAL;
1906 break;
1907 case PR_SET_TIMING:
1908 if (arg2 != PR_TIMING_STATISTICAL)
1909 error = -EINVAL;
1910 break;
1911 case PR_SET_NAME:
1912 comm[sizeof(me->comm) - 1] = 0;
1913 if (strncpy_from_user(comm, (char __user *)arg2,
1914 sizeof(me->comm) - 1) < 0)
1915 return -EFAULT;
1916 set_task_comm(me, comm);
1917 proc_comm_connector(me);
1918 break;
1919 case PR_GET_NAME:
1920 get_task_comm(comm, me);
1921 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1922 return -EFAULT;
1923 break;
1924 case PR_GET_ENDIAN:
1925 error = GET_ENDIAN(me, arg2);
1926 break;
1927 case PR_SET_ENDIAN:
1928 error = SET_ENDIAN(me, arg2);
1929 break;
1930 case PR_GET_SECCOMP:
1931 error = prctl_get_seccomp();
1932 break;
1933 case PR_SET_SECCOMP:
1934 error = prctl_set_seccomp(arg2, (char __user *)arg3);
1935 break;
1936 case PR_GET_TSC:
1937 error = GET_TSC_CTL(arg2);
1938 break;
1939 case PR_SET_TSC:
1940 error = SET_TSC_CTL(arg2);
1941 break;
1942 case PR_TASK_PERF_EVENTS_DISABLE:
1943 error = perf_event_task_disable();
1944 break;
1945 case PR_TASK_PERF_EVENTS_ENABLE:
1946 error = perf_event_task_enable();
1947 break;
1948 case PR_GET_TIMERSLACK:
1949 error = current->timer_slack_ns;
1950 break;
1951 case PR_SET_TIMERSLACK:
1952 if (arg2 <= 0)
1953 current->timer_slack_ns =
1954 current->default_timer_slack_ns;
1955 else
1956 current->timer_slack_ns = arg2;
1957 break;
1958 case PR_MCE_KILL:
1959 if (arg4 | arg5)
1960 return -EINVAL;
1961 switch (arg2) {
1962 case PR_MCE_KILL_CLEAR:
1963 if (arg3 != 0)
1964 return -EINVAL;
1965 current->flags &= ~PF_MCE_PROCESS;
1966 break;
1967 case PR_MCE_KILL_SET:
1968 current->flags |= PF_MCE_PROCESS;
1969 if (arg3 == PR_MCE_KILL_EARLY)
1970 current->flags |= PF_MCE_EARLY;
1971 else if (arg3 == PR_MCE_KILL_LATE)
1972 current->flags &= ~PF_MCE_EARLY;
1973 else if (arg3 == PR_MCE_KILL_DEFAULT)
1974 current->flags &=
1975 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1976 else
1977 return -EINVAL;
1978 break;
1979 default:
1980 return -EINVAL;
1981 }
1982 break;
1983 case PR_MCE_KILL_GET:
1984 if (arg2 | arg3 | arg4 | arg5)
1985 return -EINVAL;
1986 if (current->flags & PF_MCE_PROCESS)
1987 error = (current->flags & PF_MCE_EARLY) ?
1988 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1989 else
1990 error = PR_MCE_KILL_DEFAULT;
1991 break;
1992 case PR_SET_MM:
1993 error = prctl_set_mm(arg2, arg3, arg4, arg5);
1994 break;
1995 case PR_GET_TID_ADDRESS:
1996 error = prctl_get_tid_address(me, (int __user **)arg2);
1997 break;
1998 case PR_SET_CHILD_SUBREAPER:
1999 me->signal->is_child_subreaper = !!arg2;
2000 break;
2001 case PR_GET_CHILD_SUBREAPER:
2002 error = put_user(me->signal->is_child_subreaper,
2003 (int __user *)arg2);
2004 break;
2005 case PR_SET_NO_NEW_PRIVS:
2006 if (arg2 != 1 || arg3 || arg4 || arg5)
2007 return -EINVAL;
2008
2009 task_set_no_new_privs(current);
2010 break;
2011 case PR_GET_NO_NEW_PRIVS:
2012 if (arg2 || arg3 || arg4 || arg5)
2013 return -EINVAL;
2014 return task_no_new_privs(current) ? 1 : 0;
2015 case PR_GET_THP_DISABLE:
2016 if (arg2 || arg3 || arg4 || arg5)
2017 return -EINVAL;
2018 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2019 break;
2020 case PR_SET_THP_DISABLE:
2021 if (arg3 || arg4 || arg5)
2022 return -EINVAL;
2023 down_write(&me->mm->mmap_sem);
2024 if (arg2)
2025 me->mm->def_flags |= VM_NOHUGEPAGE;
2026 else
2027 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2028 up_write(&me->mm->mmap_sem);
2029 break;
2030 case PR_GET_SPECULATION_CTRL:
2031 if (arg3 || arg4 || arg5)
2032 return -EINVAL;
2033 error = arch_prctl_spec_ctrl_get(me, arg2);
2034 break;
2035 case PR_SET_SPECULATION_CTRL:
2036 if (arg4 || arg5)
2037 return -EINVAL;
2038 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2039 break;
2040 default:
2041 error = -EINVAL;
2042 break;
2043 }
2044 return error;
2045 }
2046
2047 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2048 struct getcpu_cache __user *, unused)
2049 {
2050 int err = 0;
2051 int cpu = raw_smp_processor_id();
2052 if (cpup)
2053 err |= put_user(cpu, cpup);
2054 if (nodep)
2055 err |= put_user(cpu_to_node(cpu), nodep);
2056 return err ? -EFAULT : 0;
2057 }
2058
2059 /**
2060 * do_sysinfo - fill in sysinfo struct
2061 * @info: pointer to buffer to fill
2062 */
2063 static int do_sysinfo(struct sysinfo *info)
2064 {
2065 unsigned long mem_total, sav_total;
2066 unsigned int mem_unit, bitcount;
2067 struct timespec tp;
2068
2069 memset(info, 0, sizeof(struct sysinfo));
2070
2071 get_monotonic_boottime(&tp);
2072 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2073
2074 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2075
2076 info->procs = nr_threads;
2077
2078 si_meminfo(info);
2079 si_swapinfo(info);
2080
2081 /*
2082 * If the sum of all the available memory (i.e. ram + swap)
2083 * is less than can be stored in a 32 bit unsigned long then
2084 * we can be binary compatible with 2.2.x kernels. If not,
2085 * well, in that case 2.2.x was broken anyways...
2086 *
2087 * -Erik Andersen <andersee@debian.org>
2088 */
2089
2090 mem_total = info->totalram + info->totalswap;
2091 if (mem_total < info->totalram || mem_total < info->totalswap)
2092 goto out;
2093 bitcount = 0;
2094 mem_unit = info->mem_unit;
2095 while (mem_unit > 1) {
2096 bitcount++;
2097 mem_unit >>= 1;
2098 sav_total = mem_total;
2099 mem_total <<= 1;
2100 if (mem_total < sav_total)
2101 goto out;
2102 }
2103
2104 /*
2105 * If mem_total did not overflow, multiply all memory values by
2106 * info->mem_unit and set it to 1. This leaves things compatible
2107 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2108 * kernels...
2109 */
2110
2111 info->mem_unit = 1;
2112 info->totalram <<= bitcount;
2113 info->freeram <<= bitcount;
2114 info->sharedram <<= bitcount;
2115 info->bufferram <<= bitcount;
2116 info->totalswap <<= bitcount;
2117 info->freeswap <<= bitcount;
2118 info->totalhigh <<= bitcount;
2119 info->freehigh <<= bitcount;
2120
2121 out:
2122 return 0;
2123 }
2124
2125 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2126 {
2127 struct sysinfo val;
2128
2129 do_sysinfo(&val);
2130
2131 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2132 return -EFAULT;
2133
2134 return 0;
2135 }
2136
2137 #ifdef CONFIG_COMPAT
2138 struct compat_sysinfo {
2139 s32 uptime;
2140 u32 loads[3];
2141 u32 totalram;
2142 u32 freeram;
2143 u32 sharedram;
2144 u32 bufferram;
2145 u32 totalswap;
2146 u32 freeswap;
2147 u16 procs;
2148 u16 pad;
2149 u32 totalhigh;
2150 u32 freehigh;
2151 u32 mem_unit;
2152 char _f[20-2*sizeof(u32)-sizeof(int)];
2153 };
2154
2155 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2156 {
2157 struct sysinfo s;
2158
2159 do_sysinfo(&s);
2160
2161 /* Check to see if any memory value is too large for 32-bit and scale
2162 * down if needed
2163 */
2164 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2165 int bitcount = 0;
2166
2167 while (s.mem_unit < PAGE_SIZE) {
2168 s.mem_unit <<= 1;
2169 bitcount++;
2170 }
2171
2172 s.totalram >>= bitcount;
2173 s.freeram >>= bitcount;
2174 s.sharedram >>= bitcount;
2175 s.bufferram >>= bitcount;
2176 s.totalswap >>= bitcount;
2177 s.freeswap >>= bitcount;
2178 s.totalhigh >>= bitcount;
2179 s.freehigh >>= bitcount;
2180 }
2181
2182 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2183 __put_user(s.uptime, &info->uptime) ||
2184 __put_user(s.loads[0], &info->loads[0]) ||
2185 __put_user(s.loads[1], &info->loads[1]) ||
2186 __put_user(s.loads[2], &info->loads[2]) ||
2187 __put_user(s.totalram, &info->totalram) ||
2188 __put_user(s.freeram, &info->freeram) ||
2189 __put_user(s.sharedram, &info->sharedram) ||
2190 __put_user(s.bufferram, &info->bufferram) ||
2191 __put_user(s.totalswap, &info->totalswap) ||
2192 __put_user(s.freeswap, &info->freeswap) ||
2193 __put_user(s.procs, &info->procs) ||
2194 __put_user(s.totalhigh, &info->totalhigh) ||
2195 __put_user(s.freehigh, &info->freehigh) ||
2196 __put_user(s.mem_unit, &info->mem_unit))
2197 return -EFAULT;
2198
2199 return 0;
2200 }
2201 #endif /* CONFIG_COMPAT */