]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/time/sched_clock.c
Merge tag 'ecryptfs-5.3-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / kernel / time / sched_clock.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic sched_clock() support, to extend low level hardware time
4 * counters to full 64-bit ns values.
5 */
6 #include <linux/clocksource.h>
7 #include <linux/init.h>
8 #include <linux/jiffies.h>
9 #include <linux/ktime.h>
10 #include <linux/kernel.h>
11 #include <linux/moduleparam.h>
12 #include <linux/sched.h>
13 #include <linux/sched/clock.h>
14 #include <linux/syscore_ops.h>
15 #include <linux/hrtimer.h>
16 #include <linux/sched_clock.h>
17 #include <linux/seqlock.h>
18 #include <linux/bitops.h>
19
20 /**
21 * struct clock_read_data - data required to read from sched_clock()
22 *
23 * @epoch_ns: sched_clock() value at last update
24 * @epoch_cyc: Clock cycle value at last update.
25 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
26 * clocks.
27 * @read_sched_clock: Current clock source (or dummy source when suspended).
28 * @mult: Multipler for scaled math conversion.
29 * @shift: Shift value for scaled math conversion.
30 *
31 * Care must be taken when updating this structure; it is read by
32 * some very hot code paths. It occupies <=40 bytes and, when combined
33 * with the seqcount used to synchronize access, comfortably fits into
34 * a 64 byte cache line.
35 */
36 struct clock_read_data {
37 u64 epoch_ns;
38 u64 epoch_cyc;
39 u64 sched_clock_mask;
40 u64 (*read_sched_clock)(void);
41 u32 mult;
42 u32 shift;
43 };
44
45 /**
46 * struct clock_data - all data needed for sched_clock() (including
47 * registration of a new clock source)
48 *
49 * @seq: Sequence counter for protecting updates. The lowest
50 * bit is the index for @read_data.
51 * @read_data: Data required to read from sched_clock.
52 * @wrap_kt: Duration for which clock can run before wrapping.
53 * @rate: Tick rate of the registered clock.
54 * @actual_read_sched_clock: Registered hardware level clock read function.
55 *
56 * The ordering of this structure has been chosen to optimize cache
57 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
58 * into a single 64-byte cache line.
59 */
60 struct clock_data {
61 seqcount_t seq;
62 struct clock_read_data read_data[2];
63 ktime_t wrap_kt;
64 unsigned long rate;
65
66 u64 (*actual_read_sched_clock)(void);
67 };
68
69 static struct hrtimer sched_clock_timer;
70 static int irqtime = -1;
71
72 core_param(irqtime, irqtime, int, 0400);
73
74 static u64 notrace jiffy_sched_clock_read(void)
75 {
76 /*
77 * We don't need to use get_jiffies_64 on 32-bit arches here
78 * because we register with BITS_PER_LONG
79 */
80 return (u64)(jiffies - INITIAL_JIFFIES);
81 }
82
83 static struct clock_data cd ____cacheline_aligned = {
84 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
85 .read_sched_clock = jiffy_sched_clock_read, },
86 .actual_read_sched_clock = jiffy_sched_clock_read,
87 };
88
89 static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
90 {
91 return (cyc * mult) >> shift;
92 }
93
94 unsigned long long notrace sched_clock(void)
95 {
96 u64 cyc, res;
97 unsigned int seq;
98 struct clock_read_data *rd;
99
100 do {
101 seq = raw_read_seqcount(&cd.seq);
102 rd = cd.read_data + (seq & 1);
103
104 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
105 rd->sched_clock_mask;
106 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
107 } while (read_seqcount_retry(&cd.seq, seq));
108
109 return res;
110 }
111
112 /*
113 * Updating the data required to read the clock.
114 *
115 * sched_clock() will never observe mis-matched data even if called from
116 * an NMI. We do this by maintaining an odd/even copy of the data and
117 * steering sched_clock() to one or the other using a sequence counter.
118 * In order to preserve the data cache profile of sched_clock() as much
119 * as possible the system reverts back to the even copy when the update
120 * completes; the odd copy is used *only* during an update.
121 */
122 static void update_clock_read_data(struct clock_read_data *rd)
123 {
124 /* update the backup (odd) copy with the new data */
125 cd.read_data[1] = *rd;
126
127 /* steer readers towards the odd copy */
128 raw_write_seqcount_latch(&cd.seq);
129
130 /* now its safe for us to update the normal (even) copy */
131 cd.read_data[0] = *rd;
132
133 /* switch readers back to the even copy */
134 raw_write_seqcount_latch(&cd.seq);
135 }
136
137 /*
138 * Atomically update the sched_clock() epoch.
139 */
140 static void update_sched_clock(void)
141 {
142 u64 cyc;
143 u64 ns;
144 struct clock_read_data rd;
145
146 rd = cd.read_data[0];
147
148 cyc = cd.actual_read_sched_clock();
149 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
150
151 rd.epoch_ns = ns;
152 rd.epoch_cyc = cyc;
153
154 update_clock_read_data(&rd);
155 }
156
157 static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
158 {
159 update_sched_clock();
160 hrtimer_forward_now(hrt, cd.wrap_kt);
161
162 return HRTIMER_RESTART;
163 }
164
165 void __init
166 sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
167 {
168 u64 res, wrap, new_mask, new_epoch, cyc, ns;
169 u32 new_mult, new_shift;
170 unsigned long r;
171 char r_unit;
172 struct clock_read_data rd;
173
174 if (cd.rate > rate)
175 return;
176
177 WARN_ON(!irqs_disabled());
178
179 /* Calculate the mult/shift to convert counter ticks to ns. */
180 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
181
182 new_mask = CLOCKSOURCE_MASK(bits);
183 cd.rate = rate;
184
185 /* Calculate how many nanosecs until we risk wrapping */
186 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
187 cd.wrap_kt = ns_to_ktime(wrap);
188
189 rd = cd.read_data[0];
190
191 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
192 new_epoch = read();
193 cyc = cd.actual_read_sched_clock();
194 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
195 cd.actual_read_sched_clock = read;
196
197 rd.read_sched_clock = read;
198 rd.sched_clock_mask = new_mask;
199 rd.mult = new_mult;
200 rd.shift = new_shift;
201 rd.epoch_cyc = new_epoch;
202 rd.epoch_ns = ns;
203
204 update_clock_read_data(&rd);
205
206 if (sched_clock_timer.function != NULL) {
207 /* update timeout for clock wrap */
208 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
209 }
210
211 r = rate;
212 if (r >= 4000000) {
213 r /= 1000000;
214 r_unit = 'M';
215 } else {
216 if (r >= 1000) {
217 r /= 1000;
218 r_unit = 'k';
219 } else {
220 r_unit = ' ';
221 }
222 }
223
224 /* Calculate the ns resolution of this counter */
225 res = cyc_to_ns(1ULL, new_mult, new_shift);
226
227 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
228 bits, r, r_unit, res, wrap);
229
230 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
231 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
232 enable_sched_clock_irqtime();
233
234 pr_debug("Registered %pS as sched_clock source\n", read);
235 }
236
237 void __init generic_sched_clock_init(void)
238 {
239 /*
240 * If no sched_clock() function has been provided at that point,
241 * make it the final one one.
242 */
243 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
244 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
245
246 update_sched_clock();
247
248 /*
249 * Start the timer to keep sched_clock() properly updated and
250 * sets the initial epoch.
251 */
252 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
253 sched_clock_timer.function = sched_clock_poll;
254 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
255 }
256
257 /*
258 * Clock read function for use when the clock is suspended.
259 *
260 * This function makes it appear to sched_clock() as if the clock
261 * stopped counting at its last update.
262 *
263 * This function must only be called from the critical
264 * section in sched_clock(). It relies on the read_seqcount_retry()
265 * at the end of the critical section to be sure we observe the
266 * correct copy of 'epoch_cyc'.
267 */
268 static u64 notrace suspended_sched_clock_read(void)
269 {
270 unsigned int seq = raw_read_seqcount(&cd.seq);
271
272 return cd.read_data[seq & 1].epoch_cyc;
273 }
274
275 int sched_clock_suspend(void)
276 {
277 struct clock_read_data *rd = &cd.read_data[0];
278
279 update_sched_clock();
280 hrtimer_cancel(&sched_clock_timer);
281 rd->read_sched_clock = suspended_sched_clock_read;
282
283 return 0;
284 }
285
286 void sched_clock_resume(void)
287 {
288 struct clock_read_data *rd = &cd.read_data[0];
289
290 rd->epoch_cyc = cd.actual_read_sched_clock();
291 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
292 rd->read_sched_clock = cd.actual_read_sched_clock;
293 }
294
295 static struct syscore_ops sched_clock_ops = {
296 .suspend = sched_clock_suspend,
297 .resume = sched_clock_resume,
298 };
299
300 static int __init sched_clock_syscore_init(void)
301 {
302 register_syscore_ops(&sched_clock_ops);
303
304 return 0;
305 }
306 device_initcall(sched_clock_syscore_init);