]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/time/tick-sched.c
Merge tag 'mips_5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[thirdparty/linux.git] / kernel / time / tick-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28
29 #include <asm/irq_regs.h>
30
31 #include "tick-internal.h"
32
33 #include <trace/events/timer.h>
34
35 /*
36 * Per-CPU nohz control structure
37 */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 return &per_cpu(tick_cpu_sched, cpu);
43 }
44
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
48 */
49 static ktime_t last_jiffies_update;
50
51 /*
52 * Must be called with interrupts disabled !
53 */
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 unsigned long ticks = 0;
57 ktime_t delta;
58
59 /*
60 * Do a quick check without holding jiffies_lock:
61 */
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta < tick_period)
64 return;
65
66 /* Reevaluate with jiffies_lock held */
67 write_seqlock(&jiffies_lock);
68
69 delta = ktime_sub(now, last_jiffies_update);
70 if (delta >= tick_period) {
71
72 delta = ktime_sub(delta, tick_period);
73 last_jiffies_update = ktime_add(last_jiffies_update,
74 tick_period);
75
76 /* Slow path for long timeouts */
77 if (unlikely(delta >= tick_period)) {
78 s64 incr = ktime_to_ns(tick_period);
79
80 ticks = ktime_divns(delta, incr);
81
82 last_jiffies_update = ktime_add_ns(last_jiffies_update,
83 incr * ticks);
84 }
85 do_timer(++ticks);
86
87 /* Keep the tick_next_period variable up to date */
88 tick_next_period = ktime_add(last_jiffies_update, tick_period);
89 } else {
90 write_sequnlock(&jiffies_lock);
91 return;
92 }
93 write_sequnlock(&jiffies_lock);
94 update_wall_time();
95 }
96
97 /*
98 * Initialize and return retrieve the jiffies update.
99 */
100 static ktime_t tick_init_jiffy_update(void)
101 {
102 ktime_t period;
103
104 write_seqlock(&jiffies_lock);
105 /* Did we start the jiffies update yet ? */
106 if (last_jiffies_update == 0)
107 last_jiffies_update = tick_next_period;
108 period = last_jiffies_update;
109 write_sequnlock(&jiffies_lock);
110 return period;
111 }
112
113 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
114 {
115 int cpu = smp_processor_id();
116
117 #ifdef CONFIG_NO_HZ_COMMON
118 /*
119 * Check if the do_timer duty was dropped. We don't care about
120 * concurrency: This happens only when the CPU in charge went
121 * into a long sleep. If two CPUs happen to assign themselves to
122 * this duty, then the jiffies update is still serialized by
123 * jiffies_lock.
124 *
125 * If nohz_full is enabled, this should not happen because the
126 * tick_do_timer_cpu never relinquishes.
127 */
128 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
129 #ifdef CONFIG_NO_HZ_FULL
130 WARN_ON(tick_nohz_full_running);
131 #endif
132 tick_do_timer_cpu = cpu;
133 }
134 #endif
135
136 /* Check, if the jiffies need an update */
137 if (tick_do_timer_cpu == cpu)
138 tick_do_update_jiffies64(now);
139
140 if (ts->inidle)
141 ts->got_idle_tick = 1;
142 }
143
144 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
145 {
146 #ifdef CONFIG_NO_HZ_COMMON
147 /*
148 * When we are idle and the tick is stopped, we have to touch
149 * the watchdog as we might not schedule for a really long
150 * time. This happens on complete idle SMP systems while
151 * waiting on the login prompt. We also increment the "start of
152 * idle" jiffy stamp so the idle accounting adjustment we do
153 * when we go busy again does not account too much ticks.
154 */
155 if (ts->tick_stopped) {
156 touch_softlockup_watchdog_sched();
157 if (is_idle_task(current))
158 ts->idle_jiffies++;
159 /*
160 * In case the current tick fired too early past its expected
161 * expiration, make sure we don't bypass the next clock reprogramming
162 * to the same deadline.
163 */
164 ts->next_tick = 0;
165 }
166 #endif
167 update_process_times(user_mode(regs));
168 profile_tick(CPU_PROFILING);
169 }
170 #endif
171
172 #ifdef CONFIG_NO_HZ_FULL
173 cpumask_var_t tick_nohz_full_mask;
174 bool tick_nohz_full_running;
175 static atomic_t tick_dep_mask;
176
177 static bool check_tick_dependency(atomic_t *dep)
178 {
179 int val = atomic_read(dep);
180
181 if (val & TICK_DEP_MASK_POSIX_TIMER) {
182 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
183 return true;
184 }
185
186 if (val & TICK_DEP_MASK_PERF_EVENTS) {
187 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
188 return true;
189 }
190
191 if (val & TICK_DEP_MASK_SCHED) {
192 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
193 return true;
194 }
195
196 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
197 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
198 return true;
199 }
200
201 return false;
202 }
203
204 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
205 {
206 lockdep_assert_irqs_disabled();
207
208 if (unlikely(!cpu_online(cpu)))
209 return false;
210
211 if (check_tick_dependency(&tick_dep_mask))
212 return false;
213
214 if (check_tick_dependency(&ts->tick_dep_mask))
215 return false;
216
217 if (check_tick_dependency(&current->tick_dep_mask))
218 return false;
219
220 if (check_tick_dependency(&current->signal->tick_dep_mask))
221 return false;
222
223 return true;
224 }
225
226 static void nohz_full_kick_func(struct irq_work *work)
227 {
228 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
229 }
230
231 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
232 .func = nohz_full_kick_func,
233 };
234
235 /*
236 * Kick this CPU if it's full dynticks in order to force it to
237 * re-evaluate its dependency on the tick and restart it if necessary.
238 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
239 * is NMI safe.
240 */
241 static void tick_nohz_full_kick(void)
242 {
243 if (!tick_nohz_full_cpu(smp_processor_id()))
244 return;
245
246 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
247 }
248
249 /*
250 * Kick the CPU if it's full dynticks in order to force it to
251 * re-evaluate its dependency on the tick and restart it if necessary.
252 */
253 void tick_nohz_full_kick_cpu(int cpu)
254 {
255 if (!tick_nohz_full_cpu(cpu))
256 return;
257
258 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
259 }
260
261 /*
262 * Kick all full dynticks CPUs in order to force these to re-evaluate
263 * their dependency on the tick and restart it if necessary.
264 */
265 static void tick_nohz_full_kick_all(void)
266 {
267 int cpu;
268
269 if (!tick_nohz_full_running)
270 return;
271
272 preempt_disable();
273 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
274 tick_nohz_full_kick_cpu(cpu);
275 preempt_enable();
276 }
277
278 static void tick_nohz_dep_set_all(atomic_t *dep,
279 enum tick_dep_bits bit)
280 {
281 int prev;
282
283 prev = atomic_fetch_or(BIT(bit), dep);
284 if (!prev)
285 tick_nohz_full_kick_all();
286 }
287
288 /*
289 * Set a global tick dependency. Used by perf events that rely on freq and
290 * by unstable clock.
291 */
292 void tick_nohz_dep_set(enum tick_dep_bits bit)
293 {
294 tick_nohz_dep_set_all(&tick_dep_mask, bit);
295 }
296
297 void tick_nohz_dep_clear(enum tick_dep_bits bit)
298 {
299 atomic_andnot(BIT(bit), &tick_dep_mask);
300 }
301
302 /*
303 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
304 * manage events throttling.
305 */
306 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
307 {
308 int prev;
309 struct tick_sched *ts;
310
311 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
312
313 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
314 if (!prev) {
315 preempt_disable();
316 /* Perf needs local kick that is NMI safe */
317 if (cpu == smp_processor_id()) {
318 tick_nohz_full_kick();
319 } else {
320 /* Remote irq work not NMI-safe */
321 if (!WARN_ON_ONCE(in_nmi()))
322 tick_nohz_full_kick_cpu(cpu);
323 }
324 preempt_enable();
325 }
326 }
327
328 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
329 {
330 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
331
332 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
333 }
334
335 /*
336 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
337 * per task timers.
338 */
339 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
340 {
341 /*
342 * We could optimize this with just kicking the target running the task
343 * if that noise matters for nohz full users.
344 */
345 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
346 }
347
348 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
349 {
350 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
351 }
352
353 /*
354 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
355 * per process timers.
356 */
357 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
358 {
359 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
360 }
361
362 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
363 {
364 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
365 }
366
367 /*
368 * Re-evaluate the need for the tick as we switch the current task.
369 * It might need the tick due to per task/process properties:
370 * perf events, posix CPU timers, ...
371 */
372 void __tick_nohz_task_switch(void)
373 {
374 unsigned long flags;
375 struct tick_sched *ts;
376
377 local_irq_save(flags);
378
379 if (!tick_nohz_full_cpu(smp_processor_id()))
380 goto out;
381
382 ts = this_cpu_ptr(&tick_cpu_sched);
383
384 if (ts->tick_stopped) {
385 if (atomic_read(&current->tick_dep_mask) ||
386 atomic_read(&current->signal->tick_dep_mask))
387 tick_nohz_full_kick();
388 }
389 out:
390 local_irq_restore(flags);
391 }
392
393 /* Get the boot-time nohz CPU list from the kernel parameters. */
394 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
395 {
396 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
397 cpumask_copy(tick_nohz_full_mask, cpumask);
398 tick_nohz_full_running = true;
399 }
400
401 static int tick_nohz_cpu_down(unsigned int cpu)
402 {
403 /*
404 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
405 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
406 * CPUs. It must remain online when nohz full is enabled.
407 */
408 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
409 return -EBUSY;
410 return 0;
411 }
412
413 void __init tick_nohz_init(void)
414 {
415 int cpu, ret;
416
417 if (!tick_nohz_full_running)
418 return;
419
420 /*
421 * Full dynticks uses irq work to drive the tick rescheduling on safe
422 * locking contexts. But then we need irq work to raise its own
423 * interrupts to avoid circular dependency on the tick
424 */
425 if (!arch_irq_work_has_interrupt()) {
426 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
427 cpumask_clear(tick_nohz_full_mask);
428 tick_nohz_full_running = false;
429 return;
430 }
431
432 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
433 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
434 cpu = smp_processor_id();
435
436 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
437 pr_warn("NO_HZ: Clearing %d from nohz_full range "
438 "for timekeeping\n", cpu);
439 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
440 }
441 }
442
443 for_each_cpu(cpu, tick_nohz_full_mask)
444 context_tracking_cpu_set(cpu);
445
446 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
447 "kernel/nohz:predown", NULL,
448 tick_nohz_cpu_down);
449 WARN_ON(ret < 0);
450 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
451 cpumask_pr_args(tick_nohz_full_mask));
452 }
453 #endif
454
455 /*
456 * NOHZ - aka dynamic tick functionality
457 */
458 #ifdef CONFIG_NO_HZ_COMMON
459 /*
460 * NO HZ enabled ?
461 */
462 bool tick_nohz_enabled __read_mostly = true;
463 unsigned long tick_nohz_active __read_mostly;
464 /*
465 * Enable / Disable tickless mode
466 */
467 static int __init setup_tick_nohz(char *str)
468 {
469 return (kstrtobool(str, &tick_nohz_enabled) == 0);
470 }
471
472 __setup("nohz=", setup_tick_nohz);
473
474 bool tick_nohz_tick_stopped(void)
475 {
476 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
477
478 return ts->tick_stopped;
479 }
480
481 bool tick_nohz_tick_stopped_cpu(int cpu)
482 {
483 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
484
485 return ts->tick_stopped;
486 }
487
488 /**
489 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
490 *
491 * Called from interrupt entry when the CPU was idle
492 *
493 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
494 * must be updated. Otherwise an interrupt handler could use a stale jiffy
495 * value. We do this unconditionally on any CPU, as we don't know whether the
496 * CPU, which has the update task assigned is in a long sleep.
497 */
498 static void tick_nohz_update_jiffies(ktime_t now)
499 {
500 unsigned long flags;
501
502 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
503
504 local_irq_save(flags);
505 tick_do_update_jiffies64(now);
506 local_irq_restore(flags);
507
508 touch_softlockup_watchdog_sched();
509 }
510
511 /*
512 * Updates the per-CPU time idle statistics counters
513 */
514 static void
515 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
516 {
517 ktime_t delta;
518
519 if (ts->idle_active) {
520 delta = ktime_sub(now, ts->idle_entrytime);
521 if (nr_iowait_cpu(cpu) > 0)
522 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
523 else
524 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
525 ts->idle_entrytime = now;
526 }
527
528 if (last_update_time)
529 *last_update_time = ktime_to_us(now);
530
531 }
532
533 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
534 {
535 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
536 ts->idle_active = 0;
537
538 sched_clock_idle_wakeup_event();
539 }
540
541 static void tick_nohz_start_idle(struct tick_sched *ts)
542 {
543 ts->idle_entrytime = ktime_get();
544 ts->idle_active = 1;
545 sched_clock_idle_sleep_event();
546 }
547
548 /**
549 * get_cpu_idle_time_us - get the total idle time of a CPU
550 * @cpu: CPU number to query
551 * @last_update_time: variable to store update time in. Do not update
552 * counters if NULL.
553 *
554 * Return the cumulative idle time (since boot) for a given
555 * CPU, in microseconds.
556 *
557 * This time is measured via accounting rather than sampling,
558 * and is as accurate as ktime_get() is.
559 *
560 * This function returns -1 if NOHZ is not enabled.
561 */
562 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
563 {
564 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
565 ktime_t now, idle;
566
567 if (!tick_nohz_active)
568 return -1;
569
570 now = ktime_get();
571 if (last_update_time) {
572 update_ts_time_stats(cpu, ts, now, last_update_time);
573 idle = ts->idle_sleeptime;
574 } else {
575 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
576 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
577
578 idle = ktime_add(ts->idle_sleeptime, delta);
579 } else {
580 idle = ts->idle_sleeptime;
581 }
582 }
583
584 return ktime_to_us(idle);
585
586 }
587 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
588
589 /**
590 * get_cpu_iowait_time_us - get the total iowait time of a CPU
591 * @cpu: CPU number to query
592 * @last_update_time: variable to store update time in. Do not update
593 * counters if NULL.
594 *
595 * Return the cumulative iowait time (since boot) for a given
596 * CPU, in microseconds.
597 *
598 * This time is measured via accounting rather than sampling,
599 * and is as accurate as ktime_get() is.
600 *
601 * This function returns -1 if NOHZ is not enabled.
602 */
603 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
604 {
605 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
606 ktime_t now, iowait;
607
608 if (!tick_nohz_active)
609 return -1;
610
611 now = ktime_get();
612 if (last_update_time) {
613 update_ts_time_stats(cpu, ts, now, last_update_time);
614 iowait = ts->iowait_sleeptime;
615 } else {
616 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
617 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
618
619 iowait = ktime_add(ts->iowait_sleeptime, delta);
620 } else {
621 iowait = ts->iowait_sleeptime;
622 }
623 }
624
625 return ktime_to_us(iowait);
626 }
627 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
628
629 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
630 {
631 hrtimer_cancel(&ts->sched_timer);
632 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
633
634 /* Forward the time to expire in the future */
635 hrtimer_forward(&ts->sched_timer, now, tick_period);
636
637 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
638 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
639 else
640 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
641
642 /*
643 * Reset to make sure next tick stop doesn't get fooled by past
644 * cached clock deadline.
645 */
646 ts->next_tick = 0;
647 }
648
649 static inline bool local_timer_softirq_pending(void)
650 {
651 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
652 }
653
654 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
655 {
656 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
657 unsigned long basejiff;
658 unsigned int seq;
659
660 /* Read jiffies and the time when jiffies were updated last */
661 do {
662 seq = read_seqbegin(&jiffies_lock);
663 basemono = last_jiffies_update;
664 basejiff = jiffies;
665 } while (read_seqretry(&jiffies_lock, seq));
666 ts->last_jiffies = basejiff;
667 ts->timer_expires_base = basemono;
668
669 /*
670 * Keep the periodic tick, when RCU, architecture or irq_work
671 * requests it.
672 * Aside of that check whether the local timer softirq is
673 * pending. If so its a bad idea to call get_next_timer_interrupt()
674 * because there is an already expired timer, so it will request
675 * immeditate expiry, which rearms the hardware timer with a
676 * minimal delta which brings us back to this place
677 * immediately. Lather, rinse and repeat...
678 */
679 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
680 irq_work_needs_cpu() || local_timer_softirq_pending()) {
681 next_tick = basemono + TICK_NSEC;
682 } else {
683 /*
684 * Get the next pending timer. If high resolution
685 * timers are enabled this only takes the timer wheel
686 * timers into account. If high resolution timers are
687 * disabled this also looks at the next expiring
688 * hrtimer.
689 */
690 next_tmr = get_next_timer_interrupt(basejiff, basemono);
691 ts->next_timer = next_tmr;
692 /* Take the next rcu event into account */
693 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
694 }
695
696 /*
697 * If the tick is due in the next period, keep it ticking or
698 * force prod the timer.
699 */
700 delta = next_tick - basemono;
701 if (delta <= (u64)TICK_NSEC) {
702 /*
703 * Tell the timer code that the base is not idle, i.e. undo
704 * the effect of get_next_timer_interrupt():
705 */
706 timer_clear_idle();
707 /*
708 * We've not stopped the tick yet, and there's a timer in the
709 * next period, so no point in stopping it either, bail.
710 */
711 if (!ts->tick_stopped) {
712 ts->timer_expires = 0;
713 goto out;
714 }
715 }
716
717 /*
718 * If this CPU is the one which had the do_timer() duty last, we limit
719 * the sleep time to the timekeeping max_deferment value.
720 * Otherwise we can sleep as long as we want.
721 */
722 delta = timekeeping_max_deferment();
723 if (cpu != tick_do_timer_cpu &&
724 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
725 delta = KTIME_MAX;
726
727 /* Calculate the next expiry time */
728 if (delta < (KTIME_MAX - basemono))
729 expires = basemono + delta;
730 else
731 expires = KTIME_MAX;
732
733 ts->timer_expires = min_t(u64, expires, next_tick);
734
735 out:
736 return ts->timer_expires;
737 }
738
739 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
740 {
741 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
742 u64 basemono = ts->timer_expires_base;
743 u64 expires = ts->timer_expires;
744 ktime_t tick = expires;
745
746 /* Make sure we won't be trying to stop it twice in a row. */
747 ts->timer_expires_base = 0;
748
749 /*
750 * If this CPU is the one which updates jiffies, then give up
751 * the assignment and let it be taken by the CPU which runs
752 * the tick timer next, which might be this CPU as well. If we
753 * don't drop this here the jiffies might be stale and
754 * do_timer() never invoked. Keep track of the fact that it
755 * was the one which had the do_timer() duty last.
756 */
757 if (cpu == tick_do_timer_cpu) {
758 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
759 ts->do_timer_last = 1;
760 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
761 ts->do_timer_last = 0;
762 }
763
764 /* Skip reprogram of event if its not changed */
765 if (ts->tick_stopped && (expires == ts->next_tick)) {
766 /* Sanity check: make sure clockevent is actually programmed */
767 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
768 return;
769
770 WARN_ON_ONCE(1);
771 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
772 basemono, ts->next_tick, dev->next_event,
773 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
774 }
775
776 /*
777 * nohz_stop_sched_tick can be called several times before
778 * the nohz_restart_sched_tick is called. This happens when
779 * interrupts arrive which do not cause a reschedule. In the
780 * first call we save the current tick time, so we can restart
781 * the scheduler tick in nohz_restart_sched_tick.
782 */
783 if (!ts->tick_stopped) {
784 calc_load_nohz_start();
785 quiet_vmstat();
786
787 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
788 ts->tick_stopped = 1;
789 trace_tick_stop(1, TICK_DEP_MASK_NONE);
790 }
791
792 ts->next_tick = tick;
793
794 /*
795 * If the expiration time == KTIME_MAX, then we simply stop
796 * the tick timer.
797 */
798 if (unlikely(expires == KTIME_MAX)) {
799 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
800 hrtimer_cancel(&ts->sched_timer);
801 return;
802 }
803
804 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
805 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
806 } else {
807 hrtimer_set_expires(&ts->sched_timer, tick);
808 tick_program_event(tick, 1);
809 }
810 }
811
812 static void tick_nohz_retain_tick(struct tick_sched *ts)
813 {
814 ts->timer_expires_base = 0;
815 }
816
817 #ifdef CONFIG_NO_HZ_FULL
818 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
819 {
820 if (tick_nohz_next_event(ts, cpu))
821 tick_nohz_stop_tick(ts, cpu);
822 else
823 tick_nohz_retain_tick(ts);
824 }
825 #endif /* CONFIG_NO_HZ_FULL */
826
827 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
828 {
829 /* Update jiffies first */
830 tick_do_update_jiffies64(now);
831
832 /*
833 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
834 * the clock forward checks in the enqueue path:
835 */
836 timer_clear_idle();
837
838 calc_load_nohz_stop();
839 touch_softlockup_watchdog_sched();
840 /*
841 * Cancel the scheduled timer and restore the tick
842 */
843 ts->tick_stopped = 0;
844 ts->idle_exittime = now;
845
846 tick_nohz_restart(ts, now);
847 }
848
849 static void tick_nohz_full_update_tick(struct tick_sched *ts)
850 {
851 #ifdef CONFIG_NO_HZ_FULL
852 int cpu = smp_processor_id();
853
854 if (!tick_nohz_full_cpu(cpu))
855 return;
856
857 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
858 return;
859
860 if (can_stop_full_tick(cpu, ts))
861 tick_nohz_stop_sched_tick(ts, cpu);
862 else if (ts->tick_stopped)
863 tick_nohz_restart_sched_tick(ts, ktime_get());
864 #endif
865 }
866
867 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
868 {
869 /*
870 * If this CPU is offline and it is the one which updates
871 * jiffies, then give up the assignment and let it be taken by
872 * the CPU which runs the tick timer next. If we don't drop
873 * this here the jiffies might be stale and do_timer() never
874 * invoked.
875 */
876 if (unlikely(!cpu_online(cpu))) {
877 if (cpu == tick_do_timer_cpu)
878 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
879 /*
880 * Make sure the CPU doesn't get fooled by obsolete tick
881 * deadline if it comes back online later.
882 */
883 ts->next_tick = 0;
884 return false;
885 }
886
887 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
888 return false;
889
890 if (need_resched())
891 return false;
892
893 if (unlikely(local_softirq_pending())) {
894 static int ratelimit;
895
896 if (ratelimit < 10 &&
897 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
898 pr_warn("NOHZ: local_softirq_pending %02x\n",
899 (unsigned int) local_softirq_pending());
900 ratelimit++;
901 }
902 return false;
903 }
904
905 if (tick_nohz_full_enabled()) {
906 /*
907 * Keep the tick alive to guarantee timekeeping progression
908 * if there are full dynticks CPUs around
909 */
910 if (tick_do_timer_cpu == cpu)
911 return false;
912 /*
913 * Boot safety: make sure the timekeeping duty has been
914 * assigned before entering dyntick-idle mode,
915 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
916 */
917 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
918 return false;
919
920 /* Should not happen for nohz-full */
921 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
922 return false;
923 }
924
925 return true;
926 }
927
928 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
929 {
930 ktime_t expires;
931 int cpu = smp_processor_id();
932
933 /*
934 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
935 * tick timer expiration time is known already.
936 */
937 if (ts->timer_expires_base)
938 expires = ts->timer_expires;
939 else if (can_stop_idle_tick(cpu, ts))
940 expires = tick_nohz_next_event(ts, cpu);
941 else
942 return;
943
944 ts->idle_calls++;
945
946 if (expires > 0LL) {
947 int was_stopped = ts->tick_stopped;
948
949 tick_nohz_stop_tick(ts, cpu);
950
951 ts->idle_sleeps++;
952 ts->idle_expires = expires;
953
954 if (!was_stopped && ts->tick_stopped) {
955 ts->idle_jiffies = ts->last_jiffies;
956 nohz_balance_enter_idle(cpu);
957 }
958 } else {
959 tick_nohz_retain_tick(ts);
960 }
961 }
962
963 /**
964 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
965 *
966 * When the next event is more than a tick into the future, stop the idle tick
967 */
968 void tick_nohz_idle_stop_tick(void)
969 {
970 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
971 }
972
973 void tick_nohz_idle_retain_tick(void)
974 {
975 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
976 /*
977 * Undo the effect of get_next_timer_interrupt() called from
978 * tick_nohz_next_event().
979 */
980 timer_clear_idle();
981 }
982
983 /**
984 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
985 *
986 * Called when we start the idle loop.
987 */
988 void tick_nohz_idle_enter(void)
989 {
990 struct tick_sched *ts;
991
992 lockdep_assert_irqs_enabled();
993
994 local_irq_disable();
995
996 ts = this_cpu_ptr(&tick_cpu_sched);
997
998 WARN_ON_ONCE(ts->timer_expires_base);
999
1000 ts->inidle = 1;
1001 tick_nohz_start_idle(ts);
1002
1003 local_irq_enable();
1004 }
1005
1006 /**
1007 * tick_nohz_irq_exit - update next tick event from interrupt exit
1008 *
1009 * When an interrupt fires while we are idle and it doesn't cause
1010 * a reschedule, it may still add, modify or delete a timer, enqueue
1011 * an RCU callback, etc...
1012 * So we need to re-calculate and reprogram the next tick event.
1013 */
1014 void tick_nohz_irq_exit(void)
1015 {
1016 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1017
1018 if (ts->inidle)
1019 tick_nohz_start_idle(ts);
1020 else
1021 tick_nohz_full_update_tick(ts);
1022 }
1023
1024 /**
1025 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1026 */
1027 bool tick_nohz_idle_got_tick(void)
1028 {
1029 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1030
1031 if (ts->got_idle_tick) {
1032 ts->got_idle_tick = 0;
1033 return true;
1034 }
1035 return false;
1036 }
1037
1038 /**
1039 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1040 * or the tick, whatever that expires first. Note that, if the tick has been
1041 * stopped, it returns the next hrtimer.
1042 *
1043 * Called from power state control code with interrupts disabled
1044 */
1045 ktime_t tick_nohz_get_next_hrtimer(void)
1046 {
1047 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1048 }
1049
1050 /**
1051 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1052 * @delta_next: duration until the next event if the tick cannot be stopped
1053 *
1054 * Called from power state control code with interrupts disabled
1055 */
1056 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1057 {
1058 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1059 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1060 int cpu = smp_processor_id();
1061 /*
1062 * The idle entry time is expected to be a sufficient approximation of
1063 * the current time at this point.
1064 */
1065 ktime_t now = ts->idle_entrytime;
1066 ktime_t next_event;
1067
1068 WARN_ON_ONCE(!ts->inidle);
1069
1070 *delta_next = ktime_sub(dev->next_event, now);
1071
1072 if (!can_stop_idle_tick(cpu, ts))
1073 return *delta_next;
1074
1075 next_event = tick_nohz_next_event(ts, cpu);
1076 if (!next_event)
1077 return *delta_next;
1078
1079 /*
1080 * If the next highres timer to expire is earlier than next_event, the
1081 * idle governor needs to know that.
1082 */
1083 next_event = min_t(u64, next_event,
1084 hrtimer_next_event_without(&ts->sched_timer));
1085
1086 return ktime_sub(next_event, now);
1087 }
1088
1089 /**
1090 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1091 * for a particular CPU.
1092 *
1093 * Called from the schedutil frequency scaling governor in scheduler context.
1094 */
1095 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1096 {
1097 struct tick_sched *ts = tick_get_tick_sched(cpu);
1098
1099 return ts->idle_calls;
1100 }
1101
1102 /**
1103 * tick_nohz_get_idle_calls - return the current idle calls counter value
1104 *
1105 * Called from the schedutil frequency scaling governor in scheduler context.
1106 */
1107 unsigned long tick_nohz_get_idle_calls(void)
1108 {
1109 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1110
1111 return ts->idle_calls;
1112 }
1113
1114 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1115 {
1116 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1117 unsigned long ticks;
1118
1119 if (vtime_accounting_cpu_enabled())
1120 return;
1121 /*
1122 * We stopped the tick in idle. Update process times would miss the
1123 * time we slept as update_process_times does only a 1 tick
1124 * accounting. Enforce that this is accounted to idle !
1125 */
1126 ticks = jiffies - ts->idle_jiffies;
1127 /*
1128 * We might be one off. Do not randomly account a huge number of ticks!
1129 */
1130 if (ticks && ticks < LONG_MAX)
1131 account_idle_ticks(ticks);
1132 #endif
1133 }
1134
1135 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1136 {
1137 tick_nohz_restart_sched_tick(ts, now);
1138 tick_nohz_account_idle_ticks(ts);
1139 }
1140
1141 void tick_nohz_idle_restart_tick(void)
1142 {
1143 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1144
1145 if (ts->tick_stopped)
1146 __tick_nohz_idle_restart_tick(ts, ktime_get());
1147 }
1148
1149 /**
1150 * tick_nohz_idle_exit - restart the idle tick from the idle task
1151 *
1152 * Restart the idle tick when the CPU is woken up from idle
1153 * This also exit the RCU extended quiescent state. The CPU
1154 * can use RCU again after this function is called.
1155 */
1156 void tick_nohz_idle_exit(void)
1157 {
1158 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1159 bool idle_active, tick_stopped;
1160 ktime_t now;
1161
1162 local_irq_disable();
1163
1164 WARN_ON_ONCE(!ts->inidle);
1165 WARN_ON_ONCE(ts->timer_expires_base);
1166
1167 ts->inidle = 0;
1168 idle_active = ts->idle_active;
1169 tick_stopped = ts->tick_stopped;
1170
1171 if (idle_active || tick_stopped)
1172 now = ktime_get();
1173
1174 if (idle_active)
1175 tick_nohz_stop_idle(ts, now);
1176
1177 if (tick_stopped)
1178 __tick_nohz_idle_restart_tick(ts, now);
1179
1180 local_irq_enable();
1181 }
1182
1183 /*
1184 * The nohz low res interrupt handler
1185 */
1186 static void tick_nohz_handler(struct clock_event_device *dev)
1187 {
1188 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1189 struct pt_regs *regs = get_irq_regs();
1190 ktime_t now = ktime_get();
1191
1192 dev->next_event = KTIME_MAX;
1193
1194 tick_sched_do_timer(ts, now);
1195 tick_sched_handle(ts, regs);
1196
1197 /* No need to reprogram if we are running tickless */
1198 if (unlikely(ts->tick_stopped))
1199 return;
1200
1201 hrtimer_forward(&ts->sched_timer, now, tick_period);
1202 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1203 }
1204
1205 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1206 {
1207 if (!tick_nohz_enabled)
1208 return;
1209 ts->nohz_mode = mode;
1210 /* One update is enough */
1211 if (!test_and_set_bit(0, &tick_nohz_active))
1212 timers_update_nohz();
1213 }
1214
1215 /**
1216 * tick_nohz_switch_to_nohz - switch to nohz mode
1217 */
1218 static void tick_nohz_switch_to_nohz(void)
1219 {
1220 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221 ktime_t next;
1222
1223 if (!tick_nohz_enabled)
1224 return;
1225
1226 if (tick_switch_to_oneshot(tick_nohz_handler))
1227 return;
1228
1229 /*
1230 * Recycle the hrtimer in ts, so we can share the
1231 * hrtimer_forward with the highres code.
1232 */
1233 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1234 /* Get the next period */
1235 next = tick_init_jiffy_update();
1236
1237 hrtimer_set_expires(&ts->sched_timer, next);
1238 hrtimer_forward_now(&ts->sched_timer, tick_period);
1239 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1240 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1241 }
1242
1243 static inline void tick_nohz_irq_enter(void)
1244 {
1245 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1246 ktime_t now;
1247
1248 if (!ts->idle_active && !ts->tick_stopped)
1249 return;
1250 now = ktime_get();
1251 if (ts->idle_active)
1252 tick_nohz_stop_idle(ts, now);
1253 if (ts->tick_stopped)
1254 tick_nohz_update_jiffies(now);
1255 }
1256
1257 #else
1258
1259 static inline void tick_nohz_switch_to_nohz(void) { }
1260 static inline void tick_nohz_irq_enter(void) { }
1261 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1262
1263 #endif /* CONFIG_NO_HZ_COMMON */
1264
1265 /*
1266 * Called from irq_enter to notify about the possible interruption of idle()
1267 */
1268 void tick_irq_enter(void)
1269 {
1270 tick_check_oneshot_broadcast_this_cpu();
1271 tick_nohz_irq_enter();
1272 }
1273
1274 /*
1275 * High resolution timer specific code
1276 */
1277 #ifdef CONFIG_HIGH_RES_TIMERS
1278 /*
1279 * We rearm the timer until we get disabled by the idle code.
1280 * Called with interrupts disabled.
1281 */
1282 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1283 {
1284 struct tick_sched *ts =
1285 container_of(timer, struct tick_sched, sched_timer);
1286 struct pt_regs *regs = get_irq_regs();
1287 ktime_t now = ktime_get();
1288
1289 tick_sched_do_timer(ts, now);
1290
1291 /*
1292 * Do not call, when we are not in irq context and have
1293 * no valid regs pointer
1294 */
1295 if (regs)
1296 tick_sched_handle(ts, regs);
1297 else
1298 ts->next_tick = 0;
1299
1300 /* No need to reprogram if we are in idle or full dynticks mode */
1301 if (unlikely(ts->tick_stopped))
1302 return HRTIMER_NORESTART;
1303
1304 hrtimer_forward(timer, now, tick_period);
1305
1306 return HRTIMER_RESTART;
1307 }
1308
1309 static int sched_skew_tick;
1310
1311 static int __init skew_tick(char *str)
1312 {
1313 get_option(&str, &sched_skew_tick);
1314
1315 return 0;
1316 }
1317 early_param("skew_tick", skew_tick);
1318
1319 /**
1320 * tick_setup_sched_timer - setup the tick emulation timer
1321 */
1322 void tick_setup_sched_timer(void)
1323 {
1324 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1325 ktime_t now = ktime_get();
1326
1327 /*
1328 * Emulate tick processing via per-CPU hrtimers:
1329 */
1330 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1331 ts->sched_timer.function = tick_sched_timer;
1332
1333 /* Get the next period (per-CPU) */
1334 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1335
1336 /* Offset the tick to avert jiffies_lock contention. */
1337 if (sched_skew_tick) {
1338 u64 offset = ktime_to_ns(tick_period) >> 1;
1339 do_div(offset, num_possible_cpus());
1340 offset *= smp_processor_id();
1341 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1342 }
1343
1344 hrtimer_forward(&ts->sched_timer, now, tick_period);
1345 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1346 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1347 }
1348 #endif /* HIGH_RES_TIMERS */
1349
1350 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1351 void tick_cancel_sched_timer(int cpu)
1352 {
1353 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1354
1355 # ifdef CONFIG_HIGH_RES_TIMERS
1356 if (ts->sched_timer.base)
1357 hrtimer_cancel(&ts->sched_timer);
1358 # endif
1359
1360 memset(ts, 0, sizeof(*ts));
1361 }
1362 #endif
1363
1364 /**
1365 * Async notification about clocksource changes
1366 */
1367 void tick_clock_notify(void)
1368 {
1369 int cpu;
1370
1371 for_each_possible_cpu(cpu)
1372 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1373 }
1374
1375 /*
1376 * Async notification about clock event changes
1377 */
1378 void tick_oneshot_notify(void)
1379 {
1380 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1381
1382 set_bit(0, &ts->check_clocks);
1383 }
1384
1385 /**
1386 * Check, if a change happened, which makes oneshot possible.
1387 *
1388 * Called cyclic from the hrtimer softirq (driven by the timer
1389 * softirq) allow_nohz signals, that we can switch into low-res nohz
1390 * mode, because high resolution timers are disabled (either compile
1391 * or runtime). Called with interrupts disabled.
1392 */
1393 int tick_check_oneshot_change(int allow_nohz)
1394 {
1395 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1396
1397 if (!test_and_clear_bit(0, &ts->check_clocks))
1398 return 0;
1399
1400 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1401 return 0;
1402
1403 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1404 return 0;
1405
1406 if (!allow_nohz)
1407 return 1;
1408
1409 tick_nohz_switch_to_nohz();
1410 return 0;
1411 }