]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/time/time.c
Merge tag 'y2038-for-4.21' of ssh://gitolite.kernel.org:/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / kernel / time / time.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 *
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
9 *
10 * 1993-09-02 Philip Gladstone
11 * Created file with time related functions from sched/core.c and adjtimex()
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/timex.h>
30 #include <linux/capability.h>
31 #include <linux/timekeeper_internal.h>
32 #include <linux/errno.h>
33 #include <linux/syscalls.h>
34 #include <linux/security.h>
35 #include <linux/fs.h>
36 #include <linux/math64.h>
37 #include <linux/ptrace.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/compat.h>
41 #include <asm/unistd.h>
42
43 #include <generated/timeconst.h>
44 #include "timekeeping.h"
45
46 /*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50 struct timezone sys_tz;
51
52 EXPORT_SYMBOL(sys_tz);
53
54 #ifdef __ARCH_WANT_SYS_TIME
55
56 /*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 time_t i = (time_t)ktime_get_real_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
69 }
70 force_successful_syscall_return();
71 return i;
72 }
73
74 /*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 struct timespec64 tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime64(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday64(&tv);
96 return 0;
97 }
98
99 #endif /* __ARCH_WANT_SYS_TIME */
100
101 #ifdef CONFIG_COMPAT
102 #ifdef __ARCH_WANT_COMPAT_SYS_TIME
103
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
105 COMPAT_SYSCALL_DEFINE1(time, old_time32_t __user *, tloc)
106 {
107 old_time32_t i;
108
109 i = (old_time32_t)ktime_get_real_seconds();
110
111 if (tloc) {
112 if (put_user(i,tloc))
113 return -EFAULT;
114 }
115 force_successful_syscall_return();
116 return i;
117 }
118
119 COMPAT_SYSCALL_DEFINE1(stime, old_time32_t __user *, tptr)
120 {
121 struct timespec64 tv;
122 int err;
123
124 if (get_user(tv.tv_sec, tptr))
125 return -EFAULT;
126
127 tv.tv_nsec = 0;
128
129 err = security_settime64(&tv, NULL);
130 if (err)
131 return err;
132
133 do_settimeofday64(&tv);
134 return 0;
135 }
136
137 #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
138 #endif
139
140 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141 struct timezone __user *, tz)
142 {
143 if (likely(tv != NULL)) {
144 struct timespec64 ts;
145
146 ktime_get_real_ts64(&ts);
147 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 return -EFAULT;
150 }
151 if (unlikely(tz != NULL)) {
152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 return -EFAULT;
154 }
155 return 0;
156 }
157
158 /*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170 {
171 static int firsttime = 1;
172 int error = 0;
173
174 if (tv && !timespec64_valid(tv))
175 return -EINVAL;
176
177 error = security_settime64(tv, tz);
178 if (error)
179 return error;
180
181 if (tz) {
182 /* Verify we're witin the +-15 hrs range */
183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 return -EINVAL;
185
186 sys_tz = *tz;
187 update_vsyscall_tz();
188 if (firsttime) {
189 firsttime = 0;
190 if (!tv)
191 timekeeping_warp_clock();
192 }
193 }
194 if (tv)
195 return do_settimeofday64(tv);
196 return 0;
197 }
198
199 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200 struct timezone __user *, tz)
201 {
202 struct timespec64 new_ts;
203 struct timeval user_tv;
204 struct timezone new_tz;
205
206 if (tv) {
207 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
208 return -EFAULT;
209
210 if (!timeval_valid(&user_tv))
211 return -EINVAL;
212
213 new_ts.tv_sec = user_tv.tv_sec;
214 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215 }
216 if (tz) {
217 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218 return -EFAULT;
219 }
220
221 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
222 }
223
224 #ifdef CONFIG_COMPAT
225 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
226 struct timezone __user *, tz)
227 {
228 if (tv) {
229 struct timespec64 ts;
230
231 ktime_get_real_ts64(&ts);
232 if (put_user(ts.tv_sec, &tv->tv_sec) ||
233 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
234 return -EFAULT;
235 }
236 if (tz) {
237 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 return -EFAULT;
239 }
240
241 return 0;
242 }
243
244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
245 struct timezone __user *, tz)
246 {
247 struct timespec64 new_ts;
248 struct timeval user_tv;
249 struct timezone new_tz;
250
251 if (tv) {
252 if (compat_get_timeval(&user_tv, tv))
253 return -EFAULT;
254 new_ts.tv_sec = user_tv.tv_sec;
255 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
256 }
257 if (tz) {
258 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
259 return -EFAULT;
260 }
261
262 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
263 }
264 #endif
265
266 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
267 {
268 struct timex txc; /* Local copy of parameter */
269 int ret;
270
271 /* Copy the user data space into the kernel copy
272 * structure. But bear in mind that the structures
273 * may change
274 */
275 if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
276 return -EFAULT;
277 ret = do_adjtimex(&txc);
278 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
279 }
280
281 #ifdef CONFIG_COMPAT
282
283 COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
284 {
285 struct timex txc;
286 int err, ret;
287
288 err = compat_get_timex(&txc, utp);
289 if (err)
290 return err;
291
292 ret = do_adjtimex(&txc);
293
294 err = compat_put_timex(utp, &txc);
295 if (err)
296 return err;
297
298 return ret;
299 }
300 #endif
301
302 /*
303 * Convert jiffies to milliseconds and back.
304 *
305 * Avoid unnecessary multiplications/divisions in the
306 * two most common HZ cases:
307 */
308 unsigned int jiffies_to_msecs(const unsigned long j)
309 {
310 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
311 return (MSEC_PER_SEC / HZ) * j;
312 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
313 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
314 #else
315 # if BITS_PER_LONG == 32
316 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
317 HZ_TO_MSEC_SHR32;
318 # else
319 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
320 # endif
321 #endif
322 }
323 EXPORT_SYMBOL(jiffies_to_msecs);
324
325 unsigned int jiffies_to_usecs(const unsigned long j)
326 {
327 /*
328 * Hz usually doesn't go much further MSEC_PER_SEC.
329 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330 */
331 BUILD_BUG_ON(HZ > USEC_PER_SEC);
332
333 #if !(USEC_PER_SEC % HZ)
334 return (USEC_PER_SEC / HZ) * j;
335 #else
336 # if BITS_PER_LONG == 32
337 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338 # else
339 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340 # endif
341 #endif
342 }
343 EXPORT_SYMBOL(jiffies_to_usecs);
344
345 /*
346 * mktime64 - Converts date to seconds.
347 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
348 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
349 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
350 *
351 * [For the Julian calendar (which was used in Russia before 1917,
352 * Britain & colonies before 1752, anywhere else before 1582,
353 * and is still in use by some communities) leave out the
354 * -year/100+year/400 terms, and add 10.]
355 *
356 * This algorithm was first published by Gauss (I think).
357 *
358 * A leap second can be indicated by calling this function with sec as
359 * 60 (allowable under ISO 8601). The leap second is treated the same
360 * as the following second since they don't exist in UNIX time.
361 *
362 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
363 * tomorrow - (allowable under ISO 8601) is supported.
364 */
365 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
366 const unsigned int day, const unsigned int hour,
367 const unsigned int min, const unsigned int sec)
368 {
369 unsigned int mon = mon0, year = year0;
370
371 /* 1..12 -> 11,12,1..10 */
372 if (0 >= (int) (mon -= 2)) {
373 mon += 12; /* Puts Feb last since it has leap day */
374 year -= 1;
375 }
376
377 return ((((time64_t)
378 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
379 year*365 - 719499
380 )*24 + hour /* now have hours - midnight tomorrow handled here */
381 )*60 + min /* now have minutes */
382 )*60 + sec; /* finally seconds */
383 }
384 EXPORT_SYMBOL(mktime64);
385
386 /**
387 * ns_to_timespec - Convert nanoseconds to timespec
388 * @nsec: the nanoseconds value to be converted
389 *
390 * Returns the timespec representation of the nsec parameter.
391 */
392 struct timespec ns_to_timespec(const s64 nsec)
393 {
394 struct timespec ts;
395 s32 rem;
396
397 if (!nsec)
398 return (struct timespec) {0, 0};
399
400 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
401 if (unlikely(rem < 0)) {
402 ts.tv_sec--;
403 rem += NSEC_PER_SEC;
404 }
405 ts.tv_nsec = rem;
406
407 return ts;
408 }
409 EXPORT_SYMBOL(ns_to_timespec);
410
411 /**
412 * ns_to_timeval - Convert nanoseconds to timeval
413 * @nsec: the nanoseconds value to be converted
414 *
415 * Returns the timeval representation of the nsec parameter.
416 */
417 struct timeval ns_to_timeval(const s64 nsec)
418 {
419 struct timespec ts = ns_to_timespec(nsec);
420 struct timeval tv;
421
422 tv.tv_sec = ts.tv_sec;
423 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
424
425 return tv;
426 }
427 EXPORT_SYMBOL(ns_to_timeval);
428
429 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
430 {
431 struct timespec64 ts = ns_to_timespec64(nsec);
432 struct __kernel_old_timeval tv;
433
434 tv.tv_sec = ts.tv_sec;
435 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
436
437 return tv;
438 }
439 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
440
441 /**
442 * set_normalized_timespec - set timespec sec and nsec parts and normalize
443 *
444 * @ts: pointer to timespec variable to be set
445 * @sec: seconds to set
446 * @nsec: nanoseconds to set
447 *
448 * Set seconds and nanoseconds field of a timespec variable and
449 * normalize to the timespec storage format
450 *
451 * Note: The tv_nsec part is always in the range of
452 * 0 <= tv_nsec < NSEC_PER_SEC
453 * For negative values only the tv_sec field is negative !
454 */
455 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
456 {
457 while (nsec >= NSEC_PER_SEC) {
458 /*
459 * The following asm() prevents the compiler from
460 * optimising this loop into a modulo operation. See
461 * also __iter_div_u64_rem() in include/linux/time.h
462 */
463 asm("" : "+rm"(nsec));
464 nsec -= NSEC_PER_SEC;
465 ++sec;
466 }
467 while (nsec < 0) {
468 asm("" : "+rm"(nsec));
469 nsec += NSEC_PER_SEC;
470 --sec;
471 }
472 ts->tv_sec = sec;
473 ts->tv_nsec = nsec;
474 }
475 EXPORT_SYMBOL(set_normalized_timespec64);
476
477 /**
478 * ns_to_timespec64 - Convert nanoseconds to timespec64
479 * @nsec: the nanoseconds value to be converted
480 *
481 * Returns the timespec64 representation of the nsec parameter.
482 */
483 struct timespec64 ns_to_timespec64(const s64 nsec)
484 {
485 struct timespec64 ts;
486 s32 rem;
487
488 if (!nsec)
489 return (struct timespec64) {0, 0};
490
491 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
492 if (unlikely(rem < 0)) {
493 ts.tv_sec--;
494 rem += NSEC_PER_SEC;
495 }
496 ts.tv_nsec = rem;
497
498 return ts;
499 }
500 EXPORT_SYMBOL(ns_to_timespec64);
501
502 /**
503 * msecs_to_jiffies: - convert milliseconds to jiffies
504 * @m: time in milliseconds
505 *
506 * conversion is done as follows:
507 *
508 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
509 *
510 * - 'too large' values [that would result in larger than
511 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
512 *
513 * - all other values are converted to jiffies by either multiplying
514 * the input value by a factor or dividing it with a factor and
515 * handling any 32-bit overflows.
516 * for the details see __msecs_to_jiffies()
517 *
518 * msecs_to_jiffies() checks for the passed in value being a constant
519 * via __builtin_constant_p() allowing gcc to eliminate most of the
520 * code, __msecs_to_jiffies() is called if the value passed does not
521 * allow constant folding and the actual conversion must be done at
522 * runtime.
523 * the _msecs_to_jiffies helpers are the HZ dependent conversion
524 * routines found in include/linux/jiffies.h
525 */
526 unsigned long __msecs_to_jiffies(const unsigned int m)
527 {
528 /*
529 * Negative value, means infinite timeout:
530 */
531 if ((int)m < 0)
532 return MAX_JIFFY_OFFSET;
533 return _msecs_to_jiffies(m);
534 }
535 EXPORT_SYMBOL(__msecs_to_jiffies);
536
537 unsigned long __usecs_to_jiffies(const unsigned int u)
538 {
539 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
540 return MAX_JIFFY_OFFSET;
541 return _usecs_to_jiffies(u);
542 }
543 EXPORT_SYMBOL(__usecs_to_jiffies);
544
545 /*
546 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
547 * that a remainder subtract here would not do the right thing as the
548 * resolution values don't fall on second boundries. I.e. the line:
549 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
550 * Note that due to the small error in the multiplier here, this
551 * rounding is incorrect for sufficiently large values of tv_nsec, but
552 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
553 * OK.
554 *
555 * Rather, we just shift the bits off the right.
556 *
557 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
558 * value to a scaled second value.
559 */
560 static unsigned long
561 __timespec64_to_jiffies(u64 sec, long nsec)
562 {
563 nsec = nsec + TICK_NSEC - 1;
564
565 if (sec >= MAX_SEC_IN_JIFFIES){
566 sec = MAX_SEC_IN_JIFFIES;
567 nsec = 0;
568 }
569 return ((sec * SEC_CONVERSION) +
570 (((u64)nsec * NSEC_CONVERSION) >>
571 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
572
573 }
574
575 static unsigned long
576 __timespec_to_jiffies(unsigned long sec, long nsec)
577 {
578 return __timespec64_to_jiffies((u64)sec, nsec);
579 }
580
581 unsigned long
582 timespec64_to_jiffies(const struct timespec64 *value)
583 {
584 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
585 }
586 EXPORT_SYMBOL(timespec64_to_jiffies);
587
588 void
589 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
590 {
591 /*
592 * Convert jiffies to nanoseconds and separate with
593 * one divide.
594 */
595 u32 rem;
596 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
597 NSEC_PER_SEC, &rem);
598 value->tv_nsec = rem;
599 }
600 EXPORT_SYMBOL(jiffies_to_timespec64);
601
602 /*
603 * We could use a similar algorithm to timespec_to_jiffies (with a
604 * different multiplier for usec instead of nsec). But this has a
605 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
606 * usec value, since it's not necessarily integral.
607 *
608 * We could instead round in the intermediate scaled representation
609 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
610 * perilous: the scaling introduces a small positive error, which
611 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
612 * units to the intermediate before shifting) leads to accidental
613 * overflow and overestimates.
614 *
615 * At the cost of one additional multiplication by a constant, just
616 * use the timespec implementation.
617 */
618 unsigned long
619 timeval_to_jiffies(const struct timeval *value)
620 {
621 return __timespec_to_jiffies(value->tv_sec,
622 value->tv_usec * NSEC_PER_USEC);
623 }
624 EXPORT_SYMBOL(timeval_to_jiffies);
625
626 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
627 {
628 /*
629 * Convert jiffies to nanoseconds and separate with
630 * one divide.
631 */
632 u32 rem;
633
634 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
635 NSEC_PER_SEC, &rem);
636 value->tv_usec = rem / NSEC_PER_USEC;
637 }
638 EXPORT_SYMBOL(jiffies_to_timeval);
639
640 /*
641 * Convert jiffies/jiffies_64 to clock_t and back.
642 */
643 clock_t jiffies_to_clock_t(unsigned long x)
644 {
645 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
646 # if HZ < USER_HZ
647 return x * (USER_HZ / HZ);
648 # else
649 return x / (HZ / USER_HZ);
650 # endif
651 #else
652 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
653 #endif
654 }
655 EXPORT_SYMBOL(jiffies_to_clock_t);
656
657 unsigned long clock_t_to_jiffies(unsigned long x)
658 {
659 #if (HZ % USER_HZ)==0
660 if (x >= ~0UL / (HZ / USER_HZ))
661 return ~0UL;
662 return x * (HZ / USER_HZ);
663 #else
664 /* Don't worry about loss of precision here .. */
665 if (x >= ~0UL / HZ * USER_HZ)
666 return ~0UL;
667
668 /* .. but do try to contain it here */
669 return div_u64((u64)x * HZ, USER_HZ);
670 #endif
671 }
672 EXPORT_SYMBOL(clock_t_to_jiffies);
673
674 u64 jiffies_64_to_clock_t(u64 x)
675 {
676 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
677 # if HZ < USER_HZ
678 x = div_u64(x * USER_HZ, HZ);
679 # elif HZ > USER_HZ
680 x = div_u64(x, HZ / USER_HZ);
681 # else
682 /* Nothing to do */
683 # endif
684 #else
685 /*
686 * There are better ways that don't overflow early,
687 * but even this doesn't overflow in hundreds of years
688 * in 64 bits, so..
689 */
690 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
691 #endif
692 return x;
693 }
694 EXPORT_SYMBOL(jiffies_64_to_clock_t);
695
696 u64 nsec_to_clock_t(u64 x)
697 {
698 #if (NSEC_PER_SEC % USER_HZ) == 0
699 return div_u64(x, NSEC_PER_SEC / USER_HZ);
700 #elif (USER_HZ % 512) == 0
701 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
702 #else
703 /*
704 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
705 * overflow after 64.99 years.
706 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
707 */
708 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
709 #endif
710 }
711
712 u64 jiffies64_to_nsecs(u64 j)
713 {
714 #if !(NSEC_PER_SEC % HZ)
715 return (NSEC_PER_SEC / HZ) * j;
716 # else
717 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
718 #endif
719 }
720 EXPORT_SYMBOL(jiffies64_to_nsecs);
721
722 /**
723 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
724 *
725 * @n: nsecs in u64
726 *
727 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
728 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
729 * for scheduler, not for use in device drivers to calculate timeout value.
730 *
731 * note:
732 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
733 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
734 */
735 u64 nsecs_to_jiffies64(u64 n)
736 {
737 #if (NSEC_PER_SEC % HZ) == 0
738 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
739 return div_u64(n, NSEC_PER_SEC / HZ);
740 #elif (HZ % 512) == 0
741 /* overflow after 292 years if HZ = 1024 */
742 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
743 #else
744 /*
745 * Generic case - optimized for cases where HZ is a multiple of 3.
746 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
747 */
748 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
749 #endif
750 }
751 EXPORT_SYMBOL(nsecs_to_jiffies64);
752
753 /**
754 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
755 *
756 * @n: nsecs in u64
757 *
758 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
759 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
760 * for scheduler, not for use in device drivers to calculate timeout value.
761 *
762 * note:
763 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
764 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
765 */
766 unsigned long nsecs_to_jiffies(u64 n)
767 {
768 return (unsigned long)nsecs_to_jiffies64(n);
769 }
770 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
771
772 /*
773 * Add two timespec64 values and do a safety check for overflow.
774 * It's assumed that both values are valid (>= 0).
775 * And, each timespec64 is in normalized form.
776 */
777 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
778 const struct timespec64 rhs)
779 {
780 struct timespec64 res;
781
782 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
783 lhs.tv_nsec + rhs.tv_nsec);
784
785 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
786 res.tv_sec = TIME64_MAX;
787 res.tv_nsec = 0;
788 }
789
790 return res;
791 }
792
793 int get_timespec64(struct timespec64 *ts,
794 const struct __kernel_timespec __user *uts)
795 {
796 struct __kernel_timespec kts;
797 int ret;
798
799 ret = copy_from_user(&kts, uts, sizeof(kts));
800 if (ret)
801 return -EFAULT;
802
803 ts->tv_sec = kts.tv_sec;
804
805 /* Zero out the padding for 32 bit systems or in compat mode */
806 if (IS_ENABLED(CONFIG_64BIT_TIME) && in_compat_syscall())
807 kts.tv_nsec &= 0xFFFFFFFFUL;
808
809 ts->tv_nsec = kts.tv_nsec;
810
811 return 0;
812 }
813 EXPORT_SYMBOL_GPL(get_timespec64);
814
815 int put_timespec64(const struct timespec64 *ts,
816 struct __kernel_timespec __user *uts)
817 {
818 struct __kernel_timespec kts = {
819 .tv_sec = ts->tv_sec,
820 .tv_nsec = ts->tv_nsec
821 };
822
823 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
824 }
825 EXPORT_SYMBOL_GPL(put_timespec64);
826
827 static int __get_old_timespec32(struct timespec64 *ts64,
828 const struct old_timespec32 __user *cts)
829 {
830 struct old_timespec32 ts;
831 int ret;
832
833 ret = copy_from_user(&ts, cts, sizeof(ts));
834 if (ret)
835 return -EFAULT;
836
837 ts64->tv_sec = ts.tv_sec;
838 ts64->tv_nsec = ts.tv_nsec;
839
840 return 0;
841 }
842
843 static int __put_old_timespec32(const struct timespec64 *ts64,
844 struct old_timespec32 __user *cts)
845 {
846 struct old_timespec32 ts = {
847 .tv_sec = ts64->tv_sec,
848 .tv_nsec = ts64->tv_nsec
849 };
850 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
851 }
852
853 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
854 {
855 if (COMPAT_USE_64BIT_TIME)
856 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
857 else
858 return __get_old_timespec32(ts, uts);
859 }
860 EXPORT_SYMBOL_GPL(get_old_timespec32);
861
862 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
863 {
864 if (COMPAT_USE_64BIT_TIME)
865 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
866 else
867 return __put_old_timespec32(ts, uts);
868 }
869 EXPORT_SYMBOL_GPL(put_old_timespec32);
870
871 int get_itimerspec64(struct itimerspec64 *it,
872 const struct __kernel_itimerspec __user *uit)
873 {
874 int ret;
875
876 ret = get_timespec64(&it->it_interval, &uit->it_interval);
877 if (ret)
878 return ret;
879
880 ret = get_timespec64(&it->it_value, &uit->it_value);
881
882 return ret;
883 }
884 EXPORT_SYMBOL_GPL(get_itimerspec64);
885
886 int put_itimerspec64(const struct itimerspec64 *it,
887 struct __kernel_itimerspec __user *uit)
888 {
889 int ret;
890
891 ret = put_timespec64(&it->it_interval, &uit->it_interval);
892 if (ret)
893 return ret;
894
895 ret = put_timespec64(&it->it_value, &uit->it_value);
896
897 return ret;
898 }
899 EXPORT_SYMBOL_GPL(put_itimerspec64);
900
901 int get_old_itimerspec32(struct itimerspec64 *its,
902 const struct old_itimerspec32 __user *uits)
903 {
904
905 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
906 __get_old_timespec32(&its->it_value, &uits->it_value))
907 return -EFAULT;
908 return 0;
909 }
910 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
911
912 int put_old_itimerspec32(const struct itimerspec64 *its,
913 struct old_itimerspec32 __user *uits)
914 {
915 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
916 __put_old_timespec32(&its->it_value, &uits->it_value))
917 return -EFAULT;
918 return 0;
919 }
920 EXPORT_SYMBOL_GPL(put_old_itimerspec32);