]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/trace/bpf_trace.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / kernel / trace / bpf_trace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16
17 #include <asm/tlb.h>
18
19 #include "trace_probe.h"
20 #include "trace.h"
21
22 #define bpf_event_rcu_dereference(p) \
23 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 struct module *module;
28 struct list_head list;
29 };
30
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33
34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 struct bpf_raw_event_map *btp, *ret = NULL;
37 struct bpf_trace_module *btm;
38 unsigned int i;
39
40 mutex_lock(&bpf_module_mutex);
41 list_for_each_entry(btm, &bpf_trace_modules, list) {
42 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 btp = &btm->module->bpf_raw_events[i];
44 if (!strcmp(btp->tp->name, name)) {
45 if (try_module_get(btm->module))
46 ret = btp;
47 goto out;
48 }
49 }
50 }
51 out:
52 mutex_unlock(&bpf_module_mutex);
53 return ret;
54 }
55 #else
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64
65 /**
66 * trace_call_bpf - invoke BPF program
67 * @call: tracepoint event
68 * @ctx: opaque context pointer
69 *
70 * kprobe handlers execute BPF programs via this helper.
71 * Can be used from static tracepoints in the future.
72 *
73 * Return: BPF programs always return an integer which is interpreted by
74 * kprobe handler as:
75 * 0 - return from kprobe (event is filtered out)
76 * 1 - store kprobe event into ring buffer
77 * Other values are reserved and currently alias to 1
78 */
79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 unsigned int ret;
82
83 if (in_nmi()) /* not supported yet */
84 return 1;
85
86 cant_sleep();
87
88 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 /*
90 * since some bpf program is already running on this cpu,
91 * don't call into another bpf program (same or different)
92 * and don't send kprobe event into ring-buffer,
93 * so return zero here
94 */
95 ret = 0;
96 goto out;
97 }
98
99 /*
100 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 * to all call sites, we did a bpf_prog_array_valid() there to check
102 * whether call->prog_array is empty or not, which is
103 * a heurisitc to speed up execution.
104 *
105 * If bpf_prog_array_valid() fetched prog_array was
106 * non-NULL, we go into trace_call_bpf() and do the actual
107 * proper rcu_dereference() under RCU lock.
108 * If it turns out that prog_array is NULL then, we bail out.
109 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 * was NULL, you'll skip the prog_array with the risk of missing
111 * out of events when it was updated in between this and the
112 * rcu_dereference() which is accepted risk.
113 */
114 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115
116 out:
117 __this_cpu_dec(bpf_prog_active);
118
119 return ret;
120 }
121
122 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
123 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
124 {
125 regs_set_return_value(regs, rc);
126 override_function_with_return(regs);
127 return 0;
128 }
129
130 static const struct bpf_func_proto bpf_override_return_proto = {
131 .func = bpf_override_return,
132 .gpl_only = true,
133 .ret_type = RET_INTEGER,
134 .arg1_type = ARG_PTR_TO_CTX,
135 .arg2_type = ARG_ANYTHING,
136 };
137 #endif
138
139 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
140 const void __user *, unsafe_ptr)
141 {
142 int ret = probe_user_read(dst, unsafe_ptr, size);
143
144 if (unlikely(ret < 0))
145 memset(dst, 0, size);
146
147 return ret;
148 }
149
150 static const struct bpf_func_proto bpf_probe_read_user_proto = {
151 .func = bpf_probe_read_user,
152 .gpl_only = true,
153 .ret_type = RET_INTEGER,
154 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
155 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
156 .arg3_type = ARG_ANYTHING,
157 };
158
159 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
160 const void __user *, unsafe_ptr)
161 {
162 int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size);
163
164 if (unlikely(ret < 0))
165 memset(dst, 0, size);
166
167 return ret;
168 }
169
170 static const struct bpf_func_proto bpf_probe_read_user_str_proto = {
171 .func = bpf_probe_read_user_str,
172 .gpl_only = true,
173 .ret_type = RET_INTEGER,
174 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
175 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
176 .arg3_type = ARG_ANYTHING,
177 };
178
179 static __always_inline int
180 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr,
181 const bool compat)
182 {
183 int ret = security_locked_down(LOCKDOWN_BPF_READ);
184
185 if (unlikely(ret < 0))
186 goto out;
187 ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) :
188 probe_kernel_read_strict(dst, unsafe_ptr, size);
189 if (unlikely(ret < 0))
190 out:
191 memset(dst, 0, size);
192 return ret;
193 }
194
195 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
196 const void *, unsafe_ptr)
197 {
198 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false);
199 }
200
201 static const struct bpf_func_proto bpf_probe_read_kernel_proto = {
202 .func = bpf_probe_read_kernel,
203 .gpl_only = true,
204 .ret_type = RET_INTEGER,
205 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
206 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
207 .arg3_type = ARG_ANYTHING,
208 };
209
210 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
211 const void *, unsafe_ptr)
212 {
213 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true);
214 }
215
216 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
217 .func = bpf_probe_read_compat,
218 .gpl_only = true,
219 .ret_type = RET_INTEGER,
220 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
221 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
222 .arg3_type = ARG_ANYTHING,
223 };
224
225 static __always_inline int
226 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr,
227 const bool compat)
228 {
229 int ret = security_locked_down(LOCKDOWN_BPF_READ);
230
231 if (unlikely(ret < 0))
232 goto out;
233 /*
234 * The strncpy_from_unsafe_*() call will likely not fill the entire
235 * buffer, but that's okay in this circumstance as we're probing
236 * arbitrary memory anyway similar to bpf_probe_read_*() and might
237 * as well probe the stack. Thus, memory is explicitly cleared
238 * only in error case, so that improper users ignoring return
239 * code altogether don't copy garbage; otherwise length of string
240 * is returned that can be used for bpf_perf_event_output() et al.
241 */
242 ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) :
243 strncpy_from_unsafe_strict(dst, unsafe_ptr, size);
244 if (unlikely(ret < 0))
245 out:
246 memset(dst, 0, size);
247 return ret;
248 }
249
250 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
251 const void *, unsafe_ptr)
252 {
253 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false);
254 }
255
256 static const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
257 .func = bpf_probe_read_kernel_str,
258 .gpl_only = true,
259 .ret_type = RET_INTEGER,
260 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
261 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
262 .arg3_type = ARG_ANYTHING,
263 };
264
265 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
266 const void *, unsafe_ptr)
267 {
268 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true);
269 }
270
271 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
272 .func = bpf_probe_read_compat_str,
273 .gpl_only = true,
274 .ret_type = RET_INTEGER,
275 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
276 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
277 .arg3_type = ARG_ANYTHING,
278 };
279
280 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
281 u32, size)
282 {
283 /*
284 * Ensure we're in user context which is safe for the helper to
285 * run. This helper has no business in a kthread.
286 *
287 * access_ok() should prevent writing to non-user memory, but in
288 * some situations (nommu, temporary switch, etc) access_ok() does
289 * not provide enough validation, hence the check on KERNEL_DS.
290 *
291 * nmi_uaccess_okay() ensures the probe is not run in an interim
292 * state, when the task or mm are switched. This is specifically
293 * required to prevent the use of temporary mm.
294 */
295
296 if (unlikely(in_interrupt() ||
297 current->flags & (PF_KTHREAD | PF_EXITING)))
298 return -EPERM;
299 if (unlikely(uaccess_kernel()))
300 return -EPERM;
301 if (unlikely(!nmi_uaccess_okay()))
302 return -EPERM;
303
304 return probe_user_write(unsafe_ptr, src, size);
305 }
306
307 static const struct bpf_func_proto bpf_probe_write_user_proto = {
308 .func = bpf_probe_write_user,
309 .gpl_only = true,
310 .ret_type = RET_INTEGER,
311 .arg1_type = ARG_ANYTHING,
312 .arg2_type = ARG_PTR_TO_MEM,
313 .arg3_type = ARG_CONST_SIZE,
314 };
315
316 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
317 {
318 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
319 current->comm, task_pid_nr(current));
320
321 return &bpf_probe_write_user_proto;
322 }
323
324 /*
325 * Only limited trace_printk() conversion specifiers allowed:
326 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pks %pus %s
327 */
328 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
329 u64, arg2, u64, arg3)
330 {
331 int i, mod[3] = {}, fmt_cnt = 0;
332 char buf[64], fmt_ptype;
333 void *unsafe_ptr = NULL;
334 bool str_seen = false;
335
336 /*
337 * bpf_check()->check_func_arg()->check_stack_boundary()
338 * guarantees that fmt points to bpf program stack,
339 * fmt_size bytes of it were initialized and fmt_size > 0
340 */
341 if (fmt[--fmt_size] != 0)
342 return -EINVAL;
343
344 /* check format string for allowed specifiers */
345 for (i = 0; i < fmt_size; i++) {
346 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
347 return -EINVAL;
348
349 if (fmt[i] != '%')
350 continue;
351
352 if (fmt_cnt >= 3)
353 return -EINVAL;
354
355 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
356 i++;
357 if (fmt[i] == 'l') {
358 mod[fmt_cnt]++;
359 i++;
360 } else if (fmt[i] == 'p') {
361 mod[fmt_cnt]++;
362 if ((fmt[i + 1] == 'k' ||
363 fmt[i + 1] == 'u') &&
364 fmt[i + 2] == 's') {
365 fmt_ptype = fmt[i + 1];
366 i += 2;
367 goto fmt_str;
368 }
369
370 /* disallow any further format extensions */
371 if (fmt[i + 1] != 0 &&
372 !isspace(fmt[i + 1]) &&
373 !ispunct(fmt[i + 1]))
374 return -EINVAL;
375
376 goto fmt_next;
377 } else if (fmt[i] == 's') {
378 mod[fmt_cnt]++;
379 fmt_ptype = fmt[i];
380 fmt_str:
381 if (str_seen)
382 /* allow only one '%s' per fmt string */
383 return -EINVAL;
384 str_seen = true;
385
386 if (fmt[i + 1] != 0 &&
387 !isspace(fmt[i + 1]) &&
388 !ispunct(fmt[i + 1]))
389 return -EINVAL;
390
391 switch (fmt_cnt) {
392 case 0:
393 unsafe_ptr = (void *)(long)arg1;
394 arg1 = (long)buf;
395 break;
396 case 1:
397 unsafe_ptr = (void *)(long)arg2;
398 arg2 = (long)buf;
399 break;
400 case 2:
401 unsafe_ptr = (void *)(long)arg3;
402 arg3 = (long)buf;
403 break;
404 }
405
406 buf[0] = 0;
407 switch (fmt_ptype) {
408 case 's':
409 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
410 strncpy_from_unsafe(buf, unsafe_ptr,
411 sizeof(buf));
412 break;
413 #endif
414 case 'k':
415 strncpy_from_unsafe_strict(buf, unsafe_ptr,
416 sizeof(buf));
417 break;
418 case 'u':
419 strncpy_from_unsafe_user(buf,
420 (__force void __user *)unsafe_ptr,
421 sizeof(buf));
422 break;
423 }
424 goto fmt_next;
425 }
426
427 if (fmt[i] == 'l') {
428 mod[fmt_cnt]++;
429 i++;
430 }
431
432 if (fmt[i] != 'i' && fmt[i] != 'd' &&
433 fmt[i] != 'u' && fmt[i] != 'x')
434 return -EINVAL;
435 fmt_next:
436 fmt_cnt++;
437 }
438
439 /* Horrid workaround for getting va_list handling working with different
440 * argument type combinations generically for 32 and 64 bit archs.
441 */
442 #define __BPF_TP_EMIT() __BPF_ARG3_TP()
443 #define __BPF_TP(...) \
444 __trace_printk(0 /* Fake ip */, \
445 fmt, ##__VA_ARGS__)
446
447 #define __BPF_ARG1_TP(...) \
448 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
449 ? __BPF_TP(arg1, ##__VA_ARGS__) \
450 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
451 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \
452 : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
453
454 #define __BPF_ARG2_TP(...) \
455 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
456 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
457 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
458 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
459 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
460
461 #define __BPF_ARG3_TP(...) \
462 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
463 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
464 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
465 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
466 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
467
468 return __BPF_TP_EMIT();
469 }
470
471 static const struct bpf_func_proto bpf_trace_printk_proto = {
472 .func = bpf_trace_printk,
473 .gpl_only = true,
474 .ret_type = RET_INTEGER,
475 .arg1_type = ARG_PTR_TO_MEM,
476 .arg2_type = ARG_CONST_SIZE,
477 };
478
479 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
480 {
481 /*
482 * this program might be calling bpf_trace_printk,
483 * so allocate per-cpu printk buffers
484 */
485 trace_printk_init_buffers();
486
487 return &bpf_trace_printk_proto;
488 }
489
490 static __always_inline int
491 get_map_perf_counter(struct bpf_map *map, u64 flags,
492 u64 *value, u64 *enabled, u64 *running)
493 {
494 struct bpf_array *array = container_of(map, struct bpf_array, map);
495 unsigned int cpu = smp_processor_id();
496 u64 index = flags & BPF_F_INDEX_MASK;
497 struct bpf_event_entry *ee;
498
499 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
500 return -EINVAL;
501 if (index == BPF_F_CURRENT_CPU)
502 index = cpu;
503 if (unlikely(index >= array->map.max_entries))
504 return -E2BIG;
505
506 ee = READ_ONCE(array->ptrs[index]);
507 if (!ee)
508 return -ENOENT;
509
510 return perf_event_read_local(ee->event, value, enabled, running);
511 }
512
513 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
514 {
515 u64 value = 0;
516 int err;
517
518 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
519 /*
520 * this api is ugly since we miss [-22..-2] range of valid
521 * counter values, but that's uapi
522 */
523 if (err)
524 return err;
525 return value;
526 }
527
528 static const struct bpf_func_proto bpf_perf_event_read_proto = {
529 .func = bpf_perf_event_read,
530 .gpl_only = true,
531 .ret_type = RET_INTEGER,
532 .arg1_type = ARG_CONST_MAP_PTR,
533 .arg2_type = ARG_ANYTHING,
534 };
535
536 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
537 struct bpf_perf_event_value *, buf, u32, size)
538 {
539 int err = -EINVAL;
540
541 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
542 goto clear;
543 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
544 &buf->running);
545 if (unlikely(err))
546 goto clear;
547 return 0;
548 clear:
549 memset(buf, 0, size);
550 return err;
551 }
552
553 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
554 .func = bpf_perf_event_read_value,
555 .gpl_only = true,
556 .ret_type = RET_INTEGER,
557 .arg1_type = ARG_CONST_MAP_PTR,
558 .arg2_type = ARG_ANYTHING,
559 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
560 .arg4_type = ARG_CONST_SIZE,
561 };
562
563 static __always_inline u64
564 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
565 u64 flags, struct perf_sample_data *sd)
566 {
567 struct bpf_array *array = container_of(map, struct bpf_array, map);
568 unsigned int cpu = smp_processor_id();
569 u64 index = flags & BPF_F_INDEX_MASK;
570 struct bpf_event_entry *ee;
571 struct perf_event *event;
572
573 if (index == BPF_F_CURRENT_CPU)
574 index = cpu;
575 if (unlikely(index >= array->map.max_entries))
576 return -E2BIG;
577
578 ee = READ_ONCE(array->ptrs[index]);
579 if (!ee)
580 return -ENOENT;
581
582 event = ee->event;
583 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
584 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
585 return -EINVAL;
586
587 if (unlikely(event->oncpu != cpu))
588 return -EOPNOTSUPP;
589
590 return perf_event_output(event, sd, regs);
591 }
592
593 /*
594 * Support executing tracepoints in normal, irq, and nmi context that each call
595 * bpf_perf_event_output
596 */
597 struct bpf_trace_sample_data {
598 struct perf_sample_data sds[3];
599 };
600
601 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
602 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
603 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
604 u64, flags, void *, data, u64, size)
605 {
606 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
607 int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
608 struct perf_raw_record raw = {
609 .frag = {
610 .size = size,
611 .data = data,
612 },
613 };
614 struct perf_sample_data *sd;
615 int err;
616
617 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
618 err = -EBUSY;
619 goto out;
620 }
621
622 sd = &sds->sds[nest_level - 1];
623
624 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
625 err = -EINVAL;
626 goto out;
627 }
628
629 perf_sample_data_init(sd, 0, 0);
630 sd->raw = &raw;
631
632 err = __bpf_perf_event_output(regs, map, flags, sd);
633
634 out:
635 this_cpu_dec(bpf_trace_nest_level);
636 return err;
637 }
638
639 static const struct bpf_func_proto bpf_perf_event_output_proto = {
640 .func = bpf_perf_event_output,
641 .gpl_only = true,
642 .ret_type = RET_INTEGER,
643 .arg1_type = ARG_PTR_TO_CTX,
644 .arg2_type = ARG_CONST_MAP_PTR,
645 .arg3_type = ARG_ANYTHING,
646 .arg4_type = ARG_PTR_TO_MEM,
647 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
648 };
649
650 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
651 struct bpf_nested_pt_regs {
652 struct pt_regs regs[3];
653 };
654 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
655 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
656
657 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
658 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
659 {
660 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
661 struct perf_raw_frag frag = {
662 .copy = ctx_copy,
663 .size = ctx_size,
664 .data = ctx,
665 };
666 struct perf_raw_record raw = {
667 .frag = {
668 {
669 .next = ctx_size ? &frag : NULL,
670 },
671 .size = meta_size,
672 .data = meta,
673 },
674 };
675 struct perf_sample_data *sd;
676 struct pt_regs *regs;
677 u64 ret;
678
679 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
680 ret = -EBUSY;
681 goto out;
682 }
683 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
684 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
685
686 perf_fetch_caller_regs(regs);
687 perf_sample_data_init(sd, 0, 0);
688 sd->raw = &raw;
689
690 ret = __bpf_perf_event_output(regs, map, flags, sd);
691 out:
692 this_cpu_dec(bpf_event_output_nest_level);
693 return ret;
694 }
695
696 BPF_CALL_0(bpf_get_current_task)
697 {
698 return (long) current;
699 }
700
701 static const struct bpf_func_proto bpf_get_current_task_proto = {
702 .func = bpf_get_current_task,
703 .gpl_only = true,
704 .ret_type = RET_INTEGER,
705 };
706
707 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
708 {
709 struct bpf_array *array = container_of(map, struct bpf_array, map);
710 struct cgroup *cgrp;
711
712 if (unlikely(idx >= array->map.max_entries))
713 return -E2BIG;
714
715 cgrp = READ_ONCE(array->ptrs[idx]);
716 if (unlikely(!cgrp))
717 return -EAGAIN;
718
719 return task_under_cgroup_hierarchy(current, cgrp);
720 }
721
722 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
723 .func = bpf_current_task_under_cgroup,
724 .gpl_only = false,
725 .ret_type = RET_INTEGER,
726 .arg1_type = ARG_CONST_MAP_PTR,
727 .arg2_type = ARG_ANYTHING,
728 };
729
730 struct send_signal_irq_work {
731 struct irq_work irq_work;
732 struct task_struct *task;
733 u32 sig;
734 enum pid_type type;
735 };
736
737 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
738
739 static void do_bpf_send_signal(struct irq_work *entry)
740 {
741 struct send_signal_irq_work *work;
742
743 work = container_of(entry, struct send_signal_irq_work, irq_work);
744 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
745 }
746
747 static int bpf_send_signal_common(u32 sig, enum pid_type type)
748 {
749 struct send_signal_irq_work *work = NULL;
750
751 /* Similar to bpf_probe_write_user, task needs to be
752 * in a sound condition and kernel memory access be
753 * permitted in order to send signal to the current
754 * task.
755 */
756 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
757 return -EPERM;
758 if (unlikely(uaccess_kernel()))
759 return -EPERM;
760 if (unlikely(!nmi_uaccess_okay()))
761 return -EPERM;
762
763 if (irqs_disabled()) {
764 /* Do an early check on signal validity. Otherwise,
765 * the error is lost in deferred irq_work.
766 */
767 if (unlikely(!valid_signal(sig)))
768 return -EINVAL;
769
770 work = this_cpu_ptr(&send_signal_work);
771 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
772 return -EBUSY;
773
774 /* Add the current task, which is the target of sending signal,
775 * to the irq_work. The current task may change when queued
776 * irq works get executed.
777 */
778 work->task = current;
779 work->sig = sig;
780 work->type = type;
781 irq_work_queue(&work->irq_work);
782 return 0;
783 }
784
785 return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
786 }
787
788 BPF_CALL_1(bpf_send_signal, u32, sig)
789 {
790 return bpf_send_signal_common(sig, PIDTYPE_TGID);
791 }
792
793 static const struct bpf_func_proto bpf_send_signal_proto = {
794 .func = bpf_send_signal,
795 .gpl_only = false,
796 .ret_type = RET_INTEGER,
797 .arg1_type = ARG_ANYTHING,
798 };
799
800 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
801 {
802 return bpf_send_signal_common(sig, PIDTYPE_PID);
803 }
804
805 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
806 .func = bpf_send_signal_thread,
807 .gpl_only = false,
808 .ret_type = RET_INTEGER,
809 .arg1_type = ARG_ANYTHING,
810 };
811
812 const struct bpf_func_proto *
813 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
814 {
815 switch (func_id) {
816 case BPF_FUNC_map_lookup_elem:
817 return &bpf_map_lookup_elem_proto;
818 case BPF_FUNC_map_update_elem:
819 return &bpf_map_update_elem_proto;
820 case BPF_FUNC_map_delete_elem:
821 return &bpf_map_delete_elem_proto;
822 case BPF_FUNC_map_push_elem:
823 return &bpf_map_push_elem_proto;
824 case BPF_FUNC_map_pop_elem:
825 return &bpf_map_pop_elem_proto;
826 case BPF_FUNC_map_peek_elem:
827 return &bpf_map_peek_elem_proto;
828 case BPF_FUNC_ktime_get_ns:
829 return &bpf_ktime_get_ns_proto;
830 case BPF_FUNC_tail_call:
831 return &bpf_tail_call_proto;
832 case BPF_FUNC_get_current_pid_tgid:
833 return &bpf_get_current_pid_tgid_proto;
834 case BPF_FUNC_get_current_task:
835 return &bpf_get_current_task_proto;
836 case BPF_FUNC_get_current_uid_gid:
837 return &bpf_get_current_uid_gid_proto;
838 case BPF_FUNC_get_current_comm:
839 return &bpf_get_current_comm_proto;
840 case BPF_FUNC_trace_printk:
841 return bpf_get_trace_printk_proto();
842 case BPF_FUNC_get_smp_processor_id:
843 return &bpf_get_smp_processor_id_proto;
844 case BPF_FUNC_get_numa_node_id:
845 return &bpf_get_numa_node_id_proto;
846 case BPF_FUNC_perf_event_read:
847 return &bpf_perf_event_read_proto;
848 case BPF_FUNC_probe_write_user:
849 return bpf_get_probe_write_proto();
850 case BPF_FUNC_current_task_under_cgroup:
851 return &bpf_current_task_under_cgroup_proto;
852 case BPF_FUNC_get_prandom_u32:
853 return &bpf_get_prandom_u32_proto;
854 case BPF_FUNC_probe_read_user:
855 return &bpf_probe_read_user_proto;
856 case BPF_FUNC_probe_read_kernel:
857 return &bpf_probe_read_kernel_proto;
858 case BPF_FUNC_probe_read_user_str:
859 return &bpf_probe_read_user_str_proto;
860 case BPF_FUNC_probe_read_kernel_str:
861 return &bpf_probe_read_kernel_str_proto;
862 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
863 case BPF_FUNC_probe_read:
864 return &bpf_probe_read_compat_proto;
865 case BPF_FUNC_probe_read_str:
866 return &bpf_probe_read_compat_str_proto;
867 #endif
868 #ifdef CONFIG_CGROUPS
869 case BPF_FUNC_get_current_cgroup_id:
870 return &bpf_get_current_cgroup_id_proto;
871 #endif
872 case BPF_FUNC_send_signal:
873 return &bpf_send_signal_proto;
874 case BPF_FUNC_send_signal_thread:
875 return &bpf_send_signal_thread_proto;
876 case BPF_FUNC_perf_event_read_value:
877 return &bpf_perf_event_read_value_proto;
878 case BPF_FUNC_get_ns_current_pid_tgid:
879 return &bpf_get_ns_current_pid_tgid_proto;
880 default:
881 return NULL;
882 }
883 }
884
885 static const struct bpf_func_proto *
886 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
887 {
888 switch (func_id) {
889 case BPF_FUNC_perf_event_output:
890 return &bpf_perf_event_output_proto;
891 case BPF_FUNC_get_stackid:
892 return &bpf_get_stackid_proto;
893 case BPF_FUNC_get_stack:
894 return &bpf_get_stack_proto;
895 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
896 case BPF_FUNC_override_return:
897 return &bpf_override_return_proto;
898 #endif
899 default:
900 return bpf_tracing_func_proto(func_id, prog);
901 }
902 }
903
904 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
905 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
906 const struct bpf_prog *prog,
907 struct bpf_insn_access_aux *info)
908 {
909 if (off < 0 || off >= sizeof(struct pt_regs))
910 return false;
911 if (type != BPF_READ)
912 return false;
913 if (off % size != 0)
914 return false;
915 /*
916 * Assertion for 32 bit to make sure last 8 byte access
917 * (BPF_DW) to the last 4 byte member is disallowed.
918 */
919 if (off + size > sizeof(struct pt_regs))
920 return false;
921
922 return true;
923 }
924
925 const struct bpf_verifier_ops kprobe_verifier_ops = {
926 .get_func_proto = kprobe_prog_func_proto,
927 .is_valid_access = kprobe_prog_is_valid_access,
928 };
929
930 const struct bpf_prog_ops kprobe_prog_ops = {
931 };
932
933 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
934 u64, flags, void *, data, u64, size)
935 {
936 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
937
938 /*
939 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
940 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
941 * from there and call the same bpf_perf_event_output() helper inline.
942 */
943 return ____bpf_perf_event_output(regs, map, flags, data, size);
944 }
945
946 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
947 .func = bpf_perf_event_output_tp,
948 .gpl_only = true,
949 .ret_type = RET_INTEGER,
950 .arg1_type = ARG_PTR_TO_CTX,
951 .arg2_type = ARG_CONST_MAP_PTR,
952 .arg3_type = ARG_ANYTHING,
953 .arg4_type = ARG_PTR_TO_MEM,
954 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
955 };
956
957 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
958 u64, flags)
959 {
960 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
961
962 /*
963 * Same comment as in bpf_perf_event_output_tp(), only that this time
964 * the other helper's function body cannot be inlined due to being
965 * external, thus we need to call raw helper function.
966 */
967 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
968 flags, 0, 0);
969 }
970
971 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
972 .func = bpf_get_stackid_tp,
973 .gpl_only = true,
974 .ret_type = RET_INTEGER,
975 .arg1_type = ARG_PTR_TO_CTX,
976 .arg2_type = ARG_CONST_MAP_PTR,
977 .arg3_type = ARG_ANYTHING,
978 };
979
980 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
981 u64, flags)
982 {
983 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
984
985 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
986 (unsigned long) size, flags, 0);
987 }
988
989 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
990 .func = bpf_get_stack_tp,
991 .gpl_only = true,
992 .ret_type = RET_INTEGER,
993 .arg1_type = ARG_PTR_TO_CTX,
994 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
995 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
996 .arg4_type = ARG_ANYTHING,
997 };
998
999 static const struct bpf_func_proto *
1000 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1001 {
1002 switch (func_id) {
1003 case BPF_FUNC_perf_event_output:
1004 return &bpf_perf_event_output_proto_tp;
1005 case BPF_FUNC_get_stackid:
1006 return &bpf_get_stackid_proto_tp;
1007 case BPF_FUNC_get_stack:
1008 return &bpf_get_stack_proto_tp;
1009 default:
1010 return bpf_tracing_func_proto(func_id, prog);
1011 }
1012 }
1013
1014 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1015 const struct bpf_prog *prog,
1016 struct bpf_insn_access_aux *info)
1017 {
1018 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1019 return false;
1020 if (type != BPF_READ)
1021 return false;
1022 if (off % size != 0)
1023 return false;
1024
1025 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1026 return true;
1027 }
1028
1029 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1030 .get_func_proto = tp_prog_func_proto,
1031 .is_valid_access = tp_prog_is_valid_access,
1032 };
1033
1034 const struct bpf_prog_ops tracepoint_prog_ops = {
1035 };
1036
1037 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1038 struct bpf_perf_event_value *, buf, u32, size)
1039 {
1040 int err = -EINVAL;
1041
1042 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1043 goto clear;
1044 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1045 &buf->running);
1046 if (unlikely(err))
1047 goto clear;
1048 return 0;
1049 clear:
1050 memset(buf, 0, size);
1051 return err;
1052 }
1053
1054 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1055 .func = bpf_perf_prog_read_value,
1056 .gpl_only = true,
1057 .ret_type = RET_INTEGER,
1058 .arg1_type = ARG_PTR_TO_CTX,
1059 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1060 .arg3_type = ARG_CONST_SIZE,
1061 };
1062
1063 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1064 void *, buf, u32, size, u64, flags)
1065 {
1066 #ifndef CONFIG_X86
1067 return -ENOENT;
1068 #else
1069 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1070 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1071 u32 to_copy;
1072
1073 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1074 return -EINVAL;
1075
1076 if (unlikely(!br_stack))
1077 return -EINVAL;
1078
1079 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1080 return br_stack->nr * br_entry_size;
1081
1082 if (!buf || (size % br_entry_size != 0))
1083 return -EINVAL;
1084
1085 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1086 memcpy(buf, br_stack->entries, to_copy);
1087
1088 return to_copy;
1089 #endif
1090 }
1091
1092 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1093 .func = bpf_read_branch_records,
1094 .gpl_only = true,
1095 .ret_type = RET_INTEGER,
1096 .arg1_type = ARG_PTR_TO_CTX,
1097 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1098 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1099 .arg4_type = ARG_ANYTHING,
1100 };
1101
1102 static const struct bpf_func_proto *
1103 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1104 {
1105 switch (func_id) {
1106 case BPF_FUNC_perf_event_output:
1107 return &bpf_perf_event_output_proto_tp;
1108 case BPF_FUNC_get_stackid:
1109 return &bpf_get_stackid_proto_tp;
1110 case BPF_FUNC_get_stack:
1111 return &bpf_get_stack_proto_tp;
1112 case BPF_FUNC_perf_prog_read_value:
1113 return &bpf_perf_prog_read_value_proto;
1114 case BPF_FUNC_read_branch_records:
1115 return &bpf_read_branch_records_proto;
1116 default:
1117 return bpf_tracing_func_proto(func_id, prog);
1118 }
1119 }
1120
1121 /*
1122 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1123 * to avoid potential recursive reuse issue when/if tracepoints are added
1124 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1125 *
1126 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1127 * in normal, irq, and nmi context.
1128 */
1129 struct bpf_raw_tp_regs {
1130 struct pt_regs regs[3];
1131 };
1132 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1133 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1134 static struct pt_regs *get_bpf_raw_tp_regs(void)
1135 {
1136 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1137 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1138
1139 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1140 this_cpu_dec(bpf_raw_tp_nest_level);
1141 return ERR_PTR(-EBUSY);
1142 }
1143
1144 return &tp_regs->regs[nest_level - 1];
1145 }
1146
1147 static void put_bpf_raw_tp_regs(void)
1148 {
1149 this_cpu_dec(bpf_raw_tp_nest_level);
1150 }
1151
1152 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1153 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1154 {
1155 struct pt_regs *regs = get_bpf_raw_tp_regs();
1156 int ret;
1157
1158 if (IS_ERR(regs))
1159 return PTR_ERR(regs);
1160
1161 perf_fetch_caller_regs(regs);
1162 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1163
1164 put_bpf_raw_tp_regs();
1165 return ret;
1166 }
1167
1168 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1169 .func = bpf_perf_event_output_raw_tp,
1170 .gpl_only = true,
1171 .ret_type = RET_INTEGER,
1172 .arg1_type = ARG_PTR_TO_CTX,
1173 .arg2_type = ARG_CONST_MAP_PTR,
1174 .arg3_type = ARG_ANYTHING,
1175 .arg4_type = ARG_PTR_TO_MEM,
1176 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1177 };
1178
1179 extern const struct bpf_func_proto bpf_skb_output_proto;
1180 extern const struct bpf_func_proto bpf_xdp_output_proto;
1181
1182 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1183 struct bpf_map *, map, u64, flags)
1184 {
1185 struct pt_regs *regs = get_bpf_raw_tp_regs();
1186 int ret;
1187
1188 if (IS_ERR(regs))
1189 return PTR_ERR(regs);
1190
1191 perf_fetch_caller_regs(regs);
1192 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1193 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1194 flags, 0, 0);
1195 put_bpf_raw_tp_regs();
1196 return ret;
1197 }
1198
1199 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1200 .func = bpf_get_stackid_raw_tp,
1201 .gpl_only = true,
1202 .ret_type = RET_INTEGER,
1203 .arg1_type = ARG_PTR_TO_CTX,
1204 .arg2_type = ARG_CONST_MAP_PTR,
1205 .arg3_type = ARG_ANYTHING,
1206 };
1207
1208 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1209 void *, buf, u32, size, u64, flags)
1210 {
1211 struct pt_regs *regs = get_bpf_raw_tp_regs();
1212 int ret;
1213
1214 if (IS_ERR(regs))
1215 return PTR_ERR(regs);
1216
1217 perf_fetch_caller_regs(regs);
1218 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1219 (unsigned long) size, flags, 0);
1220 put_bpf_raw_tp_regs();
1221 return ret;
1222 }
1223
1224 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1225 .func = bpf_get_stack_raw_tp,
1226 .gpl_only = true,
1227 .ret_type = RET_INTEGER,
1228 .arg1_type = ARG_PTR_TO_CTX,
1229 .arg2_type = ARG_PTR_TO_MEM,
1230 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1231 .arg4_type = ARG_ANYTHING,
1232 };
1233
1234 static const struct bpf_func_proto *
1235 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1236 {
1237 switch (func_id) {
1238 case BPF_FUNC_perf_event_output:
1239 return &bpf_perf_event_output_proto_raw_tp;
1240 case BPF_FUNC_get_stackid:
1241 return &bpf_get_stackid_proto_raw_tp;
1242 case BPF_FUNC_get_stack:
1243 return &bpf_get_stack_proto_raw_tp;
1244 default:
1245 return bpf_tracing_func_proto(func_id, prog);
1246 }
1247 }
1248
1249 static const struct bpf_func_proto *
1250 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1251 {
1252 switch (func_id) {
1253 #ifdef CONFIG_NET
1254 case BPF_FUNC_skb_output:
1255 return &bpf_skb_output_proto;
1256 case BPF_FUNC_xdp_output:
1257 return &bpf_xdp_output_proto;
1258 #endif
1259 default:
1260 return raw_tp_prog_func_proto(func_id, prog);
1261 }
1262 }
1263
1264 static bool raw_tp_prog_is_valid_access(int off, int size,
1265 enum bpf_access_type type,
1266 const struct bpf_prog *prog,
1267 struct bpf_insn_access_aux *info)
1268 {
1269 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1270 return false;
1271 if (type != BPF_READ)
1272 return false;
1273 if (off % size != 0)
1274 return false;
1275 return true;
1276 }
1277
1278 static bool tracing_prog_is_valid_access(int off, int size,
1279 enum bpf_access_type type,
1280 const struct bpf_prog *prog,
1281 struct bpf_insn_access_aux *info)
1282 {
1283 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1284 return false;
1285 if (type != BPF_READ)
1286 return false;
1287 if (off % size != 0)
1288 return false;
1289 return btf_ctx_access(off, size, type, prog, info);
1290 }
1291
1292 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1293 const union bpf_attr *kattr,
1294 union bpf_attr __user *uattr)
1295 {
1296 return -ENOTSUPP;
1297 }
1298
1299 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1300 .get_func_proto = raw_tp_prog_func_proto,
1301 .is_valid_access = raw_tp_prog_is_valid_access,
1302 };
1303
1304 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1305 };
1306
1307 const struct bpf_verifier_ops tracing_verifier_ops = {
1308 .get_func_proto = tracing_prog_func_proto,
1309 .is_valid_access = tracing_prog_is_valid_access,
1310 };
1311
1312 const struct bpf_prog_ops tracing_prog_ops = {
1313 .test_run = bpf_prog_test_run_tracing,
1314 };
1315
1316 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1317 enum bpf_access_type type,
1318 const struct bpf_prog *prog,
1319 struct bpf_insn_access_aux *info)
1320 {
1321 if (off == 0) {
1322 if (size != sizeof(u64) || type != BPF_READ)
1323 return false;
1324 info->reg_type = PTR_TO_TP_BUFFER;
1325 }
1326 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1327 }
1328
1329 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1330 .get_func_proto = raw_tp_prog_func_proto,
1331 .is_valid_access = raw_tp_writable_prog_is_valid_access,
1332 };
1333
1334 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1335 };
1336
1337 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1338 const struct bpf_prog *prog,
1339 struct bpf_insn_access_aux *info)
1340 {
1341 const int size_u64 = sizeof(u64);
1342
1343 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1344 return false;
1345 if (type != BPF_READ)
1346 return false;
1347 if (off % size != 0) {
1348 if (sizeof(unsigned long) != 4)
1349 return false;
1350 if (size != 8)
1351 return false;
1352 if (off % size != 4)
1353 return false;
1354 }
1355
1356 switch (off) {
1357 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1358 bpf_ctx_record_field_size(info, size_u64);
1359 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1360 return false;
1361 break;
1362 case bpf_ctx_range(struct bpf_perf_event_data, addr):
1363 bpf_ctx_record_field_size(info, size_u64);
1364 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1365 return false;
1366 break;
1367 default:
1368 if (size != sizeof(long))
1369 return false;
1370 }
1371
1372 return true;
1373 }
1374
1375 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1376 const struct bpf_insn *si,
1377 struct bpf_insn *insn_buf,
1378 struct bpf_prog *prog, u32 *target_size)
1379 {
1380 struct bpf_insn *insn = insn_buf;
1381
1382 switch (si->off) {
1383 case offsetof(struct bpf_perf_event_data, sample_period):
1384 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1385 data), si->dst_reg, si->src_reg,
1386 offsetof(struct bpf_perf_event_data_kern, data));
1387 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1388 bpf_target_off(struct perf_sample_data, period, 8,
1389 target_size));
1390 break;
1391 case offsetof(struct bpf_perf_event_data, addr):
1392 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1393 data), si->dst_reg, si->src_reg,
1394 offsetof(struct bpf_perf_event_data_kern, data));
1395 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1396 bpf_target_off(struct perf_sample_data, addr, 8,
1397 target_size));
1398 break;
1399 default:
1400 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1401 regs), si->dst_reg, si->src_reg,
1402 offsetof(struct bpf_perf_event_data_kern, regs));
1403 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1404 si->off);
1405 break;
1406 }
1407
1408 return insn - insn_buf;
1409 }
1410
1411 const struct bpf_verifier_ops perf_event_verifier_ops = {
1412 .get_func_proto = pe_prog_func_proto,
1413 .is_valid_access = pe_prog_is_valid_access,
1414 .convert_ctx_access = pe_prog_convert_ctx_access,
1415 };
1416
1417 const struct bpf_prog_ops perf_event_prog_ops = {
1418 };
1419
1420 static DEFINE_MUTEX(bpf_event_mutex);
1421
1422 #define BPF_TRACE_MAX_PROGS 64
1423
1424 int perf_event_attach_bpf_prog(struct perf_event *event,
1425 struct bpf_prog *prog)
1426 {
1427 struct bpf_prog_array *old_array;
1428 struct bpf_prog_array *new_array;
1429 int ret = -EEXIST;
1430
1431 /*
1432 * Kprobe override only works if they are on the function entry,
1433 * and only if they are on the opt-in list.
1434 */
1435 if (prog->kprobe_override &&
1436 (!trace_kprobe_on_func_entry(event->tp_event) ||
1437 !trace_kprobe_error_injectable(event->tp_event)))
1438 return -EINVAL;
1439
1440 mutex_lock(&bpf_event_mutex);
1441
1442 if (event->prog)
1443 goto unlock;
1444
1445 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1446 if (old_array &&
1447 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1448 ret = -E2BIG;
1449 goto unlock;
1450 }
1451
1452 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1453 if (ret < 0)
1454 goto unlock;
1455
1456 /* set the new array to event->tp_event and set event->prog */
1457 event->prog = prog;
1458 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1459 bpf_prog_array_free(old_array);
1460
1461 unlock:
1462 mutex_unlock(&bpf_event_mutex);
1463 return ret;
1464 }
1465
1466 void perf_event_detach_bpf_prog(struct perf_event *event)
1467 {
1468 struct bpf_prog_array *old_array;
1469 struct bpf_prog_array *new_array;
1470 int ret;
1471
1472 mutex_lock(&bpf_event_mutex);
1473
1474 if (!event->prog)
1475 goto unlock;
1476
1477 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1478 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1479 if (ret == -ENOENT)
1480 goto unlock;
1481 if (ret < 0) {
1482 bpf_prog_array_delete_safe(old_array, event->prog);
1483 } else {
1484 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1485 bpf_prog_array_free(old_array);
1486 }
1487
1488 bpf_prog_put(event->prog);
1489 event->prog = NULL;
1490
1491 unlock:
1492 mutex_unlock(&bpf_event_mutex);
1493 }
1494
1495 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1496 {
1497 struct perf_event_query_bpf __user *uquery = info;
1498 struct perf_event_query_bpf query = {};
1499 struct bpf_prog_array *progs;
1500 u32 *ids, prog_cnt, ids_len;
1501 int ret;
1502
1503 if (!capable(CAP_SYS_ADMIN))
1504 return -EPERM;
1505 if (event->attr.type != PERF_TYPE_TRACEPOINT)
1506 return -EINVAL;
1507 if (copy_from_user(&query, uquery, sizeof(query)))
1508 return -EFAULT;
1509
1510 ids_len = query.ids_len;
1511 if (ids_len > BPF_TRACE_MAX_PROGS)
1512 return -E2BIG;
1513 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1514 if (!ids)
1515 return -ENOMEM;
1516 /*
1517 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1518 * is required when user only wants to check for uquery->prog_cnt.
1519 * There is no need to check for it since the case is handled
1520 * gracefully in bpf_prog_array_copy_info.
1521 */
1522
1523 mutex_lock(&bpf_event_mutex);
1524 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1525 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1526 mutex_unlock(&bpf_event_mutex);
1527
1528 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1529 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1530 ret = -EFAULT;
1531
1532 kfree(ids);
1533 return ret;
1534 }
1535
1536 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1537 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1538
1539 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1540 {
1541 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1542
1543 for (; btp < __stop__bpf_raw_tp; btp++) {
1544 if (!strcmp(btp->tp->name, name))
1545 return btp;
1546 }
1547
1548 return bpf_get_raw_tracepoint_module(name);
1549 }
1550
1551 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1552 {
1553 struct module *mod = __module_address((unsigned long)btp);
1554
1555 if (mod)
1556 module_put(mod);
1557 }
1558
1559 static __always_inline
1560 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1561 {
1562 cant_sleep();
1563 rcu_read_lock();
1564 (void) BPF_PROG_RUN(prog, args);
1565 rcu_read_unlock();
1566 }
1567
1568 #define UNPACK(...) __VA_ARGS__
1569 #define REPEAT_1(FN, DL, X, ...) FN(X)
1570 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1571 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1572 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1573 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1574 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1575 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1576 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1577 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1578 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1579 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1580 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1581 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
1582
1583 #define SARG(X) u64 arg##X
1584 #define COPY(X) args[X] = arg##X
1585
1586 #define __DL_COM (,)
1587 #define __DL_SEM (;)
1588
1589 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1590
1591 #define BPF_TRACE_DEFN_x(x) \
1592 void bpf_trace_run##x(struct bpf_prog *prog, \
1593 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
1594 { \
1595 u64 args[x]; \
1596 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
1597 __bpf_trace_run(prog, args); \
1598 } \
1599 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1600 BPF_TRACE_DEFN_x(1);
1601 BPF_TRACE_DEFN_x(2);
1602 BPF_TRACE_DEFN_x(3);
1603 BPF_TRACE_DEFN_x(4);
1604 BPF_TRACE_DEFN_x(5);
1605 BPF_TRACE_DEFN_x(6);
1606 BPF_TRACE_DEFN_x(7);
1607 BPF_TRACE_DEFN_x(8);
1608 BPF_TRACE_DEFN_x(9);
1609 BPF_TRACE_DEFN_x(10);
1610 BPF_TRACE_DEFN_x(11);
1611 BPF_TRACE_DEFN_x(12);
1612
1613 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1614 {
1615 struct tracepoint *tp = btp->tp;
1616
1617 /*
1618 * check that program doesn't access arguments beyond what's
1619 * available in this tracepoint
1620 */
1621 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1622 return -EINVAL;
1623
1624 if (prog->aux->max_tp_access > btp->writable_size)
1625 return -EINVAL;
1626
1627 return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1628 }
1629
1630 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1631 {
1632 return __bpf_probe_register(btp, prog);
1633 }
1634
1635 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1636 {
1637 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1638 }
1639
1640 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1641 u32 *fd_type, const char **buf,
1642 u64 *probe_offset, u64 *probe_addr)
1643 {
1644 bool is_tracepoint, is_syscall_tp;
1645 struct bpf_prog *prog;
1646 int flags, err = 0;
1647
1648 prog = event->prog;
1649 if (!prog)
1650 return -ENOENT;
1651
1652 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1653 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1654 return -EOPNOTSUPP;
1655
1656 *prog_id = prog->aux->id;
1657 flags = event->tp_event->flags;
1658 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1659 is_syscall_tp = is_syscall_trace_event(event->tp_event);
1660
1661 if (is_tracepoint || is_syscall_tp) {
1662 *buf = is_tracepoint ? event->tp_event->tp->name
1663 : event->tp_event->name;
1664 *fd_type = BPF_FD_TYPE_TRACEPOINT;
1665 *probe_offset = 0x0;
1666 *probe_addr = 0x0;
1667 } else {
1668 /* kprobe/uprobe */
1669 err = -EOPNOTSUPP;
1670 #ifdef CONFIG_KPROBE_EVENTS
1671 if (flags & TRACE_EVENT_FL_KPROBE)
1672 err = bpf_get_kprobe_info(event, fd_type, buf,
1673 probe_offset, probe_addr,
1674 event->attr.type == PERF_TYPE_TRACEPOINT);
1675 #endif
1676 #ifdef CONFIG_UPROBE_EVENTS
1677 if (flags & TRACE_EVENT_FL_UPROBE)
1678 err = bpf_get_uprobe_info(event, fd_type, buf,
1679 probe_offset,
1680 event->attr.type == PERF_TYPE_TRACEPOINT);
1681 #endif
1682 }
1683
1684 return err;
1685 }
1686
1687 static int __init send_signal_irq_work_init(void)
1688 {
1689 int cpu;
1690 struct send_signal_irq_work *work;
1691
1692 for_each_possible_cpu(cpu) {
1693 work = per_cpu_ptr(&send_signal_work, cpu);
1694 init_irq_work(&work->irq_work, do_bpf_send_signal);
1695 }
1696 return 0;
1697 }
1698
1699 subsys_initcall(send_signal_irq_work_init);
1700
1701 #ifdef CONFIG_MODULES
1702 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1703 void *module)
1704 {
1705 struct bpf_trace_module *btm, *tmp;
1706 struct module *mod = module;
1707
1708 if (mod->num_bpf_raw_events == 0 ||
1709 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1710 return 0;
1711
1712 mutex_lock(&bpf_module_mutex);
1713
1714 switch (op) {
1715 case MODULE_STATE_COMING:
1716 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1717 if (btm) {
1718 btm->module = module;
1719 list_add(&btm->list, &bpf_trace_modules);
1720 }
1721 break;
1722 case MODULE_STATE_GOING:
1723 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1724 if (btm->module == module) {
1725 list_del(&btm->list);
1726 kfree(btm);
1727 break;
1728 }
1729 }
1730 break;
1731 }
1732
1733 mutex_unlock(&bpf_module_mutex);
1734
1735 return 0;
1736 }
1737
1738 static struct notifier_block bpf_module_nb = {
1739 .notifier_call = bpf_event_notify,
1740 };
1741
1742 static int __init bpf_event_init(void)
1743 {
1744 register_module_notifier(&bpf_module_nb);
1745 return 0;
1746 }
1747
1748 fs_initcall(bpf_event_init);
1749 #endif /* CONFIG_MODULES */