]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/trace/ftrace.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / kernel / trace / ftrace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Infrastructure for profiling code inserted by 'gcc -pg'.
4 *
5 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6 * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7 *
8 * Originally ported from the -rt patch by:
9 * Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10 *
11 * Based on code in the latency_tracer, that is:
12 *
13 * Copyright (C) 2004-2006 Ingo Molnar
14 * Copyright (C) 2004 Nadia Yvette Chambers
15 */
16
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38
39 #include <trace/events/sched.h>
40
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47
48 #define FTRACE_WARN_ON(cond) \
49 ({ \
50 int ___r = cond; \
51 if (WARN_ON(___r)) \
52 ftrace_kill(); \
53 ___r; \
54 })
55
56 #define FTRACE_WARN_ON_ONCE(cond) \
57 ({ \
58 int ___r = cond; \
59 if (WARN_ON_ONCE(___r)) \
60 ftrace_kill(); \
61 ___r; \
62 })
63
64 /* hash bits for specific function selection */
65 #define FTRACE_HASH_DEFAULT_BITS 10
66 #define FTRACE_HASH_MAX_BITS 12
67
68 #ifdef CONFIG_DYNAMIC_FTRACE
69 #define INIT_OPS_HASH(opsname) \
70 .func_hash = &opsname.local_hash, \
71 .local_hash.regex_lock = __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
72 #else
73 #define INIT_OPS_HASH(opsname)
74 #endif
75
76 enum {
77 FTRACE_MODIFY_ENABLE_FL = (1 << 0),
78 FTRACE_MODIFY_MAY_SLEEP_FL = (1 << 1),
79 };
80
81 struct ftrace_ops ftrace_list_end __read_mostly = {
82 .func = ftrace_stub,
83 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
84 INIT_OPS_HASH(ftrace_list_end)
85 };
86
87 /* ftrace_enabled is a method to turn ftrace on or off */
88 int ftrace_enabled __read_mostly;
89 static int last_ftrace_enabled;
90
91 /* Current function tracing op */
92 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
93 /* What to set function_trace_op to */
94 static struct ftrace_ops *set_function_trace_op;
95
96 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
97 {
98 struct trace_array *tr;
99
100 if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
101 return false;
102
103 tr = ops->private;
104
105 return tr->function_pids != NULL || tr->function_no_pids != NULL;
106 }
107
108 static void ftrace_update_trampoline(struct ftrace_ops *ops);
109
110 /*
111 * ftrace_disabled is set when an anomaly is discovered.
112 * ftrace_disabled is much stronger than ftrace_enabled.
113 */
114 static int ftrace_disabled __read_mostly;
115
116 DEFINE_MUTEX(ftrace_lock);
117
118 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
119 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
120 struct ftrace_ops global_ops;
121
122 #if ARCH_SUPPORTS_FTRACE_OPS
123 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
124 struct ftrace_ops *op, struct pt_regs *regs);
125 #else
126 /* See comment below, where ftrace_ops_list_func is defined */
127 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
128 #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
129 #endif
130
131 static inline void ftrace_ops_init(struct ftrace_ops *ops)
132 {
133 #ifdef CONFIG_DYNAMIC_FTRACE
134 if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
135 mutex_init(&ops->local_hash.regex_lock);
136 ops->func_hash = &ops->local_hash;
137 ops->flags |= FTRACE_OPS_FL_INITIALIZED;
138 }
139 #endif
140 }
141
142 #define FTRACE_PID_IGNORE -1
143 #define FTRACE_PID_TRACE -2
144
145 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
146 struct ftrace_ops *op, struct pt_regs *regs)
147 {
148 struct trace_array *tr = op->private;
149 int pid;
150
151 if (tr) {
152 pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
153 if (pid == FTRACE_PID_IGNORE)
154 return;
155 if (pid != FTRACE_PID_TRACE &&
156 pid != current->pid)
157 return;
158 }
159
160 op->saved_func(ip, parent_ip, op, regs);
161 }
162
163 static void ftrace_sync_ipi(void *data)
164 {
165 /* Probably not needed, but do it anyway */
166 smp_rmb();
167 }
168
169 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
170 {
171 /*
172 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
173 * then it needs to call the list anyway.
174 */
175 if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
176 FTRACE_FORCE_LIST_FUNC)
177 return ftrace_ops_list_func;
178
179 return ftrace_ops_get_func(ops);
180 }
181
182 static void update_ftrace_function(void)
183 {
184 ftrace_func_t func;
185
186 /*
187 * Prepare the ftrace_ops that the arch callback will use.
188 * If there's only one ftrace_ops registered, the ftrace_ops_list
189 * will point to the ops we want.
190 */
191 set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
192 lockdep_is_held(&ftrace_lock));
193
194 /* If there's no ftrace_ops registered, just call the stub function */
195 if (set_function_trace_op == &ftrace_list_end) {
196 func = ftrace_stub;
197
198 /*
199 * If we are at the end of the list and this ops is
200 * recursion safe and not dynamic and the arch supports passing ops,
201 * then have the mcount trampoline call the function directly.
202 */
203 } else if (rcu_dereference_protected(ftrace_ops_list->next,
204 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
205 func = ftrace_ops_get_list_func(ftrace_ops_list);
206
207 } else {
208 /* Just use the default ftrace_ops */
209 set_function_trace_op = &ftrace_list_end;
210 func = ftrace_ops_list_func;
211 }
212
213 update_function_graph_func();
214
215 /* If there's no change, then do nothing more here */
216 if (ftrace_trace_function == func)
217 return;
218
219 /*
220 * If we are using the list function, it doesn't care
221 * about the function_trace_ops.
222 */
223 if (func == ftrace_ops_list_func) {
224 ftrace_trace_function = func;
225 /*
226 * Don't even bother setting function_trace_ops,
227 * it would be racy to do so anyway.
228 */
229 return;
230 }
231
232 #ifndef CONFIG_DYNAMIC_FTRACE
233 /*
234 * For static tracing, we need to be a bit more careful.
235 * The function change takes affect immediately. Thus,
236 * we need to coorditate the setting of the function_trace_ops
237 * with the setting of the ftrace_trace_function.
238 *
239 * Set the function to the list ops, which will call the
240 * function we want, albeit indirectly, but it handles the
241 * ftrace_ops and doesn't depend on function_trace_op.
242 */
243 ftrace_trace_function = ftrace_ops_list_func;
244 /*
245 * Make sure all CPUs see this. Yes this is slow, but static
246 * tracing is slow and nasty to have enabled.
247 */
248 synchronize_rcu_tasks_rude();
249 /* Now all cpus are using the list ops. */
250 function_trace_op = set_function_trace_op;
251 /* Make sure the function_trace_op is visible on all CPUs */
252 smp_wmb();
253 /* Nasty way to force a rmb on all cpus */
254 smp_call_function(ftrace_sync_ipi, NULL, 1);
255 /* OK, we are all set to update the ftrace_trace_function now! */
256 #endif /* !CONFIG_DYNAMIC_FTRACE */
257
258 ftrace_trace_function = func;
259 }
260
261 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
262 struct ftrace_ops *ops)
263 {
264 rcu_assign_pointer(ops->next, *list);
265
266 /*
267 * We are entering ops into the list but another
268 * CPU might be walking that list. We need to make sure
269 * the ops->next pointer is valid before another CPU sees
270 * the ops pointer included into the list.
271 */
272 rcu_assign_pointer(*list, ops);
273 }
274
275 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
276 struct ftrace_ops *ops)
277 {
278 struct ftrace_ops **p;
279
280 /*
281 * If we are removing the last function, then simply point
282 * to the ftrace_stub.
283 */
284 if (rcu_dereference_protected(*list,
285 lockdep_is_held(&ftrace_lock)) == ops &&
286 rcu_dereference_protected(ops->next,
287 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
288 *list = &ftrace_list_end;
289 return 0;
290 }
291
292 for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
293 if (*p == ops)
294 break;
295
296 if (*p != ops)
297 return -1;
298
299 *p = (*p)->next;
300 return 0;
301 }
302
303 static void ftrace_update_trampoline(struct ftrace_ops *ops);
304
305 int __register_ftrace_function(struct ftrace_ops *ops)
306 {
307 if (ops->flags & FTRACE_OPS_FL_DELETED)
308 return -EINVAL;
309
310 if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
311 return -EBUSY;
312
313 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
314 /*
315 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
316 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
317 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
318 */
319 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
320 !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
321 return -EINVAL;
322
323 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
324 ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
325 #endif
326 if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
327 return -EBUSY;
328
329 if (!core_kernel_data((unsigned long)ops))
330 ops->flags |= FTRACE_OPS_FL_DYNAMIC;
331
332 add_ftrace_ops(&ftrace_ops_list, ops);
333
334 /* Always save the function, and reset at unregistering */
335 ops->saved_func = ops->func;
336
337 if (ftrace_pids_enabled(ops))
338 ops->func = ftrace_pid_func;
339
340 ftrace_update_trampoline(ops);
341
342 if (ftrace_enabled)
343 update_ftrace_function();
344
345 return 0;
346 }
347
348 int __unregister_ftrace_function(struct ftrace_ops *ops)
349 {
350 int ret;
351
352 if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
353 return -EBUSY;
354
355 ret = remove_ftrace_ops(&ftrace_ops_list, ops);
356
357 if (ret < 0)
358 return ret;
359
360 if (ftrace_enabled)
361 update_ftrace_function();
362
363 ops->func = ops->saved_func;
364
365 return 0;
366 }
367
368 static void ftrace_update_pid_func(void)
369 {
370 struct ftrace_ops *op;
371
372 /* Only do something if we are tracing something */
373 if (ftrace_trace_function == ftrace_stub)
374 return;
375
376 do_for_each_ftrace_op(op, ftrace_ops_list) {
377 if (op->flags & FTRACE_OPS_FL_PID) {
378 op->func = ftrace_pids_enabled(op) ?
379 ftrace_pid_func : op->saved_func;
380 ftrace_update_trampoline(op);
381 }
382 } while_for_each_ftrace_op(op);
383
384 update_ftrace_function();
385 }
386
387 #ifdef CONFIG_FUNCTION_PROFILER
388 struct ftrace_profile {
389 struct hlist_node node;
390 unsigned long ip;
391 unsigned long counter;
392 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
393 unsigned long long time;
394 unsigned long long time_squared;
395 #endif
396 };
397
398 struct ftrace_profile_page {
399 struct ftrace_profile_page *next;
400 unsigned long index;
401 struct ftrace_profile records[];
402 };
403
404 struct ftrace_profile_stat {
405 atomic_t disabled;
406 struct hlist_head *hash;
407 struct ftrace_profile_page *pages;
408 struct ftrace_profile_page *start;
409 struct tracer_stat stat;
410 };
411
412 #define PROFILE_RECORDS_SIZE \
413 (PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
414
415 #define PROFILES_PER_PAGE \
416 (PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
417
418 static int ftrace_profile_enabled __read_mostly;
419
420 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
421 static DEFINE_MUTEX(ftrace_profile_lock);
422
423 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
424
425 #define FTRACE_PROFILE_HASH_BITS 10
426 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
427
428 static void *
429 function_stat_next(void *v, int idx)
430 {
431 struct ftrace_profile *rec = v;
432 struct ftrace_profile_page *pg;
433
434 pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
435
436 again:
437 if (idx != 0)
438 rec++;
439
440 if ((void *)rec >= (void *)&pg->records[pg->index]) {
441 pg = pg->next;
442 if (!pg)
443 return NULL;
444 rec = &pg->records[0];
445 if (!rec->counter)
446 goto again;
447 }
448
449 return rec;
450 }
451
452 static void *function_stat_start(struct tracer_stat *trace)
453 {
454 struct ftrace_profile_stat *stat =
455 container_of(trace, struct ftrace_profile_stat, stat);
456
457 if (!stat || !stat->start)
458 return NULL;
459
460 return function_stat_next(&stat->start->records[0], 0);
461 }
462
463 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
464 /* function graph compares on total time */
465 static int function_stat_cmp(const void *p1, const void *p2)
466 {
467 const struct ftrace_profile *a = p1;
468 const struct ftrace_profile *b = p2;
469
470 if (a->time < b->time)
471 return -1;
472 if (a->time > b->time)
473 return 1;
474 else
475 return 0;
476 }
477 #else
478 /* not function graph compares against hits */
479 static int function_stat_cmp(const void *p1, const void *p2)
480 {
481 const struct ftrace_profile *a = p1;
482 const struct ftrace_profile *b = p2;
483
484 if (a->counter < b->counter)
485 return -1;
486 if (a->counter > b->counter)
487 return 1;
488 else
489 return 0;
490 }
491 #endif
492
493 static int function_stat_headers(struct seq_file *m)
494 {
495 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
496 seq_puts(m, " Function "
497 "Hit Time Avg s^2\n"
498 " -------- "
499 "--- ---- --- ---\n");
500 #else
501 seq_puts(m, " Function Hit\n"
502 " -------- ---\n");
503 #endif
504 return 0;
505 }
506
507 static int function_stat_show(struct seq_file *m, void *v)
508 {
509 struct ftrace_profile *rec = v;
510 char str[KSYM_SYMBOL_LEN];
511 int ret = 0;
512 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
513 static struct trace_seq s;
514 unsigned long long avg;
515 unsigned long long stddev;
516 #endif
517 mutex_lock(&ftrace_profile_lock);
518
519 /* we raced with function_profile_reset() */
520 if (unlikely(rec->counter == 0)) {
521 ret = -EBUSY;
522 goto out;
523 }
524
525 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
526 avg = div64_ul(rec->time, rec->counter);
527 if (tracing_thresh && (avg < tracing_thresh))
528 goto out;
529 #endif
530
531 kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
532 seq_printf(m, " %-30.30s %10lu", str, rec->counter);
533
534 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
535 seq_puts(m, " ");
536
537 /* Sample standard deviation (s^2) */
538 if (rec->counter <= 1)
539 stddev = 0;
540 else {
541 /*
542 * Apply Welford's method:
543 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
544 */
545 stddev = rec->counter * rec->time_squared -
546 rec->time * rec->time;
547
548 /*
549 * Divide only 1000 for ns^2 -> us^2 conversion.
550 * trace_print_graph_duration will divide 1000 again.
551 */
552 stddev = div64_ul(stddev,
553 rec->counter * (rec->counter - 1) * 1000);
554 }
555
556 trace_seq_init(&s);
557 trace_print_graph_duration(rec->time, &s);
558 trace_seq_puts(&s, " ");
559 trace_print_graph_duration(avg, &s);
560 trace_seq_puts(&s, " ");
561 trace_print_graph_duration(stddev, &s);
562 trace_print_seq(m, &s);
563 #endif
564 seq_putc(m, '\n');
565 out:
566 mutex_unlock(&ftrace_profile_lock);
567
568 return ret;
569 }
570
571 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
572 {
573 struct ftrace_profile_page *pg;
574
575 pg = stat->pages = stat->start;
576
577 while (pg) {
578 memset(pg->records, 0, PROFILE_RECORDS_SIZE);
579 pg->index = 0;
580 pg = pg->next;
581 }
582
583 memset(stat->hash, 0,
584 FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
585 }
586
587 int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
588 {
589 struct ftrace_profile_page *pg;
590 int functions;
591 int pages;
592 int i;
593
594 /* If we already allocated, do nothing */
595 if (stat->pages)
596 return 0;
597
598 stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
599 if (!stat->pages)
600 return -ENOMEM;
601
602 #ifdef CONFIG_DYNAMIC_FTRACE
603 functions = ftrace_update_tot_cnt;
604 #else
605 /*
606 * We do not know the number of functions that exist because
607 * dynamic tracing is what counts them. With past experience
608 * we have around 20K functions. That should be more than enough.
609 * It is highly unlikely we will execute every function in
610 * the kernel.
611 */
612 functions = 20000;
613 #endif
614
615 pg = stat->start = stat->pages;
616
617 pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
618
619 for (i = 1; i < pages; i++) {
620 pg->next = (void *)get_zeroed_page(GFP_KERNEL);
621 if (!pg->next)
622 goto out_free;
623 pg = pg->next;
624 }
625
626 return 0;
627
628 out_free:
629 pg = stat->start;
630 while (pg) {
631 unsigned long tmp = (unsigned long)pg;
632
633 pg = pg->next;
634 free_page(tmp);
635 }
636
637 stat->pages = NULL;
638 stat->start = NULL;
639
640 return -ENOMEM;
641 }
642
643 static int ftrace_profile_init_cpu(int cpu)
644 {
645 struct ftrace_profile_stat *stat;
646 int size;
647
648 stat = &per_cpu(ftrace_profile_stats, cpu);
649
650 if (stat->hash) {
651 /* If the profile is already created, simply reset it */
652 ftrace_profile_reset(stat);
653 return 0;
654 }
655
656 /*
657 * We are profiling all functions, but usually only a few thousand
658 * functions are hit. We'll make a hash of 1024 items.
659 */
660 size = FTRACE_PROFILE_HASH_SIZE;
661
662 stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
663
664 if (!stat->hash)
665 return -ENOMEM;
666
667 /* Preallocate the function profiling pages */
668 if (ftrace_profile_pages_init(stat) < 0) {
669 kfree(stat->hash);
670 stat->hash = NULL;
671 return -ENOMEM;
672 }
673
674 return 0;
675 }
676
677 static int ftrace_profile_init(void)
678 {
679 int cpu;
680 int ret = 0;
681
682 for_each_possible_cpu(cpu) {
683 ret = ftrace_profile_init_cpu(cpu);
684 if (ret)
685 break;
686 }
687
688 return ret;
689 }
690
691 /* interrupts must be disabled */
692 static struct ftrace_profile *
693 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
694 {
695 struct ftrace_profile *rec;
696 struct hlist_head *hhd;
697 unsigned long key;
698
699 key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
700 hhd = &stat->hash[key];
701
702 if (hlist_empty(hhd))
703 return NULL;
704
705 hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
706 if (rec->ip == ip)
707 return rec;
708 }
709
710 return NULL;
711 }
712
713 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
714 struct ftrace_profile *rec)
715 {
716 unsigned long key;
717
718 key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
719 hlist_add_head_rcu(&rec->node, &stat->hash[key]);
720 }
721
722 /*
723 * The memory is already allocated, this simply finds a new record to use.
724 */
725 static struct ftrace_profile *
726 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
727 {
728 struct ftrace_profile *rec = NULL;
729
730 /* prevent recursion (from NMIs) */
731 if (atomic_inc_return(&stat->disabled) != 1)
732 goto out;
733
734 /*
735 * Try to find the function again since an NMI
736 * could have added it
737 */
738 rec = ftrace_find_profiled_func(stat, ip);
739 if (rec)
740 goto out;
741
742 if (stat->pages->index == PROFILES_PER_PAGE) {
743 if (!stat->pages->next)
744 goto out;
745 stat->pages = stat->pages->next;
746 }
747
748 rec = &stat->pages->records[stat->pages->index++];
749 rec->ip = ip;
750 ftrace_add_profile(stat, rec);
751
752 out:
753 atomic_dec(&stat->disabled);
754
755 return rec;
756 }
757
758 static void
759 function_profile_call(unsigned long ip, unsigned long parent_ip,
760 struct ftrace_ops *ops, struct pt_regs *regs)
761 {
762 struct ftrace_profile_stat *stat;
763 struct ftrace_profile *rec;
764 unsigned long flags;
765
766 if (!ftrace_profile_enabled)
767 return;
768
769 local_irq_save(flags);
770
771 stat = this_cpu_ptr(&ftrace_profile_stats);
772 if (!stat->hash || !ftrace_profile_enabled)
773 goto out;
774
775 rec = ftrace_find_profiled_func(stat, ip);
776 if (!rec) {
777 rec = ftrace_profile_alloc(stat, ip);
778 if (!rec)
779 goto out;
780 }
781
782 rec->counter++;
783 out:
784 local_irq_restore(flags);
785 }
786
787 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
788 static bool fgraph_graph_time = true;
789
790 void ftrace_graph_graph_time_control(bool enable)
791 {
792 fgraph_graph_time = enable;
793 }
794
795 static int profile_graph_entry(struct ftrace_graph_ent *trace)
796 {
797 struct ftrace_ret_stack *ret_stack;
798
799 function_profile_call(trace->func, 0, NULL, NULL);
800
801 /* If function graph is shutting down, ret_stack can be NULL */
802 if (!current->ret_stack)
803 return 0;
804
805 ret_stack = ftrace_graph_get_ret_stack(current, 0);
806 if (ret_stack)
807 ret_stack->subtime = 0;
808
809 return 1;
810 }
811
812 static void profile_graph_return(struct ftrace_graph_ret *trace)
813 {
814 struct ftrace_ret_stack *ret_stack;
815 struct ftrace_profile_stat *stat;
816 unsigned long long calltime;
817 struct ftrace_profile *rec;
818 unsigned long flags;
819
820 local_irq_save(flags);
821 stat = this_cpu_ptr(&ftrace_profile_stats);
822 if (!stat->hash || !ftrace_profile_enabled)
823 goto out;
824
825 /* If the calltime was zero'd ignore it */
826 if (!trace->calltime)
827 goto out;
828
829 calltime = trace->rettime - trace->calltime;
830
831 if (!fgraph_graph_time) {
832
833 /* Append this call time to the parent time to subtract */
834 ret_stack = ftrace_graph_get_ret_stack(current, 1);
835 if (ret_stack)
836 ret_stack->subtime += calltime;
837
838 ret_stack = ftrace_graph_get_ret_stack(current, 0);
839 if (ret_stack && ret_stack->subtime < calltime)
840 calltime -= ret_stack->subtime;
841 else
842 calltime = 0;
843 }
844
845 rec = ftrace_find_profiled_func(stat, trace->func);
846 if (rec) {
847 rec->time += calltime;
848 rec->time_squared += calltime * calltime;
849 }
850
851 out:
852 local_irq_restore(flags);
853 }
854
855 static struct fgraph_ops fprofiler_ops = {
856 .entryfunc = &profile_graph_entry,
857 .retfunc = &profile_graph_return,
858 };
859
860 static int register_ftrace_profiler(void)
861 {
862 return register_ftrace_graph(&fprofiler_ops);
863 }
864
865 static void unregister_ftrace_profiler(void)
866 {
867 unregister_ftrace_graph(&fprofiler_ops);
868 }
869 #else
870 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
871 .func = function_profile_call,
872 .flags = FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
873 INIT_OPS_HASH(ftrace_profile_ops)
874 };
875
876 static int register_ftrace_profiler(void)
877 {
878 return register_ftrace_function(&ftrace_profile_ops);
879 }
880
881 static void unregister_ftrace_profiler(void)
882 {
883 unregister_ftrace_function(&ftrace_profile_ops);
884 }
885 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
886
887 static ssize_t
888 ftrace_profile_write(struct file *filp, const char __user *ubuf,
889 size_t cnt, loff_t *ppos)
890 {
891 unsigned long val;
892 int ret;
893
894 ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
895 if (ret)
896 return ret;
897
898 val = !!val;
899
900 mutex_lock(&ftrace_profile_lock);
901 if (ftrace_profile_enabled ^ val) {
902 if (val) {
903 ret = ftrace_profile_init();
904 if (ret < 0) {
905 cnt = ret;
906 goto out;
907 }
908
909 ret = register_ftrace_profiler();
910 if (ret < 0) {
911 cnt = ret;
912 goto out;
913 }
914 ftrace_profile_enabled = 1;
915 } else {
916 ftrace_profile_enabled = 0;
917 /*
918 * unregister_ftrace_profiler calls stop_machine
919 * so this acts like an synchronize_rcu.
920 */
921 unregister_ftrace_profiler();
922 }
923 }
924 out:
925 mutex_unlock(&ftrace_profile_lock);
926
927 *ppos += cnt;
928
929 return cnt;
930 }
931
932 static ssize_t
933 ftrace_profile_read(struct file *filp, char __user *ubuf,
934 size_t cnt, loff_t *ppos)
935 {
936 char buf[64]; /* big enough to hold a number */
937 int r;
938
939 r = sprintf(buf, "%u\n", ftrace_profile_enabled);
940 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
941 }
942
943 static const struct file_operations ftrace_profile_fops = {
944 .open = tracing_open_generic,
945 .read = ftrace_profile_read,
946 .write = ftrace_profile_write,
947 .llseek = default_llseek,
948 };
949
950 /* used to initialize the real stat files */
951 static struct tracer_stat function_stats __initdata = {
952 .name = "functions",
953 .stat_start = function_stat_start,
954 .stat_next = function_stat_next,
955 .stat_cmp = function_stat_cmp,
956 .stat_headers = function_stat_headers,
957 .stat_show = function_stat_show
958 };
959
960 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
961 {
962 struct ftrace_profile_stat *stat;
963 struct dentry *entry;
964 char *name;
965 int ret;
966 int cpu;
967
968 for_each_possible_cpu(cpu) {
969 stat = &per_cpu(ftrace_profile_stats, cpu);
970
971 name = kasprintf(GFP_KERNEL, "function%d", cpu);
972 if (!name) {
973 /*
974 * The files created are permanent, if something happens
975 * we still do not free memory.
976 */
977 WARN(1,
978 "Could not allocate stat file for cpu %d\n",
979 cpu);
980 return;
981 }
982 stat->stat = function_stats;
983 stat->stat.name = name;
984 ret = register_stat_tracer(&stat->stat);
985 if (ret) {
986 WARN(1,
987 "Could not register function stat for cpu %d\n",
988 cpu);
989 kfree(name);
990 return;
991 }
992 }
993
994 entry = tracefs_create_file("function_profile_enabled", 0644,
995 d_tracer, NULL, &ftrace_profile_fops);
996 if (!entry)
997 pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
998 }
999
1000 #else /* CONFIG_FUNCTION_PROFILER */
1001 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
1002 {
1003 }
1004 #endif /* CONFIG_FUNCTION_PROFILER */
1005
1006 #ifdef CONFIG_DYNAMIC_FTRACE
1007
1008 static struct ftrace_ops *removed_ops;
1009
1010 /*
1011 * Set when doing a global update, like enabling all recs or disabling them.
1012 * It is not set when just updating a single ftrace_ops.
1013 */
1014 static bool update_all_ops;
1015
1016 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1017 # error Dynamic ftrace depends on MCOUNT_RECORD
1018 #endif
1019
1020 struct ftrace_func_probe {
1021 struct ftrace_probe_ops *probe_ops;
1022 struct ftrace_ops ops;
1023 struct trace_array *tr;
1024 struct list_head list;
1025 void *data;
1026 int ref;
1027 };
1028
1029 /*
1030 * We make these constant because no one should touch them,
1031 * but they are used as the default "empty hash", to avoid allocating
1032 * it all the time. These are in a read only section such that if
1033 * anyone does try to modify it, it will cause an exception.
1034 */
1035 static const struct hlist_head empty_buckets[1];
1036 static const struct ftrace_hash empty_hash = {
1037 .buckets = (struct hlist_head *)empty_buckets,
1038 };
1039 #define EMPTY_HASH ((struct ftrace_hash *)&empty_hash)
1040
1041 struct ftrace_ops global_ops = {
1042 .func = ftrace_stub,
1043 .local_hash.notrace_hash = EMPTY_HASH,
1044 .local_hash.filter_hash = EMPTY_HASH,
1045 INIT_OPS_HASH(global_ops)
1046 .flags = FTRACE_OPS_FL_RECURSION_SAFE |
1047 FTRACE_OPS_FL_INITIALIZED |
1048 FTRACE_OPS_FL_PID,
1049 };
1050
1051 /*
1052 * Used by the stack undwinder to know about dynamic ftrace trampolines.
1053 */
1054 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1055 {
1056 struct ftrace_ops *op = NULL;
1057
1058 /*
1059 * Some of the ops may be dynamically allocated,
1060 * they are freed after a synchronize_rcu().
1061 */
1062 preempt_disable_notrace();
1063
1064 do_for_each_ftrace_op(op, ftrace_ops_list) {
1065 /*
1066 * This is to check for dynamically allocated trampolines.
1067 * Trampolines that are in kernel text will have
1068 * core_kernel_text() return true.
1069 */
1070 if (op->trampoline && op->trampoline_size)
1071 if (addr >= op->trampoline &&
1072 addr < op->trampoline + op->trampoline_size) {
1073 preempt_enable_notrace();
1074 return op;
1075 }
1076 } while_for_each_ftrace_op(op);
1077 preempt_enable_notrace();
1078
1079 return NULL;
1080 }
1081
1082 /*
1083 * This is used by __kernel_text_address() to return true if the
1084 * address is on a dynamically allocated trampoline that would
1085 * not return true for either core_kernel_text() or
1086 * is_module_text_address().
1087 */
1088 bool is_ftrace_trampoline(unsigned long addr)
1089 {
1090 return ftrace_ops_trampoline(addr) != NULL;
1091 }
1092
1093 struct ftrace_page {
1094 struct ftrace_page *next;
1095 struct dyn_ftrace *records;
1096 int index;
1097 int size;
1098 };
1099
1100 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1101 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1102
1103 static struct ftrace_page *ftrace_pages_start;
1104 static struct ftrace_page *ftrace_pages;
1105
1106 static __always_inline unsigned long
1107 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1108 {
1109 if (hash->size_bits > 0)
1110 return hash_long(ip, hash->size_bits);
1111
1112 return 0;
1113 }
1114
1115 /* Only use this function if ftrace_hash_empty() has already been tested */
1116 static __always_inline struct ftrace_func_entry *
1117 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1118 {
1119 unsigned long key;
1120 struct ftrace_func_entry *entry;
1121 struct hlist_head *hhd;
1122
1123 key = ftrace_hash_key(hash, ip);
1124 hhd = &hash->buckets[key];
1125
1126 hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1127 if (entry->ip == ip)
1128 return entry;
1129 }
1130 return NULL;
1131 }
1132
1133 /**
1134 * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1135 * @hash: The hash to look at
1136 * @ip: The instruction pointer to test
1137 *
1138 * Search a given @hash to see if a given instruction pointer (@ip)
1139 * exists in it.
1140 *
1141 * Returns the entry that holds the @ip if found. NULL otherwise.
1142 */
1143 struct ftrace_func_entry *
1144 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1145 {
1146 if (ftrace_hash_empty(hash))
1147 return NULL;
1148
1149 return __ftrace_lookup_ip(hash, ip);
1150 }
1151
1152 static void __add_hash_entry(struct ftrace_hash *hash,
1153 struct ftrace_func_entry *entry)
1154 {
1155 struct hlist_head *hhd;
1156 unsigned long key;
1157
1158 key = ftrace_hash_key(hash, entry->ip);
1159 hhd = &hash->buckets[key];
1160 hlist_add_head(&entry->hlist, hhd);
1161 hash->count++;
1162 }
1163
1164 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1165 {
1166 struct ftrace_func_entry *entry;
1167
1168 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1169 if (!entry)
1170 return -ENOMEM;
1171
1172 entry->ip = ip;
1173 __add_hash_entry(hash, entry);
1174
1175 return 0;
1176 }
1177
1178 static void
1179 free_hash_entry(struct ftrace_hash *hash,
1180 struct ftrace_func_entry *entry)
1181 {
1182 hlist_del(&entry->hlist);
1183 kfree(entry);
1184 hash->count--;
1185 }
1186
1187 static void
1188 remove_hash_entry(struct ftrace_hash *hash,
1189 struct ftrace_func_entry *entry)
1190 {
1191 hlist_del_rcu(&entry->hlist);
1192 hash->count--;
1193 }
1194
1195 static void ftrace_hash_clear(struct ftrace_hash *hash)
1196 {
1197 struct hlist_head *hhd;
1198 struct hlist_node *tn;
1199 struct ftrace_func_entry *entry;
1200 int size = 1 << hash->size_bits;
1201 int i;
1202
1203 if (!hash->count)
1204 return;
1205
1206 for (i = 0; i < size; i++) {
1207 hhd = &hash->buckets[i];
1208 hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1209 free_hash_entry(hash, entry);
1210 }
1211 FTRACE_WARN_ON(hash->count);
1212 }
1213
1214 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1215 {
1216 list_del(&ftrace_mod->list);
1217 kfree(ftrace_mod->module);
1218 kfree(ftrace_mod->func);
1219 kfree(ftrace_mod);
1220 }
1221
1222 static void clear_ftrace_mod_list(struct list_head *head)
1223 {
1224 struct ftrace_mod_load *p, *n;
1225
1226 /* stack tracer isn't supported yet */
1227 if (!head)
1228 return;
1229
1230 mutex_lock(&ftrace_lock);
1231 list_for_each_entry_safe(p, n, head, list)
1232 free_ftrace_mod(p);
1233 mutex_unlock(&ftrace_lock);
1234 }
1235
1236 static void free_ftrace_hash(struct ftrace_hash *hash)
1237 {
1238 if (!hash || hash == EMPTY_HASH)
1239 return;
1240 ftrace_hash_clear(hash);
1241 kfree(hash->buckets);
1242 kfree(hash);
1243 }
1244
1245 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1246 {
1247 struct ftrace_hash *hash;
1248
1249 hash = container_of(rcu, struct ftrace_hash, rcu);
1250 free_ftrace_hash(hash);
1251 }
1252
1253 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1254 {
1255 if (!hash || hash == EMPTY_HASH)
1256 return;
1257 call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1258 }
1259
1260 void ftrace_free_filter(struct ftrace_ops *ops)
1261 {
1262 ftrace_ops_init(ops);
1263 free_ftrace_hash(ops->func_hash->filter_hash);
1264 free_ftrace_hash(ops->func_hash->notrace_hash);
1265 }
1266
1267 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1268 {
1269 struct ftrace_hash *hash;
1270 int size;
1271
1272 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1273 if (!hash)
1274 return NULL;
1275
1276 size = 1 << size_bits;
1277 hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1278
1279 if (!hash->buckets) {
1280 kfree(hash);
1281 return NULL;
1282 }
1283
1284 hash->size_bits = size_bits;
1285
1286 return hash;
1287 }
1288
1289
1290 static int ftrace_add_mod(struct trace_array *tr,
1291 const char *func, const char *module,
1292 int enable)
1293 {
1294 struct ftrace_mod_load *ftrace_mod;
1295 struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1296
1297 ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1298 if (!ftrace_mod)
1299 return -ENOMEM;
1300
1301 ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1302 ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1303 ftrace_mod->enable = enable;
1304
1305 if (!ftrace_mod->func || !ftrace_mod->module)
1306 goto out_free;
1307
1308 list_add(&ftrace_mod->list, mod_head);
1309
1310 return 0;
1311
1312 out_free:
1313 free_ftrace_mod(ftrace_mod);
1314
1315 return -ENOMEM;
1316 }
1317
1318 static struct ftrace_hash *
1319 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1320 {
1321 struct ftrace_func_entry *entry;
1322 struct ftrace_hash *new_hash;
1323 int size;
1324 int ret;
1325 int i;
1326
1327 new_hash = alloc_ftrace_hash(size_bits);
1328 if (!new_hash)
1329 return NULL;
1330
1331 if (hash)
1332 new_hash->flags = hash->flags;
1333
1334 /* Empty hash? */
1335 if (ftrace_hash_empty(hash))
1336 return new_hash;
1337
1338 size = 1 << hash->size_bits;
1339 for (i = 0; i < size; i++) {
1340 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1341 ret = add_hash_entry(new_hash, entry->ip);
1342 if (ret < 0)
1343 goto free_hash;
1344 }
1345 }
1346
1347 FTRACE_WARN_ON(new_hash->count != hash->count);
1348
1349 return new_hash;
1350
1351 free_hash:
1352 free_ftrace_hash(new_hash);
1353 return NULL;
1354 }
1355
1356 static void
1357 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1358 static void
1359 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1360
1361 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1362 struct ftrace_hash *new_hash);
1363
1364 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1365 {
1366 struct ftrace_func_entry *entry;
1367 struct ftrace_hash *new_hash;
1368 struct hlist_head *hhd;
1369 struct hlist_node *tn;
1370 int bits = 0;
1371 int i;
1372
1373 /*
1374 * Make the hash size about 1/2 the # found
1375 */
1376 for (size /= 2; size; size >>= 1)
1377 bits++;
1378
1379 /* Don't allocate too much */
1380 if (bits > FTRACE_HASH_MAX_BITS)
1381 bits = FTRACE_HASH_MAX_BITS;
1382
1383 new_hash = alloc_ftrace_hash(bits);
1384 if (!new_hash)
1385 return NULL;
1386
1387 new_hash->flags = src->flags;
1388
1389 size = 1 << src->size_bits;
1390 for (i = 0; i < size; i++) {
1391 hhd = &src->buckets[i];
1392 hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1393 remove_hash_entry(src, entry);
1394 __add_hash_entry(new_hash, entry);
1395 }
1396 }
1397 return new_hash;
1398 }
1399
1400 static struct ftrace_hash *
1401 __ftrace_hash_move(struct ftrace_hash *src)
1402 {
1403 int size = src->count;
1404
1405 /*
1406 * If the new source is empty, just return the empty_hash.
1407 */
1408 if (ftrace_hash_empty(src))
1409 return EMPTY_HASH;
1410
1411 return dup_hash(src, size);
1412 }
1413
1414 static int
1415 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1416 struct ftrace_hash **dst, struct ftrace_hash *src)
1417 {
1418 struct ftrace_hash *new_hash;
1419 int ret;
1420
1421 /* Reject setting notrace hash on IPMODIFY ftrace_ops */
1422 if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1423 return -EINVAL;
1424
1425 new_hash = __ftrace_hash_move(src);
1426 if (!new_hash)
1427 return -ENOMEM;
1428
1429 /* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1430 if (enable) {
1431 /* IPMODIFY should be updated only when filter_hash updating */
1432 ret = ftrace_hash_ipmodify_update(ops, new_hash);
1433 if (ret < 0) {
1434 free_ftrace_hash(new_hash);
1435 return ret;
1436 }
1437 }
1438
1439 /*
1440 * Remove the current set, update the hash and add
1441 * them back.
1442 */
1443 ftrace_hash_rec_disable_modify(ops, enable);
1444
1445 rcu_assign_pointer(*dst, new_hash);
1446
1447 ftrace_hash_rec_enable_modify(ops, enable);
1448
1449 return 0;
1450 }
1451
1452 static bool hash_contains_ip(unsigned long ip,
1453 struct ftrace_ops_hash *hash)
1454 {
1455 /*
1456 * The function record is a match if it exists in the filter
1457 * hash and not in the notrace hash. Note, an emty hash is
1458 * considered a match for the filter hash, but an empty
1459 * notrace hash is considered not in the notrace hash.
1460 */
1461 return (ftrace_hash_empty(hash->filter_hash) ||
1462 __ftrace_lookup_ip(hash->filter_hash, ip)) &&
1463 (ftrace_hash_empty(hash->notrace_hash) ||
1464 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1465 }
1466
1467 /*
1468 * Test the hashes for this ops to see if we want to call
1469 * the ops->func or not.
1470 *
1471 * It's a match if the ip is in the ops->filter_hash or
1472 * the filter_hash does not exist or is empty,
1473 * AND
1474 * the ip is not in the ops->notrace_hash.
1475 *
1476 * This needs to be called with preemption disabled as
1477 * the hashes are freed with call_rcu().
1478 */
1479 int
1480 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1481 {
1482 struct ftrace_ops_hash hash;
1483 int ret;
1484
1485 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1486 /*
1487 * There's a small race when adding ops that the ftrace handler
1488 * that wants regs, may be called without them. We can not
1489 * allow that handler to be called if regs is NULL.
1490 */
1491 if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1492 return 0;
1493 #endif
1494
1495 rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1496 rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1497
1498 if (hash_contains_ip(ip, &hash))
1499 ret = 1;
1500 else
1501 ret = 0;
1502
1503 return ret;
1504 }
1505
1506 /*
1507 * This is a double for. Do not use 'break' to break out of the loop,
1508 * you must use a goto.
1509 */
1510 #define do_for_each_ftrace_rec(pg, rec) \
1511 for (pg = ftrace_pages_start; pg; pg = pg->next) { \
1512 int _____i; \
1513 for (_____i = 0; _____i < pg->index; _____i++) { \
1514 rec = &pg->records[_____i];
1515
1516 #define while_for_each_ftrace_rec() \
1517 } \
1518 }
1519
1520
1521 static int ftrace_cmp_recs(const void *a, const void *b)
1522 {
1523 const struct dyn_ftrace *key = a;
1524 const struct dyn_ftrace *rec = b;
1525
1526 if (key->flags < rec->ip)
1527 return -1;
1528 if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1529 return 1;
1530 return 0;
1531 }
1532
1533 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1534 {
1535 struct ftrace_page *pg;
1536 struct dyn_ftrace *rec = NULL;
1537 struct dyn_ftrace key;
1538
1539 key.ip = start;
1540 key.flags = end; /* overload flags, as it is unsigned long */
1541
1542 for (pg = ftrace_pages_start; pg; pg = pg->next) {
1543 if (end < pg->records[0].ip ||
1544 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1545 continue;
1546 rec = bsearch(&key, pg->records, pg->index,
1547 sizeof(struct dyn_ftrace),
1548 ftrace_cmp_recs);
1549 if (rec)
1550 break;
1551 }
1552 return rec;
1553 }
1554
1555 /**
1556 * ftrace_location_range - return the first address of a traced location
1557 * if it touches the given ip range
1558 * @start: start of range to search.
1559 * @end: end of range to search (inclusive). @end points to the last byte
1560 * to check.
1561 *
1562 * Returns rec->ip if the related ftrace location is a least partly within
1563 * the given address range. That is, the first address of the instruction
1564 * that is either a NOP or call to the function tracer. It checks the ftrace
1565 * internal tables to determine if the address belongs or not.
1566 */
1567 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1568 {
1569 struct dyn_ftrace *rec;
1570
1571 rec = lookup_rec(start, end);
1572 if (rec)
1573 return rec->ip;
1574
1575 return 0;
1576 }
1577
1578 /**
1579 * ftrace_location - return true if the ip giving is a traced location
1580 * @ip: the instruction pointer to check
1581 *
1582 * Returns rec->ip if @ip given is a pointer to a ftrace location.
1583 * That is, the instruction that is either a NOP or call to
1584 * the function tracer. It checks the ftrace internal tables to
1585 * determine if the address belongs or not.
1586 */
1587 unsigned long ftrace_location(unsigned long ip)
1588 {
1589 return ftrace_location_range(ip, ip);
1590 }
1591
1592 /**
1593 * ftrace_text_reserved - return true if range contains an ftrace location
1594 * @start: start of range to search
1595 * @end: end of range to search (inclusive). @end points to the last byte to check.
1596 *
1597 * Returns 1 if @start and @end contains a ftrace location.
1598 * That is, the instruction that is either a NOP or call to
1599 * the function tracer. It checks the ftrace internal tables to
1600 * determine if the address belongs or not.
1601 */
1602 int ftrace_text_reserved(const void *start, const void *end)
1603 {
1604 unsigned long ret;
1605
1606 ret = ftrace_location_range((unsigned long)start,
1607 (unsigned long)end);
1608
1609 return (int)!!ret;
1610 }
1611
1612 /* Test if ops registered to this rec needs regs */
1613 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1614 {
1615 struct ftrace_ops *ops;
1616 bool keep_regs = false;
1617
1618 for (ops = ftrace_ops_list;
1619 ops != &ftrace_list_end; ops = ops->next) {
1620 /* pass rec in as regs to have non-NULL val */
1621 if (ftrace_ops_test(ops, rec->ip, rec)) {
1622 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1623 keep_regs = true;
1624 break;
1625 }
1626 }
1627 }
1628
1629 return keep_regs;
1630 }
1631
1632 static struct ftrace_ops *
1633 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1634 static struct ftrace_ops *
1635 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1636
1637 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1638 int filter_hash,
1639 bool inc)
1640 {
1641 struct ftrace_hash *hash;
1642 struct ftrace_hash *other_hash;
1643 struct ftrace_page *pg;
1644 struct dyn_ftrace *rec;
1645 bool update = false;
1646 int count = 0;
1647 int all = false;
1648
1649 /* Only update if the ops has been registered */
1650 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1651 return false;
1652
1653 /*
1654 * In the filter_hash case:
1655 * If the count is zero, we update all records.
1656 * Otherwise we just update the items in the hash.
1657 *
1658 * In the notrace_hash case:
1659 * We enable the update in the hash.
1660 * As disabling notrace means enabling the tracing,
1661 * and enabling notrace means disabling, the inc variable
1662 * gets inversed.
1663 */
1664 if (filter_hash) {
1665 hash = ops->func_hash->filter_hash;
1666 other_hash = ops->func_hash->notrace_hash;
1667 if (ftrace_hash_empty(hash))
1668 all = true;
1669 } else {
1670 inc = !inc;
1671 hash = ops->func_hash->notrace_hash;
1672 other_hash = ops->func_hash->filter_hash;
1673 /*
1674 * If the notrace hash has no items,
1675 * then there's nothing to do.
1676 */
1677 if (ftrace_hash_empty(hash))
1678 return false;
1679 }
1680
1681 do_for_each_ftrace_rec(pg, rec) {
1682 int in_other_hash = 0;
1683 int in_hash = 0;
1684 int match = 0;
1685
1686 if (rec->flags & FTRACE_FL_DISABLED)
1687 continue;
1688
1689 if (all) {
1690 /*
1691 * Only the filter_hash affects all records.
1692 * Update if the record is not in the notrace hash.
1693 */
1694 if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1695 match = 1;
1696 } else {
1697 in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1698 in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1699
1700 /*
1701 * If filter_hash is set, we want to match all functions
1702 * that are in the hash but not in the other hash.
1703 *
1704 * If filter_hash is not set, then we are decrementing.
1705 * That means we match anything that is in the hash
1706 * and also in the other_hash. That is, we need to turn
1707 * off functions in the other hash because they are disabled
1708 * by this hash.
1709 */
1710 if (filter_hash && in_hash && !in_other_hash)
1711 match = 1;
1712 else if (!filter_hash && in_hash &&
1713 (in_other_hash || ftrace_hash_empty(other_hash)))
1714 match = 1;
1715 }
1716 if (!match)
1717 continue;
1718
1719 if (inc) {
1720 rec->flags++;
1721 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1722 return false;
1723
1724 if (ops->flags & FTRACE_OPS_FL_DIRECT)
1725 rec->flags |= FTRACE_FL_DIRECT;
1726
1727 /*
1728 * If there's only a single callback registered to a
1729 * function, and the ops has a trampoline registered
1730 * for it, then we can call it directly.
1731 */
1732 if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1733 rec->flags |= FTRACE_FL_TRAMP;
1734 else
1735 /*
1736 * If we are adding another function callback
1737 * to this function, and the previous had a
1738 * custom trampoline in use, then we need to go
1739 * back to the default trampoline.
1740 */
1741 rec->flags &= ~FTRACE_FL_TRAMP;
1742
1743 /*
1744 * If any ops wants regs saved for this function
1745 * then all ops will get saved regs.
1746 */
1747 if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1748 rec->flags |= FTRACE_FL_REGS;
1749 } else {
1750 if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1751 return false;
1752 rec->flags--;
1753
1754 /*
1755 * Only the internal direct_ops should have the
1756 * DIRECT flag set. Thus, if it is removing a
1757 * function, then that function should no longer
1758 * be direct.
1759 */
1760 if (ops->flags & FTRACE_OPS_FL_DIRECT)
1761 rec->flags &= ~FTRACE_FL_DIRECT;
1762
1763 /*
1764 * If the rec had REGS enabled and the ops that is
1765 * being removed had REGS set, then see if there is
1766 * still any ops for this record that wants regs.
1767 * If not, we can stop recording them.
1768 */
1769 if (ftrace_rec_count(rec) > 0 &&
1770 rec->flags & FTRACE_FL_REGS &&
1771 ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1772 if (!test_rec_ops_needs_regs(rec))
1773 rec->flags &= ~FTRACE_FL_REGS;
1774 }
1775
1776 /*
1777 * The TRAMP needs to be set only if rec count
1778 * is decremented to one, and the ops that is
1779 * left has a trampoline. As TRAMP can only be
1780 * enabled if there is only a single ops attached
1781 * to it.
1782 */
1783 if (ftrace_rec_count(rec) == 1 &&
1784 ftrace_find_tramp_ops_any(rec))
1785 rec->flags |= FTRACE_FL_TRAMP;
1786 else
1787 rec->flags &= ~FTRACE_FL_TRAMP;
1788
1789 /*
1790 * flags will be cleared in ftrace_check_record()
1791 * if rec count is zero.
1792 */
1793 }
1794 count++;
1795
1796 /* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1797 update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1798
1799 /* Shortcut, if we handled all records, we are done. */
1800 if (!all && count == hash->count)
1801 return update;
1802 } while_for_each_ftrace_rec();
1803
1804 return update;
1805 }
1806
1807 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1808 int filter_hash)
1809 {
1810 return __ftrace_hash_rec_update(ops, filter_hash, 0);
1811 }
1812
1813 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1814 int filter_hash)
1815 {
1816 return __ftrace_hash_rec_update(ops, filter_hash, 1);
1817 }
1818
1819 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1820 int filter_hash, int inc)
1821 {
1822 struct ftrace_ops *op;
1823
1824 __ftrace_hash_rec_update(ops, filter_hash, inc);
1825
1826 if (ops->func_hash != &global_ops.local_hash)
1827 return;
1828
1829 /*
1830 * If the ops shares the global_ops hash, then we need to update
1831 * all ops that are enabled and use this hash.
1832 */
1833 do_for_each_ftrace_op(op, ftrace_ops_list) {
1834 /* Already done */
1835 if (op == ops)
1836 continue;
1837 if (op->func_hash == &global_ops.local_hash)
1838 __ftrace_hash_rec_update(op, filter_hash, inc);
1839 } while_for_each_ftrace_op(op);
1840 }
1841
1842 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1843 int filter_hash)
1844 {
1845 ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1846 }
1847
1848 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1849 int filter_hash)
1850 {
1851 ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1852 }
1853
1854 /*
1855 * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1856 * or no-needed to update, -EBUSY if it detects a conflict of the flag
1857 * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1858 * Note that old_hash and new_hash has below meanings
1859 * - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1860 * - If the hash is EMPTY_HASH, it hits nothing
1861 * - Anything else hits the recs which match the hash entries.
1862 */
1863 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1864 struct ftrace_hash *old_hash,
1865 struct ftrace_hash *new_hash)
1866 {
1867 struct ftrace_page *pg;
1868 struct dyn_ftrace *rec, *end = NULL;
1869 int in_old, in_new;
1870
1871 /* Only update if the ops has been registered */
1872 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1873 return 0;
1874
1875 if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1876 return 0;
1877
1878 /*
1879 * Since the IPMODIFY is a very address sensitive action, we do not
1880 * allow ftrace_ops to set all functions to new hash.
1881 */
1882 if (!new_hash || !old_hash)
1883 return -EINVAL;
1884
1885 /* Update rec->flags */
1886 do_for_each_ftrace_rec(pg, rec) {
1887
1888 if (rec->flags & FTRACE_FL_DISABLED)
1889 continue;
1890
1891 /* We need to update only differences of filter_hash */
1892 in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1893 in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1894 if (in_old == in_new)
1895 continue;
1896
1897 if (in_new) {
1898 /* New entries must ensure no others are using it */
1899 if (rec->flags & FTRACE_FL_IPMODIFY)
1900 goto rollback;
1901 rec->flags |= FTRACE_FL_IPMODIFY;
1902 } else /* Removed entry */
1903 rec->flags &= ~FTRACE_FL_IPMODIFY;
1904 } while_for_each_ftrace_rec();
1905
1906 return 0;
1907
1908 rollback:
1909 end = rec;
1910
1911 /* Roll back what we did above */
1912 do_for_each_ftrace_rec(pg, rec) {
1913
1914 if (rec->flags & FTRACE_FL_DISABLED)
1915 continue;
1916
1917 if (rec == end)
1918 goto err_out;
1919
1920 in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1921 in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1922 if (in_old == in_new)
1923 continue;
1924
1925 if (in_new)
1926 rec->flags &= ~FTRACE_FL_IPMODIFY;
1927 else
1928 rec->flags |= FTRACE_FL_IPMODIFY;
1929 } while_for_each_ftrace_rec();
1930
1931 err_out:
1932 return -EBUSY;
1933 }
1934
1935 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1936 {
1937 struct ftrace_hash *hash = ops->func_hash->filter_hash;
1938
1939 if (ftrace_hash_empty(hash))
1940 hash = NULL;
1941
1942 return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1943 }
1944
1945 /* Disabling always succeeds */
1946 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1947 {
1948 struct ftrace_hash *hash = ops->func_hash->filter_hash;
1949
1950 if (ftrace_hash_empty(hash))
1951 hash = NULL;
1952
1953 __ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1954 }
1955
1956 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1957 struct ftrace_hash *new_hash)
1958 {
1959 struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1960
1961 if (ftrace_hash_empty(old_hash))
1962 old_hash = NULL;
1963
1964 if (ftrace_hash_empty(new_hash))
1965 new_hash = NULL;
1966
1967 return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1968 }
1969
1970 static void print_ip_ins(const char *fmt, const unsigned char *p)
1971 {
1972 int i;
1973
1974 printk(KERN_CONT "%s", fmt);
1975
1976 for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1977 printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
1978 }
1979
1980 enum ftrace_bug_type ftrace_bug_type;
1981 const void *ftrace_expected;
1982
1983 static void print_bug_type(void)
1984 {
1985 switch (ftrace_bug_type) {
1986 case FTRACE_BUG_UNKNOWN:
1987 break;
1988 case FTRACE_BUG_INIT:
1989 pr_info("Initializing ftrace call sites\n");
1990 break;
1991 case FTRACE_BUG_NOP:
1992 pr_info("Setting ftrace call site to NOP\n");
1993 break;
1994 case FTRACE_BUG_CALL:
1995 pr_info("Setting ftrace call site to call ftrace function\n");
1996 break;
1997 case FTRACE_BUG_UPDATE:
1998 pr_info("Updating ftrace call site to call a different ftrace function\n");
1999 break;
2000 }
2001 }
2002
2003 /**
2004 * ftrace_bug - report and shutdown function tracer
2005 * @failed: The failed type (EFAULT, EINVAL, EPERM)
2006 * @rec: The record that failed
2007 *
2008 * The arch code that enables or disables the function tracing
2009 * can call ftrace_bug() when it has detected a problem in
2010 * modifying the code. @failed should be one of either:
2011 * EFAULT - if the problem happens on reading the @ip address
2012 * EINVAL - if what is read at @ip is not what was expected
2013 * EPERM - if the problem happens on writing to the @ip address
2014 */
2015 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2016 {
2017 unsigned long ip = rec ? rec->ip : 0;
2018
2019 switch (failed) {
2020 case -EFAULT:
2021 FTRACE_WARN_ON_ONCE(1);
2022 pr_info("ftrace faulted on modifying ");
2023 print_ip_sym(ip);
2024 break;
2025 case -EINVAL:
2026 FTRACE_WARN_ON_ONCE(1);
2027 pr_info("ftrace failed to modify ");
2028 print_ip_sym(ip);
2029 print_ip_ins(" actual: ", (unsigned char *)ip);
2030 pr_cont("\n");
2031 if (ftrace_expected) {
2032 print_ip_ins(" expected: ", ftrace_expected);
2033 pr_cont("\n");
2034 }
2035 break;
2036 case -EPERM:
2037 FTRACE_WARN_ON_ONCE(1);
2038 pr_info("ftrace faulted on writing ");
2039 print_ip_sym(ip);
2040 break;
2041 default:
2042 FTRACE_WARN_ON_ONCE(1);
2043 pr_info("ftrace faulted on unknown error ");
2044 print_ip_sym(ip);
2045 }
2046 print_bug_type();
2047 if (rec) {
2048 struct ftrace_ops *ops = NULL;
2049
2050 pr_info("ftrace record flags: %lx\n", rec->flags);
2051 pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2052 rec->flags & FTRACE_FL_REGS ? " R" : " ");
2053 if (rec->flags & FTRACE_FL_TRAMP_EN) {
2054 ops = ftrace_find_tramp_ops_any(rec);
2055 if (ops) {
2056 do {
2057 pr_cont("\ttramp: %pS (%pS)",
2058 (void *)ops->trampoline,
2059 (void *)ops->func);
2060 ops = ftrace_find_tramp_ops_next(rec, ops);
2061 } while (ops);
2062 } else
2063 pr_cont("\ttramp: ERROR!");
2064
2065 }
2066 ip = ftrace_get_addr_curr(rec);
2067 pr_cont("\n expected tramp: %lx\n", ip);
2068 }
2069 }
2070
2071 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2072 {
2073 unsigned long flag = 0UL;
2074
2075 ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2076
2077 if (rec->flags & FTRACE_FL_DISABLED)
2078 return FTRACE_UPDATE_IGNORE;
2079
2080 /*
2081 * If we are updating calls:
2082 *
2083 * If the record has a ref count, then we need to enable it
2084 * because someone is using it.
2085 *
2086 * Otherwise we make sure its disabled.
2087 *
2088 * If we are disabling calls, then disable all records that
2089 * are enabled.
2090 */
2091 if (enable && ftrace_rec_count(rec))
2092 flag = FTRACE_FL_ENABLED;
2093
2094 /*
2095 * If enabling and the REGS flag does not match the REGS_EN, or
2096 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2097 * this record. Set flags to fail the compare against ENABLED.
2098 * Same for direct calls.
2099 */
2100 if (flag) {
2101 if (!(rec->flags & FTRACE_FL_REGS) !=
2102 !(rec->flags & FTRACE_FL_REGS_EN))
2103 flag |= FTRACE_FL_REGS;
2104
2105 if (!(rec->flags & FTRACE_FL_TRAMP) !=
2106 !(rec->flags & FTRACE_FL_TRAMP_EN))
2107 flag |= FTRACE_FL_TRAMP;
2108
2109 /*
2110 * Direct calls are special, as count matters.
2111 * We must test the record for direct, if the
2112 * DIRECT and DIRECT_EN do not match, but only
2113 * if the count is 1. That's because, if the
2114 * count is something other than one, we do not
2115 * want the direct enabled (it will be done via the
2116 * direct helper). But if DIRECT_EN is set, and
2117 * the count is not one, we need to clear it.
2118 */
2119 if (ftrace_rec_count(rec) == 1) {
2120 if (!(rec->flags & FTRACE_FL_DIRECT) !=
2121 !(rec->flags & FTRACE_FL_DIRECT_EN))
2122 flag |= FTRACE_FL_DIRECT;
2123 } else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2124 flag |= FTRACE_FL_DIRECT;
2125 }
2126 }
2127
2128 /* If the state of this record hasn't changed, then do nothing */
2129 if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2130 return FTRACE_UPDATE_IGNORE;
2131
2132 if (flag) {
2133 /* Save off if rec is being enabled (for return value) */
2134 flag ^= rec->flags & FTRACE_FL_ENABLED;
2135
2136 if (update) {
2137 rec->flags |= FTRACE_FL_ENABLED;
2138 if (flag & FTRACE_FL_REGS) {
2139 if (rec->flags & FTRACE_FL_REGS)
2140 rec->flags |= FTRACE_FL_REGS_EN;
2141 else
2142 rec->flags &= ~FTRACE_FL_REGS_EN;
2143 }
2144 if (flag & FTRACE_FL_TRAMP) {
2145 if (rec->flags & FTRACE_FL_TRAMP)
2146 rec->flags |= FTRACE_FL_TRAMP_EN;
2147 else
2148 rec->flags &= ~FTRACE_FL_TRAMP_EN;
2149 }
2150 if (flag & FTRACE_FL_DIRECT) {
2151 /*
2152 * If there's only one user (direct_ops helper)
2153 * then we can call the direct function
2154 * directly (no ftrace trampoline).
2155 */
2156 if (ftrace_rec_count(rec) == 1) {
2157 if (rec->flags & FTRACE_FL_DIRECT)
2158 rec->flags |= FTRACE_FL_DIRECT_EN;
2159 else
2160 rec->flags &= ~FTRACE_FL_DIRECT_EN;
2161 } else {
2162 /*
2163 * Can only call directly if there's
2164 * only one callback to the function.
2165 */
2166 rec->flags &= ~FTRACE_FL_DIRECT_EN;
2167 }
2168 }
2169 }
2170
2171 /*
2172 * If this record is being updated from a nop, then
2173 * return UPDATE_MAKE_CALL.
2174 * Otherwise,
2175 * return UPDATE_MODIFY_CALL to tell the caller to convert
2176 * from the save regs, to a non-save regs function or
2177 * vice versa, or from a trampoline call.
2178 */
2179 if (flag & FTRACE_FL_ENABLED) {
2180 ftrace_bug_type = FTRACE_BUG_CALL;
2181 return FTRACE_UPDATE_MAKE_CALL;
2182 }
2183
2184 ftrace_bug_type = FTRACE_BUG_UPDATE;
2185 return FTRACE_UPDATE_MODIFY_CALL;
2186 }
2187
2188 if (update) {
2189 /* If there's no more users, clear all flags */
2190 if (!ftrace_rec_count(rec))
2191 rec->flags = 0;
2192 else
2193 /*
2194 * Just disable the record, but keep the ops TRAMP
2195 * and REGS states. The _EN flags must be disabled though.
2196 */
2197 rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2198 FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2199 }
2200
2201 ftrace_bug_type = FTRACE_BUG_NOP;
2202 return FTRACE_UPDATE_MAKE_NOP;
2203 }
2204
2205 /**
2206 * ftrace_update_record, set a record that now is tracing or not
2207 * @rec: the record to update
2208 * @enable: set to true if the record is tracing, false to force disable
2209 *
2210 * The records that represent all functions that can be traced need
2211 * to be updated when tracing has been enabled.
2212 */
2213 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2214 {
2215 return ftrace_check_record(rec, enable, true);
2216 }
2217
2218 /**
2219 * ftrace_test_record, check if the record has been enabled or not
2220 * @rec: the record to test
2221 * @enable: set to true to check if enabled, false if it is disabled
2222 *
2223 * The arch code may need to test if a record is already set to
2224 * tracing to determine how to modify the function code that it
2225 * represents.
2226 */
2227 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2228 {
2229 return ftrace_check_record(rec, enable, false);
2230 }
2231
2232 static struct ftrace_ops *
2233 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2234 {
2235 struct ftrace_ops *op;
2236 unsigned long ip = rec->ip;
2237
2238 do_for_each_ftrace_op(op, ftrace_ops_list) {
2239
2240 if (!op->trampoline)
2241 continue;
2242
2243 if (hash_contains_ip(ip, op->func_hash))
2244 return op;
2245 } while_for_each_ftrace_op(op);
2246
2247 return NULL;
2248 }
2249
2250 static struct ftrace_ops *
2251 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2252 struct ftrace_ops *op)
2253 {
2254 unsigned long ip = rec->ip;
2255
2256 while_for_each_ftrace_op(op) {
2257
2258 if (!op->trampoline)
2259 continue;
2260
2261 if (hash_contains_ip(ip, op->func_hash))
2262 return op;
2263 }
2264
2265 return NULL;
2266 }
2267
2268 static struct ftrace_ops *
2269 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2270 {
2271 struct ftrace_ops *op;
2272 unsigned long ip = rec->ip;
2273
2274 /*
2275 * Need to check removed ops first.
2276 * If they are being removed, and this rec has a tramp,
2277 * and this rec is in the ops list, then it would be the
2278 * one with the tramp.
2279 */
2280 if (removed_ops) {
2281 if (hash_contains_ip(ip, &removed_ops->old_hash))
2282 return removed_ops;
2283 }
2284
2285 /*
2286 * Need to find the current trampoline for a rec.
2287 * Now, a trampoline is only attached to a rec if there
2288 * was a single 'ops' attached to it. But this can be called
2289 * when we are adding another op to the rec or removing the
2290 * current one. Thus, if the op is being added, we can
2291 * ignore it because it hasn't attached itself to the rec
2292 * yet.
2293 *
2294 * If an ops is being modified (hooking to different functions)
2295 * then we don't care about the new functions that are being
2296 * added, just the old ones (that are probably being removed).
2297 *
2298 * If we are adding an ops to a function that already is using
2299 * a trampoline, it needs to be removed (trampolines are only
2300 * for single ops connected), then an ops that is not being
2301 * modified also needs to be checked.
2302 */
2303 do_for_each_ftrace_op(op, ftrace_ops_list) {
2304
2305 if (!op->trampoline)
2306 continue;
2307
2308 /*
2309 * If the ops is being added, it hasn't gotten to
2310 * the point to be removed from this tree yet.
2311 */
2312 if (op->flags & FTRACE_OPS_FL_ADDING)
2313 continue;
2314
2315
2316 /*
2317 * If the ops is being modified and is in the old
2318 * hash, then it is probably being removed from this
2319 * function.
2320 */
2321 if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2322 hash_contains_ip(ip, &op->old_hash))
2323 return op;
2324 /*
2325 * If the ops is not being added or modified, and it's
2326 * in its normal filter hash, then this must be the one
2327 * we want!
2328 */
2329 if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2330 hash_contains_ip(ip, op->func_hash))
2331 return op;
2332
2333 } while_for_each_ftrace_op(op);
2334
2335 return NULL;
2336 }
2337
2338 static struct ftrace_ops *
2339 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2340 {
2341 struct ftrace_ops *op;
2342 unsigned long ip = rec->ip;
2343
2344 do_for_each_ftrace_op(op, ftrace_ops_list) {
2345 /* pass rec in as regs to have non-NULL val */
2346 if (hash_contains_ip(ip, op->func_hash))
2347 return op;
2348 } while_for_each_ftrace_op(op);
2349
2350 return NULL;
2351 }
2352
2353 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2354 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2355 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2356 static DEFINE_MUTEX(direct_mutex);
2357 int ftrace_direct_func_count;
2358
2359 /*
2360 * Search the direct_functions hash to see if the given instruction pointer
2361 * has a direct caller attached to it.
2362 */
2363 unsigned long ftrace_find_rec_direct(unsigned long ip)
2364 {
2365 struct ftrace_func_entry *entry;
2366
2367 entry = __ftrace_lookup_ip(direct_functions, ip);
2368 if (!entry)
2369 return 0;
2370
2371 return entry->direct;
2372 }
2373
2374 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2375 struct ftrace_ops *ops, struct pt_regs *regs)
2376 {
2377 unsigned long addr;
2378
2379 addr = ftrace_find_rec_direct(ip);
2380 if (!addr)
2381 return;
2382
2383 arch_ftrace_set_direct_caller(regs, addr);
2384 }
2385
2386 struct ftrace_ops direct_ops = {
2387 .func = call_direct_funcs,
2388 .flags = FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_RECURSION_SAFE
2389 | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2390 | FTRACE_OPS_FL_PERMANENT,
2391 };
2392 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2393
2394 /**
2395 * ftrace_get_addr_new - Get the call address to set to
2396 * @rec: The ftrace record descriptor
2397 *
2398 * If the record has the FTRACE_FL_REGS set, that means that it
2399 * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2400 * is not not set, then it wants to convert to the normal callback.
2401 *
2402 * Returns the address of the trampoline to set to
2403 */
2404 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2405 {
2406 struct ftrace_ops *ops;
2407 unsigned long addr;
2408
2409 if ((rec->flags & FTRACE_FL_DIRECT) &&
2410 (ftrace_rec_count(rec) == 1)) {
2411 addr = ftrace_find_rec_direct(rec->ip);
2412 if (addr)
2413 return addr;
2414 WARN_ON_ONCE(1);
2415 }
2416
2417 /* Trampolines take precedence over regs */
2418 if (rec->flags & FTRACE_FL_TRAMP) {
2419 ops = ftrace_find_tramp_ops_new(rec);
2420 if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2421 pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2422 (void *)rec->ip, (void *)rec->ip, rec->flags);
2423 /* Ftrace is shutting down, return anything */
2424 return (unsigned long)FTRACE_ADDR;
2425 }
2426 return ops->trampoline;
2427 }
2428
2429 if (rec->flags & FTRACE_FL_REGS)
2430 return (unsigned long)FTRACE_REGS_ADDR;
2431 else
2432 return (unsigned long)FTRACE_ADDR;
2433 }
2434
2435 /**
2436 * ftrace_get_addr_curr - Get the call address that is already there
2437 * @rec: The ftrace record descriptor
2438 *
2439 * The FTRACE_FL_REGS_EN is set when the record already points to
2440 * a function that saves all the regs. Basically the '_EN' version
2441 * represents the current state of the function.
2442 *
2443 * Returns the address of the trampoline that is currently being called
2444 */
2445 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2446 {
2447 struct ftrace_ops *ops;
2448 unsigned long addr;
2449
2450 /* Direct calls take precedence over trampolines */
2451 if (rec->flags & FTRACE_FL_DIRECT_EN) {
2452 addr = ftrace_find_rec_direct(rec->ip);
2453 if (addr)
2454 return addr;
2455 WARN_ON_ONCE(1);
2456 }
2457
2458 /* Trampolines take precedence over regs */
2459 if (rec->flags & FTRACE_FL_TRAMP_EN) {
2460 ops = ftrace_find_tramp_ops_curr(rec);
2461 if (FTRACE_WARN_ON(!ops)) {
2462 pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2463 (void *)rec->ip, (void *)rec->ip);
2464 /* Ftrace is shutting down, return anything */
2465 return (unsigned long)FTRACE_ADDR;
2466 }
2467 return ops->trampoline;
2468 }
2469
2470 if (rec->flags & FTRACE_FL_REGS_EN)
2471 return (unsigned long)FTRACE_REGS_ADDR;
2472 else
2473 return (unsigned long)FTRACE_ADDR;
2474 }
2475
2476 static int
2477 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2478 {
2479 unsigned long ftrace_old_addr;
2480 unsigned long ftrace_addr;
2481 int ret;
2482
2483 ftrace_addr = ftrace_get_addr_new(rec);
2484
2485 /* This needs to be done before we call ftrace_update_record */
2486 ftrace_old_addr = ftrace_get_addr_curr(rec);
2487
2488 ret = ftrace_update_record(rec, enable);
2489
2490 ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2491
2492 switch (ret) {
2493 case FTRACE_UPDATE_IGNORE:
2494 return 0;
2495
2496 case FTRACE_UPDATE_MAKE_CALL:
2497 ftrace_bug_type = FTRACE_BUG_CALL;
2498 return ftrace_make_call(rec, ftrace_addr);
2499
2500 case FTRACE_UPDATE_MAKE_NOP:
2501 ftrace_bug_type = FTRACE_BUG_NOP;
2502 return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2503
2504 case FTRACE_UPDATE_MODIFY_CALL:
2505 ftrace_bug_type = FTRACE_BUG_UPDATE;
2506 return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2507 }
2508
2509 return -1; /* unknown ftrace bug */
2510 }
2511
2512 void __weak ftrace_replace_code(int mod_flags)
2513 {
2514 struct dyn_ftrace *rec;
2515 struct ftrace_page *pg;
2516 bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2517 int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2518 int failed;
2519
2520 if (unlikely(ftrace_disabled))
2521 return;
2522
2523 do_for_each_ftrace_rec(pg, rec) {
2524
2525 if (rec->flags & FTRACE_FL_DISABLED)
2526 continue;
2527
2528 failed = __ftrace_replace_code(rec, enable);
2529 if (failed) {
2530 ftrace_bug(failed, rec);
2531 /* Stop processing */
2532 return;
2533 }
2534 if (schedulable)
2535 cond_resched();
2536 } while_for_each_ftrace_rec();
2537 }
2538
2539 struct ftrace_rec_iter {
2540 struct ftrace_page *pg;
2541 int index;
2542 };
2543
2544 /**
2545 * ftrace_rec_iter_start, start up iterating over traced functions
2546 *
2547 * Returns an iterator handle that is used to iterate over all
2548 * the records that represent address locations where functions
2549 * are traced.
2550 *
2551 * May return NULL if no records are available.
2552 */
2553 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2554 {
2555 /*
2556 * We only use a single iterator.
2557 * Protected by the ftrace_lock mutex.
2558 */
2559 static struct ftrace_rec_iter ftrace_rec_iter;
2560 struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2561
2562 iter->pg = ftrace_pages_start;
2563 iter->index = 0;
2564
2565 /* Could have empty pages */
2566 while (iter->pg && !iter->pg->index)
2567 iter->pg = iter->pg->next;
2568
2569 if (!iter->pg)
2570 return NULL;
2571
2572 return iter;
2573 }
2574
2575 /**
2576 * ftrace_rec_iter_next, get the next record to process.
2577 * @iter: The handle to the iterator.
2578 *
2579 * Returns the next iterator after the given iterator @iter.
2580 */
2581 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2582 {
2583 iter->index++;
2584
2585 if (iter->index >= iter->pg->index) {
2586 iter->pg = iter->pg->next;
2587 iter->index = 0;
2588
2589 /* Could have empty pages */
2590 while (iter->pg && !iter->pg->index)
2591 iter->pg = iter->pg->next;
2592 }
2593
2594 if (!iter->pg)
2595 return NULL;
2596
2597 return iter;
2598 }
2599
2600 /**
2601 * ftrace_rec_iter_record, get the record at the iterator location
2602 * @iter: The current iterator location
2603 *
2604 * Returns the record that the current @iter is at.
2605 */
2606 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2607 {
2608 return &iter->pg->records[iter->index];
2609 }
2610
2611 static int
2612 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2613 {
2614 int ret;
2615
2616 if (unlikely(ftrace_disabled))
2617 return 0;
2618
2619 ret = ftrace_init_nop(mod, rec);
2620 if (ret) {
2621 ftrace_bug_type = FTRACE_BUG_INIT;
2622 ftrace_bug(ret, rec);
2623 return 0;
2624 }
2625 return 1;
2626 }
2627
2628 /*
2629 * archs can override this function if they must do something
2630 * before the modifying code is performed.
2631 */
2632 int __weak ftrace_arch_code_modify_prepare(void)
2633 {
2634 return 0;
2635 }
2636
2637 /*
2638 * archs can override this function if they must do something
2639 * after the modifying code is performed.
2640 */
2641 int __weak ftrace_arch_code_modify_post_process(void)
2642 {
2643 return 0;
2644 }
2645
2646 void ftrace_modify_all_code(int command)
2647 {
2648 int update = command & FTRACE_UPDATE_TRACE_FUNC;
2649 int mod_flags = 0;
2650 int err = 0;
2651
2652 if (command & FTRACE_MAY_SLEEP)
2653 mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2654
2655 /*
2656 * If the ftrace_caller calls a ftrace_ops func directly,
2657 * we need to make sure that it only traces functions it
2658 * expects to trace. When doing the switch of functions,
2659 * we need to update to the ftrace_ops_list_func first
2660 * before the transition between old and new calls are set,
2661 * as the ftrace_ops_list_func will check the ops hashes
2662 * to make sure the ops are having the right functions
2663 * traced.
2664 */
2665 if (update) {
2666 err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2667 if (FTRACE_WARN_ON(err))
2668 return;
2669 }
2670
2671 if (command & FTRACE_UPDATE_CALLS)
2672 ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2673 else if (command & FTRACE_DISABLE_CALLS)
2674 ftrace_replace_code(mod_flags);
2675
2676 if (update && ftrace_trace_function != ftrace_ops_list_func) {
2677 function_trace_op = set_function_trace_op;
2678 smp_wmb();
2679 /* If irqs are disabled, we are in stop machine */
2680 if (!irqs_disabled())
2681 smp_call_function(ftrace_sync_ipi, NULL, 1);
2682 err = ftrace_update_ftrace_func(ftrace_trace_function);
2683 if (FTRACE_WARN_ON(err))
2684 return;
2685 }
2686
2687 if (command & FTRACE_START_FUNC_RET)
2688 err = ftrace_enable_ftrace_graph_caller();
2689 else if (command & FTRACE_STOP_FUNC_RET)
2690 err = ftrace_disable_ftrace_graph_caller();
2691 FTRACE_WARN_ON(err);
2692 }
2693
2694 static int __ftrace_modify_code(void *data)
2695 {
2696 int *command = data;
2697
2698 ftrace_modify_all_code(*command);
2699
2700 return 0;
2701 }
2702
2703 /**
2704 * ftrace_run_stop_machine, go back to the stop machine method
2705 * @command: The command to tell ftrace what to do
2706 *
2707 * If an arch needs to fall back to the stop machine method, the
2708 * it can call this function.
2709 */
2710 void ftrace_run_stop_machine(int command)
2711 {
2712 stop_machine(__ftrace_modify_code, &command, NULL);
2713 }
2714
2715 /**
2716 * arch_ftrace_update_code, modify the code to trace or not trace
2717 * @command: The command that needs to be done
2718 *
2719 * Archs can override this function if it does not need to
2720 * run stop_machine() to modify code.
2721 */
2722 void __weak arch_ftrace_update_code(int command)
2723 {
2724 ftrace_run_stop_machine(command);
2725 }
2726
2727 static void ftrace_run_update_code(int command)
2728 {
2729 int ret;
2730
2731 ret = ftrace_arch_code_modify_prepare();
2732 FTRACE_WARN_ON(ret);
2733 if (ret)
2734 return;
2735
2736 /*
2737 * By default we use stop_machine() to modify the code.
2738 * But archs can do what ever they want as long as it
2739 * is safe. The stop_machine() is the safest, but also
2740 * produces the most overhead.
2741 */
2742 arch_ftrace_update_code(command);
2743
2744 ret = ftrace_arch_code_modify_post_process();
2745 FTRACE_WARN_ON(ret);
2746 }
2747
2748 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2749 struct ftrace_ops_hash *old_hash)
2750 {
2751 ops->flags |= FTRACE_OPS_FL_MODIFYING;
2752 ops->old_hash.filter_hash = old_hash->filter_hash;
2753 ops->old_hash.notrace_hash = old_hash->notrace_hash;
2754 ftrace_run_update_code(command);
2755 ops->old_hash.filter_hash = NULL;
2756 ops->old_hash.notrace_hash = NULL;
2757 ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2758 }
2759
2760 static ftrace_func_t saved_ftrace_func;
2761 static int ftrace_start_up;
2762
2763 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2764 {
2765 }
2766
2767 static void ftrace_startup_enable(int command)
2768 {
2769 if (saved_ftrace_func != ftrace_trace_function) {
2770 saved_ftrace_func = ftrace_trace_function;
2771 command |= FTRACE_UPDATE_TRACE_FUNC;
2772 }
2773
2774 if (!command || !ftrace_enabled)
2775 return;
2776
2777 ftrace_run_update_code(command);
2778 }
2779
2780 static void ftrace_startup_all(int command)
2781 {
2782 update_all_ops = true;
2783 ftrace_startup_enable(command);
2784 update_all_ops = false;
2785 }
2786
2787 int ftrace_startup(struct ftrace_ops *ops, int command)
2788 {
2789 int ret;
2790
2791 if (unlikely(ftrace_disabled))
2792 return -ENODEV;
2793
2794 ret = __register_ftrace_function(ops);
2795 if (ret)
2796 return ret;
2797
2798 ftrace_start_up++;
2799
2800 /*
2801 * Note that ftrace probes uses this to start up
2802 * and modify functions it will probe. But we still
2803 * set the ADDING flag for modification, as probes
2804 * do not have trampolines. If they add them in the
2805 * future, then the probes will need to distinguish
2806 * between adding and updating probes.
2807 */
2808 ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2809
2810 ret = ftrace_hash_ipmodify_enable(ops);
2811 if (ret < 0) {
2812 /* Rollback registration process */
2813 __unregister_ftrace_function(ops);
2814 ftrace_start_up--;
2815 ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2816 return ret;
2817 }
2818
2819 if (ftrace_hash_rec_enable(ops, 1))
2820 command |= FTRACE_UPDATE_CALLS;
2821
2822 ftrace_startup_enable(command);
2823
2824 ops->flags &= ~FTRACE_OPS_FL_ADDING;
2825
2826 return 0;
2827 }
2828
2829 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2830 {
2831 int ret;
2832
2833 if (unlikely(ftrace_disabled))
2834 return -ENODEV;
2835
2836 ret = __unregister_ftrace_function(ops);
2837 if (ret)
2838 return ret;
2839
2840 ftrace_start_up--;
2841 /*
2842 * Just warn in case of unbalance, no need to kill ftrace, it's not
2843 * critical but the ftrace_call callers may be never nopped again after
2844 * further ftrace uses.
2845 */
2846 WARN_ON_ONCE(ftrace_start_up < 0);
2847
2848 /* Disabling ipmodify never fails */
2849 ftrace_hash_ipmodify_disable(ops);
2850
2851 if (ftrace_hash_rec_disable(ops, 1))
2852 command |= FTRACE_UPDATE_CALLS;
2853
2854 ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2855
2856 if (saved_ftrace_func != ftrace_trace_function) {
2857 saved_ftrace_func = ftrace_trace_function;
2858 command |= FTRACE_UPDATE_TRACE_FUNC;
2859 }
2860
2861 if (!command || !ftrace_enabled) {
2862 /*
2863 * If these are dynamic or per_cpu ops, they still
2864 * need their data freed. Since, function tracing is
2865 * not currently active, we can just free them
2866 * without synchronizing all CPUs.
2867 */
2868 if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2869 goto free_ops;
2870
2871 return 0;
2872 }
2873
2874 /*
2875 * If the ops uses a trampoline, then it needs to be
2876 * tested first on update.
2877 */
2878 ops->flags |= FTRACE_OPS_FL_REMOVING;
2879 removed_ops = ops;
2880
2881 /* The trampoline logic checks the old hashes */
2882 ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2883 ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
2884
2885 ftrace_run_update_code(command);
2886
2887 /*
2888 * If there's no more ops registered with ftrace, run a
2889 * sanity check to make sure all rec flags are cleared.
2890 */
2891 if (rcu_dereference_protected(ftrace_ops_list,
2892 lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
2893 struct ftrace_page *pg;
2894 struct dyn_ftrace *rec;
2895
2896 do_for_each_ftrace_rec(pg, rec) {
2897 if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
2898 pr_warn(" %pS flags:%lx\n",
2899 (void *)rec->ip, rec->flags);
2900 } while_for_each_ftrace_rec();
2901 }
2902
2903 ops->old_hash.filter_hash = NULL;
2904 ops->old_hash.notrace_hash = NULL;
2905
2906 removed_ops = NULL;
2907 ops->flags &= ~FTRACE_OPS_FL_REMOVING;
2908
2909 /*
2910 * Dynamic ops may be freed, we must make sure that all
2911 * callers are done before leaving this function.
2912 * The same goes for freeing the per_cpu data of the per_cpu
2913 * ops.
2914 */
2915 if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
2916 /*
2917 * We need to do a hard force of sched synchronization.
2918 * This is because we use preempt_disable() to do RCU, but
2919 * the function tracers can be called where RCU is not watching
2920 * (like before user_exit()). We can not rely on the RCU
2921 * infrastructure to do the synchronization, thus we must do it
2922 * ourselves.
2923 */
2924 synchronize_rcu_tasks_rude();
2925
2926 /*
2927 * When the kernel is preeptive, tasks can be preempted
2928 * while on a ftrace trampoline. Just scheduling a task on
2929 * a CPU is not good enough to flush them. Calling
2930 * synchornize_rcu_tasks() will wait for those tasks to
2931 * execute and either schedule voluntarily or enter user space.
2932 */
2933 if (IS_ENABLED(CONFIG_PREEMPTION))
2934 synchronize_rcu_tasks();
2935
2936 free_ops:
2937 arch_ftrace_trampoline_free(ops);
2938 }
2939
2940 return 0;
2941 }
2942
2943 static void ftrace_startup_sysctl(void)
2944 {
2945 int command;
2946
2947 if (unlikely(ftrace_disabled))
2948 return;
2949
2950 /* Force update next time */
2951 saved_ftrace_func = NULL;
2952 /* ftrace_start_up is true if we want ftrace running */
2953 if (ftrace_start_up) {
2954 command = FTRACE_UPDATE_CALLS;
2955 if (ftrace_graph_active)
2956 command |= FTRACE_START_FUNC_RET;
2957 ftrace_startup_enable(command);
2958 }
2959 }
2960
2961 static void ftrace_shutdown_sysctl(void)
2962 {
2963 int command;
2964
2965 if (unlikely(ftrace_disabled))
2966 return;
2967
2968 /* ftrace_start_up is true if ftrace is running */
2969 if (ftrace_start_up) {
2970 command = FTRACE_DISABLE_CALLS;
2971 if (ftrace_graph_active)
2972 command |= FTRACE_STOP_FUNC_RET;
2973 ftrace_run_update_code(command);
2974 }
2975 }
2976
2977 static u64 ftrace_update_time;
2978 unsigned long ftrace_update_tot_cnt;
2979 unsigned long ftrace_number_of_pages;
2980 unsigned long ftrace_number_of_groups;
2981
2982 static inline int ops_traces_mod(struct ftrace_ops *ops)
2983 {
2984 /*
2985 * Filter_hash being empty will default to trace module.
2986 * But notrace hash requires a test of individual module functions.
2987 */
2988 return ftrace_hash_empty(ops->func_hash->filter_hash) &&
2989 ftrace_hash_empty(ops->func_hash->notrace_hash);
2990 }
2991
2992 /*
2993 * Check if the current ops references the record.
2994 *
2995 * If the ops traces all functions, then it was already accounted for.
2996 * If the ops does not trace the current record function, skip it.
2997 * If the ops ignores the function via notrace filter, skip it.
2998 */
2999 static inline bool
3000 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3001 {
3002 /* If ops isn't enabled, ignore it */
3003 if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3004 return false;
3005
3006 /* If ops traces all then it includes this function */
3007 if (ops_traces_mod(ops))
3008 return true;
3009
3010 /* The function must be in the filter */
3011 if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3012 !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3013 return false;
3014
3015 /* If in notrace hash, we ignore it too */
3016 if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3017 return false;
3018
3019 return true;
3020 }
3021
3022 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3023 {
3024 struct ftrace_page *pg;
3025 struct dyn_ftrace *p;
3026 u64 start, stop;
3027 unsigned long update_cnt = 0;
3028 unsigned long rec_flags = 0;
3029 int i;
3030
3031 start = ftrace_now(raw_smp_processor_id());
3032
3033 /*
3034 * When a module is loaded, this function is called to convert
3035 * the calls to mcount in its text to nops, and also to create
3036 * an entry in the ftrace data. Now, if ftrace is activated
3037 * after this call, but before the module sets its text to
3038 * read-only, the modification of enabling ftrace can fail if
3039 * the read-only is done while ftrace is converting the calls.
3040 * To prevent this, the module's records are set as disabled
3041 * and will be enabled after the call to set the module's text
3042 * to read-only.
3043 */
3044 if (mod)
3045 rec_flags |= FTRACE_FL_DISABLED;
3046
3047 for (pg = new_pgs; pg; pg = pg->next) {
3048
3049 for (i = 0; i < pg->index; i++) {
3050
3051 /* If something went wrong, bail without enabling anything */
3052 if (unlikely(ftrace_disabled))
3053 return -1;
3054
3055 p = &pg->records[i];
3056 p->flags = rec_flags;
3057
3058 /*
3059 * Do the initial record conversion from mcount jump
3060 * to the NOP instructions.
3061 */
3062 if (!__is_defined(CC_USING_NOP_MCOUNT) &&
3063 !ftrace_nop_initialize(mod, p))
3064 break;
3065
3066 update_cnt++;
3067 }
3068 }
3069
3070 stop = ftrace_now(raw_smp_processor_id());
3071 ftrace_update_time = stop - start;
3072 ftrace_update_tot_cnt += update_cnt;
3073
3074 return 0;
3075 }
3076
3077 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3078 {
3079 int order;
3080 int cnt;
3081
3082 if (WARN_ON(!count))
3083 return -EINVAL;
3084
3085 order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
3086
3087 /*
3088 * We want to fill as much as possible. No more than a page
3089 * may be empty.
3090 */
3091 while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
3092 order--;
3093
3094 again:
3095 pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3096
3097 if (!pg->records) {
3098 /* if we can't allocate this size, try something smaller */
3099 if (!order)
3100 return -ENOMEM;
3101 order >>= 1;
3102 goto again;
3103 }
3104
3105 ftrace_number_of_pages += 1 << order;
3106 ftrace_number_of_groups++;
3107
3108 cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3109 pg->size = cnt;
3110
3111 if (cnt > count)
3112 cnt = count;
3113
3114 return cnt;
3115 }
3116
3117 static struct ftrace_page *
3118 ftrace_allocate_pages(unsigned long num_to_init)
3119 {
3120 struct ftrace_page *start_pg;
3121 struct ftrace_page *pg;
3122 int order;
3123 int cnt;
3124
3125 if (!num_to_init)
3126 return NULL;
3127
3128 start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3129 if (!pg)
3130 return NULL;
3131
3132 /*
3133 * Try to allocate as much as possible in one continues
3134 * location that fills in all of the space. We want to
3135 * waste as little space as possible.
3136 */
3137 for (;;) {
3138 cnt = ftrace_allocate_records(pg, num_to_init);
3139 if (cnt < 0)
3140 goto free_pages;
3141
3142 num_to_init -= cnt;
3143 if (!num_to_init)
3144 break;
3145
3146 pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3147 if (!pg->next)
3148 goto free_pages;
3149
3150 pg = pg->next;
3151 }
3152
3153 return start_pg;
3154
3155 free_pages:
3156 pg = start_pg;
3157 while (pg) {
3158 order = get_count_order(pg->size / ENTRIES_PER_PAGE);
3159 free_pages((unsigned long)pg->records, order);
3160 start_pg = pg->next;
3161 kfree(pg);
3162 pg = start_pg;
3163 ftrace_number_of_pages -= 1 << order;
3164 ftrace_number_of_groups--;
3165 }
3166 pr_info("ftrace: FAILED to allocate memory for functions\n");
3167 return NULL;
3168 }
3169
3170 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3171
3172 struct ftrace_iterator {
3173 loff_t pos;
3174 loff_t func_pos;
3175 loff_t mod_pos;
3176 struct ftrace_page *pg;
3177 struct dyn_ftrace *func;
3178 struct ftrace_func_probe *probe;
3179 struct ftrace_func_entry *probe_entry;
3180 struct trace_parser parser;
3181 struct ftrace_hash *hash;
3182 struct ftrace_ops *ops;
3183 struct trace_array *tr;
3184 struct list_head *mod_list;
3185 int pidx;
3186 int idx;
3187 unsigned flags;
3188 };
3189
3190 static void *
3191 t_probe_next(struct seq_file *m, loff_t *pos)
3192 {
3193 struct ftrace_iterator *iter = m->private;
3194 struct trace_array *tr = iter->ops->private;
3195 struct list_head *func_probes;
3196 struct ftrace_hash *hash;
3197 struct list_head *next;
3198 struct hlist_node *hnd = NULL;
3199 struct hlist_head *hhd;
3200 int size;
3201
3202 (*pos)++;
3203 iter->pos = *pos;
3204
3205 if (!tr)
3206 return NULL;
3207
3208 func_probes = &tr->func_probes;
3209 if (list_empty(func_probes))
3210 return NULL;
3211
3212 if (!iter->probe) {
3213 next = func_probes->next;
3214 iter->probe = list_entry(next, struct ftrace_func_probe, list);
3215 }
3216
3217 if (iter->probe_entry)
3218 hnd = &iter->probe_entry->hlist;
3219
3220 hash = iter->probe->ops.func_hash->filter_hash;
3221
3222 /*
3223 * A probe being registered may temporarily have an empty hash
3224 * and it's at the end of the func_probes list.
3225 */
3226 if (!hash || hash == EMPTY_HASH)
3227 return NULL;
3228
3229 size = 1 << hash->size_bits;
3230
3231 retry:
3232 if (iter->pidx >= size) {
3233 if (iter->probe->list.next == func_probes)
3234 return NULL;
3235 next = iter->probe->list.next;
3236 iter->probe = list_entry(next, struct ftrace_func_probe, list);
3237 hash = iter->probe->ops.func_hash->filter_hash;
3238 size = 1 << hash->size_bits;
3239 iter->pidx = 0;
3240 }
3241
3242 hhd = &hash->buckets[iter->pidx];
3243
3244 if (hlist_empty(hhd)) {
3245 iter->pidx++;
3246 hnd = NULL;
3247 goto retry;
3248 }
3249
3250 if (!hnd)
3251 hnd = hhd->first;
3252 else {
3253 hnd = hnd->next;
3254 if (!hnd) {
3255 iter->pidx++;
3256 goto retry;
3257 }
3258 }
3259
3260 if (WARN_ON_ONCE(!hnd))
3261 return NULL;
3262
3263 iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3264
3265 return iter;
3266 }
3267
3268 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3269 {
3270 struct ftrace_iterator *iter = m->private;
3271 void *p = NULL;
3272 loff_t l;
3273
3274 if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3275 return NULL;
3276
3277 if (iter->mod_pos > *pos)
3278 return NULL;
3279
3280 iter->probe = NULL;
3281 iter->probe_entry = NULL;
3282 iter->pidx = 0;
3283 for (l = 0; l <= (*pos - iter->mod_pos); ) {
3284 p = t_probe_next(m, &l);
3285 if (!p)
3286 break;
3287 }
3288 if (!p)
3289 return NULL;
3290
3291 /* Only set this if we have an item */
3292 iter->flags |= FTRACE_ITER_PROBE;
3293
3294 return iter;
3295 }
3296
3297 static int
3298 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3299 {
3300 struct ftrace_func_entry *probe_entry;
3301 struct ftrace_probe_ops *probe_ops;
3302 struct ftrace_func_probe *probe;
3303
3304 probe = iter->probe;
3305 probe_entry = iter->probe_entry;
3306
3307 if (WARN_ON_ONCE(!probe || !probe_entry))
3308 return -EIO;
3309
3310 probe_ops = probe->probe_ops;
3311
3312 if (probe_ops->print)
3313 return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3314
3315 seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3316 (void *)probe_ops->func);
3317
3318 return 0;
3319 }
3320
3321 static void *
3322 t_mod_next(struct seq_file *m, loff_t *pos)
3323 {
3324 struct ftrace_iterator *iter = m->private;
3325 struct trace_array *tr = iter->tr;
3326
3327 (*pos)++;
3328 iter->pos = *pos;
3329
3330 iter->mod_list = iter->mod_list->next;
3331
3332 if (iter->mod_list == &tr->mod_trace ||
3333 iter->mod_list == &tr->mod_notrace) {
3334 iter->flags &= ~FTRACE_ITER_MOD;
3335 return NULL;
3336 }
3337
3338 iter->mod_pos = *pos;
3339
3340 return iter;
3341 }
3342
3343 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3344 {
3345 struct ftrace_iterator *iter = m->private;
3346 void *p = NULL;
3347 loff_t l;
3348
3349 if (iter->func_pos > *pos)
3350 return NULL;
3351
3352 iter->mod_pos = iter->func_pos;
3353
3354 /* probes are only available if tr is set */
3355 if (!iter->tr)
3356 return NULL;
3357
3358 for (l = 0; l <= (*pos - iter->func_pos); ) {
3359 p = t_mod_next(m, &l);
3360 if (!p)
3361 break;
3362 }
3363 if (!p) {
3364 iter->flags &= ~FTRACE_ITER_MOD;
3365 return t_probe_start(m, pos);
3366 }
3367
3368 /* Only set this if we have an item */
3369 iter->flags |= FTRACE_ITER_MOD;
3370
3371 return iter;
3372 }
3373
3374 static int
3375 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3376 {
3377 struct ftrace_mod_load *ftrace_mod;
3378 struct trace_array *tr = iter->tr;
3379
3380 if (WARN_ON_ONCE(!iter->mod_list) ||
3381 iter->mod_list == &tr->mod_trace ||
3382 iter->mod_list == &tr->mod_notrace)
3383 return -EIO;
3384
3385 ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3386
3387 if (ftrace_mod->func)
3388 seq_printf(m, "%s", ftrace_mod->func);
3389 else
3390 seq_putc(m, '*');
3391
3392 seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3393
3394 return 0;
3395 }
3396
3397 static void *
3398 t_func_next(struct seq_file *m, loff_t *pos)
3399 {
3400 struct ftrace_iterator *iter = m->private;
3401 struct dyn_ftrace *rec = NULL;
3402
3403 (*pos)++;
3404
3405 retry:
3406 if (iter->idx >= iter->pg->index) {
3407 if (iter->pg->next) {
3408 iter->pg = iter->pg->next;
3409 iter->idx = 0;
3410 goto retry;
3411 }
3412 } else {
3413 rec = &iter->pg->records[iter->idx++];
3414 if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3415 !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3416
3417 ((iter->flags & FTRACE_ITER_ENABLED) &&
3418 !(rec->flags & FTRACE_FL_ENABLED))) {
3419
3420 rec = NULL;
3421 goto retry;
3422 }
3423 }
3424
3425 if (!rec)
3426 return NULL;
3427
3428 iter->pos = iter->func_pos = *pos;
3429 iter->func = rec;
3430
3431 return iter;
3432 }
3433
3434 static void *
3435 t_next(struct seq_file *m, void *v, loff_t *pos)
3436 {
3437 struct ftrace_iterator *iter = m->private;
3438 loff_t l = *pos; /* t_probe_start() must use original pos */
3439 void *ret;
3440
3441 if (unlikely(ftrace_disabled))
3442 return NULL;
3443
3444 if (iter->flags & FTRACE_ITER_PROBE)
3445 return t_probe_next(m, pos);
3446
3447 if (iter->flags & FTRACE_ITER_MOD)
3448 return t_mod_next(m, pos);
3449
3450 if (iter->flags & FTRACE_ITER_PRINTALL) {
3451 /* next must increment pos, and t_probe_start does not */
3452 (*pos)++;
3453 return t_mod_start(m, &l);
3454 }
3455
3456 ret = t_func_next(m, pos);
3457
3458 if (!ret)
3459 return t_mod_start(m, &l);
3460
3461 return ret;
3462 }
3463
3464 static void reset_iter_read(struct ftrace_iterator *iter)
3465 {
3466 iter->pos = 0;
3467 iter->func_pos = 0;
3468 iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3469 }
3470
3471 static void *t_start(struct seq_file *m, loff_t *pos)
3472 {
3473 struct ftrace_iterator *iter = m->private;
3474 void *p = NULL;
3475 loff_t l;
3476
3477 mutex_lock(&ftrace_lock);
3478
3479 if (unlikely(ftrace_disabled))
3480 return NULL;
3481
3482 /*
3483 * If an lseek was done, then reset and start from beginning.
3484 */
3485 if (*pos < iter->pos)
3486 reset_iter_read(iter);
3487
3488 /*
3489 * For set_ftrace_filter reading, if we have the filter
3490 * off, we can short cut and just print out that all
3491 * functions are enabled.
3492 */
3493 if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3494 ftrace_hash_empty(iter->hash)) {
3495 iter->func_pos = 1; /* Account for the message */
3496 if (*pos > 0)
3497 return t_mod_start(m, pos);
3498 iter->flags |= FTRACE_ITER_PRINTALL;
3499 /* reset in case of seek/pread */
3500 iter->flags &= ~FTRACE_ITER_PROBE;
3501 return iter;
3502 }
3503
3504 if (iter->flags & FTRACE_ITER_MOD)
3505 return t_mod_start(m, pos);
3506
3507 /*
3508 * Unfortunately, we need to restart at ftrace_pages_start
3509 * every time we let go of the ftrace_mutex. This is because
3510 * those pointers can change without the lock.
3511 */
3512 iter->pg = ftrace_pages_start;
3513 iter->idx = 0;
3514 for (l = 0; l <= *pos; ) {
3515 p = t_func_next(m, &l);
3516 if (!p)
3517 break;
3518 }
3519
3520 if (!p)
3521 return t_mod_start(m, pos);
3522
3523 return iter;
3524 }
3525
3526 static void t_stop(struct seq_file *m, void *p)
3527 {
3528 mutex_unlock(&ftrace_lock);
3529 }
3530
3531 void * __weak
3532 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3533 {
3534 return NULL;
3535 }
3536
3537 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3538 struct dyn_ftrace *rec)
3539 {
3540 void *ptr;
3541
3542 ptr = arch_ftrace_trampoline_func(ops, rec);
3543 if (ptr)
3544 seq_printf(m, " ->%pS", ptr);
3545 }
3546
3547 static int t_show(struct seq_file *m, void *v)
3548 {
3549 struct ftrace_iterator *iter = m->private;
3550 struct dyn_ftrace *rec;
3551
3552 if (iter->flags & FTRACE_ITER_PROBE)
3553 return t_probe_show(m, iter);
3554
3555 if (iter->flags & FTRACE_ITER_MOD)
3556 return t_mod_show(m, iter);
3557
3558 if (iter->flags & FTRACE_ITER_PRINTALL) {
3559 if (iter->flags & FTRACE_ITER_NOTRACE)
3560 seq_puts(m, "#### no functions disabled ####\n");
3561 else
3562 seq_puts(m, "#### all functions enabled ####\n");
3563 return 0;
3564 }
3565
3566 rec = iter->func;
3567
3568 if (!rec)
3569 return 0;
3570
3571 seq_printf(m, "%ps", (void *)rec->ip);
3572 if (iter->flags & FTRACE_ITER_ENABLED) {
3573 struct ftrace_ops *ops;
3574
3575 seq_printf(m, " (%ld)%s%s%s",
3576 ftrace_rec_count(rec),
3577 rec->flags & FTRACE_FL_REGS ? " R" : " ",
3578 rec->flags & FTRACE_FL_IPMODIFY ? " I" : " ",
3579 rec->flags & FTRACE_FL_DIRECT ? " D" : " ");
3580 if (rec->flags & FTRACE_FL_TRAMP_EN) {
3581 ops = ftrace_find_tramp_ops_any(rec);
3582 if (ops) {
3583 do {
3584 seq_printf(m, "\ttramp: %pS (%pS)",
3585 (void *)ops->trampoline,
3586 (void *)ops->func);
3587 add_trampoline_func(m, ops, rec);
3588 ops = ftrace_find_tramp_ops_next(rec, ops);
3589 } while (ops);
3590 } else
3591 seq_puts(m, "\ttramp: ERROR!");
3592 } else {
3593 add_trampoline_func(m, NULL, rec);
3594 }
3595 if (rec->flags & FTRACE_FL_DIRECT) {
3596 unsigned long direct;
3597
3598 direct = ftrace_find_rec_direct(rec->ip);
3599 if (direct)
3600 seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3601 }
3602 }
3603
3604 seq_putc(m, '\n');
3605
3606 return 0;
3607 }
3608
3609 static const struct seq_operations show_ftrace_seq_ops = {
3610 .start = t_start,
3611 .next = t_next,
3612 .stop = t_stop,
3613 .show = t_show,
3614 };
3615
3616 static int
3617 ftrace_avail_open(struct inode *inode, struct file *file)
3618 {
3619 struct ftrace_iterator *iter;
3620 int ret;
3621
3622 ret = security_locked_down(LOCKDOWN_TRACEFS);
3623 if (ret)
3624 return ret;
3625
3626 if (unlikely(ftrace_disabled))
3627 return -ENODEV;
3628
3629 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3630 if (!iter)
3631 return -ENOMEM;
3632
3633 iter->pg = ftrace_pages_start;
3634 iter->ops = &global_ops;
3635
3636 return 0;
3637 }
3638
3639 static int
3640 ftrace_enabled_open(struct inode *inode, struct file *file)
3641 {
3642 struct ftrace_iterator *iter;
3643
3644 /*
3645 * This shows us what functions are currently being
3646 * traced and by what. Not sure if we want lockdown
3647 * to hide such critical information for an admin.
3648 * Although, perhaps it can show information we don't
3649 * want people to see, but if something is tracing
3650 * something, we probably want to know about it.
3651 */
3652
3653 iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3654 if (!iter)
3655 return -ENOMEM;
3656
3657 iter->pg = ftrace_pages_start;
3658 iter->flags = FTRACE_ITER_ENABLED;
3659 iter->ops = &global_ops;
3660
3661 return 0;
3662 }
3663
3664 /**
3665 * ftrace_regex_open - initialize function tracer filter files
3666 * @ops: The ftrace_ops that hold the hash filters
3667 * @flag: The type of filter to process
3668 * @inode: The inode, usually passed in to your open routine
3669 * @file: The file, usually passed in to your open routine
3670 *
3671 * ftrace_regex_open() initializes the filter files for the
3672 * @ops. Depending on @flag it may process the filter hash or
3673 * the notrace hash of @ops. With this called from the open
3674 * routine, you can use ftrace_filter_write() for the write
3675 * routine if @flag has FTRACE_ITER_FILTER set, or
3676 * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3677 * tracing_lseek() should be used as the lseek routine, and
3678 * release must call ftrace_regex_release().
3679 */
3680 int
3681 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3682 struct inode *inode, struct file *file)
3683 {
3684 struct ftrace_iterator *iter;
3685 struct ftrace_hash *hash;
3686 struct list_head *mod_head;
3687 struct trace_array *tr = ops->private;
3688 int ret = -ENOMEM;
3689
3690 ftrace_ops_init(ops);
3691
3692 if (unlikely(ftrace_disabled))
3693 return -ENODEV;
3694
3695 if (tracing_check_open_get_tr(tr))
3696 return -ENODEV;
3697
3698 iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3699 if (!iter)
3700 goto out;
3701
3702 if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3703 goto out;
3704
3705 iter->ops = ops;
3706 iter->flags = flag;
3707 iter->tr = tr;
3708
3709 mutex_lock(&ops->func_hash->regex_lock);
3710
3711 if (flag & FTRACE_ITER_NOTRACE) {
3712 hash = ops->func_hash->notrace_hash;
3713 mod_head = tr ? &tr->mod_notrace : NULL;
3714 } else {
3715 hash = ops->func_hash->filter_hash;
3716 mod_head = tr ? &tr->mod_trace : NULL;
3717 }
3718
3719 iter->mod_list = mod_head;
3720
3721 if (file->f_mode & FMODE_WRITE) {
3722 const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3723
3724 if (file->f_flags & O_TRUNC) {
3725 iter->hash = alloc_ftrace_hash(size_bits);
3726 clear_ftrace_mod_list(mod_head);
3727 } else {
3728 iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3729 }
3730
3731 if (!iter->hash) {
3732 trace_parser_put(&iter->parser);
3733 goto out_unlock;
3734 }
3735 } else
3736 iter->hash = hash;
3737
3738 ret = 0;
3739
3740 if (file->f_mode & FMODE_READ) {
3741 iter->pg = ftrace_pages_start;
3742
3743 ret = seq_open(file, &show_ftrace_seq_ops);
3744 if (!ret) {
3745 struct seq_file *m = file->private_data;
3746 m->private = iter;
3747 } else {
3748 /* Failed */
3749 free_ftrace_hash(iter->hash);
3750 trace_parser_put(&iter->parser);
3751 }
3752 } else
3753 file->private_data = iter;
3754
3755 out_unlock:
3756 mutex_unlock(&ops->func_hash->regex_lock);
3757
3758 out:
3759 if (ret) {
3760 kfree(iter);
3761 if (tr)
3762 trace_array_put(tr);
3763 }
3764
3765 return ret;
3766 }
3767
3768 static int
3769 ftrace_filter_open(struct inode *inode, struct file *file)
3770 {
3771 struct ftrace_ops *ops = inode->i_private;
3772
3773 /* Checks for tracefs lockdown */
3774 return ftrace_regex_open(ops,
3775 FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3776 inode, file);
3777 }
3778
3779 static int
3780 ftrace_notrace_open(struct inode *inode, struct file *file)
3781 {
3782 struct ftrace_ops *ops = inode->i_private;
3783
3784 /* Checks for tracefs lockdown */
3785 return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3786 inode, file);
3787 }
3788
3789 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3790 struct ftrace_glob {
3791 char *search;
3792 unsigned len;
3793 int type;
3794 };
3795
3796 /*
3797 * If symbols in an architecture don't correspond exactly to the user-visible
3798 * name of what they represent, it is possible to define this function to
3799 * perform the necessary adjustments.
3800 */
3801 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3802 {
3803 return str;
3804 }
3805
3806 static int ftrace_match(char *str, struct ftrace_glob *g)
3807 {
3808 int matched = 0;
3809 int slen;
3810
3811 str = arch_ftrace_match_adjust(str, g->search);
3812
3813 switch (g->type) {
3814 case MATCH_FULL:
3815 if (strcmp(str, g->search) == 0)
3816 matched = 1;
3817 break;
3818 case MATCH_FRONT_ONLY:
3819 if (strncmp(str, g->search, g->len) == 0)
3820 matched = 1;
3821 break;
3822 case MATCH_MIDDLE_ONLY:
3823 if (strstr(str, g->search))
3824 matched = 1;
3825 break;
3826 case MATCH_END_ONLY:
3827 slen = strlen(str);
3828 if (slen >= g->len &&
3829 memcmp(str + slen - g->len, g->search, g->len) == 0)
3830 matched = 1;
3831 break;
3832 case MATCH_GLOB:
3833 if (glob_match(g->search, str))
3834 matched = 1;
3835 break;
3836 }
3837
3838 return matched;
3839 }
3840
3841 static int
3842 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
3843 {
3844 struct ftrace_func_entry *entry;
3845 int ret = 0;
3846
3847 entry = ftrace_lookup_ip(hash, rec->ip);
3848 if (clear_filter) {
3849 /* Do nothing if it doesn't exist */
3850 if (!entry)
3851 return 0;
3852
3853 free_hash_entry(hash, entry);
3854 } else {
3855 /* Do nothing if it exists */
3856 if (entry)
3857 return 0;
3858
3859 ret = add_hash_entry(hash, rec->ip);
3860 }
3861 return ret;
3862 }
3863
3864 static int
3865 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
3866 int clear_filter)
3867 {
3868 long index = simple_strtoul(func_g->search, NULL, 0);
3869 struct ftrace_page *pg;
3870 struct dyn_ftrace *rec;
3871
3872 /* The index starts at 1 */
3873 if (--index < 0)
3874 return 0;
3875
3876 do_for_each_ftrace_rec(pg, rec) {
3877 if (pg->index <= index) {
3878 index -= pg->index;
3879 /* this is a double loop, break goes to the next page */
3880 break;
3881 }
3882 rec = &pg->records[index];
3883 enter_record(hash, rec, clear_filter);
3884 return 1;
3885 } while_for_each_ftrace_rec();
3886 return 0;
3887 }
3888
3889 static int
3890 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
3891 struct ftrace_glob *mod_g, int exclude_mod)
3892 {
3893 char str[KSYM_SYMBOL_LEN];
3894 char *modname;
3895
3896 kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
3897
3898 if (mod_g) {
3899 int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
3900
3901 /* blank module name to match all modules */
3902 if (!mod_g->len) {
3903 /* blank module globbing: modname xor exclude_mod */
3904 if (!exclude_mod != !modname)
3905 goto func_match;
3906 return 0;
3907 }
3908
3909 /*
3910 * exclude_mod is set to trace everything but the given
3911 * module. If it is set and the module matches, then
3912 * return 0. If it is not set, and the module doesn't match
3913 * also return 0. Otherwise, check the function to see if
3914 * that matches.
3915 */
3916 if (!mod_matches == !exclude_mod)
3917 return 0;
3918 func_match:
3919 /* blank search means to match all funcs in the mod */
3920 if (!func_g->len)
3921 return 1;
3922 }
3923
3924 return ftrace_match(str, func_g);
3925 }
3926
3927 static int
3928 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
3929 {
3930 struct ftrace_page *pg;
3931 struct dyn_ftrace *rec;
3932 struct ftrace_glob func_g = { .type = MATCH_FULL };
3933 struct ftrace_glob mod_g = { .type = MATCH_FULL };
3934 struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
3935 int exclude_mod = 0;
3936 int found = 0;
3937 int ret;
3938 int clear_filter = 0;
3939
3940 if (func) {
3941 func_g.type = filter_parse_regex(func, len, &func_g.search,
3942 &clear_filter);
3943 func_g.len = strlen(func_g.search);
3944 }
3945
3946 if (mod) {
3947 mod_g.type = filter_parse_regex(mod, strlen(mod),
3948 &mod_g.search, &exclude_mod);
3949 mod_g.len = strlen(mod_g.search);
3950 }
3951
3952 mutex_lock(&ftrace_lock);
3953
3954 if (unlikely(ftrace_disabled))
3955 goto out_unlock;
3956
3957 if (func_g.type == MATCH_INDEX) {
3958 found = add_rec_by_index(hash, &func_g, clear_filter);
3959 goto out_unlock;
3960 }
3961
3962 do_for_each_ftrace_rec(pg, rec) {
3963
3964 if (rec->flags & FTRACE_FL_DISABLED)
3965 continue;
3966
3967 if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
3968 ret = enter_record(hash, rec, clear_filter);
3969 if (ret < 0) {
3970 found = ret;
3971 goto out_unlock;
3972 }
3973 found = 1;
3974 }
3975 } while_for_each_ftrace_rec();
3976 out_unlock:
3977 mutex_unlock(&ftrace_lock);
3978
3979 return found;
3980 }
3981
3982 static int
3983 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
3984 {
3985 return match_records(hash, buff, len, NULL);
3986 }
3987
3988 static void ftrace_ops_update_code(struct ftrace_ops *ops,
3989 struct ftrace_ops_hash *old_hash)
3990 {
3991 struct ftrace_ops *op;
3992
3993 if (!ftrace_enabled)
3994 return;
3995
3996 if (ops->flags & FTRACE_OPS_FL_ENABLED) {
3997 ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
3998 return;
3999 }
4000
4001 /*
4002 * If this is the shared global_ops filter, then we need to
4003 * check if there is another ops that shares it, is enabled.
4004 * If so, we still need to run the modify code.
4005 */
4006 if (ops->func_hash != &global_ops.local_hash)
4007 return;
4008
4009 do_for_each_ftrace_op(op, ftrace_ops_list) {
4010 if (op->func_hash == &global_ops.local_hash &&
4011 op->flags & FTRACE_OPS_FL_ENABLED) {
4012 ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4013 /* Only need to do this once */
4014 return;
4015 }
4016 } while_for_each_ftrace_op(op);
4017 }
4018
4019 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4020 struct ftrace_hash **orig_hash,
4021 struct ftrace_hash *hash,
4022 int enable)
4023 {
4024 struct ftrace_ops_hash old_hash_ops;
4025 struct ftrace_hash *old_hash;
4026 int ret;
4027
4028 old_hash = *orig_hash;
4029 old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4030 old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4031 ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4032 if (!ret) {
4033 ftrace_ops_update_code(ops, &old_hash_ops);
4034 free_ftrace_hash_rcu(old_hash);
4035 }
4036 return ret;
4037 }
4038
4039 static bool module_exists(const char *module)
4040 {
4041 /* All modules have the symbol __this_module */
4042 static const char this_mod[] = "__this_module";
4043 char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4044 unsigned long val;
4045 int n;
4046
4047 n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4048
4049 if (n > sizeof(modname) - 1)
4050 return false;
4051
4052 val = module_kallsyms_lookup_name(modname);
4053 return val != 0;
4054 }
4055
4056 static int cache_mod(struct trace_array *tr,
4057 const char *func, char *module, int enable)
4058 {
4059 struct ftrace_mod_load *ftrace_mod, *n;
4060 struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4061 int ret;
4062
4063 mutex_lock(&ftrace_lock);
4064
4065 /* We do not cache inverse filters */
4066 if (func[0] == '!') {
4067 func++;
4068 ret = -EINVAL;
4069
4070 /* Look to remove this hash */
4071 list_for_each_entry_safe(ftrace_mod, n, head, list) {
4072 if (strcmp(ftrace_mod->module, module) != 0)
4073 continue;
4074
4075 /* no func matches all */
4076 if (strcmp(func, "*") == 0 ||
4077 (ftrace_mod->func &&
4078 strcmp(ftrace_mod->func, func) == 0)) {
4079 ret = 0;
4080 free_ftrace_mod(ftrace_mod);
4081 continue;
4082 }
4083 }
4084 goto out;
4085 }
4086
4087 ret = -EINVAL;
4088 /* We only care about modules that have not been loaded yet */
4089 if (module_exists(module))
4090 goto out;
4091
4092 /* Save this string off, and execute it when the module is loaded */
4093 ret = ftrace_add_mod(tr, func, module, enable);
4094 out:
4095 mutex_unlock(&ftrace_lock);
4096
4097 return ret;
4098 }
4099
4100 static int
4101 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4102 int reset, int enable);
4103
4104 #ifdef CONFIG_MODULES
4105 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4106 char *mod, bool enable)
4107 {
4108 struct ftrace_mod_load *ftrace_mod, *n;
4109 struct ftrace_hash **orig_hash, *new_hash;
4110 LIST_HEAD(process_mods);
4111 char *func;
4112 int ret;
4113
4114 mutex_lock(&ops->func_hash->regex_lock);
4115
4116 if (enable)
4117 orig_hash = &ops->func_hash->filter_hash;
4118 else
4119 orig_hash = &ops->func_hash->notrace_hash;
4120
4121 new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4122 *orig_hash);
4123 if (!new_hash)
4124 goto out; /* warn? */
4125
4126 mutex_lock(&ftrace_lock);
4127
4128 list_for_each_entry_safe(ftrace_mod, n, head, list) {
4129
4130 if (strcmp(ftrace_mod->module, mod) != 0)
4131 continue;
4132
4133 if (ftrace_mod->func)
4134 func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4135 else
4136 func = kstrdup("*", GFP_KERNEL);
4137
4138 if (!func) /* warn? */
4139 continue;
4140
4141 list_del(&ftrace_mod->list);
4142 list_add(&ftrace_mod->list, &process_mods);
4143
4144 /* Use the newly allocated func, as it may be "*" */
4145 kfree(ftrace_mod->func);
4146 ftrace_mod->func = func;
4147 }
4148
4149 mutex_unlock(&ftrace_lock);
4150
4151 list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4152
4153 func = ftrace_mod->func;
4154
4155 /* Grabs ftrace_lock, which is why we have this extra step */
4156 match_records(new_hash, func, strlen(func), mod);
4157 free_ftrace_mod(ftrace_mod);
4158 }
4159
4160 if (enable && list_empty(head))
4161 new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4162
4163 mutex_lock(&ftrace_lock);
4164
4165 ret = ftrace_hash_move_and_update_ops(ops, orig_hash,
4166 new_hash, enable);
4167 mutex_unlock(&ftrace_lock);
4168
4169 out:
4170 mutex_unlock(&ops->func_hash->regex_lock);
4171
4172 free_ftrace_hash(new_hash);
4173 }
4174
4175 static void process_cached_mods(const char *mod_name)
4176 {
4177 struct trace_array *tr;
4178 char *mod;
4179
4180 mod = kstrdup(mod_name, GFP_KERNEL);
4181 if (!mod)
4182 return;
4183
4184 mutex_lock(&trace_types_lock);
4185 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4186 if (!list_empty(&tr->mod_trace))
4187 process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4188 if (!list_empty(&tr->mod_notrace))
4189 process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4190 }
4191 mutex_unlock(&trace_types_lock);
4192
4193 kfree(mod);
4194 }
4195 #endif
4196
4197 /*
4198 * We register the module command as a template to show others how
4199 * to register the a command as well.
4200 */
4201
4202 static int
4203 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4204 char *func_orig, char *cmd, char *module, int enable)
4205 {
4206 char *func;
4207 int ret;
4208
4209 /* match_records() modifies func, and we need the original */
4210 func = kstrdup(func_orig, GFP_KERNEL);
4211 if (!func)
4212 return -ENOMEM;
4213
4214 /*
4215 * cmd == 'mod' because we only registered this func
4216 * for the 'mod' ftrace_func_command.
4217 * But if you register one func with multiple commands,
4218 * you can tell which command was used by the cmd
4219 * parameter.
4220 */
4221 ret = match_records(hash, func, strlen(func), module);
4222 kfree(func);
4223
4224 if (!ret)
4225 return cache_mod(tr, func_orig, module, enable);
4226 if (ret < 0)
4227 return ret;
4228 return 0;
4229 }
4230
4231 static struct ftrace_func_command ftrace_mod_cmd = {
4232 .name = "mod",
4233 .func = ftrace_mod_callback,
4234 };
4235
4236 static int __init ftrace_mod_cmd_init(void)
4237 {
4238 return register_ftrace_command(&ftrace_mod_cmd);
4239 }
4240 core_initcall(ftrace_mod_cmd_init);
4241
4242 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4243 struct ftrace_ops *op, struct pt_regs *pt_regs)
4244 {
4245 struct ftrace_probe_ops *probe_ops;
4246 struct ftrace_func_probe *probe;
4247
4248 probe = container_of(op, struct ftrace_func_probe, ops);
4249 probe_ops = probe->probe_ops;
4250
4251 /*
4252 * Disable preemption for these calls to prevent a RCU grace
4253 * period. This syncs the hash iteration and freeing of items
4254 * on the hash. rcu_read_lock is too dangerous here.
4255 */
4256 preempt_disable_notrace();
4257 probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4258 preempt_enable_notrace();
4259 }
4260
4261 struct ftrace_func_map {
4262 struct ftrace_func_entry entry;
4263 void *data;
4264 };
4265
4266 struct ftrace_func_mapper {
4267 struct ftrace_hash hash;
4268 };
4269
4270 /**
4271 * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4272 *
4273 * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4274 */
4275 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4276 {
4277 struct ftrace_hash *hash;
4278
4279 /*
4280 * The mapper is simply a ftrace_hash, but since the entries
4281 * in the hash are not ftrace_func_entry type, we define it
4282 * as a separate structure.
4283 */
4284 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4285 return (struct ftrace_func_mapper *)hash;
4286 }
4287
4288 /**
4289 * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4290 * @mapper: The mapper that has the ip maps
4291 * @ip: the instruction pointer to find the data for
4292 *
4293 * Returns the data mapped to @ip if found otherwise NULL. The return
4294 * is actually the address of the mapper data pointer. The address is
4295 * returned for use cases where the data is no bigger than a long, and
4296 * the user can use the data pointer as its data instead of having to
4297 * allocate more memory for the reference.
4298 */
4299 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4300 unsigned long ip)
4301 {
4302 struct ftrace_func_entry *entry;
4303 struct ftrace_func_map *map;
4304
4305 entry = ftrace_lookup_ip(&mapper->hash, ip);
4306 if (!entry)
4307 return NULL;
4308
4309 map = (struct ftrace_func_map *)entry;
4310 return &map->data;
4311 }
4312
4313 /**
4314 * ftrace_func_mapper_add_ip - Map some data to an ip
4315 * @mapper: The mapper that has the ip maps
4316 * @ip: The instruction pointer address to map @data to
4317 * @data: The data to map to @ip
4318 *
4319 * Returns 0 on succes otherwise an error.
4320 */
4321 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4322 unsigned long ip, void *data)
4323 {
4324 struct ftrace_func_entry *entry;
4325 struct ftrace_func_map *map;
4326
4327 entry = ftrace_lookup_ip(&mapper->hash, ip);
4328 if (entry)
4329 return -EBUSY;
4330
4331 map = kmalloc(sizeof(*map), GFP_KERNEL);
4332 if (!map)
4333 return -ENOMEM;
4334
4335 map->entry.ip = ip;
4336 map->data = data;
4337
4338 __add_hash_entry(&mapper->hash, &map->entry);
4339
4340 return 0;
4341 }
4342
4343 /**
4344 * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4345 * @mapper: The mapper that has the ip maps
4346 * @ip: The instruction pointer address to remove the data from
4347 *
4348 * Returns the data if it is found, otherwise NULL.
4349 * Note, if the data pointer is used as the data itself, (see
4350 * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4351 * if the data pointer was set to zero.
4352 */
4353 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4354 unsigned long ip)
4355 {
4356 struct ftrace_func_entry *entry;
4357 struct ftrace_func_map *map;
4358 void *data;
4359
4360 entry = ftrace_lookup_ip(&mapper->hash, ip);
4361 if (!entry)
4362 return NULL;
4363
4364 map = (struct ftrace_func_map *)entry;
4365 data = map->data;
4366
4367 remove_hash_entry(&mapper->hash, entry);
4368 kfree(entry);
4369
4370 return data;
4371 }
4372
4373 /**
4374 * free_ftrace_func_mapper - free a mapping of ips and data
4375 * @mapper: The mapper that has the ip maps
4376 * @free_func: A function to be called on each data item.
4377 *
4378 * This is used to free the function mapper. The @free_func is optional
4379 * and can be used if the data needs to be freed as well.
4380 */
4381 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4382 ftrace_mapper_func free_func)
4383 {
4384 struct ftrace_func_entry *entry;
4385 struct ftrace_func_map *map;
4386 struct hlist_head *hhd;
4387 int size, i;
4388
4389 if (!mapper)
4390 return;
4391
4392 if (free_func && mapper->hash.count) {
4393 size = 1 << mapper->hash.size_bits;
4394 for (i = 0; i < size; i++) {
4395 hhd = &mapper->hash.buckets[i];
4396 hlist_for_each_entry(entry, hhd, hlist) {
4397 map = (struct ftrace_func_map *)entry;
4398 free_func(map);
4399 }
4400 }
4401 }
4402 free_ftrace_hash(&mapper->hash);
4403 }
4404
4405 static void release_probe(struct ftrace_func_probe *probe)
4406 {
4407 struct ftrace_probe_ops *probe_ops;
4408
4409 mutex_lock(&ftrace_lock);
4410
4411 WARN_ON(probe->ref <= 0);
4412
4413 /* Subtract the ref that was used to protect this instance */
4414 probe->ref--;
4415
4416 if (!probe->ref) {
4417 probe_ops = probe->probe_ops;
4418 /*
4419 * Sending zero as ip tells probe_ops to free
4420 * the probe->data itself
4421 */
4422 if (probe_ops->free)
4423 probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4424 list_del(&probe->list);
4425 kfree(probe);
4426 }
4427 mutex_unlock(&ftrace_lock);
4428 }
4429
4430 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4431 {
4432 /*
4433 * Add one ref to keep it from being freed when releasing the
4434 * ftrace_lock mutex.
4435 */
4436 probe->ref++;
4437 }
4438
4439 int
4440 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4441 struct ftrace_probe_ops *probe_ops,
4442 void *data)
4443 {
4444 struct ftrace_func_entry *entry;
4445 struct ftrace_func_probe *probe;
4446 struct ftrace_hash **orig_hash;
4447 struct ftrace_hash *old_hash;
4448 struct ftrace_hash *hash;
4449 int count = 0;
4450 int size;
4451 int ret;
4452 int i;
4453
4454 if (WARN_ON(!tr))
4455 return -EINVAL;
4456
4457 /* We do not support '!' for function probes */
4458 if (WARN_ON(glob[0] == '!'))
4459 return -EINVAL;
4460
4461
4462 mutex_lock(&ftrace_lock);
4463 /* Check if the probe_ops is already registered */
4464 list_for_each_entry(probe, &tr->func_probes, list) {
4465 if (probe->probe_ops == probe_ops)
4466 break;
4467 }
4468 if (&probe->list == &tr->func_probes) {
4469 probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4470 if (!probe) {
4471 mutex_unlock(&ftrace_lock);
4472 return -ENOMEM;
4473 }
4474 probe->probe_ops = probe_ops;
4475 probe->ops.func = function_trace_probe_call;
4476 probe->tr = tr;
4477 ftrace_ops_init(&probe->ops);
4478 list_add(&probe->list, &tr->func_probes);
4479 }
4480
4481 acquire_probe_locked(probe);
4482
4483 mutex_unlock(&ftrace_lock);
4484
4485 /*
4486 * Note, there's a small window here that the func_hash->filter_hash
4487 * may be NULL or empty. Need to be carefule when reading the loop.
4488 */
4489 mutex_lock(&probe->ops.func_hash->regex_lock);
4490
4491 orig_hash = &probe->ops.func_hash->filter_hash;
4492 old_hash = *orig_hash;
4493 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4494
4495 if (!hash) {
4496 ret = -ENOMEM;
4497 goto out;
4498 }
4499
4500 ret = ftrace_match_records(hash, glob, strlen(glob));
4501
4502 /* Nothing found? */
4503 if (!ret)
4504 ret = -EINVAL;
4505
4506 if (ret < 0)
4507 goto out;
4508
4509 size = 1 << hash->size_bits;
4510 for (i = 0; i < size; i++) {
4511 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4512 if (ftrace_lookup_ip(old_hash, entry->ip))
4513 continue;
4514 /*
4515 * The caller might want to do something special
4516 * for each function we find. We call the callback
4517 * to give the caller an opportunity to do so.
4518 */
4519 if (probe_ops->init) {
4520 ret = probe_ops->init(probe_ops, tr,
4521 entry->ip, data,
4522 &probe->data);
4523 if (ret < 0) {
4524 if (probe_ops->free && count)
4525 probe_ops->free(probe_ops, tr,
4526 0, probe->data);
4527 probe->data = NULL;
4528 goto out;
4529 }
4530 }
4531 count++;
4532 }
4533 }
4534
4535 mutex_lock(&ftrace_lock);
4536
4537 if (!count) {
4538 /* Nothing was added? */
4539 ret = -EINVAL;
4540 goto out_unlock;
4541 }
4542
4543 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4544 hash, 1);
4545 if (ret < 0)
4546 goto err_unlock;
4547
4548 /* One ref for each new function traced */
4549 probe->ref += count;
4550
4551 if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4552 ret = ftrace_startup(&probe->ops, 0);
4553
4554 out_unlock:
4555 mutex_unlock(&ftrace_lock);
4556
4557 if (!ret)
4558 ret = count;
4559 out:
4560 mutex_unlock(&probe->ops.func_hash->regex_lock);
4561 free_ftrace_hash(hash);
4562
4563 release_probe(probe);
4564
4565 return ret;
4566
4567 err_unlock:
4568 if (!probe_ops->free || !count)
4569 goto out_unlock;
4570
4571 /* Failed to do the move, need to call the free functions */
4572 for (i = 0; i < size; i++) {
4573 hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4574 if (ftrace_lookup_ip(old_hash, entry->ip))
4575 continue;
4576 probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4577 }
4578 }
4579 goto out_unlock;
4580 }
4581
4582 int
4583 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4584 struct ftrace_probe_ops *probe_ops)
4585 {
4586 struct ftrace_ops_hash old_hash_ops;
4587 struct ftrace_func_entry *entry;
4588 struct ftrace_func_probe *probe;
4589 struct ftrace_glob func_g;
4590 struct ftrace_hash **orig_hash;
4591 struct ftrace_hash *old_hash;
4592 struct ftrace_hash *hash = NULL;
4593 struct hlist_node *tmp;
4594 struct hlist_head hhd;
4595 char str[KSYM_SYMBOL_LEN];
4596 int count = 0;
4597 int i, ret = -ENODEV;
4598 int size;
4599
4600 if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4601 func_g.search = NULL;
4602 else {
4603 int not;
4604
4605 func_g.type = filter_parse_regex(glob, strlen(glob),
4606 &func_g.search, &not);
4607 func_g.len = strlen(func_g.search);
4608
4609 /* we do not support '!' for function probes */
4610 if (WARN_ON(not))
4611 return -EINVAL;
4612 }
4613
4614 mutex_lock(&ftrace_lock);
4615 /* Check if the probe_ops is already registered */
4616 list_for_each_entry(probe, &tr->func_probes, list) {
4617 if (probe->probe_ops == probe_ops)
4618 break;
4619 }
4620 if (&probe->list == &tr->func_probes)
4621 goto err_unlock_ftrace;
4622
4623 ret = -EINVAL;
4624 if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4625 goto err_unlock_ftrace;
4626
4627 acquire_probe_locked(probe);
4628
4629 mutex_unlock(&ftrace_lock);
4630
4631 mutex_lock(&probe->ops.func_hash->regex_lock);
4632
4633 orig_hash = &probe->ops.func_hash->filter_hash;
4634 old_hash = *orig_hash;
4635
4636 if (ftrace_hash_empty(old_hash))
4637 goto out_unlock;
4638
4639 old_hash_ops.filter_hash = old_hash;
4640 /* Probes only have filters */
4641 old_hash_ops.notrace_hash = NULL;
4642
4643 ret = -ENOMEM;
4644 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4645 if (!hash)
4646 goto out_unlock;
4647
4648 INIT_HLIST_HEAD(&hhd);
4649
4650 size = 1 << hash->size_bits;
4651 for (i = 0; i < size; i++) {
4652 hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4653
4654 if (func_g.search) {
4655 kallsyms_lookup(entry->ip, NULL, NULL,
4656 NULL, str);
4657 if (!ftrace_match(str, &func_g))
4658 continue;
4659 }
4660 count++;
4661 remove_hash_entry(hash, entry);
4662 hlist_add_head(&entry->hlist, &hhd);
4663 }
4664 }
4665
4666 /* Nothing found? */
4667 if (!count) {
4668 ret = -EINVAL;
4669 goto out_unlock;
4670 }
4671
4672 mutex_lock(&ftrace_lock);
4673
4674 WARN_ON(probe->ref < count);
4675
4676 probe->ref -= count;
4677
4678 if (ftrace_hash_empty(hash))
4679 ftrace_shutdown(&probe->ops, 0);
4680
4681 ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4682 hash, 1);
4683
4684 /* still need to update the function call sites */
4685 if (ftrace_enabled && !ftrace_hash_empty(hash))
4686 ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4687 &old_hash_ops);
4688 synchronize_rcu();
4689
4690 hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4691 hlist_del(&entry->hlist);
4692 if (probe_ops->free)
4693 probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4694 kfree(entry);
4695 }
4696 mutex_unlock(&ftrace_lock);
4697
4698 out_unlock:
4699 mutex_unlock(&probe->ops.func_hash->regex_lock);
4700 free_ftrace_hash(hash);
4701
4702 release_probe(probe);
4703
4704 return ret;
4705
4706 err_unlock_ftrace:
4707 mutex_unlock(&ftrace_lock);
4708 return ret;
4709 }
4710
4711 void clear_ftrace_function_probes(struct trace_array *tr)
4712 {
4713 struct ftrace_func_probe *probe, *n;
4714
4715 list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4716 unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4717 }
4718
4719 static LIST_HEAD(ftrace_commands);
4720 static DEFINE_MUTEX(ftrace_cmd_mutex);
4721
4722 /*
4723 * Currently we only register ftrace commands from __init, so mark this
4724 * __init too.
4725 */
4726 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4727 {
4728 struct ftrace_func_command *p;
4729 int ret = 0;
4730
4731 mutex_lock(&ftrace_cmd_mutex);
4732 list_for_each_entry(p, &ftrace_commands, list) {
4733 if (strcmp(cmd->name, p->name) == 0) {
4734 ret = -EBUSY;
4735 goto out_unlock;
4736 }
4737 }
4738 list_add(&cmd->list, &ftrace_commands);
4739 out_unlock:
4740 mutex_unlock(&ftrace_cmd_mutex);
4741
4742 return ret;
4743 }
4744
4745 /*
4746 * Currently we only unregister ftrace commands from __init, so mark
4747 * this __init too.
4748 */
4749 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4750 {
4751 struct ftrace_func_command *p, *n;
4752 int ret = -ENODEV;
4753
4754 mutex_lock(&ftrace_cmd_mutex);
4755 list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4756 if (strcmp(cmd->name, p->name) == 0) {
4757 ret = 0;
4758 list_del_init(&p->list);
4759 goto out_unlock;
4760 }
4761 }
4762 out_unlock:
4763 mutex_unlock(&ftrace_cmd_mutex);
4764
4765 return ret;
4766 }
4767
4768 static int ftrace_process_regex(struct ftrace_iterator *iter,
4769 char *buff, int len, int enable)
4770 {
4771 struct ftrace_hash *hash = iter->hash;
4772 struct trace_array *tr = iter->ops->private;
4773 char *func, *command, *next = buff;
4774 struct ftrace_func_command *p;
4775 int ret = -EINVAL;
4776
4777 func = strsep(&next, ":");
4778
4779 if (!next) {
4780 ret = ftrace_match_records(hash, func, len);
4781 if (!ret)
4782 ret = -EINVAL;
4783 if (ret < 0)
4784 return ret;
4785 return 0;
4786 }
4787
4788 /* command found */
4789
4790 command = strsep(&next, ":");
4791
4792 mutex_lock(&ftrace_cmd_mutex);
4793 list_for_each_entry(p, &ftrace_commands, list) {
4794 if (strcmp(p->name, command) == 0) {
4795 ret = p->func(tr, hash, func, command, next, enable);
4796 goto out_unlock;
4797 }
4798 }
4799 out_unlock:
4800 mutex_unlock(&ftrace_cmd_mutex);
4801
4802 return ret;
4803 }
4804
4805 static ssize_t
4806 ftrace_regex_write(struct file *file, const char __user *ubuf,
4807 size_t cnt, loff_t *ppos, int enable)
4808 {
4809 struct ftrace_iterator *iter;
4810 struct trace_parser *parser;
4811 ssize_t ret, read;
4812
4813 if (!cnt)
4814 return 0;
4815
4816 if (file->f_mode & FMODE_READ) {
4817 struct seq_file *m = file->private_data;
4818 iter = m->private;
4819 } else
4820 iter = file->private_data;
4821
4822 if (unlikely(ftrace_disabled))
4823 return -ENODEV;
4824
4825 /* iter->hash is a local copy, so we don't need regex_lock */
4826
4827 parser = &iter->parser;
4828 read = trace_get_user(parser, ubuf, cnt, ppos);
4829
4830 if (read >= 0 && trace_parser_loaded(parser) &&
4831 !trace_parser_cont(parser)) {
4832 ret = ftrace_process_regex(iter, parser->buffer,
4833 parser->idx, enable);
4834 trace_parser_clear(parser);
4835 if (ret < 0)
4836 goto out;
4837 }
4838
4839 ret = read;
4840 out:
4841 return ret;
4842 }
4843
4844 ssize_t
4845 ftrace_filter_write(struct file *file, const char __user *ubuf,
4846 size_t cnt, loff_t *ppos)
4847 {
4848 return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
4849 }
4850
4851 ssize_t
4852 ftrace_notrace_write(struct file *file, const char __user *ubuf,
4853 size_t cnt, loff_t *ppos)
4854 {
4855 return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
4856 }
4857
4858 static int
4859 ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
4860 {
4861 struct ftrace_func_entry *entry;
4862
4863 if (!ftrace_location(ip))
4864 return -EINVAL;
4865
4866 if (remove) {
4867 entry = ftrace_lookup_ip(hash, ip);
4868 if (!entry)
4869 return -ENOENT;
4870 free_hash_entry(hash, entry);
4871 return 0;
4872 }
4873
4874 return add_hash_entry(hash, ip);
4875 }
4876
4877 static int
4878 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
4879 unsigned long ip, int remove, int reset, int enable)
4880 {
4881 struct ftrace_hash **orig_hash;
4882 struct ftrace_hash *hash;
4883 int ret;
4884
4885 if (unlikely(ftrace_disabled))
4886 return -ENODEV;
4887
4888 mutex_lock(&ops->func_hash->regex_lock);
4889
4890 if (enable)
4891 orig_hash = &ops->func_hash->filter_hash;
4892 else
4893 orig_hash = &ops->func_hash->notrace_hash;
4894
4895 if (reset)
4896 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4897 else
4898 hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
4899
4900 if (!hash) {
4901 ret = -ENOMEM;
4902 goto out_regex_unlock;
4903 }
4904
4905 if (buf && !ftrace_match_records(hash, buf, len)) {
4906 ret = -EINVAL;
4907 goto out_regex_unlock;
4908 }
4909 if (ip) {
4910 ret = ftrace_match_addr(hash, ip, remove);
4911 if (ret < 0)
4912 goto out_regex_unlock;
4913 }
4914
4915 mutex_lock(&ftrace_lock);
4916 ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
4917 mutex_unlock(&ftrace_lock);
4918
4919 out_regex_unlock:
4920 mutex_unlock(&ops->func_hash->regex_lock);
4921
4922 free_ftrace_hash(hash);
4923 return ret;
4924 }
4925
4926 static int
4927 ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
4928 int reset, int enable)
4929 {
4930 return ftrace_set_hash(ops, NULL, 0, ip, remove, reset, enable);
4931 }
4932
4933 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
4934
4935 struct ftrace_direct_func {
4936 struct list_head next;
4937 unsigned long addr;
4938 int count;
4939 };
4940
4941 static LIST_HEAD(ftrace_direct_funcs);
4942
4943 /**
4944 * ftrace_find_direct_func - test an address if it is a registered direct caller
4945 * @addr: The address of a registered direct caller
4946 *
4947 * This searches to see if a ftrace direct caller has been registered
4948 * at a specific address, and if so, it returns a descriptor for it.
4949 *
4950 * This can be used by architecture code to see if an address is
4951 * a direct caller (trampoline) attached to a fentry/mcount location.
4952 * This is useful for the function_graph tracer, as it may need to
4953 * do adjustments if it traced a location that also has a direct
4954 * trampoline attached to it.
4955 */
4956 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
4957 {
4958 struct ftrace_direct_func *entry;
4959 bool found = false;
4960
4961 /* May be called by fgraph trampoline (protected by rcu tasks) */
4962 list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
4963 if (entry->addr == addr) {
4964 found = true;
4965 break;
4966 }
4967 }
4968 if (found)
4969 return entry;
4970
4971 return NULL;
4972 }
4973
4974 /**
4975 * register_ftrace_direct - Call a custom trampoline directly
4976 * @ip: The address of the nop at the beginning of a function
4977 * @addr: The address of the trampoline to call at @ip
4978 *
4979 * This is used to connect a direct call from the nop location (@ip)
4980 * at the start of ftrace traced functions. The location that it calls
4981 * (@addr) must be able to handle a direct call, and save the parameters
4982 * of the function being traced, and restore them (or inject new ones
4983 * if needed), before returning.
4984 *
4985 * Returns:
4986 * 0 on success
4987 * -EBUSY - Another direct function is already attached (there can be only one)
4988 * -ENODEV - @ip does not point to a ftrace nop location (or not supported)
4989 * -ENOMEM - There was an allocation failure.
4990 */
4991 int register_ftrace_direct(unsigned long ip, unsigned long addr)
4992 {
4993 struct ftrace_direct_func *direct;
4994 struct ftrace_func_entry *entry;
4995 struct ftrace_hash *free_hash = NULL;
4996 struct dyn_ftrace *rec;
4997 int ret = -EBUSY;
4998
4999 mutex_lock(&direct_mutex);
5000
5001 /* See if there's a direct function at @ip already */
5002 if (ftrace_find_rec_direct(ip))
5003 goto out_unlock;
5004
5005 ret = -ENODEV;
5006 rec = lookup_rec(ip, ip);
5007 if (!rec)
5008 goto out_unlock;
5009
5010 /*
5011 * Check if the rec says it has a direct call but we didn't
5012 * find one earlier?
5013 */
5014 if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5015 goto out_unlock;
5016
5017 /* Make sure the ip points to the exact record */
5018 if (ip != rec->ip) {
5019 ip = rec->ip;
5020 /* Need to check this ip for a direct. */
5021 if (ftrace_find_rec_direct(ip))
5022 goto out_unlock;
5023 }
5024
5025 ret = -ENOMEM;
5026 if (ftrace_hash_empty(direct_functions) ||
5027 direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
5028 struct ftrace_hash *new_hash;
5029 int size = ftrace_hash_empty(direct_functions) ? 0 :
5030 direct_functions->count + 1;
5031
5032 if (size < 32)
5033 size = 32;
5034
5035 new_hash = dup_hash(direct_functions, size);
5036 if (!new_hash)
5037 goto out_unlock;
5038
5039 free_hash = direct_functions;
5040 direct_functions = new_hash;
5041 }
5042
5043 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
5044 if (!entry)
5045 goto out_unlock;
5046
5047 direct = ftrace_find_direct_func(addr);
5048 if (!direct) {
5049 direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5050 if (!direct) {
5051 kfree(entry);
5052 goto out_unlock;
5053 }
5054 direct->addr = addr;
5055 direct->count = 0;
5056 list_add_rcu(&direct->next, &ftrace_direct_funcs);
5057 ftrace_direct_func_count++;
5058 }
5059
5060 entry->ip = ip;
5061 entry->direct = addr;
5062 __add_hash_entry(direct_functions, entry);
5063
5064 ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5065 if (ret)
5066 remove_hash_entry(direct_functions, entry);
5067
5068 if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5069 ret = register_ftrace_function(&direct_ops);
5070 if (ret)
5071 ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5072 }
5073
5074 if (ret) {
5075 kfree(entry);
5076 if (!direct->count) {
5077 list_del_rcu(&direct->next);
5078 synchronize_rcu_tasks();
5079 kfree(direct);
5080 if (free_hash)
5081 free_ftrace_hash(free_hash);
5082 free_hash = NULL;
5083 ftrace_direct_func_count--;
5084 }
5085 } else {
5086 direct->count++;
5087 }
5088 out_unlock:
5089 mutex_unlock(&direct_mutex);
5090
5091 if (free_hash) {
5092 synchronize_rcu_tasks();
5093 free_ftrace_hash(free_hash);
5094 }
5095
5096 return ret;
5097 }
5098 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5099
5100 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5101 struct dyn_ftrace **recp)
5102 {
5103 struct ftrace_func_entry *entry;
5104 struct dyn_ftrace *rec;
5105
5106 rec = lookup_rec(*ip, *ip);
5107 if (!rec)
5108 return NULL;
5109
5110 entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5111 if (!entry) {
5112 WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5113 return NULL;
5114 }
5115
5116 WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5117
5118 /* Passed in ip just needs to be on the call site */
5119 *ip = rec->ip;
5120
5121 if (recp)
5122 *recp = rec;
5123
5124 return entry;
5125 }
5126
5127 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5128 {
5129 struct ftrace_direct_func *direct;
5130 struct ftrace_func_entry *entry;
5131 int ret = -ENODEV;
5132
5133 mutex_lock(&direct_mutex);
5134
5135 entry = find_direct_entry(&ip, NULL);
5136 if (!entry)
5137 goto out_unlock;
5138
5139 if (direct_functions->count == 1)
5140 unregister_ftrace_function(&direct_ops);
5141
5142 ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5143
5144 WARN_ON(ret);
5145
5146 remove_hash_entry(direct_functions, entry);
5147
5148 direct = ftrace_find_direct_func(addr);
5149 if (!WARN_ON(!direct)) {
5150 /* This is the good path (see the ! before WARN) */
5151 direct->count--;
5152 WARN_ON(direct->count < 0);
5153 if (!direct->count) {
5154 list_del_rcu(&direct->next);
5155 synchronize_rcu_tasks();
5156 kfree(direct);
5157 kfree(entry);
5158 ftrace_direct_func_count--;
5159 }
5160 }
5161 out_unlock:
5162 mutex_unlock(&direct_mutex);
5163
5164 return ret;
5165 }
5166 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5167
5168 static struct ftrace_ops stub_ops = {
5169 .func = ftrace_stub,
5170 };
5171
5172 /**
5173 * ftrace_modify_direct_caller - modify ftrace nop directly
5174 * @entry: The ftrace hash entry of the direct helper for @rec
5175 * @rec: The record representing the function site to patch
5176 * @old_addr: The location that the site at @rec->ip currently calls
5177 * @new_addr: The location that the site at @rec->ip should call
5178 *
5179 * An architecture may overwrite this function to optimize the
5180 * changing of the direct callback on an ftrace nop location.
5181 * This is called with the ftrace_lock mutex held, and no other
5182 * ftrace callbacks are on the associated record (@rec). Thus,
5183 * it is safe to modify the ftrace record, where it should be
5184 * currently calling @old_addr directly, to call @new_addr.
5185 *
5186 * Safety checks should be made to make sure that the code at
5187 * @rec->ip is currently calling @old_addr. And this must
5188 * also update entry->direct to @new_addr.
5189 */
5190 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5191 struct dyn_ftrace *rec,
5192 unsigned long old_addr,
5193 unsigned long new_addr)
5194 {
5195 unsigned long ip = rec->ip;
5196 int ret;
5197
5198 /*
5199 * The ftrace_lock was used to determine if the record
5200 * had more than one registered user to it. If it did,
5201 * we needed to prevent that from changing to do the quick
5202 * switch. But if it did not (only a direct caller was attached)
5203 * then this function is called. But this function can deal
5204 * with attached callers to the rec that we care about, and
5205 * since this function uses standard ftrace calls that take
5206 * the ftrace_lock mutex, we need to release it.
5207 */
5208 mutex_unlock(&ftrace_lock);
5209
5210 /*
5211 * By setting a stub function at the same address, we force
5212 * the code to call the iterator and the direct_ops helper.
5213 * This means that @ip does not call the direct call, and
5214 * we can simply modify it.
5215 */
5216 ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5217 if (ret)
5218 goto out_lock;
5219
5220 ret = register_ftrace_function(&stub_ops);
5221 if (ret) {
5222 ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5223 goto out_lock;
5224 }
5225
5226 entry->direct = new_addr;
5227
5228 /*
5229 * By removing the stub, we put back the direct call, calling
5230 * the @new_addr.
5231 */
5232 unregister_ftrace_function(&stub_ops);
5233 ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5234
5235 out_lock:
5236 mutex_lock(&ftrace_lock);
5237
5238 return ret;
5239 }
5240
5241 /**
5242 * modify_ftrace_direct - Modify an existing direct call to call something else
5243 * @ip: The instruction pointer to modify
5244 * @old_addr: The address that the current @ip calls directly
5245 * @new_addr: The address that the @ip should call
5246 *
5247 * This modifies a ftrace direct caller at an instruction pointer without
5248 * having to disable it first. The direct call will switch over to the
5249 * @new_addr without missing anything.
5250 *
5251 * Returns: zero on success. Non zero on error, which includes:
5252 * -ENODEV : the @ip given has no direct caller attached
5253 * -EINVAL : the @old_addr does not match the current direct caller
5254 */
5255 int modify_ftrace_direct(unsigned long ip,
5256 unsigned long old_addr, unsigned long new_addr)
5257 {
5258 struct ftrace_func_entry *entry;
5259 struct dyn_ftrace *rec;
5260 int ret = -ENODEV;
5261
5262 mutex_lock(&direct_mutex);
5263
5264 mutex_lock(&ftrace_lock);
5265 entry = find_direct_entry(&ip, &rec);
5266 if (!entry)
5267 goto out_unlock;
5268
5269 ret = -EINVAL;
5270 if (entry->direct != old_addr)
5271 goto out_unlock;
5272
5273 /*
5274 * If there's no other ftrace callback on the rec->ip location,
5275 * then it can be changed directly by the architecture.
5276 * If there is another caller, then we just need to change the
5277 * direct caller helper to point to @new_addr.
5278 */
5279 if (ftrace_rec_count(rec) == 1) {
5280 ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5281 } else {
5282 entry->direct = new_addr;
5283 ret = 0;
5284 }
5285
5286 out_unlock:
5287 mutex_unlock(&ftrace_lock);
5288 mutex_unlock(&direct_mutex);
5289 return ret;
5290 }
5291 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5292 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5293
5294 /**
5295 * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5296 * @ops - the ops to set the filter with
5297 * @ip - the address to add to or remove from the filter.
5298 * @remove - non zero to remove the ip from the filter
5299 * @reset - non zero to reset all filters before applying this filter.
5300 *
5301 * Filters denote which functions should be enabled when tracing is enabled
5302 * If @ip is NULL, it failes to update filter.
5303 */
5304 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5305 int remove, int reset)
5306 {
5307 ftrace_ops_init(ops);
5308 return ftrace_set_addr(ops, ip, remove, reset, 1);
5309 }
5310 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5311
5312 /**
5313 * ftrace_ops_set_global_filter - setup ops to use global filters
5314 * @ops - the ops which will use the global filters
5315 *
5316 * ftrace users who need global function trace filtering should call this.
5317 * It can set the global filter only if ops were not initialized before.
5318 */
5319 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5320 {
5321 if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5322 return;
5323
5324 ftrace_ops_init(ops);
5325 ops->func_hash = &global_ops.local_hash;
5326 }
5327 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5328
5329 static int
5330 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5331 int reset, int enable)
5332 {
5333 return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
5334 }
5335
5336 /**
5337 * ftrace_set_filter - set a function to filter on in ftrace
5338 * @ops - the ops to set the filter with
5339 * @buf - the string that holds the function filter text.
5340 * @len - the length of the string.
5341 * @reset - non zero to reset all filters before applying this filter.
5342 *
5343 * Filters denote which functions should be enabled when tracing is enabled.
5344 * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5345 */
5346 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5347 int len, int reset)
5348 {
5349 ftrace_ops_init(ops);
5350 return ftrace_set_regex(ops, buf, len, reset, 1);
5351 }
5352 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5353
5354 /**
5355 * ftrace_set_notrace - set a function to not trace in ftrace
5356 * @ops - the ops to set the notrace filter with
5357 * @buf - the string that holds the function notrace text.
5358 * @len - the length of the string.
5359 * @reset - non zero to reset all filters before applying this filter.
5360 *
5361 * Notrace Filters denote which functions should not be enabled when tracing
5362 * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5363 * for tracing.
5364 */
5365 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5366 int len, int reset)
5367 {
5368 ftrace_ops_init(ops);
5369 return ftrace_set_regex(ops, buf, len, reset, 0);
5370 }
5371 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5372 /**
5373 * ftrace_set_global_filter - set a function to filter on with global tracers
5374 * @buf - the string that holds the function filter text.
5375 * @len - the length of the string.
5376 * @reset - non zero to reset all filters before applying this filter.
5377 *
5378 * Filters denote which functions should be enabled when tracing is enabled.
5379 * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5380 */
5381 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5382 {
5383 ftrace_set_regex(&global_ops, buf, len, reset, 1);
5384 }
5385 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5386
5387 /**
5388 * ftrace_set_global_notrace - set a function to not trace with global tracers
5389 * @buf - the string that holds the function notrace text.
5390 * @len - the length of the string.
5391 * @reset - non zero to reset all filters before applying this filter.
5392 *
5393 * Notrace Filters denote which functions should not be enabled when tracing
5394 * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5395 * for tracing.
5396 */
5397 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5398 {
5399 ftrace_set_regex(&global_ops, buf, len, reset, 0);
5400 }
5401 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5402
5403 /*
5404 * command line interface to allow users to set filters on boot up.
5405 */
5406 #define FTRACE_FILTER_SIZE COMMAND_LINE_SIZE
5407 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5408 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5409
5410 /* Used by function selftest to not test if filter is set */
5411 bool ftrace_filter_param __initdata;
5412
5413 static int __init set_ftrace_notrace(char *str)
5414 {
5415 ftrace_filter_param = true;
5416 strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5417 return 1;
5418 }
5419 __setup("ftrace_notrace=", set_ftrace_notrace);
5420
5421 static int __init set_ftrace_filter(char *str)
5422 {
5423 ftrace_filter_param = true;
5424 strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5425 return 1;
5426 }
5427 __setup("ftrace_filter=", set_ftrace_filter);
5428
5429 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5430 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5431 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5432 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5433
5434 static int __init set_graph_function(char *str)
5435 {
5436 strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5437 return 1;
5438 }
5439 __setup("ftrace_graph_filter=", set_graph_function);
5440
5441 static int __init set_graph_notrace_function(char *str)
5442 {
5443 strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5444 return 1;
5445 }
5446 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5447
5448 static int __init set_graph_max_depth_function(char *str)
5449 {
5450 if (!str)
5451 return 0;
5452 fgraph_max_depth = simple_strtoul(str, NULL, 0);
5453 return 1;
5454 }
5455 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5456
5457 static void __init set_ftrace_early_graph(char *buf, int enable)
5458 {
5459 int ret;
5460 char *func;
5461 struct ftrace_hash *hash;
5462
5463 hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5464 if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5465 return;
5466
5467 while (buf) {
5468 func = strsep(&buf, ",");
5469 /* we allow only one expression at a time */
5470 ret = ftrace_graph_set_hash(hash, func);
5471 if (ret)
5472 printk(KERN_DEBUG "ftrace: function %s not "
5473 "traceable\n", func);
5474 }
5475
5476 if (enable)
5477 ftrace_graph_hash = hash;
5478 else
5479 ftrace_graph_notrace_hash = hash;
5480 }
5481 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5482
5483 void __init
5484 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5485 {
5486 char *func;
5487
5488 ftrace_ops_init(ops);
5489
5490 while (buf) {
5491 func = strsep(&buf, ",");
5492 ftrace_set_regex(ops, func, strlen(func), 0, enable);
5493 }
5494 }
5495
5496 static void __init set_ftrace_early_filters(void)
5497 {
5498 if (ftrace_filter_buf[0])
5499 ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5500 if (ftrace_notrace_buf[0])
5501 ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5502 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5503 if (ftrace_graph_buf[0])
5504 set_ftrace_early_graph(ftrace_graph_buf, 1);
5505 if (ftrace_graph_notrace_buf[0])
5506 set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5507 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5508 }
5509
5510 int ftrace_regex_release(struct inode *inode, struct file *file)
5511 {
5512 struct seq_file *m = (struct seq_file *)file->private_data;
5513 struct ftrace_iterator *iter;
5514 struct ftrace_hash **orig_hash;
5515 struct trace_parser *parser;
5516 int filter_hash;
5517 int ret;
5518
5519 if (file->f_mode & FMODE_READ) {
5520 iter = m->private;
5521 seq_release(inode, file);
5522 } else
5523 iter = file->private_data;
5524
5525 parser = &iter->parser;
5526 if (trace_parser_loaded(parser)) {
5527 ftrace_match_records(iter->hash, parser->buffer, parser->idx);
5528 }
5529
5530 trace_parser_put(parser);
5531
5532 mutex_lock(&iter->ops->func_hash->regex_lock);
5533
5534 if (file->f_mode & FMODE_WRITE) {
5535 filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
5536
5537 if (filter_hash) {
5538 orig_hash = &iter->ops->func_hash->filter_hash;
5539 if (iter->tr && !list_empty(&iter->tr->mod_trace))
5540 iter->hash->flags |= FTRACE_HASH_FL_MOD;
5541 } else
5542 orig_hash = &iter->ops->func_hash->notrace_hash;
5543
5544 mutex_lock(&ftrace_lock);
5545 ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
5546 iter->hash, filter_hash);
5547 mutex_unlock(&ftrace_lock);
5548 } else {
5549 /* For read only, the hash is the ops hash */
5550 iter->hash = NULL;
5551 }
5552
5553 mutex_unlock(&iter->ops->func_hash->regex_lock);
5554 free_ftrace_hash(iter->hash);
5555 if (iter->tr)
5556 trace_array_put(iter->tr);
5557 kfree(iter);
5558
5559 return 0;
5560 }
5561
5562 static const struct file_operations ftrace_avail_fops = {
5563 .open = ftrace_avail_open,
5564 .read = seq_read,
5565 .llseek = seq_lseek,
5566 .release = seq_release_private,
5567 };
5568
5569 static const struct file_operations ftrace_enabled_fops = {
5570 .open = ftrace_enabled_open,
5571 .read = seq_read,
5572 .llseek = seq_lseek,
5573 .release = seq_release_private,
5574 };
5575
5576 static const struct file_operations ftrace_filter_fops = {
5577 .open = ftrace_filter_open,
5578 .read = seq_read,
5579 .write = ftrace_filter_write,
5580 .llseek = tracing_lseek,
5581 .release = ftrace_regex_release,
5582 };
5583
5584 static const struct file_operations ftrace_notrace_fops = {
5585 .open = ftrace_notrace_open,
5586 .read = seq_read,
5587 .write = ftrace_notrace_write,
5588 .llseek = tracing_lseek,
5589 .release = ftrace_regex_release,
5590 };
5591
5592 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5593
5594 static DEFINE_MUTEX(graph_lock);
5595
5596 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
5597 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
5598
5599 enum graph_filter_type {
5600 GRAPH_FILTER_NOTRACE = 0,
5601 GRAPH_FILTER_FUNCTION,
5602 };
5603
5604 #define FTRACE_GRAPH_EMPTY ((void *)1)
5605
5606 struct ftrace_graph_data {
5607 struct ftrace_hash *hash;
5608 struct ftrace_func_entry *entry;
5609 int idx; /* for hash table iteration */
5610 enum graph_filter_type type;
5611 struct ftrace_hash *new_hash;
5612 const struct seq_operations *seq_ops;
5613 struct trace_parser parser;
5614 };
5615
5616 static void *
5617 __g_next(struct seq_file *m, loff_t *pos)
5618 {
5619 struct ftrace_graph_data *fgd = m->private;
5620 struct ftrace_func_entry *entry = fgd->entry;
5621 struct hlist_head *head;
5622 int i, idx = fgd->idx;
5623
5624 if (*pos >= fgd->hash->count)
5625 return NULL;
5626
5627 if (entry) {
5628 hlist_for_each_entry_continue(entry, hlist) {
5629 fgd->entry = entry;
5630 return entry;
5631 }
5632
5633 idx++;
5634 }
5635
5636 for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
5637 head = &fgd->hash->buckets[i];
5638 hlist_for_each_entry(entry, head, hlist) {
5639 fgd->entry = entry;
5640 fgd->idx = i;
5641 return entry;
5642 }
5643 }
5644 return NULL;
5645 }
5646
5647 static void *
5648 g_next(struct seq_file *m, void *v, loff_t *pos)
5649 {
5650 (*pos)++;
5651 return __g_next(m, pos);
5652 }
5653
5654 static void *g_start(struct seq_file *m, loff_t *pos)
5655 {
5656 struct ftrace_graph_data *fgd = m->private;
5657
5658 mutex_lock(&graph_lock);
5659
5660 if (fgd->type == GRAPH_FILTER_FUNCTION)
5661 fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5662 lockdep_is_held(&graph_lock));
5663 else
5664 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5665 lockdep_is_held(&graph_lock));
5666
5667 /* Nothing, tell g_show to print all functions are enabled */
5668 if (ftrace_hash_empty(fgd->hash) && !*pos)
5669 return FTRACE_GRAPH_EMPTY;
5670
5671 fgd->idx = 0;
5672 fgd->entry = NULL;
5673 return __g_next(m, pos);
5674 }
5675
5676 static void g_stop(struct seq_file *m, void *p)
5677 {
5678 mutex_unlock(&graph_lock);
5679 }
5680
5681 static int g_show(struct seq_file *m, void *v)
5682 {
5683 struct ftrace_func_entry *entry = v;
5684
5685 if (!entry)
5686 return 0;
5687
5688 if (entry == FTRACE_GRAPH_EMPTY) {
5689 struct ftrace_graph_data *fgd = m->private;
5690
5691 if (fgd->type == GRAPH_FILTER_FUNCTION)
5692 seq_puts(m, "#### all functions enabled ####\n");
5693 else
5694 seq_puts(m, "#### no functions disabled ####\n");
5695 return 0;
5696 }
5697
5698 seq_printf(m, "%ps\n", (void *)entry->ip);
5699
5700 return 0;
5701 }
5702
5703 static const struct seq_operations ftrace_graph_seq_ops = {
5704 .start = g_start,
5705 .next = g_next,
5706 .stop = g_stop,
5707 .show = g_show,
5708 };
5709
5710 static int
5711 __ftrace_graph_open(struct inode *inode, struct file *file,
5712 struct ftrace_graph_data *fgd)
5713 {
5714 int ret;
5715 struct ftrace_hash *new_hash = NULL;
5716
5717 ret = security_locked_down(LOCKDOWN_TRACEFS);
5718 if (ret)
5719 return ret;
5720
5721 if (file->f_mode & FMODE_WRITE) {
5722 const int size_bits = FTRACE_HASH_DEFAULT_BITS;
5723
5724 if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
5725 return -ENOMEM;
5726
5727 if (file->f_flags & O_TRUNC)
5728 new_hash = alloc_ftrace_hash(size_bits);
5729 else
5730 new_hash = alloc_and_copy_ftrace_hash(size_bits,
5731 fgd->hash);
5732 if (!new_hash) {
5733 ret = -ENOMEM;
5734 goto out;
5735 }
5736 }
5737
5738 if (file->f_mode & FMODE_READ) {
5739 ret = seq_open(file, &ftrace_graph_seq_ops);
5740 if (!ret) {
5741 struct seq_file *m = file->private_data;
5742 m->private = fgd;
5743 } else {
5744 /* Failed */
5745 free_ftrace_hash(new_hash);
5746 new_hash = NULL;
5747 }
5748 } else
5749 file->private_data = fgd;
5750
5751 out:
5752 if (ret < 0 && file->f_mode & FMODE_WRITE)
5753 trace_parser_put(&fgd->parser);
5754
5755 fgd->new_hash = new_hash;
5756
5757 /*
5758 * All uses of fgd->hash must be taken with the graph_lock
5759 * held. The graph_lock is going to be released, so force
5760 * fgd->hash to be reinitialized when it is taken again.
5761 */
5762 fgd->hash = NULL;
5763
5764 return ret;
5765 }
5766
5767 static int
5768 ftrace_graph_open(struct inode *inode, struct file *file)
5769 {
5770 struct ftrace_graph_data *fgd;
5771 int ret;
5772
5773 if (unlikely(ftrace_disabled))
5774 return -ENODEV;
5775
5776 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5777 if (fgd == NULL)
5778 return -ENOMEM;
5779
5780 mutex_lock(&graph_lock);
5781
5782 fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
5783 lockdep_is_held(&graph_lock));
5784 fgd->type = GRAPH_FILTER_FUNCTION;
5785 fgd->seq_ops = &ftrace_graph_seq_ops;
5786
5787 ret = __ftrace_graph_open(inode, file, fgd);
5788 if (ret < 0)
5789 kfree(fgd);
5790
5791 mutex_unlock(&graph_lock);
5792 return ret;
5793 }
5794
5795 static int
5796 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
5797 {
5798 struct ftrace_graph_data *fgd;
5799 int ret;
5800
5801 if (unlikely(ftrace_disabled))
5802 return -ENODEV;
5803
5804 fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
5805 if (fgd == NULL)
5806 return -ENOMEM;
5807
5808 mutex_lock(&graph_lock);
5809
5810 fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5811 lockdep_is_held(&graph_lock));
5812 fgd->type = GRAPH_FILTER_NOTRACE;
5813 fgd->seq_ops = &ftrace_graph_seq_ops;
5814
5815 ret = __ftrace_graph_open(inode, file, fgd);
5816 if (ret < 0)
5817 kfree(fgd);
5818
5819 mutex_unlock(&graph_lock);
5820 return ret;
5821 }
5822
5823 static int
5824 ftrace_graph_release(struct inode *inode, struct file *file)
5825 {
5826 struct ftrace_graph_data *fgd;
5827 struct ftrace_hash *old_hash, *new_hash;
5828 struct trace_parser *parser;
5829 int ret = 0;
5830
5831 if (file->f_mode & FMODE_READ) {
5832 struct seq_file *m = file->private_data;
5833
5834 fgd = m->private;
5835 seq_release(inode, file);
5836 } else {
5837 fgd = file->private_data;
5838 }
5839
5840
5841 if (file->f_mode & FMODE_WRITE) {
5842
5843 parser = &fgd->parser;
5844
5845 if (trace_parser_loaded((parser))) {
5846 ret = ftrace_graph_set_hash(fgd->new_hash,
5847 parser->buffer);
5848 }
5849
5850 trace_parser_put(parser);
5851
5852 new_hash = __ftrace_hash_move(fgd->new_hash);
5853 if (!new_hash) {
5854 ret = -ENOMEM;
5855 goto out;
5856 }
5857
5858 mutex_lock(&graph_lock);
5859
5860 if (fgd->type == GRAPH_FILTER_FUNCTION) {
5861 old_hash = rcu_dereference_protected(ftrace_graph_hash,
5862 lockdep_is_held(&graph_lock));
5863 rcu_assign_pointer(ftrace_graph_hash, new_hash);
5864 } else {
5865 old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
5866 lockdep_is_held(&graph_lock));
5867 rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
5868 }
5869
5870 mutex_unlock(&graph_lock);
5871
5872 /*
5873 * We need to do a hard force of sched synchronization.
5874 * This is because we use preempt_disable() to do RCU, but
5875 * the function tracers can be called where RCU is not watching
5876 * (like before user_exit()). We can not rely on the RCU
5877 * infrastructure to do the synchronization, thus we must do it
5878 * ourselves.
5879 */
5880 synchronize_rcu_tasks_rude();
5881
5882 free_ftrace_hash(old_hash);
5883 }
5884
5885 out:
5886 free_ftrace_hash(fgd->new_hash);
5887 kfree(fgd);
5888
5889 return ret;
5890 }
5891
5892 static int
5893 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
5894 {
5895 struct ftrace_glob func_g;
5896 struct dyn_ftrace *rec;
5897 struct ftrace_page *pg;
5898 struct ftrace_func_entry *entry;
5899 int fail = 1;
5900 int not;
5901
5902 /* decode regex */
5903 func_g.type = filter_parse_regex(buffer, strlen(buffer),
5904 &func_g.search, &not);
5905
5906 func_g.len = strlen(func_g.search);
5907
5908 mutex_lock(&ftrace_lock);
5909
5910 if (unlikely(ftrace_disabled)) {
5911 mutex_unlock(&ftrace_lock);
5912 return -ENODEV;
5913 }
5914
5915 do_for_each_ftrace_rec(pg, rec) {
5916
5917 if (rec->flags & FTRACE_FL_DISABLED)
5918 continue;
5919
5920 if (ftrace_match_record(rec, &func_g, NULL, 0)) {
5921 entry = ftrace_lookup_ip(hash, rec->ip);
5922
5923 if (!not) {
5924 fail = 0;
5925
5926 if (entry)
5927 continue;
5928 if (add_hash_entry(hash, rec->ip) < 0)
5929 goto out;
5930 } else {
5931 if (entry) {
5932 free_hash_entry(hash, entry);
5933 fail = 0;
5934 }
5935 }
5936 }
5937 } while_for_each_ftrace_rec();
5938 out:
5939 mutex_unlock(&ftrace_lock);
5940
5941 if (fail)
5942 return -EINVAL;
5943
5944 return 0;
5945 }
5946
5947 static ssize_t
5948 ftrace_graph_write(struct file *file, const char __user *ubuf,
5949 size_t cnt, loff_t *ppos)
5950 {
5951 ssize_t read, ret = 0;
5952 struct ftrace_graph_data *fgd = file->private_data;
5953 struct trace_parser *parser;
5954
5955 if (!cnt)
5956 return 0;
5957
5958 /* Read mode uses seq functions */
5959 if (file->f_mode & FMODE_READ) {
5960 struct seq_file *m = file->private_data;
5961 fgd = m->private;
5962 }
5963
5964 parser = &fgd->parser;
5965
5966 read = trace_get_user(parser, ubuf, cnt, ppos);
5967
5968 if (read >= 0 && trace_parser_loaded(parser) &&
5969 !trace_parser_cont(parser)) {
5970
5971 ret = ftrace_graph_set_hash(fgd->new_hash,
5972 parser->buffer);
5973 trace_parser_clear(parser);
5974 }
5975
5976 if (!ret)
5977 ret = read;
5978
5979 return ret;
5980 }
5981
5982 static const struct file_operations ftrace_graph_fops = {
5983 .open = ftrace_graph_open,
5984 .read = seq_read,
5985 .write = ftrace_graph_write,
5986 .llseek = tracing_lseek,
5987 .release = ftrace_graph_release,
5988 };
5989
5990 static const struct file_operations ftrace_graph_notrace_fops = {
5991 .open = ftrace_graph_notrace_open,
5992 .read = seq_read,
5993 .write = ftrace_graph_write,
5994 .llseek = tracing_lseek,
5995 .release = ftrace_graph_release,
5996 };
5997 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5998
5999 void ftrace_create_filter_files(struct ftrace_ops *ops,
6000 struct dentry *parent)
6001 {
6002
6003 trace_create_file("set_ftrace_filter", 0644, parent,
6004 ops, &ftrace_filter_fops);
6005
6006 trace_create_file("set_ftrace_notrace", 0644, parent,
6007 ops, &ftrace_notrace_fops);
6008 }
6009
6010 /*
6011 * The name "destroy_filter_files" is really a misnomer. Although
6012 * in the future, it may actually delete the files, but this is
6013 * really intended to make sure the ops passed in are disabled
6014 * and that when this function returns, the caller is free to
6015 * free the ops.
6016 *
6017 * The "destroy" name is only to match the "create" name that this
6018 * should be paired with.
6019 */
6020 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6021 {
6022 mutex_lock(&ftrace_lock);
6023 if (ops->flags & FTRACE_OPS_FL_ENABLED)
6024 ftrace_shutdown(ops, 0);
6025 ops->flags |= FTRACE_OPS_FL_DELETED;
6026 ftrace_free_filter(ops);
6027 mutex_unlock(&ftrace_lock);
6028 }
6029
6030 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6031 {
6032
6033 trace_create_file("available_filter_functions", 0444,
6034 d_tracer, NULL, &ftrace_avail_fops);
6035
6036 trace_create_file("enabled_functions", 0444,
6037 d_tracer, NULL, &ftrace_enabled_fops);
6038
6039 ftrace_create_filter_files(&global_ops, d_tracer);
6040
6041 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6042 trace_create_file("set_graph_function", 0644, d_tracer,
6043 NULL,
6044 &ftrace_graph_fops);
6045 trace_create_file("set_graph_notrace", 0644, d_tracer,
6046 NULL,
6047 &ftrace_graph_notrace_fops);
6048 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6049
6050 return 0;
6051 }
6052
6053 static int ftrace_cmp_ips(const void *a, const void *b)
6054 {
6055 const unsigned long *ipa = a;
6056 const unsigned long *ipb = b;
6057
6058 if (*ipa > *ipb)
6059 return 1;
6060 if (*ipa < *ipb)
6061 return -1;
6062 return 0;
6063 }
6064
6065 static int ftrace_process_locs(struct module *mod,
6066 unsigned long *start,
6067 unsigned long *end)
6068 {
6069 struct ftrace_page *start_pg;
6070 struct ftrace_page *pg;
6071 struct dyn_ftrace *rec;
6072 unsigned long count;
6073 unsigned long *p;
6074 unsigned long addr;
6075 unsigned long flags = 0; /* Shut up gcc */
6076 int ret = -ENOMEM;
6077
6078 count = end - start;
6079
6080 if (!count)
6081 return 0;
6082
6083 sort(start, count, sizeof(*start),
6084 ftrace_cmp_ips, NULL);
6085
6086 start_pg = ftrace_allocate_pages(count);
6087 if (!start_pg)
6088 return -ENOMEM;
6089
6090 mutex_lock(&ftrace_lock);
6091
6092 /*
6093 * Core and each module needs their own pages, as
6094 * modules will free them when they are removed.
6095 * Force a new page to be allocated for modules.
6096 */
6097 if (!mod) {
6098 WARN_ON(ftrace_pages || ftrace_pages_start);
6099 /* First initialization */
6100 ftrace_pages = ftrace_pages_start = start_pg;
6101 } else {
6102 if (!ftrace_pages)
6103 goto out;
6104
6105 if (WARN_ON(ftrace_pages->next)) {
6106 /* Hmm, we have free pages? */
6107 while (ftrace_pages->next)
6108 ftrace_pages = ftrace_pages->next;
6109 }
6110
6111 ftrace_pages->next = start_pg;
6112 }
6113
6114 p = start;
6115 pg = start_pg;
6116 while (p < end) {
6117 addr = ftrace_call_adjust(*p++);
6118 /*
6119 * Some architecture linkers will pad between
6120 * the different mcount_loc sections of different
6121 * object files to satisfy alignments.
6122 * Skip any NULL pointers.
6123 */
6124 if (!addr)
6125 continue;
6126
6127 if (pg->index == pg->size) {
6128 /* We should have allocated enough */
6129 if (WARN_ON(!pg->next))
6130 break;
6131 pg = pg->next;
6132 }
6133
6134 rec = &pg->records[pg->index++];
6135 rec->ip = addr;
6136 }
6137
6138 /* We should have used all pages */
6139 WARN_ON(pg->next);
6140
6141 /* Assign the last page to ftrace_pages */
6142 ftrace_pages = pg;
6143
6144 /*
6145 * We only need to disable interrupts on start up
6146 * because we are modifying code that an interrupt
6147 * may execute, and the modification is not atomic.
6148 * But for modules, nothing runs the code we modify
6149 * until we are finished with it, and there's no
6150 * reason to cause large interrupt latencies while we do it.
6151 */
6152 if (!mod)
6153 local_irq_save(flags);
6154 ftrace_update_code(mod, start_pg);
6155 if (!mod)
6156 local_irq_restore(flags);
6157 ret = 0;
6158 out:
6159 mutex_unlock(&ftrace_lock);
6160
6161 return ret;
6162 }
6163
6164 struct ftrace_mod_func {
6165 struct list_head list;
6166 char *name;
6167 unsigned long ip;
6168 unsigned int size;
6169 };
6170
6171 struct ftrace_mod_map {
6172 struct rcu_head rcu;
6173 struct list_head list;
6174 struct module *mod;
6175 unsigned long start_addr;
6176 unsigned long end_addr;
6177 struct list_head funcs;
6178 unsigned int num_funcs;
6179 };
6180
6181 #ifdef CONFIG_MODULES
6182
6183 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6184
6185 static LIST_HEAD(ftrace_mod_maps);
6186
6187 static int referenced_filters(struct dyn_ftrace *rec)
6188 {
6189 struct ftrace_ops *ops;
6190 int cnt = 0;
6191
6192 for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6193 if (ops_references_rec(ops, rec))
6194 cnt++;
6195 }
6196
6197 return cnt;
6198 }
6199
6200 static void
6201 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6202 {
6203 struct ftrace_func_entry *entry;
6204 struct dyn_ftrace *rec;
6205 int i;
6206
6207 if (ftrace_hash_empty(hash))
6208 return;
6209
6210 for (i = 0; i < pg->index; i++) {
6211 rec = &pg->records[i];
6212 entry = __ftrace_lookup_ip(hash, rec->ip);
6213 /*
6214 * Do not allow this rec to match again.
6215 * Yeah, it may waste some memory, but will be removed
6216 * if/when the hash is modified again.
6217 */
6218 if (entry)
6219 entry->ip = 0;
6220 }
6221 }
6222
6223 /* Clear any records from hashs */
6224 static void clear_mod_from_hashes(struct ftrace_page *pg)
6225 {
6226 struct trace_array *tr;
6227
6228 mutex_lock(&trace_types_lock);
6229 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6230 if (!tr->ops || !tr->ops->func_hash)
6231 continue;
6232 mutex_lock(&tr->ops->func_hash->regex_lock);
6233 clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6234 clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6235 mutex_unlock(&tr->ops->func_hash->regex_lock);
6236 }
6237 mutex_unlock(&trace_types_lock);
6238 }
6239
6240 static void ftrace_free_mod_map(struct rcu_head *rcu)
6241 {
6242 struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6243 struct ftrace_mod_func *mod_func;
6244 struct ftrace_mod_func *n;
6245
6246 /* All the contents of mod_map are now not visible to readers */
6247 list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6248 kfree(mod_func->name);
6249 list_del(&mod_func->list);
6250 kfree(mod_func);
6251 }
6252
6253 kfree(mod_map);
6254 }
6255
6256 void ftrace_release_mod(struct module *mod)
6257 {
6258 struct ftrace_mod_map *mod_map;
6259 struct ftrace_mod_map *n;
6260 struct dyn_ftrace *rec;
6261 struct ftrace_page **last_pg;
6262 struct ftrace_page *tmp_page = NULL;
6263 struct ftrace_page *pg;
6264 int order;
6265
6266 mutex_lock(&ftrace_lock);
6267
6268 if (ftrace_disabled)
6269 goto out_unlock;
6270
6271 list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6272 if (mod_map->mod == mod) {
6273 list_del_rcu(&mod_map->list);
6274 call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6275 break;
6276 }
6277 }
6278
6279 /*
6280 * Each module has its own ftrace_pages, remove
6281 * them from the list.
6282 */
6283 last_pg = &ftrace_pages_start;
6284 for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6285 rec = &pg->records[0];
6286 if (within_module_core(rec->ip, mod) ||
6287 within_module_init(rec->ip, mod)) {
6288 /*
6289 * As core pages are first, the first
6290 * page should never be a module page.
6291 */
6292 if (WARN_ON(pg == ftrace_pages_start))
6293 goto out_unlock;
6294
6295 /* Check if we are deleting the last page */
6296 if (pg == ftrace_pages)
6297 ftrace_pages = next_to_ftrace_page(last_pg);
6298
6299 ftrace_update_tot_cnt -= pg->index;
6300 *last_pg = pg->next;
6301
6302 pg->next = tmp_page;
6303 tmp_page = pg;
6304 } else
6305 last_pg = &pg->next;
6306 }
6307 out_unlock:
6308 mutex_unlock(&ftrace_lock);
6309
6310 for (pg = tmp_page; pg; pg = tmp_page) {
6311
6312 /* Needs to be called outside of ftrace_lock */
6313 clear_mod_from_hashes(pg);
6314
6315 order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6316 free_pages((unsigned long)pg->records, order);
6317 tmp_page = pg->next;
6318 kfree(pg);
6319 ftrace_number_of_pages -= 1 << order;
6320 ftrace_number_of_groups--;
6321 }
6322 }
6323
6324 void ftrace_module_enable(struct module *mod)
6325 {
6326 struct dyn_ftrace *rec;
6327 struct ftrace_page *pg;
6328
6329 mutex_lock(&ftrace_lock);
6330
6331 if (ftrace_disabled)
6332 goto out_unlock;
6333
6334 /*
6335 * If the tracing is enabled, go ahead and enable the record.
6336 *
6337 * The reason not to enable the record immediately is the
6338 * inherent check of ftrace_make_nop/ftrace_make_call for
6339 * correct previous instructions. Making first the NOP
6340 * conversion puts the module to the correct state, thus
6341 * passing the ftrace_make_call check.
6342 *
6343 * We also delay this to after the module code already set the
6344 * text to read-only, as we now need to set it back to read-write
6345 * so that we can modify the text.
6346 */
6347 if (ftrace_start_up)
6348 ftrace_arch_code_modify_prepare();
6349
6350 do_for_each_ftrace_rec(pg, rec) {
6351 int cnt;
6352 /*
6353 * do_for_each_ftrace_rec() is a double loop.
6354 * module text shares the pg. If a record is
6355 * not part of this module, then skip this pg,
6356 * which the "break" will do.
6357 */
6358 if (!within_module_core(rec->ip, mod) &&
6359 !within_module_init(rec->ip, mod))
6360 break;
6361
6362 cnt = 0;
6363
6364 /*
6365 * When adding a module, we need to check if tracers are
6366 * currently enabled and if they are, and can trace this record,
6367 * we need to enable the module functions as well as update the
6368 * reference counts for those function records.
6369 */
6370 if (ftrace_start_up)
6371 cnt += referenced_filters(rec);
6372
6373 /* This clears FTRACE_FL_DISABLED */
6374 rec->flags = cnt;
6375
6376 if (ftrace_start_up && cnt) {
6377 int failed = __ftrace_replace_code(rec, 1);
6378 if (failed) {
6379 ftrace_bug(failed, rec);
6380 goto out_loop;
6381 }
6382 }
6383
6384 } while_for_each_ftrace_rec();
6385
6386 out_loop:
6387 if (ftrace_start_up)
6388 ftrace_arch_code_modify_post_process();
6389
6390 out_unlock:
6391 mutex_unlock(&ftrace_lock);
6392
6393 process_cached_mods(mod->name);
6394 }
6395
6396 void ftrace_module_init(struct module *mod)
6397 {
6398 if (ftrace_disabled || !mod->num_ftrace_callsites)
6399 return;
6400
6401 ftrace_process_locs(mod, mod->ftrace_callsites,
6402 mod->ftrace_callsites + mod->num_ftrace_callsites);
6403 }
6404
6405 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6406 struct dyn_ftrace *rec)
6407 {
6408 struct ftrace_mod_func *mod_func;
6409 unsigned long symsize;
6410 unsigned long offset;
6411 char str[KSYM_SYMBOL_LEN];
6412 char *modname;
6413 const char *ret;
6414
6415 ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6416 if (!ret)
6417 return;
6418
6419 mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6420 if (!mod_func)
6421 return;
6422
6423 mod_func->name = kstrdup(str, GFP_KERNEL);
6424 if (!mod_func->name) {
6425 kfree(mod_func);
6426 return;
6427 }
6428
6429 mod_func->ip = rec->ip - offset;
6430 mod_func->size = symsize;
6431
6432 mod_map->num_funcs++;
6433
6434 list_add_rcu(&mod_func->list, &mod_map->funcs);
6435 }
6436
6437 static struct ftrace_mod_map *
6438 allocate_ftrace_mod_map(struct module *mod,
6439 unsigned long start, unsigned long end)
6440 {
6441 struct ftrace_mod_map *mod_map;
6442
6443 mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
6444 if (!mod_map)
6445 return NULL;
6446
6447 mod_map->mod = mod;
6448 mod_map->start_addr = start;
6449 mod_map->end_addr = end;
6450 mod_map->num_funcs = 0;
6451
6452 INIT_LIST_HEAD_RCU(&mod_map->funcs);
6453
6454 list_add_rcu(&mod_map->list, &ftrace_mod_maps);
6455
6456 return mod_map;
6457 }
6458
6459 static const char *
6460 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
6461 unsigned long addr, unsigned long *size,
6462 unsigned long *off, char *sym)
6463 {
6464 struct ftrace_mod_func *found_func = NULL;
6465 struct ftrace_mod_func *mod_func;
6466
6467 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6468 if (addr >= mod_func->ip &&
6469 addr < mod_func->ip + mod_func->size) {
6470 found_func = mod_func;
6471 break;
6472 }
6473 }
6474
6475 if (found_func) {
6476 if (size)
6477 *size = found_func->size;
6478 if (off)
6479 *off = addr - found_func->ip;
6480 if (sym)
6481 strlcpy(sym, found_func->name, KSYM_NAME_LEN);
6482
6483 return found_func->name;
6484 }
6485
6486 return NULL;
6487 }
6488
6489 const char *
6490 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
6491 unsigned long *off, char **modname, char *sym)
6492 {
6493 struct ftrace_mod_map *mod_map;
6494 const char *ret = NULL;
6495
6496 /* mod_map is freed via call_rcu() */
6497 preempt_disable();
6498 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6499 ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
6500 if (ret) {
6501 if (modname)
6502 *modname = mod_map->mod->name;
6503 break;
6504 }
6505 }
6506 preempt_enable();
6507
6508 return ret;
6509 }
6510
6511 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
6512 char *type, char *name,
6513 char *module_name, int *exported)
6514 {
6515 struct ftrace_mod_map *mod_map;
6516 struct ftrace_mod_func *mod_func;
6517
6518 preempt_disable();
6519 list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
6520
6521 if (symnum >= mod_map->num_funcs) {
6522 symnum -= mod_map->num_funcs;
6523 continue;
6524 }
6525
6526 list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
6527 if (symnum > 1) {
6528 symnum--;
6529 continue;
6530 }
6531
6532 *value = mod_func->ip;
6533 *type = 'T';
6534 strlcpy(name, mod_func->name, KSYM_NAME_LEN);
6535 strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
6536 *exported = 1;
6537 preempt_enable();
6538 return 0;
6539 }
6540 WARN_ON(1);
6541 break;
6542 }
6543 preempt_enable();
6544 return -ERANGE;
6545 }
6546
6547 #else
6548 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6549 struct dyn_ftrace *rec) { }
6550 static inline struct ftrace_mod_map *
6551 allocate_ftrace_mod_map(struct module *mod,
6552 unsigned long start, unsigned long end)
6553 {
6554 return NULL;
6555 }
6556 #endif /* CONFIG_MODULES */
6557
6558 struct ftrace_init_func {
6559 struct list_head list;
6560 unsigned long ip;
6561 };
6562
6563 /* Clear any init ips from hashes */
6564 static void
6565 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
6566 {
6567 struct ftrace_func_entry *entry;
6568
6569 entry = ftrace_lookup_ip(hash, func->ip);
6570 /*
6571 * Do not allow this rec to match again.
6572 * Yeah, it may waste some memory, but will be removed
6573 * if/when the hash is modified again.
6574 */
6575 if (entry)
6576 entry->ip = 0;
6577 }
6578
6579 static void
6580 clear_func_from_hashes(struct ftrace_init_func *func)
6581 {
6582 struct trace_array *tr;
6583
6584 mutex_lock(&trace_types_lock);
6585 list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6586 if (!tr->ops || !tr->ops->func_hash)
6587 continue;
6588 mutex_lock(&tr->ops->func_hash->regex_lock);
6589 clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
6590 clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
6591 mutex_unlock(&tr->ops->func_hash->regex_lock);
6592 }
6593 mutex_unlock(&trace_types_lock);
6594 }
6595
6596 static void add_to_clear_hash_list(struct list_head *clear_list,
6597 struct dyn_ftrace *rec)
6598 {
6599 struct ftrace_init_func *func;
6600
6601 func = kmalloc(sizeof(*func), GFP_KERNEL);
6602 if (!func) {
6603 MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
6604 return;
6605 }
6606
6607 func->ip = rec->ip;
6608 list_add(&func->list, clear_list);
6609 }
6610
6611 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
6612 {
6613 unsigned long start = (unsigned long)(start_ptr);
6614 unsigned long end = (unsigned long)(end_ptr);
6615 struct ftrace_page **last_pg = &ftrace_pages_start;
6616 struct ftrace_page *pg;
6617 struct dyn_ftrace *rec;
6618 struct dyn_ftrace key;
6619 struct ftrace_mod_map *mod_map = NULL;
6620 struct ftrace_init_func *func, *func_next;
6621 struct list_head clear_hash;
6622 int order;
6623
6624 INIT_LIST_HEAD(&clear_hash);
6625
6626 key.ip = start;
6627 key.flags = end; /* overload flags, as it is unsigned long */
6628
6629 mutex_lock(&ftrace_lock);
6630
6631 /*
6632 * If we are freeing module init memory, then check if
6633 * any tracer is active. If so, we need to save a mapping of
6634 * the module functions being freed with the address.
6635 */
6636 if (mod && ftrace_ops_list != &ftrace_list_end)
6637 mod_map = allocate_ftrace_mod_map(mod, start, end);
6638
6639 for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
6640 if (end < pg->records[0].ip ||
6641 start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
6642 continue;
6643 again:
6644 rec = bsearch(&key, pg->records, pg->index,
6645 sizeof(struct dyn_ftrace),
6646 ftrace_cmp_recs);
6647 if (!rec)
6648 continue;
6649
6650 /* rec will be cleared from hashes after ftrace_lock unlock */
6651 add_to_clear_hash_list(&clear_hash, rec);
6652
6653 if (mod_map)
6654 save_ftrace_mod_rec(mod_map, rec);
6655
6656 pg->index--;
6657 ftrace_update_tot_cnt--;
6658 if (!pg->index) {
6659 *last_pg = pg->next;
6660 order = get_count_order(pg->size / ENTRIES_PER_PAGE);
6661 free_pages((unsigned long)pg->records, order);
6662 ftrace_number_of_pages -= 1 << order;
6663 ftrace_number_of_groups--;
6664 kfree(pg);
6665 pg = container_of(last_pg, struct ftrace_page, next);
6666 if (!(*last_pg))
6667 ftrace_pages = pg;
6668 continue;
6669 }
6670 memmove(rec, rec + 1,
6671 (pg->index - (rec - pg->records)) * sizeof(*rec));
6672 /* More than one function may be in this block */
6673 goto again;
6674 }
6675 mutex_unlock(&ftrace_lock);
6676
6677 list_for_each_entry_safe(func, func_next, &clear_hash, list) {
6678 clear_func_from_hashes(func);
6679 kfree(func);
6680 }
6681 }
6682
6683 void __init ftrace_free_init_mem(void)
6684 {
6685 void *start = (void *)(&__init_begin);
6686 void *end = (void *)(&__init_end);
6687
6688 ftrace_free_mem(NULL, start, end);
6689 }
6690
6691 void __init ftrace_init(void)
6692 {
6693 extern unsigned long __start_mcount_loc[];
6694 extern unsigned long __stop_mcount_loc[];
6695 unsigned long count, flags;
6696 int ret;
6697
6698 local_irq_save(flags);
6699 ret = ftrace_dyn_arch_init();
6700 local_irq_restore(flags);
6701 if (ret)
6702 goto failed;
6703
6704 count = __stop_mcount_loc - __start_mcount_loc;
6705 if (!count) {
6706 pr_info("ftrace: No functions to be traced?\n");
6707 goto failed;
6708 }
6709
6710 pr_info("ftrace: allocating %ld entries in %ld pages\n",
6711 count, count / ENTRIES_PER_PAGE + 1);
6712
6713 last_ftrace_enabled = ftrace_enabled = 1;
6714
6715 ret = ftrace_process_locs(NULL,
6716 __start_mcount_loc,
6717 __stop_mcount_loc);
6718
6719 pr_info("ftrace: allocated %ld pages with %ld groups\n",
6720 ftrace_number_of_pages, ftrace_number_of_groups);
6721
6722 set_ftrace_early_filters();
6723
6724 return;
6725 failed:
6726 ftrace_disabled = 1;
6727 }
6728
6729 /* Do nothing if arch does not support this */
6730 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
6731 {
6732 }
6733
6734 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6735 {
6736 arch_ftrace_update_trampoline(ops);
6737 }
6738
6739 void ftrace_init_trace_array(struct trace_array *tr)
6740 {
6741 INIT_LIST_HEAD(&tr->func_probes);
6742 INIT_LIST_HEAD(&tr->mod_trace);
6743 INIT_LIST_HEAD(&tr->mod_notrace);
6744 }
6745 #else
6746
6747 struct ftrace_ops global_ops = {
6748 .func = ftrace_stub,
6749 .flags = FTRACE_OPS_FL_RECURSION_SAFE |
6750 FTRACE_OPS_FL_INITIALIZED |
6751 FTRACE_OPS_FL_PID,
6752 };
6753
6754 static int __init ftrace_nodyn_init(void)
6755 {
6756 ftrace_enabled = 1;
6757 return 0;
6758 }
6759 core_initcall(ftrace_nodyn_init);
6760
6761 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
6762 static inline void ftrace_startup_enable(int command) { }
6763 static inline void ftrace_startup_all(int command) { }
6764
6765 # define ftrace_startup_sysctl() do { } while (0)
6766 # define ftrace_shutdown_sysctl() do { } while (0)
6767
6768 static void ftrace_update_trampoline(struct ftrace_ops *ops)
6769 {
6770 }
6771
6772 #endif /* CONFIG_DYNAMIC_FTRACE */
6773
6774 __init void ftrace_init_global_array_ops(struct trace_array *tr)
6775 {
6776 tr->ops = &global_ops;
6777 tr->ops->private = tr;
6778 ftrace_init_trace_array(tr);
6779 }
6780
6781 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
6782 {
6783 /* If we filter on pids, update to use the pid function */
6784 if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
6785 if (WARN_ON(tr->ops->func != ftrace_stub))
6786 printk("ftrace ops had %pS for function\n",
6787 tr->ops->func);
6788 }
6789 tr->ops->func = func;
6790 tr->ops->private = tr;
6791 }
6792
6793 void ftrace_reset_array_ops(struct trace_array *tr)
6794 {
6795 tr->ops->func = ftrace_stub;
6796 }
6797
6798 static nokprobe_inline void
6799 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6800 struct ftrace_ops *ignored, struct pt_regs *regs)
6801 {
6802 struct ftrace_ops *op;
6803 int bit;
6804
6805 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6806 if (bit < 0)
6807 return;
6808
6809 /*
6810 * Some of the ops may be dynamically allocated,
6811 * they must be freed after a synchronize_rcu().
6812 */
6813 preempt_disable_notrace();
6814
6815 do_for_each_ftrace_op(op, ftrace_ops_list) {
6816 /* Stub functions don't need to be called nor tested */
6817 if (op->flags & FTRACE_OPS_FL_STUB)
6818 continue;
6819 /*
6820 * Check the following for each ops before calling their func:
6821 * if RCU flag is set, then rcu_is_watching() must be true
6822 * if PER_CPU is set, then ftrace_function_local_disable()
6823 * must be false
6824 * Otherwise test if the ip matches the ops filter
6825 *
6826 * If any of the above fails then the op->func() is not executed.
6827 */
6828 if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
6829 ftrace_ops_test(op, ip, regs)) {
6830 if (FTRACE_WARN_ON(!op->func)) {
6831 pr_warn("op=%p %pS\n", op, op);
6832 goto out;
6833 }
6834 op->func(ip, parent_ip, op, regs);
6835 }
6836 } while_for_each_ftrace_op(op);
6837 out:
6838 preempt_enable_notrace();
6839 trace_clear_recursion(bit);
6840 }
6841
6842 /*
6843 * Some archs only support passing ip and parent_ip. Even though
6844 * the list function ignores the op parameter, we do not want any
6845 * C side effects, where a function is called without the caller
6846 * sending a third parameter.
6847 * Archs are to support both the regs and ftrace_ops at the same time.
6848 * If they support ftrace_ops, it is assumed they support regs.
6849 * If call backs want to use regs, they must either check for regs
6850 * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
6851 * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
6852 * An architecture can pass partial regs with ftrace_ops and still
6853 * set the ARCH_SUPPORTS_FTRACE_OPS.
6854 */
6855 #if ARCH_SUPPORTS_FTRACE_OPS
6856 static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
6857 struct ftrace_ops *op, struct pt_regs *regs)
6858 {
6859 __ftrace_ops_list_func(ip, parent_ip, NULL, regs);
6860 }
6861 NOKPROBE_SYMBOL(ftrace_ops_list_func);
6862 #else
6863 static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
6864 {
6865 __ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
6866 }
6867 NOKPROBE_SYMBOL(ftrace_ops_no_ops);
6868 #endif
6869
6870 /*
6871 * If there's only one function registered but it does not support
6872 * recursion, needs RCU protection and/or requires per cpu handling, then
6873 * this function will be called by the mcount trampoline.
6874 */
6875 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
6876 struct ftrace_ops *op, struct pt_regs *regs)
6877 {
6878 int bit;
6879
6880 if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching())
6881 return;
6882
6883 bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
6884 if (bit < 0)
6885 return;
6886
6887 preempt_disable_notrace();
6888
6889 op->func(ip, parent_ip, op, regs);
6890
6891 preempt_enable_notrace();
6892 trace_clear_recursion(bit);
6893 }
6894 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
6895
6896 /**
6897 * ftrace_ops_get_func - get the function a trampoline should call
6898 * @ops: the ops to get the function for
6899 *
6900 * Normally the mcount trampoline will call the ops->func, but there
6901 * are times that it should not. For example, if the ops does not
6902 * have its own recursion protection, then it should call the
6903 * ftrace_ops_assist_func() instead.
6904 *
6905 * Returns the function that the trampoline should call for @ops.
6906 */
6907 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
6908 {
6909 /*
6910 * If the function does not handle recursion, needs to be RCU safe,
6911 * or does per cpu logic, then we need to call the assist handler.
6912 */
6913 if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) ||
6914 ops->flags & FTRACE_OPS_FL_RCU)
6915 return ftrace_ops_assist_func;
6916
6917 return ops->func;
6918 }
6919
6920 static void
6921 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
6922 struct task_struct *prev, struct task_struct *next)
6923 {
6924 struct trace_array *tr = data;
6925 struct trace_pid_list *pid_list;
6926 struct trace_pid_list *no_pid_list;
6927
6928 pid_list = rcu_dereference_sched(tr->function_pids);
6929 no_pid_list = rcu_dereference_sched(tr->function_no_pids);
6930
6931 if (trace_ignore_this_task(pid_list, no_pid_list, next))
6932 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
6933 FTRACE_PID_IGNORE);
6934 else
6935 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
6936 next->pid);
6937 }
6938
6939 static void
6940 ftrace_pid_follow_sched_process_fork(void *data,
6941 struct task_struct *self,
6942 struct task_struct *task)
6943 {
6944 struct trace_pid_list *pid_list;
6945 struct trace_array *tr = data;
6946
6947 pid_list = rcu_dereference_sched(tr->function_pids);
6948 trace_filter_add_remove_task(pid_list, self, task);
6949
6950 pid_list = rcu_dereference_sched(tr->function_no_pids);
6951 trace_filter_add_remove_task(pid_list, self, task);
6952 }
6953
6954 static void
6955 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
6956 {
6957 struct trace_pid_list *pid_list;
6958 struct trace_array *tr = data;
6959
6960 pid_list = rcu_dereference_sched(tr->function_pids);
6961 trace_filter_add_remove_task(pid_list, NULL, task);
6962
6963 pid_list = rcu_dereference_sched(tr->function_no_pids);
6964 trace_filter_add_remove_task(pid_list, NULL, task);
6965 }
6966
6967 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
6968 {
6969 if (enable) {
6970 register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
6971 tr);
6972 register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
6973 tr);
6974 } else {
6975 unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
6976 tr);
6977 unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
6978 tr);
6979 }
6980 }
6981
6982 static void clear_ftrace_pids(struct trace_array *tr, int type)
6983 {
6984 struct trace_pid_list *pid_list;
6985 struct trace_pid_list *no_pid_list;
6986 int cpu;
6987
6988 pid_list = rcu_dereference_protected(tr->function_pids,
6989 lockdep_is_held(&ftrace_lock));
6990 no_pid_list = rcu_dereference_protected(tr->function_no_pids,
6991 lockdep_is_held(&ftrace_lock));
6992
6993 /* Make sure there's something to do */
6994 if (!pid_type_enabled(type, pid_list, no_pid_list))
6995 return;
6996
6997 /* See if the pids still need to be checked after this */
6998 if (!still_need_pid_events(type, pid_list, no_pid_list)) {
6999 unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7000 for_each_possible_cpu(cpu)
7001 per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7002 }
7003
7004 if (type & TRACE_PIDS)
7005 rcu_assign_pointer(tr->function_pids, NULL);
7006
7007 if (type & TRACE_NO_PIDS)
7008 rcu_assign_pointer(tr->function_no_pids, NULL);
7009
7010 /* Wait till all users are no longer using pid filtering */
7011 synchronize_rcu();
7012
7013 if ((type & TRACE_PIDS) && pid_list)
7014 trace_free_pid_list(pid_list);
7015
7016 if ((type & TRACE_NO_PIDS) && no_pid_list)
7017 trace_free_pid_list(no_pid_list);
7018 }
7019
7020 void ftrace_clear_pids(struct trace_array *tr)
7021 {
7022 mutex_lock(&ftrace_lock);
7023
7024 clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7025
7026 mutex_unlock(&ftrace_lock);
7027 }
7028
7029 static void ftrace_pid_reset(struct trace_array *tr, int type)
7030 {
7031 mutex_lock(&ftrace_lock);
7032 clear_ftrace_pids(tr, type);
7033
7034 ftrace_update_pid_func();
7035 ftrace_startup_all(0);
7036
7037 mutex_unlock(&ftrace_lock);
7038 }
7039
7040 /* Greater than any max PID */
7041 #define FTRACE_NO_PIDS (void *)(PID_MAX_LIMIT + 1)
7042
7043 static void *fpid_start(struct seq_file *m, loff_t *pos)
7044 __acquires(RCU)
7045 {
7046 struct trace_pid_list *pid_list;
7047 struct trace_array *tr = m->private;
7048
7049 mutex_lock(&ftrace_lock);
7050 rcu_read_lock_sched();
7051
7052 pid_list = rcu_dereference_sched(tr->function_pids);
7053
7054 if (!pid_list)
7055 return !(*pos) ? FTRACE_NO_PIDS : NULL;
7056
7057 return trace_pid_start(pid_list, pos);
7058 }
7059
7060 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7061 {
7062 struct trace_array *tr = m->private;
7063 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7064
7065 if (v == FTRACE_NO_PIDS) {
7066 (*pos)++;
7067 return NULL;
7068 }
7069 return trace_pid_next(pid_list, v, pos);
7070 }
7071
7072 static void fpid_stop(struct seq_file *m, void *p)
7073 __releases(RCU)
7074 {
7075 rcu_read_unlock_sched();
7076 mutex_unlock(&ftrace_lock);
7077 }
7078
7079 static int fpid_show(struct seq_file *m, void *v)
7080 {
7081 if (v == FTRACE_NO_PIDS) {
7082 seq_puts(m, "no pid\n");
7083 return 0;
7084 }
7085
7086 return trace_pid_show(m, v);
7087 }
7088
7089 static const struct seq_operations ftrace_pid_sops = {
7090 .start = fpid_start,
7091 .next = fpid_next,
7092 .stop = fpid_stop,
7093 .show = fpid_show,
7094 };
7095
7096 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7097 __acquires(RCU)
7098 {
7099 struct trace_pid_list *pid_list;
7100 struct trace_array *tr = m->private;
7101
7102 mutex_lock(&ftrace_lock);
7103 rcu_read_lock_sched();
7104
7105 pid_list = rcu_dereference_sched(tr->function_no_pids);
7106
7107 if (!pid_list)
7108 return !(*pos) ? FTRACE_NO_PIDS : NULL;
7109
7110 return trace_pid_start(pid_list, pos);
7111 }
7112
7113 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7114 {
7115 struct trace_array *tr = m->private;
7116 struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7117
7118 if (v == FTRACE_NO_PIDS) {
7119 (*pos)++;
7120 return NULL;
7121 }
7122 return trace_pid_next(pid_list, v, pos);
7123 }
7124
7125 static const struct seq_operations ftrace_no_pid_sops = {
7126 .start = fnpid_start,
7127 .next = fnpid_next,
7128 .stop = fpid_stop,
7129 .show = fpid_show,
7130 };
7131
7132 static int pid_open(struct inode *inode, struct file *file, int type)
7133 {
7134 const struct seq_operations *seq_ops;
7135 struct trace_array *tr = inode->i_private;
7136 struct seq_file *m;
7137 int ret = 0;
7138
7139 ret = tracing_check_open_get_tr(tr);
7140 if (ret)
7141 return ret;
7142
7143 if ((file->f_mode & FMODE_WRITE) &&
7144 (file->f_flags & O_TRUNC))
7145 ftrace_pid_reset(tr, type);
7146
7147 switch (type) {
7148 case TRACE_PIDS:
7149 seq_ops = &ftrace_pid_sops;
7150 break;
7151 case TRACE_NO_PIDS:
7152 seq_ops = &ftrace_no_pid_sops;
7153 break;
7154 }
7155
7156 ret = seq_open(file, seq_ops);
7157 if (ret < 0) {
7158 trace_array_put(tr);
7159 } else {
7160 m = file->private_data;
7161 /* copy tr over to seq ops */
7162 m->private = tr;
7163 }
7164
7165 return ret;
7166 }
7167
7168 static int
7169 ftrace_pid_open(struct inode *inode, struct file *file)
7170 {
7171 return pid_open(inode, file, TRACE_PIDS);
7172 }
7173
7174 static int
7175 ftrace_no_pid_open(struct inode *inode, struct file *file)
7176 {
7177 return pid_open(inode, file, TRACE_NO_PIDS);
7178 }
7179
7180 static void ignore_task_cpu(void *data)
7181 {
7182 struct trace_array *tr = data;
7183 struct trace_pid_list *pid_list;
7184 struct trace_pid_list *no_pid_list;
7185
7186 /*
7187 * This function is called by on_each_cpu() while the
7188 * event_mutex is held.
7189 */
7190 pid_list = rcu_dereference_protected(tr->function_pids,
7191 mutex_is_locked(&ftrace_lock));
7192 no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7193 mutex_is_locked(&ftrace_lock));
7194
7195 if (trace_ignore_this_task(pid_list, no_pid_list, current))
7196 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7197 FTRACE_PID_IGNORE);
7198 else
7199 this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7200 current->pid);
7201 }
7202
7203 static ssize_t
7204 pid_write(struct file *filp, const char __user *ubuf,
7205 size_t cnt, loff_t *ppos, int type)
7206 {
7207 struct seq_file *m = filp->private_data;
7208 struct trace_array *tr = m->private;
7209 struct trace_pid_list *filtered_pids;
7210 struct trace_pid_list *other_pids;
7211 struct trace_pid_list *pid_list;
7212 ssize_t ret;
7213
7214 if (!cnt)
7215 return 0;
7216
7217 mutex_lock(&ftrace_lock);
7218
7219 switch (type) {
7220 case TRACE_PIDS:
7221 filtered_pids = rcu_dereference_protected(tr->function_pids,
7222 lockdep_is_held(&ftrace_lock));
7223 other_pids = rcu_dereference_protected(tr->function_no_pids,
7224 lockdep_is_held(&ftrace_lock));
7225 break;
7226 case TRACE_NO_PIDS:
7227 filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7228 lockdep_is_held(&ftrace_lock));
7229 other_pids = rcu_dereference_protected(tr->function_pids,
7230 lockdep_is_held(&ftrace_lock));
7231 break;
7232 }
7233
7234 ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7235 if (ret < 0)
7236 goto out;
7237
7238 switch (type) {
7239 case TRACE_PIDS:
7240 rcu_assign_pointer(tr->function_pids, pid_list);
7241 break;
7242 case TRACE_NO_PIDS:
7243 rcu_assign_pointer(tr->function_no_pids, pid_list);
7244 break;
7245 }
7246
7247
7248 if (filtered_pids) {
7249 synchronize_rcu();
7250 trace_free_pid_list(filtered_pids);
7251 } else if (pid_list && !other_pids) {
7252 /* Register a probe to set whether to ignore the tracing of a task */
7253 register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7254 }
7255
7256 /*
7257 * Ignoring of pids is done at task switch. But we have to
7258 * check for those tasks that are currently running.
7259 * Always do this in case a pid was appended or removed.
7260 */
7261 on_each_cpu(ignore_task_cpu, tr, 1);
7262
7263 ftrace_update_pid_func();
7264 ftrace_startup_all(0);
7265 out:
7266 mutex_unlock(&ftrace_lock);
7267
7268 if (ret > 0)
7269 *ppos += ret;
7270
7271 return ret;
7272 }
7273
7274 static ssize_t
7275 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7276 size_t cnt, loff_t *ppos)
7277 {
7278 return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7279 }
7280
7281 static ssize_t
7282 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7283 size_t cnt, loff_t *ppos)
7284 {
7285 return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7286 }
7287
7288 static int
7289 ftrace_pid_release(struct inode *inode, struct file *file)
7290 {
7291 struct trace_array *tr = inode->i_private;
7292
7293 trace_array_put(tr);
7294
7295 return seq_release(inode, file);
7296 }
7297
7298 static const struct file_operations ftrace_pid_fops = {
7299 .open = ftrace_pid_open,
7300 .write = ftrace_pid_write,
7301 .read = seq_read,
7302 .llseek = tracing_lseek,
7303 .release = ftrace_pid_release,
7304 };
7305
7306 static const struct file_operations ftrace_no_pid_fops = {
7307 .open = ftrace_no_pid_open,
7308 .write = ftrace_no_pid_write,
7309 .read = seq_read,
7310 .llseek = tracing_lseek,
7311 .release = ftrace_pid_release,
7312 };
7313
7314 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7315 {
7316 trace_create_file("set_ftrace_pid", 0644, d_tracer,
7317 tr, &ftrace_pid_fops);
7318 trace_create_file("set_ftrace_notrace_pid", 0644, d_tracer,
7319 tr, &ftrace_no_pid_fops);
7320 }
7321
7322 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7323 struct dentry *d_tracer)
7324 {
7325 /* Only the top level directory has the dyn_tracefs and profile */
7326 WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7327
7328 ftrace_init_dyn_tracefs(d_tracer);
7329 ftrace_profile_tracefs(d_tracer);
7330 }
7331
7332 /**
7333 * ftrace_kill - kill ftrace
7334 *
7335 * This function should be used by panic code. It stops ftrace
7336 * but in a not so nice way. If you need to simply kill ftrace
7337 * from a non-atomic section, use ftrace_kill.
7338 */
7339 void ftrace_kill(void)
7340 {
7341 ftrace_disabled = 1;
7342 ftrace_enabled = 0;
7343 ftrace_trace_function = ftrace_stub;
7344 }
7345
7346 /**
7347 * Test if ftrace is dead or not.
7348 */
7349 int ftrace_is_dead(void)
7350 {
7351 return ftrace_disabled;
7352 }
7353
7354 /**
7355 * register_ftrace_function - register a function for profiling
7356 * @ops - ops structure that holds the function for profiling.
7357 *
7358 * Register a function to be called by all functions in the
7359 * kernel.
7360 *
7361 * Note: @ops->func and all the functions it calls must be labeled
7362 * with "notrace", otherwise it will go into a
7363 * recursive loop.
7364 */
7365 int register_ftrace_function(struct ftrace_ops *ops)
7366 {
7367 int ret = -1;
7368
7369 ftrace_ops_init(ops);
7370
7371 mutex_lock(&ftrace_lock);
7372
7373 ret = ftrace_startup(ops, 0);
7374
7375 mutex_unlock(&ftrace_lock);
7376
7377 return ret;
7378 }
7379 EXPORT_SYMBOL_GPL(register_ftrace_function);
7380
7381 /**
7382 * unregister_ftrace_function - unregister a function for profiling.
7383 * @ops - ops structure that holds the function to unregister
7384 *
7385 * Unregister a function that was added to be called by ftrace profiling.
7386 */
7387 int unregister_ftrace_function(struct ftrace_ops *ops)
7388 {
7389 int ret;
7390
7391 mutex_lock(&ftrace_lock);
7392 ret = ftrace_shutdown(ops, 0);
7393 mutex_unlock(&ftrace_lock);
7394
7395 return ret;
7396 }
7397 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
7398
7399 static bool is_permanent_ops_registered(void)
7400 {
7401 struct ftrace_ops *op;
7402
7403 do_for_each_ftrace_op(op, ftrace_ops_list) {
7404 if (op->flags & FTRACE_OPS_FL_PERMANENT)
7405 return true;
7406 } while_for_each_ftrace_op(op);
7407
7408 return false;
7409 }
7410
7411 int
7412 ftrace_enable_sysctl(struct ctl_table *table, int write,
7413 void __user *buffer, size_t *lenp,
7414 loff_t *ppos)
7415 {
7416 int ret = -ENODEV;
7417
7418 mutex_lock(&ftrace_lock);
7419
7420 if (unlikely(ftrace_disabled))
7421 goto out;
7422
7423 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7424
7425 if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
7426 goto out;
7427
7428 if (ftrace_enabled) {
7429
7430 /* we are starting ftrace again */
7431 if (rcu_dereference_protected(ftrace_ops_list,
7432 lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
7433 update_ftrace_function();
7434
7435 ftrace_startup_sysctl();
7436
7437 } else {
7438 if (is_permanent_ops_registered()) {
7439 ftrace_enabled = true;
7440 ret = -EBUSY;
7441 goto out;
7442 }
7443
7444 /* stopping ftrace calls (just send to ftrace_stub) */
7445 ftrace_trace_function = ftrace_stub;
7446
7447 ftrace_shutdown_sysctl();
7448 }
7449
7450 last_ftrace_enabled = !!ftrace_enabled;
7451 out:
7452 mutex_unlock(&ftrace_lock);
7453 return ret;
7454 }