]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - kernel/trace/ring_buffer.c
Merge tag 'kvm-x86-docs-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h> /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 /*
33 * The "absolute" timestamp in the buffer is only 59 bits.
34 * If a clock has the 5 MSBs set, it needs to be saved and
35 * reinserted.
36 */
37 #define TS_MSB (0xf8ULL << 56)
38 #define ABS_TS_MASK (~TS_MSB)
39
40 static void update_pages_handler(struct work_struct *work);
41
42 /*
43 * The ring buffer header is special. We must manually up keep it.
44 */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 trace_seq_puts(s, "# compressed entry header\n");
48 trace_seq_puts(s, "\ttype_len : 5 bits\n");
49 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
50 trace_seq_puts(s, "\tarray : 32 bits\n");
51 trace_seq_putc(s, '\n');
52 trace_seq_printf(s, "\tpadding : type == %d\n",
53 RINGBUF_TYPE_PADDING);
54 trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 RINGBUF_TYPE_TIME_EXTEND);
56 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 RINGBUF_TYPE_TIME_STAMP);
58 trace_seq_printf(s, "\tdata max type_len == %d\n",
59 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60
61 return !trace_seq_has_overflowed(s);
62 }
63
64 /*
65 * The ring buffer is made up of a list of pages. A separate list of pages is
66 * allocated for each CPU. A writer may only write to a buffer that is
67 * associated with the CPU it is currently executing on. A reader may read
68 * from any per cpu buffer.
69 *
70 * The reader is special. For each per cpu buffer, the reader has its own
71 * reader page. When a reader has read the entire reader page, this reader
72 * page is swapped with another page in the ring buffer.
73 *
74 * Now, as long as the writer is off the reader page, the reader can do what
75 * ever it wants with that page. The writer will never write to that page
76 * again (as long as it is out of the ring buffer).
77 *
78 * Here's some silly ASCII art.
79 *
80 * +------+
81 * |reader| RING BUFFER
82 * |page |
83 * +------+ +---+ +---+ +---+
84 * | |-->| |-->| |
85 * +---+ +---+ +---+
86 * ^ |
87 * | |
88 * +---------------+
89 *
90 *
91 * +------+
92 * |reader| RING BUFFER
93 * |page |------------------v
94 * +------+ +---+ +---+ +---+
95 * | |-->| |-->| |
96 * +---+ +---+ +---+
97 * ^ |
98 * | |
99 * +---------------+
100 *
101 *
102 * +------+
103 * |reader| RING BUFFER
104 * |page |------------------v
105 * +------+ +---+ +---+ +---+
106 * ^ | |-->| |-->| |
107 * | +---+ +---+ +---+
108 * | |
109 * | |
110 * +------------------------------+
111 *
112 *
113 * +------+
114 * |buffer| RING BUFFER
115 * |page |------------------v
116 * +------+ +---+ +---+ +---+
117 * ^ | | | |-->| |
118 * | New +---+ +---+ +---+
119 * | Reader------^ |
120 * | page |
121 * +------------------------------+
122 *
123 *
124 * After we make this swap, the reader can hand this page off to the splice
125 * code and be done with it. It can even allocate a new page if it needs to
126 * and swap that into the ring buffer.
127 *
128 * We will be using cmpxchg soon to make all this lockless.
129 *
130 */
131
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF (1 << 20)
134
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT 4U
139 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
141
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT 0
144 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT 1
147 # define RB_ARCH_ALIGNMENT 8U
148 #endif
149
150 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
151
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154
155 enum {
156 RB_LEN_TIME_EXTEND = 8,
157 RB_LEN_TIME_STAMP = 8,
158 };
159
160 #define skip_time_extend(event) \
161 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162
163 #define extended_time(event) \
164 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 /* padding has a NULL time_delta */
174 event->type_len = RINGBUF_TYPE_PADDING;
175 event->time_delta = 0;
176 }
177
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 unsigned length;
182
183 if (event->type_len)
184 length = event->type_len * RB_ALIGNMENT;
185 else
186 length = event->array[0];
187 return length + RB_EVNT_HDR_SIZE;
188 }
189
190 /*
191 * Return the length of the given event. Will return
192 * the length of the time extend if the event is a
193 * time extend.
194 */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 switch (event->type_len) {
199 case RINGBUF_TYPE_PADDING:
200 if (rb_null_event(event))
201 /* undefined */
202 return -1;
203 return event->array[0] + RB_EVNT_HDR_SIZE;
204
205 case RINGBUF_TYPE_TIME_EXTEND:
206 return RB_LEN_TIME_EXTEND;
207
208 case RINGBUF_TYPE_TIME_STAMP:
209 return RB_LEN_TIME_STAMP;
210
211 case RINGBUF_TYPE_DATA:
212 return rb_event_data_length(event);
213 default:
214 WARN_ON_ONCE(1);
215 }
216 /* not hit */
217 return 0;
218 }
219
220 /*
221 * Return total length of time extend and data,
222 * or just the event length for all other events.
223 */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 unsigned len = 0;
228
229 if (extended_time(event)) {
230 /* time extends include the data event after it */
231 len = RB_LEN_TIME_EXTEND;
232 event = skip_time_extend(event);
233 }
234 return len + rb_event_length(event);
235 }
236
237 /**
238 * ring_buffer_event_length - return the length of the event
239 * @event: the event to get the length of
240 *
241 * Returns the size of the data load of a data event.
242 * If the event is something other than a data event, it
243 * returns the size of the event itself. With the exception
244 * of a TIME EXTEND, where it still returns the size of the
245 * data load of the data event after it.
246 */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 unsigned length;
250
251 if (extended_time(event))
252 event = skip_time_extend(event);
253
254 length = rb_event_length(event);
255 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 return length;
257 length -= RB_EVNT_HDR_SIZE;
258 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259 length -= sizeof(event->array[0]);
260 return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 if (extended_time(event))
269 event = skip_time_extend(event);
270 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 /* If length is in len field, then array[0] has the data */
272 if (event->type_len)
273 return (void *)&event->array[0];
274 /* Otherwise length is in array[0] and array[1] has the data */
275 return (void *)&event->array[1];
276 }
277
278 /**
279 * ring_buffer_event_data - return the data of the event
280 * @event: the event to get the data from
281 */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287
288 #define for_each_buffer_cpu(buffer, cpu) \
289 for_each_cpu(cpu, buffer->cpumask)
290
291 #define for_each_online_buffer_cpu(buffer, cpu) \
292 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293
294 #define TS_SHIFT 27
295 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST (~TS_MASK)
297
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 u64 ts;
301
302 ts = event->array[0];
303 ts <<= TS_SHIFT;
304 ts += event->time_delta;
305
306 return ts;
307 }
308
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS (1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED (1 << 30)
313
314 struct buffer_data_page {
315 u64 time_stamp; /* page time stamp */
316 local_t commit; /* write committed index */
317 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
318 };
319
320 /*
321 * Note, the buffer_page list must be first. The buffer pages
322 * are allocated in cache lines, which means that each buffer
323 * page will be at the beginning of a cache line, and thus
324 * the least significant bits will be zero. We use this to
325 * add flags in the list struct pointers, to make the ring buffer
326 * lockless.
327 */
328 struct buffer_page {
329 struct list_head list; /* list of buffer pages */
330 local_t write; /* index for next write */
331 unsigned read; /* index for next read */
332 local_t entries; /* entries on this page */
333 unsigned long real_end; /* real end of data */
334 struct buffer_data_page *page; /* Actual data page */
335 };
336
337 /*
338 * The buffer page counters, write and entries, must be reset
339 * atomically when crossing page boundaries. To synchronize this
340 * update, two counters are inserted into the number. One is
341 * the actual counter for the write position or count on the page.
342 *
343 * The other is a counter of updaters. Before an update happens
344 * the update partition of the counter is incremented. This will
345 * allow the updater to update the counter atomically.
346 *
347 * The counter is 20 bits, and the state data is 12.
348 */
349 #define RB_WRITE_MASK 0xfffff
350 #define RB_WRITE_INTCNT (1 << 20)
351
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 local_set(&bpage->commit, 0);
355 }
356
357 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
358 {
359 return local_read(&bpage->page->commit);
360 }
361
362 static void free_buffer_page(struct buffer_page *bpage)
363 {
364 free_page((unsigned long)bpage->page);
365 kfree(bpage);
366 }
367
368 /*
369 * We need to fit the time_stamp delta into 27 bits.
370 */
371 static inline bool test_time_stamp(u64 delta)
372 {
373 return !!(delta & TS_DELTA_TEST);
374 }
375
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
377
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
380
381 int ring_buffer_print_page_header(struct trace_seq *s)
382 {
383 struct buffer_data_page field;
384
385 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
386 "offset:0;\tsize:%u;\tsigned:%u;\n",
387 (unsigned int)sizeof(field.time_stamp),
388 (unsigned int)is_signed_type(u64));
389
390 trace_seq_printf(s, "\tfield: local_t commit;\t"
391 "offset:%u;\tsize:%u;\tsigned:%u;\n",
392 (unsigned int)offsetof(typeof(field), commit),
393 (unsigned int)sizeof(field.commit),
394 (unsigned int)is_signed_type(long));
395
396 trace_seq_printf(s, "\tfield: int overwrite;\t"
397 "offset:%u;\tsize:%u;\tsigned:%u;\n",
398 (unsigned int)offsetof(typeof(field), commit),
399 1,
400 (unsigned int)is_signed_type(long));
401
402 trace_seq_printf(s, "\tfield: char data;\t"
403 "offset:%u;\tsize:%u;\tsigned:%u;\n",
404 (unsigned int)offsetof(typeof(field), data),
405 (unsigned int)BUF_PAGE_SIZE,
406 (unsigned int)is_signed_type(char));
407
408 return !trace_seq_has_overflowed(s);
409 }
410
411 struct rb_irq_work {
412 struct irq_work work;
413 wait_queue_head_t waiters;
414 wait_queue_head_t full_waiters;
415 long wait_index;
416 bool waiters_pending;
417 bool full_waiters_pending;
418 bool wakeup_full;
419 };
420
421 /*
422 * Structure to hold event state and handle nested events.
423 */
424 struct rb_event_info {
425 u64 ts;
426 u64 delta;
427 u64 before;
428 u64 after;
429 unsigned long length;
430 struct buffer_page *tail_page;
431 int add_timestamp;
432 };
433
434 /*
435 * Used for the add_timestamp
436 * NONE
437 * EXTEND - wants a time extend
438 * ABSOLUTE - the buffer requests all events to have absolute time stamps
439 * FORCE - force a full time stamp.
440 */
441 enum {
442 RB_ADD_STAMP_NONE = 0,
443 RB_ADD_STAMP_EXTEND = BIT(1),
444 RB_ADD_STAMP_ABSOLUTE = BIT(2),
445 RB_ADD_STAMP_FORCE = BIT(3)
446 };
447 /*
448 * Used for which event context the event is in.
449 * TRANSITION = 0
450 * NMI = 1
451 * IRQ = 2
452 * SOFTIRQ = 3
453 * NORMAL = 4
454 *
455 * See trace_recursive_lock() comment below for more details.
456 */
457 enum {
458 RB_CTX_TRANSITION,
459 RB_CTX_NMI,
460 RB_CTX_IRQ,
461 RB_CTX_SOFTIRQ,
462 RB_CTX_NORMAL,
463 RB_CTX_MAX
464 };
465
466 #if BITS_PER_LONG == 32
467 #define RB_TIME_32
468 #endif
469
470 /* To test on 64 bit machines */
471 //#define RB_TIME_32
472
473 #ifdef RB_TIME_32
474
475 struct rb_time_struct {
476 local_t cnt;
477 local_t top;
478 local_t bottom;
479 local_t msb;
480 };
481 #else
482 #include <asm/local64.h>
483 struct rb_time_struct {
484 local64_t time;
485 };
486 #endif
487 typedef struct rb_time_struct rb_time_t;
488
489 #define MAX_NEST 5
490
491 /*
492 * head_page == tail_page && head == tail then buffer is empty.
493 */
494 struct ring_buffer_per_cpu {
495 int cpu;
496 atomic_t record_disabled;
497 atomic_t resize_disabled;
498 struct trace_buffer *buffer;
499 raw_spinlock_t reader_lock; /* serialize readers */
500 arch_spinlock_t lock;
501 struct lock_class_key lock_key;
502 struct buffer_data_page *free_page;
503 unsigned long nr_pages;
504 unsigned int current_context;
505 struct list_head *pages;
506 struct buffer_page *head_page; /* read from head */
507 struct buffer_page *tail_page; /* write to tail */
508 struct buffer_page *commit_page; /* committed pages */
509 struct buffer_page *reader_page;
510 unsigned long lost_events;
511 unsigned long last_overrun;
512 unsigned long nest;
513 local_t entries_bytes;
514 local_t entries;
515 local_t overrun;
516 local_t commit_overrun;
517 local_t dropped_events;
518 local_t committing;
519 local_t commits;
520 local_t pages_touched;
521 local_t pages_lost;
522 local_t pages_read;
523 long last_pages_touch;
524 size_t shortest_full;
525 unsigned long read;
526 unsigned long read_bytes;
527 rb_time_t write_stamp;
528 rb_time_t before_stamp;
529 u64 event_stamp[MAX_NEST];
530 u64 read_stamp;
531 /* pages removed since last reset */
532 unsigned long pages_removed;
533 /* ring buffer pages to update, > 0 to add, < 0 to remove */
534 long nr_pages_to_update;
535 struct list_head new_pages; /* new pages to add */
536 struct work_struct update_pages_work;
537 struct completion update_done;
538
539 struct rb_irq_work irq_work;
540 };
541
542 struct trace_buffer {
543 unsigned flags;
544 int cpus;
545 atomic_t record_disabled;
546 atomic_t resizing;
547 cpumask_var_t cpumask;
548
549 struct lock_class_key *reader_lock_key;
550
551 struct mutex mutex;
552
553 struct ring_buffer_per_cpu **buffers;
554
555 struct hlist_node node;
556 u64 (*clock)(void);
557
558 struct rb_irq_work irq_work;
559 bool time_stamp_abs;
560 };
561
562 struct ring_buffer_iter {
563 struct ring_buffer_per_cpu *cpu_buffer;
564 unsigned long head;
565 unsigned long next_event;
566 struct buffer_page *head_page;
567 struct buffer_page *cache_reader_page;
568 unsigned long cache_read;
569 unsigned long cache_pages_removed;
570 u64 read_stamp;
571 u64 page_stamp;
572 struct ring_buffer_event *event;
573 int missed_events;
574 };
575
576 #ifdef RB_TIME_32
577
578 /*
579 * On 32 bit machines, local64_t is very expensive. As the ring
580 * buffer doesn't need all the features of a true 64 bit atomic,
581 * on 32 bit, it uses these functions (64 still uses local64_t).
582 *
583 * For the ring buffer, 64 bit required operations for the time is
584 * the following:
585 *
586 * - Reads may fail if it interrupted a modification of the time stamp.
587 * It will succeed if it did not interrupt another write even if
588 * the read itself is interrupted by a write.
589 * It returns whether it was successful or not.
590 *
591 * - Writes always succeed and will overwrite other writes and writes
592 * that were done by events interrupting the current write.
593 *
594 * - A write followed by a read of the same time stamp will always succeed,
595 * but may not contain the same value.
596 *
597 * - A cmpxchg will fail if it interrupted another write or cmpxchg.
598 * Other than that, it acts like a normal cmpxchg.
599 *
600 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
601 * (bottom being the least significant 30 bits of the 60 bit time stamp).
602 *
603 * The two most significant bits of each half holds a 2 bit counter (0-3).
604 * Each update will increment this counter by one.
605 * When reading the top and bottom, if the two counter bits match then the
606 * top and bottom together make a valid 60 bit number.
607 */
608 #define RB_TIME_SHIFT 30
609 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
610 #define RB_TIME_MSB_SHIFT 60
611
612 static inline int rb_time_cnt(unsigned long val)
613 {
614 return (val >> RB_TIME_SHIFT) & 3;
615 }
616
617 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
618 {
619 u64 val;
620
621 val = top & RB_TIME_VAL_MASK;
622 val <<= RB_TIME_SHIFT;
623 val |= bottom & RB_TIME_VAL_MASK;
624
625 return val;
626 }
627
628 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
629 {
630 unsigned long top, bottom, msb;
631 unsigned long c;
632
633 /*
634 * If the read is interrupted by a write, then the cnt will
635 * be different. Loop until both top and bottom have been read
636 * without interruption.
637 */
638 do {
639 c = local_read(&t->cnt);
640 top = local_read(&t->top);
641 bottom = local_read(&t->bottom);
642 msb = local_read(&t->msb);
643 } while (c != local_read(&t->cnt));
644
645 *cnt = rb_time_cnt(top);
646
647 /* If top and bottom counts don't match, this interrupted a write */
648 if (*cnt != rb_time_cnt(bottom))
649 return false;
650
651 /* The shift to msb will lose its cnt bits */
652 *ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
653 return true;
654 }
655
656 static bool rb_time_read(rb_time_t *t, u64 *ret)
657 {
658 unsigned long cnt;
659
660 return __rb_time_read(t, ret, &cnt);
661 }
662
663 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
664 {
665 return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
666 }
667
668 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
669 unsigned long *msb)
670 {
671 *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
672 *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
673 *msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
674 }
675
676 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
677 {
678 val = rb_time_val_cnt(val, cnt);
679 local_set(t, val);
680 }
681
682 static void rb_time_set(rb_time_t *t, u64 val)
683 {
684 unsigned long cnt, top, bottom, msb;
685
686 rb_time_split(val, &top, &bottom, &msb);
687
688 /* Writes always succeed with a valid number even if it gets interrupted. */
689 do {
690 cnt = local_inc_return(&t->cnt);
691 rb_time_val_set(&t->top, top, cnt);
692 rb_time_val_set(&t->bottom, bottom, cnt);
693 rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
694 } while (cnt != local_read(&t->cnt));
695 }
696
697 static inline bool
698 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
699 {
700 return local_try_cmpxchg(l, &expect, set);
701 }
702
703 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
704 {
705 unsigned long cnt, top, bottom, msb;
706 unsigned long cnt2, top2, bottom2, msb2;
707 u64 val;
708
709 /* The cmpxchg always fails if it interrupted an update */
710 if (!__rb_time_read(t, &val, &cnt2))
711 return false;
712
713 if (val != expect)
714 return false;
715
716 cnt = local_read(&t->cnt);
717 if ((cnt & 3) != cnt2)
718 return false;
719
720 cnt2 = cnt + 1;
721
722 rb_time_split(val, &top, &bottom, &msb);
723 top = rb_time_val_cnt(top, cnt);
724 bottom = rb_time_val_cnt(bottom, cnt);
725
726 rb_time_split(set, &top2, &bottom2, &msb2);
727 top2 = rb_time_val_cnt(top2, cnt2);
728 bottom2 = rb_time_val_cnt(bottom2, cnt2);
729
730 if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
731 return false;
732 if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
733 return false;
734 if (!rb_time_read_cmpxchg(&t->top, top, top2))
735 return false;
736 if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
737 return false;
738 return true;
739 }
740
741 #else /* 64 bits */
742
743 /* local64_t always succeeds */
744
745 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
746 {
747 *ret = local64_read(&t->time);
748 return true;
749 }
750 static void rb_time_set(rb_time_t *t, u64 val)
751 {
752 local64_set(&t->time, val);
753 }
754
755 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
756 {
757 return local64_try_cmpxchg(&t->time, &expect, set);
758 }
759 #endif
760
761 /*
762 * Enable this to make sure that the event passed to
763 * ring_buffer_event_time_stamp() is not committed and also
764 * is on the buffer that it passed in.
765 */
766 //#define RB_VERIFY_EVENT
767 #ifdef RB_VERIFY_EVENT
768 static struct list_head *rb_list_head(struct list_head *list);
769 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
770 void *event)
771 {
772 struct buffer_page *page = cpu_buffer->commit_page;
773 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
774 struct list_head *next;
775 long commit, write;
776 unsigned long addr = (unsigned long)event;
777 bool done = false;
778 int stop = 0;
779
780 /* Make sure the event exists and is not committed yet */
781 do {
782 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
783 done = true;
784 commit = local_read(&page->page->commit);
785 write = local_read(&page->write);
786 if (addr >= (unsigned long)&page->page->data[commit] &&
787 addr < (unsigned long)&page->page->data[write])
788 return;
789
790 next = rb_list_head(page->list.next);
791 page = list_entry(next, struct buffer_page, list);
792 } while (!done);
793 WARN_ON_ONCE(1);
794 }
795 #else
796 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
797 void *event)
798 {
799 }
800 #endif
801
802 /*
803 * The absolute time stamp drops the 5 MSBs and some clocks may
804 * require them. The rb_fix_abs_ts() will take a previous full
805 * time stamp, and add the 5 MSB of that time stamp on to the
806 * saved absolute time stamp. Then they are compared in case of
807 * the unlikely event that the latest time stamp incremented
808 * the 5 MSB.
809 */
810 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
811 {
812 if (save_ts & TS_MSB) {
813 abs |= save_ts & TS_MSB;
814 /* Check for overflow */
815 if (unlikely(abs < save_ts))
816 abs += 1ULL << 59;
817 }
818 return abs;
819 }
820
821 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
822
823 /**
824 * ring_buffer_event_time_stamp - return the event's current time stamp
825 * @buffer: The buffer that the event is on
826 * @event: the event to get the time stamp of
827 *
828 * Note, this must be called after @event is reserved, and before it is
829 * committed to the ring buffer. And must be called from the same
830 * context where the event was reserved (normal, softirq, irq, etc).
831 *
832 * Returns the time stamp associated with the current event.
833 * If the event has an extended time stamp, then that is used as
834 * the time stamp to return.
835 * In the highly unlikely case that the event was nested more than
836 * the max nesting, then the write_stamp of the buffer is returned,
837 * otherwise current time is returned, but that really neither of
838 * the last two cases should ever happen.
839 */
840 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
841 struct ring_buffer_event *event)
842 {
843 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
844 unsigned int nest;
845 u64 ts;
846
847 /* If the event includes an absolute time, then just use that */
848 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
849 ts = rb_event_time_stamp(event);
850 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
851 }
852
853 nest = local_read(&cpu_buffer->committing);
854 verify_event(cpu_buffer, event);
855 if (WARN_ON_ONCE(!nest))
856 goto fail;
857
858 /* Read the current saved nesting level time stamp */
859 if (likely(--nest < MAX_NEST))
860 return cpu_buffer->event_stamp[nest];
861
862 /* Shouldn't happen, warn if it does */
863 WARN_ONCE(1, "nest (%d) greater than max", nest);
864
865 fail:
866 /* Can only fail on 32 bit */
867 if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
868 /* Screw it, just read the current time */
869 ts = rb_time_stamp(cpu_buffer->buffer);
870
871 return ts;
872 }
873
874 /**
875 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
876 * @buffer: The ring_buffer to get the number of pages from
877 * @cpu: The cpu of the ring_buffer to get the number of pages from
878 *
879 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
880 */
881 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
882 {
883 return buffer->buffers[cpu]->nr_pages;
884 }
885
886 /**
887 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
888 * @buffer: The ring_buffer to get the number of pages from
889 * @cpu: The cpu of the ring_buffer to get the number of pages from
890 *
891 * Returns the number of pages that have content in the ring buffer.
892 */
893 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
894 {
895 size_t read;
896 size_t lost;
897 size_t cnt;
898
899 read = local_read(&buffer->buffers[cpu]->pages_read);
900 lost = local_read(&buffer->buffers[cpu]->pages_lost);
901 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
902
903 if (WARN_ON_ONCE(cnt < lost))
904 return 0;
905
906 cnt -= lost;
907
908 /* The reader can read an empty page, but not more than that */
909 if (cnt < read) {
910 WARN_ON_ONCE(read > cnt + 1);
911 return 0;
912 }
913
914 return cnt - read;
915 }
916
917 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
918 {
919 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
920 size_t nr_pages;
921 size_t dirty;
922
923 nr_pages = cpu_buffer->nr_pages;
924 if (!nr_pages || !full)
925 return true;
926
927 dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
928
929 return (dirty * 100) > (full * nr_pages);
930 }
931
932 /*
933 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
934 *
935 * Schedules a delayed work to wake up any task that is blocked on the
936 * ring buffer waiters queue.
937 */
938 static void rb_wake_up_waiters(struct irq_work *work)
939 {
940 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
941
942 wake_up_all(&rbwork->waiters);
943 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
944 rbwork->wakeup_full = false;
945 rbwork->full_waiters_pending = false;
946 wake_up_all(&rbwork->full_waiters);
947 }
948 }
949
950 /**
951 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
952 * @buffer: The ring buffer to wake waiters on
953 * @cpu: The CPU buffer to wake waiters on
954 *
955 * In the case of a file that represents a ring buffer is closing,
956 * it is prudent to wake up any waiters that are on this.
957 */
958 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
959 {
960 struct ring_buffer_per_cpu *cpu_buffer;
961 struct rb_irq_work *rbwork;
962
963 if (!buffer)
964 return;
965
966 if (cpu == RING_BUFFER_ALL_CPUS) {
967
968 /* Wake up individual ones too. One level recursion */
969 for_each_buffer_cpu(buffer, cpu)
970 ring_buffer_wake_waiters(buffer, cpu);
971
972 rbwork = &buffer->irq_work;
973 } else {
974 if (WARN_ON_ONCE(!buffer->buffers))
975 return;
976 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
977 return;
978
979 cpu_buffer = buffer->buffers[cpu];
980 /* The CPU buffer may not have been initialized yet */
981 if (!cpu_buffer)
982 return;
983 rbwork = &cpu_buffer->irq_work;
984 }
985
986 rbwork->wait_index++;
987 /* make sure the waiters see the new index */
988 smp_wmb();
989
990 rb_wake_up_waiters(&rbwork->work);
991 }
992
993 /**
994 * ring_buffer_wait - wait for input to the ring buffer
995 * @buffer: buffer to wait on
996 * @cpu: the cpu buffer to wait on
997 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
998 *
999 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1000 * as data is added to any of the @buffer's cpu buffers. Otherwise
1001 * it will wait for data to be added to a specific cpu buffer.
1002 */
1003 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1004 {
1005 struct ring_buffer_per_cpu *cpu_buffer;
1006 DEFINE_WAIT(wait);
1007 struct rb_irq_work *work;
1008 long wait_index;
1009 int ret = 0;
1010
1011 /*
1012 * Depending on what the caller is waiting for, either any
1013 * data in any cpu buffer, or a specific buffer, put the
1014 * caller on the appropriate wait queue.
1015 */
1016 if (cpu == RING_BUFFER_ALL_CPUS) {
1017 work = &buffer->irq_work;
1018 /* Full only makes sense on per cpu reads */
1019 full = 0;
1020 } else {
1021 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1022 return -ENODEV;
1023 cpu_buffer = buffer->buffers[cpu];
1024 work = &cpu_buffer->irq_work;
1025 }
1026
1027 wait_index = READ_ONCE(work->wait_index);
1028
1029 while (true) {
1030 if (full)
1031 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1032 else
1033 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1034
1035 /*
1036 * The events can happen in critical sections where
1037 * checking a work queue can cause deadlocks.
1038 * After adding a task to the queue, this flag is set
1039 * only to notify events to try to wake up the queue
1040 * using irq_work.
1041 *
1042 * We don't clear it even if the buffer is no longer
1043 * empty. The flag only causes the next event to run
1044 * irq_work to do the work queue wake up. The worse
1045 * that can happen if we race with !trace_empty() is that
1046 * an event will cause an irq_work to try to wake up
1047 * an empty queue.
1048 *
1049 * There's no reason to protect this flag either, as
1050 * the work queue and irq_work logic will do the necessary
1051 * synchronization for the wake ups. The only thing
1052 * that is necessary is that the wake up happens after
1053 * a task has been queued. It's OK for spurious wake ups.
1054 */
1055 if (full)
1056 work->full_waiters_pending = true;
1057 else
1058 work->waiters_pending = true;
1059
1060 if (signal_pending(current)) {
1061 ret = -EINTR;
1062 break;
1063 }
1064
1065 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1066 break;
1067
1068 if (cpu != RING_BUFFER_ALL_CPUS &&
1069 !ring_buffer_empty_cpu(buffer, cpu)) {
1070 unsigned long flags;
1071 bool pagebusy;
1072 bool done;
1073
1074 if (!full)
1075 break;
1076
1077 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1078 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1079 done = !pagebusy && full_hit(buffer, cpu, full);
1080
1081 if (!cpu_buffer->shortest_full ||
1082 cpu_buffer->shortest_full > full)
1083 cpu_buffer->shortest_full = full;
1084 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1085 if (done)
1086 break;
1087 }
1088
1089 schedule();
1090
1091 /* Make sure to see the new wait index */
1092 smp_rmb();
1093 if (wait_index != work->wait_index)
1094 break;
1095 }
1096
1097 if (full)
1098 finish_wait(&work->full_waiters, &wait);
1099 else
1100 finish_wait(&work->waiters, &wait);
1101
1102 return ret;
1103 }
1104
1105 /**
1106 * ring_buffer_poll_wait - poll on buffer input
1107 * @buffer: buffer to wait on
1108 * @cpu: the cpu buffer to wait on
1109 * @filp: the file descriptor
1110 * @poll_table: The poll descriptor
1111 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1112 *
1113 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1114 * as data is added to any of the @buffer's cpu buffers. Otherwise
1115 * it will wait for data to be added to a specific cpu buffer.
1116 *
1117 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1118 * zero otherwise.
1119 */
1120 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1121 struct file *filp, poll_table *poll_table, int full)
1122 {
1123 struct ring_buffer_per_cpu *cpu_buffer;
1124 struct rb_irq_work *work;
1125
1126 if (cpu == RING_BUFFER_ALL_CPUS) {
1127 work = &buffer->irq_work;
1128 full = 0;
1129 } else {
1130 if (!cpumask_test_cpu(cpu, buffer->cpumask))
1131 return -EINVAL;
1132
1133 cpu_buffer = buffer->buffers[cpu];
1134 work = &cpu_buffer->irq_work;
1135 }
1136
1137 if (full) {
1138 poll_wait(filp, &work->full_waiters, poll_table);
1139 work->full_waiters_pending = true;
1140 if (!cpu_buffer->shortest_full ||
1141 cpu_buffer->shortest_full > full)
1142 cpu_buffer->shortest_full = full;
1143 } else {
1144 poll_wait(filp, &work->waiters, poll_table);
1145 work->waiters_pending = true;
1146 }
1147
1148 /*
1149 * There's a tight race between setting the waiters_pending and
1150 * checking if the ring buffer is empty. Once the waiters_pending bit
1151 * is set, the next event will wake the task up, but we can get stuck
1152 * if there's only a single event in.
1153 *
1154 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1155 * but adding a memory barrier to all events will cause too much of a
1156 * performance hit in the fast path. We only need a memory barrier when
1157 * the buffer goes from empty to having content. But as this race is
1158 * extremely small, and it's not a problem if another event comes in, we
1159 * will fix it later.
1160 */
1161 smp_mb();
1162
1163 if (full)
1164 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1165
1166 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1167 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1168 return EPOLLIN | EPOLLRDNORM;
1169 return 0;
1170 }
1171
1172 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1173 #define RB_WARN_ON(b, cond) \
1174 ({ \
1175 int _____ret = unlikely(cond); \
1176 if (_____ret) { \
1177 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1178 struct ring_buffer_per_cpu *__b = \
1179 (void *)b; \
1180 atomic_inc(&__b->buffer->record_disabled); \
1181 } else \
1182 atomic_inc(&b->record_disabled); \
1183 WARN_ON(1); \
1184 } \
1185 _____ret; \
1186 })
1187
1188 /* Up this if you want to test the TIME_EXTENTS and normalization */
1189 #define DEBUG_SHIFT 0
1190
1191 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1192 {
1193 u64 ts;
1194
1195 /* Skip retpolines :-( */
1196 if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1197 ts = trace_clock_local();
1198 else
1199 ts = buffer->clock();
1200
1201 /* shift to debug/test normalization and TIME_EXTENTS */
1202 return ts << DEBUG_SHIFT;
1203 }
1204
1205 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1206 {
1207 u64 time;
1208
1209 preempt_disable_notrace();
1210 time = rb_time_stamp(buffer);
1211 preempt_enable_notrace();
1212
1213 return time;
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1216
1217 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1218 int cpu, u64 *ts)
1219 {
1220 /* Just stupid testing the normalize function and deltas */
1221 *ts >>= DEBUG_SHIFT;
1222 }
1223 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1224
1225 /*
1226 * Making the ring buffer lockless makes things tricky.
1227 * Although writes only happen on the CPU that they are on,
1228 * and they only need to worry about interrupts. Reads can
1229 * happen on any CPU.
1230 *
1231 * The reader page is always off the ring buffer, but when the
1232 * reader finishes with a page, it needs to swap its page with
1233 * a new one from the buffer. The reader needs to take from
1234 * the head (writes go to the tail). But if a writer is in overwrite
1235 * mode and wraps, it must push the head page forward.
1236 *
1237 * Here lies the problem.
1238 *
1239 * The reader must be careful to replace only the head page, and
1240 * not another one. As described at the top of the file in the
1241 * ASCII art, the reader sets its old page to point to the next
1242 * page after head. It then sets the page after head to point to
1243 * the old reader page. But if the writer moves the head page
1244 * during this operation, the reader could end up with the tail.
1245 *
1246 * We use cmpxchg to help prevent this race. We also do something
1247 * special with the page before head. We set the LSB to 1.
1248 *
1249 * When the writer must push the page forward, it will clear the
1250 * bit that points to the head page, move the head, and then set
1251 * the bit that points to the new head page.
1252 *
1253 * We also don't want an interrupt coming in and moving the head
1254 * page on another writer. Thus we use the second LSB to catch
1255 * that too. Thus:
1256 *
1257 * head->list->prev->next bit 1 bit 0
1258 * ------- -------
1259 * Normal page 0 0
1260 * Points to head page 0 1
1261 * New head page 1 0
1262 *
1263 * Note we can not trust the prev pointer of the head page, because:
1264 *
1265 * +----+ +-----+ +-----+
1266 * | |------>| T |---X--->| N |
1267 * | |<------| | | |
1268 * +----+ +-----+ +-----+
1269 * ^ ^ |
1270 * | +-----+ | |
1271 * +----------| R |----------+ |
1272 * | |<-----------+
1273 * +-----+
1274 *
1275 * Key: ---X--> HEAD flag set in pointer
1276 * T Tail page
1277 * R Reader page
1278 * N Next page
1279 *
1280 * (see __rb_reserve_next() to see where this happens)
1281 *
1282 * What the above shows is that the reader just swapped out
1283 * the reader page with a page in the buffer, but before it
1284 * could make the new header point back to the new page added
1285 * it was preempted by a writer. The writer moved forward onto
1286 * the new page added by the reader and is about to move forward
1287 * again.
1288 *
1289 * You can see, it is legitimate for the previous pointer of
1290 * the head (or any page) not to point back to itself. But only
1291 * temporarily.
1292 */
1293
1294 #define RB_PAGE_NORMAL 0UL
1295 #define RB_PAGE_HEAD 1UL
1296 #define RB_PAGE_UPDATE 2UL
1297
1298
1299 #define RB_FLAG_MASK 3UL
1300
1301 /* PAGE_MOVED is not part of the mask */
1302 #define RB_PAGE_MOVED 4UL
1303
1304 /*
1305 * rb_list_head - remove any bit
1306 */
1307 static struct list_head *rb_list_head(struct list_head *list)
1308 {
1309 unsigned long val = (unsigned long)list;
1310
1311 return (struct list_head *)(val & ~RB_FLAG_MASK);
1312 }
1313
1314 /*
1315 * rb_is_head_page - test if the given page is the head page
1316 *
1317 * Because the reader may move the head_page pointer, we can
1318 * not trust what the head page is (it may be pointing to
1319 * the reader page). But if the next page is a header page,
1320 * its flags will be non zero.
1321 */
1322 static inline int
1323 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1324 {
1325 unsigned long val;
1326
1327 val = (unsigned long)list->next;
1328
1329 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1330 return RB_PAGE_MOVED;
1331
1332 return val & RB_FLAG_MASK;
1333 }
1334
1335 /*
1336 * rb_is_reader_page
1337 *
1338 * The unique thing about the reader page, is that, if the
1339 * writer is ever on it, the previous pointer never points
1340 * back to the reader page.
1341 */
1342 static bool rb_is_reader_page(struct buffer_page *page)
1343 {
1344 struct list_head *list = page->list.prev;
1345
1346 return rb_list_head(list->next) != &page->list;
1347 }
1348
1349 /*
1350 * rb_set_list_to_head - set a list_head to be pointing to head.
1351 */
1352 static void rb_set_list_to_head(struct list_head *list)
1353 {
1354 unsigned long *ptr;
1355
1356 ptr = (unsigned long *)&list->next;
1357 *ptr |= RB_PAGE_HEAD;
1358 *ptr &= ~RB_PAGE_UPDATE;
1359 }
1360
1361 /*
1362 * rb_head_page_activate - sets up head page
1363 */
1364 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1365 {
1366 struct buffer_page *head;
1367
1368 head = cpu_buffer->head_page;
1369 if (!head)
1370 return;
1371
1372 /*
1373 * Set the previous list pointer to have the HEAD flag.
1374 */
1375 rb_set_list_to_head(head->list.prev);
1376 }
1377
1378 static void rb_list_head_clear(struct list_head *list)
1379 {
1380 unsigned long *ptr = (unsigned long *)&list->next;
1381
1382 *ptr &= ~RB_FLAG_MASK;
1383 }
1384
1385 /*
1386 * rb_head_page_deactivate - clears head page ptr (for free list)
1387 */
1388 static void
1389 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1390 {
1391 struct list_head *hd;
1392
1393 /* Go through the whole list and clear any pointers found. */
1394 rb_list_head_clear(cpu_buffer->pages);
1395
1396 list_for_each(hd, cpu_buffer->pages)
1397 rb_list_head_clear(hd);
1398 }
1399
1400 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1401 struct buffer_page *head,
1402 struct buffer_page *prev,
1403 int old_flag, int new_flag)
1404 {
1405 struct list_head *list;
1406 unsigned long val = (unsigned long)&head->list;
1407 unsigned long ret;
1408
1409 list = &prev->list;
1410
1411 val &= ~RB_FLAG_MASK;
1412
1413 ret = cmpxchg((unsigned long *)&list->next,
1414 val | old_flag, val | new_flag);
1415
1416 /* check if the reader took the page */
1417 if ((ret & ~RB_FLAG_MASK) != val)
1418 return RB_PAGE_MOVED;
1419
1420 return ret & RB_FLAG_MASK;
1421 }
1422
1423 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1424 struct buffer_page *head,
1425 struct buffer_page *prev,
1426 int old_flag)
1427 {
1428 return rb_head_page_set(cpu_buffer, head, prev,
1429 old_flag, RB_PAGE_UPDATE);
1430 }
1431
1432 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1433 struct buffer_page *head,
1434 struct buffer_page *prev,
1435 int old_flag)
1436 {
1437 return rb_head_page_set(cpu_buffer, head, prev,
1438 old_flag, RB_PAGE_HEAD);
1439 }
1440
1441 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1442 struct buffer_page *head,
1443 struct buffer_page *prev,
1444 int old_flag)
1445 {
1446 return rb_head_page_set(cpu_buffer, head, prev,
1447 old_flag, RB_PAGE_NORMAL);
1448 }
1449
1450 static inline void rb_inc_page(struct buffer_page **bpage)
1451 {
1452 struct list_head *p = rb_list_head((*bpage)->list.next);
1453
1454 *bpage = list_entry(p, struct buffer_page, list);
1455 }
1456
1457 static struct buffer_page *
1458 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1459 {
1460 struct buffer_page *head;
1461 struct buffer_page *page;
1462 struct list_head *list;
1463 int i;
1464
1465 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1466 return NULL;
1467
1468 /* sanity check */
1469 list = cpu_buffer->pages;
1470 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1471 return NULL;
1472
1473 page = head = cpu_buffer->head_page;
1474 /*
1475 * It is possible that the writer moves the header behind
1476 * where we started, and we miss in one loop.
1477 * A second loop should grab the header, but we'll do
1478 * three loops just because I'm paranoid.
1479 */
1480 for (i = 0; i < 3; i++) {
1481 do {
1482 if (rb_is_head_page(page, page->list.prev)) {
1483 cpu_buffer->head_page = page;
1484 return page;
1485 }
1486 rb_inc_page(&page);
1487 } while (page != head);
1488 }
1489
1490 RB_WARN_ON(cpu_buffer, 1);
1491
1492 return NULL;
1493 }
1494
1495 static bool rb_head_page_replace(struct buffer_page *old,
1496 struct buffer_page *new)
1497 {
1498 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1499 unsigned long val;
1500
1501 val = *ptr & ~RB_FLAG_MASK;
1502 val |= RB_PAGE_HEAD;
1503
1504 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1505 }
1506
1507 /*
1508 * rb_tail_page_update - move the tail page forward
1509 */
1510 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1511 struct buffer_page *tail_page,
1512 struct buffer_page *next_page)
1513 {
1514 unsigned long old_entries;
1515 unsigned long old_write;
1516
1517 /*
1518 * The tail page now needs to be moved forward.
1519 *
1520 * We need to reset the tail page, but without messing
1521 * with possible erasing of data brought in by interrupts
1522 * that have moved the tail page and are currently on it.
1523 *
1524 * We add a counter to the write field to denote this.
1525 */
1526 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1527 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1528
1529 local_inc(&cpu_buffer->pages_touched);
1530 /*
1531 * Just make sure we have seen our old_write and synchronize
1532 * with any interrupts that come in.
1533 */
1534 barrier();
1535
1536 /*
1537 * If the tail page is still the same as what we think
1538 * it is, then it is up to us to update the tail
1539 * pointer.
1540 */
1541 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1542 /* Zero the write counter */
1543 unsigned long val = old_write & ~RB_WRITE_MASK;
1544 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1545
1546 /*
1547 * This will only succeed if an interrupt did
1548 * not come in and change it. In which case, we
1549 * do not want to modify it.
1550 *
1551 * We add (void) to let the compiler know that we do not care
1552 * about the return value of these functions. We use the
1553 * cmpxchg to only update if an interrupt did not already
1554 * do it for us. If the cmpxchg fails, we don't care.
1555 */
1556 (void)local_cmpxchg(&next_page->write, old_write, val);
1557 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1558
1559 /*
1560 * No need to worry about races with clearing out the commit.
1561 * it only can increment when a commit takes place. But that
1562 * only happens in the outer most nested commit.
1563 */
1564 local_set(&next_page->page->commit, 0);
1565
1566 /* Again, either we update tail_page or an interrupt does */
1567 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1568 }
1569 }
1570
1571 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1572 struct buffer_page *bpage)
1573 {
1574 unsigned long val = (unsigned long)bpage;
1575
1576 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1577 }
1578
1579 /**
1580 * rb_check_pages - integrity check of buffer pages
1581 * @cpu_buffer: CPU buffer with pages to test
1582 *
1583 * As a safety measure we check to make sure the data pages have not
1584 * been corrupted.
1585 */
1586 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1587 {
1588 struct list_head *head = rb_list_head(cpu_buffer->pages);
1589 struct list_head *tmp;
1590
1591 if (RB_WARN_ON(cpu_buffer,
1592 rb_list_head(rb_list_head(head->next)->prev) != head))
1593 return;
1594
1595 if (RB_WARN_ON(cpu_buffer,
1596 rb_list_head(rb_list_head(head->prev)->next) != head))
1597 return;
1598
1599 for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1600 if (RB_WARN_ON(cpu_buffer,
1601 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1602 return;
1603
1604 if (RB_WARN_ON(cpu_buffer,
1605 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1606 return;
1607 }
1608 }
1609
1610 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1611 long nr_pages, struct list_head *pages)
1612 {
1613 struct buffer_page *bpage, *tmp;
1614 bool user_thread = current->mm != NULL;
1615 gfp_t mflags;
1616 long i;
1617
1618 /*
1619 * Check if the available memory is there first.
1620 * Note, si_mem_available() only gives us a rough estimate of available
1621 * memory. It may not be accurate. But we don't care, we just want
1622 * to prevent doing any allocation when it is obvious that it is
1623 * not going to succeed.
1624 */
1625 i = si_mem_available();
1626 if (i < nr_pages)
1627 return -ENOMEM;
1628
1629 /*
1630 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1631 * gracefully without invoking oom-killer and the system is not
1632 * destabilized.
1633 */
1634 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1635
1636 /*
1637 * If a user thread allocates too much, and si_mem_available()
1638 * reports there's enough memory, even though there is not.
1639 * Make sure the OOM killer kills this thread. This can happen
1640 * even with RETRY_MAYFAIL because another task may be doing
1641 * an allocation after this task has taken all memory.
1642 * This is the task the OOM killer needs to take out during this
1643 * loop, even if it was triggered by an allocation somewhere else.
1644 */
1645 if (user_thread)
1646 set_current_oom_origin();
1647 for (i = 0; i < nr_pages; i++) {
1648 struct page *page;
1649
1650 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1651 mflags, cpu_to_node(cpu_buffer->cpu));
1652 if (!bpage)
1653 goto free_pages;
1654
1655 rb_check_bpage(cpu_buffer, bpage);
1656
1657 list_add(&bpage->list, pages);
1658
1659 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1660 if (!page)
1661 goto free_pages;
1662 bpage->page = page_address(page);
1663 rb_init_page(bpage->page);
1664
1665 if (user_thread && fatal_signal_pending(current))
1666 goto free_pages;
1667 }
1668 if (user_thread)
1669 clear_current_oom_origin();
1670
1671 return 0;
1672
1673 free_pages:
1674 list_for_each_entry_safe(bpage, tmp, pages, list) {
1675 list_del_init(&bpage->list);
1676 free_buffer_page(bpage);
1677 }
1678 if (user_thread)
1679 clear_current_oom_origin();
1680
1681 return -ENOMEM;
1682 }
1683
1684 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1685 unsigned long nr_pages)
1686 {
1687 LIST_HEAD(pages);
1688
1689 WARN_ON(!nr_pages);
1690
1691 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1692 return -ENOMEM;
1693
1694 /*
1695 * The ring buffer page list is a circular list that does not
1696 * start and end with a list head. All page list items point to
1697 * other pages.
1698 */
1699 cpu_buffer->pages = pages.next;
1700 list_del(&pages);
1701
1702 cpu_buffer->nr_pages = nr_pages;
1703
1704 rb_check_pages(cpu_buffer);
1705
1706 return 0;
1707 }
1708
1709 static struct ring_buffer_per_cpu *
1710 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1711 {
1712 struct ring_buffer_per_cpu *cpu_buffer;
1713 struct buffer_page *bpage;
1714 struct page *page;
1715 int ret;
1716
1717 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1718 GFP_KERNEL, cpu_to_node(cpu));
1719 if (!cpu_buffer)
1720 return NULL;
1721
1722 cpu_buffer->cpu = cpu;
1723 cpu_buffer->buffer = buffer;
1724 raw_spin_lock_init(&cpu_buffer->reader_lock);
1725 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1726 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1727 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1728 init_completion(&cpu_buffer->update_done);
1729 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1730 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1731 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1732
1733 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1734 GFP_KERNEL, cpu_to_node(cpu));
1735 if (!bpage)
1736 goto fail_free_buffer;
1737
1738 rb_check_bpage(cpu_buffer, bpage);
1739
1740 cpu_buffer->reader_page = bpage;
1741 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1742 if (!page)
1743 goto fail_free_reader;
1744 bpage->page = page_address(page);
1745 rb_init_page(bpage->page);
1746
1747 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1748 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1749
1750 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1751 if (ret < 0)
1752 goto fail_free_reader;
1753
1754 cpu_buffer->head_page
1755 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1756 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1757
1758 rb_head_page_activate(cpu_buffer);
1759
1760 return cpu_buffer;
1761
1762 fail_free_reader:
1763 free_buffer_page(cpu_buffer->reader_page);
1764
1765 fail_free_buffer:
1766 kfree(cpu_buffer);
1767 return NULL;
1768 }
1769
1770 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1771 {
1772 struct list_head *head = cpu_buffer->pages;
1773 struct buffer_page *bpage, *tmp;
1774
1775 irq_work_sync(&cpu_buffer->irq_work.work);
1776
1777 free_buffer_page(cpu_buffer->reader_page);
1778
1779 if (head) {
1780 rb_head_page_deactivate(cpu_buffer);
1781
1782 list_for_each_entry_safe(bpage, tmp, head, list) {
1783 list_del_init(&bpage->list);
1784 free_buffer_page(bpage);
1785 }
1786 bpage = list_entry(head, struct buffer_page, list);
1787 free_buffer_page(bpage);
1788 }
1789
1790 kfree(cpu_buffer);
1791 }
1792
1793 /**
1794 * __ring_buffer_alloc - allocate a new ring_buffer
1795 * @size: the size in bytes per cpu that is needed.
1796 * @flags: attributes to set for the ring buffer.
1797 * @key: ring buffer reader_lock_key.
1798 *
1799 * Currently the only flag that is available is the RB_FL_OVERWRITE
1800 * flag. This flag means that the buffer will overwrite old data
1801 * when the buffer wraps. If this flag is not set, the buffer will
1802 * drop data when the tail hits the head.
1803 */
1804 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1805 struct lock_class_key *key)
1806 {
1807 struct trace_buffer *buffer;
1808 long nr_pages;
1809 int bsize;
1810 int cpu;
1811 int ret;
1812
1813 /* keep it in its own cache line */
1814 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1815 GFP_KERNEL);
1816 if (!buffer)
1817 return NULL;
1818
1819 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1820 goto fail_free_buffer;
1821
1822 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1823 buffer->flags = flags;
1824 buffer->clock = trace_clock_local;
1825 buffer->reader_lock_key = key;
1826
1827 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1828 init_waitqueue_head(&buffer->irq_work.waiters);
1829
1830 /* need at least two pages */
1831 if (nr_pages < 2)
1832 nr_pages = 2;
1833
1834 buffer->cpus = nr_cpu_ids;
1835
1836 bsize = sizeof(void *) * nr_cpu_ids;
1837 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1838 GFP_KERNEL);
1839 if (!buffer->buffers)
1840 goto fail_free_cpumask;
1841
1842 cpu = raw_smp_processor_id();
1843 cpumask_set_cpu(cpu, buffer->cpumask);
1844 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1845 if (!buffer->buffers[cpu])
1846 goto fail_free_buffers;
1847
1848 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1849 if (ret < 0)
1850 goto fail_free_buffers;
1851
1852 mutex_init(&buffer->mutex);
1853
1854 return buffer;
1855
1856 fail_free_buffers:
1857 for_each_buffer_cpu(buffer, cpu) {
1858 if (buffer->buffers[cpu])
1859 rb_free_cpu_buffer(buffer->buffers[cpu]);
1860 }
1861 kfree(buffer->buffers);
1862
1863 fail_free_cpumask:
1864 free_cpumask_var(buffer->cpumask);
1865
1866 fail_free_buffer:
1867 kfree(buffer);
1868 return NULL;
1869 }
1870 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1871
1872 /**
1873 * ring_buffer_free - free a ring buffer.
1874 * @buffer: the buffer to free.
1875 */
1876 void
1877 ring_buffer_free(struct trace_buffer *buffer)
1878 {
1879 int cpu;
1880
1881 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1882
1883 irq_work_sync(&buffer->irq_work.work);
1884
1885 for_each_buffer_cpu(buffer, cpu)
1886 rb_free_cpu_buffer(buffer->buffers[cpu]);
1887
1888 kfree(buffer->buffers);
1889 free_cpumask_var(buffer->cpumask);
1890
1891 kfree(buffer);
1892 }
1893 EXPORT_SYMBOL_GPL(ring_buffer_free);
1894
1895 void ring_buffer_set_clock(struct trace_buffer *buffer,
1896 u64 (*clock)(void))
1897 {
1898 buffer->clock = clock;
1899 }
1900
1901 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1902 {
1903 buffer->time_stamp_abs = abs;
1904 }
1905
1906 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1907 {
1908 return buffer->time_stamp_abs;
1909 }
1910
1911 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1912
1913 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1914 {
1915 return local_read(&bpage->entries) & RB_WRITE_MASK;
1916 }
1917
1918 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1919 {
1920 return local_read(&bpage->write) & RB_WRITE_MASK;
1921 }
1922
1923 static bool
1924 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1925 {
1926 struct list_head *tail_page, *to_remove, *next_page;
1927 struct buffer_page *to_remove_page, *tmp_iter_page;
1928 struct buffer_page *last_page, *first_page;
1929 unsigned long nr_removed;
1930 unsigned long head_bit;
1931 int page_entries;
1932
1933 head_bit = 0;
1934
1935 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1936 atomic_inc(&cpu_buffer->record_disabled);
1937 /*
1938 * We don't race with the readers since we have acquired the reader
1939 * lock. We also don't race with writers after disabling recording.
1940 * This makes it easy to figure out the first and the last page to be
1941 * removed from the list. We unlink all the pages in between including
1942 * the first and last pages. This is done in a busy loop so that we
1943 * lose the least number of traces.
1944 * The pages are freed after we restart recording and unlock readers.
1945 */
1946 tail_page = &cpu_buffer->tail_page->list;
1947
1948 /*
1949 * tail page might be on reader page, we remove the next page
1950 * from the ring buffer
1951 */
1952 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1953 tail_page = rb_list_head(tail_page->next);
1954 to_remove = tail_page;
1955
1956 /* start of pages to remove */
1957 first_page = list_entry(rb_list_head(to_remove->next),
1958 struct buffer_page, list);
1959
1960 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1961 to_remove = rb_list_head(to_remove)->next;
1962 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1963 }
1964 /* Read iterators need to reset themselves when some pages removed */
1965 cpu_buffer->pages_removed += nr_removed;
1966
1967 next_page = rb_list_head(to_remove)->next;
1968
1969 /*
1970 * Now we remove all pages between tail_page and next_page.
1971 * Make sure that we have head_bit value preserved for the
1972 * next page
1973 */
1974 tail_page->next = (struct list_head *)((unsigned long)next_page |
1975 head_bit);
1976 next_page = rb_list_head(next_page);
1977 next_page->prev = tail_page;
1978
1979 /* make sure pages points to a valid page in the ring buffer */
1980 cpu_buffer->pages = next_page;
1981
1982 /* update head page */
1983 if (head_bit)
1984 cpu_buffer->head_page = list_entry(next_page,
1985 struct buffer_page, list);
1986
1987 /* pages are removed, resume tracing and then free the pages */
1988 atomic_dec(&cpu_buffer->record_disabled);
1989 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1990
1991 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1992
1993 /* last buffer page to remove */
1994 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1995 list);
1996 tmp_iter_page = first_page;
1997
1998 do {
1999 cond_resched();
2000
2001 to_remove_page = tmp_iter_page;
2002 rb_inc_page(&tmp_iter_page);
2003
2004 /* update the counters */
2005 page_entries = rb_page_entries(to_remove_page);
2006 if (page_entries) {
2007 /*
2008 * If something was added to this page, it was full
2009 * since it is not the tail page. So we deduct the
2010 * bytes consumed in ring buffer from here.
2011 * Increment overrun to account for the lost events.
2012 */
2013 local_add(page_entries, &cpu_buffer->overrun);
2014 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2015 local_inc(&cpu_buffer->pages_lost);
2016 }
2017
2018 /*
2019 * We have already removed references to this list item, just
2020 * free up the buffer_page and its page
2021 */
2022 free_buffer_page(to_remove_page);
2023 nr_removed--;
2024
2025 } while (to_remove_page != last_page);
2026
2027 RB_WARN_ON(cpu_buffer, nr_removed);
2028
2029 return nr_removed == 0;
2030 }
2031
2032 static bool
2033 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2034 {
2035 struct list_head *pages = &cpu_buffer->new_pages;
2036 unsigned long flags;
2037 bool success;
2038 int retries;
2039
2040 /* Can be called at early boot up, where interrupts must not been enabled */
2041 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2042 /*
2043 * We are holding the reader lock, so the reader page won't be swapped
2044 * in the ring buffer. Now we are racing with the writer trying to
2045 * move head page and the tail page.
2046 * We are going to adapt the reader page update process where:
2047 * 1. We first splice the start and end of list of new pages between
2048 * the head page and its previous page.
2049 * 2. We cmpxchg the prev_page->next to point from head page to the
2050 * start of new pages list.
2051 * 3. Finally, we update the head->prev to the end of new list.
2052 *
2053 * We will try this process 10 times, to make sure that we don't keep
2054 * spinning.
2055 */
2056 retries = 10;
2057 success = false;
2058 while (retries--) {
2059 struct list_head *head_page, *prev_page, *r;
2060 struct list_head *last_page, *first_page;
2061 struct list_head *head_page_with_bit;
2062 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2063
2064 if (!hpage)
2065 break;
2066 head_page = &hpage->list;
2067 prev_page = head_page->prev;
2068
2069 first_page = pages->next;
2070 last_page = pages->prev;
2071
2072 head_page_with_bit = (struct list_head *)
2073 ((unsigned long)head_page | RB_PAGE_HEAD);
2074
2075 last_page->next = head_page_with_bit;
2076 first_page->prev = prev_page;
2077
2078 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2079
2080 if (r == head_page_with_bit) {
2081 /*
2082 * yay, we replaced the page pointer to our new list,
2083 * now, we just have to update to head page's prev
2084 * pointer to point to end of list
2085 */
2086 head_page->prev = last_page;
2087 success = true;
2088 break;
2089 }
2090 }
2091
2092 if (success)
2093 INIT_LIST_HEAD(pages);
2094 /*
2095 * If we weren't successful in adding in new pages, warn and stop
2096 * tracing
2097 */
2098 RB_WARN_ON(cpu_buffer, !success);
2099 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2100
2101 /* free pages if they weren't inserted */
2102 if (!success) {
2103 struct buffer_page *bpage, *tmp;
2104 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2105 list) {
2106 list_del_init(&bpage->list);
2107 free_buffer_page(bpage);
2108 }
2109 }
2110 return success;
2111 }
2112
2113 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2114 {
2115 bool success;
2116
2117 if (cpu_buffer->nr_pages_to_update > 0)
2118 success = rb_insert_pages(cpu_buffer);
2119 else
2120 success = rb_remove_pages(cpu_buffer,
2121 -cpu_buffer->nr_pages_to_update);
2122
2123 if (success)
2124 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2125 }
2126
2127 static void update_pages_handler(struct work_struct *work)
2128 {
2129 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2130 struct ring_buffer_per_cpu, update_pages_work);
2131 rb_update_pages(cpu_buffer);
2132 complete(&cpu_buffer->update_done);
2133 }
2134
2135 /**
2136 * ring_buffer_resize - resize the ring buffer
2137 * @buffer: the buffer to resize.
2138 * @size: the new size.
2139 * @cpu_id: the cpu buffer to resize
2140 *
2141 * Minimum size is 2 * BUF_PAGE_SIZE.
2142 *
2143 * Returns 0 on success and < 0 on failure.
2144 */
2145 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2146 int cpu_id)
2147 {
2148 struct ring_buffer_per_cpu *cpu_buffer;
2149 unsigned long nr_pages;
2150 int cpu, err;
2151
2152 /*
2153 * Always succeed at resizing a non-existent buffer:
2154 */
2155 if (!buffer)
2156 return 0;
2157
2158 /* Make sure the requested buffer exists */
2159 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2160 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2161 return 0;
2162
2163 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2164
2165 /* we need a minimum of two pages */
2166 if (nr_pages < 2)
2167 nr_pages = 2;
2168
2169 /* prevent another thread from changing buffer sizes */
2170 mutex_lock(&buffer->mutex);
2171 atomic_inc(&buffer->resizing);
2172
2173 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2174 /*
2175 * Don't succeed if resizing is disabled, as a reader might be
2176 * manipulating the ring buffer and is expecting a sane state while
2177 * this is true.
2178 */
2179 for_each_buffer_cpu(buffer, cpu) {
2180 cpu_buffer = buffer->buffers[cpu];
2181 if (atomic_read(&cpu_buffer->resize_disabled)) {
2182 err = -EBUSY;
2183 goto out_err_unlock;
2184 }
2185 }
2186
2187 /* calculate the pages to update */
2188 for_each_buffer_cpu(buffer, cpu) {
2189 cpu_buffer = buffer->buffers[cpu];
2190
2191 cpu_buffer->nr_pages_to_update = nr_pages -
2192 cpu_buffer->nr_pages;
2193 /*
2194 * nothing more to do for removing pages or no update
2195 */
2196 if (cpu_buffer->nr_pages_to_update <= 0)
2197 continue;
2198 /*
2199 * to add pages, make sure all new pages can be
2200 * allocated without receiving ENOMEM
2201 */
2202 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2203 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2204 &cpu_buffer->new_pages)) {
2205 /* not enough memory for new pages */
2206 err = -ENOMEM;
2207 goto out_err;
2208 }
2209
2210 cond_resched();
2211 }
2212
2213 cpus_read_lock();
2214 /*
2215 * Fire off all the required work handlers
2216 * We can't schedule on offline CPUs, but it's not necessary
2217 * since we can change their buffer sizes without any race.
2218 */
2219 for_each_buffer_cpu(buffer, cpu) {
2220 cpu_buffer = buffer->buffers[cpu];
2221 if (!cpu_buffer->nr_pages_to_update)
2222 continue;
2223
2224 /* Can't run something on an offline CPU. */
2225 if (!cpu_online(cpu)) {
2226 rb_update_pages(cpu_buffer);
2227 cpu_buffer->nr_pages_to_update = 0;
2228 } else {
2229 /* Run directly if possible. */
2230 migrate_disable();
2231 if (cpu != smp_processor_id()) {
2232 migrate_enable();
2233 schedule_work_on(cpu,
2234 &cpu_buffer->update_pages_work);
2235 } else {
2236 update_pages_handler(&cpu_buffer->update_pages_work);
2237 migrate_enable();
2238 }
2239 }
2240 }
2241
2242 /* wait for all the updates to complete */
2243 for_each_buffer_cpu(buffer, cpu) {
2244 cpu_buffer = buffer->buffers[cpu];
2245 if (!cpu_buffer->nr_pages_to_update)
2246 continue;
2247
2248 if (cpu_online(cpu))
2249 wait_for_completion(&cpu_buffer->update_done);
2250 cpu_buffer->nr_pages_to_update = 0;
2251 }
2252
2253 cpus_read_unlock();
2254 } else {
2255 cpu_buffer = buffer->buffers[cpu_id];
2256
2257 if (nr_pages == cpu_buffer->nr_pages)
2258 goto out;
2259
2260 /*
2261 * Don't succeed if resizing is disabled, as a reader might be
2262 * manipulating the ring buffer and is expecting a sane state while
2263 * this is true.
2264 */
2265 if (atomic_read(&cpu_buffer->resize_disabled)) {
2266 err = -EBUSY;
2267 goto out_err_unlock;
2268 }
2269
2270 cpu_buffer->nr_pages_to_update = nr_pages -
2271 cpu_buffer->nr_pages;
2272
2273 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2274 if (cpu_buffer->nr_pages_to_update > 0 &&
2275 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2276 &cpu_buffer->new_pages)) {
2277 err = -ENOMEM;
2278 goto out_err;
2279 }
2280
2281 cpus_read_lock();
2282
2283 /* Can't run something on an offline CPU. */
2284 if (!cpu_online(cpu_id))
2285 rb_update_pages(cpu_buffer);
2286 else {
2287 /* Run directly if possible. */
2288 migrate_disable();
2289 if (cpu_id == smp_processor_id()) {
2290 rb_update_pages(cpu_buffer);
2291 migrate_enable();
2292 } else {
2293 migrate_enable();
2294 schedule_work_on(cpu_id,
2295 &cpu_buffer->update_pages_work);
2296 wait_for_completion(&cpu_buffer->update_done);
2297 }
2298 }
2299
2300 cpu_buffer->nr_pages_to_update = 0;
2301 cpus_read_unlock();
2302 }
2303
2304 out:
2305 /*
2306 * The ring buffer resize can happen with the ring buffer
2307 * enabled, so that the update disturbs the tracing as little
2308 * as possible. But if the buffer is disabled, we do not need
2309 * to worry about that, and we can take the time to verify
2310 * that the buffer is not corrupt.
2311 */
2312 if (atomic_read(&buffer->record_disabled)) {
2313 atomic_inc(&buffer->record_disabled);
2314 /*
2315 * Even though the buffer was disabled, we must make sure
2316 * that it is truly disabled before calling rb_check_pages.
2317 * There could have been a race between checking
2318 * record_disable and incrementing it.
2319 */
2320 synchronize_rcu();
2321 for_each_buffer_cpu(buffer, cpu) {
2322 cpu_buffer = buffer->buffers[cpu];
2323 rb_check_pages(cpu_buffer);
2324 }
2325 atomic_dec(&buffer->record_disabled);
2326 }
2327
2328 atomic_dec(&buffer->resizing);
2329 mutex_unlock(&buffer->mutex);
2330 return 0;
2331
2332 out_err:
2333 for_each_buffer_cpu(buffer, cpu) {
2334 struct buffer_page *bpage, *tmp;
2335
2336 cpu_buffer = buffer->buffers[cpu];
2337 cpu_buffer->nr_pages_to_update = 0;
2338
2339 if (list_empty(&cpu_buffer->new_pages))
2340 continue;
2341
2342 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2343 list) {
2344 list_del_init(&bpage->list);
2345 free_buffer_page(bpage);
2346 }
2347 }
2348 out_err_unlock:
2349 atomic_dec(&buffer->resizing);
2350 mutex_unlock(&buffer->mutex);
2351 return err;
2352 }
2353 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2354
2355 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2356 {
2357 mutex_lock(&buffer->mutex);
2358 if (val)
2359 buffer->flags |= RB_FL_OVERWRITE;
2360 else
2361 buffer->flags &= ~RB_FL_OVERWRITE;
2362 mutex_unlock(&buffer->mutex);
2363 }
2364 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2365
2366 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2367 {
2368 return bpage->page->data + index;
2369 }
2370
2371 static __always_inline struct ring_buffer_event *
2372 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2373 {
2374 return __rb_page_index(cpu_buffer->reader_page,
2375 cpu_buffer->reader_page->read);
2376 }
2377
2378 static struct ring_buffer_event *
2379 rb_iter_head_event(struct ring_buffer_iter *iter)
2380 {
2381 struct ring_buffer_event *event;
2382 struct buffer_page *iter_head_page = iter->head_page;
2383 unsigned long commit;
2384 unsigned length;
2385
2386 if (iter->head != iter->next_event)
2387 return iter->event;
2388
2389 /*
2390 * When the writer goes across pages, it issues a cmpxchg which
2391 * is a mb(), which will synchronize with the rmb here.
2392 * (see rb_tail_page_update() and __rb_reserve_next())
2393 */
2394 commit = rb_page_commit(iter_head_page);
2395 smp_rmb();
2396
2397 /* An event needs to be at least 8 bytes in size */
2398 if (iter->head > commit - 8)
2399 goto reset;
2400
2401 event = __rb_page_index(iter_head_page, iter->head);
2402 length = rb_event_length(event);
2403
2404 /*
2405 * READ_ONCE() doesn't work on functions and we don't want the
2406 * compiler doing any crazy optimizations with length.
2407 */
2408 barrier();
2409
2410 if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2411 /* Writer corrupted the read? */
2412 goto reset;
2413
2414 memcpy(iter->event, event, length);
2415 /*
2416 * If the page stamp is still the same after this rmb() then the
2417 * event was safely copied without the writer entering the page.
2418 */
2419 smp_rmb();
2420
2421 /* Make sure the page didn't change since we read this */
2422 if (iter->page_stamp != iter_head_page->page->time_stamp ||
2423 commit > rb_page_commit(iter_head_page))
2424 goto reset;
2425
2426 iter->next_event = iter->head + length;
2427 return iter->event;
2428 reset:
2429 /* Reset to the beginning */
2430 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2431 iter->head = 0;
2432 iter->next_event = 0;
2433 iter->missed_events = 1;
2434 return NULL;
2435 }
2436
2437 /* Size is determined by what has been committed */
2438 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2439 {
2440 return rb_page_commit(bpage);
2441 }
2442
2443 static __always_inline unsigned
2444 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2445 {
2446 return rb_page_commit(cpu_buffer->commit_page);
2447 }
2448
2449 static __always_inline unsigned
2450 rb_event_index(struct ring_buffer_event *event)
2451 {
2452 unsigned long addr = (unsigned long)event;
2453
2454 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2455 }
2456
2457 static void rb_inc_iter(struct ring_buffer_iter *iter)
2458 {
2459 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2460
2461 /*
2462 * The iterator could be on the reader page (it starts there).
2463 * But the head could have moved, since the reader was
2464 * found. Check for this case and assign the iterator
2465 * to the head page instead of next.
2466 */
2467 if (iter->head_page == cpu_buffer->reader_page)
2468 iter->head_page = rb_set_head_page(cpu_buffer);
2469 else
2470 rb_inc_page(&iter->head_page);
2471
2472 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2473 iter->head = 0;
2474 iter->next_event = 0;
2475 }
2476
2477 /*
2478 * rb_handle_head_page - writer hit the head page
2479 *
2480 * Returns: +1 to retry page
2481 * 0 to continue
2482 * -1 on error
2483 */
2484 static int
2485 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2486 struct buffer_page *tail_page,
2487 struct buffer_page *next_page)
2488 {
2489 struct buffer_page *new_head;
2490 int entries;
2491 int type;
2492 int ret;
2493
2494 entries = rb_page_entries(next_page);
2495
2496 /*
2497 * The hard part is here. We need to move the head
2498 * forward, and protect against both readers on
2499 * other CPUs and writers coming in via interrupts.
2500 */
2501 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2502 RB_PAGE_HEAD);
2503
2504 /*
2505 * type can be one of four:
2506 * NORMAL - an interrupt already moved it for us
2507 * HEAD - we are the first to get here.
2508 * UPDATE - we are the interrupt interrupting
2509 * a current move.
2510 * MOVED - a reader on another CPU moved the next
2511 * pointer to its reader page. Give up
2512 * and try again.
2513 */
2514
2515 switch (type) {
2516 case RB_PAGE_HEAD:
2517 /*
2518 * We changed the head to UPDATE, thus
2519 * it is our responsibility to update
2520 * the counters.
2521 */
2522 local_add(entries, &cpu_buffer->overrun);
2523 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2524 local_inc(&cpu_buffer->pages_lost);
2525
2526 /*
2527 * The entries will be zeroed out when we move the
2528 * tail page.
2529 */
2530
2531 /* still more to do */
2532 break;
2533
2534 case RB_PAGE_UPDATE:
2535 /*
2536 * This is an interrupt that interrupt the
2537 * previous update. Still more to do.
2538 */
2539 break;
2540 case RB_PAGE_NORMAL:
2541 /*
2542 * An interrupt came in before the update
2543 * and processed this for us.
2544 * Nothing left to do.
2545 */
2546 return 1;
2547 case RB_PAGE_MOVED:
2548 /*
2549 * The reader is on another CPU and just did
2550 * a swap with our next_page.
2551 * Try again.
2552 */
2553 return 1;
2554 default:
2555 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2556 return -1;
2557 }
2558
2559 /*
2560 * Now that we are here, the old head pointer is
2561 * set to UPDATE. This will keep the reader from
2562 * swapping the head page with the reader page.
2563 * The reader (on another CPU) will spin till
2564 * we are finished.
2565 *
2566 * We just need to protect against interrupts
2567 * doing the job. We will set the next pointer
2568 * to HEAD. After that, we set the old pointer
2569 * to NORMAL, but only if it was HEAD before.
2570 * otherwise we are an interrupt, and only
2571 * want the outer most commit to reset it.
2572 */
2573 new_head = next_page;
2574 rb_inc_page(&new_head);
2575
2576 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2577 RB_PAGE_NORMAL);
2578
2579 /*
2580 * Valid returns are:
2581 * HEAD - an interrupt came in and already set it.
2582 * NORMAL - One of two things:
2583 * 1) We really set it.
2584 * 2) A bunch of interrupts came in and moved
2585 * the page forward again.
2586 */
2587 switch (ret) {
2588 case RB_PAGE_HEAD:
2589 case RB_PAGE_NORMAL:
2590 /* OK */
2591 break;
2592 default:
2593 RB_WARN_ON(cpu_buffer, 1);
2594 return -1;
2595 }
2596
2597 /*
2598 * It is possible that an interrupt came in,
2599 * set the head up, then more interrupts came in
2600 * and moved it again. When we get back here,
2601 * the page would have been set to NORMAL but we
2602 * just set it back to HEAD.
2603 *
2604 * How do you detect this? Well, if that happened
2605 * the tail page would have moved.
2606 */
2607 if (ret == RB_PAGE_NORMAL) {
2608 struct buffer_page *buffer_tail_page;
2609
2610 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2611 /*
2612 * If the tail had moved passed next, then we need
2613 * to reset the pointer.
2614 */
2615 if (buffer_tail_page != tail_page &&
2616 buffer_tail_page != next_page)
2617 rb_head_page_set_normal(cpu_buffer, new_head,
2618 next_page,
2619 RB_PAGE_HEAD);
2620 }
2621
2622 /*
2623 * If this was the outer most commit (the one that
2624 * changed the original pointer from HEAD to UPDATE),
2625 * then it is up to us to reset it to NORMAL.
2626 */
2627 if (type == RB_PAGE_HEAD) {
2628 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2629 tail_page,
2630 RB_PAGE_UPDATE);
2631 if (RB_WARN_ON(cpu_buffer,
2632 ret != RB_PAGE_UPDATE))
2633 return -1;
2634 }
2635
2636 return 0;
2637 }
2638
2639 static inline void
2640 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2641 unsigned long tail, struct rb_event_info *info)
2642 {
2643 struct buffer_page *tail_page = info->tail_page;
2644 struct ring_buffer_event *event;
2645 unsigned long length = info->length;
2646
2647 /*
2648 * Only the event that crossed the page boundary
2649 * must fill the old tail_page with padding.
2650 */
2651 if (tail >= BUF_PAGE_SIZE) {
2652 /*
2653 * If the page was filled, then we still need
2654 * to update the real_end. Reset it to zero
2655 * and the reader will ignore it.
2656 */
2657 if (tail == BUF_PAGE_SIZE)
2658 tail_page->real_end = 0;
2659
2660 local_sub(length, &tail_page->write);
2661 return;
2662 }
2663
2664 event = __rb_page_index(tail_page, tail);
2665
2666 /*
2667 * Save the original length to the meta data.
2668 * This will be used by the reader to add lost event
2669 * counter.
2670 */
2671 tail_page->real_end = tail;
2672
2673 /*
2674 * If this event is bigger than the minimum size, then
2675 * we need to be careful that we don't subtract the
2676 * write counter enough to allow another writer to slip
2677 * in on this page.
2678 * We put in a discarded commit instead, to make sure
2679 * that this space is not used again, and this space will
2680 * not be accounted into 'entries_bytes'.
2681 *
2682 * If we are less than the minimum size, we don't need to
2683 * worry about it.
2684 */
2685 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2686 /* No room for any events */
2687
2688 /* Mark the rest of the page with padding */
2689 rb_event_set_padding(event);
2690
2691 /* Make sure the padding is visible before the write update */
2692 smp_wmb();
2693
2694 /* Set the write back to the previous setting */
2695 local_sub(length, &tail_page->write);
2696 return;
2697 }
2698
2699 /* Put in a discarded event */
2700 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2701 event->type_len = RINGBUF_TYPE_PADDING;
2702 /* time delta must be non zero */
2703 event->time_delta = 1;
2704
2705 /* account for padding bytes */
2706 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2707
2708 /* Make sure the padding is visible before the tail_page->write update */
2709 smp_wmb();
2710
2711 /* Set write to end of buffer */
2712 length = (tail + length) - BUF_PAGE_SIZE;
2713 local_sub(length, &tail_page->write);
2714 }
2715
2716 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2717
2718 /*
2719 * This is the slow path, force gcc not to inline it.
2720 */
2721 static noinline struct ring_buffer_event *
2722 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2723 unsigned long tail, struct rb_event_info *info)
2724 {
2725 struct buffer_page *tail_page = info->tail_page;
2726 struct buffer_page *commit_page = cpu_buffer->commit_page;
2727 struct trace_buffer *buffer = cpu_buffer->buffer;
2728 struct buffer_page *next_page;
2729 int ret;
2730
2731 next_page = tail_page;
2732
2733 rb_inc_page(&next_page);
2734
2735 /*
2736 * If for some reason, we had an interrupt storm that made
2737 * it all the way around the buffer, bail, and warn
2738 * about it.
2739 */
2740 if (unlikely(next_page == commit_page)) {
2741 local_inc(&cpu_buffer->commit_overrun);
2742 goto out_reset;
2743 }
2744
2745 /*
2746 * This is where the fun begins!
2747 *
2748 * We are fighting against races between a reader that
2749 * could be on another CPU trying to swap its reader
2750 * page with the buffer head.
2751 *
2752 * We are also fighting against interrupts coming in and
2753 * moving the head or tail on us as well.
2754 *
2755 * If the next page is the head page then we have filled
2756 * the buffer, unless the commit page is still on the
2757 * reader page.
2758 */
2759 if (rb_is_head_page(next_page, &tail_page->list)) {
2760
2761 /*
2762 * If the commit is not on the reader page, then
2763 * move the header page.
2764 */
2765 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2766 /*
2767 * If we are not in overwrite mode,
2768 * this is easy, just stop here.
2769 */
2770 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2771 local_inc(&cpu_buffer->dropped_events);
2772 goto out_reset;
2773 }
2774
2775 ret = rb_handle_head_page(cpu_buffer,
2776 tail_page,
2777 next_page);
2778 if (ret < 0)
2779 goto out_reset;
2780 if (ret)
2781 goto out_again;
2782 } else {
2783 /*
2784 * We need to be careful here too. The
2785 * commit page could still be on the reader
2786 * page. We could have a small buffer, and
2787 * have filled up the buffer with events
2788 * from interrupts and such, and wrapped.
2789 *
2790 * Note, if the tail page is also on the
2791 * reader_page, we let it move out.
2792 */
2793 if (unlikely((cpu_buffer->commit_page !=
2794 cpu_buffer->tail_page) &&
2795 (cpu_buffer->commit_page ==
2796 cpu_buffer->reader_page))) {
2797 local_inc(&cpu_buffer->commit_overrun);
2798 goto out_reset;
2799 }
2800 }
2801 }
2802
2803 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2804
2805 out_again:
2806
2807 rb_reset_tail(cpu_buffer, tail, info);
2808
2809 /* Commit what we have for now. */
2810 rb_end_commit(cpu_buffer);
2811 /* rb_end_commit() decs committing */
2812 local_inc(&cpu_buffer->committing);
2813
2814 /* fail and let the caller try again */
2815 return ERR_PTR(-EAGAIN);
2816
2817 out_reset:
2818 /* reset write */
2819 rb_reset_tail(cpu_buffer, tail, info);
2820
2821 return NULL;
2822 }
2823
2824 /* Slow path */
2825 static struct ring_buffer_event *
2826 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2827 {
2828 if (abs)
2829 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2830 else
2831 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2832
2833 /* Not the first event on the page, or not delta? */
2834 if (abs || rb_event_index(event)) {
2835 event->time_delta = delta & TS_MASK;
2836 event->array[0] = delta >> TS_SHIFT;
2837 } else {
2838 /* nope, just zero it */
2839 event->time_delta = 0;
2840 event->array[0] = 0;
2841 }
2842
2843 return skip_time_extend(event);
2844 }
2845
2846 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2847 static inline bool sched_clock_stable(void)
2848 {
2849 return true;
2850 }
2851 #endif
2852
2853 static void
2854 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2855 struct rb_event_info *info)
2856 {
2857 u64 write_stamp;
2858
2859 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2860 (unsigned long long)info->delta,
2861 (unsigned long long)info->ts,
2862 (unsigned long long)info->before,
2863 (unsigned long long)info->after,
2864 (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2865 sched_clock_stable() ? "" :
2866 "If you just came from a suspend/resume,\n"
2867 "please switch to the trace global clock:\n"
2868 " echo global > /sys/kernel/tracing/trace_clock\n"
2869 "or add trace_clock=global to the kernel command line\n");
2870 }
2871
2872 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2873 struct ring_buffer_event **event,
2874 struct rb_event_info *info,
2875 u64 *delta,
2876 unsigned int *length)
2877 {
2878 bool abs = info->add_timestamp &
2879 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2880
2881 if (unlikely(info->delta > (1ULL << 59))) {
2882 /*
2883 * Some timers can use more than 59 bits, and when a timestamp
2884 * is added to the buffer, it will lose those bits.
2885 */
2886 if (abs && (info->ts & TS_MSB)) {
2887 info->delta &= ABS_TS_MASK;
2888
2889 /* did the clock go backwards */
2890 } else if (info->before == info->after && info->before > info->ts) {
2891 /* not interrupted */
2892 static int once;
2893
2894 /*
2895 * This is possible with a recalibrating of the TSC.
2896 * Do not produce a call stack, but just report it.
2897 */
2898 if (!once) {
2899 once++;
2900 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2901 info->before, info->ts);
2902 }
2903 } else
2904 rb_check_timestamp(cpu_buffer, info);
2905 if (!abs)
2906 info->delta = 0;
2907 }
2908 *event = rb_add_time_stamp(*event, info->delta, abs);
2909 *length -= RB_LEN_TIME_EXTEND;
2910 *delta = 0;
2911 }
2912
2913 /**
2914 * rb_update_event - update event type and data
2915 * @cpu_buffer: The per cpu buffer of the @event
2916 * @event: the event to update
2917 * @info: The info to update the @event with (contains length and delta)
2918 *
2919 * Update the type and data fields of the @event. The length
2920 * is the actual size that is written to the ring buffer,
2921 * and with this, we can determine what to place into the
2922 * data field.
2923 */
2924 static void
2925 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2926 struct ring_buffer_event *event,
2927 struct rb_event_info *info)
2928 {
2929 unsigned length = info->length;
2930 u64 delta = info->delta;
2931 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2932
2933 if (!WARN_ON_ONCE(nest >= MAX_NEST))
2934 cpu_buffer->event_stamp[nest] = info->ts;
2935
2936 /*
2937 * If we need to add a timestamp, then we
2938 * add it to the start of the reserved space.
2939 */
2940 if (unlikely(info->add_timestamp))
2941 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2942
2943 event->time_delta = delta;
2944 length -= RB_EVNT_HDR_SIZE;
2945 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2946 event->type_len = 0;
2947 event->array[0] = length;
2948 } else
2949 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2950 }
2951
2952 static unsigned rb_calculate_event_length(unsigned length)
2953 {
2954 struct ring_buffer_event event; /* Used only for sizeof array */
2955
2956 /* zero length can cause confusions */
2957 if (!length)
2958 length++;
2959
2960 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2961 length += sizeof(event.array[0]);
2962
2963 length += RB_EVNT_HDR_SIZE;
2964 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2965
2966 /*
2967 * In case the time delta is larger than the 27 bits for it
2968 * in the header, we need to add a timestamp. If another
2969 * event comes in when trying to discard this one to increase
2970 * the length, then the timestamp will be added in the allocated
2971 * space of this event. If length is bigger than the size needed
2972 * for the TIME_EXTEND, then padding has to be used. The events
2973 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2974 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2975 * As length is a multiple of 4, we only need to worry if it
2976 * is 12 (RB_LEN_TIME_EXTEND + 4).
2977 */
2978 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2979 length += RB_ALIGNMENT;
2980
2981 return length;
2982 }
2983
2984 static u64 rb_time_delta(struct ring_buffer_event *event)
2985 {
2986 switch (event->type_len) {
2987 case RINGBUF_TYPE_PADDING:
2988 return 0;
2989
2990 case RINGBUF_TYPE_TIME_EXTEND:
2991 return rb_event_time_stamp(event);
2992
2993 case RINGBUF_TYPE_TIME_STAMP:
2994 return 0;
2995
2996 case RINGBUF_TYPE_DATA:
2997 return event->time_delta;
2998 default:
2999 return 0;
3000 }
3001 }
3002
3003 static inline bool
3004 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3005 struct ring_buffer_event *event)
3006 {
3007 unsigned long new_index, old_index;
3008 struct buffer_page *bpage;
3009 unsigned long addr;
3010 u64 write_stamp;
3011 u64 delta;
3012
3013 new_index = rb_event_index(event);
3014 old_index = new_index + rb_event_ts_length(event);
3015 addr = (unsigned long)event;
3016 addr &= PAGE_MASK;
3017
3018 bpage = READ_ONCE(cpu_buffer->tail_page);
3019
3020 delta = rb_time_delta(event);
3021
3022 if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3023 return false;
3024
3025 /* Make sure the write stamp is read before testing the location */
3026 barrier();
3027
3028 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3029 unsigned long write_mask =
3030 local_read(&bpage->write) & ~RB_WRITE_MASK;
3031 unsigned long event_length = rb_event_length(event);
3032
3033 /* Something came in, can't discard */
3034 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3035 write_stamp, write_stamp - delta))
3036 return false;
3037
3038 /*
3039 * It's possible that the event time delta is zero
3040 * (has the same time stamp as the previous event)
3041 * in which case write_stamp and before_stamp could
3042 * be the same. In such a case, force before_stamp
3043 * to be different than write_stamp. It doesn't
3044 * matter what it is, as long as its different.
3045 */
3046 if (!delta)
3047 rb_time_set(&cpu_buffer->before_stamp, 0);
3048
3049 /*
3050 * If an event were to come in now, it would see that the
3051 * write_stamp and the before_stamp are different, and assume
3052 * that this event just added itself before updating
3053 * the write stamp. The interrupting event will fix the
3054 * write stamp for us, and use the before stamp as its delta.
3055 */
3056
3057 /*
3058 * This is on the tail page. It is possible that
3059 * a write could come in and move the tail page
3060 * and write to the next page. That is fine
3061 * because we just shorten what is on this page.
3062 */
3063 old_index += write_mask;
3064 new_index += write_mask;
3065
3066 /* caution: old_index gets updated on cmpxchg failure */
3067 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3068 /* update counters */
3069 local_sub(event_length, &cpu_buffer->entries_bytes);
3070 return true;
3071 }
3072 }
3073
3074 /* could not discard */
3075 return false;
3076 }
3077
3078 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3079 {
3080 local_inc(&cpu_buffer->committing);
3081 local_inc(&cpu_buffer->commits);
3082 }
3083
3084 static __always_inline void
3085 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3086 {
3087 unsigned long max_count;
3088
3089 /*
3090 * We only race with interrupts and NMIs on this CPU.
3091 * If we own the commit event, then we can commit
3092 * all others that interrupted us, since the interruptions
3093 * are in stack format (they finish before they come
3094 * back to us). This allows us to do a simple loop to
3095 * assign the commit to the tail.
3096 */
3097 again:
3098 max_count = cpu_buffer->nr_pages * 100;
3099
3100 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3101 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3102 return;
3103 if (RB_WARN_ON(cpu_buffer,
3104 rb_is_reader_page(cpu_buffer->tail_page)))
3105 return;
3106 /*
3107 * No need for a memory barrier here, as the update
3108 * of the tail_page did it for this page.
3109 */
3110 local_set(&cpu_buffer->commit_page->page->commit,
3111 rb_page_write(cpu_buffer->commit_page));
3112 rb_inc_page(&cpu_buffer->commit_page);
3113 /* add barrier to keep gcc from optimizing too much */
3114 barrier();
3115 }
3116 while (rb_commit_index(cpu_buffer) !=
3117 rb_page_write(cpu_buffer->commit_page)) {
3118
3119 /* Make sure the readers see the content of what is committed. */
3120 smp_wmb();
3121 local_set(&cpu_buffer->commit_page->page->commit,
3122 rb_page_write(cpu_buffer->commit_page));
3123 RB_WARN_ON(cpu_buffer,
3124 local_read(&cpu_buffer->commit_page->page->commit) &
3125 ~RB_WRITE_MASK);
3126 barrier();
3127 }
3128
3129 /* again, keep gcc from optimizing */
3130 barrier();
3131
3132 /*
3133 * If an interrupt came in just after the first while loop
3134 * and pushed the tail page forward, we will be left with
3135 * a dangling commit that will never go forward.
3136 */
3137 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3138 goto again;
3139 }
3140
3141 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3142 {
3143 unsigned long commits;
3144
3145 if (RB_WARN_ON(cpu_buffer,
3146 !local_read(&cpu_buffer->committing)))
3147 return;
3148
3149 again:
3150 commits = local_read(&cpu_buffer->commits);
3151 /* synchronize with interrupts */
3152 barrier();
3153 if (local_read(&cpu_buffer->committing) == 1)
3154 rb_set_commit_to_write(cpu_buffer);
3155
3156 local_dec(&cpu_buffer->committing);
3157
3158 /* synchronize with interrupts */
3159 barrier();
3160
3161 /*
3162 * Need to account for interrupts coming in between the
3163 * updating of the commit page and the clearing of the
3164 * committing counter.
3165 */
3166 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3167 !local_read(&cpu_buffer->committing)) {
3168 local_inc(&cpu_buffer->committing);
3169 goto again;
3170 }
3171 }
3172
3173 static inline void rb_event_discard(struct ring_buffer_event *event)
3174 {
3175 if (extended_time(event))
3176 event = skip_time_extend(event);
3177
3178 /* array[0] holds the actual length for the discarded event */
3179 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3180 event->type_len = RINGBUF_TYPE_PADDING;
3181 /* time delta must be non zero */
3182 if (!event->time_delta)
3183 event->time_delta = 1;
3184 }
3185
3186 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3187 {
3188 local_inc(&cpu_buffer->entries);
3189 rb_end_commit(cpu_buffer);
3190 }
3191
3192 static __always_inline void
3193 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3194 {
3195 if (buffer->irq_work.waiters_pending) {
3196 buffer->irq_work.waiters_pending = false;
3197 /* irq_work_queue() supplies it's own memory barriers */
3198 irq_work_queue(&buffer->irq_work.work);
3199 }
3200
3201 if (cpu_buffer->irq_work.waiters_pending) {
3202 cpu_buffer->irq_work.waiters_pending = false;
3203 /* irq_work_queue() supplies it's own memory barriers */
3204 irq_work_queue(&cpu_buffer->irq_work.work);
3205 }
3206
3207 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3208 return;
3209
3210 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3211 return;
3212
3213 if (!cpu_buffer->irq_work.full_waiters_pending)
3214 return;
3215
3216 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3217
3218 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3219 return;
3220
3221 cpu_buffer->irq_work.wakeup_full = true;
3222 cpu_buffer->irq_work.full_waiters_pending = false;
3223 /* irq_work_queue() supplies it's own memory barriers */
3224 irq_work_queue(&cpu_buffer->irq_work.work);
3225 }
3226
3227 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3228 # define do_ring_buffer_record_recursion() \
3229 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3230 #else
3231 # define do_ring_buffer_record_recursion() do { } while (0)
3232 #endif
3233
3234 /*
3235 * The lock and unlock are done within a preempt disable section.
3236 * The current_context per_cpu variable can only be modified
3237 * by the current task between lock and unlock. But it can
3238 * be modified more than once via an interrupt. To pass this
3239 * information from the lock to the unlock without having to
3240 * access the 'in_interrupt()' functions again (which do show
3241 * a bit of overhead in something as critical as function tracing,
3242 * we use a bitmask trick.
3243 *
3244 * bit 1 = NMI context
3245 * bit 2 = IRQ context
3246 * bit 3 = SoftIRQ context
3247 * bit 4 = normal context.
3248 *
3249 * This works because this is the order of contexts that can
3250 * preempt other contexts. A SoftIRQ never preempts an IRQ
3251 * context.
3252 *
3253 * When the context is determined, the corresponding bit is
3254 * checked and set (if it was set, then a recursion of that context
3255 * happened).
3256 *
3257 * On unlock, we need to clear this bit. To do so, just subtract
3258 * 1 from the current_context and AND it to itself.
3259 *
3260 * (binary)
3261 * 101 - 1 = 100
3262 * 101 & 100 = 100 (clearing bit zero)
3263 *
3264 * 1010 - 1 = 1001
3265 * 1010 & 1001 = 1000 (clearing bit 1)
3266 *
3267 * The least significant bit can be cleared this way, and it
3268 * just so happens that it is the same bit corresponding to
3269 * the current context.
3270 *
3271 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3272 * is set when a recursion is detected at the current context, and if
3273 * the TRANSITION bit is already set, it will fail the recursion.
3274 * This is needed because there's a lag between the changing of
3275 * interrupt context and updating the preempt count. In this case,
3276 * a false positive will be found. To handle this, one extra recursion
3277 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3278 * bit is already set, then it is considered a recursion and the function
3279 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3280 *
3281 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3282 * to be cleared. Even if it wasn't the context that set it. That is,
3283 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3284 * is called before preempt_count() is updated, since the check will
3285 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3286 * NMI then comes in, it will set the NMI bit, but when the NMI code
3287 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3288 * and leave the NMI bit set. But this is fine, because the interrupt
3289 * code that set the TRANSITION bit will then clear the NMI bit when it
3290 * calls trace_recursive_unlock(). If another NMI comes in, it will
3291 * set the TRANSITION bit and continue.
3292 *
3293 * Note: The TRANSITION bit only handles a single transition between context.
3294 */
3295
3296 static __always_inline bool
3297 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3298 {
3299 unsigned int val = cpu_buffer->current_context;
3300 int bit = interrupt_context_level();
3301
3302 bit = RB_CTX_NORMAL - bit;
3303
3304 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3305 /*
3306 * It is possible that this was called by transitioning
3307 * between interrupt context, and preempt_count() has not
3308 * been updated yet. In this case, use the TRANSITION bit.
3309 */
3310 bit = RB_CTX_TRANSITION;
3311 if (val & (1 << (bit + cpu_buffer->nest))) {
3312 do_ring_buffer_record_recursion();
3313 return true;
3314 }
3315 }
3316
3317 val |= (1 << (bit + cpu_buffer->nest));
3318 cpu_buffer->current_context = val;
3319
3320 return false;
3321 }
3322
3323 static __always_inline void
3324 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3325 {
3326 cpu_buffer->current_context &=
3327 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3328 }
3329
3330 /* The recursive locking above uses 5 bits */
3331 #define NESTED_BITS 5
3332
3333 /**
3334 * ring_buffer_nest_start - Allow to trace while nested
3335 * @buffer: The ring buffer to modify
3336 *
3337 * The ring buffer has a safety mechanism to prevent recursion.
3338 * But there may be a case where a trace needs to be done while
3339 * tracing something else. In this case, calling this function
3340 * will allow this function to nest within a currently active
3341 * ring_buffer_lock_reserve().
3342 *
3343 * Call this function before calling another ring_buffer_lock_reserve() and
3344 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3345 */
3346 void ring_buffer_nest_start(struct trace_buffer *buffer)
3347 {
3348 struct ring_buffer_per_cpu *cpu_buffer;
3349 int cpu;
3350
3351 /* Enabled by ring_buffer_nest_end() */
3352 preempt_disable_notrace();
3353 cpu = raw_smp_processor_id();
3354 cpu_buffer = buffer->buffers[cpu];
3355 /* This is the shift value for the above recursive locking */
3356 cpu_buffer->nest += NESTED_BITS;
3357 }
3358
3359 /**
3360 * ring_buffer_nest_end - Allow to trace while nested
3361 * @buffer: The ring buffer to modify
3362 *
3363 * Must be called after ring_buffer_nest_start() and after the
3364 * ring_buffer_unlock_commit().
3365 */
3366 void ring_buffer_nest_end(struct trace_buffer *buffer)
3367 {
3368 struct ring_buffer_per_cpu *cpu_buffer;
3369 int cpu;
3370
3371 /* disabled by ring_buffer_nest_start() */
3372 cpu = raw_smp_processor_id();
3373 cpu_buffer = buffer->buffers[cpu];
3374 /* This is the shift value for the above recursive locking */
3375 cpu_buffer->nest -= NESTED_BITS;
3376 preempt_enable_notrace();
3377 }
3378
3379 /**
3380 * ring_buffer_unlock_commit - commit a reserved
3381 * @buffer: The buffer to commit to
3382 *
3383 * This commits the data to the ring buffer, and releases any locks held.
3384 *
3385 * Must be paired with ring_buffer_lock_reserve.
3386 */
3387 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3388 {
3389 struct ring_buffer_per_cpu *cpu_buffer;
3390 int cpu = raw_smp_processor_id();
3391
3392 cpu_buffer = buffer->buffers[cpu];
3393
3394 rb_commit(cpu_buffer);
3395
3396 rb_wakeups(buffer, cpu_buffer);
3397
3398 trace_recursive_unlock(cpu_buffer);
3399
3400 preempt_enable_notrace();
3401
3402 return 0;
3403 }
3404 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3405
3406 /* Special value to validate all deltas on a page. */
3407 #define CHECK_FULL_PAGE 1L
3408
3409 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3410 static void dump_buffer_page(struct buffer_data_page *bpage,
3411 struct rb_event_info *info,
3412 unsigned long tail)
3413 {
3414 struct ring_buffer_event *event;
3415 u64 ts, delta;
3416 int e;
3417
3418 ts = bpage->time_stamp;
3419 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
3420
3421 for (e = 0; e < tail; e += rb_event_length(event)) {
3422
3423 event = (struct ring_buffer_event *)(bpage->data + e);
3424
3425 switch (event->type_len) {
3426
3427 case RINGBUF_TYPE_TIME_EXTEND:
3428 delta = rb_event_time_stamp(event);
3429 ts += delta;
3430 pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3431 break;
3432
3433 case RINGBUF_TYPE_TIME_STAMP:
3434 delta = rb_event_time_stamp(event);
3435 ts = rb_fix_abs_ts(delta, ts);
3436 pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3437 break;
3438
3439 case RINGBUF_TYPE_PADDING:
3440 ts += event->time_delta;
3441 pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta);
3442 break;
3443
3444 case RINGBUF_TYPE_DATA:
3445 ts += event->time_delta;
3446 pr_warn(" [%lld] delta:%d\n", ts, event->time_delta);
3447 break;
3448
3449 default:
3450 break;
3451 }
3452 }
3453 }
3454
3455 static DEFINE_PER_CPU(atomic_t, checking);
3456 static atomic_t ts_dump;
3457
3458 /*
3459 * Check if the current event time stamp matches the deltas on
3460 * the buffer page.
3461 */
3462 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3463 struct rb_event_info *info,
3464 unsigned long tail)
3465 {
3466 struct ring_buffer_event *event;
3467 struct buffer_data_page *bpage;
3468 u64 ts, delta;
3469 bool full = false;
3470 int e;
3471
3472 bpage = info->tail_page->page;
3473
3474 if (tail == CHECK_FULL_PAGE) {
3475 full = true;
3476 tail = local_read(&bpage->commit);
3477 } else if (info->add_timestamp &
3478 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3479 /* Ignore events with absolute time stamps */
3480 return;
3481 }
3482
3483 /*
3484 * Do not check the first event (skip possible extends too).
3485 * Also do not check if previous events have not been committed.
3486 */
3487 if (tail <= 8 || tail > local_read(&bpage->commit))
3488 return;
3489
3490 /*
3491 * If this interrupted another event,
3492 */
3493 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3494 goto out;
3495
3496 ts = bpage->time_stamp;
3497
3498 for (e = 0; e < tail; e += rb_event_length(event)) {
3499
3500 event = (struct ring_buffer_event *)(bpage->data + e);
3501
3502 switch (event->type_len) {
3503
3504 case RINGBUF_TYPE_TIME_EXTEND:
3505 delta = rb_event_time_stamp(event);
3506 ts += delta;
3507 break;
3508
3509 case RINGBUF_TYPE_TIME_STAMP:
3510 delta = rb_event_time_stamp(event);
3511 ts = rb_fix_abs_ts(delta, ts);
3512 break;
3513
3514 case RINGBUF_TYPE_PADDING:
3515 if (event->time_delta == 1)
3516 break;
3517 fallthrough;
3518 case RINGBUF_TYPE_DATA:
3519 ts += event->time_delta;
3520 break;
3521
3522 default:
3523 RB_WARN_ON(cpu_buffer, 1);
3524 }
3525 }
3526 if ((full && ts > info->ts) ||
3527 (!full && ts + info->delta != info->ts)) {
3528 /* If another report is happening, ignore this one */
3529 if (atomic_inc_return(&ts_dump) != 1) {
3530 atomic_dec(&ts_dump);
3531 goto out;
3532 }
3533 atomic_inc(&cpu_buffer->record_disabled);
3534 /* There's some cases in boot up that this can happen */
3535 WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3536 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3537 cpu_buffer->cpu,
3538 ts + info->delta, info->ts, info->delta,
3539 info->before, info->after,
3540 full ? " (full)" : "");
3541 dump_buffer_page(bpage, info, tail);
3542 atomic_dec(&ts_dump);
3543 /* Do not re-enable checking */
3544 return;
3545 }
3546 out:
3547 atomic_dec(this_cpu_ptr(&checking));
3548 }
3549 #else
3550 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3551 struct rb_event_info *info,
3552 unsigned long tail)
3553 {
3554 }
3555 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3556
3557 static struct ring_buffer_event *
3558 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3559 struct rb_event_info *info)
3560 {
3561 struct ring_buffer_event *event;
3562 struct buffer_page *tail_page;
3563 unsigned long tail, write, w;
3564 bool a_ok;
3565 bool b_ok;
3566
3567 /* Don't let the compiler play games with cpu_buffer->tail_page */
3568 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3569
3570 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
3571 barrier();
3572 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3573 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3574 barrier();
3575 info->ts = rb_time_stamp(cpu_buffer->buffer);
3576
3577 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3578 info->delta = info->ts;
3579 } else {
3580 /*
3581 * If interrupting an event time update, we may need an
3582 * absolute timestamp.
3583 * Don't bother if this is the start of a new page (w == 0).
3584 */
3585 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3586 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3587 info->length += RB_LEN_TIME_EXTEND;
3588 } else {
3589 info->delta = info->ts - info->after;
3590 if (unlikely(test_time_stamp(info->delta))) {
3591 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3592 info->length += RB_LEN_TIME_EXTEND;
3593 }
3594 }
3595 }
3596
3597 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
3598
3599 /*C*/ write = local_add_return(info->length, &tail_page->write);
3600
3601 /* set write to only the index of the write */
3602 write &= RB_WRITE_MASK;
3603
3604 tail = write - info->length;
3605
3606 /* See if we shot pass the end of this buffer page */
3607 if (unlikely(write > BUF_PAGE_SIZE)) {
3608 /* before and after may now different, fix it up*/
3609 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3610 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3611 if (a_ok && b_ok && info->before != info->after)
3612 (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3613 info->before, info->after);
3614 if (a_ok && b_ok)
3615 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3616 return rb_move_tail(cpu_buffer, tail, info);
3617 }
3618
3619 if (likely(tail == w)) {
3620 u64 save_before;
3621 bool s_ok;
3622
3623 /* Nothing interrupted us between A and C */
3624 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
3625 barrier();
3626 /*E*/ s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3627 RB_WARN_ON(cpu_buffer, !s_ok);
3628 if (likely(!(info->add_timestamp &
3629 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3630 /* This did not interrupt any time update */
3631 info->delta = info->ts - info->after;
3632 else
3633 /* Just use full timestamp for interrupting event */
3634 info->delta = info->ts;
3635 barrier();
3636 check_buffer(cpu_buffer, info, tail);
3637 if (unlikely(info->ts != save_before)) {
3638 /* SLOW PATH - Interrupted between C and E */
3639
3640 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3641 RB_WARN_ON(cpu_buffer, !a_ok);
3642
3643 /* Write stamp must only go forward */
3644 if (save_before > info->after) {
3645 /*
3646 * We do not care about the result, only that
3647 * it gets updated atomically.
3648 */
3649 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3650 info->after, save_before);
3651 }
3652 }
3653 } else {
3654 u64 ts;
3655 /* SLOW PATH - Interrupted between A and C */
3656 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3657 /* Was interrupted before here, write_stamp must be valid */
3658 RB_WARN_ON(cpu_buffer, !a_ok);
3659 ts = rb_time_stamp(cpu_buffer->buffer);
3660 barrier();
3661 /*E*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3662 info->after < ts &&
3663 rb_time_cmpxchg(&cpu_buffer->write_stamp,
3664 info->after, ts)) {
3665 /* Nothing came after this event between C and E */
3666 info->delta = ts - info->after;
3667 } else {
3668 /*
3669 * Interrupted between C and E:
3670 * Lost the previous events time stamp. Just set the
3671 * delta to zero, and this will be the same time as
3672 * the event this event interrupted. And the events that
3673 * came after this will still be correct (as they would
3674 * have built their delta on the previous event.
3675 */
3676 info->delta = 0;
3677 }
3678 info->ts = ts;
3679 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3680 }
3681
3682 /*
3683 * If this is the first commit on the page, then it has the same
3684 * timestamp as the page itself.
3685 */
3686 if (unlikely(!tail && !(info->add_timestamp &
3687 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3688 info->delta = 0;
3689
3690 /* We reserved something on the buffer */
3691
3692 event = __rb_page_index(tail_page, tail);
3693 rb_update_event(cpu_buffer, event, info);
3694
3695 local_inc(&tail_page->entries);
3696
3697 /*
3698 * If this is the first commit on the page, then update
3699 * its timestamp.
3700 */
3701 if (unlikely(!tail))
3702 tail_page->page->time_stamp = info->ts;
3703
3704 /* account for these added bytes */
3705 local_add(info->length, &cpu_buffer->entries_bytes);
3706
3707 return event;
3708 }
3709
3710 static __always_inline struct ring_buffer_event *
3711 rb_reserve_next_event(struct trace_buffer *buffer,
3712 struct ring_buffer_per_cpu *cpu_buffer,
3713 unsigned long length)
3714 {
3715 struct ring_buffer_event *event;
3716 struct rb_event_info info;
3717 int nr_loops = 0;
3718 int add_ts_default;
3719
3720 rb_start_commit(cpu_buffer);
3721 /* The commit page can not change after this */
3722
3723 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3724 /*
3725 * Due to the ability to swap a cpu buffer from a buffer
3726 * it is possible it was swapped before we committed.
3727 * (committing stops a swap). We check for it here and
3728 * if it happened, we have to fail the write.
3729 */
3730 barrier();
3731 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3732 local_dec(&cpu_buffer->committing);
3733 local_dec(&cpu_buffer->commits);
3734 return NULL;
3735 }
3736 #endif
3737
3738 info.length = rb_calculate_event_length(length);
3739
3740 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3741 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3742 info.length += RB_LEN_TIME_EXTEND;
3743 } else {
3744 add_ts_default = RB_ADD_STAMP_NONE;
3745 }
3746
3747 again:
3748 info.add_timestamp = add_ts_default;
3749 info.delta = 0;
3750
3751 /*
3752 * We allow for interrupts to reenter here and do a trace.
3753 * If one does, it will cause this original code to loop
3754 * back here. Even with heavy interrupts happening, this
3755 * should only happen a few times in a row. If this happens
3756 * 1000 times in a row, there must be either an interrupt
3757 * storm or we have something buggy.
3758 * Bail!
3759 */
3760 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3761 goto out_fail;
3762
3763 event = __rb_reserve_next(cpu_buffer, &info);
3764
3765 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3766 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3767 info.length -= RB_LEN_TIME_EXTEND;
3768 goto again;
3769 }
3770
3771 if (likely(event))
3772 return event;
3773 out_fail:
3774 rb_end_commit(cpu_buffer);
3775 return NULL;
3776 }
3777
3778 /**
3779 * ring_buffer_lock_reserve - reserve a part of the buffer
3780 * @buffer: the ring buffer to reserve from
3781 * @length: the length of the data to reserve (excluding event header)
3782 *
3783 * Returns a reserved event on the ring buffer to copy directly to.
3784 * The user of this interface will need to get the body to write into
3785 * and can use the ring_buffer_event_data() interface.
3786 *
3787 * The length is the length of the data needed, not the event length
3788 * which also includes the event header.
3789 *
3790 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3791 * If NULL is returned, then nothing has been allocated or locked.
3792 */
3793 struct ring_buffer_event *
3794 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3795 {
3796 struct ring_buffer_per_cpu *cpu_buffer;
3797 struct ring_buffer_event *event;
3798 int cpu;
3799
3800 /* If we are tracing schedule, we don't want to recurse */
3801 preempt_disable_notrace();
3802
3803 if (unlikely(atomic_read(&buffer->record_disabled)))
3804 goto out;
3805
3806 cpu = raw_smp_processor_id();
3807
3808 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3809 goto out;
3810
3811 cpu_buffer = buffer->buffers[cpu];
3812
3813 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3814 goto out;
3815
3816 if (unlikely(length > BUF_MAX_DATA_SIZE))
3817 goto out;
3818
3819 if (unlikely(trace_recursive_lock(cpu_buffer)))
3820 goto out;
3821
3822 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3823 if (!event)
3824 goto out_unlock;
3825
3826 return event;
3827
3828 out_unlock:
3829 trace_recursive_unlock(cpu_buffer);
3830 out:
3831 preempt_enable_notrace();
3832 return NULL;
3833 }
3834 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3835
3836 /*
3837 * Decrement the entries to the page that an event is on.
3838 * The event does not even need to exist, only the pointer
3839 * to the page it is on. This may only be called before the commit
3840 * takes place.
3841 */
3842 static inline void
3843 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3844 struct ring_buffer_event *event)
3845 {
3846 unsigned long addr = (unsigned long)event;
3847 struct buffer_page *bpage = cpu_buffer->commit_page;
3848 struct buffer_page *start;
3849
3850 addr &= PAGE_MASK;
3851
3852 /* Do the likely case first */
3853 if (likely(bpage->page == (void *)addr)) {
3854 local_dec(&bpage->entries);
3855 return;
3856 }
3857
3858 /*
3859 * Because the commit page may be on the reader page we
3860 * start with the next page and check the end loop there.
3861 */
3862 rb_inc_page(&bpage);
3863 start = bpage;
3864 do {
3865 if (bpage->page == (void *)addr) {
3866 local_dec(&bpage->entries);
3867 return;
3868 }
3869 rb_inc_page(&bpage);
3870 } while (bpage != start);
3871
3872 /* commit not part of this buffer?? */
3873 RB_WARN_ON(cpu_buffer, 1);
3874 }
3875
3876 /**
3877 * ring_buffer_discard_commit - discard an event that has not been committed
3878 * @buffer: the ring buffer
3879 * @event: non committed event to discard
3880 *
3881 * Sometimes an event that is in the ring buffer needs to be ignored.
3882 * This function lets the user discard an event in the ring buffer
3883 * and then that event will not be read later.
3884 *
3885 * This function only works if it is called before the item has been
3886 * committed. It will try to free the event from the ring buffer
3887 * if another event has not been added behind it.
3888 *
3889 * If another event has been added behind it, it will set the event
3890 * up as discarded, and perform the commit.
3891 *
3892 * If this function is called, do not call ring_buffer_unlock_commit on
3893 * the event.
3894 */
3895 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3896 struct ring_buffer_event *event)
3897 {
3898 struct ring_buffer_per_cpu *cpu_buffer;
3899 int cpu;
3900
3901 /* The event is discarded regardless */
3902 rb_event_discard(event);
3903
3904 cpu = smp_processor_id();
3905 cpu_buffer = buffer->buffers[cpu];
3906
3907 /*
3908 * This must only be called if the event has not been
3909 * committed yet. Thus we can assume that preemption
3910 * is still disabled.
3911 */
3912 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3913
3914 rb_decrement_entry(cpu_buffer, event);
3915 if (rb_try_to_discard(cpu_buffer, event))
3916 goto out;
3917
3918 out:
3919 rb_end_commit(cpu_buffer);
3920
3921 trace_recursive_unlock(cpu_buffer);
3922
3923 preempt_enable_notrace();
3924
3925 }
3926 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3927
3928 /**
3929 * ring_buffer_write - write data to the buffer without reserving
3930 * @buffer: The ring buffer to write to.
3931 * @length: The length of the data being written (excluding the event header)
3932 * @data: The data to write to the buffer.
3933 *
3934 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3935 * one function. If you already have the data to write to the buffer, it
3936 * may be easier to simply call this function.
3937 *
3938 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3939 * and not the length of the event which would hold the header.
3940 */
3941 int ring_buffer_write(struct trace_buffer *buffer,
3942 unsigned long length,
3943 void *data)
3944 {
3945 struct ring_buffer_per_cpu *cpu_buffer;
3946 struct ring_buffer_event *event;
3947 void *body;
3948 int ret = -EBUSY;
3949 int cpu;
3950
3951 preempt_disable_notrace();
3952
3953 if (atomic_read(&buffer->record_disabled))
3954 goto out;
3955
3956 cpu = raw_smp_processor_id();
3957
3958 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3959 goto out;
3960
3961 cpu_buffer = buffer->buffers[cpu];
3962
3963 if (atomic_read(&cpu_buffer->record_disabled))
3964 goto out;
3965
3966 if (length > BUF_MAX_DATA_SIZE)
3967 goto out;
3968
3969 if (unlikely(trace_recursive_lock(cpu_buffer)))
3970 goto out;
3971
3972 event = rb_reserve_next_event(buffer, cpu_buffer, length);
3973 if (!event)
3974 goto out_unlock;
3975
3976 body = rb_event_data(event);
3977
3978 memcpy(body, data, length);
3979
3980 rb_commit(cpu_buffer);
3981
3982 rb_wakeups(buffer, cpu_buffer);
3983
3984 ret = 0;
3985
3986 out_unlock:
3987 trace_recursive_unlock(cpu_buffer);
3988
3989 out:
3990 preempt_enable_notrace();
3991
3992 return ret;
3993 }
3994 EXPORT_SYMBOL_GPL(ring_buffer_write);
3995
3996 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3997 {
3998 struct buffer_page *reader = cpu_buffer->reader_page;
3999 struct buffer_page *head = rb_set_head_page(cpu_buffer);
4000 struct buffer_page *commit = cpu_buffer->commit_page;
4001
4002 /* In case of error, head will be NULL */
4003 if (unlikely(!head))
4004 return true;
4005
4006 /* Reader should exhaust content in reader page */
4007 if (reader->read != rb_page_commit(reader))
4008 return false;
4009
4010 /*
4011 * If writers are committing on the reader page, knowing all
4012 * committed content has been read, the ring buffer is empty.
4013 */
4014 if (commit == reader)
4015 return true;
4016
4017 /*
4018 * If writers are committing on a page other than reader page
4019 * and head page, there should always be content to read.
4020 */
4021 if (commit != head)
4022 return false;
4023
4024 /*
4025 * Writers are committing on the head page, we just need
4026 * to care about there're committed data, and the reader will
4027 * swap reader page with head page when it is to read data.
4028 */
4029 return rb_page_commit(commit) == 0;
4030 }
4031
4032 /**
4033 * ring_buffer_record_disable - stop all writes into the buffer
4034 * @buffer: The ring buffer to stop writes to.
4035 *
4036 * This prevents all writes to the buffer. Any attempt to write
4037 * to the buffer after this will fail and return NULL.
4038 *
4039 * The caller should call synchronize_rcu() after this.
4040 */
4041 void ring_buffer_record_disable(struct trace_buffer *buffer)
4042 {
4043 atomic_inc(&buffer->record_disabled);
4044 }
4045 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4046
4047 /**
4048 * ring_buffer_record_enable - enable writes to the buffer
4049 * @buffer: The ring buffer to enable writes
4050 *
4051 * Note, multiple disables will need the same number of enables
4052 * to truly enable the writing (much like preempt_disable).
4053 */
4054 void ring_buffer_record_enable(struct trace_buffer *buffer)
4055 {
4056 atomic_dec(&buffer->record_disabled);
4057 }
4058 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4059
4060 /**
4061 * ring_buffer_record_off - stop all writes into the buffer
4062 * @buffer: The ring buffer to stop writes to.
4063 *
4064 * This prevents all writes to the buffer. Any attempt to write
4065 * to the buffer after this will fail and return NULL.
4066 *
4067 * This is different than ring_buffer_record_disable() as
4068 * it works like an on/off switch, where as the disable() version
4069 * must be paired with a enable().
4070 */
4071 void ring_buffer_record_off(struct trace_buffer *buffer)
4072 {
4073 unsigned int rd;
4074 unsigned int new_rd;
4075
4076 rd = atomic_read(&buffer->record_disabled);
4077 do {
4078 new_rd = rd | RB_BUFFER_OFF;
4079 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4080 }
4081 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4082
4083 /**
4084 * ring_buffer_record_on - restart writes into the buffer
4085 * @buffer: The ring buffer to start writes to.
4086 *
4087 * This enables all writes to the buffer that was disabled by
4088 * ring_buffer_record_off().
4089 *
4090 * This is different than ring_buffer_record_enable() as
4091 * it works like an on/off switch, where as the enable() version
4092 * must be paired with a disable().
4093 */
4094 void ring_buffer_record_on(struct trace_buffer *buffer)
4095 {
4096 unsigned int rd;
4097 unsigned int new_rd;
4098
4099 rd = atomic_read(&buffer->record_disabled);
4100 do {
4101 new_rd = rd & ~RB_BUFFER_OFF;
4102 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4103 }
4104 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4105
4106 /**
4107 * ring_buffer_record_is_on - return true if the ring buffer can write
4108 * @buffer: The ring buffer to see if write is enabled
4109 *
4110 * Returns true if the ring buffer is in a state that it accepts writes.
4111 */
4112 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4113 {
4114 return !atomic_read(&buffer->record_disabled);
4115 }
4116
4117 /**
4118 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4119 * @buffer: The ring buffer to see if write is set enabled
4120 *
4121 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4122 * Note that this does NOT mean it is in a writable state.
4123 *
4124 * It may return true when the ring buffer has been disabled by
4125 * ring_buffer_record_disable(), as that is a temporary disabling of
4126 * the ring buffer.
4127 */
4128 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4129 {
4130 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4131 }
4132
4133 /**
4134 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4135 * @buffer: The ring buffer to stop writes to.
4136 * @cpu: The CPU buffer to stop
4137 *
4138 * This prevents all writes to the buffer. Any attempt to write
4139 * to the buffer after this will fail and return NULL.
4140 *
4141 * The caller should call synchronize_rcu() after this.
4142 */
4143 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4144 {
4145 struct ring_buffer_per_cpu *cpu_buffer;
4146
4147 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4148 return;
4149
4150 cpu_buffer = buffer->buffers[cpu];
4151 atomic_inc(&cpu_buffer->record_disabled);
4152 }
4153 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4154
4155 /**
4156 * ring_buffer_record_enable_cpu - enable writes to the buffer
4157 * @buffer: The ring buffer to enable writes
4158 * @cpu: The CPU to enable.
4159 *
4160 * Note, multiple disables will need the same number of enables
4161 * to truly enable the writing (much like preempt_disable).
4162 */
4163 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4164 {
4165 struct ring_buffer_per_cpu *cpu_buffer;
4166
4167 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4168 return;
4169
4170 cpu_buffer = buffer->buffers[cpu];
4171 atomic_dec(&cpu_buffer->record_disabled);
4172 }
4173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4174
4175 /*
4176 * The total entries in the ring buffer is the running counter
4177 * of entries entered into the ring buffer, minus the sum of
4178 * the entries read from the ring buffer and the number of
4179 * entries that were overwritten.
4180 */
4181 static inline unsigned long
4182 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4183 {
4184 return local_read(&cpu_buffer->entries) -
4185 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4186 }
4187
4188 /**
4189 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4190 * @buffer: The ring buffer
4191 * @cpu: The per CPU buffer to read from.
4192 */
4193 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4194 {
4195 unsigned long flags;
4196 struct ring_buffer_per_cpu *cpu_buffer;
4197 struct buffer_page *bpage;
4198 u64 ret = 0;
4199
4200 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4201 return 0;
4202
4203 cpu_buffer = buffer->buffers[cpu];
4204 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4205 /*
4206 * if the tail is on reader_page, oldest time stamp is on the reader
4207 * page
4208 */
4209 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4210 bpage = cpu_buffer->reader_page;
4211 else
4212 bpage = rb_set_head_page(cpu_buffer);
4213 if (bpage)
4214 ret = bpage->page->time_stamp;
4215 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4216
4217 return ret;
4218 }
4219 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4220
4221 /**
4222 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4223 * @buffer: The ring buffer
4224 * @cpu: The per CPU buffer to read from.
4225 */
4226 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4227 {
4228 struct ring_buffer_per_cpu *cpu_buffer;
4229 unsigned long ret;
4230
4231 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4232 return 0;
4233
4234 cpu_buffer = buffer->buffers[cpu];
4235 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4236
4237 return ret;
4238 }
4239 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4240
4241 /**
4242 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4243 * @buffer: The ring buffer
4244 * @cpu: The per CPU buffer to get the entries from.
4245 */
4246 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4247 {
4248 struct ring_buffer_per_cpu *cpu_buffer;
4249
4250 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4251 return 0;
4252
4253 cpu_buffer = buffer->buffers[cpu];
4254
4255 return rb_num_of_entries(cpu_buffer);
4256 }
4257 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4258
4259 /**
4260 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4261 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4262 * @buffer: The ring buffer
4263 * @cpu: The per CPU buffer to get the number of overruns from
4264 */
4265 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4266 {
4267 struct ring_buffer_per_cpu *cpu_buffer;
4268 unsigned long ret;
4269
4270 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4271 return 0;
4272
4273 cpu_buffer = buffer->buffers[cpu];
4274 ret = local_read(&cpu_buffer->overrun);
4275
4276 return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4279
4280 /**
4281 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4282 * commits failing due to the buffer wrapping around while there are uncommitted
4283 * events, such as during an interrupt storm.
4284 * @buffer: The ring buffer
4285 * @cpu: The per CPU buffer to get the number of overruns from
4286 */
4287 unsigned long
4288 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4289 {
4290 struct ring_buffer_per_cpu *cpu_buffer;
4291 unsigned long ret;
4292
4293 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4294 return 0;
4295
4296 cpu_buffer = buffer->buffers[cpu];
4297 ret = local_read(&cpu_buffer->commit_overrun);
4298
4299 return ret;
4300 }
4301 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4302
4303 /**
4304 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4305 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4306 * @buffer: The ring buffer
4307 * @cpu: The per CPU buffer to get the number of overruns from
4308 */
4309 unsigned long
4310 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4311 {
4312 struct ring_buffer_per_cpu *cpu_buffer;
4313 unsigned long ret;
4314
4315 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4316 return 0;
4317
4318 cpu_buffer = buffer->buffers[cpu];
4319 ret = local_read(&cpu_buffer->dropped_events);
4320
4321 return ret;
4322 }
4323 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4324
4325 /**
4326 * ring_buffer_read_events_cpu - get the number of events successfully read
4327 * @buffer: The ring buffer
4328 * @cpu: The per CPU buffer to get the number of events read
4329 */
4330 unsigned long
4331 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4332 {
4333 struct ring_buffer_per_cpu *cpu_buffer;
4334
4335 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4336 return 0;
4337
4338 cpu_buffer = buffer->buffers[cpu];
4339 return cpu_buffer->read;
4340 }
4341 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4342
4343 /**
4344 * ring_buffer_entries - get the number of entries in a buffer
4345 * @buffer: The ring buffer
4346 *
4347 * Returns the total number of entries in the ring buffer
4348 * (all CPU entries)
4349 */
4350 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4351 {
4352 struct ring_buffer_per_cpu *cpu_buffer;
4353 unsigned long entries = 0;
4354 int cpu;
4355
4356 /* if you care about this being correct, lock the buffer */
4357 for_each_buffer_cpu(buffer, cpu) {
4358 cpu_buffer = buffer->buffers[cpu];
4359 entries += rb_num_of_entries(cpu_buffer);
4360 }
4361
4362 return entries;
4363 }
4364 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4365
4366 /**
4367 * ring_buffer_overruns - get the number of overruns in buffer
4368 * @buffer: The ring buffer
4369 *
4370 * Returns the total number of overruns in the ring buffer
4371 * (all CPU entries)
4372 */
4373 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4374 {
4375 struct ring_buffer_per_cpu *cpu_buffer;
4376 unsigned long overruns = 0;
4377 int cpu;
4378
4379 /* if you care about this being correct, lock the buffer */
4380 for_each_buffer_cpu(buffer, cpu) {
4381 cpu_buffer = buffer->buffers[cpu];
4382 overruns += local_read(&cpu_buffer->overrun);
4383 }
4384
4385 return overruns;
4386 }
4387 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4388
4389 static void rb_iter_reset(struct ring_buffer_iter *iter)
4390 {
4391 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4392
4393 /* Iterator usage is expected to have record disabled */
4394 iter->head_page = cpu_buffer->reader_page;
4395 iter->head = cpu_buffer->reader_page->read;
4396 iter->next_event = iter->head;
4397
4398 iter->cache_reader_page = iter->head_page;
4399 iter->cache_read = cpu_buffer->read;
4400 iter->cache_pages_removed = cpu_buffer->pages_removed;
4401
4402 if (iter->head) {
4403 iter->read_stamp = cpu_buffer->read_stamp;
4404 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4405 } else {
4406 iter->read_stamp = iter->head_page->page->time_stamp;
4407 iter->page_stamp = iter->read_stamp;
4408 }
4409 }
4410
4411 /**
4412 * ring_buffer_iter_reset - reset an iterator
4413 * @iter: The iterator to reset
4414 *
4415 * Resets the iterator, so that it will start from the beginning
4416 * again.
4417 */
4418 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4419 {
4420 struct ring_buffer_per_cpu *cpu_buffer;
4421 unsigned long flags;
4422
4423 if (!iter)
4424 return;
4425
4426 cpu_buffer = iter->cpu_buffer;
4427
4428 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4429 rb_iter_reset(iter);
4430 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4433
4434 /**
4435 * ring_buffer_iter_empty - check if an iterator has no more to read
4436 * @iter: The iterator to check
4437 */
4438 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4439 {
4440 struct ring_buffer_per_cpu *cpu_buffer;
4441 struct buffer_page *reader;
4442 struct buffer_page *head_page;
4443 struct buffer_page *commit_page;
4444 struct buffer_page *curr_commit_page;
4445 unsigned commit;
4446 u64 curr_commit_ts;
4447 u64 commit_ts;
4448
4449 cpu_buffer = iter->cpu_buffer;
4450 reader = cpu_buffer->reader_page;
4451 head_page = cpu_buffer->head_page;
4452 commit_page = cpu_buffer->commit_page;
4453 commit_ts = commit_page->page->time_stamp;
4454
4455 /*
4456 * When the writer goes across pages, it issues a cmpxchg which
4457 * is a mb(), which will synchronize with the rmb here.
4458 * (see rb_tail_page_update())
4459 */
4460 smp_rmb();
4461 commit = rb_page_commit(commit_page);
4462 /* We want to make sure that the commit page doesn't change */
4463 smp_rmb();
4464
4465 /* Make sure commit page didn't change */
4466 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4467 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4468
4469 /* If the commit page changed, then there's more data */
4470 if (curr_commit_page != commit_page ||
4471 curr_commit_ts != commit_ts)
4472 return 0;
4473
4474 /* Still racy, as it may return a false positive, but that's OK */
4475 return ((iter->head_page == commit_page && iter->head >= commit) ||
4476 (iter->head_page == reader && commit_page == head_page &&
4477 head_page->read == commit &&
4478 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4479 }
4480 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4481
4482 static void
4483 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4484 struct ring_buffer_event *event)
4485 {
4486 u64 delta;
4487
4488 switch (event->type_len) {
4489 case RINGBUF_TYPE_PADDING:
4490 return;
4491
4492 case RINGBUF_TYPE_TIME_EXTEND:
4493 delta = rb_event_time_stamp(event);
4494 cpu_buffer->read_stamp += delta;
4495 return;
4496
4497 case RINGBUF_TYPE_TIME_STAMP:
4498 delta = rb_event_time_stamp(event);
4499 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4500 cpu_buffer->read_stamp = delta;
4501 return;
4502
4503 case RINGBUF_TYPE_DATA:
4504 cpu_buffer->read_stamp += event->time_delta;
4505 return;
4506
4507 default:
4508 RB_WARN_ON(cpu_buffer, 1);
4509 }
4510 }
4511
4512 static void
4513 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4514 struct ring_buffer_event *event)
4515 {
4516 u64 delta;
4517
4518 switch (event->type_len) {
4519 case RINGBUF_TYPE_PADDING:
4520 return;
4521
4522 case RINGBUF_TYPE_TIME_EXTEND:
4523 delta = rb_event_time_stamp(event);
4524 iter->read_stamp += delta;
4525 return;
4526
4527 case RINGBUF_TYPE_TIME_STAMP:
4528 delta = rb_event_time_stamp(event);
4529 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4530 iter->read_stamp = delta;
4531 return;
4532
4533 case RINGBUF_TYPE_DATA:
4534 iter->read_stamp += event->time_delta;
4535 return;
4536
4537 default:
4538 RB_WARN_ON(iter->cpu_buffer, 1);
4539 }
4540 }
4541
4542 static struct buffer_page *
4543 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4544 {
4545 struct buffer_page *reader = NULL;
4546 unsigned long overwrite;
4547 unsigned long flags;
4548 int nr_loops = 0;
4549 bool ret;
4550
4551 local_irq_save(flags);
4552 arch_spin_lock(&cpu_buffer->lock);
4553
4554 again:
4555 /*
4556 * This should normally only loop twice. But because the
4557 * start of the reader inserts an empty page, it causes
4558 * a case where we will loop three times. There should be no
4559 * reason to loop four times (that I know of).
4560 */
4561 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4562 reader = NULL;
4563 goto out;
4564 }
4565
4566 reader = cpu_buffer->reader_page;
4567
4568 /* If there's more to read, return this page */
4569 if (cpu_buffer->reader_page->read < rb_page_size(reader))
4570 goto out;
4571
4572 /* Never should we have an index greater than the size */
4573 if (RB_WARN_ON(cpu_buffer,
4574 cpu_buffer->reader_page->read > rb_page_size(reader)))
4575 goto out;
4576
4577 /* check if we caught up to the tail */
4578 reader = NULL;
4579 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4580 goto out;
4581
4582 /* Don't bother swapping if the ring buffer is empty */
4583 if (rb_num_of_entries(cpu_buffer) == 0)
4584 goto out;
4585
4586 /*
4587 * Reset the reader page to size zero.
4588 */
4589 local_set(&cpu_buffer->reader_page->write, 0);
4590 local_set(&cpu_buffer->reader_page->entries, 0);
4591 local_set(&cpu_buffer->reader_page->page->commit, 0);
4592 cpu_buffer->reader_page->real_end = 0;
4593
4594 spin:
4595 /*
4596 * Splice the empty reader page into the list around the head.
4597 */
4598 reader = rb_set_head_page(cpu_buffer);
4599 if (!reader)
4600 goto out;
4601 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4602 cpu_buffer->reader_page->list.prev = reader->list.prev;
4603
4604 /*
4605 * cpu_buffer->pages just needs to point to the buffer, it
4606 * has no specific buffer page to point to. Lets move it out
4607 * of our way so we don't accidentally swap it.
4608 */
4609 cpu_buffer->pages = reader->list.prev;
4610
4611 /* The reader page will be pointing to the new head */
4612 rb_set_list_to_head(&cpu_buffer->reader_page->list);
4613
4614 /*
4615 * We want to make sure we read the overruns after we set up our
4616 * pointers to the next object. The writer side does a
4617 * cmpxchg to cross pages which acts as the mb on the writer
4618 * side. Note, the reader will constantly fail the swap
4619 * while the writer is updating the pointers, so this
4620 * guarantees that the overwrite recorded here is the one we
4621 * want to compare with the last_overrun.
4622 */
4623 smp_mb();
4624 overwrite = local_read(&(cpu_buffer->overrun));
4625
4626 /*
4627 * Here's the tricky part.
4628 *
4629 * We need to move the pointer past the header page.
4630 * But we can only do that if a writer is not currently
4631 * moving it. The page before the header page has the
4632 * flag bit '1' set if it is pointing to the page we want.
4633 * but if the writer is in the process of moving it
4634 * than it will be '2' or already moved '0'.
4635 */
4636
4637 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4638
4639 /*
4640 * If we did not convert it, then we must try again.
4641 */
4642 if (!ret)
4643 goto spin;
4644
4645 /*
4646 * Yay! We succeeded in replacing the page.
4647 *
4648 * Now make the new head point back to the reader page.
4649 */
4650 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4651 rb_inc_page(&cpu_buffer->head_page);
4652
4653 local_inc(&cpu_buffer->pages_read);
4654
4655 /* Finally update the reader page to the new head */
4656 cpu_buffer->reader_page = reader;
4657 cpu_buffer->reader_page->read = 0;
4658
4659 if (overwrite != cpu_buffer->last_overrun) {
4660 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4661 cpu_buffer->last_overrun = overwrite;
4662 }
4663
4664 goto again;
4665
4666 out:
4667 /* Update the read_stamp on the first event */
4668 if (reader && reader->read == 0)
4669 cpu_buffer->read_stamp = reader->page->time_stamp;
4670
4671 arch_spin_unlock(&cpu_buffer->lock);
4672 local_irq_restore(flags);
4673
4674 /*
4675 * The writer has preempt disable, wait for it. But not forever
4676 * Although, 1 second is pretty much "forever"
4677 */
4678 #define USECS_WAIT 1000000
4679 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4680 /* If the write is past the end of page, a writer is still updating it */
4681 if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4682 break;
4683
4684 udelay(1);
4685
4686 /* Get the latest version of the reader write value */
4687 smp_rmb();
4688 }
4689
4690 /* The writer is not moving forward? Something is wrong */
4691 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4692 reader = NULL;
4693
4694 /*
4695 * Make sure we see any padding after the write update
4696 * (see rb_reset_tail()).
4697 *
4698 * In addition, a writer may be writing on the reader page
4699 * if the page has not been fully filled, so the read barrier
4700 * is also needed to make sure we see the content of what is
4701 * committed by the writer (see rb_set_commit_to_write()).
4702 */
4703 smp_rmb();
4704
4705
4706 return reader;
4707 }
4708
4709 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4710 {
4711 struct ring_buffer_event *event;
4712 struct buffer_page *reader;
4713 unsigned length;
4714
4715 reader = rb_get_reader_page(cpu_buffer);
4716
4717 /* This function should not be called when buffer is empty */
4718 if (RB_WARN_ON(cpu_buffer, !reader))
4719 return;
4720
4721 event = rb_reader_event(cpu_buffer);
4722
4723 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4724 cpu_buffer->read++;
4725
4726 rb_update_read_stamp(cpu_buffer, event);
4727
4728 length = rb_event_length(event);
4729 cpu_buffer->reader_page->read += length;
4730 cpu_buffer->read_bytes += length;
4731 }
4732
4733 static void rb_advance_iter(struct ring_buffer_iter *iter)
4734 {
4735 struct ring_buffer_per_cpu *cpu_buffer;
4736
4737 cpu_buffer = iter->cpu_buffer;
4738
4739 /* If head == next_event then we need to jump to the next event */
4740 if (iter->head == iter->next_event) {
4741 /* If the event gets overwritten again, there's nothing to do */
4742 if (rb_iter_head_event(iter) == NULL)
4743 return;
4744 }
4745
4746 iter->head = iter->next_event;
4747
4748 /*
4749 * Check if we are at the end of the buffer.
4750 */
4751 if (iter->next_event >= rb_page_size(iter->head_page)) {
4752 /* discarded commits can make the page empty */
4753 if (iter->head_page == cpu_buffer->commit_page)
4754 return;
4755 rb_inc_iter(iter);
4756 return;
4757 }
4758
4759 rb_update_iter_read_stamp(iter, iter->event);
4760 }
4761
4762 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4763 {
4764 return cpu_buffer->lost_events;
4765 }
4766
4767 static struct ring_buffer_event *
4768 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4769 unsigned long *lost_events)
4770 {
4771 struct ring_buffer_event *event;
4772 struct buffer_page *reader;
4773 int nr_loops = 0;
4774
4775 if (ts)
4776 *ts = 0;
4777 again:
4778 /*
4779 * We repeat when a time extend is encountered.
4780 * Since the time extend is always attached to a data event,
4781 * we should never loop more than once.
4782 * (We never hit the following condition more than twice).
4783 */
4784 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4785 return NULL;
4786
4787 reader = rb_get_reader_page(cpu_buffer);
4788 if (!reader)
4789 return NULL;
4790
4791 event = rb_reader_event(cpu_buffer);
4792
4793 switch (event->type_len) {
4794 case RINGBUF_TYPE_PADDING:
4795 if (rb_null_event(event))
4796 RB_WARN_ON(cpu_buffer, 1);
4797 /*
4798 * Because the writer could be discarding every
4799 * event it creates (which would probably be bad)
4800 * if we were to go back to "again" then we may never
4801 * catch up, and will trigger the warn on, or lock
4802 * the box. Return the padding, and we will release
4803 * the current locks, and try again.
4804 */
4805 return event;
4806
4807 case RINGBUF_TYPE_TIME_EXTEND:
4808 /* Internal data, OK to advance */
4809 rb_advance_reader(cpu_buffer);
4810 goto again;
4811
4812 case RINGBUF_TYPE_TIME_STAMP:
4813 if (ts) {
4814 *ts = rb_event_time_stamp(event);
4815 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4816 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4817 cpu_buffer->cpu, ts);
4818 }
4819 /* Internal data, OK to advance */
4820 rb_advance_reader(cpu_buffer);
4821 goto again;
4822
4823 case RINGBUF_TYPE_DATA:
4824 if (ts && !(*ts)) {
4825 *ts = cpu_buffer->read_stamp + event->time_delta;
4826 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4827 cpu_buffer->cpu, ts);
4828 }
4829 if (lost_events)
4830 *lost_events = rb_lost_events(cpu_buffer);
4831 return event;
4832
4833 default:
4834 RB_WARN_ON(cpu_buffer, 1);
4835 }
4836
4837 return NULL;
4838 }
4839 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4840
4841 static struct ring_buffer_event *
4842 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4843 {
4844 struct trace_buffer *buffer;
4845 struct ring_buffer_per_cpu *cpu_buffer;
4846 struct ring_buffer_event *event;
4847 int nr_loops = 0;
4848
4849 if (ts)
4850 *ts = 0;
4851
4852 cpu_buffer = iter->cpu_buffer;
4853 buffer = cpu_buffer->buffer;
4854
4855 /*
4856 * Check if someone performed a consuming read to the buffer
4857 * or removed some pages from the buffer. In these cases,
4858 * iterator was invalidated and we need to reset it.
4859 */
4860 if (unlikely(iter->cache_read != cpu_buffer->read ||
4861 iter->cache_reader_page != cpu_buffer->reader_page ||
4862 iter->cache_pages_removed != cpu_buffer->pages_removed))
4863 rb_iter_reset(iter);
4864
4865 again:
4866 if (ring_buffer_iter_empty(iter))
4867 return NULL;
4868
4869 /*
4870 * As the writer can mess with what the iterator is trying
4871 * to read, just give up if we fail to get an event after
4872 * three tries. The iterator is not as reliable when reading
4873 * the ring buffer with an active write as the consumer is.
4874 * Do not warn if the three failures is reached.
4875 */
4876 if (++nr_loops > 3)
4877 return NULL;
4878
4879 if (rb_per_cpu_empty(cpu_buffer))
4880 return NULL;
4881
4882 if (iter->head >= rb_page_size(iter->head_page)) {
4883 rb_inc_iter(iter);
4884 goto again;
4885 }
4886
4887 event = rb_iter_head_event(iter);
4888 if (!event)
4889 goto again;
4890
4891 switch (event->type_len) {
4892 case RINGBUF_TYPE_PADDING:
4893 if (rb_null_event(event)) {
4894 rb_inc_iter(iter);
4895 goto again;
4896 }
4897 rb_advance_iter(iter);
4898 return event;
4899
4900 case RINGBUF_TYPE_TIME_EXTEND:
4901 /* Internal data, OK to advance */
4902 rb_advance_iter(iter);
4903 goto again;
4904
4905 case RINGBUF_TYPE_TIME_STAMP:
4906 if (ts) {
4907 *ts = rb_event_time_stamp(event);
4908 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4909 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4910 cpu_buffer->cpu, ts);
4911 }
4912 /* Internal data, OK to advance */
4913 rb_advance_iter(iter);
4914 goto again;
4915
4916 case RINGBUF_TYPE_DATA:
4917 if (ts && !(*ts)) {
4918 *ts = iter->read_stamp + event->time_delta;
4919 ring_buffer_normalize_time_stamp(buffer,
4920 cpu_buffer->cpu, ts);
4921 }
4922 return event;
4923
4924 default:
4925 RB_WARN_ON(cpu_buffer, 1);
4926 }
4927
4928 return NULL;
4929 }
4930 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4931
4932 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4933 {
4934 if (likely(!in_nmi())) {
4935 raw_spin_lock(&cpu_buffer->reader_lock);
4936 return true;
4937 }
4938
4939 /*
4940 * If an NMI die dumps out the content of the ring buffer
4941 * trylock must be used to prevent a deadlock if the NMI
4942 * preempted a task that holds the ring buffer locks. If
4943 * we get the lock then all is fine, if not, then continue
4944 * to do the read, but this can corrupt the ring buffer,
4945 * so it must be permanently disabled from future writes.
4946 * Reading from NMI is a oneshot deal.
4947 */
4948 if (raw_spin_trylock(&cpu_buffer->reader_lock))
4949 return true;
4950
4951 /* Continue without locking, but disable the ring buffer */
4952 atomic_inc(&cpu_buffer->record_disabled);
4953 return false;
4954 }
4955
4956 static inline void
4957 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4958 {
4959 if (likely(locked))
4960 raw_spin_unlock(&cpu_buffer->reader_lock);
4961 }
4962
4963 /**
4964 * ring_buffer_peek - peek at the next event to be read
4965 * @buffer: The ring buffer to read
4966 * @cpu: The cpu to peak at
4967 * @ts: The timestamp counter of this event.
4968 * @lost_events: a variable to store if events were lost (may be NULL)
4969 *
4970 * This will return the event that will be read next, but does
4971 * not consume the data.
4972 */
4973 struct ring_buffer_event *
4974 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4975 unsigned long *lost_events)
4976 {
4977 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4978 struct ring_buffer_event *event;
4979 unsigned long flags;
4980 bool dolock;
4981
4982 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4983 return NULL;
4984
4985 again:
4986 local_irq_save(flags);
4987 dolock = rb_reader_lock(cpu_buffer);
4988 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4989 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4990 rb_advance_reader(cpu_buffer);
4991 rb_reader_unlock(cpu_buffer, dolock);
4992 local_irq_restore(flags);
4993
4994 if (event && event->type_len == RINGBUF_TYPE_PADDING)
4995 goto again;
4996
4997 return event;
4998 }
4999
5000 /** ring_buffer_iter_dropped - report if there are dropped events
5001 * @iter: The ring buffer iterator
5002 *
5003 * Returns true if there was dropped events since the last peek.
5004 */
5005 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5006 {
5007 bool ret = iter->missed_events != 0;
5008
5009 iter->missed_events = 0;
5010 return ret;
5011 }
5012 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5013
5014 /**
5015 * ring_buffer_iter_peek - peek at the next event to be read
5016 * @iter: The ring buffer iterator
5017 * @ts: The timestamp counter of this event.
5018 *
5019 * This will return the event that will be read next, but does
5020 * not increment the iterator.
5021 */
5022 struct ring_buffer_event *
5023 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5024 {
5025 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5026 struct ring_buffer_event *event;
5027 unsigned long flags;
5028
5029 again:
5030 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5031 event = rb_iter_peek(iter, ts);
5032 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5033
5034 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5035 goto again;
5036
5037 return event;
5038 }
5039
5040 /**
5041 * ring_buffer_consume - return an event and consume it
5042 * @buffer: The ring buffer to get the next event from
5043 * @cpu: the cpu to read the buffer from
5044 * @ts: a variable to store the timestamp (may be NULL)
5045 * @lost_events: a variable to store if events were lost (may be NULL)
5046 *
5047 * Returns the next event in the ring buffer, and that event is consumed.
5048 * Meaning, that sequential reads will keep returning a different event,
5049 * and eventually empty the ring buffer if the producer is slower.
5050 */
5051 struct ring_buffer_event *
5052 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5053 unsigned long *lost_events)
5054 {
5055 struct ring_buffer_per_cpu *cpu_buffer;
5056 struct ring_buffer_event *event = NULL;
5057 unsigned long flags;
5058 bool dolock;
5059
5060 again:
5061 /* might be called in atomic */
5062 preempt_disable();
5063
5064 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5065 goto out;
5066
5067 cpu_buffer = buffer->buffers[cpu];
5068 local_irq_save(flags);
5069 dolock = rb_reader_lock(cpu_buffer);
5070
5071 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5072 if (event) {
5073 cpu_buffer->lost_events = 0;
5074 rb_advance_reader(cpu_buffer);
5075 }
5076
5077 rb_reader_unlock(cpu_buffer, dolock);
5078 local_irq_restore(flags);
5079
5080 out:
5081 preempt_enable();
5082
5083 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5084 goto again;
5085
5086 return event;
5087 }
5088 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5089
5090 /**
5091 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5092 * @buffer: The ring buffer to read from
5093 * @cpu: The cpu buffer to iterate over
5094 * @flags: gfp flags to use for memory allocation
5095 *
5096 * This performs the initial preparations necessary to iterate
5097 * through the buffer. Memory is allocated, buffer recording
5098 * is disabled, and the iterator pointer is returned to the caller.
5099 *
5100 * Disabling buffer recording prevents the reading from being
5101 * corrupted. This is not a consuming read, so a producer is not
5102 * expected.
5103 *
5104 * After a sequence of ring_buffer_read_prepare calls, the user is
5105 * expected to make at least one call to ring_buffer_read_prepare_sync.
5106 * Afterwards, ring_buffer_read_start is invoked to get things going
5107 * for real.
5108 *
5109 * This overall must be paired with ring_buffer_read_finish.
5110 */
5111 struct ring_buffer_iter *
5112 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5113 {
5114 struct ring_buffer_per_cpu *cpu_buffer;
5115 struct ring_buffer_iter *iter;
5116
5117 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5118 return NULL;
5119
5120 iter = kzalloc(sizeof(*iter), flags);
5121 if (!iter)
5122 return NULL;
5123
5124 iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5125 if (!iter->event) {
5126 kfree(iter);
5127 return NULL;
5128 }
5129
5130 cpu_buffer = buffer->buffers[cpu];
5131
5132 iter->cpu_buffer = cpu_buffer;
5133
5134 atomic_inc(&cpu_buffer->resize_disabled);
5135
5136 return iter;
5137 }
5138 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5139
5140 /**
5141 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5142 *
5143 * All previously invoked ring_buffer_read_prepare calls to prepare
5144 * iterators will be synchronized. Afterwards, read_buffer_read_start
5145 * calls on those iterators are allowed.
5146 */
5147 void
5148 ring_buffer_read_prepare_sync(void)
5149 {
5150 synchronize_rcu();
5151 }
5152 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5153
5154 /**
5155 * ring_buffer_read_start - start a non consuming read of the buffer
5156 * @iter: The iterator returned by ring_buffer_read_prepare
5157 *
5158 * This finalizes the startup of an iteration through the buffer.
5159 * The iterator comes from a call to ring_buffer_read_prepare and
5160 * an intervening ring_buffer_read_prepare_sync must have been
5161 * performed.
5162 *
5163 * Must be paired with ring_buffer_read_finish.
5164 */
5165 void
5166 ring_buffer_read_start(struct ring_buffer_iter *iter)
5167 {
5168 struct ring_buffer_per_cpu *cpu_buffer;
5169 unsigned long flags;
5170
5171 if (!iter)
5172 return;
5173
5174 cpu_buffer = iter->cpu_buffer;
5175
5176 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5177 arch_spin_lock(&cpu_buffer->lock);
5178 rb_iter_reset(iter);
5179 arch_spin_unlock(&cpu_buffer->lock);
5180 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5181 }
5182 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5183
5184 /**
5185 * ring_buffer_read_finish - finish reading the iterator of the buffer
5186 * @iter: The iterator retrieved by ring_buffer_start
5187 *
5188 * This re-enables the recording to the buffer, and frees the
5189 * iterator.
5190 */
5191 void
5192 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5193 {
5194 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5195 unsigned long flags;
5196
5197 /*
5198 * Ring buffer is disabled from recording, here's a good place
5199 * to check the integrity of the ring buffer.
5200 * Must prevent readers from trying to read, as the check
5201 * clears the HEAD page and readers require it.
5202 */
5203 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5204 rb_check_pages(cpu_buffer);
5205 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5206
5207 atomic_dec(&cpu_buffer->resize_disabled);
5208 kfree(iter->event);
5209 kfree(iter);
5210 }
5211 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5212
5213 /**
5214 * ring_buffer_iter_advance - advance the iterator to the next location
5215 * @iter: The ring buffer iterator
5216 *
5217 * Move the location of the iterator such that the next read will
5218 * be the next location of the iterator.
5219 */
5220 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5221 {
5222 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5223 unsigned long flags;
5224
5225 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5226
5227 rb_advance_iter(iter);
5228
5229 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5230 }
5231 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5232
5233 /**
5234 * ring_buffer_size - return the size of the ring buffer (in bytes)
5235 * @buffer: The ring buffer.
5236 * @cpu: The CPU to get ring buffer size from.
5237 */
5238 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5239 {
5240 /*
5241 * Earlier, this method returned
5242 * BUF_PAGE_SIZE * buffer->nr_pages
5243 * Since the nr_pages field is now removed, we have converted this to
5244 * return the per cpu buffer value.
5245 */
5246 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5247 return 0;
5248
5249 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5250 }
5251 EXPORT_SYMBOL_GPL(ring_buffer_size);
5252
5253 static void rb_clear_buffer_page(struct buffer_page *page)
5254 {
5255 local_set(&page->write, 0);
5256 local_set(&page->entries, 0);
5257 rb_init_page(page->page);
5258 page->read = 0;
5259 }
5260
5261 static void
5262 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5263 {
5264 struct buffer_page *page;
5265
5266 rb_head_page_deactivate(cpu_buffer);
5267
5268 cpu_buffer->head_page
5269 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5270 rb_clear_buffer_page(cpu_buffer->head_page);
5271 list_for_each_entry(page, cpu_buffer->pages, list) {
5272 rb_clear_buffer_page(page);
5273 }
5274
5275 cpu_buffer->tail_page = cpu_buffer->head_page;
5276 cpu_buffer->commit_page = cpu_buffer->head_page;
5277
5278 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5279 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5280 rb_clear_buffer_page(cpu_buffer->reader_page);
5281
5282 local_set(&cpu_buffer->entries_bytes, 0);
5283 local_set(&cpu_buffer->overrun, 0);
5284 local_set(&cpu_buffer->commit_overrun, 0);
5285 local_set(&cpu_buffer->dropped_events, 0);
5286 local_set(&cpu_buffer->entries, 0);
5287 local_set(&cpu_buffer->committing, 0);
5288 local_set(&cpu_buffer->commits, 0);
5289 local_set(&cpu_buffer->pages_touched, 0);
5290 local_set(&cpu_buffer->pages_lost, 0);
5291 local_set(&cpu_buffer->pages_read, 0);
5292 cpu_buffer->last_pages_touch = 0;
5293 cpu_buffer->shortest_full = 0;
5294 cpu_buffer->read = 0;
5295 cpu_buffer->read_bytes = 0;
5296
5297 rb_time_set(&cpu_buffer->write_stamp, 0);
5298 rb_time_set(&cpu_buffer->before_stamp, 0);
5299
5300 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5301
5302 cpu_buffer->lost_events = 0;
5303 cpu_buffer->last_overrun = 0;
5304
5305 rb_head_page_activate(cpu_buffer);
5306 cpu_buffer->pages_removed = 0;
5307 }
5308
5309 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5310 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5311 {
5312 unsigned long flags;
5313
5314 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5315
5316 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5317 goto out;
5318
5319 arch_spin_lock(&cpu_buffer->lock);
5320
5321 rb_reset_cpu(cpu_buffer);
5322
5323 arch_spin_unlock(&cpu_buffer->lock);
5324
5325 out:
5326 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5327 }
5328
5329 /**
5330 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5331 * @buffer: The ring buffer to reset a per cpu buffer of
5332 * @cpu: The CPU buffer to be reset
5333 */
5334 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5335 {
5336 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5337
5338 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5339 return;
5340
5341 /* prevent another thread from changing buffer sizes */
5342 mutex_lock(&buffer->mutex);
5343
5344 atomic_inc(&cpu_buffer->resize_disabled);
5345 atomic_inc(&cpu_buffer->record_disabled);
5346
5347 /* Make sure all commits have finished */
5348 synchronize_rcu();
5349
5350 reset_disabled_cpu_buffer(cpu_buffer);
5351
5352 atomic_dec(&cpu_buffer->record_disabled);
5353 atomic_dec(&cpu_buffer->resize_disabled);
5354
5355 mutex_unlock(&buffer->mutex);
5356 }
5357 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5358
5359 /* Flag to ensure proper resetting of atomic variables */
5360 #define RESET_BIT (1 << 30)
5361
5362 /**
5363 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5364 * @buffer: The ring buffer to reset a per cpu buffer of
5365 */
5366 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5367 {
5368 struct ring_buffer_per_cpu *cpu_buffer;
5369 int cpu;
5370
5371 /* prevent another thread from changing buffer sizes */
5372 mutex_lock(&buffer->mutex);
5373
5374 for_each_online_buffer_cpu(buffer, cpu) {
5375 cpu_buffer = buffer->buffers[cpu];
5376
5377 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5378 atomic_inc(&cpu_buffer->record_disabled);
5379 }
5380
5381 /* Make sure all commits have finished */
5382 synchronize_rcu();
5383
5384 for_each_buffer_cpu(buffer, cpu) {
5385 cpu_buffer = buffer->buffers[cpu];
5386
5387 /*
5388 * If a CPU came online during the synchronize_rcu(), then
5389 * ignore it.
5390 */
5391 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5392 continue;
5393
5394 reset_disabled_cpu_buffer(cpu_buffer);
5395
5396 atomic_dec(&cpu_buffer->record_disabled);
5397 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5398 }
5399
5400 mutex_unlock(&buffer->mutex);
5401 }
5402
5403 /**
5404 * ring_buffer_reset - reset a ring buffer
5405 * @buffer: The ring buffer to reset all cpu buffers
5406 */
5407 void ring_buffer_reset(struct trace_buffer *buffer)
5408 {
5409 struct ring_buffer_per_cpu *cpu_buffer;
5410 int cpu;
5411
5412 /* prevent another thread from changing buffer sizes */
5413 mutex_lock(&buffer->mutex);
5414
5415 for_each_buffer_cpu(buffer, cpu) {
5416 cpu_buffer = buffer->buffers[cpu];
5417
5418 atomic_inc(&cpu_buffer->resize_disabled);
5419 atomic_inc(&cpu_buffer->record_disabled);
5420 }
5421
5422 /* Make sure all commits have finished */
5423 synchronize_rcu();
5424
5425 for_each_buffer_cpu(buffer, cpu) {
5426 cpu_buffer = buffer->buffers[cpu];
5427
5428 reset_disabled_cpu_buffer(cpu_buffer);
5429
5430 atomic_dec(&cpu_buffer->record_disabled);
5431 atomic_dec(&cpu_buffer->resize_disabled);
5432 }
5433
5434 mutex_unlock(&buffer->mutex);
5435 }
5436 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5437
5438 /**
5439 * ring_buffer_empty - is the ring buffer empty?
5440 * @buffer: The ring buffer to test
5441 */
5442 bool ring_buffer_empty(struct trace_buffer *buffer)
5443 {
5444 struct ring_buffer_per_cpu *cpu_buffer;
5445 unsigned long flags;
5446 bool dolock;
5447 bool ret;
5448 int cpu;
5449
5450 /* yes this is racy, but if you don't like the race, lock the buffer */
5451 for_each_buffer_cpu(buffer, cpu) {
5452 cpu_buffer = buffer->buffers[cpu];
5453 local_irq_save(flags);
5454 dolock = rb_reader_lock(cpu_buffer);
5455 ret = rb_per_cpu_empty(cpu_buffer);
5456 rb_reader_unlock(cpu_buffer, dolock);
5457 local_irq_restore(flags);
5458
5459 if (!ret)
5460 return false;
5461 }
5462
5463 return true;
5464 }
5465 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5466
5467 /**
5468 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5469 * @buffer: The ring buffer
5470 * @cpu: The CPU buffer to test
5471 */
5472 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5473 {
5474 struct ring_buffer_per_cpu *cpu_buffer;
5475 unsigned long flags;
5476 bool dolock;
5477 bool ret;
5478
5479 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5480 return true;
5481
5482 cpu_buffer = buffer->buffers[cpu];
5483 local_irq_save(flags);
5484 dolock = rb_reader_lock(cpu_buffer);
5485 ret = rb_per_cpu_empty(cpu_buffer);
5486 rb_reader_unlock(cpu_buffer, dolock);
5487 local_irq_restore(flags);
5488
5489 return ret;
5490 }
5491 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5492
5493 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5494 /**
5495 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5496 * @buffer_a: One buffer to swap with
5497 * @buffer_b: The other buffer to swap with
5498 * @cpu: the CPU of the buffers to swap
5499 *
5500 * This function is useful for tracers that want to take a "snapshot"
5501 * of a CPU buffer and has another back up buffer lying around.
5502 * it is expected that the tracer handles the cpu buffer not being
5503 * used at the moment.
5504 */
5505 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5506 struct trace_buffer *buffer_b, int cpu)
5507 {
5508 struct ring_buffer_per_cpu *cpu_buffer_a;
5509 struct ring_buffer_per_cpu *cpu_buffer_b;
5510 int ret = -EINVAL;
5511
5512 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5513 !cpumask_test_cpu(cpu, buffer_b->cpumask))
5514 goto out;
5515
5516 cpu_buffer_a = buffer_a->buffers[cpu];
5517 cpu_buffer_b = buffer_b->buffers[cpu];
5518
5519 /* At least make sure the two buffers are somewhat the same */
5520 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5521 goto out;
5522
5523 ret = -EAGAIN;
5524
5525 if (atomic_read(&buffer_a->record_disabled))
5526 goto out;
5527
5528 if (atomic_read(&buffer_b->record_disabled))
5529 goto out;
5530
5531 if (atomic_read(&cpu_buffer_a->record_disabled))
5532 goto out;
5533
5534 if (atomic_read(&cpu_buffer_b->record_disabled))
5535 goto out;
5536
5537 /*
5538 * We can't do a synchronize_rcu here because this
5539 * function can be called in atomic context.
5540 * Normally this will be called from the same CPU as cpu.
5541 * If not it's up to the caller to protect this.
5542 */
5543 atomic_inc(&cpu_buffer_a->record_disabled);
5544 atomic_inc(&cpu_buffer_b->record_disabled);
5545
5546 ret = -EBUSY;
5547 if (local_read(&cpu_buffer_a->committing))
5548 goto out_dec;
5549 if (local_read(&cpu_buffer_b->committing))
5550 goto out_dec;
5551
5552 /*
5553 * When resize is in progress, we cannot swap it because
5554 * it will mess the state of the cpu buffer.
5555 */
5556 if (atomic_read(&buffer_a->resizing))
5557 goto out_dec;
5558 if (atomic_read(&buffer_b->resizing))
5559 goto out_dec;
5560
5561 buffer_a->buffers[cpu] = cpu_buffer_b;
5562 buffer_b->buffers[cpu] = cpu_buffer_a;
5563
5564 cpu_buffer_b->buffer = buffer_a;
5565 cpu_buffer_a->buffer = buffer_b;
5566
5567 ret = 0;
5568
5569 out_dec:
5570 atomic_dec(&cpu_buffer_a->record_disabled);
5571 atomic_dec(&cpu_buffer_b->record_disabled);
5572 out:
5573 return ret;
5574 }
5575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5577
5578 /**
5579 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5580 * @buffer: the buffer to allocate for.
5581 * @cpu: the cpu buffer to allocate.
5582 *
5583 * This function is used in conjunction with ring_buffer_read_page.
5584 * When reading a full page from the ring buffer, these functions
5585 * can be used to speed up the process. The calling function should
5586 * allocate a few pages first with this function. Then when it
5587 * needs to get pages from the ring buffer, it passes the result
5588 * of this function into ring_buffer_read_page, which will swap
5589 * the page that was allocated, with the read page of the buffer.
5590 *
5591 * Returns:
5592 * The page allocated, or ERR_PTR
5593 */
5594 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5595 {
5596 struct ring_buffer_per_cpu *cpu_buffer;
5597 struct buffer_data_page *bpage = NULL;
5598 unsigned long flags;
5599 struct page *page;
5600
5601 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5602 return ERR_PTR(-ENODEV);
5603
5604 cpu_buffer = buffer->buffers[cpu];
5605 local_irq_save(flags);
5606 arch_spin_lock(&cpu_buffer->lock);
5607
5608 if (cpu_buffer->free_page) {
5609 bpage = cpu_buffer->free_page;
5610 cpu_buffer->free_page = NULL;
5611 }
5612
5613 arch_spin_unlock(&cpu_buffer->lock);
5614 local_irq_restore(flags);
5615
5616 if (bpage)
5617 goto out;
5618
5619 page = alloc_pages_node(cpu_to_node(cpu),
5620 GFP_KERNEL | __GFP_NORETRY, 0);
5621 if (!page)
5622 return ERR_PTR(-ENOMEM);
5623
5624 bpage = page_address(page);
5625
5626 out:
5627 rb_init_page(bpage);
5628
5629 return bpage;
5630 }
5631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5632
5633 /**
5634 * ring_buffer_free_read_page - free an allocated read page
5635 * @buffer: the buffer the page was allocate for
5636 * @cpu: the cpu buffer the page came from
5637 * @data: the page to free
5638 *
5639 * Free a page allocated from ring_buffer_alloc_read_page.
5640 */
5641 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5642 {
5643 struct ring_buffer_per_cpu *cpu_buffer;
5644 struct buffer_data_page *bpage = data;
5645 struct page *page = virt_to_page(bpage);
5646 unsigned long flags;
5647
5648 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5649 return;
5650
5651 cpu_buffer = buffer->buffers[cpu];
5652
5653 /* If the page is still in use someplace else, we can't reuse it */
5654 if (page_ref_count(page) > 1)
5655 goto out;
5656
5657 local_irq_save(flags);
5658 arch_spin_lock(&cpu_buffer->lock);
5659
5660 if (!cpu_buffer->free_page) {
5661 cpu_buffer->free_page = bpage;
5662 bpage = NULL;
5663 }
5664
5665 arch_spin_unlock(&cpu_buffer->lock);
5666 local_irq_restore(flags);
5667
5668 out:
5669 free_page((unsigned long)bpage);
5670 }
5671 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5672
5673 /**
5674 * ring_buffer_read_page - extract a page from the ring buffer
5675 * @buffer: buffer to extract from
5676 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5677 * @len: amount to extract
5678 * @cpu: the cpu of the buffer to extract
5679 * @full: should the extraction only happen when the page is full.
5680 *
5681 * This function will pull out a page from the ring buffer and consume it.
5682 * @data_page must be the address of the variable that was returned
5683 * from ring_buffer_alloc_read_page. This is because the page might be used
5684 * to swap with a page in the ring buffer.
5685 *
5686 * for example:
5687 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
5688 * if (IS_ERR(rpage))
5689 * return PTR_ERR(rpage);
5690 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5691 * if (ret >= 0)
5692 * process_page(rpage, ret);
5693 *
5694 * When @full is set, the function will not return true unless
5695 * the writer is off the reader page.
5696 *
5697 * Note: it is up to the calling functions to handle sleeps and wakeups.
5698 * The ring buffer can be used anywhere in the kernel and can not
5699 * blindly call wake_up. The layer that uses the ring buffer must be
5700 * responsible for that.
5701 *
5702 * Returns:
5703 * >=0 if data has been transferred, returns the offset of consumed data.
5704 * <0 if no data has been transferred.
5705 */
5706 int ring_buffer_read_page(struct trace_buffer *buffer,
5707 void **data_page, size_t len, int cpu, int full)
5708 {
5709 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5710 struct ring_buffer_event *event;
5711 struct buffer_data_page *bpage;
5712 struct buffer_page *reader;
5713 unsigned long missed_events;
5714 unsigned long flags;
5715 unsigned int commit;
5716 unsigned int read;
5717 u64 save_timestamp;
5718 int ret = -1;
5719
5720 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5721 goto out;
5722
5723 /*
5724 * If len is not big enough to hold the page header, then
5725 * we can not copy anything.
5726 */
5727 if (len <= BUF_PAGE_HDR_SIZE)
5728 goto out;
5729
5730 len -= BUF_PAGE_HDR_SIZE;
5731
5732 if (!data_page)
5733 goto out;
5734
5735 bpage = *data_page;
5736 if (!bpage)
5737 goto out;
5738
5739 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5740
5741 reader = rb_get_reader_page(cpu_buffer);
5742 if (!reader)
5743 goto out_unlock;
5744
5745 event = rb_reader_event(cpu_buffer);
5746
5747 read = reader->read;
5748 commit = rb_page_commit(reader);
5749
5750 /* Check if any events were dropped */
5751 missed_events = cpu_buffer->lost_events;
5752
5753 /*
5754 * If this page has been partially read or
5755 * if len is not big enough to read the rest of the page or
5756 * a writer is still on the page, then
5757 * we must copy the data from the page to the buffer.
5758 * Otherwise, we can simply swap the page with the one passed in.
5759 */
5760 if (read || (len < (commit - read)) ||
5761 cpu_buffer->reader_page == cpu_buffer->commit_page) {
5762 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5763 unsigned int rpos = read;
5764 unsigned int pos = 0;
5765 unsigned int size;
5766
5767 /*
5768 * If a full page is expected, this can still be returned
5769 * if there's been a previous partial read and the
5770 * rest of the page can be read and the commit page is off
5771 * the reader page.
5772 */
5773 if (full &&
5774 (!read || (len < (commit - read)) ||
5775 cpu_buffer->reader_page == cpu_buffer->commit_page))
5776 goto out_unlock;
5777
5778 if (len > (commit - read))
5779 len = (commit - read);
5780
5781 /* Always keep the time extend and data together */
5782 size = rb_event_ts_length(event);
5783
5784 if (len < size)
5785 goto out_unlock;
5786
5787 /* save the current timestamp, since the user will need it */
5788 save_timestamp = cpu_buffer->read_stamp;
5789
5790 /* Need to copy one event at a time */
5791 do {
5792 /* We need the size of one event, because
5793 * rb_advance_reader only advances by one event,
5794 * whereas rb_event_ts_length may include the size of
5795 * one or two events.
5796 * We have already ensured there's enough space if this
5797 * is a time extend. */
5798 size = rb_event_length(event);
5799 memcpy(bpage->data + pos, rpage->data + rpos, size);
5800
5801 len -= size;
5802
5803 rb_advance_reader(cpu_buffer);
5804 rpos = reader->read;
5805 pos += size;
5806
5807 if (rpos >= commit)
5808 break;
5809
5810 event = rb_reader_event(cpu_buffer);
5811 /* Always keep the time extend and data together */
5812 size = rb_event_ts_length(event);
5813 } while (len >= size);
5814
5815 /* update bpage */
5816 local_set(&bpage->commit, pos);
5817 bpage->time_stamp = save_timestamp;
5818
5819 /* we copied everything to the beginning */
5820 read = 0;
5821 } else {
5822 /* update the entry counter */
5823 cpu_buffer->read += rb_page_entries(reader);
5824 cpu_buffer->read_bytes += rb_page_commit(reader);
5825
5826 /* swap the pages */
5827 rb_init_page(bpage);
5828 bpage = reader->page;
5829 reader->page = *data_page;
5830 local_set(&reader->write, 0);
5831 local_set(&reader->entries, 0);
5832 reader->read = 0;
5833 *data_page = bpage;
5834
5835 /*
5836 * Use the real_end for the data size,
5837 * This gives us a chance to store the lost events
5838 * on the page.
5839 */
5840 if (reader->real_end)
5841 local_set(&bpage->commit, reader->real_end);
5842 }
5843 ret = read;
5844
5845 cpu_buffer->lost_events = 0;
5846
5847 commit = local_read(&bpage->commit);
5848 /*
5849 * Set a flag in the commit field if we lost events
5850 */
5851 if (missed_events) {
5852 /* If there is room at the end of the page to save the
5853 * missed events, then record it there.
5854 */
5855 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5856 memcpy(&bpage->data[commit], &missed_events,
5857 sizeof(missed_events));
5858 local_add(RB_MISSED_STORED, &bpage->commit);
5859 commit += sizeof(missed_events);
5860 }
5861 local_add(RB_MISSED_EVENTS, &bpage->commit);
5862 }
5863
5864 /*
5865 * This page may be off to user land. Zero it out here.
5866 */
5867 if (commit < BUF_PAGE_SIZE)
5868 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5869
5870 out_unlock:
5871 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5872
5873 out:
5874 return ret;
5875 }
5876 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5877
5878 /*
5879 * We only allocate new buffers, never free them if the CPU goes down.
5880 * If we were to free the buffer, then the user would lose any trace that was in
5881 * the buffer.
5882 */
5883 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5884 {
5885 struct trace_buffer *buffer;
5886 long nr_pages_same;
5887 int cpu_i;
5888 unsigned long nr_pages;
5889
5890 buffer = container_of(node, struct trace_buffer, node);
5891 if (cpumask_test_cpu(cpu, buffer->cpumask))
5892 return 0;
5893
5894 nr_pages = 0;
5895 nr_pages_same = 1;
5896 /* check if all cpu sizes are same */
5897 for_each_buffer_cpu(buffer, cpu_i) {
5898 /* fill in the size from first enabled cpu */
5899 if (nr_pages == 0)
5900 nr_pages = buffer->buffers[cpu_i]->nr_pages;
5901 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5902 nr_pages_same = 0;
5903 break;
5904 }
5905 }
5906 /* allocate minimum pages, user can later expand it */
5907 if (!nr_pages_same)
5908 nr_pages = 2;
5909 buffer->buffers[cpu] =
5910 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5911 if (!buffer->buffers[cpu]) {
5912 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5913 cpu);
5914 return -ENOMEM;
5915 }
5916 smp_wmb();
5917 cpumask_set_cpu(cpu, buffer->cpumask);
5918 return 0;
5919 }
5920
5921 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5922 /*
5923 * This is a basic integrity check of the ring buffer.
5924 * Late in the boot cycle this test will run when configured in.
5925 * It will kick off a thread per CPU that will go into a loop
5926 * writing to the per cpu ring buffer various sizes of data.
5927 * Some of the data will be large items, some small.
5928 *
5929 * Another thread is created that goes into a spin, sending out
5930 * IPIs to the other CPUs to also write into the ring buffer.
5931 * this is to test the nesting ability of the buffer.
5932 *
5933 * Basic stats are recorded and reported. If something in the
5934 * ring buffer should happen that's not expected, a big warning
5935 * is displayed and all ring buffers are disabled.
5936 */
5937 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5938
5939 struct rb_test_data {
5940 struct trace_buffer *buffer;
5941 unsigned long events;
5942 unsigned long bytes_written;
5943 unsigned long bytes_alloc;
5944 unsigned long bytes_dropped;
5945 unsigned long events_nested;
5946 unsigned long bytes_written_nested;
5947 unsigned long bytes_alloc_nested;
5948 unsigned long bytes_dropped_nested;
5949 int min_size_nested;
5950 int max_size_nested;
5951 int max_size;
5952 int min_size;
5953 int cpu;
5954 int cnt;
5955 };
5956
5957 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5958
5959 /* 1 meg per cpu */
5960 #define RB_TEST_BUFFER_SIZE 1048576
5961
5962 static char rb_string[] __initdata =
5963 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5964 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5965 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5966
5967 static bool rb_test_started __initdata;
5968
5969 struct rb_item {
5970 int size;
5971 char str[];
5972 };
5973
5974 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5975 {
5976 struct ring_buffer_event *event;
5977 struct rb_item *item;
5978 bool started;
5979 int event_len;
5980 int size;
5981 int len;
5982 int cnt;
5983
5984 /* Have nested writes different that what is written */
5985 cnt = data->cnt + (nested ? 27 : 0);
5986
5987 /* Multiply cnt by ~e, to make some unique increment */
5988 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5989
5990 len = size + sizeof(struct rb_item);
5991
5992 started = rb_test_started;
5993 /* read rb_test_started before checking buffer enabled */
5994 smp_rmb();
5995
5996 event = ring_buffer_lock_reserve(data->buffer, len);
5997 if (!event) {
5998 /* Ignore dropped events before test starts. */
5999 if (started) {
6000 if (nested)
6001 data->bytes_dropped += len;
6002 else
6003 data->bytes_dropped_nested += len;
6004 }
6005 return len;
6006 }
6007
6008 event_len = ring_buffer_event_length(event);
6009
6010 if (RB_WARN_ON(data->buffer, event_len < len))
6011 goto out;
6012
6013 item = ring_buffer_event_data(event);
6014 item->size = size;
6015 memcpy(item->str, rb_string, size);
6016
6017 if (nested) {
6018 data->bytes_alloc_nested += event_len;
6019 data->bytes_written_nested += len;
6020 data->events_nested++;
6021 if (!data->min_size_nested || len < data->min_size_nested)
6022 data->min_size_nested = len;
6023 if (len > data->max_size_nested)
6024 data->max_size_nested = len;
6025 } else {
6026 data->bytes_alloc += event_len;
6027 data->bytes_written += len;
6028 data->events++;
6029 if (!data->min_size || len < data->min_size)
6030 data->max_size = len;
6031 if (len > data->max_size)
6032 data->max_size = len;
6033 }
6034
6035 out:
6036 ring_buffer_unlock_commit(data->buffer);
6037
6038 return 0;
6039 }
6040
6041 static __init int rb_test(void *arg)
6042 {
6043 struct rb_test_data *data = arg;
6044
6045 while (!kthread_should_stop()) {
6046 rb_write_something(data, false);
6047 data->cnt++;
6048
6049 set_current_state(TASK_INTERRUPTIBLE);
6050 /* Now sleep between a min of 100-300us and a max of 1ms */
6051 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6052 }
6053
6054 return 0;
6055 }
6056
6057 static __init void rb_ipi(void *ignore)
6058 {
6059 struct rb_test_data *data;
6060 int cpu = smp_processor_id();
6061
6062 data = &rb_data[cpu];
6063 rb_write_something(data, true);
6064 }
6065
6066 static __init int rb_hammer_test(void *arg)
6067 {
6068 while (!kthread_should_stop()) {
6069
6070 /* Send an IPI to all cpus to write data! */
6071 smp_call_function(rb_ipi, NULL, 1);
6072 /* No sleep, but for non preempt, let others run */
6073 schedule();
6074 }
6075
6076 return 0;
6077 }
6078
6079 static __init int test_ringbuffer(void)
6080 {
6081 struct task_struct *rb_hammer;
6082 struct trace_buffer *buffer;
6083 int cpu;
6084 int ret = 0;
6085
6086 if (security_locked_down(LOCKDOWN_TRACEFS)) {
6087 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6088 return 0;
6089 }
6090
6091 pr_info("Running ring buffer tests...\n");
6092
6093 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6094 if (WARN_ON(!buffer))
6095 return 0;
6096
6097 /* Disable buffer so that threads can't write to it yet */
6098 ring_buffer_record_off(buffer);
6099
6100 for_each_online_cpu(cpu) {
6101 rb_data[cpu].buffer = buffer;
6102 rb_data[cpu].cpu = cpu;
6103 rb_data[cpu].cnt = cpu;
6104 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6105 cpu, "rbtester/%u");
6106 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6107 pr_cont("FAILED\n");
6108 ret = PTR_ERR(rb_threads[cpu]);
6109 goto out_free;
6110 }
6111 }
6112
6113 /* Now create the rb hammer! */
6114 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6115 if (WARN_ON(IS_ERR(rb_hammer))) {
6116 pr_cont("FAILED\n");
6117 ret = PTR_ERR(rb_hammer);
6118 goto out_free;
6119 }
6120
6121 ring_buffer_record_on(buffer);
6122 /*
6123 * Show buffer is enabled before setting rb_test_started.
6124 * Yes there's a small race window where events could be
6125 * dropped and the thread wont catch it. But when a ring
6126 * buffer gets enabled, there will always be some kind of
6127 * delay before other CPUs see it. Thus, we don't care about
6128 * those dropped events. We care about events dropped after
6129 * the threads see that the buffer is active.
6130 */
6131 smp_wmb();
6132 rb_test_started = true;
6133
6134 set_current_state(TASK_INTERRUPTIBLE);
6135 /* Just run for 10 seconds */;
6136 schedule_timeout(10 * HZ);
6137
6138 kthread_stop(rb_hammer);
6139
6140 out_free:
6141 for_each_online_cpu(cpu) {
6142 if (!rb_threads[cpu])
6143 break;
6144 kthread_stop(rb_threads[cpu]);
6145 }
6146 if (ret) {
6147 ring_buffer_free(buffer);
6148 return ret;
6149 }
6150
6151 /* Report! */
6152 pr_info("finished\n");
6153 for_each_online_cpu(cpu) {
6154 struct ring_buffer_event *event;
6155 struct rb_test_data *data = &rb_data[cpu];
6156 struct rb_item *item;
6157 unsigned long total_events;
6158 unsigned long total_dropped;
6159 unsigned long total_written;
6160 unsigned long total_alloc;
6161 unsigned long total_read = 0;
6162 unsigned long total_size = 0;
6163 unsigned long total_len = 0;
6164 unsigned long total_lost = 0;
6165 unsigned long lost;
6166 int big_event_size;
6167 int small_event_size;
6168
6169 ret = -1;
6170
6171 total_events = data->events + data->events_nested;
6172 total_written = data->bytes_written + data->bytes_written_nested;
6173 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6174 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6175
6176 big_event_size = data->max_size + data->max_size_nested;
6177 small_event_size = data->min_size + data->min_size_nested;
6178
6179 pr_info("CPU %d:\n", cpu);
6180 pr_info(" events: %ld\n", total_events);
6181 pr_info(" dropped bytes: %ld\n", total_dropped);
6182 pr_info(" alloced bytes: %ld\n", total_alloc);
6183 pr_info(" written bytes: %ld\n", total_written);
6184 pr_info(" biggest event: %d\n", big_event_size);
6185 pr_info(" smallest event: %d\n", small_event_size);
6186
6187 if (RB_WARN_ON(buffer, total_dropped))
6188 break;
6189
6190 ret = 0;
6191
6192 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6193 total_lost += lost;
6194 item = ring_buffer_event_data(event);
6195 total_len += ring_buffer_event_length(event);
6196 total_size += item->size + sizeof(struct rb_item);
6197 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6198 pr_info("FAILED!\n");
6199 pr_info("buffer had: %.*s\n", item->size, item->str);
6200 pr_info("expected: %.*s\n", item->size, rb_string);
6201 RB_WARN_ON(buffer, 1);
6202 ret = -1;
6203 break;
6204 }
6205 total_read++;
6206 }
6207 if (ret)
6208 break;
6209
6210 ret = -1;
6211
6212 pr_info(" read events: %ld\n", total_read);
6213 pr_info(" lost events: %ld\n", total_lost);
6214 pr_info(" total events: %ld\n", total_lost + total_read);
6215 pr_info(" recorded len bytes: %ld\n", total_len);
6216 pr_info(" recorded size bytes: %ld\n", total_size);
6217 if (total_lost) {
6218 pr_info(" With dropped events, record len and size may not match\n"
6219 " alloced and written from above\n");
6220 } else {
6221 if (RB_WARN_ON(buffer, total_len != total_alloc ||
6222 total_size != total_written))
6223 break;
6224 }
6225 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6226 break;
6227
6228 ret = 0;
6229 }
6230 if (!ret)
6231 pr_info("Ring buffer PASSED!\n");
6232
6233 ring_buffer_free(buffer);
6234 return 0;
6235 }
6236
6237 late_initcall(test_ringbuffer);
6238 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */