]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/trace/ring_buffer.c
Merge remote-tracking branches 'asoc/topic/samsung', 'asoc/topic/sgtl5000', 'asoc...
[thirdparty/linux.git] / kernel / trace / ring_buffer.c
1 /*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26
27 #include <asm/local.h>
28
29 static void update_pages_handler(struct work_struct *work);
30
31 /*
32 * The ring buffer header is special. We must manually up keep it.
33 */
34 int ring_buffer_print_entry_header(struct trace_seq *s)
35 {
36 trace_seq_puts(s, "# compressed entry header\n");
37 trace_seq_puts(s, "\ttype_len : 5 bits\n");
38 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
39 trace_seq_puts(s, "\tarray : 32 bits\n");
40 trace_seq_putc(s, '\n');
41 trace_seq_printf(s, "\tpadding : type == %d\n",
42 RINGBUF_TYPE_PADDING);
43 trace_seq_printf(s, "\ttime_extend : type == %d\n",
44 RINGBUF_TYPE_TIME_EXTEND);
45 trace_seq_printf(s, "\tdata max type_len == %d\n",
46 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
47
48 return !trace_seq_has_overflowed(s);
49 }
50
51 /*
52 * The ring buffer is made up of a list of pages. A separate list of pages is
53 * allocated for each CPU. A writer may only write to a buffer that is
54 * associated with the CPU it is currently executing on. A reader may read
55 * from any per cpu buffer.
56 *
57 * The reader is special. For each per cpu buffer, the reader has its own
58 * reader page. When a reader has read the entire reader page, this reader
59 * page is swapped with another page in the ring buffer.
60 *
61 * Now, as long as the writer is off the reader page, the reader can do what
62 * ever it wants with that page. The writer will never write to that page
63 * again (as long as it is out of the ring buffer).
64 *
65 * Here's some silly ASCII art.
66 *
67 * +------+
68 * |reader| RING BUFFER
69 * |page |
70 * +------+ +---+ +---+ +---+
71 * | |-->| |-->| |
72 * +---+ +---+ +---+
73 * ^ |
74 * | |
75 * +---------------+
76 *
77 *
78 * +------+
79 * |reader| RING BUFFER
80 * |page |------------------v
81 * +------+ +---+ +---+ +---+
82 * | |-->| |-->| |
83 * +---+ +---+ +---+
84 * ^ |
85 * | |
86 * +---------------+
87 *
88 *
89 * +------+
90 * |reader| RING BUFFER
91 * |page |------------------v
92 * +------+ +---+ +---+ +---+
93 * ^ | |-->| |-->| |
94 * | +---+ +---+ +---+
95 * | |
96 * | |
97 * +------------------------------+
98 *
99 *
100 * +------+
101 * |buffer| RING BUFFER
102 * |page |------------------v
103 * +------+ +---+ +---+ +---+
104 * ^ | | | |-->| |
105 * | New +---+ +---+ +---+
106 * | Reader------^ |
107 * | page |
108 * +------------------------------+
109 *
110 *
111 * After we make this swap, the reader can hand this page off to the splice
112 * code and be done with it. It can even allocate a new page if it needs to
113 * and swap that into the ring buffer.
114 *
115 * We will be using cmpxchg soon to make all this lockless.
116 *
117 */
118
119 /* Used for individual buffers (after the counter) */
120 #define RB_BUFFER_OFF (1 << 20)
121
122 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123
124 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
125 #define RB_ALIGNMENT 4U
126 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
127 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128
129 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
130 # define RB_FORCE_8BYTE_ALIGNMENT 0
131 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
132 #else
133 # define RB_FORCE_8BYTE_ALIGNMENT 1
134 # define RB_ARCH_ALIGNMENT 8U
135 #endif
136
137 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138
139 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
140 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
141
142 enum {
143 RB_LEN_TIME_EXTEND = 8,
144 RB_LEN_TIME_STAMP = 16,
145 };
146
147 #define skip_time_extend(event) \
148 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149
150 static inline int rb_null_event(struct ring_buffer_event *event)
151 {
152 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
153 }
154
155 static void rb_event_set_padding(struct ring_buffer_event *event)
156 {
157 /* padding has a NULL time_delta */
158 event->type_len = RINGBUF_TYPE_PADDING;
159 event->time_delta = 0;
160 }
161
162 static unsigned
163 rb_event_data_length(struct ring_buffer_event *event)
164 {
165 unsigned length;
166
167 if (event->type_len)
168 length = event->type_len * RB_ALIGNMENT;
169 else
170 length = event->array[0];
171 return length + RB_EVNT_HDR_SIZE;
172 }
173
174 /*
175 * Return the length of the given event. Will return
176 * the length of the time extend if the event is a
177 * time extend.
178 */
179 static inline unsigned
180 rb_event_length(struct ring_buffer_event *event)
181 {
182 switch (event->type_len) {
183 case RINGBUF_TYPE_PADDING:
184 if (rb_null_event(event))
185 /* undefined */
186 return -1;
187 return event->array[0] + RB_EVNT_HDR_SIZE;
188
189 case RINGBUF_TYPE_TIME_EXTEND:
190 return RB_LEN_TIME_EXTEND;
191
192 case RINGBUF_TYPE_TIME_STAMP:
193 return RB_LEN_TIME_STAMP;
194
195 case RINGBUF_TYPE_DATA:
196 return rb_event_data_length(event);
197 default:
198 BUG();
199 }
200 /* not hit */
201 return 0;
202 }
203
204 /*
205 * Return total length of time extend and data,
206 * or just the event length for all other events.
207 */
208 static inline unsigned
209 rb_event_ts_length(struct ring_buffer_event *event)
210 {
211 unsigned len = 0;
212
213 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
214 /* time extends include the data event after it */
215 len = RB_LEN_TIME_EXTEND;
216 event = skip_time_extend(event);
217 }
218 return len + rb_event_length(event);
219 }
220
221 /**
222 * ring_buffer_event_length - return the length of the event
223 * @event: the event to get the length of
224 *
225 * Returns the size of the data load of a data event.
226 * If the event is something other than a data event, it
227 * returns the size of the event itself. With the exception
228 * of a TIME EXTEND, where it still returns the size of the
229 * data load of the data event after it.
230 */
231 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
232 {
233 unsigned length;
234
235 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
236 event = skip_time_extend(event);
237
238 length = rb_event_length(event);
239 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
240 return length;
241 length -= RB_EVNT_HDR_SIZE;
242 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
243 length -= sizeof(event->array[0]);
244 return length;
245 }
246 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
247
248 /* inline for ring buffer fast paths */
249 static __always_inline void *
250 rb_event_data(struct ring_buffer_event *event)
251 {
252 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
253 event = skip_time_extend(event);
254 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
255 /* If length is in len field, then array[0] has the data */
256 if (event->type_len)
257 return (void *)&event->array[0];
258 /* Otherwise length is in array[0] and array[1] has the data */
259 return (void *)&event->array[1];
260 }
261
262 /**
263 * ring_buffer_event_data - return the data of the event
264 * @event: the event to get the data from
265 */
266 void *ring_buffer_event_data(struct ring_buffer_event *event)
267 {
268 return rb_event_data(event);
269 }
270 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
271
272 #define for_each_buffer_cpu(buffer, cpu) \
273 for_each_cpu(cpu, buffer->cpumask)
274
275 #define TS_SHIFT 27
276 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
277 #define TS_DELTA_TEST (~TS_MASK)
278
279 /* Flag when events were overwritten */
280 #define RB_MISSED_EVENTS (1 << 31)
281 /* Missed count stored at end */
282 #define RB_MISSED_STORED (1 << 30)
283
284 struct buffer_data_page {
285 u64 time_stamp; /* page time stamp */
286 local_t commit; /* write committed index */
287 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
288 };
289
290 /*
291 * Note, the buffer_page list must be first. The buffer pages
292 * are allocated in cache lines, which means that each buffer
293 * page will be at the beginning of a cache line, and thus
294 * the least significant bits will be zero. We use this to
295 * add flags in the list struct pointers, to make the ring buffer
296 * lockless.
297 */
298 struct buffer_page {
299 struct list_head list; /* list of buffer pages */
300 local_t write; /* index for next write */
301 unsigned read; /* index for next read */
302 local_t entries; /* entries on this page */
303 unsigned long real_end; /* real end of data */
304 struct buffer_data_page *page; /* Actual data page */
305 };
306
307 /*
308 * The buffer page counters, write and entries, must be reset
309 * atomically when crossing page boundaries. To synchronize this
310 * update, two counters are inserted into the number. One is
311 * the actual counter for the write position or count on the page.
312 *
313 * The other is a counter of updaters. Before an update happens
314 * the update partition of the counter is incremented. This will
315 * allow the updater to update the counter atomically.
316 *
317 * The counter is 20 bits, and the state data is 12.
318 */
319 #define RB_WRITE_MASK 0xfffff
320 #define RB_WRITE_INTCNT (1 << 20)
321
322 static void rb_init_page(struct buffer_data_page *bpage)
323 {
324 local_set(&bpage->commit, 0);
325 }
326
327 /**
328 * ring_buffer_page_len - the size of data on the page.
329 * @page: The page to read
330 *
331 * Returns the amount of data on the page, including buffer page header.
332 */
333 size_t ring_buffer_page_len(void *page)
334 {
335 return local_read(&((struct buffer_data_page *)page)->commit)
336 + BUF_PAGE_HDR_SIZE;
337 }
338
339 /*
340 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
341 * this issue out.
342 */
343 static void free_buffer_page(struct buffer_page *bpage)
344 {
345 free_page((unsigned long)bpage->page);
346 kfree(bpage);
347 }
348
349 /*
350 * We need to fit the time_stamp delta into 27 bits.
351 */
352 static inline int test_time_stamp(u64 delta)
353 {
354 if (delta & TS_DELTA_TEST)
355 return 1;
356 return 0;
357 }
358
359 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360
361 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
362 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363
364 int ring_buffer_print_page_header(struct trace_seq *s)
365 {
366 struct buffer_data_page field;
367
368 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
369 "offset:0;\tsize:%u;\tsigned:%u;\n",
370 (unsigned int)sizeof(field.time_stamp),
371 (unsigned int)is_signed_type(u64));
372
373 trace_seq_printf(s, "\tfield: local_t commit;\t"
374 "offset:%u;\tsize:%u;\tsigned:%u;\n",
375 (unsigned int)offsetof(typeof(field), commit),
376 (unsigned int)sizeof(field.commit),
377 (unsigned int)is_signed_type(long));
378
379 trace_seq_printf(s, "\tfield: int overwrite;\t"
380 "offset:%u;\tsize:%u;\tsigned:%u;\n",
381 (unsigned int)offsetof(typeof(field), commit),
382 1,
383 (unsigned int)is_signed_type(long));
384
385 trace_seq_printf(s, "\tfield: char data;\t"
386 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 (unsigned int)offsetof(typeof(field), data),
388 (unsigned int)BUF_PAGE_SIZE,
389 (unsigned int)is_signed_type(char));
390
391 return !trace_seq_has_overflowed(s);
392 }
393
394 struct rb_irq_work {
395 struct irq_work work;
396 wait_queue_head_t waiters;
397 wait_queue_head_t full_waiters;
398 bool waiters_pending;
399 bool full_waiters_pending;
400 bool wakeup_full;
401 };
402
403 /*
404 * Structure to hold event state and handle nested events.
405 */
406 struct rb_event_info {
407 u64 ts;
408 u64 delta;
409 unsigned long length;
410 struct buffer_page *tail_page;
411 int add_timestamp;
412 };
413
414 /*
415 * Used for which event context the event is in.
416 * NMI = 0
417 * IRQ = 1
418 * SOFTIRQ = 2
419 * NORMAL = 3
420 *
421 * See trace_recursive_lock() comment below for more details.
422 */
423 enum {
424 RB_CTX_NMI,
425 RB_CTX_IRQ,
426 RB_CTX_SOFTIRQ,
427 RB_CTX_NORMAL,
428 RB_CTX_MAX
429 };
430
431 /*
432 * head_page == tail_page && head == tail then buffer is empty.
433 */
434 struct ring_buffer_per_cpu {
435 int cpu;
436 atomic_t record_disabled;
437 struct ring_buffer *buffer;
438 raw_spinlock_t reader_lock; /* serialize readers */
439 arch_spinlock_t lock;
440 struct lock_class_key lock_key;
441 unsigned long nr_pages;
442 unsigned int current_context;
443 struct list_head *pages;
444 struct buffer_page *head_page; /* read from head */
445 struct buffer_page *tail_page; /* write to tail */
446 struct buffer_page *commit_page; /* committed pages */
447 struct buffer_page *reader_page;
448 unsigned long lost_events;
449 unsigned long last_overrun;
450 local_t entries_bytes;
451 local_t entries;
452 local_t overrun;
453 local_t commit_overrun;
454 local_t dropped_events;
455 local_t committing;
456 local_t commits;
457 unsigned long read;
458 unsigned long read_bytes;
459 u64 write_stamp;
460 u64 read_stamp;
461 /* ring buffer pages to update, > 0 to add, < 0 to remove */
462 long nr_pages_to_update;
463 struct list_head new_pages; /* new pages to add */
464 struct work_struct update_pages_work;
465 struct completion update_done;
466
467 struct rb_irq_work irq_work;
468 };
469
470 struct ring_buffer {
471 unsigned flags;
472 int cpus;
473 atomic_t record_disabled;
474 atomic_t resize_disabled;
475 cpumask_var_t cpumask;
476
477 struct lock_class_key *reader_lock_key;
478
479 struct mutex mutex;
480
481 struct ring_buffer_per_cpu **buffers;
482
483 struct hlist_node node;
484 u64 (*clock)(void);
485
486 struct rb_irq_work irq_work;
487 };
488
489 struct ring_buffer_iter {
490 struct ring_buffer_per_cpu *cpu_buffer;
491 unsigned long head;
492 struct buffer_page *head_page;
493 struct buffer_page *cache_reader_page;
494 unsigned long cache_read;
495 u64 read_stamp;
496 };
497
498 /*
499 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
500 *
501 * Schedules a delayed work to wake up any task that is blocked on the
502 * ring buffer waiters queue.
503 */
504 static void rb_wake_up_waiters(struct irq_work *work)
505 {
506 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
507
508 wake_up_all(&rbwork->waiters);
509 if (rbwork->wakeup_full) {
510 rbwork->wakeup_full = false;
511 wake_up_all(&rbwork->full_waiters);
512 }
513 }
514
515 /**
516 * ring_buffer_wait - wait for input to the ring buffer
517 * @buffer: buffer to wait on
518 * @cpu: the cpu buffer to wait on
519 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
520 *
521 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
522 * as data is added to any of the @buffer's cpu buffers. Otherwise
523 * it will wait for data to be added to a specific cpu buffer.
524 */
525 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
526 {
527 struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
528 DEFINE_WAIT(wait);
529 struct rb_irq_work *work;
530 int ret = 0;
531
532 /*
533 * Depending on what the caller is waiting for, either any
534 * data in any cpu buffer, or a specific buffer, put the
535 * caller on the appropriate wait queue.
536 */
537 if (cpu == RING_BUFFER_ALL_CPUS) {
538 work = &buffer->irq_work;
539 /* Full only makes sense on per cpu reads */
540 full = false;
541 } else {
542 if (!cpumask_test_cpu(cpu, buffer->cpumask))
543 return -ENODEV;
544 cpu_buffer = buffer->buffers[cpu];
545 work = &cpu_buffer->irq_work;
546 }
547
548
549 while (true) {
550 if (full)
551 prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
552 else
553 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
554
555 /*
556 * The events can happen in critical sections where
557 * checking a work queue can cause deadlocks.
558 * After adding a task to the queue, this flag is set
559 * only to notify events to try to wake up the queue
560 * using irq_work.
561 *
562 * We don't clear it even if the buffer is no longer
563 * empty. The flag only causes the next event to run
564 * irq_work to do the work queue wake up. The worse
565 * that can happen if we race with !trace_empty() is that
566 * an event will cause an irq_work to try to wake up
567 * an empty queue.
568 *
569 * There's no reason to protect this flag either, as
570 * the work queue and irq_work logic will do the necessary
571 * synchronization for the wake ups. The only thing
572 * that is necessary is that the wake up happens after
573 * a task has been queued. It's OK for spurious wake ups.
574 */
575 if (full)
576 work->full_waiters_pending = true;
577 else
578 work->waiters_pending = true;
579
580 if (signal_pending(current)) {
581 ret = -EINTR;
582 break;
583 }
584
585 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
586 break;
587
588 if (cpu != RING_BUFFER_ALL_CPUS &&
589 !ring_buffer_empty_cpu(buffer, cpu)) {
590 unsigned long flags;
591 bool pagebusy;
592
593 if (!full)
594 break;
595
596 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
597 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
598 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
599
600 if (!pagebusy)
601 break;
602 }
603
604 schedule();
605 }
606
607 if (full)
608 finish_wait(&work->full_waiters, &wait);
609 else
610 finish_wait(&work->waiters, &wait);
611
612 return ret;
613 }
614
615 /**
616 * ring_buffer_poll_wait - poll on buffer input
617 * @buffer: buffer to wait on
618 * @cpu: the cpu buffer to wait on
619 * @filp: the file descriptor
620 * @poll_table: The poll descriptor
621 *
622 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
623 * as data is added to any of the @buffer's cpu buffers. Otherwise
624 * it will wait for data to be added to a specific cpu buffer.
625 *
626 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
627 * zero otherwise.
628 */
629 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
630 struct file *filp, poll_table *poll_table)
631 {
632 struct ring_buffer_per_cpu *cpu_buffer;
633 struct rb_irq_work *work;
634
635 if (cpu == RING_BUFFER_ALL_CPUS)
636 work = &buffer->irq_work;
637 else {
638 if (!cpumask_test_cpu(cpu, buffer->cpumask))
639 return -EINVAL;
640
641 cpu_buffer = buffer->buffers[cpu];
642 work = &cpu_buffer->irq_work;
643 }
644
645 poll_wait(filp, &work->waiters, poll_table);
646 work->waiters_pending = true;
647 /*
648 * There's a tight race between setting the waiters_pending and
649 * checking if the ring buffer is empty. Once the waiters_pending bit
650 * is set, the next event will wake the task up, but we can get stuck
651 * if there's only a single event in.
652 *
653 * FIXME: Ideally, we need a memory barrier on the writer side as well,
654 * but adding a memory barrier to all events will cause too much of a
655 * performance hit in the fast path. We only need a memory barrier when
656 * the buffer goes from empty to having content. But as this race is
657 * extremely small, and it's not a problem if another event comes in, we
658 * will fix it later.
659 */
660 smp_mb();
661
662 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
663 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
664 return POLLIN | POLLRDNORM;
665 return 0;
666 }
667
668 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
669 #define RB_WARN_ON(b, cond) \
670 ({ \
671 int _____ret = unlikely(cond); \
672 if (_____ret) { \
673 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
674 struct ring_buffer_per_cpu *__b = \
675 (void *)b; \
676 atomic_inc(&__b->buffer->record_disabled); \
677 } else \
678 atomic_inc(&b->record_disabled); \
679 WARN_ON(1); \
680 } \
681 _____ret; \
682 })
683
684 /* Up this if you want to test the TIME_EXTENTS and normalization */
685 #define DEBUG_SHIFT 0
686
687 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
688 {
689 /* shift to debug/test normalization and TIME_EXTENTS */
690 return buffer->clock() << DEBUG_SHIFT;
691 }
692
693 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
694 {
695 u64 time;
696
697 preempt_disable_notrace();
698 time = rb_time_stamp(buffer);
699 preempt_enable_no_resched_notrace();
700
701 return time;
702 }
703 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
704
705 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
706 int cpu, u64 *ts)
707 {
708 /* Just stupid testing the normalize function and deltas */
709 *ts >>= DEBUG_SHIFT;
710 }
711 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
712
713 /*
714 * Making the ring buffer lockless makes things tricky.
715 * Although writes only happen on the CPU that they are on,
716 * and they only need to worry about interrupts. Reads can
717 * happen on any CPU.
718 *
719 * The reader page is always off the ring buffer, but when the
720 * reader finishes with a page, it needs to swap its page with
721 * a new one from the buffer. The reader needs to take from
722 * the head (writes go to the tail). But if a writer is in overwrite
723 * mode and wraps, it must push the head page forward.
724 *
725 * Here lies the problem.
726 *
727 * The reader must be careful to replace only the head page, and
728 * not another one. As described at the top of the file in the
729 * ASCII art, the reader sets its old page to point to the next
730 * page after head. It then sets the page after head to point to
731 * the old reader page. But if the writer moves the head page
732 * during this operation, the reader could end up with the tail.
733 *
734 * We use cmpxchg to help prevent this race. We also do something
735 * special with the page before head. We set the LSB to 1.
736 *
737 * When the writer must push the page forward, it will clear the
738 * bit that points to the head page, move the head, and then set
739 * the bit that points to the new head page.
740 *
741 * We also don't want an interrupt coming in and moving the head
742 * page on another writer. Thus we use the second LSB to catch
743 * that too. Thus:
744 *
745 * head->list->prev->next bit 1 bit 0
746 * ------- -------
747 * Normal page 0 0
748 * Points to head page 0 1
749 * New head page 1 0
750 *
751 * Note we can not trust the prev pointer of the head page, because:
752 *
753 * +----+ +-----+ +-----+
754 * | |------>| T |---X--->| N |
755 * | |<------| | | |
756 * +----+ +-----+ +-----+
757 * ^ ^ |
758 * | +-----+ | |
759 * +----------| R |----------+ |
760 * | |<-----------+
761 * +-----+
762 *
763 * Key: ---X--> HEAD flag set in pointer
764 * T Tail page
765 * R Reader page
766 * N Next page
767 *
768 * (see __rb_reserve_next() to see where this happens)
769 *
770 * What the above shows is that the reader just swapped out
771 * the reader page with a page in the buffer, but before it
772 * could make the new header point back to the new page added
773 * it was preempted by a writer. The writer moved forward onto
774 * the new page added by the reader and is about to move forward
775 * again.
776 *
777 * You can see, it is legitimate for the previous pointer of
778 * the head (or any page) not to point back to itself. But only
779 * temporarially.
780 */
781
782 #define RB_PAGE_NORMAL 0UL
783 #define RB_PAGE_HEAD 1UL
784 #define RB_PAGE_UPDATE 2UL
785
786
787 #define RB_FLAG_MASK 3UL
788
789 /* PAGE_MOVED is not part of the mask */
790 #define RB_PAGE_MOVED 4UL
791
792 /*
793 * rb_list_head - remove any bit
794 */
795 static struct list_head *rb_list_head(struct list_head *list)
796 {
797 unsigned long val = (unsigned long)list;
798
799 return (struct list_head *)(val & ~RB_FLAG_MASK);
800 }
801
802 /*
803 * rb_is_head_page - test if the given page is the head page
804 *
805 * Because the reader may move the head_page pointer, we can
806 * not trust what the head page is (it may be pointing to
807 * the reader page). But if the next page is a header page,
808 * its flags will be non zero.
809 */
810 static inline int
811 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
812 struct buffer_page *page, struct list_head *list)
813 {
814 unsigned long val;
815
816 val = (unsigned long)list->next;
817
818 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
819 return RB_PAGE_MOVED;
820
821 return val & RB_FLAG_MASK;
822 }
823
824 /*
825 * rb_is_reader_page
826 *
827 * The unique thing about the reader page, is that, if the
828 * writer is ever on it, the previous pointer never points
829 * back to the reader page.
830 */
831 static bool rb_is_reader_page(struct buffer_page *page)
832 {
833 struct list_head *list = page->list.prev;
834
835 return rb_list_head(list->next) != &page->list;
836 }
837
838 /*
839 * rb_set_list_to_head - set a list_head to be pointing to head.
840 */
841 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
842 struct list_head *list)
843 {
844 unsigned long *ptr;
845
846 ptr = (unsigned long *)&list->next;
847 *ptr |= RB_PAGE_HEAD;
848 *ptr &= ~RB_PAGE_UPDATE;
849 }
850
851 /*
852 * rb_head_page_activate - sets up head page
853 */
854 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
855 {
856 struct buffer_page *head;
857
858 head = cpu_buffer->head_page;
859 if (!head)
860 return;
861
862 /*
863 * Set the previous list pointer to have the HEAD flag.
864 */
865 rb_set_list_to_head(cpu_buffer, head->list.prev);
866 }
867
868 static void rb_list_head_clear(struct list_head *list)
869 {
870 unsigned long *ptr = (unsigned long *)&list->next;
871
872 *ptr &= ~RB_FLAG_MASK;
873 }
874
875 /*
876 * rb_head_page_dactivate - clears head page ptr (for free list)
877 */
878 static void
879 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
880 {
881 struct list_head *hd;
882
883 /* Go through the whole list and clear any pointers found. */
884 rb_list_head_clear(cpu_buffer->pages);
885
886 list_for_each(hd, cpu_buffer->pages)
887 rb_list_head_clear(hd);
888 }
889
890 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
891 struct buffer_page *head,
892 struct buffer_page *prev,
893 int old_flag, int new_flag)
894 {
895 struct list_head *list;
896 unsigned long val = (unsigned long)&head->list;
897 unsigned long ret;
898
899 list = &prev->list;
900
901 val &= ~RB_FLAG_MASK;
902
903 ret = cmpxchg((unsigned long *)&list->next,
904 val | old_flag, val | new_flag);
905
906 /* check if the reader took the page */
907 if ((ret & ~RB_FLAG_MASK) != val)
908 return RB_PAGE_MOVED;
909
910 return ret & RB_FLAG_MASK;
911 }
912
913 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
914 struct buffer_page *head,
915 struct buffer_page *prev,
916 int old_flag)
917 {
918 return rb_head_page_set(cpu_buffer, head, prev,
919 old_flag, RB_PAGE_UPDATE);
920 }
921
922 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
923 struct buffer_page *head,
924 struct buffer_page *prev,
925 int old_flag)
926 {
927 return rb_head_page_set(cpu_buffer, head, prev,
928 old_flag, RB_PAGE_HEAD);
929 }
930
931 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
932 struct buffer_page *head,
933 struct buffer_page *prev,
934 int old_flag)
935 {
936 return rb_head_page_set(cpu_buffer, head, prev,
937 old_flag, RB_PAGE_NORMAL);
938 }
939
940 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
941 struct buffer_page **bpage)
942 {
943 struct list_head *p = rb_list_head((*bpage)->list.next);
944
945 *bpage = list_entry(p, struct buffer_page, list);
946 }
947
948 static struct buffer_page *
949 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
950 {
951 struct buffer_page *head;
952 struct buffer_page *page;
953 struct list_head *list;
954 int i;
955
956 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
957 return NULL;
958
959 /* sanity check */
960 list = cpu_buffer->pages;
961 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
962 return NULL;
963
964 page = head = cpu_buffer->head_page;
965 /*
966 * It is possible that the writer moves the header behind
967 * where we started, and we miss in one loop.
968 * A second loop should grab the header, but we'll do
969 * three loops just because I'm paranoid.
970 */
971 for (i = 0; i < 3; i++) {
972 do {
973 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
974 cpu_buffer->head_page = page;
975 return page;
976 }
977 rb_inc_page(cpu_buffer, &page);
978 } while (page != head);
979 }
980
981 RB_WARN_ON(cpu_buffer, 1);
982
983 return NULL;
984 }
985
986 static int rb_head_page_replace(struct buffer_page *old,
987 struct buffer_page *new)
988 {
989 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
990 unsigned long val;
991 unsigned long ret;
992
993 val = *ptr & ~RB_FLAG_MASK;
994 val |= RB_PAGE_HEAD;
995
996 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
997
998 return ret == val;
999 }
1000
1001 /*
1002 * rb_tail_page_update - move the tail page forward
1003 */
1004 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1005 struct buffer_page *tail_page,
1006 struct buffer_page *next_page)
1007 {
1008 unsigned long old_entries;
1009 unsigned long old_write;
1010
1011 /*
1012 * The tail page now needs to be moved forward.
1013 *
1014 * We need to reset the tail page, but without messing
1015 * with possible erasing of data brought in by interrupts
1016 * that have moved the tail page and are currently on it.
1017 *
1018 * We add a counter to the write field to denote this.
1019 */
1020 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1021 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1022
1023 /*
1024 * Just make sure we have seen our old_write and synchronize
1025 * with any interrupts that come in.
1026 */
1027 barrier();
1028
1029 /*
1030 * If the tail page is still the same as what we think
1031 * it is, then it is up to us to update the tail
1032 * pointer.
1033 */
1034 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1035 /* Zero the write counter */
1036 unsigned long val = old_write & ~RB_WRITE_MASK;
1037 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1038
1039 /*
1040 * This will only succeed if an interrupt did
1041 * not come in and change it. In which case, we
1042 * do not want to modify it.
1043 *
1044 * We add (void) to let the compiler know that we do not care
1045 * about the return value of these functions. We use the
1046 * cmpxchg to only update if an interrupt did not already
1047 * do it for us. If the cmpxchg fails, we don't care.
1048 */
1049 (void)local_cmpxchg(&next_page->write, old_write, val);
1050 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1051
1052 /*
1053 * No need to worry about races with clearing out the commit.
1054 * it only can increment when a commit takes place. But that
1055 * only happens in the outer most nested commit.
1056 */
1057 local_set(&next_page->page->commit, 0);
1058
1059 /* Again, either we update tail_page or an interrupt does */
1060 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1061 }
1062 }
1063
1064 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1065 struct buffer_page *bpage)
1066 {
1067 unsigned long val = (unsigned long)bpage;
1068
1069 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1070 return 1;
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * rb_check_list - make sure a pointer to a list has the last bits zero
1077 */
1078 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1079 struct list_head *list)
1080 {
1081 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1082 return 1;
1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1084 return 1;
1085 return 0;
1086 }
1087
1088 /**
1089 * rb_check_pages - integrity check of buffer pages
1090 * @cpu_buffer: CPU buffer with pages to test
1091 *
1092 * As a safety measure we check to make sure the data pages have not
1093 * been corrupted.
1094 */
1095 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1096 {
1097 struct list_head *head = cpu_buffer->pages;
1098 struct buffer_page *bpage, *tmp;
1099
1100 /* Reset the head page if it exists */
1101 if (cpu_buffer->head_page)
1102 rb_set_head_page(cpu_buffer);
1103
1104 rb_head_page_deactivate(cpu_buffer);
1105
1106 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1107 return -1;
1108 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1109 return -1;
1110
1111 if (rb_check_list(cpu_buffer, head))
1112 return -1;
1113
1114 list_for_each_entry_safe(bpage, tmp, head, list) {
1115 if (RB_WARN_ON(cpu_buffer,
1116 bpage->list.next->prev != &bpage->list))
1117 return -1;
1118 if (RB_WARN_ON(cpu_buffer,
1119 bpage->list.prev->next != &bpage->list))
1120 return -1;
1121 if (rb_check_list(cpu_buffer, &bpage->list))
1122 return -1;
1123 }
1124
1125 rb_head_page_activate(cpu_buffer);
1126
1127 return 0;
1128 }
1129
1130 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1131 {
1132 struct buffer_page *bpage, *tmp;
1133 long i;
1134
1135 for (i = 0; i < nr_pages; i++) {
1136 struct page *page;
1137 /*
1138 * __GFP_NORETRY flag makes sure that the allocation fails
1139 * gracefully without invoking oom-killer and the system is
1140 * not destabilized.
1141 */
1142 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1143 GFP_KERNEL | __GFP_NORETRY,
1144 cpu_to_node(cpu));
1145 if (!bpage)
1146 goto free_pages;
1147
1148 list_add(&bpage->list, pages);
1149
1150 page = alloc_pages_node(cpu_to_node(cpu),
1151 GFP_KERNEL | __GFP_NORETRY, 0);
1152 if (!page)
1153 goto free_pages;
1154 bpage->page = page_address(page);
1155 rb_init_page(bpage->page);
1156 }
1157
1158 return 0;
1159
1160 free_pages:
1161 list_for_each_entry_safe(bpage, tmp, pages, list) {
1162 list_del_init(&bpage->list);
1163 free_buffer_page(bpage);
1164 }
1165
1166 return -ENOMEM;
1167 }
1168
1169 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1170 unsigned long nr_pages)
1171 {
1172 LIST_HEAD(pages);
1173
1174 WARN_ON(!nr_pages);
1175
1176 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1177 return -ENOMEM;
1178
1179 /*
1180 * The ring buffer page list is a circular list that does not
1181 * start and end with a list head. All page list items point to
1182 * other pages.
1183 */
1184 cpu_buffer->pages = pages.next;
1185 list_del(&pages);
1186
1187 cpu_buffer->nr_pages = nr_pages;
1188
1189 rb_check_pages(cpu_buffer);
1190
1191 return 0;
1192 }
1193
1194 static struct ring_buffer_per_cpu *
1195 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1196 {
1197 struct ring_buffer_per_cpu *cpu_buffer;
1198 struct buffer_page *bpage;
1199 struct page *page;
1200 int ret;
1201
1202 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1203 GFP_KERNEL, cpu_to_node(cpu));
1204 if (!cpu_buffer)
1205 return NULL;
1206
1207 cpu_buffer->cpu = cpu;
1208 cpu_buffer->buffer = buffer;
1209 raw_spin_lock_init(&cpu_buffer->reader_lock);
1210 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1211 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1212 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1213 init_completion(&cpu_buffer->update_done);
1214 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1215 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1216 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1217
1218 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1219 GFP_KERNEL, cpu_to_node(cpu));
1220 if (!bpage)
1221 goto fail_free_buffer;
1222
1223 rb_check_bpage(cpu_buffer, bpage);
1224
1225 cpu_buffer->reader_page = bpage;
1226 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1227 if (!page)
1228 goto fail_free_reader;
1229 bpage->page = page_address(page);
1230 rb_init_page(bpage->page);
1231
1232 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1233 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1234
1235 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1236 if (ret < 0)
1237 goto fail_free_reader;
1238
1239 cpu_buffer->head_page
1240 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1241 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1242
1243 rb_head_page_activate(cpu_buffer);
1244
1245 return cpu_buffer;
1246
1247 fail_free_reader:
1248 free_buffer_page(cpu_buffer->reader_page);
1249
1250 fail_free_buffer:
1251 kfree(cpu_buffer);
1252 return NULL;
1253 }
1254
1255 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1256 {
1257 struct list_head *head = cpu_buffer->pages;
1258 struct buffer_page *bpage, *tmp;
1259
1260 free_buffer_page(cpu_buffer->reader_page);
1261
1262 rb_head_page_deactivate(cpu_buffer);
1263
1264 if (head) {
1265 list_for_each_entry_safe(bpage, tmp, head, list) {
1266 list_del_init(&bpage->list);
1267 free_buffer_page(bpage);
1268 }
1269 bpage = list_entry(head, struct buffer_page, list);
1270 free_buffer_page(bpage);
1271 }
1272
1273 kfree(cpu_buffer);
1274 }
1275
1276 /**
1277 * __ring_buffer_alloc - allocate a new ring_buffer
1278 * @size: the size in bytes per cpu that is needed.
1279 * @flags: attributes to set for the ring buffer.
1280 *
1281 * Currently the only flag that is available is the RB_FL_OVERWRITE
1282 * flag. This flag means that the buffer will overwrite old data
1283 * when the buffer wraps. If this flag is not set, the buffer will
1284 * drop data when the tail hits the head.
1285 */
1286 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1287 struct lock_class_key *key)
1288 {
1289 struct ring_buffer *buffer;
1290 long nr_pages;
1291 int bsize;
1292 int cpu;
1293 int ret;
1294
1295 /* keep it in its own cache line */
1296 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1297 GFP_KERNEL);
1298 if (!buffer)
1299 return NULL;
1300
1301 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1302 goto fail_free_buffer;
1303
1304 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1305 buffer->flags = flags;
1306 buffer->clock = trace_clock_local;
1307 buffer->reader_lock_key = key;
1308
1309 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1310 init_waitqueue_head(&buffer->irq_work.waiters);
1311
1312 /* need at least two pages */
1313 if (nr_pages < 2)
1314 nr_pages = 2;
1315
1316 buffer->cpus = nr_cpu_ids;
1317
1318 bsize = sizeof(void *) * nr_cpu_ids;
1319 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1320 GFP_KERNEL);
1321 if (!buffer->buffers)
1322 goto fail_free_cpumask;
1323
1324 cpu = raw_smp_processor_id();
1325 cpumask_set_cpu(cpu, buffer->cpumask);
1326 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1327 if (!buffer->buffers[cpu])
1328 goto fail_free_buffers;
1329
1330 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1331 if (ret < 0)
1332 goto fail_free_buffers;
1333
1334 mutex_init(&buffer->mutex);
1335
1336 return buffer;
1337
1338 fail_free_buffers:
1339 for_each_buffer_cpu(buffer, cpu) {
1340 if (buffer->buffers[cpu])
1341 rb_free_cpu_buffer(buffer->buffers[cpu]);
1342 }
1343 kfree(buffer->buffers);
1344
1345 fail_free_cpumask:
1346 free_cpumask_var(buffer->cpumask);
1347
1348 fail_free_buffer:
1349 kfree(buffer);
1350 return NULL;
1351 }
1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1353
1354 /**
1355 * ring_buffer_free - free a ring buffer.
1356 * @buffer: the buffer to free.
1357 */
1358 void
1359 ring_buffer_free(struct ring_buffer *buffer)
1360 {
1361 int cpu;
1362
1363 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1364
1365 for_each_buffer_cpu(buffer, cpu)
1366 rb_free_cpu_buffer(buffer->buffers[cpu]);
1367
1368 kfree(buffer->buffers);
1369 free_cpumask_var(buffer->cpumask);
1370
1371 kfree(buffer);
1372 }
1373 EXPORT_SYMBOL_GPL(ring_buffer_free);
1374
1375 void ring_buffer_set_clock(struct ring_buffer *buffer,
1376 u64 (*clock)(void))
1377 {
1378 buffer->clock = clock;
1379 }
1380
1381 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1382
1383 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1384 {
1385 return local_read(&bpage->entries) & RB_WRITE_MASK;
1386 }
1387
1388 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1389 {
1390 return local_read(&bpage->write) & RB_WRITE_MASK;
1391 }
1392
1393 static int
1394 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1395 {
1396 struct list_head *tail_page, *to_remove, *next_page;
1397 struct buffer_page *to_remove_page, *tmp_iter_page;
1398 struct buffer_page *last_page, *first_page;
1399 unsigned long nr_removed;
1400 unsigned long head_bit;
1401 int page_entries;
1402
1403 head_bit = 0;
1404
1405 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1406 atomic_inc(&cpu_buffer->record_disabled);
1407 /*
1408 * We don't race with the readers since we have acquired the reader
1409 * lock. We also don't race with writers after disabling recording.
1410 * This makes it easy to figure out the first and the last page to be
1411 * removed from the list. We unlink all the pages in between including
1412 * the first and last pages. This is done in a busy loop so that we
1413 * lose the least number of traces.
1414 * The pages are freed after we restart recording and unlock readers.
1415 */
1416 tail_page = &cpu_buffer->tail_page->list;
1417
1418 /*
1419 * tail page might be on reader page, we remove the next page
1420 * from the ring buffer
1421 */
1422 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1423 tail_page = rb_list_head(tail_page->next);
1424 to_remove = tail_page;
1425
1426 /* start of pages to remove */
1427 first_page = list_entry(rb_list_head(to_remove->next),
1428 struct buffer_page, list);
1429
1430 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1431 to_remove = rb_list_head(to_remove)->next;
1432 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1433 }
1434
1435 next_page = rb_list_head(to_remove)->next;
1436
1437 /*
1438 * Now we remove all pages between tail_page and next_page.
1439 * Make sure that we have head_bit value preserved for the
1440 * next page
1441 */
1442 tail_page->next = (struct list_head *)((unsigned long)next_page |
1443 head_bit);
1444 next_page = rb_list_head(next_page);
1445 next_page->prev = tail_page;
1446
1447 /* make sure pages points to a valid page in the ring buffer */
1448 cpu_buffer->pages = next_page;
1449
1450 /* update head page */
1451 if (head_bit)
1452 cpu_buffer->head_page = list_entry(next_page,
1453 struct buffer_page, list);
1454
1455 /*
1456 * change read pointer to make sure any read iterators reset
1457 * themselves
1458 */
1459 cpu_buffer->read = 0;
1460
1461 /* pages are removed, resume tracing and then free the pages */
1462 atomic_dec(&cpu_buffer->record_disabled);
1463 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1464
1465 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1466
1467 /* last buffer page to remove */
1468 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1469 list);
1470 tmp_iter_page = first_page;
1471
1472 do {
1473 to_remove_page = tmp_iter_page;
1474 rb_inc_page(cpu_buffer, &tmp_iter_page);
1475
1476 /* update the counters */
1477 page_entries = rb_page_entries(to_remove_page);
1478 if (page_entries) {
1479 /*
1480 * If something was added to this page, it was full
1481 * since it is not the tail page. So we deduct the
1482 * bytes consumed in ring buffer from here.
1483 * Increment overrun to account for the lost events.
1484 */
1485 local_add(page_entries, &cpu_buffer->overrun);
1486 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1487 }
1488
1489 /*
1490 * We have already removed references to this list item, just
1491 * free up the buffer_page and its page
1492 */
1493 free_buffer_page(to_remove_page);
1494 nr_removed--;
1495
1496 } while (to_remove_page != last_page);
1497
1498 RB_WARN_ON(cpu_buffer, nr_removed);
1499
1500 return nr_removed == 0;
1501 }
1502
1503 static int
1504 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1505 {
1506 struct list_head *pages = &cpu_buffer->new_pages;
1507 int retries, success;
1508
1509 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1510 /*
1511 * We are holding the reader lock, so the reader page won't be swapped
1512 * in the ring buffer. Now we are racing with the writer trying to
1513 * move head page and the tail page.
1514 * We are going to adapt the reader page update process where:
1515 * 1. We first splice the start and end of list of new pages between
1516 * the head page and its previous page.
1517 * 2. We cmpxchg the prev_page->next to point from head page to the
1518 * start of new pages list.
1519 * 3. Finally, we update the head->prev to the end of new list.
1520 *
1521 * We will try this process 10 times, to make sure that we don't keep
1522 * spinning.
1523 */
1524 retries = 10;
1525 success = 0;
1526 while (retries--) {
1527 struct list_head *head_page, *prev_page, *r;
1528 struct list_head *last_page, *first_page;
1529 struct list_head *head_page_with_bit;
1530
1531 head_page = &rb_set_head_page(cpu_buffer)->list;
1532 if (!head_page)
1533 break;
1534 prev_page = head_page->prev;
1535
1536 first_page = pages->next;
1537 last_page = pages->prev;
1538
1539 head_page_with_bit = (struct list_head *)
1540 ((unsigned long)head_page | RB_PAGE_HEAD);
1541
1542 last_page->next = head_page_with_bit;
1543 first_page->prev = prev_page;
1544
1545 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1546
1547 if (r == head_page_with_bit) {
1548 /*
1549 * yay, we replaced the page pointer to our new list,
1550 * now, we just have to update to head page's prev
1551 * pointer to point to end of list
1552 */
1553 head_page->prev = last_page;
1554 success = 1;
1555 break;
1556 }
1557 }
1558
1559 if (success)
1560 INIT_LIST_HEAD(pages);
1561 /*
1562 * If we weren't successful in adding in new pages, warn and stop
1563 * tracing
1564 */
1565 RB_WARN_ON(cpu_buffer, !success);
1566 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1567
1568 /* free pages if they weren't inserted */
1569 if (!success) {
1570 struct buffer_page *bpage, *tmp;
1571 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1572 list) {
1573 list_del_init(&bpage->list);
1574 free_buffer_page(bpage);
1575 }
1576 }
1577 return success;
1578 }
1579
1580 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1581 {
1582 int success;
1583
1584 if (cpu_buffer->nr_pages_to_update > 0)
1585 success = rb_insert_pages(cpu_buffer);
1586 else
1587 success = rb_remove_pages(cpu_buffer,
1588 -cpu_buffer->nr_pages_to_update);
1589
1590 if (success)
1591 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1592 }
1593
1594 static void update_pages_handler(struct work_struct *work)
1595 {
1596 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1597 struct ring_buffer_per_cpu, update_pages_work);
1598 rb_update_pages(cpu_buffer);
1599 complete(&cpu_buffer->update_done);
1600 }
1601
1602 /**
1603 * ring_buffer_resize - resize the ring buffer
1604 * @buffer: the buffer to resize.
1605 * @size: the new size.
1606 * @cpu_id: the cpu buffer to resize
1607 *
1608 * Minimum size is 2 * BUF_PAGE_SIZE.
1609 *
1610 * Returns 0 on success and < 0 on failure.
1611 */
1612 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1613 int cpu_id)
1614 {
1615 struct ring_buffer_per_cpu *cpu_buffer;
1616 unsigned long nr_pages;
1617 int cpu, err = 0;
1618
1619 /*
1620 * Always succeed at resizing a non-existent buffer:
1621 */
1622 if (!buffer)
1623 return size;
1624
1625 /* Make sure the requested buffer exists */
1626 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1627 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1628 return size;
1629
1630 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631
1632 /* we need a minimum of two pages */
1633 if (nr_pages < 2)
1634 nr_pages = 2;
1635
1636 size = nr_pages * BUF_PAGE_SIZE;
1637
1638 /*
1639 * Don't succeed if resizing is disabled, as a reader might be
1640 * manipulating the ring buffer and is expecting a sane state while
1641 * this is true.
1642 */
1643 if (atomic_read(&buffer->resize_disabled))
1644 return -EBUSY;
1645
1646 /* prevent another thread from changing buffer sizes */
1647 mutex_lock(&buffer->mutex);
1648
1649 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1650 /* calculate the pages to update */
1651 for_each_buffer_cpu(buffer, cpu) {
1652 cpu_buffer = buffer->buffers[cpu];
1653
1654 cpu_buffer->nr_pages_to_update = nr_pages -
1655 cpu_buffer->nr_pages;
1656 /*
1657 * nothing more to do for removing pages or no update
1658 */
1659 if (cpu_buffer->nr_pages_to_update <= 0)
1660 continue;
1661 /*
1662 * to add pages, make sure all new pages can be
1663 * allocated without receiving ENOMEM
1664 */
1665 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1666 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1667 &cpu_buffer->new_pages, cpu)) {
1668 /* not enough memory for new pages */
1669 err = -ENOMEM;
1670 goto out_err;
1671 }
1672 }
1673
1674 get_online_cpus();
1675 /*
1676 * Fire off all the required work handlers
1677 * We can't schedule on offline CPUs, but it's not necessary
1678 * since we can change their buffer sizes without any race.
1679 */
1680 for_each_buffer_cpu(buffer, cpu) {
1681 cpu_buffer = buffer->buffers[cpu];
1682 if (!cpu_buffer->nr_pages_to_update)
1683 continue;
1684
1685 /* Can't run something on an offline CPU. */
1686 if (!cpu_online(cpu)) {
1687 rb_update_pages(cpu_buffer);
1688 cpu_buffer->nr_pages_to_update = 0;
1689 } else {
1690 schedule_work_on(cpu,
1691 &cpu_buffer->update_pages_work);
1692 }
1693 }
1694
1695 /* wait for all the updates to complete */
1696 for_each_buffer_cpu(buffer, cpu) {
1697 cpu_buffer = buffer->buffers[cpu];
1698 if (!cpu_buffer->nr_pages_to_update)
1699 continue;
1700
1701 if (cpu_online(cpu))
1702 wait_for_completion(&cpu_buffer->update_done);
1703 cpu_buffer->nr_pages_to_update = 0;
1704 }
1705
1706 put_online_cpus();
1707 } else {
1708 /* Make sure this CPU has been intitialized */
1709 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1710 goto out;
1711
1712 cpu_buffer = buffer->buffers[cpu_id];
1713
1714 if (nr_pages == cpu_buffer->nr_pages)
1715 goto out;
1716
1717 cpu_buffer->nr_pages_to_update = nr_pages -
1718 cpu_buffer->nr_pages;
1719
1720 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1721 if (cpu_buffer->nr_pages_to_update > 0 &&
1722 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1723 &cpu_buffer->new_pages, cpu_id)) {
1724 err = -ENOMEM;
1725 goto out_err;
1726 }
1727
1728 get_online_cpus();
1729
1730 /* Can't run something on an offline CPU. */
1731 if (!cpu_online(cpu_id))
1732 rb_update_pages(cpu_buffer);
1733 else {
1734 schedule_work_on(cpu_id,
1735 &cpu_buffer->update_pages_work);
1736 wait_for_completion(&cpu_buffer->update_done);
1737 }
1738
1739 cpu_buffer->nr_pages_to_update = 0;
1740 put_online_cpus();
1741 }
1742
1743 out:
1744 /*
1745 * The ring buffer resize can happen with the ring buffer
1746 * enabled, so that the update disturbs the tracing as little
1747 * as possible. But if the buffer is disabled, we do not need
1748 * to worry about that, and we can take the time to verify
1749 * that the buffer is not corrupt.
1750 */
1751 if (atomic_read(&buffer->record_disabled)) {
1752 atomic_inc(&buffer->record_disabled);
1753 /*
1754 * Even though the buffer was disabled, we must make sure
1755 * that it is truly disabled before calling rb_check_pages.
1756 * There could have been a race between checking
1757 * record_disable and incrementing it.
1758 */
1759 synchronize_sched();
1760 for_each_buffer_cpu(buffer, cpu) {
1761 cpu_buffer = buffer->buffers[cpu];
1762 rb_check_pages(cpu_buffer);
1763 }
1764 atomic_dec(&buffer->record_disabled);
1765 }
1766
1767 mutex_unlock(&buffer->mutex);
1768 return size;
1769
1770 out_err:
1771 for_each_buffer_cpu(buffer, cpu) {
1772 struct buffer_page *bpage, *tmp;
1773
1774 cpu_buffer = buffer->buffers[cpu];
1775 cpu_buffer->nr_pages_to_update = 0;
1776
1777 if (list_empty(&cpu_buffer->new_pages))
1778 continue;
1779
1780 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1781 list) {
1782 list_del_init(&bpage->list);
1783 free_buffer_page(bpage);
1784 }
1785 }
1786 mutex_unlock(&buffer->mutex);
1787 return err;
1788 }
1789 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1790
1791 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1792 {
1793 mutex_lock(&buffer->mutex);
1794 if (val)
1795 buffer->flags |= RB_FL_OVERWRITE;
1796 else
1797 buffer->flags &= ~RB_FL_OVERWRITE;
1798 mutex_unlock(&buffer->mutex);
1799 }
1800 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1801
1802 static __always_inline void *
1803 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1804 {
1805 return bpage->data + index;
1806 }
1807
1808 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1809 {
1810 return bpage->page->data + index;
1811 }
1812
1813 static __always_inline struct ring_buffer_event *
1814 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1815 {
1816 return __rb_page_index(cpu_buffer->reader_page,
1817 cpu_buffer->reader_page->read);
1818 }
1819
1820 static __always_inline struct ring_buffer_event *
1821 rb_iter_head_event(struct ring_buffer_iter *iter)
1822 {
1823 return __rb_page_index(iter->head_page, iter->head);
1824 }
1825
1826 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1827 {
1828 return local_read(&bpage->page->commit);
1829 }
1830
1831 /* Size is determined by what has been committed */
1832 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1833 {
1834 return rb_page_commit(bpage);
1835 }
1836
1837 static __always_inline unsigned
1838 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1839 {
1840 return rb_page_commit(cpu_buffer->commit_page);
1841 }
1842
1843 static __always_inline unsigned
1844 rb_event_index(struct ring_buffer_event *event)
1845 {
1846 unsigned long addr = (unsigned long)event;
1847
1848 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1849 }
1850
1851 static void rb_inc_iter(struct ring_buffer_iter *iter)
1852 {
1853 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1854
1855 /*
1856 * The iterator could be on the reader page (it starts there).
1857 * But the head could have moved, since the reader was
1858 * found. Check for this case and assign the iterator
1859 * to the head page instead of next.
1860 */
1861 if (iter->head_page == cpu_buffer->reader_page)
1862 iter->head_page = rb_set_head_page(cpu_buffer);
1863 else
1864 rb_inc_page(cpu_buffer, &iter->head_page);
1865
1866 iter->read_stamp = iter->head_page->page->time_stamp;
1867 iter->head = 0;
1868 }
1869
1870 /*
1871 * rb_handle_head_page - writer hit the head page
1872 *
1873 * Returns: +1 to retry page
1874 * 0 to continue
1875 * -1 on error
1876 */
1877 static int
1878 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1879 struct buffer_page *tail_page,
1880 struct buffer_page *next_page)
1881 {
1882 struct buffer_page *new_head;
1883 int entries;
1884 int type;
1885 int ret;
1886
1887 entries = rb_page_entries(next_page);
1888
1889 /*
1890 * The hard part is here. We need to move the head
1891 * forward, and protect against both readers on
1892 * other CPUs and writers coming in via interrupts.
1893 */
1894 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1895 RB_PAGE_HEAD);
1896
1897 /*
1898 * type can be one of four:
1899 * NORMAL - an interrupt already moved it for us
1900 * HEAD - we are the first to get here.
1901 * UPDATE - we are the interrupt interrupting
1902 * a current move.
1903 * MOVED - a reader on another CPU moved the next
1904 * pointer to its reader page. Give up
1905 * and try again.
1906 */
1907
1908 switch (type) {
1909 case RB_PAGE_HEAD:
1910 /*
1911 * We changed the head to UPDATE, thus
1912 * it is our responsibility to update
1913 * the counters.
1914 */
1915 local_add(entries, &cpu_buffer->overrun);
1916 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1917
1918 /*
1919 * The entries will be zeroed out when we move the
1920 * tail page.
1921 */
1922
1923 /* still more to do */
1924 break;
1925
1926 case RB_PAGE_UPDATE:
1927 /*
1928 * This is an interrupt that interrupt the
1929 * previous update. Still more to do.
1930 */
1931 break;
1932 case RB_PAGE_NORMAL:
1933 /*
1934 * An interrupt came in before the update
1935 * and processed this for us.
1936 * Nothing left to do.
1937 */
1938 return 1;
1939 case RB_PAGE_MOVED:
1940 /*
1941 * The reader is on another CPU and just did
1942 * a swap with our next_page.
1943 * Try again.
1944 */
1945 return 1;
1946 default:
1947 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1948 return -1;
1949 }
1950
1951 /*
1952 * Now that we are here, the old head pointer is
1953 * set to UPDATE. This will keep the reader from
1954 * swapping the head page with the reader page.
1955 * The reader (on another CPU) will spin till
1956 * we are finished.
1957 *
1958 * We just need to protect against interrupts
1959 * doing the job. We will set the next pointer
1960 * to HEAD. After that, we set the old pointer
1961 * to NORMAL, but only if it was HEAD before.
1962 * otherwise we are an interrupt, and only
1963 * want the outer most commit to reset it.
1964 */
1965 new_head = next_page;
1966 rb_inc_page(cpu_buffer, &new_head);
1967
1968 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1969 RB_PAGE_NORMAL);
1970
1971 /*
1972 * Valid returns are:
1973 * HEAD - an interrupt came in and already set it.
1974 * NORMAL - One of two things:
1975 * 1) We really set it.
1976 * 2) A bunch of interrupts came in and moved
1977 * the page forward again.
1978 */
1979 switch (ret) {
1980 case RB_PAGE_HEAD:
1981 case RB_PAGE_NORMAL:
1982 /* OK */
1983 break;
1984 default:
1985 RB_WARN_ON(cpu_buffer, 1);
1986 return -1;
1987 }
1988
1989 /*
1990 * It is possible that an interrupt came in,
1991 * set the head up, then more interrupts came in
1992 * and moved it again. When we get back here,
1993 * the page would have been set to NORMAL but we
1994 * just set it back to HEAD.
1995 *
1996 * How do you detect this? Well, if that happened
1997 * the tail page would have moved.
1998 */
1999 if (ret == RB_PAGE_NORMAL) {
2000 struct buffer_page *buffer_tail_page;
2001
2002 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2003 /*
2004 * If the tail had moved passed next, then we need
2005 * to reset the pointer.
2006 */
2007 if (buffer_tail_page != tail_page &&
2008 buffer_tail_page != next_page)
2009 rb_head_page_set_normal(cpu_buffer, new_head,
2010 next_page,
2011 RB_PAGE_HEAD);
2012 }
2013
2014 /*
2015 * If this was the outer most commit (the one that
2016 * changed the original pointer from HEAD to UPDATE),
2017 * then it is up to us to reset it to NORMAL.
2018 */
2019 if (type == RB_PAGE_HEAD) {
2020 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2021 tail_page,
2022 RB_PAGE_UPDATE);
2023 if (RB_WARN_ON(cpu_buffer,
2024 ret != RB_PAGE_UPDATE))
2025 return -1;
2026 }
2027
2028 return 0;
2029 }
2030
2031 static inline void
2032 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2033 unsigned long tail, struct rb_event_info *info)
2034 {
2035 struct buffer_page *tail_page = info->tail_page;
2036 struct ring_buffer_event *event;
2037 unsigned long length = info->length;
2038
2039 /*
2040 * Only the event that crossed the page boundary
2041 * must fill the old tail_page with padding.
2042 */
2043 if (tail >= BUF_PAGE_SIZE) {
2044 /*
2045 * If the page was filled, then we still need
2046 * to update the real_end. Reset it to zero
2047 * and the reader will ignore it.
2048 */
2049 if (tail == BUF_PAGE_SIZE)
2050 tail_page->real_end = 0;
2051
2052 local_sub(length, &tail_page->write);
2053 return;
2054 }
2055
2056 event = __rb_page_index(tail_page, tail);
2057 kmemcheck_annotate_bitfield(event, bitfield);
2058
2059 /* account for padding bytes */
2060 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2061
2062 /*
2063 * Save the original length to the meta data.
2064 * This will be used by the reader to add lost event
2065 * counter.
2066 */
2067 tail_page->real_end = tail;
2068
2069 /*
2070 * If this event is bigger than the minimum size, then
2071 * we need to be careful that we don't subtract the
2072 * write counter enough to allow another writer to slip
2073 * in on this page.
2074 * We put in a discarded commit instead, to make sure
2075 * that this space is not used again.
2076 *
2077 * If we are less than the minimum size, we don't need to
2078 * worry about it.
2079 */
2080 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2081 /* No room for any events */
2082
2083 /* Mark the rest of the page with padding */
2084 rb_event_set_padding(event);
2085
2086 /* Set the write back to the previous setting */
2087 local_sub(length, &tail_page->write);
2088 return;
2089 }
2090
2091 /* Put in a discarded event */
2092 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2093 event->type_len = RINGBUF_TYPE_PADDING;
2094 /* time delta must be non zero */
2095 event->time_delta = 1;
2096
2097 /* Set write to end of buffer */
2098 length = (tail + length) - BUF_PAGE_SIZE;
2099 local_sub(length, &tail_page->write);
2100 }
2101
2102 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2103
2104 /*
2105 * This is the slow path, force gcc not to inline it.
2106 */
2107 static noinline struct ring_buffer_event *
2108 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2109 unsigned long tail, struct rb_event_info *info)
2110 {
2111 struct buffer_page *tail_page = info->tail_page;
2112 struct buffer_page *commit_page = cpu_buffer->commit_page;
2113 struct ring_buffer *buffer = cpu_buffer->buffer;
2114 struct buffer_page *next_page;
2115 int ret;
2116
2117 next_page = tail_page;
2118
2119 rb_inc_page(cpu_buffer, &next_page);
2120
2121 /*
2122 * If for some reason, we had an interrupt storm that made
2123 * it all the way around the buffer, bail, and warn
2124 * about it.
2125 */
2126 if (unlikely(next_page == commit_page)) {
2127 local_inc(&cpu_buffer->commit_overrun);
2128 goto out_reset;
2129 }
2130
2131 /*
2132 * This is where the fun begins!
2133 *
2134 * We are fighting against races between a reader that
2135 * could be on another CPU trying to swap its reader
2136 * page with the buffer head.
2137 *
2138 * We are also fighting against interrupts coming in and
2139 * moving the head or tail on us as well.
2140 *
2141 * If the next page is the head page then we have filled
2142 * the buffer, unless the commit page is still on the
2143 * reader page.
2144 */
2145 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2146
2147 /*
2148 * If the commit is not on the reader page, then
2149 * move the header page.
2150 */
2151 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2152 /*
2153 * If we are not in overwrite mode,
2154 * this is easy, just stop here.
2155 */
2156 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2157 local_inc(&cpu_buffer->dropped_events);
2158 goto out_reset;
2159 }
2160
2161 ret = rb_handle_head_page(cpu_buffer,
2162 tail_page,
2163 next_page);
2164 if (ret < 0)
2165 goto out_reset;
2166 if (ret)
2167 goto out_again;
2168 } else {
2169 /*
2170 * We need to be careful here too. The
2171 * commit page could still be on the reader
2172 * page. We could have a small buffer, and
2173 * have filled up the buffer with events
2174 * from interrupts and such, and wrapped.
2175 *
2176 * Note, if the tail page is also the on the
2177 * reader_page, we let it move out.
2178 */
2179 if (unlikely((cpu_buffer->commit_page !=
2180 cpu_buffer->tail_page) &&
2181 (cpu_buffer->commit_page ==
2182 cpu_buffer->reader_page))) {
2183 local_inc(&cpu_buffer->commit_overrun);
2184 goto out_reset;
2185 }
2186 }
2187 }
2188
2189 rb_tail_page_update(cpu_buffer, tail_page, next_page);
2190
2191 out_again:
2192
2193 rb_reset_tail(cpu_buffer, tail, info);
2194
2195 /* Commit what we have for now. */
2196 rb_end_commit(cpu_buffer);
2197 /* rb_end_commit() decs committing */
2198 local_inc(&cpu_buffer->committing);
2199
2200 /* fail and let the caller try again */
2201 return ERR_PTR(-EAGAIN);
2202
2203 out_reset:
2204 /* reset write */
2205 rb_reset_tail(cpu_buffer, tail, info);
2206
2207 return NULL;
2208 }
2209
2210 /* Slow path, do not inline */
2211 static noinline struct ring_buffer_event *
2212 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2213 {
2214 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2215
2216 /* Not the first event on the page? */
2217 if (rb_event_index(event)) {
2218 event->time_delta = delta & TS_MASK;
2219 event->array[0] = delta >> TS_SHIFT;
2220 } else {
2221 /* nope, just zero it */
2222 event->time_delta = 0;
2223 event->array[0] = 0;
2224 }
2225
2226 return skip_time_extend(event);
2227 }
2228
2229 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2230 struct ring_buffer_event *event);
2231
2232 /**
2233 * rb_update_event - update event type and data
2234 * @event: the event to update
2235 * @type: the type of event
2236 * @length: the size of the event field in the ring buffer
2237 *
2238 * Update the type and data fields of the event. The length
2239 * is the actual size that is written to the ring buffer,
2240 * and with this, we can determine what to place into the
2241 * data field.
2242 */
2243 static void
2244 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2245 struct ring_buffer_event *event,
2246 struct rb_event_info *info)
2247 {
2248 unsigned length = info->length;
2249 u64 delta = info->delta;
2250
2251 /* Only a commit updates the timestamp */
2252 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2253 delta = 0;
2254
2255 /*
2256 * If we need to add a timestamp, then we
2257 * add it to the start of the resevered space.
2258 */
2259 if (unlikely(info->add_timestamp)) {
2260 event = rb_add_time_stamp(event, delta);
2261 length -= RB_LEN_TIME_EXTEND;
2262 delta = 0;
2263 }
2264
2265 event->time_delta = delta;
2266 length -= RB_EVNT_HDR_SIZE;
2267 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2268 event->type_len = 0;
2269 event->array[0] = length;
2270 } else
2271 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2272 }
2273
2274 static unsigned rb_calculate_event_length(unsigned length)
2275 {
2276 struct ring_buffer_event event; /* Used only for sizeof array */
2277
2278 /* zero length can cause confusions */
2279 if (!length)
2280 length++;
2281
2282 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2283 length += sizeof(event.array[0]);
2284
2285 length += RB_EVNT_HDR_SIZE;
2286 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2287
2288 /*
2289 * In case the time delta is larger than the 27 bits for it
2290 * in the header, we need to add a timestamp. If another
2291 * event comes in when trying to discard this one to increase
2292 * the length, then the timestamp will be added in the allocated
2293 * space of this event. If length is bigger than the size needed
2294 * for the TIME_EXTEND, then padding has to be used. The events
2295 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2296 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2297 * As length is a multiple of 4, we only need to worry if it
2298 * is 12 (RB_LEN_TIME_EXTEND + 4).
2299 */
2300 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2301 length += RB_ALIGNMENT;
2302
2303 return length;
2304 }
2305
2306 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2307 static inline bool sched_clock_stable(void)
2308 {
2309 return true;
2310 }
2311 #endif
2312
2313 static inline int
2314 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2315 struct ring_buffer_event *event)
2316 {
2317 unsigned long new_index, old_index;
2318 struct buffer_page *bpage;
2319 unsigned long index;
2320 unsigned long addr;
2321
2322 new_index = rb_event_index(event);
2323 old_index = new_index + rb_event_ts_length(event);
2324 addr = (unsigned long)event;
2325 addr &= PAGE_MASK;
2326
2327 bpage = READ_ONCE(cpu_buffer->tail_page);
2328
2329 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2330 unsigned long write_mask =
2331 local_read(&bpage->write) & ~RB_WRITE_MASK;
2332 unsigned long event_length = rb_event_length(event);
2333 /*
2334 * This is on the tail page. It is possible that
2335 * a write could come in and move the tail page
2336 * and write to the next page. That is fine
2337 * because we just shorten what is on this page.
2338 */
2339 old_index += write_mask;
2340 new_index += write_mask;
2341 index = local_cmpxchg(&bpage->write, old_index, new_index);
2342 if (index == old_index) {
2343 /* update counters */
2344 local_sub(event_length, &cpu_buffer->entries_bytes);
2345 return 1;
2346 }
2347 }
2348
2349 /* could not discard */
2350 return 0;
2351 }
2352
2353 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2354 {
2355 local_inc(&cpu_buffer->committing);
2356 local_inc(&cpu_buffer->commits);
2357 }
2358
2359 static __always_inline void
2360 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2361 {
2362 unsigned long max_count;
2363
2364 /*
2365 * We only race with interrupts and NMIs on this CPU.
2366 * If we own the commit event, then we can commit
2367 * all others that interrupted us, since the interruptions
2368 * are in stack format (they finish before they come
2369 * back to us). This allows us to do a simple loop to
2370 * assign the commit to the tail.
2371 */
2372 again:
2373 max_count = cpu_buffer->nr_pages * 100;
2374
2375 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2376 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2377 return;
2378 if (RB_WARN_ON(cpu_buffer,
2379 rb_is_reader_page(cpu_buffer->tail_page)))
2380 return;
2381 local_set(&cpu_buffer->commit_page->page->commit,
2382 rb_page_write(cpu_buffer->commit_page));
2383 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2384 /* Only update the write stamp if the page has an event */
2385 if (rb_page_write(cpu_buffer->commit_page))
2386 cpu_buffer->write_stamp =
2387 cpu_buffer->commit_page->page->time_stamp;
2388 /* add barrier to keep gcc from optimizing too much */
2389 barrier();
2390 }
2391 while (rb_commit_index(cpu_buffer) !=
2392 rb_page_write(cpu_buffer->commit_page)) {
2393
2394 local_set(&cpu_buffer->commit_page->page->commit,
2395 rb_page_write(cpu_buffer->commit_page));
2396 RB_WARN_ON(cpu_buffer,
2397 local_read(&cpu_buffer->commit_page->page->commit) &
2398 ~RB_WRITE_MASK);
2399 barrier();
2400 }
2401
2402 /* again, keep gcc from optimizing */
2403 barrier();
2404
2405 /*
2406 * If an interrupt came in just after the first while loop
2407 * and pushed the tail page forward, we will be left with
2408 * a dangling commit that will never go forward.
2409 */
2410 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2411 goto again;
2412 }
2413
2414 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2415 {
2416 unsigned long commits;
2417
2418 if (RB_WARN_ON(cpu_buffer,
2419 !local_read(&cpu_buffer->committing)))
2420 return;
2421
2422 again:
2423 commits = local_read(&cpu_buffer->commits);
2424 /* synchronize with interrupts */
2425 barrier();
2426 if (local_read(&cpu_buffer->committing) == 1)
2427 rb_set_commit_to_write(cpu_buffer);
2428
2429 local_dec(&cpu_buffer->committing);
2430
2431 /* synchronize with interrupts */
2432 barrier();
2433
2434 /*
2435 * Need to account for interrupts coming in between the
2436 * updating of the commit page and the clearing of the
2437 * committing counter.
2438 */
2439 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2440 !local_read(&cpu_buffer->committing)) {
2441 local_inc(&cpu_buffer->committing);
2442 goto again;
2443 }
2444 }
2445
2446 static inline void rb_event_discard(struct ring_buffer_event *event)
2447 {
2448 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2449 event = skip_time_extend(event);
2450
2451 /* array[0] holds the actual length for the discarded event */
2452 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2453 event->type_len = RINGBUF_TYPE_PADDING;
2454 /* time delta must be non zero */
2455 if (!event->time_delta)
2456 event->time_delta = 1;
2457 }
2458
2459 static __always_inline bool
2460 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2461 struct ring_buffer_event *event)
2462 {
2463 unsigned long addr = (unsigned long)event;
2464 unsigned long index;
2465
2466 index = rb_event_index(event);
2467 addr &= PAGE_MASK;
2468
2469 return cpu_buffer->commit_page->page == (void *)addr &&
2470 rb_commit_index(cpu_buffer) == index;
2471 }
2472
2473 static __always_inline void
2474 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2475 struct ring_buffer_event *event)
2476 {
2477 u64 delta;
2478
2479 /*
2480 * The event first in the commit queue updates the
2481 * time stamp.
2482 */
2483 if (rb_event_is_commit(cpu_buffer, event)) {
2484 /*
2485 * A commit event that is first on a page
2486 * updates the write timestamp with the page stamp
2487 */
2488 if (!rb_event_index(event))
2489 cpu_buffer->write_stamp =
2490 cpu_buffer->commit_page->page->time_stamp;
2491 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2492 delta = event->array[0];
2493 delta <<= TS_SHIFT;
2494 delta += event->time_delta;
2495 cpu_buffer->write_stamp += delta;
2496 } else
2497 cpu_buffer->write_stamp += event->time_delta;
2498 }
2499 }
2500
2501 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2502 struct ring_buffer_event *event)
2503 {
2504 local_inc(&cpu_buffer->entries);
2505 rb_update_write_stamp(cpu_buffer, event);
2506 rb_end_commit(cpu_buffer);
2507 }
2508
2509 static __always_inline void
2510 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2511 {
2512 bool pagebusy;
2513
2514 if (buffer->irq_work.waiters_pending) {
2515 buffer->irq_work.waiters_pending = false;
2516 /* irq_work_queue() supplies it's own memory barriers */
2517 irq_work_queue(&buffer->irq_work.work);
2518 }
2519
2520 if (cpu_buffer->irq_work.waiters_pending) {
2521 cpu_buffer->irq_work.waiters_pending = false;
2522 /* irq_work_queue() supplies it's own memory barriers */
2523 irq_work_queue(&cpu_buffer->irq_work.work);
2524 }
2525
2526 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2527
2528 if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2529 cpu_buffer->irq_work.wakeup_full = true;
2530 cpu_buffer->irq_work.full_waiters_pending = false;
2531 /* irq_work_queue() supplies it's own memory barriers */
2532 irq_work_queue(&cpu_buffer->irq_work.work);
2533 }
2534 }
2535
2536 /*
2537 * The lock and unlock are done within a preempt disable section.
2538 * The current_context per_cpu variable can only be modified
2539 * by the current task between lock and unlock. But it can
2540 * be modified more than once via an interrupt. To pass this
2541 * information from the lock to the unlock without having to
2542 * access the 'in_interrupt()' functions again (which do show
2543 * a bit of overhead in something as critical as function tracing,
2544 * we use a bitmask trick.
2545 *
2546 * bit 0 = NMI context
2547 * bit 1 = IRQ context
2548 * bit 2 = SoftIRQ context
2549 * bit 3 = normal context.
2550 *
2551 * This works because this is the order of contexts that can
2552 * preempt other contexts. A SoftIRQ never preempts an IRQ
2553 * context.
2554 *
2555 * When the context is determined, the corresponding bit is
2556 * checked and set (if it was set, then a recursion of that context
2557 * happened).
2558 *
2559 * On unlock, we need to clear this bit. To do so, just subtract
2560 * 1 from the current_context and AND it to itself.
2561 *
2562 * (binary)
2563 * 101 - 1 = 100
2564 * 101 & 100 = 100 (clearing bit zero)
2565 *
2566 * 1010 - 1 = 1001
2567 * 1010 & 1001 = 1000 (clearing bit 1)
2568 *
2569 * The least significant bit can be cleared this way, and it
2570 * just so happens that it is the same bit corresponding to
2571 * the current context.
2572 */
2573
2574 static __always_inline int
2575 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2576 {
2577 unsigned int val = cpu_buffer->current_context;
2578 int bit;
2579
2580 if (in_interrupt()) {
2581 if (in_nmi())
2582 bit = RB_CTX_NMI;
2583 else if (in_irq())
2584 bit = RB_CTX_IRQ;
2585 else
2586 bit = RB_CTX_SOFTIRQ;
2587 } else
2588 bit = RB_CTX_NORMAL;
2589
2590 if (unlikely(val & (1 << bit)))
2591 return 1;
2592
2593 val |= (1 << bit);
2594 cpu_buffer->current_context = val;
2595
2596 return 0;
2597 }
2598
2599 static __always_inline void
2600 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2601 {
2602 cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2603 }
2604
2605 /**
2606 * ring_buffer_unlock_commit - commit a reserved
2607 * @buffer: The buffer to commit to
2608 * @event: The event pointer to commit.
2609 *
2610 * This commits the data to the ring buffer, and releases any locks held.
2611 *
2612 * Must be paired with ring_buffer_lock_reserve.
2613 */
2614 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2615 struct ring_buffer_event *event)
2616 {
2617 struct ring_buffer_per_cpu *cpu_buffer;
2618 int cpu = raw_smp_processor_id();
2619
2620 cpu_buffer = buffer->buffers[cpu];
2621
2622 rb_commit(cpu_buffer, event);
2623
2624 rb_wakeups(buffer, cpu_buffer);
2625
2626 trace_recursive_unlock(cpu_buffer);
2627
2628 preempt_enable_notrace();
2629
2630 return 0;
2631 }
2632 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2633
2634 static noinline void
2635 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2636 struct rb_event_info *info)
2637 {
2638 WARN_ONCE(info->delta > (1ULL << 59),
2639 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2640 (unsigned long long)info->delta,
2641 (unsigned long long)info->ts,
2642 (unsigned long long)cpu_buffer->write_stamp,
2643 sched_clock_stable() ? "" :
2644 "If you just came from a suspend/resume,\n"
2645 "please switch to the trace global clock:\n"
2646 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2647 info->add_timestamp = 1;
2648 }
2649
2650 static struct ring_buffer_event *
2651 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2652 struct rb_event_info *info)
2653 {
2654 struct ring_buffer_event *event;
2655 struct buffer_page *tail_page;
2656 unsigned long tail, write;
2657
2658 /*
2659 * If the time delta since the last event is too big to
2660 * hold in the time field of the event, then we append a
2661 * TIME EXTEND event ahead of the data event.
2662 */
2663 if (unlikely(info->add_timestamp))
2664 info->length += RB_LEN_TIME_EXTEND;
2665
2666 /* Don't let the compiler play games with cpu_buffer->tail_page */
2667 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2668 write = local_add_return(info->length, &tail_page->write);
2669
2670 /* set write to only the index of the write */
2671 write &= RB_WRITE_MASK;
2672 tail = write - info->length;
2673
2674 /*
2675 * If this is the first commit on the page, then it has the same
2676 * timestamp as the page itself.
2677 */
2678 if (!tail)
2679 info->delta = 0;
2680
2681 /* See if we shot pass the end of this buffer page */
2682 if (unlikely(write > BUF_PAGE_SIZE))
2683 return rb_move_tail(cpu_buffer, tail, info);
2684
2685 /* We reserved something on the buffer */
2686
2687 event = __rb_page_index(tail_page, tail);
2688 kmemcheck_annotate_bitfield(event, bitfield);
2689 rb_update_event(cpu_buffer, event, info);
2690
2691 local_inc(&tail_page->entries);
2692
2693 /*
2694 * If this is the first commit on the page, then update
2695 * its timestamp.
2696 */
2697 if (!tail)
2698 tail_page->page->time_stamp = info->ts;
2699
2700 /* account for these added bytes */
2701 local_add(info->length, &cpu_buffer->entries_bytes);
2702
2703 return event;
2704 }
2705
2706 static __always_inline struct ring_buffer_event *
2707 rb_reserve_next_event(struct ring_buffer *buffer,
2708 struct ring_buffer_per_cpu *cpu_buffer,
2709 unsigned long length)
2710 {
2711 struct ring_buffer_event *event;
2712 struct rb_event_info info;
2713 int nr_loops = 0;
2714 u64 diff;
2715
2716 rb_start_commit(cpu_buffer);
2717
2718 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2719 /*
2720 * Due to the ability to swap a cpu buffer from a buffer
2721 * it is possible it was swapped before we committed.
2722 * (committing stops a swap). We check for it here and
2723 * if it happened, we have to fail the write.
2724 */
2725 barrier();
2726 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2727 local_dec(&cpu_buffer->committing);
2728 local_dec(&cpu_buffer->commits);
2729 return NULL;
2730 }
2731 #endif
2732
2733 info.length = rb_calculate_event_length(length);
2734 again:
2735 info.add_timestamp = 0;
2736 info.delta = 0;
2737
2738 /*
2739 * We allow for interrupts to reenter here and do a trace.
2740 * If one does, it will cause this original code to loop
2741 * back here. Even with heavy interrupts happening, this
2742 * should only happen a few times in a row. If this happens
2743 * 1000 times in a row, there must be either an interrupt
2744 * storm or we have something buggy.
2745 * Bail!
2746 */
2747 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2748 goto out_fail;
2749
2750 info.ts = rb_time_stamp(cpu_buffer->buffer);
2751 diff = info.ts - cpu_buffer->write_stamp;
2752
2753 /* make sure this diff is calculated here */
2754 barrier();
2755
2756 /* Did the write stamp get updated already? */
2757 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2758 info.delta = diff;
2759 if (unlikely(test_time_stamp(info.delta)))
2760 rb_handle_timestamp(cpu_buffer, &info);
2761 }
2762
2763 event = __rb_reserve_next(cpu_buffer, &info);
2764
2765 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2766 if (info.add_timestamp)
2767 info.length -= RB_LEN_TIME_EXTEND;
2768 goto again;
2769 }
2770
2771 if (!event)
2772 goto out_fail;
2773
2774 return event;
2775
2776 out_fail:
2777 rb_end_commit(cpu_buffer);
2778 return NULL;
2779 }
2780
2781 /**
2782 * ring_buffer_lock_reserve - reserve a part of the buffer
2783 * @buffer: the ring buffer to reserve from
2784 * @length: the length of the data to reserve (excluding event header)
2785 *
2786 * Returns a reseverd event on the ring buffer to copy directly to.
2787 * The user of this interface will need to get the body to write into
2788 * and can use the ring_buffer_event_data() interface.
2789 *
2790 * The length is the length of the data needed, not the event length
2791 * which also includes the event header.
2792 *
2793 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2794 * If NULL is returned, then nothing has been allocated or locked.
2795 */
2796 struct ring_buffer_event *
2797 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2798 {
2799 struct ring_buffer_per_cpu *cpu_buffer;
2800 struct ring_buffer_event *event;
2801 int cpu;
2802
2803 /* If we are tracing schedule, we don't want to recurse */
2804 preempt_disable_notrace();
2805
2806 if (unlikely(atomic_read(&buffer->record_disabled)))
2807 goto out;
2808
2809 cpu = raw_smp_processor_id();
2810
2811 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2812 goto out;
2813
2814 cpu_buffer = buffer->buffers[cpu];
2815
2816 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2817 goto out;
2818
2819 if (unlikely(length > BUF_MAX_DATA_SIZE))
2820 goto out;
2821
2822 if (unlikely(trace_recursive_lock(cpu_buffer)))
2823 goto out;
2824
2825 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2826 if (!event)
2827 goto out_unlock;
2828
2829 return event;
2830
2831 out_unlock:
2832 trace_recursive_unlock(cpu_buffer);
2833 out:
2834 preempt_enable_notrace();
2835 return NULL;
2836 }
2837 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2838
2839 /*
2840 * Decrement the entries to the page that an event is on.
2841 * The event does not even need to exist, only the pointer
2842 * to the page it is on. This may only be called before the commit
2843 * takes place.
2844 */
2845 static inline void
2846 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2847 struct ring_buffer_event *event)
2848 {
2849 unsigned long addr = (unsigned long)event;
2850 struct buffer_page *bpage = cpu_buffer->commit_page;
2851 struct buffer_page *start;
2852
2853 addr &= PAGE_MASK;
2854
2855 /* Do the likely case first */
2856 if (likely(bpage->page == (void *)addr)) {
2857 local_dec(&bpage->entries);
2858 return;
2859 }
2860
2861 /*
2862 * Because the commit page may be on the reader page we
2863 * start with the next page and check the end loop there.
2864 */
2865 rb_inc_page(cpu_buffer, &bpage);
2866 start = bpage;
2867 do {
2868 if (bpage->page == (void *)addr) {
2869 local_dec(&bpage->entries);
2870 return;
2871 }
2872 rb_inc_page(cpu_buffer, &bpage);
2873 } while (bpage != start);
2874
2875 /* commit not part of this buffer?? */
2876 RB_WARN_ON(cpu_buffer, 1);
2877 }
2878
2879 /**
2880 * ring_buffer_commit_discard - discard an event that has not been committed
2881 * @buffer: the ring buffer
2882 * @event: non committed event to discard
2883 *
2884 * Sometimes an event that is in the ring buffer needs to be ignored.
2885 * This function lets the user discard an event in the ring buffer
2886 * and then that event will not be read later.
2887 *
2888 * This function only works if it is called before the the item has been
2889 * committed. It will try to free the event from the ring buffer
2890 * if another event has not been added behind it.
2891 *
2892 * If another event has been added behind it, it will set the event
2893 * up as discarded, and perform the commit.
2894 *
2895 * If this function is called, do not call ring_buffer_unlock_commit on
2896 * the event.
2897 */
2898 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2899 struct ring_buffer_event *event)
2900 {
2901 struct ring_buffer_per_cpu *cpu_buffer;
2902 int cpu;
2903
2904 /* The event is discarded regardless */
2905 rb_event_discard(event);
2906
2907 cpu = smp_processor_id();
2908 cpu_buffer = buffer->buffers[cpu];
2909
2910 /*
2911 * This must only be called if the event has not been
2912 * committed yet. Thus we can assume that preemption
2913 * is still disabled.
2914 */
2915 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2916
2917 rb_decrement_entry(cpu_buffer, event);
2918 if (rb_try_to_discard(cpu_buffer, event))
2919 goto out;
2920
2921 /*
2922 * The commit is still visible by the reader, so we
2923 * must still update the timestamp.
2924 */
2925 rb_update_write_stamp(cpu_buffer, event);
2926 out:
2927 rb_end_commit(cpu_buffer);
2928
2929 trace_recursive_unlock(cpu_buffer);
2930
2931 preempt_enable_notrace();
2932
2933 }
2934 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2935
2936 /**
2937 * ring_buffer_write - write data to the buffer without reserving
2938 * @buffer: The ring buffer to write to.
2939 * @length: The length of the data being written (excluding the event header)
2940 * @data: The data to write to the buffer.
2941 *
2942 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2943 * one function. If you already have the data to write to the buffer, it
2944 * may be easier to simply call this function.
2945 *
2946 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2947 * and not the length of the event which would hold the header.
2948 */
2949 int ring_buffer_write(struct ring_buffer *buffer,
2950 unsigned long length,
2951 void *data)
2952 {
2953 struct ring_buffer_per_cpu *cpu_buffer;
2954 struct ring_buffer_event *event;
2955 void *body;
2956 int ret = -EBUSY;
2957 int cpu;
2958
2959 preempt_disable_notrace();
2960
2961 if (atomic_read(&buffer->record_disabled))
2962 goto out;
2963
2964 cpu = raw_smp_processor_id();
2965
2966 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2967 goto out;
2968
2969 cpu_buffer = buffer->buffers[cpu];
2970
2971 if (atomic_read(&cpu_buffer->record_disabled))
2972 goto out;
2973
2974 if (length > BUF_MAX_DATA_SIZE)
2975 goto out;
2976
2977 if (unlikely(trace_recursive_lock(cpu_buffer)))
2978 goto out;
2979
2980 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2981 if (!event)
2982 goto out_unlock;
2983
2984 body = rb_event_data(event);
2985
2986 memcpy(body, data, length);
2987
2988 rb_commit(cpu_buffer, event);
2989
2990 rb_wakeups(buffer, cpu_buffer);
2991
2992 ret = 0;
2993
2994 out_unlock:
2995 trace_recursive_unlock(cpu_buffer);
2996
2997 out:
2998 preempt_enable_notrace();
2999
3000 return ret;
3001 }
3002 EXPORT_SYMBOL_GPL(ring_buffer_write);
3003
3004 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3005 {
3006 struct buffer_page *reader = cpu_buffer->reader_page;
3007 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3008 struct buffer_page *commit = cpu_buffer->commit_page;
3009
3010 /* In case of error, head will be NULL */
3011 if (unlikely(!head))
3012 return true;
3013
3014 return reader->read == rb_page_commit(reader) &&
3015 (commit == reader ||
3016 (commit == head &&
3017 head->read == rb_page_commit(commit)));
3018 }
3019
3020 /**
3021 * ring_buffer_record_disable - stop all writes into the buffer
3022 * @buffer: The ring buffer to stop writes to.
3023 *
3024 * This prevents all writes to the buffer. Any attempt to write
3025 * to the buffer after this will fail and return NULL.
3026 *
3027 * The caller should call synchronize_sched() after this.
3028 */
3029 void ring_buffer_record_disable(struct ring_buffer *buffer)
3030 {
3031 atomic_inc(&buffer->record_disabled);
3032 }
3033 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3034
3035 /**
3036 * ring_buffer_record_enable - enable writes to the buffer
3037 * @buffer: The ring buffer to enable writes
3038 *
3039 * Note, multiple disables will need the same number of enables
3040 * to truly enable the writing (much like preempt_disable).
3041 */
3042 void ring_buffer_record_enable(struct ring_buffer *buffer)
3043 {
3044 atomic_dec(&buffer->record_disabled);
3045 }
3046 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3047
3048 /**
3049 * ring_buffer_record_off - stop all writes into the buffer
3050 * @buffer: The ring buffer to stop writes to.
3051 *
3052 * This prevents all writes to the buffer. Any attempt to write
3053 * to the buffer after this will fail and return NULL.
3054 *
3055 * This is different than ring_buffer_record_disable() as
3056 * it works like an on/off switch, where as the disable() version
3057 * must be paired with a enable().
3058 */
3059 void ring_buffer_record_off(struct ring_buffer *buffer)
3060 {
3061 unsigned int rd;
3062 unsigned int new_rd;
3063
3064 do {
3065 rd = atomic_read(&buffer->record_disabled);
3066 new_rd = rd | RB_BUFFER_OFF;
3067 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3068 }
3069 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3070
3071 /**
3072 * ring_buffer_record_on - restart writes into the buffer
3073 * @buffer: The ring buffer to start writes to.
3074 *
3075 * This enables all writes to the buffer that was disabled by
3076 * ring_buffer_record_off().
3077 *
3078 * This is different than ring_buffer_record_enable() as
3079 * it works like an on/off switch, where as the enable() version
3080 * must be paired with a disable().
3081 */
3082 void ring_buffer_record_on(struct ring_buffer *buffer)
3083 {
3084 unsigned int rd;
3085 unsigned int new_rd;
3086
3087 do {
3088 rd = atomic_read(&buffer->record_disabled);
3089 new_rd = rd & ~RB_BUFFER_OFF;
3090 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3091 }
3092 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3093
3094 /**
3095 * ring_buffer_record_is_on - return true if the ring buffer can write
3096 * @buffer: The ring buffer to see if write is enabled
3097 *
3098 * Returns true if the ring buffer is in a state that it accepts writes.
3099 */
3100 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3101 {
3102 return !atomic_read(&buffer->record_disabled);
3103 }
3104
3105 /**
3106 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3107 * @buffer: The ring buffer to stop writes to.
3108 * @cpu: The CPU buffer to stop
3109 *
3110 * This prevents all writes to the buffer. Any attempt to write
3111 * to the buffer after this will fail and return NULL.
3112 *
3113 * The caller should call synchronize_sched() after this.
3114 */
3115 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3116 {
3117 struct ring_buffer_per_cpu *cpu_buffer;
3118
3119 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3120 return;
3121
3122 cpu_buffer = buffer->buffers[cpu];
3123 atomic_inc(&cpu_buffer->record_disabled);
3124 }
3125 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3126
3127 /**
3128 * ring_buffer_record_enable_cpu - enable writes to the buffer
3129 * @buffer: The ring buffer to enable writes
3130 * @cpu: The CPU to enable.
3131 *
3132 * Note, multiple disables will need the same number of enables
3133 * to truly enable the writing (much like preempt_disable).
3134 */
3135 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3136 {
3137 struct ring_buffer_per_cpu *cpu_buffer;
3138
3139 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3140 return;
3141
3142 cpu_buffer = buffer->buffers[cpu];
3143 atomic_dec(&cpu_buffer->record_disabled);
3144 }
3145 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3146
3147 /*
3148 * The total entries in the ring buffer is the running counter
3149 * of entries entered into the ring buffer, minus the sum of
3150 * the entries read from the ring buffer and the number of
3151 * entries that were overwritten.
3152 */
3153 static inline unsigned long
3154 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3155 {
3156 return local_read(&cpu_buffer->entries) -
3157 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3158 }
3159
3160 /**
3161 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3162 * @buffer: The ring buffer
3163 * @cpu: The per CPU buffer to read from.
3164 */
3165 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3166 {
3167 unsigned long flags;
3168 struct ring_buffer_per_cpu *cpu_buffer;
3169 struct buffer_page *bpage;
3170 u64 ret = 0;
3171
3172 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3173 return 0;
3174
3175 cpu_buffer = buffer->buffers[cpu];
3176 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3177 /*
3178 * if the tail is on reader_page, oldest time stamp is on the reader
3179 * page
3180 */
3181 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3182 bpage = cpu_buffer->reader_page;
3183 else
3184 bpage = rb_set_head_page(cpu_buffer);
3185 if (bpage)
3186 ret = bpage->page->time_stamp;
3187 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3188
3189 return ret;
3190 }
3191 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3192
3193 /**
3194 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3195 * @buffer: The ring buffer
3196 * @cpu: The per CPU buffer to read from.
3197 */
3198 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3199 {
3200 struct ring_buffer_per_cpu *cpu_buffer;
3201 unsigned long ret;
3202
3203 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3204 return 0;
3205
3206 cpu_buffer = buffer->buffers[cpu];
3207 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3208
3209 return ret;
3210 }
3211 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3212
3213 /**
3214 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3215 * @buffer: The ring buffer
3216 * @cpu: The per CPU buffer to get the entries from.
3217 */
3218 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3219 {
3220 struct ring_buffer_per_cpu *cpu_buffer;
3221
3222 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3223 return 0;
3224
3225 cpu_buffer = buffer->buffers[cpu];
3226
3227 return rb_num_of_entries(cpu_buffer);
3228 }
3229 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3230
3231 /**
3232 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3233 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3234 * @buffer: The ring buffer
3235 * @cpu: The per CPU buffer to get the number of overruns from
3236 */
3237 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3238 {
3239 struct ring_buffer_per_cpu *cpu_buffer;
3240 unsigned long ret;
3241
3242 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3243 return 0;
3244
3245 cpu_buffer = buffer->buffers[cpu];
3246 ret = local_read(&cpu_buffer->overrun);
3247
3248 return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3251
3252 /**
3253 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3254 * commits failing due to the buffer wrapping around while there are uncommitted
3255 * events, such as during an interrupt storm.
3256 * @buffer: The ring buffer
3257 * @cpu: The per CPU buffer to get the number of overruns from
3258 */
3259 unsigned long
3260 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3261 {
3262 struct ring_buffer_per_cpu *cpu_buffer;
3263 unsigned long ret;
3264
3265 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3266 return 0;
3267
3268 cpu_buffer = buffer->buffers[cpu];
3269 ret = local_read(&cpu_buffer->commit_overrun);
3270
3271 return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3274
3275 /**
3276 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3277 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3278 * @buffer: The ring buffer
3279 * @cpu: The per CPU buffer to get the number of overruns from
3280 */
3281 unsigned long
3282 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3283 {
3284 struct ring_buffer_per_cpu *cpu_buffer;
3285 unsigned long ret;
3286
3287 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3288 return 0;
3289
3290 cpu_buffer = buffer->buffers[cpu];
3291 ret = local_read(&cpu_buffer->dropped_events);
3292
3293 return ret;
3294 }
3295 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3296
3297 /**
3298 * ring_buffer_read_events_cpu - get the number of events successfully read
3299 * @buffer: The ring buffer
3300 * @cpu: The per CPU buffer to get the number of events read
3301 */
3302 unsigned long
3303 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3304 {
3305 struct ring_buffer_per_cpu *cpu_buffer;
3306
3307 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3308 return 0;
3309
3310 cpu_buffer = buffer->buffers[cpu];
3311 return cpu_buffer->read;
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3314
3315 /**
3316 * ring_buffer_entries - get the number of entries in a buffer
3317 * @buffer: The ring buffer
3318 *
3319 * Returns the total number of entries in the ring buffer
3320 * (all CPU entries)
3321 */
3322 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3323 {
3324 struct ring_buffer_per_cpu *cpu_buffer;
3325 unsigned long entries = 0;
3326 int cpu;
3327
3328 /* if you care about this being correct, lock the buffer */
3329 for_each_buffer_cpu(buffer, cpu) {
3330 cpu_buffer = buffer->buffers[cpu];
3331 entries += rb_num_of_entries(cpu_buffer);
3332 }
3333
3334 return entries;
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3337
3338 /**
3339 * ring_buffer_overruns - get the number of overruns in buffer
3340 * @buffer: The ring buffer
3341 *
3342 * Returns the total number of overruns in the ring buffer
3343 * (all CPU entries)
3344 */
3345 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3346 {
3347 struct ring_buffer_per_cpu *cpu_buffer;
3348 unsigned long overruns = 0;
3349 int cpu;
3350
3351 /* if you care about this being correct, lock the buffer */
3352 for_each_buffer_cpu(buffer, cpu) {
3353 cpu_buffer = buffer->buffers[cpu];
3354 overruns += local_read(&cpu_buffer->overrun);
3355 }
3356
3357 return overruns;
3358 }
3359 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3360
3361 static void rb_iter_reset(struct ring_buffer_iter *iter)
3362 {
3363 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3364
3365 /* Iterator usage is expected to have record disabled */
3366 iter->head_page = cpu_buffer->reader_page;
3367 iter->head = cpu_buffer->reader_page->read;
3368
3369 iter->cache_reader_page = iter->head_page;
3370 iter->cache_read = cpu_buffer->read;
3371
3372 if (iter->head)
3373 iter->read_stamp = cpu_buffer->read_stamp;
3374 else
3375 iter->read_stamp = iter->head_page->page->time_stamp;
3376 }
3377
3378 /**
3379 * ring_buffer_iter_reset - reset an iterator
3380 * @iter: The iterator to reset
3381 *
3382 * Resets the iterator, so that it will start from the beginning
3383 * again.
3384 */
3385 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3386 {
3387 struct ring_buffer_per_cpu *cpu_buffer;
3388 unsigned long flags;
3389
3390 if (!iter)
3391 return;
3392
3393 cpu_buffer = iter->cpu_buffer;
3394
3395 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3396 rb_iter_reset(iter);
3397 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3398 }
3399 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3400
3401 /**
3402 * ring_buffer_iter_empty - check if an iterator has no more to read
3403 * @iter: The iterator to check
3404 */
3405 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3406 {
3407 struct ring_buffer_per_cpu *cpu_buffer;
3408 struct buffer_page *reader;
3409 struct buffer_page *head_page;
3410 struct buffer_page *commit_page;
3411 unsigned commit;
3412
3413 cpu_buffer = iter->cpu_buffer;
3414
3415 /* Remember, trace recording is off when iterator is in use */
3416 reader = cpu_buffer->reader_page;
3417 head_page = cpu_buffer->head_page;
3418 commit_page = cpu_buffer->commit_page;
3419 commit = rb_page_commit(commit_page);
3420
3421 return ((iter->head_page == commit_page && iter->head == commit) ||
3422 (iter->head_page == reader && commit_page == head_page &&
3423 head_page->read == commit &&
3424 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3425 }
3426 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3427
3428 static void
3429 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3430 struct ring_buffer_event *event)
3431 {
3432 u64 delta;
3433
3434 switch (event->type_len) {
3435 case RINGBUF_TYPE_PADDING:
3436 return;
3437
3438 case RINGBUF_TYPE_TIME_EXTEND:
3439 delta = event->array[0];
3440 delta <<= TS_SHIFT;
3441 delta += event->time_delta;
3442 cpu_buffer->read_stamp += delta;
3443 return;
3444
3445 case RINGBUF_TYPE_TIME_STAMP:
3446 /* FIXME: not implemented */
3447 return;
3448
3449 case RINGBUF_TYPE_DATA:
3450 cpu_buffer->read_stamp += event->time_delta;
3451 return;
3452
3453 default:
3454 BUG();
3455 }
3456 return;
3457 }
3458
3459 static void
3460 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3461 struct ring_buffer_event *event)
3462 {
3463 u64 delta;
3464
3465 switch (event->type_len) {
3466 case RINGBUF_TYPE_PADDING:
3467 return;
3468
3469 case RINGBUF_TYPE_TIME_EXTEND:
3470 delta = event->array[0];
3471 delta <<= TS_SHIFT;
3472 delta += event->time_delta;
3473 iter->read_stamp += delta;
3474 return;
3475
3476 case RINGBUF_TYPE_TIME_STAMP:
3477 /* FIXME: not implemented */
3478 return;
3479
3480 case RINGBUF_TYPE_DATA:
3481 iter->read_stamp += event->time_delta;
3482 return;
3483
3484 default:
3485 BUG();
3486 }
3487 return;
3488 }
3489
3490 static struct buffer_page *
3491 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3492 {
3493 struct buffer_page *reader = NULL;
3494 unsigned long overwrite;
3495 unsigned long flags;
3496 int nr_loops = 0;
3497 int ret;
3498
3499 local_irq_save(flags);
3500 arch_spin_lock(&cpu_buffer->lock);
3501
3502 again:
3503 /*
3504 * This should normally only loop twice. But because the
3505 * start of the reader inserts an empty page, it causes
3506 * a case where we will loop three times. There should be no
3507 * reason to loop four times (that I know of).
3508 */
3509 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3510 reader = NULL;
3511 goto out;
3512 }
3513
3514 reader = cpu_buffer->reader_page;
3515
3516 /* If there's more to read, return this page */
3517 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3518 goto out;
3519
3520 /* Never should we have an index greater than the size */
3521 if (RB_WARN_ON(cpu_buffer,
3522 cpu_buffer->reader_page->read > rb_page_size(reader)))
3523 goto out;
3524
3525 /* check if we caught up to the tail */
3526 reader = NULL;
3527 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3528 goto out;
3529
3530 /* Don't bother swapping if the ring buffer is empty */
3531 if (rb_num_of_entries(cpu_buffer) == 0)
3532 goto out;
3533
3534 /*
3535 * Reset the reader page to size zero.
3536 */
3537 local_set(&cpu_buffer->reader_page->write, 0);
3538 local_set(&cpu_buffer->reader_page->entries, 0);
3539 local_set(&cpu_buffer->reader_page->page->commit, 0);
3540 cpu_buffer->reader_page->real_end = 0;
3541
3542 spin:
3543 /*
3544 * Splice the empty reader page into the list around the head.
3545 */
3546 reader = rb_set_head_page(cpu_buffer);
3547 if (!reader)
3548 goto out;
3549 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3550 cpu_buffer->reader_page->list.prev = reader->list.prev;
3551
3552 /*
3553 * cpu_buffer->pages just needs to point to the buffer, it
3554 * has no specific buffer page to point to. Lets move it out
3555 * of our way so we don't accidentally swap it.
3556 */
3557 cpu_buffer->pages = reader->list.prev;
3558
3559 /* The reader page will be pointing to the new head */
3560 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3561
3562 /*
3563 * We want to make sure we read the overruns after we set up our
3564 * pointers to the next object. The writer side does a
3565 * cmpxchg to cross pages which acts as the mb on the writer
3566 * side. Note, the reader will constantly fail the swap
3567 * while the writer is updating the pointers, so this
3568 * guarantees that the overwrite recorded here is the one we
3569 * want to compare with the last_overrun.
3570 */
3571 smp_mb();
3572 overwrite = local_read(&(cpu_buffer->overrun));
3573
3574 /*
3575 * Here's the tricky part.
3576 *
3577 * We need to move the pointer past the header page.
3578 * But we can only do that if a writer is not currently
3579 * moving it. The page before the header page has the
3580 * flag bit '1' set if it is pointing to the page we want.
3581 * but if the writer is in the process of moving it
3582 * than it will be '2' or already moved '0'.
3583 */
3584
3585 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3586
3587 /*
3588 * If we did not convert it, then we must try again.
3589 */
3590 if (!ret)
3591 goto spin;
3592
3593 /*
3594 * Yeah! We succeeded in replacing the page.
3595 *
3596 * Now make the new head point back to the reader page.
3597 */
3598 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3599 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3600
3601 /* Finally update the reader page to the new head */
3602 cpu_buffer->reader_page = reader;
3603 cpu_buffer->reader_page->read = 0;
3604
3605 if (overwrite != cpu_buffer->last_overrun) {
3606 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3607 cpu_buffer->last_overrun = overwrite;
3608 }
3609
3610 goto again;
3611
3612 out:
3613 /* Update the read_stamp on the first event */
3614 if (reader && reader->read == 0)
3615 cpu_buffer->read_stamp = reader->page->time_stamp;
3616
3617 arch_spin_unlock(&cpu_buffer->lock);
3618 local_irq_restore(flags);
3619
3620 return reader;
3621 }
3622
3623 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3624 {
3625 struct ring_buffer_event *event;
3626 struct buffer_page *reader;
3627 unsigned length;
3628
3629 reader = rb_get_reader_page(cpu_buffer);
3630
3631 /* This function should not be called when buffer is empty */
3632 if (RB_WARN_ON(cpu_buffer, !reader))
3633 return;
3634
3635 event = rb_reader_event(cpu_buffer);
3636
3637 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3638 cpu_buffer->read++;
3639
3640 rb_update_read_stamp(cpu_buffer, event);
3641
3642 length = rb_event_length(event);
3643 cpu_buffer->reader_page->read += length;
3644 }
3645
3646 static void rb_advance_iter(struct ring_buffer_iter *iter)
3647 {
3648 struct ring_buffer_per_cpu *cpu_buffer;
3649 struct ring_buffer_event *event;
3650 unsigned length;
3651
3652 cpu_buffer = iter->cpu_buffer;
3653
3654 /*
3655 * Check if we are at the end of the buffer.
3656 */
3657 if (iter->head >= rb_page_size(iter->head_page)) {
3658 /* discarded commits can make the page empty */
3659 if (iter->head_page == cpu_buffer->commit_page)
3660 return;
3661 rb_inc_iter(iter);
3662 return;
3663 }
3664
3665 event = rb_iter_head_event(iter);
3666
3667 length = rb_event_length(event);
3668
3669 /*
3670 * This should not be called to advance the header if we are
3671 * at the tail of the buffer.
3672 */
3673 if (RB_WARN_ON(cpu_buffer,
3674 (iter->head_page == cpu_buffer->commit_page) &&
3675 (iter->head + length > rb_commit_index(cpu_buffer))))
3676 return;
3677
3678 rb_update_iter_read_stamp(iter, event);
3679
3680 iter->head += length;
3681
3682 /* check for end of page padding */
3683 if ((iter->head >= rb_page_size(iter->head_page)) &&
3684 (iter->head_page != cpu_buffer->commit_page))
3685 rb_inc_iter(iter);
3686 }
3687
3688 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3689 {
3690 return cpu_buffer->lost_events;
3691 }
3692
3693 static struct ring_buffer_event *
3694 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3695 unsigned long *lost_events)
3696 {
3697 struct ring_buffer_event *event;
3698 struct buffer_page *reader;
3699 int nr_loops = 0;
3700
3701 again:
3702 /*
3703 * We repeat when a time extend is encountered.
3704 * Since the time extend is always attached to a data event,
3705 * we should never loop more than once.
3706 * (We never hit the following condition more than twice).
3707 */
3708 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3709 return NULL;
3710
3711 reader = rb_get_reader_page(cpu_buffer);
3712 if (!reader)
3713 return NULL;
3714
3715 event = rb_reader_event(cpu_buffer);
3716
3717 switch (event->type_len) {
3718 case RINGBUF_TYPE_PADDING:
3719 if (rb_null_event(event))
3720 RB_WARN_ON(cpu_buffer, 1);
3721 /*
3722 * Because the writer could be discarding every
3723 * event it creates (which would probably be bad)
3724 * if we were to go back to "again" then we may never
3725 * catch up, and will trigger the warn on, or lock
3726 * the box. Return the padding, and we will release
3727 * the current locks, and try again.
3728 */
3729 return event;
3730
3731 case RINGBUF_TYPE_TIME_EXTEND:
3732 /* Internal data, OK to advance */
3733 rb_advance_reader(cpu_buffer);
3734 goto again;
3735
3736 case RINGBUF_TYPE_TIME_STAMP:
3737 /* FIXME: not implemented */
3738 rb_advance_reader(cpu_buffer);
3739 goto again;
3740
3741 case RINGBUF_TYPE_DATA:
3742 if (ts) {
3743 *ts = cpu_buffer->read_stamp + event->time_delta;
3744 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3745 cpu_buffer->cpu, ts);
3746 }
3747 if (lost_events)
3748 *lost_events = rb_lost_events(cpu_buffer);
3749 return event;
3750
3751 default:
3752 BUG();
3753 }
3754
3755 return NULL;
3756 }
3757 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3758
3759 static struct ring_buffer_event *
3760 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3761 {
3762 struct ring_buffer *buffer;
3763 struct ring_buffer_per_cpu *cpu_buffer;
3764 struct ring_buffer_event *event;
3765 int nr_loops = 0;
3766
3767 cpu_buffer = iter->cpu_buffer;
3768 buffer = cpu_buffer->buffer;
3769
3770 /*
3771 * Check if someone performed a consuming read to
3772 * the buffer. A consuming read invalidates the iterator
3773 * and we need to reset the iterator in this case.
3774 */
3775 if (unlikely(iter->cache_read != cpu_buffer->read ||
3776 iter->cache_reader_page != cpu_buffer->reader_page))
3777 rb_iter_reset(iter);
3778
3779 again:
3780 if (ring_buffer_iter_empty(iter))
3781 return NULL;
3782
3783 /*
3784 * We repeat when a time extend is encountered or we hit
3785 * the end of the page. Since the time extend is always attached
3786 * to a data event, we should never loop more than three times.
3787 * Once for going to next page, once on time extend, and
3788 * finally once to get the event.
3789 * (We never hit the following condition more than thrice).
3790 */
3791 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3792 return NULL;
3793
3794 if (rb_per_cpu_empty(cpu_buffer))
3795 return NULL;
3796
3797 if (iter->head >= rb_page_size(iter->head_page)) {
3798 rb_inc_iter(iter);
3799 goto again;
3800 }
3801
3802 event = rb_iter_head_event(iter);
3803
3804 switch (event->type_len) {
3805 case RINGBUF_TYPE_PADDING:
3806 if (rb_null_event(event)) {
3807 rb_inc_iter(iter);
3808 goto again;
3809 }
3810 rb_advance_iter(iter);
3811 return event;
3812
3813 case RINGBUF_TYPE_TIME_EXTEND:
3814 /* Internal data, OK to advance */
3815 rb_advance_iter(iter);
3816 goto again;
3817
3818 case RINGBUF_TYPE_TIME_STAMP:
3819 /* FIXME: not implemented */
3820 rb_advance_iter(iter);
3821 goto again;
3822
3823 case RINGBUF_TYPE_DATA:
3824 if (ts) {
3825 *ts = iter->read_stamp + event->time_delta;
3826 ring_buffer_normalize_time_stamp(buffer,
3827 cpu_buffer->cpu, ts);
3828 }
3829 return event;
3830
3831 default:
3832 BUG();
3833 }
3834
3835 return NULL;
3836 }
3837 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3838
3839 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3840 {
3841 if (likely(!in_nmi())) {
3842 raw_spin_lock(&cpu_buffer->reader_lock);
3843 return true;
3844 }
3845
3846 /*
3847 * If an NMI die dumps out the content of the ring buffer
3848 * trylock must be used to prevent a deadlock if the NMI
3849 * preempted a task that holds the ring buffer locks. If
3850 * we get the lock then all is fine, if not, then continue
3851 * to do the read, but this can corrupt the ring buffer,
3852 * so it must be permanently disabled from future writes.
3853 * Reading from NMI is a oneshot deal.
3854 */
3855 if (raw_spin_trylock(&cpu_buffer->reader_lock))
3856 return true;
3857
3858 /* Continue without locking, but disable the ring buffer */
3859 atomic_inc(&cpu_buffer->record_disabled);
3860 return false;
3861 }
3862
3863 static inline void
3864 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3865 {
3866 if (likely(locked))
3867 raw_spin_unlock(&cpu_buffer->reader_lock);
3868 return;
3869 }
3870
3871 /**
3872 * ring_buffer_peek - peek at the next event to be read
3873 * @buffer: The ring buffer to read
3874 * @cpu: The cpu to peak at
3875 * @ts: The timestamp counter of this event.
3876 * @lost_events: a variable to store if events were lost (may be NULL)
3877 *
3878 * This will return the event that will be read next, but does
3879 * not consume the data.
3880 */
3881 struct ring_buffer_event *
3882 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3883 unsigned long *lost_events)
3884 {
3885 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3886 struct ring_buffer_event *event;
3887 unsigned long flags;
3888 bool dolock;
3889
3890 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3891 return NULL;
3892
3893 again:
3894 local_irq_save(flags);
3895 dolock = rb_reader_lock(cpu_buffer);
3896 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3897 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3898 rb_advance_reader(cpu_buffer);
3899 rb_reader_unlock(cpu_buffer, dolock);
3900 local_irq_restore(flags);
3901
3902 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3903 goto again;
3904
3905 return event;
3906 }
3907
3908 /**
3909 * ring_buffer_iter_peek - peek at the next event to be read
3910 * @iter: The ring buffer iterator
3911 * @ts: The timestamp counter of this event.
3912 *
3913 * This will return the event that will be read next, but does
3914 * not increment the iterator.
3915 */
3916 struct ring_buffer_event *
3917 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3918 {
3919 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3920 struct ring_buffer_event *event;
3921 unsigned long flags;
3922
3923 again:
3924 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3925 event = rb_iter_peek(iter, ts);
3926 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3927
3928 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3929 goto again;
3930
3931 return event;
3932 }
3933
3934 /**
3935 * ring_buffer_consume - return an event and consume it
3936 * @buffer: The ring buffer to get the next event from
3937 * @cpu: the cpu to read the buffer from
3938 * @ts: a variable to store the timestamp (may be NULL)
3939 * @lost_events: a variable to store if events were lost (may be NULL)
3940 *
3941 * Returns the next event in the ring buffer, and that event is consumed.
3942 * Meaning, that sequential reads will keep returning a different event,
3943 * and eventually empty the ring buffer if the producer is slower.
3944 */
3945 struct ring_buffer_event *
3946 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3947 unsigned long *lost_events)
3948 {
3949 struct ring_buffer_per_cpu *cpu_buffer;
3950 struct ring_buffer_event *event = NULL;
3951 unsigned long flags;
3952 bool dolock;
3953
3954 again:
3955 /* might be called in atomic */
3956 preempt_disable();
3957
3958 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3959 goto out;
3960
3961 cpu_buffer = buffer->buffers[cpu];
3962 local_irq_save(flags);
3963 dolock = rb_reader_lock(cpu_buffer);
3964
3965 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3966 if (event) {
3967 cpu_buffer->lost_events = 0;
3968 rb_advance_reader(cpu_buffer);
3969 }
3970
3971 rb_reader_unlock(cpu_buffer, dolock);
3972 local_irq_restore(flags);
3973
3974 out:
3975 preempt_enable();
3976
3977 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3978 goto again;
3979
3980 return event;
3981 }
3982 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3983
3984 /**
3985 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3986 * @buffer: The ring buffer to read from
3987 * @cpu: The cpu buffer to iterate over
3988 *
3989 * This performs the initial preparations necessary to iterate
3990 * through the buffer. Memory is allocated, buffer recording
3991 * is disabled, and the iterator pointer is returned to the caller.
3992 *
3993 * Disabling buffer recordng prevents the reading from being
3994 * corrupted. This is not a consuming read, so a producer is not
3995 * expected.
3996 *
3997 * After a sequence of ring_buffer_read_prepare calls, the user is
3998 * expected to make at least one call to ring_buffer_read_prepare_sync.
3999 * Afterwards, ring_buffer_read_start is invoked to get things going
4000 * for real.
4001 *
4002 * This overall must be paired with ring_buffer_read_finish.
4003 */
4004 struct ring_buffer_iter *
4005 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4006 {
4007 struct ring_buffer_per_cpu *cpu_buffer;
4008 struct ring_buffer_iter *iter;
4009
4010 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4011 return NULL;
4012
4013 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4014 if (!iter)
4015 return NULL;
4016
4017 cpu_buffer = buffer->buffers[cpu];
4018
4019 iter->cpu_buffer = cpu_buffer;
4020
4021 atomic_inc(&buffer->resize_disabled);
4022 atomic_inc(&cpu_buffer->record_disabled);
4023
4024 return iter;
4025 }
4026 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4027
4028 /**
4029 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4030 *
4031 * All previously invoked ring_buffer_read_prepare calls to prepare
4032 * iterators will be synchronized. Afterwards, read_buffer_read_start
4033 * calls on those iterators are allowed.
4034 */
4035 void
4036 ring_buffer_read_prepare_sync(void)
4037 {
4038 synchronize_sched();
4039 }
4040 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4041
4042 /**
4043 * ring_buffer_read_start - start a non consuming read of the buffer
4044 * @iter: The iterator returned by ring_buffer_read_prepare
4045 *
4046 * This finalizes the startup of an iteration through the buffer.
4047 * The iterator comes from a call to ring_buffer_read_prepare and
4048 * an intervening ring_buffer_read_prepare_sync must have been
4049 * performed.
4050 *
4051 * Must be paired with ring_buffer_read_finish.
4052 */
4053 void
4054 ring_buffer_read_start(struct ring_buffer_iter *iter)
4055 {
4056 struct ring_buffer_per_cpu *cpu_buffer;
4057 unsigned long flags;
4058
4059 if (!iter)
4060 return;
4061
4062 cpu_buffer = iter->cpu_buffer;
4063
4064 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4065 arch_spin_lock(&cpu_buffer->lock);
4066 rb_iter_reset(iter);
4067 arch_spin_unlock(&cpu_buffer->lock);
4068 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4069 }
4070 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4071
4072 /**
4073 * ring_buffer_read_finish - finish reading the iterator of the buffer
4074 * @iter: The iterator retrieved by ring_buffer_start
4075 *
4076 * This re-enables the recording to the buffer, and frees the
4077 * iterator.
4078 */
4079 void
4080 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4081 {
4082 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4083 unsigned long flags;
4084
4085 /*
4086 * Ring buffer is disabled from recording, here's a good place
4087 * to check the integrity of the ring buffer.
4088 * Must prevent readers from trying to read, as the check
4089 * clears the HEAD page and readers require it.
4090 */
4091 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4092 rb_check_pages(cpu_buffer);
4093 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4094
4095 atomic_dec(&cpu_buffer->record_disabled);
4096 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4097 kfree(iter);
4098 }
4099 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4100
4101 /**
4102 * ring_buffer_read - read the next item in the ring buffer by the iterator
4103 * @iter: The ring buffer iterator
4104 * @ts: The time stamp of the event read.
4105 *
4106 * This reads the next event in the ring buffer and increments the iterator.
4107 */
4108 struct ring_buffer_event *
4109 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4110 {
4111 struct ring_buffer_event *event;
4112 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4113 unsigned long flags;
4114
4115 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4116 again:
4117 event = rb_iter_peek(iter, ts);
4118 if (!event)
4119 goto out;
4120
4121 if (event->type_len == RINGBUF_TYPE_PADDING)
4122 goto again;
4123
4124 rb_advance_iter(iter);
4125 out:
4126 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4127
4128 return event;
4129 }
4130 EXPORT_SYMBOL_GPL(ring_buffer_read);
4131
4132 /**
4133 * ring_buffer_size - return the size of the ring buffer (in bytes)
4134 * @buffer: The ring buffer.
4135 */
4136 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4137 {
4138 /*
4139 * Earlier, this method returned
4140 * BUF_PAGE_SIZE * buffer->nr_pages
4141 * Since the nr_pages field is now removed, we have converted this to
4142 * return the per cpu buffer value.
4143 */
4144 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4145 return 0;
4146
4147 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4148 }
4149 EXPORT_SYMBOL_GPL(ring_buffer_size);
4150
4151 static void
4152 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4153 {
4154 rb_head_page_deactivate(cpu_buffer);
4155
4156 cpu_buffer->head_page
4157 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4158 local_set(&cpu_buffer->head_page->write, 0);
4159 local_set(&cpu_buffer->head_page->entries, 0);
4160 local_set(&cpu_buffer->head_page->page->commit, 0);
4161
4162 cpu_buffer->head_page->read = 0;
4163
4164 cpu_buffer->tail_page = cpu_buffer->head_page;
4165 cpu_buffer->commit_page = cpu_buffer->head_page;
4166
4167 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4168 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4169 local_set(&cpu_buffer->reader_page->write, 0);
4170 local_set(&cpu_buffer->reader_page->entries, 0);
4171 local_set(&cpu_buffer->reader_page->page->commit, 0);
4172 cpu_buffer->reader_page->read = 0;
4173
4174 local_set(&cpu_buffer->entries_bytes, 0);
4175 local_set(&cpu_buffer->overrun, 0);
4176 local_set(&cpu_buffer->commit_overrun, 0);
4177 local_set(&cpu_buffer->dropped_events, 0);
4178 local_set(&cpu_buffer->entries, 0);
4179 local_set(&cpu_buffer->committing, 0);
4180 local_set(&cpu_buffer->commits, 0);
4181 cpu_buffer->read = 0;
4182 cpu_buffer->read_bytes = 0;
4183
4184 cpu_buffer->write_stamp = 0;
4185 cpu_buffer->read_stamp = 0;
4186
4187 cpu_buffer->lost_events = 0;
4188 cpu_buffer->last_overrun = 0;
4189
4190 rb_head_page_activate(cpu_buffer);
4191 }
4192
4193 /**
4194 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4195 * @buffer: The ring buffer to reset a per cpu buffer of
4196 * @cpu: The CPU buffer to be reset
4197 */
4198 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4199 {
4200 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4201 unsigned long flags;
4202
4203 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4204 return;
4205
4206 atomic_inc(&buffer->resize_disabled);
4207 atomic_inc(&cpu_buffer->record_disabled);
4208
4209 /* Make sure all commits have finished */
4210 synchronize_sched();
4211
4212 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4213
4214 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4215 goto out;
4216
4217 arch_spin_lock(&cpu_buffer->lock);
4218
4219 rb_reset_cpu(cpu_buffer);
4220
4221 arch_spin_unlock(&cpu_buffer->lock);
4222
4223 out:
4224 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4225
4226 atomic_dec(&cpu_buffer->record_disabled);
4227 atomic_dec(&buffer->resize_disabled);
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4230
4231 /**
4232 * ring_buffer_reset - reset a ring buffer
4233 * @buffer: The ring buffer to reset all cpu buffers
4234 */
4235 void ring_buffer_reset(struct ring_buffer *buffer)
4236 {
4237 int cpu;
4238
4239 for_each_buffer_cpu(buffer, cpu)
4240 ring_buffer_reset_cpu(buffer, cpu);
4241 }
4242 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4243
4244 /**
4245 * rind_buffer_empty - is the ring buffer empty?
4246 * @buffer: The ring buffer to test
4247 */
4248 bool ring_buffer_empty(struct ring_buffer *buffer)
4249 {
4250 struct ring_buffer_per_cpu *cpu_buffer;
4251 unsigned long flags;
4252 bool dolock;
4253 int cpu;
4254 int ret;
4255
4256 /* yes this is racy, but if you don't like the race, lock the buffer */
4257 for_each_buffer_cpu(buffer, cpu) {
4258 cpu_buffer = buffer->buffers[cpu];
4259 local_irq_save(flags);
4260 dolock = rb_reader_lock(cpu_buffer);
4261 ret = rb_per_cpu_empty(cpu_buffer);
4262 rb_reader_unlock(cpu_buffer, dolock);
4263 local_irq_restore(flags);
4264
4265 if (!ret)
4266 return false;
4267 }
4268
4269 return true;
4270 }
4271 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4272
4273 /**
4274 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4275 * @buffer: The ring buffer
4276 * @cpu: The CPU buffer to test
4277 */
4278 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4279 {
4280 struct ring_buffer_per_cpu *cpu_buffer;
4281 unsigned long flags;
4282 bool dolock;
4283 int ret;
4284
4285 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4286 return true;
4287
4288 cpu_buffer = buffer->buffers[cpu];
4289 local_irq_save(flags);
4290 dolock = rb_reader_lock(cpu_buffer);
4291 ret = rb_per_cpu_empty(cpu_buffer);
4292 rb_reader_unlock(cpu_buffer, dolock);
4293 local_irq_restore(flags);
4294
4295 return ret;
4296 }
4297 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4298
4299 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4300 /**
4301 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4302 * @buffer_a: One buffer to swap with
4303 * @buffer_b: The other buffer to swap with
4304 *
4305 * This function is useful for tracers that want to take a "snapshot"
4306 * of a CPU buffer and has another back up buffer lying around.
4307 * it is expected that the tracer handles the cpu buffer not being
4308 * used at the moment.
4309 */
4310 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4311 struct ring_buffer *buffer_b, int cpu)
4312 {
4313 struct ring_buffer_per_cpu *cpu_buffer_a;
4314 struct ring_buffer_per_cpu *cpu_buffer_b;
4315 int ret = -EINVAL;
4316
4317 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4318 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4319 goto out;
4320
4321 cpu_buffer_a = buffer_a->buffers[cpu];
4322 cpu_buffer_b = buffer_b->buffers[cpu];
4323
4324 /* At least make sure the two buffers are somewhat the same */
4325 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4326 goto out;
4327
4328 ret = -EAGAIN;
4329
4330 if (atomic_read(&buffer_a->record_disabled))
4331 goto out;
4332
4333 if (atomic_read(&buffer_b->record_disabled))
4334 goto out;
4335
4336 if (atomic_read(&cpu_buffer_a->record_disabled))
4337 goto out;
4338
4339 if (atomic_read(&cpu_buffer_b->record_disabled))
4340 goto out;
4341
4342 /*
4343 * We can't do a synchronize_sched here because this
4344 * function can be called in atomic context.
4345 * Normally this will be called from the same CPU as cpu.
4346 * If not it's up to the caller to protect this.
4347 */
4348 atomic_inc(&cpu_buffer_a->record_disabled);
4349 atomic_inc(&cpu_buffer_b->record_disabled);
4350
4351 ret = -EBUSY;
4352 if (local_read(&cpu_buffer_a->committing))
4353 goto out_dec;
4354 if (local_read(&cpu_buffer_b->committing))
4355 goto out_dec;
4356
4357 buffer_a->buffers[cpu] = cpu_buffer_b;
4358 buffer_b->buffers[cpu] = cpu_buffer_a;
4359
4360 cpu_buffer_b->buffer = buffer_a;
4361 cpu_buffer_a->buffer = buffer_b;
4362
4363 ret = 0;
4364
4365 out_dec:
4366 atomic_dec(&cpu_buffer_a->record_disabled);
4367 atomic_dec(&cpu_buffer_b->record_disabled);
4368 out:
4369 return ret;
4370 }
4371 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4372 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4373
4374 /**
4375 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4376 * @buffer: the buffer to allocate for.
4377 * @cpu: the cpu buffer to allocate.
4378 *
4379 * This function is used in conjunction with ring_buffer_read_page.
4380 * When reading a full page from the ring buffer, these functions
4381 * can be used to speed up the process. The calling function should
4382 * allocate a few pages first with this function. Then when it
4383 * needs to get pages from the ring buffer, it passes the result
4384 * of this function into ring_buffer_read_page, which will swap
4385 * the page that was allocated, with the read page of the buffer.
4386 *
4387 * Returns:
4388 * The page allocated, or NULL on error.
4389 */
4390 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4391 {
4392 struct buffer_data_page *bpage;
4393 struct page *page;
4394
4395 page = alloc_pages_node(cpu_to_node(cpu),
4396 GFP_KERNEL | __GFP_NORETRY, 0);
4397 if (!page)
4398 return NULL;
4399
4400 bpage = page_address(page);
4401
4402 rb_init_page(bpage);
4403
4404 return bpage;
4405 }
4406 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4407
4408 /**
4409 * ring_buffer_free_read_page - free an allocated read page
4410 * @buffer: the buffer the page was allocate for
4411 * @data: the page to free
4412 *
4413 * Free a page allocated from ring_buffer_alloc_read_page.
4414 */
4415 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4416 {
4417 free_page((unsigned long)data);
4418 }
4419 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4420
4421 /**
4422 * ring_buffer_read_page - extract a page from the ring buffer
4423 * @buffer: buffer to extract from
4424 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4425 * @len: amount to extract
4426 * @cpu: the cpu of the buffer to extract
4427 * @full: should the extraction only happen when the page is full.
4428 *
4429 * This function will pull out a page from the ring buffer and consume it.
4430 * @data_page must be the address of the variable that was returned
4431 * from ring_buffer_alloc_read_page. This is because the page might be used
4432 * to swap with a page in the ring buffer.
4433 *
4434 * for example:
4435 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4436 * if (!rpage)
4437 * return error;
4438 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4439 * if (ret >= 0)
4440 * process_page(rpage, ret);
4441 *
4442 * When @full is set, the function will not return true unless
4443 * the writer is off the reader page.
4444 *
4445 * Note: it is up to the calling functions to handle sleeps and wakeups.
4446 * The ring buffer can be used anywhere in the kernel and can not
4447 * blindly call wake_up. The layer that uses the ring buffer must be
4448 * responsible for that.
4449 *
4450 * Returns:
4451 * >=0 if data has been transferred, returns the offset of consumed data.
4452 * <0 if no data has been transferred.
4453 */
4454 int ring_buffer_read_page(struct ring_buffer *buffer,
4455 void **data_page, size_t len, int cpu, int full)
4456 {
4457 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4458 struct ring_buffer_event *event;
4459 struct buffer_data_page *bpage;
4460 struct buffer_page *reader;
4461 unsigned long missed_events;
4462 unsigned long flags;
4463 unsigned int commit;
4464 unsigned int read;
4465 u64 save_timestamp;
4466 int ret = -1;
4467
4468 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4469 goto out;
4470
4471 /*
4472 * If len is not big enough to hold the page header, then
4473 * we can not copy anything.
4474 */
4475 if (len <= BUF_PAGE_HDR_SIZE)
4476 goto out;
4477
4478 len -= BUF_PAGE_HDR_SIZE;
4479
4480 if (!data_page)
4481 goto out;
4482
4483 bpage = *data_page;
4484 if (!bpage)
4485 goto out;
4486
4487 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4488
4489 reader = rb_get_reader_page(cpu_buffer);
4490 if (!reader)
4491 goto out_unlock;
4492
4493 event = rb_reader_event(cpu_buffer);
4494
4495 read = reader->read;
4496 commit = rb_page_commit(reader);
4497
4498 /* Check if any events were dropped */
4499 missed_events = cpu_buffer->lost_events;
4500
4501 /*
4502 * If this page has been partially read or
4503 * if len is not big enough to read the rest of the page or
4504 * a writer is still on the page, then
4505 * we must copy the data from the page to the buffer.
4506 * Otherwise, we can simply swap the page with the one passed in.
4507 */
4508 if (read || (len < (commit - read)) ||
4509 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4510 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4511 unsigned int rpos = read;
4512 unsigned int pos = 0;
4513 unsigned int size;
4514
4515 if (full)
4516 goto out_unlock;
4517
4518 if (len > (commit - read))
4519 len = (commit - read);
4520
4521 /* Always keep the time extend and data together */
4522 size = rb_event_ts_length(event);
4523
4524 if (len < size)
4525 goto out_unlock;
4526
4527 /* save the current timestamp, since the user will need it */
4528 save_timestamp = cpu_buffer->read_stamp;
4529
4530 /* Need to copy one event at a time */
4531 do {
4532 /* We need the size of one event, because
4533 * rb_advance_reader only advances by one event,
4534 * whereas rb_event_ts_length may include the size of
4535 * one or two events.
4536 * We have already ensured there's enough space if this
4537 * is a time extend. */
4538 size = rb_event_length(event);
4539 memcpy(bpage->data + pos, rpage->data + rpos, size);
4540
4541 len -= size;
4542
4543 rb_advance_reader(cpu_buffer);
4544 rpos = reader->read;
4545 pos += size;
4546
4547 if (rpos >= commit)
4548 break;
4549
4550 event = rb_reader_event(cpu_buffer);
4551 /* Always keep the time extend and data together */
4552 size = rb_event_ts_length(event);
4553 } while (len >= size);
4554
4555 /* update bpage */
4556 local_set(&bpage->commit, pos);
4557 bpage->time_stamp = save_timestamp;
4558
4559 /* we copied everything to the beginning */
4560 read = 0;
4561 } else {
4562 /* update the entry counter */
4563 cpu_buffer->read += rb_page_entries(reader);
4564 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4565
4566 /* swap the pages */
4567 rb_init_page(bpage);
4568 bpage = reader->page;
4569 reader->page = *data_page;
4570 local_set(&reader->write, 0);
4571 local_set(&reader->entries, 0);
4572 reader->read = 0;
4573 *data_page = bpage;
4574
4575 /*
4576 * Use the real_end for the data size,
4577 * This gives us a chance to store the lost events
4578 * on the page.
4579 */
4580 if (reader->real_end)
4581 local_set(&bpage->commit, reader->real_end);
4582 }
4583 ret = read;
4584
4585 cpu_buffer->lost_events = 0;
4586
4587 commit = local_read(&bpage->commit);
4588 /*
4589 * Set a flag in the commit field if we lost events
4590 */
4591 if (missed_events) {
4592 /* If there is room at the end of the page to save the
4593 * missed events, then record it there.
4594 */
4595 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4596 memcpy(&bpage->data[commit], &missed_events,
4597 sizeof(missed_events));
4598 local_add(RB_MISSED_STORED, &bpage->commit);
4599 commit += sizeof(missed_events);
4600 }
4601 local_add(RB_MISSED_EVENTS, &bpage->commit);
4602 }
4603
4604 /*
4605 * This page may be off to user land. Zero it out here.
4606 */
4607 if (commit < BUF_PAGE_SIZE)
4608 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4609
4610 out_unlock:
4611 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4612
4613 out:
4614 return ret;
4615 }
4616 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4617
4618 /*
4619 * We only allocate new buffers, never free them if the CPU goes down.
4620 * If we were to free the buffer, then the user would lose any trace that was in
4621 * the buffer.
4622 */
4623 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4624 {
4625 struct ring_buffer *buffer;
4626 long nr_pages_same;
4627 int cpu_i;
4628 unsigned long nr_pages;
4629
4630 buffer = container_of(node, struct ring_buffer, node);
4631 if (cpumask_test_cpu(cpu, buffer->cpumask))
4632 return 0;
4633
4634 nr_pages = 0;
4635 nr_pages_same = 1;
4636 /* check if all cpu sizes are same */
4637 for_each_buffer_cpu(buffer, cpu_i) {
4638 /* fill in the size from first enabled cpu */
4639 if (nr_pages == 0)
4640 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4641 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4642 nr_pages_same = 0;
4643 break;
4644 }
4645 }
4646 /* allocate minimum pages, user can later expand it */
4647 if (!nr_pages_same)
4648 nr_pages = 2;
4649 buffer->buffers[cpu] =
4650 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4651 if (!buffer->buffers[cpu]) {
4652 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4653 cpu);
4654 return -ENOMEM;
4655 }
4656 smp_wmb();
4657 cpumask_set_cpu(cpu, buffer->cpumask);
4658 return 0;
4659 }
4660
4661 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4662 /*
4663 * This is a basic integrity check of the ring buffer.
4664 * Late in the boot cycle this test will run when configured in.
4665 * It will kick off a thread per CPU that will go into a loop
4666 * writing to the per cpu ring buffer various sizes of data.
4667 * Some of the data will be large items, some small.
4668 *
4669 * Another thread is created that goes into a spin, sending out
4670 * IPIs to the other CPUs to also write into the ring buffer.
4671 * this is to test the nesting ability of the buffer.
4672 *
4673 * Basic stats are recorded and reported. If something in the
4674 * ring buffer should happen that's not expected, a big warning
4675 * is displayed and all ring buffers are disabled.
4676 */
4677 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4678
4679 struct rb_test_data {
4680 struct ring_buffer *buffer;
4681 unsigned long events;
4682 unsigned long bytes_written;
4683 unsigned long bytes_alloc;
4684 unsigned long bytes_dropped;
4685 unsigned long events_nested;
4686 unsigned long bytes_written_nested;
4687 unsigned long bytes_alloc_nested;
4688 unsigned long bytes_dropped_nested;
4689 int min_size_nested;
4690 int max_size_nested;
4691 int max_size;
4692 int min_size;
4693 int cpu;
4694 int cnt;
4695 };
4696
4697 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4698
4699 /* 1 meg per cpu */
4700 #define RB_TEST_BUFFER_SIZE 1048576
4701
4702 static char rb_string[] __initdata =
4703 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4704 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4705 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4706
4707 static bool rb_test_started __initdata;
4708
4709 struct rb_item {
4710 int size;
4711 char str[];
4712 };
4713
4714 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4715 {
4716 struct ring_buffer_event *event;
4717 struct rb_item *item;
4718 bool started;
4719 int event_len;
4720 int size;
4721 int len;
4722 int cnt;
4723
4724 /* Have nested writes different that what is written */
4725 cnt = data->cnt + (nested ? 27 : 0);
4726
4727 /* Multiply cnt by ~e, to make some unique increment */
4728 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4729
4730 len = size + sizeof(struct rb_item);
4731
4732 started = rb_test_started;
4733 /* read rb_test_started before checking buffer enabled */
4734 smp_rmb();
4735
4736 event = ring_buffer_lock_reserve(data->buffer, len);
4737 if (!event) {
4738 /* Ignore dropped events before test starts. */
4739 if (started) {
4740 if (nested)
4741 data->bytes_dropped += len;
4742 else
4743 data->bytes_dropped_nested += len;
4744 }
4745 return len;
4746 }
4747
4748 event_len = ring_buffer_event_length(event);
4749
4750 if (RB_WARN_ON(data->buffer, event_len < len))
4751 goto out;
4752
4753 item = ring_buffer_event_data(event);
4754 item->size = size;
4755 memcpy(item->str, rb_string, size);
4756
4757 if (nested) {
4758 data->bytes_alloc_nested += event_len;
4759 data->bytes_written_nested += len;
4760 data->events_nested++;
4761 if (!data->min_size_nested || len < data->min_size_nested)
4762 data->min_size_nested = len;
4763 if (len > data->max_size_nested)
4764 data->max_size_nested = len;
4765 } else {
4766 data->bytes_alloc += event_len;
4767 data->bytes_written += len;
4768 data->events++;
4769 if (!data->min_size || len < data->min_size)
4770 data->max_size = len;
4771 if (len > data->max_size)
4772 data->max_size = len;
4773 }
4774
4775 out:
4776 ring_buffer_unlock_commit(data->buffer, event);
4777
4778 return 0;
4779 }
4780
4781 static __init int rb_test(void *arg)
4782 {
4783 struct rb_test_data *data = arg;
4784
4785 while (!kthread_should_stop()) {
4786 rb_write_something(data, false);
4787 data->cnt++;
4788
4789 set_current_state(TASK_INTERRUPTIBLE);
4790 /* Now sleep between a min of 100-300us and a max of 1ms */
4791 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4792 }
4793
4794 return 0;
4795 }
4796
4797 static __init void rb_ipi(void *ignore)
4798 {
4799 struct rb_test_data *data;
4800 int cpu = smp_processor_id();
4801
4802 data = &rb_data[cpu];
4803 rb_write_something(data, true);
4804 }
4805
4806 static __init int rb_hammer_test(void *arg)
4807 {
4808 while (!kthread_should_stop()) {
4809
4810 /* Send an IPI to all cpus to write data! */
4811 smp_call_function(rb_ipi, NULL, 1);
4812 /* No sleep, but for non preempt, let others run */
4813 schedule();
4814 }
4815
4816 return 0;
4817 }
4818
4819 static __init int test_ringbuffer(void)
4820 {
4821 struct task_struct *rb_hammer;
4822 struct ring_buffer *buffer;
4823 int cpu;
4824 int ret = 0;
4825
4826 pr_info("Running ring buffer tests...\n");
4827
4828 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4829 if (WARN_ON(!buffer))
4830 return 0;
4831
4832 /* Disable buffer so that threads can't write to it yet */
4833 ring_buffer_record_off(buffer);
4834
4835 for_each_online_cpu(cpu) {
4836 rb_data[cpu].buffer = buffer;
4837 rb_data[cpu].cpu = cpu;
4838 rb_data[cpu].cnt = cpu;
4839 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4840 "rbtester/%d", cpu);
4841 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4842 pr_cont("FAILED\n");
4843 ret = PTR_ERR(rb_threads[cpu]);
4844 goto out_free;
4845 }
4846
4847 kthread_bind(rb_threads[cpu], cpu);
4848 wake_up_process(rb_threads[cpu]);
4849 }
4850
4851 /* Now create the rb hammer! */
4852 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4853 if (WARN_ON(IS_ERR(rb_hammer))) {
4854 pr_cont("FAILED\n");
4855 ret = PTR_ERR(rb_hammer);
4856 goto out_free;
4857 }
4858
4859 ring_buffer_record_on(buffer);
4860 /*
4861 * Show buffer is enabled before setting rb_test_started.
4862 * Yes there's a small race window where events could be
4863 * dropped and the thread wont catch it. But when a ring
4864 * buffer gets enabled, there will always be some kind of
4865 * delay before other CPUs see it. Thus, we don't care about
4866 * those dropped events. We care about events dropped after
4867 * the threads see that the buffer is active.
4868 */
4869 smp_wmb();
4870 rb_test_started = true;
4871
4872 set_current_state(TASK_INTERRUPTIBLE);
4873 /* Just run for 10 seconds */;
4874 schedule_timeout(10 * HZ);
4875
4876 kthread_stop(rb_hammer);
4877
4878 out_free:
4879 for_each_online_cpu(cpu) {
4880 if (!rb_threads[cpu])
4881 break;
4882 kthread_stop(rb_threads[cpu]);
4883 }
4884 if (ret) {
4885 ring_buffer_free(buffer);
4886 return ret;
4887 }
4888
4889 /* Report! */
4890 pr_info("finished\n");
4891 for_each_online_cpu(cpu) {
4892 struct ring_buffer_event *event;
4893 struct rb_test_data *data = &rb_data[cpu];
4894 struct rb_item *item;
4895 unsigned long total_events;
4896 unsigned long total_dropped;
4897 unsigned long total_written;
4898 unsigned long total_alloc;
4899 unsigned long total_read = 0;
4900 unsigned long total_size = 0;
4901 unsigned long total_len = 0;
4902 unsigned long total_lost = 0;
4903 unsigned long lost;
4904 int big_event_size;
4905 int small_event_size;
4906
4907 ret = -1;
4908
4909 total_events = data->events + data->events_nested;
4910 total_written = data->bytes_written + data->bytes_written_nested;
4911 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4912 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4913
4914 big_event_size = data->max_size + data->max_size_nested;
4915 small_event_size = data->min_size + data->min_size_nested;
4916
4917 pr_info("CPU %d:\n", cpu);
4918 pr_info(" events: %ld\n", total_events);
4919 pr_info(" dropped bytes: %ld\n", total_dropped);
4920 pr_info(" alloced bytes: %ld\n", total_alloc);
4921 pr_info(" written bytes: %ld\n", total_written);
4922 pr_info(" biggest event: %d\n", big_event_size);
4923 pr_info(" smallest event: %d\n", small_event_size);
4924
4925 if (RB_WARN_ON(buffer, total_dropped))
4926 break;
4927
4928 ret = 0;
4929
4930 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4931 total_lost += lost;
4932 item = ring_buffer_event_data(event);
4933 total_len += ring_buffer_event_length(event);
4934 total_size += item->size + sizeof(struct rb_item);
4935 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4936 pr_info("FAILED!\n");
4937 pr_info("buffer had: %.*s\n", item->size, item->str);
4938 pr_info("expected: %.*s\n", item->size, rb_string);
4939 RB_WARN_ON(buffer, 1);
4940 ret = -1;
4941 break;
4942 }
4943 total_read++;
4944 }
4945 if (ret)
4946 break;
4947
4948 ret = -1;
4949
4950 pr_info(" read events: %ld\n", total_read);
4951 pr_info(" lost events: %ld\n", total_lost);
4952 pr_info(" total events: %ld\n", total_lost + total_read);
4953 pr_info(" recorded len bytes: %ld\n", total_len);
4954 pr_info(" recorded size bytes: %ld\n", total_size);
4955 if (total_lost)
4956 pr_info(" With dropped events, record len and size may not match\n"
4957 " alloced and written from above\n");
4958 if (!total_lost) {
4959 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4960 total_size != total_written))
4961 break;
4962 }
4963 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4964 break;
4965
4966 ret = 0;
4967 }
4968 if (!ret)
4969 pr_info("Ring buffer PASSED!\n");
4970
4971 ring_buffer_free(buffer);
4972 return 0;
4973 }
4974
4975 late_initcall(test_ringbuffer);
4976 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */