]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/workqueue.c
Merge tag 'powerpc-5.7-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[thirdparty/linux.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53
54 #include "workqueue_internal.h"
55
56 enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: wq_pool_attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145 /* struct worker is defined in workqueue_internal.h */
146
147 struct worker_pool {
148 spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
172
173 struct ida worker_ida; /* worker IDs for task name */
174
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
178
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
185
186 /*
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
191 } ____cacheline_aligned_in_smp;
192
193 /*
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
198 */
199 struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222
223 /*
224 * Structure used to wait for workqueue flush.
225 */
226 struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
230 };
231
232 struct wq_device;
233
234 /*
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
237 */
238 struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
241
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
249
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* MD: rescue worker */
252
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
255
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
258
259 #ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305
306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
307 static bool workqueue_freezing; /* PL: have wqs started freezing? */
308
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314
315 /*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329
330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
331
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358 static void show_pwq(struct pool_workqueue *pwq);
359
360 #define CREATE_TRACE_POINTS
361 #include <trace/events/workqueue.h>
362
363 #define assert_rcu_or_pool_mutex() \
364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
365 !lockdep_is_held(&wq_pool_mutex), \
366 "RCU or wq_pool_mutex should be held")
367
368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
370 !lockdep_is_held(&wq->mutex) && \
371 !lockdep_is_held(&wq_pool_mutex), \
372 "RCU, wq->mutex or wq_pool_mutex should be held")
373
374 #define for_each_cpu_worker_pool(pool, cpu) \
375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
377 (pool)++)
378
379 /**
380 * for_each_pool - iterate through all worker_pools in the system
381 * @pool: iteration cursor
382 * @pi: integer used for iteration
383 *
384 * This must be called either with wq_pool_mutex held or RCU read
385 * locked. If the pool needs to be used beyond the locking in effect, the
386 * caller is responsible for guaranteeing that the pool stays online.
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
390 */
391 #define for_each_pool(pool, pi) \
392 idr_for_each_entry(&worker_pool_idr, pool, pi) \
393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
394 else
395
396 /**
397 * for_each_pool_worker - iterate through all workers of a worker_pool
398 * @worker: iteration cursor
399 * @pool: worker_pool to iterate workers of
400 *
401 * This must be called with wq_pool_attach_mutex.
402 *
403 * The if/else clause exists only for the lockdep assertion and can be
404 * ignored.
405 */
406 #define for_each_pool_worker(worker, pool) \
407 list_for_each_entry((worker), &(pool)->workers, node) \
408 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
409 else
410
411 /**
412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
413 * @pwq: iteration cursor
414 * @wq: the target workqueue
415 *
416 * This must be called either with wq->mutex held or RCU read locked.
417 * If the pwq needs to be used beyond the locking in effect, the caller is
418 * responsible for guaranteeing that the pwq stays online.
419 *
420 * The if/else clause exists only for the lockdep assertion and can be
421 * ignored.
422 */
423 #define for_each_pwq(pwq, wq) \
424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
425 lockdep_is_held(&(wq->mutex)))
426
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429 static struct debug_obj_descr work_debug_descr;
430
431 static void *work_debug_hint(void *addr)
432 {
433 return ((struct work_struct *) addr)->func;
434 }
435
436 static bool work_is_static_object(void *addr)
437 {
438 struct work_struct *work = addr;
439
440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
441 }
442
443 /*
444 * fixup_init is called when:
445 * - an active object is initialized
446 */
447 static bool work_fixup_init(void *addr, enum debug_obj_state state)
448 {
449 struct work_struct *work = addr;
450
451 switch (state) {
452 case ODEBUG_STATE_ACTIVE:
453 cancel_work_sync(work);
454 debug_object_init(work, &work_debug_descr);
455 return true;
456 default:
457 return false;
458 }
459 }
460
461 /*
462 * fixup_free is called when:
463 * - an active object is freed
464 */
465 static bool work_fixup_free(void *addr, enum debug_obj_state state)
466 {
467 struct work_struct *work = addr;
468
469 switch (state) {
470 case ODEBUG_STATE_ACTIVE:
471 cancel_work_sync(work);
472 debug_object_free(work, &work_debug_descr);
473 return true;
474 default:
475 return false;
476 }
477 }
478
479 static struct debug_obj_descr work_debug_descr = {
480 .name = "work_struct",
481 .debug_hint = work_debug_hint,
482 .is_static_object = work_is_static_object,
483 .fixup_init = work_fixup_init,
484 .fixup_free = work_fixup_free,
485 };
486
487 static inline void debug_work_activate(struct work_struct *work)
488 {
489 debug_object_activate(work, &work_debug_descr);
490 }
491
492 static inline void debug_work_deactivate(struct work_struct *work)
493 {
494 debug_object_deactivate(work, &work_debug_descr);
495 }
496
497 void __init_work(struct work_struct *work, int onstack)
498 {
499 if (onstack)
500 debug_object_init_on_stack(work, &work_debug_descr);
501 else
502 debug_object_init(work, &work_debug_descr);
503 }
504 EXPORT_SYMBOL_GPL(__init_work);
505
506 void destroy_work_on_stack(struct work_struct *work)
507 {
508 debug_object_free(work, &work_debug_descr);
509 }
510 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
511
512 void destroy_delayed_work_on_stack(struct delayed_work *work)
513 {
514 destroy_timer_on_stack(&work->timer);
515 debug_object_free(&work->work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
518
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523
524 /**
525 * worker_pool_assign_id - allocate ID and assing it to @pool
526 * @pool: the pool pointer of interest
527 *
528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529 * successfully, -errno on failure.
530 */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 int ret;
534
535 lockdep_assert_held(&wq_pool_mutex);
536
537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 GFP_KERNEL);
539 if (ret >= 0) {
540 pool->id = ret;
541 return 0;
542 }
543 return ret;
544 }
545
546 /**
547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548 * @wq: the target workqueue
549 * @node: the node ID
550 *
551 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
552 * read locked.
553 * If the pwq needs to be used beyond the locking in effect, the caller is
554 * responsible for guaranteeing that the pwq stays online.
555 *
556 * Return: The unbound pool_workqueue for @node.
557 */
558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
559 int node)
560 {
561 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
562
563 /*
564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
565 * delayed item is pending. The plan is to keep CPU -> NODE
566 * mapping valid and stable across CPU on/offlines. Once that
567 * happens, this workaround can be removed.
568 */
569 if (unlikely(node == NUMA_NO_NODE))
570 return wq->dfl_pwq;
571
572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
573 }
574
575 static unsigned int work_color_to_flags(int color)
576 {
577 return color << WORK_STRUCT_COLOR_SHIFT;
578 }
579
580 static int get_work_color(struct work_struct *work)
581 {
582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
583 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
584 }
585
586 static int work_next_color(int color)
587 {
588 return (color + 1) % WORK_NR_COLORS;
589 }
590
591 /*
592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
593 * contain the pointer to the queued pwq. Once execution starts, the flag
594 * is cleared and the high bits contain OFFQ flags and pool ID.
595 *
596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
597 * and clear_work_data() can be used to set the pwq, pool or clear
598 * work->data. These functions should only be called while the work is
599 * owned - ie. while the PENDING bit is set.
600 *
601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
602 * corresponding to a work. Pool is available once the work has been
603 * queued anywhere after initialization until it is sync canceled. pwq is
604 * available only while the work item is queued.
605 *
606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
607 * canceled. While being canceled, a work item may have its PENDING set
608 * but stay off timer and worklist for arbitrarily long and nobody should
609 * try to steal the PENDING bit.
610 */
611 static inline void set_work_data(struct work_struct *work, unsigned long data,
612 unsigned long flags)
613 {
614 WARN_ON_ONCE(!work_pending(work));
615 atomic_long_set(&work->data, data | flags | work_static(work));
616 }
617
618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
619 unsigned long extra_flags)
620 {
621 set_work_data(work, (unsigned long)pwq,
622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
623 }
624
625 static void set_work_pool_and_keep_pending(struct work_struct *work,
626 int pool_id)
627 {
628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
629 WORK_STRUCT_PENDING);
630 }
631
632 static void set_work_pool_and_clear_pending(struct work_struct *work,
633 int pool_id)
634 {
635 /*
636 * The following wmb is paired with the implied mb in
637 * test_and_set_bit(PENDING) and ensures all updates to @work made
638 * here are visible to and precede any updates by the next PENDING
639 * owner.
640 */
641 smp_wmb();
642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
643 /*
644 * The following mb guarantees that previous clear of a PENDING bit
645 * will not be reordered with any speculative LOADS or STORES from
646 * work->current_func, which is executed afterwards. This possible
647 * reordering can lead to a missed execution on attempt to queue
648 * the same @work. E.g. consider this case:
649 *
650 * CPU#0 CPU#1
651 * ---------------------------- --------------------------------
652 *
653 * 1 STORE event_indicated
654 * 2 queue_work_on() {
655 * 3 test_and_set_bit(PENDING)
656 * 4 } set_..._and_clear_pending() {
657 * 5 set_work_data() # clear bit
658 * 6 smp_mb()
659 * 7 work->current_func() {
660 * 8 LOAD event_indicated
661 * }
662 *
663 * Without an explicit full barrier speculative LOAD on line 8 can
664 * be executed before CPU#0 does STORE on line 1. If that happens,
665 * CPU#0 observes the PENDING bit is still set and new execution of
666 * a @work is not queued in a hope, that CPU#1 will eventually
667 * finish the queued @work. Meanwhile CPU#1 does not see
668 * event_indicated is set, because speculative LOAD was executed
669 * before actual STORE.
670 */
671 smp_mb();
672 }
673
674 static void clear_work_data(struct work_struct *work)
675 {
676 smp_wmb(); /* see set_work_pool_and_clear_pending() */
677 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
678 }
679
680 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
681 {
682 unsigned long data = atomic_long_read(&work->data);
683
684 if (data & WORK_STRUCT_PWQ)
685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
686 else
687 return NULL;
688 }
689
690 /**
691 * get_work_pool - return the worker_pool a given work was associated with
692 * @work: the work item of interest
693 *
694 * Pools are created and destroyed under wq_pool_mutex, and allows read
695 * access under RCU read lock. As such, this function should be
696 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
697 *
698 * All fields of the returned pool are accessible as long as the above
699 * mentioned locking is in effect. If the returned pool needs to be used
700 * beyond the critical section, the caller is responsible for ensuring the
701 * returned pool is and stays online.
702 *
703 * Return: The worker_pool @work was last associated with. %NULL if none.
704 */
705 static struct worker_pool *get_work_pool(struct work_struct *work)
706 {
707 unsigned long data = atomic_long_read(&work->data);
708 int pool_id;
709
710 assert_rcu_or_pool_mutex();
711
712 if (data & WORK_STRUCT_PWQ)
713 return ((struct pool_workqueue *)
714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
715
716 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
717 if (pool_id == WORK_OFFQ_POOL_NONE)
718 return NULL;
719
720 return idr_find(&worker_pool_idr, pool_id);
721 }
722
723 /**
724 * get_work_pool_id - return the worker pool ID a given work is associated with
725 * @work: the work item of interest
726 *
727 * Return: The worker_pool ID @work was last associated with.
728 * %WORK_OFFQ_POOL_NONE if none.
729 */
730 static int get_work_pool_id(struct work_struct *work)
731 {
732 unsigned long data = atomic_long_read(&work->data);
733
734 if (data & WORK_STRUCT_PWQ)
735 return ((struct pool_workqueue *)
736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
737
738 return data >> WORK_OFFQ_POOL_SHIFT;
739 }
740
741 static void mark_work_canceling(struct work_struct *work)
742 {
743 unsigned long pool_id = get_work_pool_id(work);
744
745 pool_id <<= WORK_OFFQ_POOL_SHIFT;
746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
747 }
748
749 static bool work_is_canceling(struct work_struct *work)
750 {
751 unsigned long data = atomic_long_read(&work->data);
752
753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
754 }
755
756 /*
757 * Policy functions. These define the policies on how the global worker
758 * pools are managed. Unless noted otherwise, these functions assume that
759 * they're being called with pool->lock held.
760 */
761
762 static bool __need_more_worker(struct worker_pool *pool)
763 {
764 return !atomic_read(&pool->nr_running);
765 }
766
767 /*
768 * Need to wake up a worker? Called from anything but currently
769 * running workers.
770 *
771 * Note that, because unbound workers never contribute to nr_running, this
772 * function will always return %true for unbound pools as long as the
773 * worklist isn't empty.
774 */
775 static bool need_more_worker(struct worker_pool *pool)
776 {
777 return !list_empty(&pool->worklist) && __need_more_worker(pool);
778 }
779
780 /* Can I start working? Called from busy but !running workers. */
781 static bool may_start_working(struct worker_pool *pool)
782 {
783 return pool->nr_idle;
784 }
785
786 /* Do I need to keep working? Called from currently running workers. */
787 static bool keep_working(struct worker_pool *pool)
788 {
789 return !list_empty(&pool->worklist) &&
790 atomic_read(&pool->nr_running) <= 1;
791 }
792
793 /* Do we need a new worker? Called from manager. */
794 static bool need_to_create_worker(struct worker_pool *pool)
795 {
796 return need_more_worker(pool) && !may_start_working(pool);
797 }
798
799 /* Do we have too many workers and should some go away? */
800 static bool too_many_workers(struct worker_pool *pool)
801 {
802 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
804 int nr_busy = pool->nr_workers - nr_idle;
805
806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
807 }
808
809 /*
810 * Wake up functions.
811 */
812
813 /* Return the first idle worker. Safe with preemption disabled */
814 static struct worker *first_idle_worker(struct worker_pool *pool)
815 {
816 if (unlikely(list_empty(&pool->idle_list)))
817 return NULL;
818
819 return list_first_entry(&pool->idle_list, struct worker, entry);
820 }
821
822 /**
823 * wake_up_worker - wake up an idle worker
824 * @pool: worker pool to wake worker from
825 *
826 * Wake up the first idle worker of @pool.
827 *
828 * CONTEXT:
829 * spin_lock_irq(pool->lock).
830 */
831 static void wake_up_worker(struct worker_pool *pool)
832 {
833 struct worker *worker = first_idle_worker(pool);
834
835 if (likely(worker))
836 wake_up_process(worker->task);
837 }
838
839 /**
840 * wq_worker_running - a worker is running again
841 * @task: task waking up
842 *
843 * This function is called when a worker returns from schedule()
844 */
845 void wq_worker_running(struct task_struct *task)
846 {
847 struct worker *worker = kthread_data(task);
848
849 if (!worker->sleeping)
850 return;
851 if (!(worker->flags & WORKER_NOT_RUNNING))
852 atomic_inc(&worker->pool->nr_running);
853 worker->sleeping = 0;
854 }
855
856 /**
857 * wq_worker_sleeping - a worker is going to sleep
858 * @task: task going to sleep
859 *
860 * This function is called from schedule() when a busy worker is
861 * going to sleep. Preemption needs to be disabled to protect ->sleeping
862 * assignment.
863 */
864 void wq_worker_sleeping(struct task_struct *task)
865 {
866 struct worker *next, *worker = kthread_data(task);
867 struct worker_pool *pool;
868
869 /*
870 * Rescuers, which may not have all the fields set up like normal
871 * workers, also reach here, let's not access anything before
872 * checking NOT_RUNNING.
873 */
874 if (worker->flags & WORKER_NOT_RUNNING)
875 return;
876
877 pool = worker->pool;
878
879 /* Return if preempted before wq_worker_running() was reached */
880 if (worker->sleeping)
881 return;
882
883 worker->sleeping = 1;
884 spin_lock_irq(&pool->lock);
885
886 /*
887 * The counterpart of the following dec_and_test, implied mb,
888 * worklist not empty test sequence is in insert_work().
889 * Please read comment there.
890 *
891 * NOT_RUNNING is clear. This means that we're bound to and
892 * running on the local cpu w/ rq lock held and preemption
893 * disabled, which in turn means that none else could be
894 * manipulating idle_list, so dereferencing idle_list without pool
895 * lock is safe.
896 */
897 if (atomic_dec_and_test(&pool->nr_running) &&
898 !list_empty(&pool->worklist)) {
899 next = first_idle_worker(pool);
900 if (next)
901 wake_up_process(next->task);
902 }
903 spin_unlock_irq(&pool->lock);
904 }
905
906 /**
907 * wq_worker_last_func - retrieve worker's last work function
908 * @task: Task to retrieve last work function of.
909 *
910 * Determine the last function a worker executed. This is called from
911 * the scheduler to get a worker's last known identity.
912 *
913 * CONTEXT:
914 * spin_lock_irq(rq->lock)
915 *
916 * This function is called during schedule() when a kworker is going
917 * to sleep. It's used by psi to identify aggregation workers during
918 * dequeuing, to allow periodic aggregation to shut-off when that
919 * worker is the last task in the system or cgroup to go to sleep.
920 *
921 * As this function doesn't involve any workqueue-related locking, it
922 * only returns stable values when called from inside the scheduler's
923 * queuing and dequeuing paths, when @task, which must be a kworker,
924 * is guaranteed to not be processing any works.
925 *
926 * Return:
927 * The last work function %current executed as a worker, NULL if it
928 * hasn't executed any work yet.
929 */
930 work_func_t wq_worker_last_func(struct task_struct *task)
931 {
932 struct worker *worker = kthread_data(task);
933
934 return worker->last_func;
935 }
936
937 /**
938 * worker_set_flags - set worker flags and adjust nr_running accordingly
939 * @worker: self
940 * @flags: flags to set
941 *
942 * Set @flags in @worker->flags and adjust nr_running accordingly.
943 *
944 * CONTEXT:
945 * spin_lock_irq(pool->lock)
946 */
947 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
948 {
949 struct worker_pool *pool = worker->pool;
950
951 WARN_ON_ONCE(worker->task != current);
952
953 /* If transitioning into NOT_RUNNING, adjust nr_running. */
954 if ((flags & WORKER_NOT_RUNNING) &&
955 !(worker->flags & WORKER_NOT_RUNNING)) {
956 atomic_dec(&pool->nr_running);
957 }
958
959 worker->flags |= flags;
960 }
961
962 /**
963 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
964 * @worker: self
965 * @flags: flags to clear
966 *
967 * Clear @flags in @worker->flags and adjust nr_running accordingly.
968 *
969 * CONTEXT:
970 * spin_lock_irq(pool->lock)
971 */
972 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
973 {
974 struct worker_pool *pool = worker->pool;
975 unsigned int oflags = worker->flags;
976
977 WARN_ON_ONCE(worker->task != current);
978
979 worker->flags &= ~flags;
980
981 /*
982 * If transitioning out of NOT_RUNNING, increment nr_running. Note
983 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
984 * of multiple flags, not a single flag.
985 */
986 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
987 if (!(worker->flags & WORKER_NOT_RUNNING))
988 atomic_inc(&pool->nr_running);
989 }
990
991 /**
992 * find_worker_executing_work - find worker which is executing a work
993 * @pool: pool of interest
994 * @work: work to find worker for
995 *
996 * Find a worker which is executing @work on @pool by searching
997 * @pool->busy_hash which is keyed by the address of @work. For a worker
998 * to match, its current execution should match the address of @work and
999 * its work function. This is to avoid unwanted dependency between
1000 * unrelated work executions through a work item being recycled while still
1001 * being executed.
1002 *
1003 * This is a bit tricky. A work item may be freed once its execution
1004 * starts and nothing prevents the freed area from being recycled for
1005 * another work item. If the same work item address ends up being reused
1006 * before the original execution finishes, workqueue will identify the
1007 * recycled work item as currently executing and make it wait until the
1008 * current execution finishes, introducing an unwanted dependency.
1009 *
1010 * This function checks the work item address and work function to avoid
1011 * false positives. Note that this isn't complete as one may construct a
1012 * work function which can introduce dependency onto itself through a
1013 * recycled work item. Well, if somebody wants to shoot oneself in the
1014 * foot that badly, there's only so much we can do, and if such deadlock
1015 * actually occurs, it should be easy to locate the culprit work function.
1016 *
1017 * CONTEXT:
1018 * spin_lock_irq(pool->lock).
1019 *
1020 * Return:
1021 * Pointer to worker which is executing @work if found, %NULL
1022 * otherwise.
1023 */
1024 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1025 struct work_struct *work)
1026 {
1027 struct worker *worker;
1028
1029 hash_for_each_possible(pool->busy_hash, worker, hentry,
1030 (unsigned long)work)
1031 if (worker->current_work == work &&
1032 worker->current_func == work->func)
1033 return worker;
1034
1035 return NULL;
1036 }
1037
1038 /**
1039 * move_linked_works - move linked works to a list
1040 * @work: start of series of works to be scheduled
1041 * @head: target list to append @work to
1042 * @nextp: out parameter for nested worklist walking
1043 *
1044 * Schedule linked works starting from @work to @head. Work series to
1045 * be scheduled starts at @work and includes any consecutive work with
1046 * WORK_STRUCT_LINKED set in its predecessor.
1047 *
1048 * If @nextp is not NULL, it's updated to point to the next work of
1049 * the last scheduled work. This allows move_linked_works() to be
1050 * nested inside outer list_for_each_entry_safe().
1051 *
1052 * CONTEXT:
1053 * spin_lock_irq(pool->lock).
1054 */
1055 static void move_linked_works(struct work_struct *work, struct list_head *head,
1056 struct work_struct **nextp)
1057 {
1058 struct work_struct *n;
1059
1060 /*
1061 * Linked worklist will always end before the end of the list,
1062 * use NULL for list head.
1063 */
1064 list_for_each_entry_safe_from(work, n, NULL, entry) {
1065 list_move_tail(&work->entry, head);
1066 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1067 break;
1068 }
1069
1070 /*
1071 * If we're already inside safe list traversal and have moved
1072 * multiple works to the scheduled queue, the next position
1073 * needs to be updated.
1074 */
1075 if (nextp)
1076 *nextp = n;
1077 }
1078
1079 /**
1080 * get_pwq - get an extra reference on the specified pool_workqueue
1081 * @pwq: pool_workqueue to get
1082 *
1083 * Obtain an extra reference on @pwq. The caller should guarantee that
1084 * @pwq has positive refcnt and be holding the matching pool->lock.
1085 */
1086 static void get_pwq(struct pool_workqueue *pwq)
1087 {
1088 lockdep_assert_held(&pwq->pool->lock);
1089 WARN_ON_ONCE(pwq->refcnt <= 0);
1090 pwq->refcnt++;
1091 }
1092
1093 /**
1094 * put_pwq - put a pool_workqueue reference
1095 * @pwq: pool_workqueue to put
1096 *
1097 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1098 * destruction. The caller should be holding the matching pool->lock.
1099 */
1100 static void put_pwq(struct pool_workqueue *pwq)
1101 {
1102 lockdep_assert_held(&pwq->pool->lock);
1103 if (likely(--pwq->refcnt))
1104 return;
1105 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1106 return;
1107 /*
1108 * @pwq can't be released under pool->lock, bounce to
1109 * pwq_unbound_release_workfn(). This never recurses on the same
1110 * pool->lock as this path is taken only for unbound workqueues and
1111 * the release work item is scheduled on a per-cpu workqueue. To
1112 * avoid lockdep warning, unbound pool->locks are given lockdep
1113 * subclass of 1 in get_unbound_pool().
1114 */
1115 schedule_work(&pwq->unbound_release_work);
1116 }
1117
1118 /**
1119 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1120 * @pwq: pool_workqueue to put (can be %NULL)
1121 *
1122 * put_pwq() with locking. This function also allows %NULL @pwq.
1123 */
1124 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1125 {
1126 if (pwq) {
1127 /*
1128 * As both pwqs and pools are RCU protected, the
1129 * following lock operations are safe.
1130 */
1131 spin_lock_irq(&pwq->pool->lock);
1132 put_pwq(pwq);
1133 spin_unlock_irq(&pwq->pool->lock);
1134 }
1135 }
1136
1137 static void pwq_activate_delayed_work(struct work_struct *work)
1138 {
1139 struct pool_workqueue *pwq = get_work_pwq(work);
1140
1141 trace_workqueue_activate_work(work);
1142 if (list_empty(&pwq->pool->worklist))
1143 pwq->pool->watchdog_ts = jiffies;
1144 move_linked_works(work, &pwq->pool->worklist, NULL);
1145 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1146 pwq->nr_active++;
1147 }
1148
1149 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1150 {
1151 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1152 struct work_struct, entry);
1153
1154 pwq_activate_delayed_work(work);
1155 }
1156
1157 /**
1158 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1159 * @pwq: pwq of interest
1160 * @color: color of work which left the queue
1161 *
1162 * A work either has completed or is removed from pending queue,
1163 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1164 *
1165 * CONTEXT:
1166 * spin_lock_irq(pool->lock).
1167 */
1168 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1169 {
1170 /* uncolored work items don't participate in flushing or nr_active */
1171 if (color == WORK_NO_COLOR)
1172 goto out_put;
1173
1174 pwq->nr_in_flight[color]--;
1175
1176 pwq->nr_active--;
1177 if (!list_empty(&pwq->delayed_works)) {
1178 /* one down, submit a delayed one */
1179 if (pwq->nr_active < pwq->max_active)
1180 pwq_activate_first_delayed(pwq);
1181 }
1182
1183 /* is flush in progress and are we at the flushing tip? */
1184 if (likely(pwq->flush_color != color))
1185 goto out_put;
1186
1187 /* are there still in-flight works? */
1188 if (pwq->nr_in_flight[color])
1189 goto out_put;
1190
1191 /* this pwq is done, clear flush_color */
1192 pwq->flush_color = -1;
1193
1194 /*
1195 * If this was the last pwq, wake up the first flusher. It
1196 * will handle the rest.
1197 */
1198 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1199 complete(&pwq->wq->first_flusher->done);
1200 out_put:
1201 put_pwq(pwq);
1202 }
1203
1204 /**
1205 * try_to_grab_pending - steal work item from worklist and disable irq
1206 * @work: work item to steal
1207 * @is_dwork: @work is a delayed_work
1208 * @flags: place to store irq state
1209 *
1210 * Try to grab PENDING bit of @work. This function can handle @work in any
1211 * stable state - idle, on timer or on worklist.
1212 *
1213 * Return:
1214 * 1 if @work was pending and we successfully stole PENDING
1215 * 0 if @work was idle and we claimed PENDING
1216 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1217 * -ENOENT if someone else is canceling @work, this state may persist
1218 * for arbitrarily long
1219 *
1220 * Note:
1221 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1222 * interrupted while holding PENDING and @work off queue, irq must be
1223 * disabled on entry. This, combined with delayed_work->timer being
1224 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1225 *
1226 * On successful return, >= 0, irq is disabled and the caller is
1227 * responsible for releasing it using local_irq_restore(*@flags).
1228 *
1229 * This function is safe to call from any context including IRQ handler.
1230 */
1231 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1232 unsigned long *flags)
1233 {
1234 struct worker_pool *pool;
1235 struct pool_workqueue *pwq;
1236
1237 local_irq_save(*flags);
1238
1239 /* try to steal the timer if it exists */
1240 if (is_dwork) {
1241 struct delayed_work *dwork = to_delayed_work(work);
1242
1243 /*
1244 * dwork->timer is irqsafe. If del_timer() fails, it's
1245 * guaranteed that the timer is not queued anywhere and not
1246 * running on the local CPU.
1247 */
1248 if (likely(del_timer(&dwork->timer)))
1249 return 1;
1250 }
1251
1252 /* try to claim PENDING the normal way */
1253 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1254 return 0;
1255
1256 rcu_read_lock();
1257 /*
1258 * The queueing is in progress, or it is already queued. Try to
1259 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1260 */
1261 pool = get_work_pool(work);
1262 if (!pool)
1263 goto fail;
1264
1265 spin_lock(&pool->lock);
1266 /*
1267 * work->data is guaranteed to point to pwq only while the work
1268 * item is queued on pwq->wq, and both updating work->data to point
1269 * to pwq on queueing and to pool on dequeueing are done under
1270 * pwq->pool->lock. This in turn guarantees that, if work->data
1271 * points to pwq which is associated with a locked pool, the work
1272 * item is currently queued on that pool.
1273 */
1274 pwq = get_work_pwq(work);
1275 if (pwq && pwq->pool == pool) {
1276 debug_work_deactivate(work);
1277
1278 /*
1279 * A delayed work item cannot be grabbed directly because
1280 * it might have linked NO_COLOR work items which, if left
1281 * on the delayed_list, will confuse pwq->nr_active
1282 * management later on and cause stall. Make sure the work
1283 * item is activated before grabbing.
1284 */
1285 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1286 pwq_activate_delayed_work(work);
1287
1288 list_del_init(&work->entry);
1289 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1290
1291 /* work->data points to pwq iff queued, point to pool */
1292 set_work_pool_and_keep_pending(work, pool->id);
1293
1294 spin_unlock(&pool->lock);
1295 rcu_read_unlock();
1296 return 1;
1297 }
1298 spin_unlock(&pool->lock);
1299 fail:
1300 rcu_read_unlock();
1301 local_irq_restore(*flags);
1302 if (work_is_canceling(work))
1303 return -ENOENT;
1304 cpu_relax();
1305 return -EAGAIN;
1306 }
1307
1308 /**
1309 * insert_work - insert a work into a pool
1310 * @pwq: pwq @work belongs to
1311 * @work: work to insert
1312 * @head: insertion point
1313 * @extra_flags: extra WORK_STRUCT_* flags to set
1314 *
1315 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1316 * work_struct flags.
1317 *
1318 * CONTEXT:
1319 * spin_lock_irq(pool->lock).
1320 */
1321 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1322 struct list_head *head, unsigned int extra_flags)
1323 {
1324 struct worker_pool *pool = pwq->pool;
1325
1326 /* we own @work, set data and link */
1327 set_work_pwq(work, pwq, extra_flags);
1328 list_add_tail(&work->entry, head);
1329 get_pwq(pwq);
1330
1331 /*
1332 * Ensure either wq_worker_sleeping() sees the above
1333 * list_add_tail() or we see zero nr_running to avoid workers lying
1334 * around lazily while there are works to be processed.
1335 */
1336 smp_mb();
1337
1338 if (__need_more_worker(pool))
1339 wake_up_worker(pool);
1340 }
1341
1342 /*
1343 * Test whether @work is being queued from another work executing on the
1344 * same workqueue.
1345 */
1346 static bool is_chained_work(struct workqueue_struct *wq)
1347 {
1348 struct worker *worker;
1349
1350 worker = current_wq_worker();
1351 /*
1352 * Return %true iff I'm a worker executing a work item on @wq. If
1353 * I'm @worker, it's safe to dereference it without locking.
1354 */
1355 return worker && worker->current_pwq->wq == wq;
1356 }
1357
1358 /*
1359 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1360 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1361 * avoid perturbing sensitive tasks.
1362 */
1363 static int wq_select_unbound_cpu(int cpu)
1364 {
1365 static bool printed_dbg_warning;
1366 int new_cpu;
1367
1368 if (likely(!wq_debug_force_rr_cpu)) {
1369 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1370 return cpu;
1371 } else if (!printed_dbg_warning) {
1372 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1373 printed_dbg_warning = true;
1374 }
1375
1376 if (cpumask_empty(wq_unbound_cpumask))
1377 return cpu;
1378
1379 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1380 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1381 if (unlikely(new_cpu >= nr_cpu_ids)) {
1382 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1383 if (unlikely(new_cpu >= nr_cpu_ids))
1384 return cpu;
1385 }
1386 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1387
1388 return new_cpu;
1389 }
1390
1391 static void __queue_work(int cpu, struct workqueue_struct *wq,
1392 struct work_struct *work)
1393 {
1394 struct pool_workqueue *pwq;
1395 struct worker_pool *last_pool;
1396 struct list_head *worklist;
1397 unsigned int work_flags;
1398 unsigned int req_cpu = cpu;
1399
1400 /*
1401 * While a work item is PENDING && off queue, a task trying to
1402 * steal the PENDING will busy-loop waiting for it to either get
1403 * queued or lose PENDING. Grabbing PENDING and queueing should
1404 * happen with IRQ disabled.
1405 */
1406 lockdep_assert_irqs_disabled();
1407
1408 debug_work_activate(work);
1409
1410 /* if draining, only works from the same workqueue are allowed */
1411 if (unlikely(wq->flags & __WQ_DRAINING) &&
1412 WARN_ON_ONCE(!is_chained_work(wq)))
1413 return;
1414 rcu_read_lock();
1415 retry:
1416 /* pwq which will be used unless @work is executing elsewhere */
1417 if (wq->flags & WQ_UNBOUND) {
1418 if (req_cpu == WORK_CPU_UNBOUND)
1419 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1420 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1421 } else {
1422 if (req_cpu == WORK_CPU_UNBOUND)
1423 cpu = raw_smp_processor_id();
1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425 }
1426
1427 /*
1428 * If @work was previously on a different pool, it might still be
1429 * running there, in which case the work needs to be queued on that
1430 * pool to guarantee non-reentrancy.
1431 */
1432 last_pool = get_work_pool(work);
1433 if (last_pool && last_pool != pwq->pool) {
1434 struct worker *worker;
1435
1436 spin_lock(&last_pool->lock);
1437
1438 worker = find_worker_executing_work(last_pool, work);
1439
1440 if (worker && worker->current_pwq->wq == wq) {
1441 pwq = worker->current_pwq;
1442 } else {
1443 /* meh... not running there, queue here */
1444 spin_unlock(&last_pool->lock);
1445 spin_lock(&pwq->pool->lock);
1446 }
1447 } else {
1448 spin_lock(&pwq->pool->lock);
1449 }
1450
1451 /*
1452 * pwq is determined and locked. For unbound pools, we could have
1453 * raced with pwq release and it could already be dead. If its
1454 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1455 * without another pwq replacing it in the numa_pwq_tbl or while
1456 * work items are executing on it, so the retrying is guaranteed to
1457 * make forward-progress.
1458 */
1459 if (unlikely(!pwq->refcnt)) {
1460 if (wq->flags & WQ_UNBOUND) {
1461 spin_unlock(&pwq->pool->lock);
1462 cpu_relax();
1463 goto retry;
1464 }
1465 /* oops */
1466 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1467 wq->name, cpu);
1468 }
1469
1470 /* pwq determined, queue */
1471 trace_workqueue_queue_work(req_cpu, pwq, work);
1472
1473 if (WARN_ON(!list_empty(&work->entry)))
1474 goto out;
1475
1476 pwq->nr_in_flight[pwq->work_color]++;
1477 work_flags = work_color_to_flags(pwq->work_color);
1478
1479 if (likely(pwq->nr_active < pwq->max_active)) {
1480 trace_workqueue_activate_work(work);
1481 pwq->nr_active++;
1482 worklist = &pwq->pool->worklist;
1483 if (list_empty(worklist))
1484 pwq->pool->watchdog_ts = jiffies;
1485 } else {
1486 work_flags |= WORK_STRUCT_DELAYED;
1487 worklist = &pwq->delayed_works;
1488 }
1489
1490 insert_work(pwq, work, worklist, work_flags);
1491
1492 out:
1493 spin_unlock(&pwq->pool->lock);
1494 rcu_read_unlock();
1495 }
1496
1497 /**
1498 * queue_work_on - queue work on specific cpu
1499 * @cpu: CPU number to execute work on
1500 * @wq: workqueue to use
1501 * @work: work to queue
1502 *
1503 * We queue the work to a specific CPU, the caller must ensure it
1504 * can't go away.
1505 *
1506 * Return: %false if @work was already on a queue, %true otherwise.
1507 */
1508 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1509 struct work_struct *work)
1510 {
1511 bool ret = false;
1512 unsigned long flags;
1513
1514 local_irq_save(flags);
1515
1516 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1517 __queue_work(cpu, wq, work);
1518 ret = true;
1519 }
1520
1521 local_irq_restore(flags);
1522 return ret;
1523 }
1524 EXPORT_SYMBOL(queue_work_on);
1525
1526 /**
1527 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1528 * @node: NUMA node ID that we want to select a CPU from
1529 *
1530 * This function will attempt to find a "random" cpu available on a given
1531 * node. If there are no CPUs available on the given node it will return
1532 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1533 * available CPU if we need to schedule this work.
1534 */
1535 static int workqueue_select_cpu_near(int node)
1536 {
1537 int cpu;
1538
1539 /* No point in doing this if NUMA isn't enabled for workqueues */
1540 if (!wq_numa_enabled)
1541 return WORK_CPU_UNBOUND;
1542
1543 /* Delay binding to CPU if node is not valid or online */
1544 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1545 return WORK_CPU_UNBOUND;
1546
1547 /* Use local node/cpu if we are already there */
1548 cpu = raw_smp_processor_id();
1549 if (node == cpu_to_node(cpu))
1550 return cpu;
1551
1552 /* Use "random" otherwise know as "first" online CPU of node */
1553 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1554
1555 /* If CPU is valid return that, otherwise just defer */
1556 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1557 }
1558
1559 /**
1560 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1561 * @node: NUMA node that we are targeting the work for
1562 * @wq: workqueue to use
1563 * @work: work to queue
1564 *
1565 * We queue the work to a "random" CPU within a given NUMA node. The basic
1566 * idea here is to provide a way to somehow associate work with a given
1567 * NUMA node.
1568 *
1569 * This function will only make a best effort attempt at getting this onto
1570 * the right NUMA node. If no node is requested or the requested node is
1571 * offline then we just fall back to standard queue_work behavior.
1572 *
1573 * Currently the "random" CPU ends up being the first available CPU in the
1574 * intersection of cpu_online_mask and the cpumask of the node, unless we
1575 * are running on the node. In that case we just use the current CPU.
1576 *
1577 * Return: %false if @work was already on a queue, %true otherwise.
1578 */
1579 bool queue_work_node(int node, struct workqueue_struct *wq,
1580 struct work_struct *work)
1581 {
1582 unsigned long flags;
1583 bool ret = false;
1584
1585 /*
1586 * This current implementation is specific to unbound workqueues.
1587 * Specifically we only return the first available CPU for a given
1588 * node instead of cycling through individual CPUs within the node.
1589 *
1590 * If this is used with a per-cpu workqueue then the logic in
1591 * workqueue_select_cpu_near would need to be updated to allow for
1592 * some round robin type logic.
1593 */
1594 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1595
1596 local_irq_save(flags);
1597
1598 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1599 int cpu = workqueue_select_cpu_near(node);
1600
1601 __queue_work(cpu, wq, work);
1602 ret = true;
1603 }
1604
1605 local_irq_restore(flags);
1606 return ret;
1607 }
1608 EXPORT_SYMBOL_GPL(queue_work_node);
1609
1610 void delayed_work_timer_fn(struct timer_list *t)
1611 {
1612 struct delayed_work *dwork = from_timer(dwork, t, timer);
1613
1614 /* should have been called from irqsafe timer with irq already off */
1615 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1616 }
1617 EXPORT_SYMBOL(delayed_work_timer_fn);
1618
1619 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1620 struct delayed_work *dwork, unsigned long delay)
1621 {
1622 struct timer_list *timer = &dwork->timer;
1623 struct work_struct *work = &dwork->work;
1624
1625 WARN_ON_ONCE(!wq);
1626 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1627 WARN_ON_ONCE(timer_pending(timer));
1628 WARN_ON_ONCE(!list_empty(&work->entry));
1629
1630 /*
1631 * If @delay is 0, queue @dwork->work immediately. This is for
1632 * both optimization and correctness. The earliest @timer can
1633 * expire is on the closest next tick and delayed_work users depend
1634 * on that there's no such delay when @delay is 0.
1635 */
1636 if (!delay) {
1637 __queue_work(cpu, wq, &dwork->work);
1638 return;
1639 }
1640
1641 dwork->wq = wq;
1642 dwork->cpu = cpu;
1643 timer->expires = jiffies + delay;
1644
1645 if (unlikely(cpu != WORK_CPU_UNBOUND))
1646 add_timer_on(timer, cpu);
1647 else
1648 add_timer(timer);
1649 }
1650
1651 /**
1652 * queue_delayed_work_on - queue work on specific CPU after delay
1653 * @cpu: CPU number to execute work on
1654 * @wq: workqueue to use
1655 * @dwork: work to queue
1656 * @delay: number of jiffies to wait before queueing
1657 *
1658 * Return: %false if @work was already on a queue, %true otherwise. If
1659 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1660 * execution.
1661 */
1662 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1663 struct delayed_work *dwork, unsigned long delay)
1664 {
1665 struct work_struct *work = &dwork->work;
1666 bool ret = false;
1667 unsigned long flags;
1668
1669 /* read the comment in __queue_work() */
1670 local_irq_save(flags);
1671
1672 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1673 __queue_delayed_work(cpu, wq, dwork, delay);
1674 ret = true;
1675 }
1676
1677 local_irq_restore(flags);
1678 return ret;
1679 }
1680 EXPORT_SYMBOL(queue_delayed_work_on);
1681
1682 /**
1683 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1684 * @cpu: CPU number to execute work on
1685 * @wq: workqueue to use
1686 * @dwork: work to queue
1687 * @delay: number of jiffies to wait before queueing
1688 *
1689 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1690 * modify @dwork's timer so that it expires after @delay. If @delay is
1691 * zero, @work is guaranteed to be scheduled immediately regardless of its
1692 * current state.
1693 *
1694 * Return: %false if @dwork was idle and queued, %true if @dwork was
1695 * pending and its timer was modified.
1696 *
1697 * This function is safe to call from any context including IRQ handler.
1698 * See try_to_grab_pending() for details.
1699 */
1700 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 struct delayed_work *dwork, unsigned long delay)
1702 {
1703 unsigned long flags;
1704 int ret;
1705
1706 do {
1707 ret = try_to_grab_pending(&dwork->work, true, &flags);
1708 } while (unlikely(ret == -EAGAIN));
1709
1710 if (likely(ret >= 0)) {
1711 __queue_delayed_work(cpu, wq, dwork, delay);
1712 local_irq_restore(flags);
1713 }
1714
1715 /* -ENOENT from try_to_grab_pending() becomes %true */
1716 return ret;
1717 }
1718 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1719
1720 static void rcu_work_rcufn(struct rcu_head *rcu)
1721 {
1722 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1723
1724 /* read the comment in __queue_work() */
1725 local_irq_disable();
1726 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1727 local_irq_enable();
1728 }
1729
1730 /**
1731 * queue_rcu_work - queue work after a RCU grace period
1732 * @wq: workqueue to use
1733 * @rwork: work to queue
1734 *
1735 * Return: %false if @rwork was already pending, %true otherwise. Note
1736 * that a full RCU grace period is guaranteed only after a %true return.
1737 * While @rwork is guaranteed to be executed after a %false return, the
1738 * execution may happen before a full RCU grace period has passed.
1739 */
1740 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1741 {
1742 struct work_struct *work = &rwork->work;
1743
1744 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1745 rwork->wq = wq;
1746 call_rcu(&rwork->rcu, rcu_work_rcufn);
1747 return true;
1748 }
1749
1750 return false;
1751 }
1752 EXPORT_SYMBOL(queue_rcu_work);
1753
1754 /**
1755 * worker_enter_idle - enter idle state
1756 * @worker: worker which is entering idle state
1757 *
1758 * @worker is entering idle state. Update stats and idle timer if
1759 * necessary.
1760 *
1761 * LOCKING:
1762 * spin_lock_irq(pool->lock).
1763 */
1764 static void worker_enter_idle(struct worker *worker)
1765 {
1766 struct worker_pool *pool = worker->pool;
1767
1768 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1769 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1770 (worker->hentry.next || worker->hentry.pprev)))
1771 return;
1772
1773 /* can't use worker_set_flags(), also called from create_worker() */
1774 worker->flags |= WORKER_IDLE;
1775 pool->nr_idle++;
1776 worker->last_active = jiffies;
1777
1778 /* idle_list is LIFO */
1779 list_add(&worker->entry, &pool->idle_list);
1780
1781 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1782 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1783
1784 /*
1785 * Sanity check nr_running. Because unbind_workers() releases
1786 * pool->lock between setting %WORKER_UNBOUND and zapping
1787 * nr_running, the warning may trigger spuriously. Check iff
1788 * unbind is not in progress.
1789 */
1790 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1791 pool->nr_workers == pool->nr_idle &&
1792 atomic_read(&pool->nr_running));
1793 }
1794
1795 /**
1796 * worker_leave_idle - leave idle state
1797 * @worker: worker which is leaving idle state
1798 *
1799 * @worker is leaving idle state. Update stats.
1800 *
1801 * LOCKING:
1802 * spin_lock_irq(pool->lock).
1803 */
1804 static void worker_leave_idle(struct worker *worker)
1805 {
1806 struct worker_pool *pool = worker->pool;
1807
1808 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1809 return;
1810 worker_clr_flags(worker, WORKER_IDLE);
1811 pool->nr_idle--;
1812 list_del_init(&worker->entry);
1813 }
1814
1815 static struct worker *alloc_worker(int node)
1816 {
1817 struct worker *worker;
1818
1819 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1820 if (worker) {
1821 INIT_LIST_HEAD(&worker->entry);
1822 INIT_LIST_HEAD(&worker->scheduled);
1823 INIT_LIST_HEAD(&worker->node);
1824 /* on creation a worker is in !idle && prep state */
1825 worker->flags = WORKER_PREP;
1826 }
1827 return worker;
1828 }
1829
1830 /**
1831 * worker_attach_to_pool() - attach a worker to a pool
1832 * @worker: worker to be attached
1833 * @pool: the target pool
1834 *
1835 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1836 * cpu-binding of @worker are kept coordinated with the pool across
1837 * cpu-[un]hotplugs.
1838 */
1839 static void worker_attach_to_pool(struct worker *worker,
1840 struct worker_pool *pool)
1841 {
1842 mutex_lock(&wq_pool_attach_mutex);
1843
1844 /*
1845 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1846 * online CPUs. It'll be re-applied when any of the CPUs come up.
1847 */
1848 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1849
1850 /*
1851 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1852 * stable across this function. See the comments above the flag
1853 * definition for details.
1854 */
1855 if (pool->flags & POOL_DISASSOCIATED)
1856 worker->flags |= WORKER_UNBOUND;
1857
1858 list_add_tail(&worker->node, &pool->workers);
1859 worker->pool = pool;
1860
1861 mutex_unlock(&wq_pool_attach_mutex);
1862 }
1863
1864 /**
1865 * worker_detach_from_pool() - detach a worker from its pool
1866 * @worker: worker which is attached to its pool
1867 *
1868 * Undo the attaching which had been done in worker_attach_to_pool(). The
1869 * caller worker shouldn't access to the pool after detached except it has
1870 * other reference to the pool.
1871 */
1872 static void worker_detach_from_pool(struct worker *worker)
1873 {
1874 struct worker_pool *pool = worker->pool;
1875 struct completion *detach_completion = NULL;
1876
1877 mutex_lock(&wq_pool_attach_mutex);
1878
1879 list_del(&worker->node);
1880 worker->pool = NULL;
1881
1882 if (list_empty(&pool->workers))
1883 detach_completion = pool->detach_completion;
1884 mutex_unlock(&wq_pool_attach_mutex);
1885
1886 /* clear leftover flags without pool->lock after it is detached */
1887 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1888
1889 if (detach_completion)
1890 complete(detach_completion);
1891 }
1892
1893 /**
1894 * create_worker - create a new workqueue worker
1895 * @pool: pool the new worker will belong to
1896 *
1897 * Create and start a new worker which is attached to @pool.
1898 *
1899 * CONTEXT:
1900 * Might sleep. Does GFP_KERNEL allocations.
1901 *
1902 * Return:
1903 * Pointer to the newly created worker.
1904 */
1905 static struct worker *create_worker(struct worker_pool *pool)
1906 {
1907 struct worker *worker = NULL;
1908 int id = -1;
1909 char id_buf[16];
1910
1911 /* ID is needed to determine kthread name */
1912 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1913 if (id < 0)
1914 goto fail;
1915
1916 worker = alloc_worker(pool->node);
1917 if (!worker)
1918 goto fail;
1919
1920 worker->id = id;
1921
1922 if (pool->cpu >= 0)
1923 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1924 pool->attrs->nice < 0 ? "H" : "");
1925 else
1926 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1927
1928 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1929 "kworker/%s", id_buf);
1930 if (IS_ERR(worker->task))
1931 goto fail;
1932
1933 set_user_nice(worker->task, pool->attrs->nice);
1934 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1935
1936 /* successful, attach the worker to the pool */
1937 worker_attach_to_pool(worker, pool);
1938
1939 /* start the newly created worker */
1940 spin_lock_irq(&pool->lock);
1941 worker->pool->nr_workers++;
1942 worker_enter_idle(worker);
1943 wake_up_process(worker->task);
1944 spin_unlock_irq(&pool->lock);
1945
1946 return worker;
1947
1948 fail:
1949 if (id >= 0)
1950 ida_simple_remove(&pool->worker_ida, id);
1951 kfree(worker);
1952 return NULL;
1953 }
1954
1955 /**
1956 * destroy_worker - destroy a workqueue worker
1957 * @worker: worker to be destroyed
1958 *
1959 * Destroy @worker and adjust @pool stats accordingly. The worker should
1960 * be idle.
1961 *
1962 * CONTEXT:
1963 * spin_lock_irq(pool->lock).
1964 */
1965 static void destroy_worker(struct worker *worker)
1966 {
1967 struct worker_pool *pool = worker->pool;
1968
1969 lockdep_assert_held(&pool->lock);
1970
1971 /* sanity check frenzy */
1972 if (WARN_ON(worker->current_work) ||
1973 WARN_ON(!list_empty(&worker->scheduled)) ||
1974 WARN_ON(!(worker->flags & WORKER_IDLE)))
1975 return;
1976
1977 pool->nr_workers--;
1978 pool->nr_idle--;
1979
1980 list_del_init(&worker->entry);
1981 worker->flags |= WORKER_DIE;
1982 wake_up_process(worker->task);
1983 }
1984
1985 static void idle_worker_timeout(struct timer_list *t)
1986 {
1987 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1988
1989 spin_lock_irq(&pool->lock);
1990
1991 while (too_many_workers(pool)) {
1992 struct worker *worker;
1993 unsigned long expires;
1994
1995 /* idle_list is kept in LIFO order, check the last one */
1996 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1997 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1998
1999 if (time_before(jiffies, expires)) {
2000 mod_timer(&pool->idle_timer, expires);
2001 break;
2002 }
2003
2004 destroy_worker(worker);
2005 }
2006
2007 spin_unlock_irq(&pool->lock);
2008 }
2009
2010 static void send_mayday(struct work_struct *work)
2011 {
2012 struct pool_workqueue *pwq = get_work_pwq(work);
2013 struct workqueue_struct *wq = pwq->wq;
2014
2015 lockdep_assert_held(&wq_mayday_lock);
2016
2017 if (!wq->rescuer)
2018 return;
2019
2020 /* mayday mayday mayday */
2021 if (list_empty(&pwq->mayday_node)) {
2022 /*
2023 * If @pwq is for an unbound wq, its base ref may be put at
2024 * any time due to an attribute change. Pin @pwq until the
2025 * rescuer is done with it.
2026 */
2027 get_pwq(pwq);
2028 list_add_tail(&pwq->mayday_node, &wq->maydays);
2029 wake_up_process(wq->rescuer->task);
2030 }
2031 }
2032
2033 static void pool_mayday_timeout(struct timer_list *t)
2034 {
2035 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2036 struct work_struct *work;
2037
2038 spin_lock_irq(&pool->lock);
2039 spin_lock(&wq_mayday_lock); /* for wq->maydays */
2040
2041 if (need_to_create_worker(pool)) {
2042 /*
2043 * We've been trying to create a new worker but
2044 * haven't been successful. We might be hitting an
2045 * allocation deadlock. Send distress signals to
2046 * rescuers.
2047 */
2048 list_for_each_entry(work, &pool->worklist, entry)
2049 send_mayday(work);
2050 }
2051
2052 spin_unlock(&wq_mayday_lock);
2053 spin_unlock_irq(&pool->lock);
2054
2055 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2056 }
2057
2058 /**
2059 * maybe_create_worker - create a new worker if necessary
2060 * @pool: pool to create a new worker for
2061 *
2062 * Create a new worker for @pool if necessary. @pool is guaranteed to
2063 * have at least one idle worker on return from this function. If
2064 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2065 * sent to all rescuers with works scheduled on @pool to resolve
2066 * possible allocation deadlock.
2067 *
2068 * On return, need_to_create_worker() is guaranteed to be %false and
2069 * may_start_working() %true.
2070 *
2071 * LOCKING:
2072 * spin_lock_irq(pool->lock) which may be released and regrabbed
2073 * multiple times. Does GFP_KERNEL allocations. Called only from
2074 * manager.
2075 */
2076 static void maybe_create_worker(struct worker_pool *pool)
2077 __releases(&pool->lock)
2078 __acquires(&pool->lock)
2079 {
2080 restart:
2081 spin_unlock_irq(&pool->lock);
2082
2083 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2084 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2085
2086 while (true) {
2087 if (create_worker(pool) || !need_to_create_worker(pool))
2088 break;
2089
2090 schedule_timeout_interruptible(CREATE_COOLDOWN);
2091
2092 if (!need_to_create_worker(pool))
2093 break;
2094 }
2095
2096 del_timer_sync(&pool->mayday_timer);
2097 spin_lock_irq(&pool->lock);
2098 /*
2099 * This is necessary even after a new worker was just successfully
2100 * created as @pool->lock was dropped and the new worker might have
2101 * already become busy.
2102 */
2103 if (need_to_create_worker(pool))
2104 goto restart;
2105 }
2106
2107 /**
2108 * manage_workers - manage worker pool
2109 * @worker: self
2110 *
2111 * Assume the manager role and manage the worker pool @worker belongs
2112 * to. At any given time, there can be only zero or one manager per
2113 * pool. The exclusion is handled automatically by this function.
2114 *
2115 * The caller can safely start processing works on false return. On
2116 * true return, it's guaranteed that need_to_create_worker() is false
2117 * and may_start_working() is true.
2118 *
2119 * CONTEXT:
2120 * spin_lock_irq(pool->lock) which may be released and regrabbed
2121 * multiple times. Does GFP_KERNEL allocations.
2122 *
2123 * Return:
2124 * %false if the pool doesn't need management and the caller can safely
2125 * start processing works, %true if management function was performed and
2126 * the conditions that the caller verified before calling the function may
2127 * no longer be true.
2128 */
2129 static bool manage_workers(struct worker *worker)
2130 {
2131 struct worker_pool *pool = worker->pool;
2132
2133 if (pool->flags & POOL_MANAGER_ACTIVE)
2134 return false;
2135
2136 pool->flags |= POOL_MANAGER_ACTIVE;
2137 pool->manager = worker;
2138
2139 maybe_create_worker(pool);
2140
2141 pool->manager = NULL;
2142 pool->flags &= ~POOL_MANAGER_ACTIVE;
2143 wake_up(&wq_manager_wait);
2144 return true;
2145 }
2146
2147 /**
2148 * process_one_work - process single work
2149 * @worker: self
2150 * @work: work to process
2151 *
2152 * Process @work. This function contains all the logics necessary to
2153 * process a single work including synchronization against and
2154 * interaction with other workers on the same cpu, queueing and
2155 * flushing. As long as context requirement is met, any worker can
2156 * call this function to process a work.
2157 *
2158 * CONTEXT:
2159 * spin_lock_irq(pool->lock) which is released and regrabbed.
2160 */
2161 static void process_one_work(struct worker *worker, struct work_struct *work)
2162 __releases(&pool->lock)
2163 __acquires(&pool->lock)
2164 {
2165 struct pool_workqueue *pwq = get_work_pwq(work);
2166 struct worker_pool *pool = worker->pool;
2167 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2168 int work_color;
2169 struct worker *collision;
2170 #ifdef CONFIG_LOCKDEP
2171 /*
2172 * It is permissible to free the struct work_struct from
2173 * inside the function that is called from it, this we need to
2174 * take into account for lockdep too. To avoid bogus "held
2175 * lock freed" warnings as well as problems when looking into
2176 * work->lockdep_map, make a copy and use that here.
2177 */
2178 struct lockdep_map lockdep_map;
2179
2180 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2181 #endif
2182 /* ensure we're on the correct CPU */
2183 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2184 raw_smp_processor_id() != pool->cpu);
2185
2186 /*
2187 * A single work shouldn't be executed concurrently by
2188 * multiple workers on a single cpu. Check whether anyone is
2189 * already processing the work. If so, defer the work to the
2190 * currently executing one.
2191 */
2192 collision = find_worker_executing_work(pool, work);
2193 if (unlikely(collision)) {
2194 move_linked_works(work, &collision->scheduled, NULL);
2195 return;
2196 }
2197
2198 /* claim and dequeue */
2199 debug_work_deactivate(work);
2200 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2201 worker->current_work = work;
2202 worker->current_func = work->func;
2203 worker->current_pwq = pwq;
2204 work_color = get_work_color(work);
2205
2206 /*
2207 * Record wq name for cmdline and debug reporting, may get
2208 * overridden through set_worker_desc().
2209 */
2210 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2211
2212 list_del_init(&work->entry);
2213
2214 /*
2215 * CPU intensive works don't participate in concurrency management.
2216 * They're the scheduler's responsibility. This takes @worker out
2217 * of concurrency management and the next code block will chain
2218 * execution of the pending work items.
2219 */
2220 if (unlikely(cpu_intensive))
2221 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2222
2223 /*
2224 * Wake up another worker if necessary. The condition is always
2225 * false for normal per-cpu workers since nr_running would always
2226 * be >= 1 at this point. This is used to chain execution of the
2227 * pending work items for WORKER_NOT_RUNNING workers such as the
2228 * UNBOUND and CPU_INTENSIVE ones.
2229 */
2230 if (need_more_worker(pool))
2231 wake_up_worker(pool);
2232
2233 /*
2234 * Record the last pool and clear PENDING which should be the last
2235 * update to @work. Also, do this inside @pool->lock so that
2236 * PENDING and queued state changes happen together while IRQ is
2237 * disabled.
2238 */
2239 set_work_pool_and_clear_pending(work, pool->id);
2240
2241 spin_unlock_irq(&pool->lock);
2242
2243 lock_map_acquire(&pwq->wq->lockdep_map);
2244 lock_map_acquire(&lockdep_map);
2245 /*
2246 * Strictly speaking we should mark the invariant state without holding
2247 * any locks, that is, before these two lock_map_acquire()'s.
2248 *
2249 * However, that would result in:
2250 *
2251 * A(W1)
2252 * WFC(C)
2253 * A(W1)
2254 * C(C)
2255 *
2256 * Which would create W1->C->W1 dependencies, even though there is no
2257 * actual deadlock possible. There are two solutions, using a
2258 * read-recursive acquire on the work(queue) 'locks', but this will then
2259 * hit the lockdep limitation on recursive locks, or simply discard
2260 * these locks.
2261 *
2262 * AFAICT there is no possible deadlock scenario between the
2263 * flush_work() and complete() primitives (except for single-threaded
2264 * workqueues), so hiding them isn't a problem.
2265 */
2266 lockdep_invariant_state(true);
2267 trace_workqueue_execute_start(work);
2268 worker->current_func(work);
2269 /*
2270 * While we must be careful to not use "work" after this, the trace
2271 * point will only record its address.
2272 */
2273 trace_workqueue_execute_end(work, worker->current_func);
2274 lock_map_release(&lockdep_map);
2275 lock_map_release(&pwq->wq->lockdep_map);
2276
2277 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2278 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2279 " last function: %ps\n",
2280 current->comm, preempt_count(), task_pid_nr(current),
2281 worker->current_func);
2282 debug_show_held_locks(current);
2283 dump_stack();
2284 }
2285
2286 /*
2287 * The following prevents a kworker from hogging CPU on !PREEMPTION
2288 * kernels, where a requeueing work item waiting for something to
2289 * happen could deadlock with stop_machine as such work item could
2290 * indefinitely requeue itself while all other CPUs are trapped in
2291 * stop_machine. At the same time, report a quiescent RCU state so
2292 * the same condition doesn't freeze RCU.
2293 */
2294 cond_resched();
2295
2296 spin_lock_irq(&pool->lock);
2297
2298 /* clear cpu intensive status */
2299 if (unlikely(cpu_intensive))
2300 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2301
2302 /* tag the worker for identification in schedule() */
2303 worker->last_func = worker->current_func;
2304
2305 /* we're done with it, release */
2306 hash_del(&worker->hentry);
2307 worker->current_work = NULL;
2308 worker->current_func = NULL;
2309 worker->current_pwq = NULL;
2310 pwq_dec_nr_in_flight(pwq, work_color);
2311 }
2312
2313 /**
2314 * process_scheduled_works - process scheduled works
2315 * @worker: self
2316 *
2317 * Process all scheduled works. Please note that the scheduled list
2318 * may change while processing a work, so this function repeatedly
2319 * fetches a work from the top and executes it.
2320 *
2321 * CONTEXT:
2322 * spin_lock_irq(pool->lock) which may be released and regrabbed
2323 * multiple times.
2324 */
2325 static void process_scheduled_works(struct worker *worker)
2326 {
2327 while (!list_empty(&worker->scheduled)) {
2328 struct work_struct *work = list_first_entry(&worker->scheduled,
2329 struct work_struct, entry);
2330 process_one_work(worker, work);
2331 }
2332 }
2333
2334 static void set_pf_worker(bool val)
2335 {
2336 mutex_lock(&wq_pool_attach_mutex);
2337 if (val)
2338 current->flags |= PF_WQ_WORKER;
2339 else
2340 current->flags &= ~PF_WQ_WORKER;
2341 mutex_unlock(&wq_pool_attach_mutex);
2342 }
2343
2344 /**
2345 * worker_thread - the worker thread function
2346 * @__worker: self
2347 *
2348 * The worker thread function. All workers belong to a worker_pool -
2349 * either a per-cpu one or dynamic unbound one. These workers process all
2350 * work items regardless of their specific target workqueue. The only
2351 * exception is work items which belong to workqueues with a rescuer which
2352 * will be explained in rescuer_thread().
2353 *
2354 * Return: 0
2355 */
2356 static int worker_thread(void *__worker)
2357 {
2358 struct worker *worker = __worker;
2359 struct worker_pool *pool = worker->pool;
2360
2361 /* tell the scheduler that this is a workqueue worker */
2362 set_pf_worker(true);
2363 woke_up:
2364 spin_lock_irq(&pool->lock);
2365
2366 /* am I supposed to die? */
2367 if (unlikely(worker->flags & WORKER_DIE)) {
2368 spin_unlock_irq(&pool->lock);
2369 WARN_ON_ONCE(!list_empty(&worker->entry));
2370 set_pf_worker(false);
2371
2372 set_task_comm(worker->task, "kworker/dying");
2373 ida_simple_remove(&pool->worker_ida, worker->id);
2374 worker_detach_from_pool(worker);
2375 kfree(worker);
2376 return 0;
2377 }
2378
2379 worker_leave_idle(worker);
2380 recheck:
2381 /* no more worker necessary? */
2382 if (!need_more_worker(pool))
2383 goto sleep;
2384
2385 /* do we need to manage? */
2386 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2387 goto recheck;
2388
2389 /*
2390 * ->scheduled list can only be filled while a worker is
2391 * preparing to process a work or actually processing it.
2392 * Make sure nobody diddled with it while I was sleeping.
2393 */
2394 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2395
2396 /*
2397 * Finish PREP stage. We're guaranteed to have at least one idle
2398 * worker or that someone else has already assumed the manager
2399 * role. This is where @worker starts participating in concurrency
2400 * management if applicable and concurrency management is restored
2401 * after being rebound. See rebind_workers() for details.
2402 */
2403 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2404
2405 do {
2406 struct work_struct *work =
2407 list_first_entry(&pool->worklist,
2408 struct work_struct, entry);
2409
2410 pool->watchdog_ts = jiffies;
2411
2412 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2413 /* optimization path, not strictly necessary */
2414 process_one_work(worker, work);
2415 if (unlikely(!list_empty(&worker->scheduled)))
2416 process_scheduled_works(worker);
2417 } else {
2418 move_linked_works(work, &worker->scheduled, NULL);
2419 process_scheduled_works(worker);
2420 }
2421 } while (keep_working(pool));
2422
2423 worker_set_flags(worker, WORKER_PREP);
2424 sleep:
2425 /*
2426 * pool->lock is held and there's no work to process and no need to
2427 * manage, sleep. Workers are woken up only while holding
2428 * pool->lock or from local cpu, so setting the current state
2429 * before releasing pool->lock is enough to prevent losing any
2430 * event.
2431 */
2432 worker_enter_idle(worker);
2433 __set_current_state(TASK_IDLE);
2434 spin_unlock_irq(&pool->lock);
2435 schedule();
2436 goto woke_up;
2437 }
2438
2439 /**
2440 * rescuer_thread - the rescuer thread function
2441 * @__rescuer: self
2442 *
2443 * Workqueue rescuer thread function. There's one rescuer for each
2444 * workqueue which has WQ_MEM_RECLAIM set.
2445 *
2446 * Regular work processing on a pool may block trying to create a new
2447 * worker which uses GFP_KERNEL allocation which has slight chance of
2448 * developing into deadlock if some works currently on the same queue
2449 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2450 * the problem rescuer solves.
2451 *
2452 * When such condition is possible, the pool summons rescuers of all
2453 * workqueues which have works queued on the pool and let them process
2454 * those works so that forward progress can be guaranteed.
2455 *
2456 * This should happen rarely.
2457 *
2458 * Return: 0
2459 */
2460 static int rescuer_thread(void *__rescuer)
2461 {
2462 struct worker *rescuer = __rescuer;
2463 struct workqueue_struct *wq = rescuer->rescue_wq;
2464 struct list_head *scheduled = &rescuer->scheduled;
2465 bool should_stop;
2466
2467 set_user_nice(current, RESCUER_NICE_LEVEL);
2468
2469 /*
2470 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2471 * doesn't participate in concurrency management.
2472 */
2473 set_pf_worker(true);
2474 repeat:
2475 set_current_state(TASK_IDLE);
2476
2477 /*
2478 * By the time the rescuer is requested to stop, the workqueue
2479 * shouldn't have any work pending, but @wq->maydays may still have
2480 * pwq(s) queued. This can happen by non-rescuer workers consuming
2481 * all the work items before the rescuer got to them. Go through
2482 * @wq->maydays processing before acting on should_stop so that the
2483 * list is always empty on exit.
2484 */
2485 should_stop = kthread_should_stop();
2486
2487 /* see whether any pwq is asking for help */
2488 spin_lock_irq(&wq_mayday_lock);
2489
2490 while (!list_empty(&wq->maydays)) {
2491 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2492 struct pool_workqueue, mayday_node);
2493 struct worker_pool *pool = pwq->pool;
2494 struct work_struct *work, *n;
2495 bool first = true;
2496
2497 __set_current_state(TASK_RUNNING);
2498 list_del_init(&pwq->mayday_node);
2499
2500 spin_unlock_irq(&wq_mayday_lock);
2501
2502 worker_attach_to_pool(rescuer, pool);
2503
2504 spin_lock_irq(&pool->lock);
2505
2506 /*
2507 * Slurp in all works issued via this workqueue and
2508 * process'em.
2509 */
2510 WARN_ON_ONCE(!list_empty(scheduled));
2511 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2512 if (get_work_pwq(work) == pwq) {
2513 if (first)
2514 pool->watchdog_ts = jiffies;
2515 move_linked_works(work, scheduled, &n);
2516 }
2517 first = false;
2518 }
2519
2520 if (!list_empty(scheduled)) {
2521 process_scheduled_works(rescuer);
2522
2523 /*
2524 * The above execution of rescued work items could
2525 * have created more to rescue through
2526 * pwq_activate_first_delayed() or chained
2527 * queueing. Let's put @pwq back on mayday list so
2528 * that such back-to-back work items, which may be
2529 * being used to relieve memory pressure, don't
2530 * incur MAYDAY_INTERVAL delay inbetween.
2531 */
2532 if (need_to_create_worker(pool)) {
2533 spin_lock(&wq_mayday_lock);
2534 /*
2535 * Queue iff we aren't racing destruction
2536 * and somebody else hasn't queued it already.
2537 */
2538 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2539 get_pwq(pwq);
2540 list_add_tail(&pwq->mayday_node, &wq->maydays);
2541 }
2542 spin_unlock(&wq_mayday_lock);
2543 }
2544 }
2545
2546 /*
2547 * Put the reference grabbed by send_mayday(). @pool won't
2548 * go away while we're still attached to it.
2549 */
2550 put_pwq(pwq);
2551
2552 /*
2553 * Leave this pool. If need_more_worker() is %true, notify a
2554 * regular worker; otherwise, we end up with 0 concurrency
2555 * and stalling the execution.
2556 */
2557 if (need_more_worker(pool))
2558 wake_up_worker(pool);
2559
2560 spin_unlock_irq(&pool->lock);
2561
2562 worker_detach_from_pool(rescuer);
2563
2564 spin_lock_irq(&wq_mayday_lock);
2565 }
2566
2567 spin_unlock_irq(&wq_mayday_lock);
2568
2569 if (should_stop) {
2570 __set_current_state(TASK_RUNNING);
2571 set_pf_worker(false);
2572 return 0;
2573 }
2574
2575 /* rescuers should never participate in concurrency management */
2576 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2577 schedule();
2578 goto repeat;
2579 }
2580
2581 /**
2582 * check_flush_dependency - check for flush dependency sanity
2583 * @target_wq: workqueue being flushed
2584 * @target_work: work item being flushed (NULL for workqueue flushes)
2585 *
2586 * %current is trying to flush the whole @target_wq or @target_work on it.
2587 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2588 * reclaiming memory or running on a workqueue which doesn't have
2589 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2590 * a deadlock.
2591 */
2592 static void check_flush_dependency(struct workqueue_struct *target_wq,
2593 struct work_struct *target_work)
2594 {
2595 work_func_t target_func = target_work ? target_work->func : NULL;
2596 struct worker *worker;
2597
2598 if (target_wq->flags & WQ_MEM_RECLAIM)
2599 return;
2600
2601 worker = current_wq_worker();
2602
2603 WARN_ONCE(current->flags & PF_MEMALLOC,
2604 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2605 current->pid, current->comm, target_wq->name, target_func);
2606 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2607 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2608 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2609 worker->current_pwq->wq->name, worker->current_func,
2610 target_wq->name, target_func);
2611 }
2612
2613 struct wq_barrier {
2614 struct work_struct work;
2615 struct completion done;
2616 struct task_struct *task; /* purely informational */
2617 };
2618
2619 static void wq_barrier_func(struct work_struct *work)
2620 {
2621 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2622 complete(&barr->done);
2623 }
2624
2625 /**
2626 * insert_wq_barrier - insert a barrier work
2627 * @pwq: pwq to insert barrier into
2628 * @barr: wq_barrier to insert
2629 * @target: target work to attach @barr to
2630 * @worker: worker currently executing @target, NULL if @target is not executing
2631 *
2632 * @barr is linked to @target such that @barr is completed only after
2633 * @target finishes execution. Please note that the ordering
2634 * guarantee is observed only with respect to @target and on the local
2635 * cpu.
2636 *
2637 * Currently, a queued barrier can't be canceled. This is because
2638 * try_to_grab_pending() can't determine whether the work to be
2639 * grabbed is at the head of the queue and thus can't clear LINKED
2640 * flag of the previous work while there must be a valid next work
2641 * after a work with LINKED flag set.
2642 *
2643 * Note that when @worker is non-NULL, @target may be modified
2644 * underneath us, so we can't reliably determine pwq from @target.
2645 *
2646 * CONTEXT:
2647 * spin_lock_irq(pool->lock).
2648 */
2649 static void insert_wq_barrier(struct pool_workqueue *pwq,
2650 struct wq_barrier *barr,
2651 struct work_struct *target, struct worker *worker)
2652 {
2653 struct list_head *head;
2654 unsigned int linked = 0;
2655
2656 /*
2657 * debugobject calls are safe here even with pool->lock locked
2658 * as we know for sure that this will not trigger any of the
2659 * checks and call back into the fixup functions where we
2660 * might deadlock.
2661 */
2662 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2663 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2664
2665 init_completion_map(&barr->done, &target->lockdep_map);
2666
2667 barr->task = current;
2668
2669 /*
2670 * If @target is currently being executed, schedule the
2671 * barrier to the worker; otherwise, put it after @target.
2672 */
2673 if (worker)
2674 head = worker->scheduled.next;
2675 else {
2676 unsigned long *bits = work_data_bits(target);
2677
2678 head = target->entry.next;
2679 /* there can already be other linked works, inherit and set */
2680 linked = *bits & WORK_STRUCT_LINKED;
2681 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2682 }
2683
2684 debug_work_activate(&barr->work);
2685 insert_work(pwq, &barr->work, head,
2686 work_color_to_flags(WORK_NO_COLOR) | linked);
2687 }
2688
2689 /**
2690 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2691 * @wq: workqueue being flushed
2692 * @flush_color: new flush color, < 0 for no-op
2693 * @work_color: new work color, < 0 for no-op
2694 *
2695 * Prepare pwqs for workqueue flushing.
2696 *
2697 * If @flush_color is non-negative, flush_color on all pwqs should be
2698 * -1. If no pwq has in-flight commands at the specified color, all
2699 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2700 * has in flight commands, its pwq->flush_color is set to
2701 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2702 * wakeup logic is armed and %true is returned.
2703 *
2704 * The caller should have initialized @wq->first_flusher prior to
2705 * calling this function with non-negative @flush_color. If
2706 * @flush_color is negative, no flush color update is done and %false
2707 * is returned.
2708 *
2709 * If @work_color is non-negative, all pwqs should have the same
2710 * work_color which is previous to @work_color and all will be
2711 * advanced to @work_color.
2712 *
2713 * CONTEXT:
2714 * mutex_lock(wq->mutex).
2715 *
2716 * Return:
2717 * %true if @flush_color >= 0 and there's something to flush. %false
2718 * otherwise.
2719 */
2720 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2721 int flush_color, int work_color)
2722 {
2723 bool wait = false;
2724 struct pool_workqueue *pwq;
2725
2726 if (flush_color >= 0) {
2727 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2728 atomic_set(&wq->nr_pwqs_to_flush, 1);
2729 }
2730
2731 for_each_pwq(pwq, wq) {
2732 struct worker_pool *pool = pwq->pool;
2733
2734 spin_lock_irq(&pool->lock);
2735
2736 if (flush_color >= 0) {
2737 WARN_ON_ONCE(pwq->flush_color != -1);
2738
2739 if (pwq->nr_in_flight[flush_color]) {
2740 pwq->flush_color = flush_color;
2741 atomic_inc(&wq->nr_pwqs_to_flush);
2742 wait = true;
2743 }
2744 }
2745
2746 if (work_color >= 0) {
2747 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2748 pwq->work_color = work_color;
2749 }
2750
2751 spin_unlock_irq(&pool->lock);
2752 }
2753
2754 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2755 complete(&wq->first_flusher->done);
2756
2757 return wait;
2758 }
2759
2760 /**
2761 * flush_workqueue - ensure that any scheduled work has run to completion.
2762 * @wq: workqueue to flush
2763 *
2764 * This function sleeps until all work items which were queued on entry
2765 * have finished execution, but it is not livelocked by new incoming ones.
2766 */
2767 void flush_workqueue(struct workqueue_struct *wq)
2768 {
2769 struct wq_flusher this_flusher = {
2770 .list = LIST_HEAD_INIT(this_flusher.list),
2771 .flush_color = -1,
2772 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2773 };
2774 int next_color;
2775
2776 if (WARN_ON(!wq_online))
2777 return;
2778
2779 lock_map_acquire(&wq->lockdep_map);
2780 lock_map_release(&wq->lockdep_map);
2781
2782 mutex_lock(&wq->mutex);
2783
2784 /*
2785 * Start-to-wait phase
2786 */
2787 next_color = work_next_color(wq->work_color);
2788
2789 if (next_color != wq->flush_color) {
2790 /*
2791 * Color space is not full. The current work_color
2792 * becomes our flush_color and work_color is advanced
2793 * by one.
2794 */
2795 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2796 this_flusher.flush_color = wq->work_color;
2797 wq->work_color = next_color;
2798
2799 if (!wq->first_flusher) {
2800 /* no flush in progress, become the first flusher */
2801 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2802
2803 wq->first_flusher = &this_flusher;
2804
2805 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2806 wq->work_color)) {
2807 /* nothing to flush, done */
2808 wq->flush_color = next_color;
2809 wq->first_flusher = NULL;
2810 goto out_unlock;
2811 }
2812 } else {
2813 /* wait in queue */
2814 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2815 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2816 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2817 }
2818 } else {
2819 /*
2820 * Oops, color space is full, wait on overflow queue.
2821 * The next flush completion will assign us
2822 * flush_color and transfer to flusher_queue.
2823 */
2824 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2825 }
2826
2827 check_flush_dependency(wq, NULL);
2828
2829 mutex_unlock(&wq->mutex);
2830
2831 wait_for_completion(&this_flusher.done);
2832
2833 /*
2834 * Wake-up-and-cascade phase
2835 *
2836 * First flushers are responsible for cascading flushes and
2837 * handling overflow. Non-first flushers can simply return.
2838 */
2839 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2840 return;
2841
2842 mutex_lock(&wq->mutex);
2843
2844 /* we might have raced, check again with mutex held */
2845 if (wq->first_flusher != &this_flusher)
2846 goto out_unlock;
2847
2848 WRITE_ONCE(wq->first_flusher, NULL);
2849
2850 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2851 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2852
2853 while (true) {
2854 struct wq_flusher *next, *tmp;
2855
2856 /* complete all the flushers sharing the current flush color */
2857 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2858 if (next->flush_color != wq->flush_color)
2859 break;
2860 list_del_init(&next->list);
2861 complete(&next->done);
2862 }
2863
2864 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2865 wq->flush_color != work_next_color(wq->work_color));
2866
2867 /* this flush_color is finished, advance by one */
2868 wq->flush_color = work_next_color(wq->flush_color);
2869
2870 /* one color has been freed, handle overflow queue */
2871 if (!list_empty(&wq->flusher_overflow)) {
2872 /*
2873 * Assign the same color to all overflowed
2874 * flushers, advance work_color and append to
2875 * flusher_queue. This is the start-to-wait
2876 * phase for these overflowed flushers.
2877 */
2878 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2879 tmp->flush_color = wq->work_color;
2880
2881 wq->work_color = work_next_color(wq->work_color);
2882
2883 list_splice_tail_init(&wq->flusher_overflow,
2884 &wq->flusher_queue);
2885 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2886 }
2887
2888 if (list_empty(&wq->flusher_queue)) {
2889 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2890 break;
2891 }
2892
2893 /*
2894 * Need to flush more colors. Make the next flusher
2895 * the new first flusher and arm pwqs.
2896 */
2897 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2898 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2899
2900 list_del_init(&next->list);
2901 wq->first_flusher = next;
2902
2903 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2904 break;
2905
2906 /*
2907 * Meh... this color is already done, clear first
2908 * flusher and repeat cascading.
2909 */
2910 wq->first_flusher = NULL;
2911 }
2912
2913 out_unlock:
2914 mutex_unlock(&wq->mutex);
2915 }
2916 EXPORT_SYMBOL(flush_workqueue);
2917
2918 /**
2919 * drain_workqueue - drain a workqueue
2920 * @wq: workqueue to drain
2921 *
2922 * Wait until the workqueue becomes empty. While draining is in progress,
2923 * only chain queueing is allowed. IOW, only currently pending or running
2924 * work items on @wq can queue further work items on it. @wq is flushed
2925 * repeatedly until it becomes empty. The number of flushing is determined
2926 * by the depth of chaining and should be relatively short. Whine if it
2927 * takes too long.
2928 */
2929 void drain_workqueue(struct workqueue_struct *wq)
2930 {
2931 unsigned int flush_cnt = 0;
2932 struct pool_workqueue *pwq;
2933
2934 /*
2935 * __queue_work() needs to test whether there are drainers, is much
2936 * hotter than drain_workqueue() and already looks at @wq->flags.
2937 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2938 */
2939 mutex_lock(&wq->mutex);
2940 if (!wq->nr_drainers++)
2941 wq->flags |= __WQ_DRAINING;
2942 mutex_unlock(&wq->mutex);
2943 reflush:
2944 flush_workqueue(wq);
2945
2946 mutex_lock(&wq->mutex);
2947
2948 for_each_pwq(pwq, wq) {
2949 bool drained;
2950
2951 spin_lock_irq(&pwq->pool->lock);
2952 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2953 spin_unlock_irq(&pwq->pool->lock);
2954
2955 if (drained)
2956 continue;
2957
2958 if (++flush_cnt == 10 ||
2959 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2960 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2961 wq->name, flush_cnt);
2962
2963 mutex_unlock(&wq->mutex);
2964 goto reflush;
2965 }
2966
2967 if (!--wq->nr_drainers)
2968 wq->flags &= ~__WQ_DRAINING;
2969 mutex_unlock(&wq->mutex);
2970 }
2971 EXPORT_SYMBOL_GPL(drain_workqueue);
2972
2973 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2974 bool from_cancel)
2975 {
2976 struct worker *worker = NULL;
2977 struct worker_pool *pool;
2978 struct pool_workqueue *pwq;
2979
2980 might_sleep();
2981
2982 rcu_read_lock();
2983 pool = get_work_pool(work);
2984 if (!pool) {
2985 rcu_read_unlock();
2986 return false;
2987 }
2988
2989 spin_lock_irq(&pool->lock);
2990 /* see the comment in try_to_grab_pending() with the same code */
2991 pwq = get_work_pwq(work);
2992 if (pwq) {
2993 if (unlikely(pwq->pool != pool))
2994 goto already_gone;
2995 } else {
2996 worker = find_worker_executing_work(pool, work);
2997 if (!worker)
2998 goto already_gone;
2999 pwq = worker->current_pwq;
3000 }
3001
3002 check_flush_dependency(pwq->wq, work);
3003
3004 insert_wq_barrier(pwq, barr, work, worker);
3005 spin_unlock_irq(&pool->lock);
3006
3007 /*
3008 * Force a lock recursion deadlock when using flush_work() inside a
3009 * single-threaded or rescuer equipped workqueue.
3010 *
3011 * For single threaded workqueues the deadlock happens when the work
3012 * is after the work issuing the flush_work(). For rescuer equipped
3013 * workqueues the deadlock happens when the rescuer stalls, blocking
3014 * forward progress.
3015 */
3016 if (!from_cancel &&
3017 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3018 lock_map_acquire(&pwq->wq->lockdep_map);
3019 lock_map_release(&pwq->wq->lockdep_map);
3020 }
3021 rcu_read_unlock();
3022 return true;
3023 already_gone:
3024 spin_unlock_irq(&pool->lock);
3025 rcu_read_unlock();
3026 return false;
3027 }
3028
3029 static bool __flush_work(struct work_struct *work, bool from_cancel)
3030 {
3031 struct wq_barrier barr;
3032
3033 if (WARN_ON(!wq_online))
3034 return false;
3035
3036 if (WARN_ON(!work->func))
3037 return false;
3038
3039 if (!from_cancel) {
3040 lock_map_acquire(&work->lockdep_map);
3041 lock_map_release(&work->lockdep_map);
3042 }
3043
3044 if (start_flush_work(work, &barr, from_cancel)) {
3045 wait_for_completion(&barr.done);
3046 destroy_work_on_stack(&barr.work);
3047 return true;
3048 } else {
3049 return false;
3050 }
3051 }
3052
3053 /**
3054 * flush_work - wait for a work to finish executing the last queueing instance
3055 * @work: the work to flush
3056 *
3057 * Wait until @work has finished execution. @work is guaranteed to be idle
3058 * on return if it hasn't been requeued since flush started.
3059 *
3060 * Return:
3061 * %true if flush_work() waited for the work to finish execution,
3062 * %false if it was already idle.
3063 */
3064 bool flush_work(struct work_struct *work)
3065 {
3066 return __flush_work(work, false);
3067 }
3068 EXPORT_SYMBOL_GPL(flush_work);
3069
3070 struct cwt_wait {
3071 wait_queue_entry_t wait;
3072 struct work_struct *work;
3073 };
3074
3075 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3076 {
3077 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3078
3079 if (cwait->work != key)
3080 return 0;
3081 return autoremove_wake_function(wait, mode, sync, key);
3082 }
3083
3084 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3085 {
3086 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3087 unsigned long flags;
3088 int ret;
3089
3090 do {
3091 ret = try_to_grab_pending(work, is_dwork, &flags);
3092 /*
3093 * If someone else is already canceling, wait for it to
3094 * finish. flush_work() doesn't work for PREEMPT_NONE
3095 * because we may get scheduled between @work's completion
3096 * and the other canceling task resuming and clearing
3097 * CANCELING - flush_work() will return false immediately
3098 * as @work is no longer busy, try_to_grab_pending() will
3099 * return -ENOENT as @work is still being canceled and the
3100 * other canceling task won't be able to clear CANCELING as
3101 * we're hogging the CPU.
3102 *
3103 * Let's wait for completion using a waitqueue. As this
3104 * may lead to the thundering herd problem, use a custom
3105 * wake function which matches @work along with exclusive
3106 * wait and wakeup.
3107 */
3108 if (unlikely(ret == -ENOENT)) {
3109 struct cwt_wait cwait;
3110
3111 init_wait(&cwait.wait);
3112 cwait.wait.func = cwt_wakefn;
3113 cwait.work = work;
3114
3115 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3116 TASK_UNINTERRUPTIBLE);
3117 if (work_is_canceling(work))
3118 schedule();
3119 finish_wait(&cancel_waitq, &cwait.wait);
3120 }
3121 } while (unlikely(ret < 0));
3122
3123 /* tell other tasks trying to grab @work to back off */
3124 mark_work_canceling(work);
3125 local_irq_restore(flags);
3126
3127 /*
3128 * This allows canceling during early boot. We know that @work
3129 * isn't executing.
3130 */
3131 if (wq_online)
3132 __flush_work(work, true);
3133
3134 clear_work_data(work);
3135
3136 /*
3137 * Paired with prepare_to_wait() above so that either
3138 * waitqueue_active() is visible here or !work_is_canceling() is
3139 * visible there.
3140 */
3141 smp_mb();
3142 if (waitqueue_active(&cancel_waitq))
3143 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3144
3145 return ret;
3146 }
3147
3148 /**
3149 * cancel_work_sync - cancel a work and wait for it to finish
3150 * @work: the work to cancel
3151 *
3152 * Cancel @work and wait for its execution to finish. This function
3153 * can be used even if the work re-queues itself or migrates to
3154 * another workqueue. On return from this function, @work is
3155 * guaranteed to be not pending or executing on any CPU.
3156 *
3157 * cancel_work_sync(&delayed_work->work) must not be used for
3158 * delayed_work's. Use cancel_delayed_work_sync() instead.
3159 *
3160 * The caller must ensure that the workqueue on which @work was last
3161 * queued can't be destroyed before this function returns.
3162 *
3163 * Return:
3164 * %true if @work was pending, %false otherwise.
3165 */
3166 bool cancel_work_sync(struct work_struct *work)
3167 {
3168 return __cancel_work_timer(work, false);
3169 }
3170 EXPORT_SYMBOL_GPL(cancel_work_sync);
3171
3172 /**
3173 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3174 * @dwork: the delayed work to flush
3175 *
3176 * Delayed timer is cancelled and the pending work is queued for
3177 * immediate execution. Like flush_work(), this function only
3178 * considers the last queueing instance of @dwork.
3179 *
3180 * Return:
3181 * %true if flush_work() waited for the work to finish execution,
3182 * %false if it was already idle.
3183 */
3184 bool flush_delayed_work(struct delayed_work *dwork)
3185 {
3186 local_irq_disable();
3187 if (del_timer_sync(&dwork->timer))
3188 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3189 local_irq_enable();
3190 return flush_work(&dwork->work);
3191 }
3192 EXPORT_SYMBOL(flush_delayed_work);
3193
3194 /**
3195 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3196 * @rwork: the rcu work to flush
3197 *
3198 * Return:
3199 * %true if flush_rcu_work() waited for the work to finish execution,
3200 * %false if it was already idle.
3201 */
3202 bool flush_rcu_work(struct rcu_work *rwork)
3203 {
3204 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3205 rcu_barrier();
3206 flush_work(&rwork->work);
3207 return true;
3208 } else {
3209 return flush_work(&rwork->work);
3210 }
3211 }
3212 EXPORT_SYMBOL(flush_rcu_work);
3213
3214 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3215 {
3216 unsigned long flags;
3217 int ret;
3218
3219 do {
3220 ret = try_to_grab_pending(work, is_dwork, &flags);
3221 } while (unlikely(ret == -EAGAIN));
3222
3223 if (unlikely(ret < 0))
3224 return false;
3225
3226 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3227 local_irq_restore(flags);
3228 return ret;
3229 }
3230
3231 /**
3232 * cancel_delayed_work - cancel a delayed work
3233 * @dwork: delayed_work to cancel
3234 *
3235 * Kill off a pending delayed_work.
3236 *
3237 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3238 * pending.
3239 *
3240 * Note:
3241 * The work callback function may still be running on return, unless
3242 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3243 * use cancel_delayed_work_sync() to wait on it.
3244 *
3245 * This function is safe to call from any context including IRQ handler.
3246 */
3247 bool cancel_delayed_work(struct delayed_work *dwork)
3248 {
3249 return __cancel_work(&dwork->work, true);
3250 }
3251 EXPORT_SYMBOL(cancel_delayed_work);
3252
3253 /**
3254 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3255 * @dwork: the delayed work cancel
3256 *
3257 * This is cancel_work_sync() for delayed works.
3258 *
3259 * Return:
3260 * %true if @dwork was pending, %false otherwise.
3261 */
3262 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3263 {
3264 return __cancel_work_timer(&dwork->work, true);
3265 }
3266 EXPORT_SYMBOL(cancel_delayed_work_sync);
3267
3268 /**
3269 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3270 * @func: the function to call
3271 *
3272 * schedule_on_each_cpu() executes @func on each online CPU using the
3273 * system workqueue and blocks until all CPUs have completed.
3274 * schedule_on_each_cpu() is very slow.
3275 *
3276 * Return:
3277 * 0 on success, -errno on failure.
3278 */
3279 int schedule_on_each_cpu(work_func_t func)
3280 {
3281 int cpu;
3282 struct work_struct __percpu *works;
3283
3284 works = alloc_percpu(struct work_struct);
3285 if (!works)
3286 return -ENOMEM;
3287
3288 get_online_cpus();
3289
3290 for_each_online_cpu(cpu) {
3291 struct work_struct *work = per_cpu_ptr(works, cpu);
3292
3293 INIT_WORK(work, func);
3294 schedule_work_on(cpu, work);
3295 }
3296
3297 for_each_online_cpu(cpu)
3298 flush_work(per_cpu_ptr(works, cpu));
3299
3300 put_online_cpus();
3301 free_percpu(works);
3302 return 0;
3303 }
3304
3305 /**
3306 * execute_in_process_context - reliably execute the routine with user context
3307 * @fn: the function to execute
3308 * @ew: guaranteed storage for the execute work structure (must
3309 * be available when the work executes)
3310 *
3311 * Executes the function immediately if process context is available,
3312 * otherwise schedules the function for delayed execution.
3313 *
3314 * Return: 0 - function was executed
3315 * 1 - function was scheduled for execution
3316 */
3317 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3318 {
3319 if (!in_interrupt()) {
3320 fn(&ew->work);
3321 return 0;
3322 }
3323
3324 INIT_WORK(&ew->work, fn);
3325 schedule_work(&ew->work);
3326
3327 return 1;
3328 }
3329 EXPORT_SYMBOL_GPL(execute_in_process_context);
3330
3331 /**
3332 * free_workqueue_attrs - free a workqueue_attrs
3333 * @attrs: workqueue_attrs to free
3334 *
3335 * Undo alloc_workqueue_attrs().
3336 */
3337 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3338 {
3339 if (attrs) {
3340 free_cpumask_var(attrs->cpumask);
3341 kfree(attrs);
3342 }
3343 }
3344
3345 /**
3346 * alloc_workqueue_attrs - allocate a workqueue_attrs
3347 *
3348 * Allocate a new workqueue_attrs, initialize with default settings and
3349 * return it.
3350 *
3351 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3352 */
3353 struct workqueue_attrs *alloc_workqueue_attrs(void)
3354 {
3355 struct workqueue_attrs *attrs;
3356
3357 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3358 if (!attrs)
3359 goto fail;
3360 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3361 goto fail;
3362
3363 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3364 return attrs;
3365 fail:
3366 free_workqueue_attrs(attrs);
3367 return NULL;
3368 }
3369
3370 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3371 const struct workqueue_attrs *from)
3372 {
3373 to->nice = from->nice;
3374 cpumask_copy(to->cpumask, from->cpumask);
3375 /*
3376 * Unlike hash and equality test, this function doesn't ignore
3377 * ->no_numa as it is used for both pool and wq attrs. Instead,
3378 * get_unbound_pool() explicitly clears ->no_numa after copying.
3379 */
3380 to->no_numa = from->no_numa;
3381 }
3382
3383 /* hash value of the content of @attr */
3384 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3385 {
3386 u32 hash = 0;
3387
3388 hash = jhash_1word(attrs->nice, hash);
3389 hash = jhash(cpumask_bits(attrs->cpumask),
3390 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3391 return hash;
3392 }
3393
3394 /* content equality test */
3395 static bool wqattrs_equal(const struct workqueue_attrs *a,
3396 const struct workqueue_attrs *b)
3397 {
3398 if (a->nice != b->nice)
3399 return false;
3400 if (!cpumask_equal(a->cpumask, b->cpumask))
3401 return false;
3402 return true;
3403 }
3404
3405 /**
3406 * init_worker_pool - initialize a newly zalloc'd worker_pool
3407 * @pool: worker_pool to initialize
3408 *
3409 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3410 *
3411 * Return: 0 on success, -errno on failure. Even on failure, all fields
3412 * inside @pool proper are initialized and put_unbound_pool() can be called
3413 * on @pool safely to release it.
3414 */
3415 static int init_worker_pool(struct worker_pool *pool)
3416 {
3417 spin_lock_init(&pool->lock);
3418 pool->id = -1;
3419 pool->cpu = -1;
3420 pool->node = NUMA_NO_NODE;
3421 pool->flags |= POOL_DISASSOCIATED;
3422 pool->watchdog_ts = jiffies;
3423 INIT_LIST_HEAD(&pool->worklist);
3424 INIT_LIST_HEAD(&pool->idle_list);
3425 hash_init(pool->busy_hash);
3426
3427 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3428
3429 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3430
3431 INIT_LIST_HEAD(&pool->workers);
3432
3433 ida_init(&pool->worker_ida);
3434 INIT_HLIST_NODE(&pool->hash_node);
3435 pool->refcnt = 1;
3436
3437 /* shouldn't fail above this point */
3438 pool->attrs = alloc_workqueue_attrs();
3439 if (!pool->attrs)
3440 return -ENOMEM;
3441 return 0;
3442 }
3443
3444 #ifdef CONFIG_LOCKDEP
3445 static void wq_init_lockdep(struct workqueue_struct *wq)
3446 {
3447 char *lock_name;
3448
3449 lockdep_register_key(&wq->key);
3450 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3451 if (!lock_name)
3452 lock_name = wq->name;
3453
3454 wq->lock_name = lock_name;
3455 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3456 }
3457
3458 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3459 {
3460 lockdep_unregister_key(&wq->key);
3461 }
3462
3463 static void wq_free_lockdep(struct workqueue_struct *wq)
3464 {
3465 if (wq->lock_name != wq->name)
3466 kfree(wq->lock_name);
3467 }
3468 #else
3469 static void wq_init_lockdep(struct workqueue_struct *wq)
3470 {
3471 }
3472
3473 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3474 {
3475 }
3476
3477 static void wq_free_lockdep(struct workqueue_struct *wq)
3478 {
3479 }
3480 #endif
3481
3482 static void rcu_free_wq(struct rcu_head *rcu)
3483 {
3484 struct workqueue_struct *wq =
3485 container_of(rcu, struct workqueue_struct, rcu);
3486
3487 wq_free_lockdep(wq);
3488
3489 if (!(wq->flags & WQ_UNBOUND))
3490 free_percpu(wq->cpu_pwqs);
3491 else
3492 free_workqueue_attrs(wq->unbound_attrs);
3493
3494 kfree(wq->rescuer);
3495 kfree(wq);
3496 }
3497
3498 static void rcu_free_pool(struct rcu_head *rcu)
3499 {
3500 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3501
3502 ida_destroy(&pool->worker_ida);
3503 free_workqueue_attrs(pool->attrs);
3504 kfree(pool);
3505 }
3506
3507 /**
3508 * put_unbound_pool - put a worker_pool
3509 * @pool: worker_pool to put
3510 *
3511 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3512 * safe manner. get_unbound_pool() calls this function on its failure path
3513 * and this function should be able to release pools which went through,
3514 * successfully or not, init_worker_pool().
3515 *
3516 * Should be called with wq_pool_mutex held.
3517 */
3518 static void put_unbound_pool(struct worker_pool *pool)
3519 {
3520 DECLARE_COMPLETION_ONSTACK(detach_completion);
3521 struct worker *worker;
3522
3523 lockdep_assert_held(&wq_pool_mutex);
3524
3525 if (--pool->refcnt)
3526 return;
3527
3528 /* sanity checks */
3529 if (WARN_ON(!(pool->cpu < 0)) ||
3530 WARN_ON(!list_empty(&pool->worklist)))
3531 return;
3532
3533 /* release id and unhash */
3534 if (pool->id >= 0)
3535 idr_remove(&worker_pool_idr, pool->id);
3536 hash_del(&pool->hash_node);
3537
3538 /*
3539 * Become the manager and destroy all workers. This prevents
3540 * @pool's workers from blocking on attach_mutex. We're the last
3541 * manager and @pool gets freed with the flag set.
3542 */
3543 spin_lock_irq(&pool->lock);
3544 wait_event_lock_irq(wq_manager_wait,
3545 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3546 pool->flags |= POOL_MANAGER_ACTIVE;
3547
3548 while ((worker = first_idle_worker(pool)))
3549 destroy_worker(worker);
3550 WARN_ON(pool->nr_workers || pool->nr_idle);
3551 spin_unlock_irq(&pool->lock);
3552
3553 mutex_lock(&wq_pool_attach_mutex);
3554 if (!list_empty(&pool->workers))
3555 pool->detach_completion = &detach_completion;
3556 mutex_unlock(&wq_pool_attach_mutex);
3557
3558 if (pool->detach_completion)
3559 wait_for_completion(pool->detach_completion);
3560
3561 /* shut down the timers */
3562 del_timer_sync(&pool->idle_timer);
3563 del_timer_sync(&pool->mayday_timer);
3564
3565 /* RCU protected to allow dereferences from get_work_pool() */
3566 call_rcu(&pool->rcu, rcu_free_pool);
3567 }
3568
3569 /**
3570 * get_unbound_pool - get a worker_pool with the specified attributes
3571 * @attrs: the attributes of the worker_pool to get
3572 *
3573 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3574 * reference count and return it. If there already is a matching
3575 * worker_pool, it will be used; otherwise, this function attempts to
3576 * create a new one.
3577 *
3578 * Should be called with wq_pool_mutex held.
3579 *
3580 * Return: On success, a worker_pool with the same attributes as @attrs.
3581 * On failure, %NULL.
3582 */
3583 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3584 {
3585 u32 hash = wqattrs_hash(attrs);
3586 struct worker_pool *pool;
3587 int node;
3588 int target_node = NUMA_NO_NODE;
3589
3590 lockdep_assert_held(&wq_pool_mutex);
3591
3592 /* do we already have a matching pool? */
3593 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3594 if (wqattrs_equal(pool->attrs, attrs)) {
3595 pool->refcnt++;
3596 return pool;
3597 }
3598 }
3599
3600 /* if cpumask is contained inside a NUMA node, we belong to that node */
3601 if (wq_numa_enabled) {
3602 for_each_node(node) {
3603 if (cpumask_subset(attrs->cpumask,
3604 wq_numa_possible_cpumask[node])) {
3605 target_node = node;
3606 break;
3607 }
3608 }
3609 }
3610
3611 /* nope, create a new one */
3612 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3613 if (!pool || init_worker_pool(pool) < 0)
3614 goto fail;
3615
3616 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3617 copy_workqueue_attrs(pool->attrs, attrs);
3618 pool->node = target_node;
3619
3620 /*
3621 * no_numa isn't a worker_pool attribute, always clear it. See
3622 * 'struct workqueue_attrs' comments for detail.
3623 */
3624 pool->attrs->no_numa = false;
3625
3626 if (worker_pool_assign_id(pool) < 0)
3627 goto fail;
3628
3629 /* create and start the initial worker */
3630 if (wq_online && !create_worker(pool))
3631 goto fail;
3632
3633 /* install */
3634 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3635
3636 return pool;
3637 fail:
3638 if (pool)
3639 put_unbound_pool(pool);
3640 return NULL;
3641 }
3642
3643 static void rcu_free_pwq(struct rcu_head *rcu)
3644 {
3645 kmem_cache_free(pwq_cache,
3646 container_of(rcu, struct pool_workqueue, rcu));
3647 }
3648
3649 /*
3650 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3651 * and needs to be destroyed.
3652 */
3653 static void pwq_unbound_release_workfn(struct work_struct *work)
3654 {
3655 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3656 unbound_release_work);
3657 struct workqueue_struct *wq = pwq->wq;
3658 struct worker_pool *pool = pwq->pool;
3659 bool is_last;
3660
3661 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3662 return;
3663
3664 mutex_lock(&wq->mutex);
3665 list_del_rcu(&pwq->pwqs_node);
3666 is_last = list_empty(&wq->pwqs);
3667 mutex_unlock(&wq->mutex);
3668
3669 mutex_lock(&wq_pool_mutex);
3670 put_unbound_pool(pool);
3671 mutex_unlock(&wq_pool_mutex);
3672
3673 call_rcu(&pwq->rcu, rcu_free_pwq);
3674
3675 /*
3676 * If we're the last pwq going away, @wq is already dead and no one
3677 * is gonna access it anymore. Schedule RCU free.
3678 */
3679 if (is_last) {
3680 wq_unregister_lockdep(wq);
3681 call_rcu(&wq->rcu, rcu_free_wq);
3682 }
3683 }
3684
3685 /**
3686 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3687 * @pwq: target pool_workqueue
3688 *
3689 * If @pwq isn't freezing, set @pwq->max_active to the associated
3690 * workqueue's saved_max_active and activate delayed work items
3691 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3692 */
3693 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3694 {
3695 struct workqueue_struct *wq = pwq->wq;
3696 bool freezable = wq->flags & WQ_FREEZABLE;
3697 unsigned long flags;
3698
3699 /* for @wq->saved_max_active */
3700 lockdep_assert_held(&wq->mutex);
3701
3702 /* fast exit for non-freezable wqs */
3703 if (!freezable && pwq->max_active == wq->saved_max_active)
3704 return;
3705
3706 /* this function can be called during early boot w/ irq disabled */
3707 spin_lock_irqsave(&pwq->pool->lock, flags);
3708
3709 /*
3710 * During [un]freezing, the caller is responsible for ensuring that
3711 * this function is called at least once after @workqueue_freezing
3712 * is updated and visible.
3713 */
3714 if (!freezable || !workqueue_freezing) {
3715 pwq->max_active = wq->saved_max_active;
3716
3717 while (!list_empty(&pwq->delayed_works) &&
3718 pwq->nr_active < pwq->max_active)
3719 pwq_activate_first_delayed(pwq);
3720
3721 /*
3722 * Need to kick a worker after thawed or an unbound wq's
3723 * max_active is bumped. It's a slow path. Do it always.
3724 */
3725 wake_up_worker(pwq->pool);
3726 } else {
3727 pwq->max_active = 0;
3728 }
3729
3730 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3731 }
3732
3733 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3734 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3735 struct worker_pool *pool)
3736 {
3737 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3738
3739 memset(pwq, 0, sizeof(*pwq));
3740
3741 pwq->pool = pool;
3742 pwq->wq = wq;
3743 pwq->flush_color = -1;
3744 pwq->refcnt = 1;
3745 INIT_LIST_HEAD(&pwq->delayed_works);
3746 INIT_LIST_HEAD(&pwq->pwqs_node);
3747 INIT_LIST_HEAD(&pwq->mayday_node);
3748 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3749 }
3750
3751 /* sync @pwq with the current state of its associated wq and link it */
3752 static void link_pwq(struct pool_workqueue *pwq)
3753 {
3754 struct workqueue_struct *wq = pwq->wq;
3755
3756 lockdep_assert_held(&wq->mutex);
3757
3758 /* may be called multiple times, ignore if already linked */
3759 if (!list_empty(&pwq->pwqs_node))
3760 return;
3761
3762 /* set the matching work_color */
3763 pwq->work_color = wq->work_color;
3764
3765 /* sync max_active to the current setting */
3766 pwq_adjust_max_active(pwq);
3767
3768 /* link in @pwq */
3769 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3770 }
3771
3772 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3773 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3774 const struct workqueue_attrs *attrs)
3775 {
3776 struct worker_pool *pool;
3777 struct pool_workqueue *pwq;
3778
3779 lockdep_assert_held(&wq_pool_mutex);
3780
3781 pool = get_unbound_pool(attrs);
3782 if (!pool)
3783 return NULL;
3784
3785 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3786 if (!pwq) {
3787 put_unbound_pool(pool);
3788 return NULL;
3789 }
3790
3791 init_pwq(pwq, wq, pool);
3792 return pwq;
3793 }
3794
3795 /**
3796 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3797 * @attrs: the wq_attrs of the default pwq of the target workqueue
3798 * @node: the target NUMA node
3799 * @cpu_going_down: if >= 0, the CPU to consider as offline
3800 * @cpumask: outarg, the resulting cpumask
3801 *
3802 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3803 * @cpu_going_down is >= 0, that cpu is considered offline during
3804 * calculation. The result is stored in @cpumask.
3805 *
3806 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3807 * enabled and @node has online CPUs requested by @attrs, the returned
3808 * cpumask is the intersection of the possible CPUs of @node and
3809 * @attrs->cpumask.
3810 *
3811 * The caller is responsible for ensuring that the cpumask of @node stays
3812 * stable.
3813 *
3814 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3815 * %false if equal.
3816 */
3817 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3818 int cpu_going_down, cpumask_t *cpumask)
3819 {
3820 if (!wq_numa_enabled || attrs->no_numa)
3821 goto use_dfl;
3822
3823 /* does @node have any online CPUs @attrs wants? */
3824 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3825 if (cpu_going_down >= 0)
3826 cpumask_clear_cpu(cpu_going_down, cpumask);
3827
3828 if (cpumask_empty(cpumask))
3829 goto use_dfl;
3830
3831 /* yeap, return possible CPUs in @node that @attrs wants */
3832 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3833
3834 if (cpumask_empty(cpumask)) {
3835 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3836 "possible intersect\n");
3837 return false;
3838 }
3839
3840 return !cpumask_equal(cpumask, attrs->cpumask);
3841
3842 use_dfl:
3843 cpumask_copy(cpumask, attrs->cpumask);
3844 return false;
3845 }
3846
3847 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3848 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3849 int node,
3850 struct pool_workqueue *pwq)
3851 {
3852 struct pool_workqueue *old_pwq;
3853
3854 lockdep_assert_held(&wq_pool_mutex);
3855 lockdep_assert_held(&wq->mutex);
3856
3857 /* link_pwq() can handle duplicate calls */
3858 link_pwq(pwq);
3859
3860 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3861 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3862 return old_pwq;
3863 }
3864
3865 /* context to store the prepared attrs & pwqs before applying */
3866 struct apply_wqattrs_ctx {
3867 struct workqueue_struct *wq; /* target workqueue */
3868 struct workqueue_attrs *attrs; /* attrs to apply */
3869 struct list_head list; /* queued for batching commit */
3870 struct pool_workqueue *dfl_pwq;
3871 struct pool_workqueue *pwq_tbl[];
3872 };
3873
3874 /* free the resources after success or abort */
3875 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3876 {
3877 if (ctx) {
3878 int node;
3879
3880 for_each_node(node)
3881 put_pwq_unlocked(ctx->pwq_tbl[node]);
3882 put_pwq_unlocked(ctx->dfl_pwq);
3883
3884 free_workqueue_attrs(ctx->attrs);
3885
3886 kfree(ctx);
3887 }
3888 }
3889
3890 /* allocate the attrs and pwqs for later installation */
3891 static struct apply_wqattrs_ctx *
3892 apply_wqattrs_prepare(struct workqueue_struct *wq,
3893 const struct workqueue_attrs *attrs)
3894 {
3895 struct apply_wqattrs_ctx *ctx;
3896 struct workqueue_attrs *new_attrs, *tmp_attrs;
3897 int node;
3898
3899 lockdep_assert_held(&wq_pool_mutex);
3900
3901 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3902
3903 new_attrs = alloc_workqueue_attrs();
3904 tmp_attrs = alloc_workqueue_attrs();
3905 if (!ctx || !new_attrs || !tmp_attrs)
3906 goto out_free;
3907
3908 /*
3909 * Calculate the attrs of the default pwq.
3910 * If the user configured cpumask doesn't overlap with the
3911 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3912 */
3913 copy_workqueue_attrs(new_attrs, attrs);
3914 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3915 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3916 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3917
3918 /*
3919 * We may create multiple pwqs with differing cpumasks. Make a
3920 * copy of @new_attrs which will be modified and used to obtain
3921 * pools.
3922 */
3923 copy_workqueue_attrs(tmp_attrs, new_attrs);
3924
3925 /*
3926 * If something goes wrong during CPU up/down, we'll fall back to
3927 * the default pwq covering whole @attrs->cpumask. Always create
3928 * it even if we don't use it immediately.
3929 */
3930 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3931 if (!ctx->dfl_pwq)
3932 goto out_free;
3933
3934 for_each_node(node) {
3935 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3936 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3937 if (!ctx->pwq_tbl[node])
3938 goto out_free;
3939 } else {
3940 ctx->dfl_pwq->refcnt++;
3941 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3942 }
3943 }
3944
3945 /* save the user configured attrs and sanitize it. */
3946 copy_workqueue_attrs(new_attrs, attrs);
3947 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3948 ctx->attrs = new_attrs;
3949
3950 ctx->wq = wq;
3951 free_workqueue_attrs(tmp_attrs);
3952 return ctx;
3953
3954 out_free:
3955 free_workqueue_attrs(tmp_attrs);
3956 free_workqueue_attrs(new_attrs);
3957 apply_wqattrs_cleanup(ctx);
3958 return NULL;
3959 }
3960
3961 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3962 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3963 {
3964 int node;
3965
3966 /* all pwqs have been created successfully, let's install'em */
3967 mutex_lock(&ctx->wq->mutex);
3968
3969 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3970
3971 /* save the previous pwq and install the new one */
3972 for_each_node(node)
3973 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3974 ctx->pwq_tbl[node]);
3975
3976 /* @dfl_pwq might not have been used, ensure it's linked */
3977 link_pwq(ctx->dfl_pwq);
3978 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3979
3980 mutex_unlock(&ctx->wq->mutex);
3981 }
3982
3983 static void apply_wqattrs_lock(void)
3984 {
3985 /* CPUs should stay stable across pwq creations and installations */
3986 get_online_cpus();
3987 mutex_lock(&wq_pool_mutex);
3988 }
3989
3990 static void apply_wqattrs_unlock(void)
3991 {
3992 mutex_unlock(&wq_pool_mutex);
3993 put_online_cpus();
3994 }
3995
3996 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3997 const struct workqueue_attrs *attrs)
3998 {
3999 struct apply_wqattrs_ctx *ctx;
4000
4001 /* only unbound workqueues can change attributes */
4002 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4003 return -EINVAL;
4004
4005 /* creating multiple pwqs breaks ordering guarantee */
4006 if (!list_empty(&wq->pwqs)) {
4007 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4008 return -EINVAL;
4009
4010 wq->flags &= ~__WQ_ORDERED;
4011 }
4012
4013 ctx = apply_wqattrs_prepare(wq, attrs);
4014 if (!ctx)
4015 return -ENOMEM;
4016
4017 /* the ctx has been prepared successfully, let's commit it */
4018 apply_wqattrs_commit(ctx);
4019 apply_wqattrs_cleanup(ctx);
4020
4021 return 0;
4022 }
4023
4024 /**
4025 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4026 * @wq: the target workqueue
4027 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4028 *
4029 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4030 * machines, this function maps a separate pwq to each NUMA node with
4031 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4032 * NUMA node it was issued on. Older pwqs are released as in-flight work
4033 * items finish. Note that a work item which repeatedly requeues itself
4034 * back-to-back will stay on its current pwq.
4035 *
4036 * Performs GFP_KERNEL allocations.
4037 *
4038 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4039 *
4040 * Return: 0 on success and -errno on failure.
4041 */
4042 int apply_workqueue_attrs(struct workqueue_struct *wq,
4043 const struct workqueue_attrs *attrs)
4044 {
4045 int ret;
4046
4047 lockdep_assert_cpus_held();
4048
4049 mutex_lock(&wq_pool_mutex);
4050 ret = apply_workqueue_attrs_locked(wq, attrs);
4051 mutex_unlock(&wq_pool_mutex);
4052
4053 return ret;
4054 }
4055
4056 /**
4057 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4058 * @wq: the target workqueue
4059 * @cpu: the CPU coming up or going down
4060 * @online: whether @cpu is coming up or going down
4061 *
4062 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4063 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4064 * @wq accordingly.
4065 *
4066 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4067 * falls back to @wq->dfl_pwq which may not be optimal but is always
4068 * correct.
4069 *
4070 * Note that when the last allowed CPU of a NUMA node goes offline for a
4071 * workqueue with a cpumask spanning multiple nodes, the workers which were
4072 * already executing the work items for the workqueue will lose their CPU
4073 * affinity and may execute on any CPU. This is similar to how per-cpu
4074 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4075 * affinity, it's the user's responsibility to flush the work item from
4076 * CPU_DOWN_PREPARE.
4077 */
4078 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4079 bool online)
4080 {
4081 int node = cpu_to_node(cpu);
4082 int cpu_off = online ? -1 : cpu;
4083 struct pool_workqueue *old_pwq = NULL, *pwq;
4084 struct workqueue_attrs *target_attrs;
4085 cpumask_t *cpumask;
4086
4087 lockdep_assert_held(&wq_pool_mutex);
4088
4089 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4090 wq->unbound_attrs->no_numa)
4091 return;
4092
4093 /*
4094 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4095 * Let's use a preallocated one. The following buf is protected by
4096 * CPU hotplug exclusion.
4097 */
4098 target_attrs = wq_update_unbound_numa_attrs_buf;
4099 cpumask = target_attrs->cpumask;
4100
4101 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4102 pwq = unbound_pwq_by_node(wq, node);
4103
4104 /*
4105 * Let's determine what needs to be done. If the target cpumask is
4106 * different from the default pwq's, we need to compare it to @pwq's
4107 * and create a new one if they don't match. If the target cpumask
4108 * equals the default pwq's, the default pwq should be used.
4109 */
4110 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4111 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4112 return;
4113 } else {
4114 goto use_dfl_pwq;
4115 }
4116
4117 /* create a new pwq */
4118 pwq = alloc_unbound_pwq(wq, target_attrs);
4119 if (!pwq) {
4120 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4121 wq->name);
4122 goto use_dfl_pwq;
4123 }
4124
4125 /* Install the new pwq. */
4126 mutex_lock(&wq->mutex);
4127 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4128 goto out_unlock;
4129
4130 use_dfl_pwq:
4131 mutex_lock(&wq->mutex);
4132 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4133 get_pwq(wq->dfl_pwq);
4134 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4135 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4136 out_unlock:
4137 mutex_unlock(&wq->mutex);
4138 put_pwq_unlocked(old_pwq);
4139 }
4140
4141 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4142 {
4143 bool highpri = wq->flags & WQ_HIGHPRI;
4144 int cpu, ret;
4145
4146 if (!(wq->flags & WQ_UNBOUND)) {
4147 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4148 if (!wq->cpu_pwqs)
4149 return -ENOMEM;
4150
4151 for_each_possible_cpu(cpu) {
4152 struct pool_workqueue *pwq =
4153 per_cpu_ptr(wq->cpu_pwqs, cpu);
4154 struct worker_pool *cpu_pools =
4155 per_cpu(cpu_worker_pools, cpu);
4156
4157 init_pwq(pwq, wq, &cpu_pools[highpri]);
4158
4159 mutex_lock(&wq->mutex);
4160 link_pwq(pwq);
4161 mutex_unlock(&wq->mutex);
4162 }
4163 return 0;
4164 }
4165
4166 get_online_cpus();
4167 if (wq->flags & __WQ_ORDERED) {
4168 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4169 /* there should only be single pwq for ordering guarantee */
4170 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4171 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4172 "ordering guarantee broken for workqueue %s\n", wq->name);
4173 } else {
4174 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4175 }
4176 put_online_cpus();
4177
4178 return ret;
4179 }
4180
4181 static int wq_clamp_max_active(int max_active, unsigned int flags,
4182 const char *name)
4183 {
4184 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4185
4186 if (max_active < 1 || max_active > lim)
4187 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4188 max_active, name, 1, lim);
4189
4190 return clamp_val(max_active, 1, lim);
4191 }
4192
4193 /*
4194 * Workqueues which may be used during memory reclaim should have a rescuer
4195 * to guarantee forward progress.
4196 */
4197 static int init_rescuer(struct workqueue_struct *wq)
4198 {
4199 struct worker *rescuer;
4200 int ret;
4201
4202 if (!(wq->flags & WQ_MEM_RECLAIM))
4203 return 0;
4204
4205 rescuer = alloc_worker(NUMA_NO_NODE);
4206 if (!rescuer)
4207 return -ENOMEM;
4208
4209 rescuer->rescue_wq = wq;
4210 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4211 ret = PTR_ERR_OR_ZERO(rescuer->task);
4212 if (ret) {
4213 kfree(rescuer);
4214 return ret;
4215 }
4216
4217 wq->rescuer = rescuer;
4218 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4219 wake_up_process(rescuer->task);
4220
4221 return 0;
4222 }
4223
4224 __printf(1, 4)
4225 struct workqueue_struct *alloc_workqueue(const char *fmt,
4226 unsigned int flags,
4227 int max_active, ...)
4228 {
4229 size_t tbl_size = 0;
4230 va_list args;
4231 struct workqueue_struct *wq;
4232 struct pool_workqueue *pwq;
4233
4234 /*
4235 * Unbound && max_active == 1 used to imply ordered, which is no
4236 * longer the case on NUMA machines due to per-node pools. While
4237 * alloc_ordered_workqueue() is the right way to create an ordered
4238 * workqueue, keep the previous behavior to avoid subtle breakages
4239 * on NUMA.
4240 */
4241 if ((flags & WQ_UNBOUND) && max_active == 1)
4242 flags |= __WQ_ORDERED;
4243
4244 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4245 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4246 flags |= WQ_UNBOUND;
4247
4248 /* allocate wq and format name */
4249 if (flags & WQ_UNBOUND)
4250 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4251
4252 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4253 if (!wq)
4254 return NULL;
4255
4256 if (flags & WQ_UNBOUND) {
4257 wq->unbound_attrs = alloc_workqueue_attrs();
4258 if (!wq->unbound_attrs)
4259 goto err_free_wq;
4260 }
4261
4262 va_start(args, max_active);
4263 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4264 va_end(args);
4265
4266 max_active = max_active ?: WQ_DFL_ACTIVE;
4267 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4268
4269 /* init wq */
4270 wq->flags = flags;
4271 wq->saved_max_active = max_active;
4272 mutex_init(&wq->mutex);
4273 atomic_set(&wq->nr_pwqs_to_flush, 0);
4274 INIT_LIST_HEAD(&wq->pwqs);
4275 INIT_LIST_HEAD(&wq->flusher_queue);
4276 INIT_LIST_HEAD(&wq->flusher_overflow);
4277 INIT_LIST_HEAD(&wq->maydays);
4278
4279 wq_init_lockdep(wq);
4280 INIT_LIST_HEAD(&wq->list);
4281
4282 if (alloc_and_link_pwqs(wq) < 0)
4283 goto err_unreg_lockdep;
4284
4285 if (wq_online && init_rescuer(wq) < 0)
4286 goto err_destroy;
4287
4288 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4289 goto err_destroy;
4290
4291 /*
4292 * wq_pool_mutex protects global freeze state and workqueues list.
4293 * Grab it, adjust max_active and add the new @wq to workqueues
4294 * list.
4295 */
4296 mutex_lock(&wq_pool_mutex);
4297
4298 mutex_lock(&wq->mutex);
4299 for_each_pwq(pwq, wq)
4300 pwq_adjust_max_active(pwq);
4301 mutex_unlock(&wq->mutex);
4302
4303 list_add_tail_rcu(&wq->list, &workqueues);
4304
4305 mutex_unlock(&wq_pool_mutex);
4306
4307 return wq;
4308
4309 err_unreg_lockdep:
4310 wq_unregister_lockdep(wq);
4311 wq_free_lockdep(wq);
4312 err_free_wq:
4313 free_workqueue_attrs(wq->unbound_attrs);
4314 kfree(wq);
4315 return NULL;
4316 err_destroy:
4317 destroy_workqueue(wq);
4318 return NULL;
4319 }
4320 EXPORT_SYMBOL_GPL(alloc_workqueue);
4321
4322 static bool pwq_busy(struct pool_workqueue *pwq)
4323 {
4324 int i;
4325
4326 for (i = 0; i < WORK_NR_COLORS; i++)
4327 if (pwq->nr_in_flight[i])
4328 return true;
4329
4330 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4331 return true;
4332 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4333 return true;
4334
4335 return false;
4336 }
4337
4338 /**
4339 * destroy_workqueue - safely terminate a workqueue
4340 * @wq: target workqueue
4341 *
4342 * Safely destroy a workqueue. All work currently pending will be done first.
4343 */
4344 void destroy_workqueue(struct workqueue_struct *wq)
4345 {
4346 struct pool_workqueue *pwq;
4347 int node;
4348
4349 /*
4350 * Remove it from sysfs first so that sanity check failure doesn't
4351 * lead to sysfs name conflicts.
4352 */
4353 workqueue_sysfs_unregister(wq);
4354
4355 /* drain it before proceeding with destruction */
4356 drain_workqueue(wq);
4357
4358 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4359 if (wq->rescuer) {
4360 struct worker *rescuer = wq->rescuer;
4361
4362 /* this prevents new queueing */
4363 spin_lock_irq(&wq_mayday_lock);
4364 wq->rescuer = NULL;
4365 spin_unlock_irq(&wq_mayday_lock);
4366
4367 /* rescuer will empty maydays list before exiting */
4368 kthread_stop(rescuer->task);
4369 kfree(rescuer);
4370 }
4371
4372 /*
4373 * Sanity checks - grab all the locks so that we wait for all
4374 * in-flight operations which may do put_pwq().
4375 */
4376 mutex_lock(&wq_pool_mutex);
4377 mutex_lock(&wq->mutex);
4378 for_each_pwq(pwq, wq) {
4379 spin_lock_irq(&pwq->pool->lock);
4380 if (WARN_ON(pwq_busy(pwq))) {
4381 pr_warn("%s: %s has the following busy pwq\n",
4382 __func__, wq->name);
4383 show_pwq(pwq);
4384 spin_unlock_irq(&pwq->pool->lock);
4385 mutex_unlock(&wq->mutex);
4386 mutex_unlock(&wq_pool_mutex);
4387 show_workqueue_state();
4388 return;
4389 }
4390 spin_unlock_irq(&pwq->pool->lock);
4391 }
4392 mutex_unlock(&wq->mutex);
4393 mutex_unlock(&wq_pool_mutex);
4394
4395 /*
4396 * wq list is used to freeze wq, remove from list after
4397 * flushing is complete in case freeze races us.
4398 */
4399 mutex_lock(&wq_pool_mutex);
4400 list_del_rcu(&wq->list);
4401 mutex_unlock(&wq_pool_mutex);
4402
4403 if (!(wq->flags & WQ_UNBOUND)) {
4404 wq_unregister_lockdep(wq);
4405 /*
4406 * The base ref is never dropped on per-cpu pwqs. Directly
4407 * schedule RCU free.
4408 */
4409 call_rcu(&wq->rcu, rcu_free_wq);
4410 } else {
4411 /*
4412 * We're the sole accessor of @wq at this point. Directly
4413 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4414 * @wq will be freed when the last pwq is released.
4415 */
4416 for_each_node(node) {
4417 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4418 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4419 put_pwq_unlocked(pwq);
4420 }
4421
4422 /*
4423 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4424 * put. Don't access it afterwards.
4425 */
4426 pwq = wq->dfl_pwq;
4427 wq->dfl_pwq = NULL;
4428 put_pwq_unlocked(pwq);
4429 }
4430 }
4431 EXPORT_SYMBOL_GPL(destroy_workqueue);
4432
4433 /**
4434 * workqueue_set_max_active - adjust max_active of a workqueue
4435 * @wq: target workqueue
4436 * @max_active: new max_active value.
4437 *
4438 * Set max_active of @wq to @max_active.
4439 *
4440 * CONTEXT:
4441 * Don't call from IRQ context.
4442 */
4443 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4444 {
4445 struct pool_workqueue *pwq;
4446
4447 /* disallow meddling with max_active for ordered workqueues */
4448 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4449 return;
4450
4451 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4452
4453 mutex_lock(&wq->mutex);
4454
4455 wq->flags &= ~__WQ_ORDERED;
4456 wq->saved_max_active = max_active;
4457
4458 for_each_pwq(pwq, wq)
4459 pwq_adjust_max_active(pwq);
4460
4461 mutex_unlock(&wq->mutex);
4462 }
4463 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4464
4465 /**
4466 * current_work - retrieve %current task's work struct
4467 *
4468 * Determine if %current task is a workqueue worker and what it's working on.
4469 * Useful to find out the context that the %current task is running in.
4470 *
4471 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4472 */
4473 struct work_struct *current_work(void)
4474 {
4475 struct worker *worker = current_wq_worker();
4476
4477 return worker ? worker->current_work : NULL;
4478 }
4479 EXPORT_SYMBOL(current_work);
4480
4481 /**
4482 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4483 *
4484 * Determine whether %current is a workqueue rescuer. Can be used from
4485 * work functions to determine whether it's being run off the rescuer task.
4486 *
4487 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4488 */
4489 bool current_is_workqueue_rescuer(void)
4490 {
4491 struct worker *worker = current_wq_worker();
4492
4493 return worker && worker->rescue_wq;
4494 }
4495
4496 /**
4497 * workqueue_congested - test whether a workqueue is congested
4498 * @cpu: CPU in question
4499 * @wq: target workqueue
4500 *
4501 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4502 * no synchronization around this function and the test result is
4503 * unreliable and only useful as advisory hints or for debugging.
4504 *
4505 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4506 * Note that both per-cpu and unbound workqueues may be associated with
4507 * multiple pool_workqueues which have separate congested states. A
4508 * workqueue being congested on one CPU doesn't mean the workqueue is also
4509 * contested on other CPUs / NUMA nodes.
4510 *
4511 * Return:
4512 * %true if congested, %false otherwise.
4513 */
4514 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4515 {
4516 struct pool_workqueue *pwq;
4517 bool ret;
4518
4519 rcu_read_lock();
4520 preempt_disable();
4521
4522 if (cpu == WORK_CPU_UNBOUND)
4523 cpu = smp_processor_id();
4524
4525 if (!(wq->flags & WQ_UNBOUND))
4526 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4527 else
4528 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4529
4530 ret = !list_empty(&pwq->delayed_works);
4531 preempt_enable();
4532 rcu_read_unlock();
4533
4534 return ret;
4535 }
4536 EXPORT_SYMBOL_GPL(workqueue_congested);
4537
4538 /**
4539 * work_busy - test whether a work is currently pending or running
4540 * @work: the work to be tested
4541 *
4542 * Test whether @work is currently pending or running. There is no
4543 * synchronization around this function and the test result is
4544 * unreliable and only useful as advisory hints or for debugging.
4545 *
4546 * Return:
4547 * OR'd bitmask of WORK_BUSY_* bits.
4548 */
4549 unsigned int work_busy(struct work_struct *work)
4550 {
4551 struct worker_pool *pool;
4552 unsigned long flags;
4553 unsigned int ret = 0;
4554
4555 if (work_pending(work))
4556 ret |= WORK_BUSY_PENDING;
4557
4558 rcu_read_lock();
4559 pool = get_work_pool(work);
4560 if (pool) {
4561 spin_lock_irqsave(&pool->lock, flags);
4562 if (find_worker_executing_work(pool, work))
4563 ret |= WORK_BUSY_RUNNING;
4564 spin_unlock_irqrestore(&pool->lock, flags);
4565 }
4566 rcu_read_unlock();
4567
4568 return ret;
4569 }
4570 EXPORT_SYMBOL_GPL(work_busy);
4571
4572 /**
4573 * set_worker_desc - set description for the current work item
4574 * @fmt: printf-style format string
4575 * @...: arguments for the format string
4576 *
4577 * This function can be called by a running work function to describe what
4578 * the work item is about. If the worker task gets dumped, this
4579 * information will be printed out together to help debugging. The
4580 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4581 */
4582 void set_worker_desc(const char *fmt, ...)
4583 {
4584 struct worker *worker = current_wq_worker();
4585 va_list args;
4586
4587 if (worker) {
4588 va_start(args, fmt);
4589 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4590 va_end(args);
4591 }
4592 }
4593 EXPORT_SYMBOL_GPL(set_worker_desc);
4594
4595 /**
4596 * print_worker_info - print out worker information and description
4597 * @log_lvl: the log level to use when printing
4598 * @task: target task
4599 *
4600 * If @task is a worker and currently executing a work item, print out the
4601 * name of the workqueue being serviced and worker description set with
4602 * set_worker_desc() by the currently executing work item.
4603 *
4604 * This function can be safely called on any task as long as the
4605 * task_struct itself is accessible. While safe, this function isn't
4606 * synchronized and may print out mixups or garbages of limited length.
4607 */
4608 void print_worker_info(const char *log_lvl, struct task_struct *task)
4609 {
4610 work_func_t *fn = NULL;
4611 char name[WQ_NAME_LEN] = { };
4612 char desc[WORKER_DESC_LEN] = { };
4613 struct pool_workqueue *pwq = NULL;
4614 struct workqueue_struct *wq = NULL;
4615 struct worker *worker;
4616
4617 if (!(task->flags & PF_WQ_WORKER))
4618 return;
4619
4620 /*
4621 * This function is called without any synchronization and @task
4622 * could be in any state. Be careful with dereferences.
4623 */
4624 worker = kthread_probe_data(task);
4625
4626 /*
4627 * Carefully copy the associated workqueue's workfn, name and desc.
4628 * Keep the original last '\0' in case the original is garbage.
4629 */
4630 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4631 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4632 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4633 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4634 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4635
4636 if (fn || name[0] || desc[0]) {
4637 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4638 if (strcmp(name, desc))
4639 pr_cont(" (%s)", desc);
4640 pr_cont("\n");
4641 }
4642 }
4643
4644 static void pr_cont_pool_info(struct worker_pool *pool)
4645 {
4646 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4647 if (pool->node != NUMA_NO_NODE)
4648 pr_cont(" node=%d", pool->node);
4649 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4650 }
4651
4652 static void pr_cont_work(bool comma, struct work_struct *work)
4653 {
4654 if (work->func == wq_barrier_func) {
4655 struct wq_barrier *barr;
4656
4657 barr = container_of(work, struct wq_barrier, work);
4658
4659 pr_cont("%s BAR(%d)", comma ? "," : "",
4660 task_pid_nr(barr->task));
4661 } else {
4662 pr_cont("%s %ps", comma ? "," : "", work->func);
4663 }
4664 }
4665
4666 static void show_pwq(struct pool_workqueue *pwq)
4667 {
4668 struct worker_pool *pool = pwq->pool;
4669 struct work_struct *work;
4670 struct worker *worker;
4671 bool has_in_flight = false, has_pending = false;
4672 int bkt;
4673
4674 pr_info(" pwq %d:", pool->id);
4675 pr_cont_pool_info(pool);
4676
4677 pr_cont(" active=%d/%d refcnt=%d%s\n",
4678 pwq->nr_active, pwq->max_active, pwq->refcnt,
4679 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4680
4681 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4682 if (worker->current_pwq == pwq) {
4683 has_in_flight = true;
4684 break;
4685 }
4686 }
4687 if (has_in_flight) {
4688 bool comma = false;
4689
4690 pr_info(" in-flight:");
4691 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4692 if (worker->current_pwq != pwq)
4693 continue;
4694
4695 pr_cont("%s %d%s:%ps", comma ? "," : "",
4696 task_pid_nr(worker->task),
4697 worker->rescue_wq ? "(RESCUER)" : "",
4698 worker->current_func);
4699 list_for_each_entry(work, &worker->scheduled, entry)
4700 pr_cont_work(false, work);
4701 comma = true;
4702 }
4703 pr_cont("\n");
4704 }
4705
4706 list_for_each_entry(work, &pool->worklist, entry) {
4707 if (get_work_pwq(work) == pwq) {
4708 has_pending = true;
4709 break;
4710 }
4711 }
4712 if (has_pending) {
4713 bool comma = false;
4714
4715 pr_info(" pending:");
4716 list_for_each_entry(work, &pool->worklist, entry) {
4717 if (get_work_pwq(work) != pwq)
4718 continue;
4719
4720 pr_cont_work(comma, work);
4721 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4722 }
4723 pr_cont("\n");
4724 }
4725
4726 if (!list_empty(&pwq->delayed_works)) {
4727 bool comma = false;
4728
4729 pr_info(" delayed:");
4730 list_for_each_entry(work, &pwq->delayed_works, entry) {
4731 pr_cont_work(comma, work);
4732 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4733 }
4734 pr_cont("\n");
4735 }
4736 }
4737
4738 /**
4739 * show_workqueue_state - dump workqueue state
4740 *
4741 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4742 * all busy workqueues and pools.
4743 */
4744 void show_workqueue_state(void)
4745 {
4746 struct workqueue_struct *wq;
4747 struct worker_pool *pool;
4748 unsigned long flags;
4749 int pi;
4750
4751 rcu_read_lock();
4752
4753 pr_info("Showing busy workqueues and worker pools:\n");
4754
4755 list_for_each_entry_rcu(wq, &workqueues, list) {
4756 struct pool_workqueue *pwq;
4757 bool idle = true;
4758
4759 for_each_pwq(pwq, wq) {
4760 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4761 idle = false;
4762 break;
4763 }
4764 }
4765 if (idle)
4766 continue;
4767
4768 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4769
4770 for_each_pwq(pwq, wq) {
4771 spin_lock_irqsave(&pwq->pool->lock, flags);
4772 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4773 show_pwq(pwq);
4774 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4775 /*
4776 * We could be printing a lot from atomic context, e.g.
4777 * sysrq-t -> show_workqueue_state(). Avoid triggering
4778 * hard lockup.
4779 */
4780 touch_nmi_watchdog();
4781 }
4782 }
4783
4784 for_each_pool(pool, pi) {
4785 struct worker *worker;
4786 bool first = true;
4787
4788 spin_lock_irqsave(&pool->lock, flags);
4789 if (pool->nr_workers == pool->nr_idle)
4790 goto next_pool;
4791
4792 pr_info("pool %d:", pool->id);
4793 pr_cont_pool_info(pool);
4794 pr_cont(" hung=%us workers=%d",
4795 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4796 pool->nr_workers);
4797 if (pool->manager)
4798 pr_cont(" manager: %d",
4799 task_pid_nr(pool->manager->task));
4800 list_for_each_entry(worker, &pool->idle_list, entry) {
4801 pr_cont(" %s%d", first ? "idle: " : "",
4802 task_pid_nr(worker->task));
4803 first = false;
4804 }
4805 pr_cont("\n");
4806 next_pool:
4807 spin_unlock_irqrestore(&pool->lock, flags);
4808 /*
4809 * We could be printing a lot from atomic context, e.g.
4810 * sysrq-t -> show_workqueue_state(). Avoid triggering
4811 * hard lockup.
4812 */
4813 touch_nmi_watchdog();
4814 }
4815
4816 rcu_read_unlock();
4817 }
4818
4819 /* used to show worker information through /proc/PID/{comm,stat,status} */
4820 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4821 {
4822 int off;
4823
4824 /* always show the actual comm */
4825 off = strscpy(buf, task->comm, size);
4826 if (off < 0)
4827 return;
4828
4829 /* stabilize PF_WQ_WORKER and worker pool association */
4830 mutex_lock(&wq_pool_attach_mutex);
4831
4832 if (task->flags & PF_WQ_WORKER) {
4833 struct worker *worker = kthread_data(task);
4834 struct worker_pool *pool = worker->pool;
4835
4836 if (pool) {
4837 spin_lock_irq(&pool->lock);
4838 /*
4839 * ->desc tracks information (wq name or
4840 * set_worker_desc()) for the latest execution. If
4841 * current, prepend '+', otherwise '-'.
4842 */
4843 if (worker->desc[0] != '\0') {
4844 if (worker->current_work)
4845 scnprintf(buf + off, size - off, "+%s",
4846 worker->desc);
4847 else
4848 scnprintf(buf + off, size - off, "-%s",
4849 worker->desc);
4850 }
4851 spin_unlock_irq(&pool->lock);
4852 }
4853 }
4854
4855 mutex_unlock(&wq_pool_attach_mutex);
4856 }
4857
4858 #ifdef CONFIG_SMP
4859
4860 /*
4861 * CPU hotplug.
4862 *
4863 * There are two challenges in supporting CPU hotplug. Firstly, there
4864 * are a lot of assumptions on strong associations among work, pwq and
4865 * pool which make migrating pending and scheduled works very
4866 * difficult to implement without impacting hot paths. Secondly,
4867 * worker pools serve mix of short, long and very long running works making
4868 * blocked draining impractical.
4869 *
4870 * This is solved by allowing the pools to be disassociated from the CPU
4871 * running as an unbound one and allowing it to be reattached later if the
4872 * cpu comes back online.
4873 */
4874
4875 static void unbind_workers(int cpu)
4876 {
4877 struct worker_pool *pool;
4878 struct worker *worker;
4879
4880 for_each_cpu_worker_pool(pool, cpu) {
4881 mutex_lock(&wq_pool_attach_mutex);
4882 spin_lock_irq(&pool->lock);
4883
4884 /*
4885 * We've blocked all attach/detach operations. Make all workers
4886 * unbound and set DISASSOCIATED. Before this, all workers
4887 * except for the ones which are still executing works from
4888 * before the last CPU down must be on the cpu. After
4889 * this, they may become diasporas.
4890 */
4891 for_each_pool_worker(worker, pool)
4892 worker->flags |= WORKER_UNBOUND;
4893
4894 pool->flags |= POOL_DISASSOCIATED;
4895
4896 spin_unlock_irq(&pool->lock);
4897 mutex_unlock(&wq_pool_attach_mutex);
4898
4899 /*
4900 * Call schedule() so that we cross rq->lock and thus can
4901 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4902 * This is necessary as scheduler callbacks may be invoked
4903 * from other cpus.
4904 */
4905 schedule();
4906
4907 /*
4908 * Sched callbacks are disabled now. Zap nr_running.
4909 * After this, nr_running stays zero and need_more_worker()
4910 * and keep_working() are always true as long as the
4911 * worklist is not empty. This pool now behaves as an
4912 * unbound (in terms of concurrency management) pool which
4913 * are served by workers tied to the pool.
4914 */
4915 atomic_set(&pool->nr_running, 0);
4916
4917 /*
4918 * With concurrency management just turned off, a busy
4919 * worker blocking could lead to lengthy stalls. Kick off
4920 * unbound chain execution of currently pending work items.
4921 */
4922 spin_lock_irq(&pool->lock);
4923 wake_up_worker(pool);
4924 spin_unlock_irq(&pool->lock);
4925 }
4926 }
4927
4928 /**
4929 * rebind_workers - rebind all workers of a pool to the associated CPU
4930 * @pool: pool of interest
4931 *
4932 * @pool->cpu is coming online. Rebind all workers to the CPU.
4933 */
4934 static void rebind_workers(struct worker_pool *pool)
4935 {
4936 struct worker *worker;
4937
4938 lockdep_assert_held(&wq_pool_attach_mutex);
4939
4940 /*
4941 * Restore CPU affinity of all workers. As all idle workers should
4942 * be on the run-queue of the associated CPU before any local
4943 * wake-ups for concurrency management happen, restore CPU affinity
4944 * of all workers first and then clear UNBOUND. As we're called
4945 * from CPU_ONLINE, the following shouldn't fail.
4946 */
4947 for_each_pool_worker(worker, pool)
4948 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4949 pool->attrs->cpumask) < 0);
4950
4951 spin_lock_irq(&pool->lock);
4952
4953 pool->flags &= ~POOL_DISASSOCIATED;
4954
4955 for_each_pool_worker(worker, pool) {
4956 unsigned int worker_flags = worker->flags;
4957
4958 /*
4959 * A bound idle worker should actually be on the runqueue
4960 * of the associated CPU for local wake-ups targeting it to
4961 * work. Kick all idle workers so that they migrate to the
4962 * associated CPU. Doing this in the same loop as
4963 * replacing UNBOUND with REBOUND is safe as no worker will
4964 * be bound before @pool->lock is released.
4965 */
4966 if (worker_flags & WORKER_IDLE)
4967 wake_up_process(worker->task);
4968
4969 /*
4970 * We want to clear UNBOUND but can't directly call
4971 * worker_clr_flags() or adjust nr_running. Atomically
4972 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4973 * @worker will clear REBOUND using worker_clr_flags() when
4974 * it initiates the next execution cycle thus restoring
4975 * concurrency management. Note that when or whether
4976 * @worker clears REBOUND doesn't affect correctness.
4977 *
4978 * WRITE_ONCE() is necessary because @worker->flags may be
4979 * tested without holding any lock in
4980 * wq_worker_running(). Without it, NOT_RUNNING test may
4981 * fail incorrectly leading to premature concurrency
4982 * management operations.
4983 */
4984 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4985 worker_flags |= WORKER_REBOUND;
4986 worker_flags &= ~WORKER_UNBOUND;
4987 WRITE_ONCE(worker->flags, worker_flags);
4988 }
4989
4990 spin_unlock_irq(&pool->lock);
4991 }
4992
4993 /**
4994 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4995 * @pool: unbound pool of interest
4996 * @cpu: the CPU which is coming up
4997 *
4998 * An unbound pool may end up with a cpumask which doesn't have any online
4999 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5000 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5001 * online CPU before, cpus_allowed of all its workers should be restored.
5002 */
5003 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5004 {
5005 static cpumask_t cpumask;
5006 struct worker *worker;
5007
5008 lockdep_assert_held(&wq_pool_attach_mutex);
5009
5010 /* is @cpu allowed for @pool? */
5011 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5012 return;
5013
5014 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5015
5016 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5017 for_each_pool_worker(worker, pool)
5018 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5019 }
5020
5021 int workqueue_prepare_cpu(unsigned int cpu)
5022 {
5023 struct worker_pool *pool;
5024
5025 for_each_cpu_worker_pool(pool, cpu) {
5026 if (pool->nr_workers)
5027 continue;
5028 if (!create_worker(pool))
5029 return -ENOMEM;
5030 }
5031 return 0;
5032 }
5033
5034 int workqueue_online_cpu(unsigned int cpu)
5035 {
5036 struct worker_pool *pool;
5037 struct workqueue_struct *wq;
5038 int pi;
5039
5040 mutex_lock(&wq_pool_mutex);
5041
5042 for_each_pool(pool, pi) {
5043 mutex_lock(&wq_pool_attach_mutex);
5044
5045 if (pool->cpu == cpu)
5046 rebind_workers(pool);
5047 else if (pool->cpu < 0)
5048 restore_unbound_workers_cpumask(pool, cpu);
5049
5050 mutex_unlock(&wq_pool_attach_mutex);
5051 }
5052
5053 /* update NUMA affinity of unbound workqueues */
5054 list_for_each_entry(wq, &workqueues, list)
5055 wq_update_unbound_numa(wq, cpu, true);
5056
5057 mutex_unlock(&wq_pool_mutex);
5058 return 0;
5059 }
5060
5061 int workqueue_offline_cpu(unsigned int cpu)
5062 {
5063 struct workqueue_struct *wq;
5064
5065 /* unbinding per-cpu workers should happen on the local CPU */
5066 if (WARN_ON(cpu != smp_processor_id()))
5067 return -1;
5068
5069 unbind_workers(cpu);
5070
5071 /* update NUMA affinity of unbound workqueues */
5072 mutex_lock(&wq_pool_mutex);
5073 list_for_each_entry(wq, &workqueues, list)
5074 wq_update_unbound_numa(wq, cpu, false);
5075 mutex_unlock(&wq_pool_mutex);
5076
5077 return 0;
5078 }
5079
5080 struct work_for_cpu {
5081 struct work_struct work;
5082 long (*fn)(void *);
5083 void *arg;
5084 long ret;
5085 };
5086
5087 static void work_for_cpu_fn(struct work_struct *work)
5088 {
5089 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5090
5091 wfc->ret = wfc->fn(wfc->arg);
5092 }
5093
5094 /**
5095 * work_on_cpu - run a function in thread context on a particular cpu
5096 * @cpu: the cpu to run on
5097 * @fn: the function to run
5098 * @arg: the function arg
5099 *
5100 * It is up to the caller to ensure that the cpu doesn't go offline.
5101 * The caller must not hold any locks which would prevent @fn from completing.
5102 *
5103 * Return: The value @fn returns.
5104 */
5105 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5106 {
5107 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5108
5109 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5110 schedule_work_on(cpu, &wfc.work);
5111 flush_work(&wfc.work);
5112 destroy_work_on_stack(&wfc.work);
5113 return wfc.ret;
5114 }
5115 EXPORT_SYMBOL_GPL(work_on_cpu);
5116
5117 /**
5118 * work_on_cpu_safe - run a function in thread context on a particular cpu
5119 * @cpu: the cpu to run on
5120 * @fn: the function to run
5121 * @arg: the function argument
5122 *
5123 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5124 * any locks which would prevent @fn from completing.
5125 *
5126 * Return: The value @fn returns.
5127 */
5128 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5129 {
5130 long ret = -ENODEV;
5131
5132 get_online_cpus();
5133 if (cpu_online(cpu))
5134 ret = work_on_cpu(cpu, fn, arg);
5135 put_online_cpus();
5136 return ret;
5137 }
5138 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5139 #endif /* CONFIG_SMP */
5140
5141 #ifdef CONFIG_FREEZER
5142
5143 /**
5144 * freeze_workqueues_begin - begin freezing workqueues
5145 *
5146 * Start freezing workqueues. After this function returns, all freezable
5147 * workqueues will queue new works to their delayed_works list instead of
5148 * pool->worklist.
5149 *
5150 * CONTEXT:
5151 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5152 */
5153 void freeze_workqueues_begin(void)
5154 {
5155 struct workqueue_struct *wq;
5156 struct pool_workqueue *pwq;
5157
5158 mutex_lock(&wq_pool_mutex);
5159
5160 WARN_ON_ONCE(workqueue_freezing);
5161 workqueue_freezing = true;
5162
5163 list_for_each_entry(wq, &workqueues, list) {
5164 mutex_lock(&wq->mutex);
5165 for_each_pwq(pwq, wq)
5166 pwq_adjust_max_active(pwq);
5167 mutex_unlock(&wq->mutex);
5168 }
5169
5170 mutex_unlock(&wq_pool_mutex);
5171 }
5172
5173 /**
5174 * freeze_workqueues_busy - are freezable workqueues still busy?
5175 *
5176 * Check whether freezing is complete. This function must be called
5177 * between freeze_workqueues_begin() and thaw_workqueues().
5178 *
5179 * CONTEXT:
5180 * Grabs and releases wq_pool_mutex.
5181 *
5182 * Return:
5183 * %true if some freezable workqueues are still busy. %false if freezing
5184 * is complete.
5185 */
5186 bool freeze_workqueues_busy(void)
5187 {
5188 bool busy = false;
5189 struct workqueue_struct *wq;
5190 struct pool_workqueue *pwq;
5191
5192 mutex_lock(&wq_pool_mutex);
5193
5194 WARN_ON_ONCE(!workqueue_freezing);
5195
5196 list_for_each_entry(wq, &workqueues, list) {
5197 if (!(wq->flags & WQ_FREEZABLE))
5198 continue;
5199 /*
5200 * nr_active is monotonically decreasing. It's safe
5201 * to peek without lock.
5202 */
5203 rcu_read_lock();
5204 for_each_pwq(pwq, wq) {
5205 WARN_ON_ONCE(pwq->nr_active < 0);
5206 if (pwq->nr_active) {
5207 busy = true;
5208 rcu_read_unlock();
5209 goto out_unlock;
5210 }
5211 }
5212 rcu_read_unlock();
5213 }
5214 out_unlock:
5215 mutex_unlock(&wq_pool_mutex);
5216 return busy;
5217 }
5218
5219 /**
5220 * thaw_workqueues - thaw workqueues
5221 *
5222 * Thaw workqueues. Normal queueing is restored and all collected
5223 * frozen works are transferred to their respective pool worklists.
5224 *
5225 * CONTEXT:
5226 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5227 */
5228 void thaw_workqueues(void)
5229 {
5230 struct workqueue_struct *wq;
5231 struct pool_workqueue *pwq;
5232
5233 mutex_lock(&wq_pool_mutex);
5234
5235 if (!workqueue_freezing)
5236 goto out_unlock;
5237
5238 workqueue_freezing = false;
5239
5240 /* restore max_active and repopulate worklist */
5241 list_for_each_entry(wq, &workqueues, list) {
5242 mutex_lock(&wq->mutex);
5243 for_each_pwq(pwq, wq)
5244 pwq_adjust_max_active(pwq);
5245 mutex_unlock(&wq->mutex);
5246 }
5247
5248 out_unlock:
5249 mutex_unlock(&wq_pool_mutex);
5250 }
5251 #endif /* CONFIG_FREEZER */
5252
5253 static int workqueue_apply_unbound_cpumask(void)
5254 {
5255 LIST_HEAD(ctxs);
5256 int ret = 0;
5257 struct workqueue_struct *wq;
5258 struct apply_wqattrs_ctx *ctx, *n;
5259
5260 lockdep_assert_held(&wq_pool_mutex);
5261
5262 list_for_each_entry(wq, &workqueues, list) {
5263 if (!(wq->flags & WQ_UNBOUND))
5264 continue;
5265 /* creating multiple pwqs breaks ordering guarantee */
5266 if (wq->flags & __WQ_ORDERED)
5267 continue;
5268
5269 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5270 if (!ctx) {
5271 ret = -ENOMEM;
5272 break;
5273 }
5274
5275 list_add_tail(&ctx->list, &ctxs);
5276 }
5277
5278 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5279 if (!ret)
5280 apply_wqattrs_commit(ctx);
5281 apply_wqattrs_cleanup(ctx);
5282 }
5283
5284 return ret;
5285 }
5286
5287 /**
5288 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5289 * @cpumask: the cpumask to set
5290 *
5291 * The low-level workqueues cpumask is a global cpumask that limits
5292 * the affinity of all unbound workqueues. This function check the @cpumask
5293 * and apply it to all unbound workqueues and updates all pwqs of them.
5294 *
5295 * Retun: 0 - Success
5296 * -EINVAL - Invalid @cpumask
5297 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5298 */
5299 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5300 {
5301 int ret = -EINVAL;
5302 cpumask_var_t saved_cpumask;
5303
5304 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5305 return -ENOMEM;
5306
5307 /*
5308 * Not excluding isolated cpus on purpose.
5309 * If the user wishes to include them, we allow that.
5310 */
5311 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5312 if (!cpumask_empty(cpumask)) {
5313 apply_wqattrs_lock();
5314
5315 /* save the old wq_unbound_cpumask. */
5316 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5317
5318 /* update wq_unbound_cpumask at first and apply it to wqs. */
5319 cpumask_copy(wq_unbound_cpumask, cpumask);
5320 ret = workqueue_apply_unbound_cpumask();
5321
5322 /* restore the wq_unbound_cpumask when failed. */
5323 if (ret < 0)
5324 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5325
5326 apply_wqattrs_unlock();
5327 }
5328
5329 free_cpumask_var(saved_cpumask);
5330 return ret;
5331 }
5332
5333 #ifdef CONFIG_SYSFS
5334 /*
5335 * Workqueues with WQ_SYSFS flag set is visible to userland via
5336 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5337 * following attributes.
5338 *
5339 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5340 * max_active RW int : maximum number of in-flight work items
5341 *
5342 * Unbound workqueues have the following extra attributes.
5343 *
5344 * pool_ids RO int : the associated pool IDs for each node
5345 * nice RW int : nice value of the workers
5346 * cpumask RW mask : bitmask of allowed CPUs for the workers
5347 * numa RW bool : whether enable NUMA affinity
5348 */
5349 struct wq_device {
5350 struct workqueue_struct *wq;
5351 struct device dev;
5352 };
5353
5354 static struct workqueue_struct *dev_to_wq(struct device *dev)
5355 {
5356 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5357
5358 return wq_dev->wq;
5359 }
5360
5361 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5362 char *buf)
5363 {
5364 struct workqueue_struct *wq = dev_to_wq(dev);
5365
5366 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5367 }
5368 static DEVICE_ATTR_RO(per_cpu);
5369
5370 static ssize_t max_active_show(struct device *dev,
5371 struct device_attribute *attr, char *buf)
5372 {
5373 struct workqueue_struct *wq = dev_to_wq(dev);
5374
5375 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5376 }
5377
5378 static ssize_t max_active_store(struct device *dev,
5379 struct device_attribute *attr, const char *buf,
5380 size_t count)
5381 {
5382 struct workqueue_struct *wq = dev_to_wq(dev);
5383 int val;
5384
5385 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5386 return -EINVAL;
5387
5388 workqueue_set_max_active(wq, val);
5389 return count;
5390 }
5391 static DEVICE_ATTR_RW(max_active);
5392
5393 static struct attribute *wq_sysfs_attrs[] = {
5394 &dev_attr_per_cpu.attr,
5395 &dev_attr_max_active.attr,
5396 NULL,
5397 };
5398 ATTRIBUTE_GROUPS(wq_sysfs);
5399
5400 static ssize_t wq_pool_ids_show(struct device *dev,
5401 struct device_attribute *attr, char *buf)
5402 {
5403 struct workqueue_struct *wq = dev_to_wq(dev);
5404 const char *delim = "";
5405 int node, written = 0;
5406
5407 get_online_cpus();
5408 rcu_read_lock();
5409 for_each_node(node) {
5410 written += scnprintf(buf + written, PAGE_SIZE - written,
5411 "%s%d:%d", delim, node,
5412 unbound_pwq_by_node(wq, node)->pool->id);
5413 delim = " ";
5414 }
5415 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5416 rcu_read_unlock();
5417 put_online_cpus();
5418
5419 return written;
5420 }
5421
5422 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5423 char *buf)
5424 {
5425 struct workqueue_struct *wq = dev_to_wq(dev);
5426 int written;
5427
5428 mutex_lock(&wq->mutex);
5429 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5430 mutex_unlock(&wq->mutex);
5431
5432 return written;
5433 }
5434
5435 /* prepare workqueue_attrs for sysfs store operations */
5436 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5437 {
5438 struct workqueue_attrs *attrs;
5439
5440 lockdep_assert_held(&wq_pool_mutex);
5441
5442 attrs = alloc_workqueue_attrs();
5443 if (!attrs)
5444 return NULL;
5445
5446 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5447 return attrs;
5448 }
5449
5450 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5451 const char *buf, size_t count)
5452 {
5453 struct workqueue_struct *wq = dev_to_wq(dev);
5454 struct workqueue_attrs *attrs;
5455 int ret = -ENOMEM;
5456
5457 apply_wqattrs_lock();
5458
5459 attrs = wq_sysfs_prep_attrs(wq);
5460 if (!attrs)
5461 goto out_unlock;
5462
5463 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5464 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5465 ret = apply_workqueue_attrs_locked(wq, attrs);
5466 else
5467 ret = -EINVAL;
5468
5469 out_unlock:
5470 apply_wqattrs_unlock();
5471 free_workqueue_attrs(attrs);
5472 return ret ?: count;
5473 }
5474
5475 static ssize_t wq_cpumask_show(struct device *dev,
5476 struct device_attribute *attr, char *buf)
5477 {
5478 struct workqueue_struct *wq = dev_to_wq(dev);
5479 int written;
5480
5481 mutex_lock(&wq->mutex);
5482 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5483 cpumask_pr_args(wq->unbound_attrs->cpumask));
5484 mutex_unlock(&wq->mutex);
5485 return written;
5486 }
5487
5488 static ssize_t wq_cpumask_store(struct device *dev,
5489 struct device_attribute *attr,
5490 const char *buf, size_t count)
5491 {
5492 struct workqueue_struct *wq = dev_to_wq(dev);
5493 struct workqueue_attrs *attrs;
5494 int ret = -ENOMEM;
5495
5496 apply_wqattrs_lock();
5497
5498 attrs = wq_sysfs_prep_attrs(wq);
5499 if (!attrs)
5500 goto out_unlock;
5501
5502 ret = cpumask_parse(buf, attrs->cpumask);
5503 if (!ret)
5504 ret = apply_workqueue_attrs_locked(wq, attrs);
5505
5506 out_unlock:
5507 apply_wqattrs_unlock();
5508 free_workqueue_attrs(attrs);
5509 return ret ?: count;
5510 }
5511
5512 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5513 char *buf)
5514 {
5515 struct workqueue_struct *wq = dev_to_wq(dev);
5516 int written;
5517
5518 mutex_lock(&wq->mutex);
5519 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5520 !wq->unbound_attrs->no_numa);
5521 mutex_unlock(&wq->mutex);
5522
5523 return written;
5524 }
5525
5526 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5527 const char *buf, size_t count)
5528 {
5529 struct workqueue_struct *wq = dev_to_wq(dev);
5530 struct workqueue_attrs *attrs;
5531 int v, ret = -ENOMEM;
5532
5533 apply_wqattrs_lock();
5534
5535 attrs = wq_sysfs_prep_attrs(wq);
5536 if (!attrs)
5537 goto out_unlock;
5538
5539 ret = -EINVAL;
5540 if (sscanf(buf, "%d", &v) == 1) {
5541 attrs->no_numa = !v;
5542 ret = apply_workqueue_attrs_locked(wq, attrs);
5543 }
5544
5545 out_unlock:
5546 apply_wqattrs_unlock();
5547 free_workqueue_attrs(attrs);
5548 return ret ?: count;
5549 }
5550
5551 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5552 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5553 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5554 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5555 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5556 __ATTR_NULL,
5557 };
5558
5559 static struct bus_type wq_subsys = {
5560 .name = "workqueue",
5561 .dev_groups = wq_sysfs_groups,
5562 };
5563
5564 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5565 struct device_attribute *attr, char *buf)
5566 {
5567 int written;
5568
5569 mutex_lock(&wq_pool_mutex);
5570 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5571 cpumask_pr_args(wq_unbound_cpumask));
5572 mutex_unlock(&wq_pool_mutex);
5573
5574 return written;
5575 }
5576
5577 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5578 struct device_attribute *attr, const char *buf, size_t count)
5579 {
5580 cpumask_var_t cpumask;
5581 int ret;
5582
5583 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5584 return -ENOMEM;
5585
5586 ret = cpumask_parse(buf, cpumask);
5587 if (!ret)
5588 ret = workqueue_set_unbound_cpumask(cpumask);
5589
5590 free_cpumask_var(cpumask);
5591 return ret ? ret : count;
5592 }
5593
5594 static struct device_attribute wq_sysfs_cpumask_attr =
5595 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5596 wq_unbound_cpumask_store);
5597
5598 static int __init wq_sysfs_init(void)
5599 {
5600 int err;
5601
5602 err = subsys_virtual_register(&wq_subsys, NULL);
5603 if (err)
5604 return err;
5605
5606 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5607 }
5608 core_initcall(wq_sysfs_init);
5609
5610 static void wq_device_release(struct device *dev)
5611 {
5612 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5613
5614 kfree(wq_dev);
5615 }
5616
5617 /**
5618 * workqueue_sysfs_register - make a workqueue visible in sysfs
5619 * @wq: the workqueue to register
5620 *
5621 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5622 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5623 * which is the preferred method.
5624 *
5625 * Workqueue user should use this function directly iff it wants to apply
5626 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5627 * apply_workqueue_attrs() may race against userland updating the
5628 * attributes.
5629 *
5630 * Return: 0 on success, -errno on failure.
5631 */
5632 int workqueue_sysfs_register(struct workqueue_struct *wq)
5633 {
5634 struct wq_device *wq_dev;
5635 int ret;
5636
5637 /*
5638 * Adjusting max_active or creating new pwqs by applying
5639 * attributes breaks ordering guarantee. Disallow exposing ordered
5640 * workqueues.
5641 */
5642 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5643 return -EINVAL;
5644
5645 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5646 if (!wq_dev)
5647 return -ENOMEM;
5648
5649 wq_dev->wq = wq;
5650 wq_dev->dev.bus = &wq_subsys;
5651 wq_dev->dev.release = wq_device_release;
5652 dev_set_name(&wq_dev->dev, "%s", wq->name);
5653
5654 /*
5655 * unbound_attrs are created separately. Suppress uevent until
5656 * everything is ready.
5657 */
5658 dev_set_uevent_suppress(&wq_dev->dev, true);
5659
5660 ret = device_register(&wq_dev->dev);
5661 if (ret) {
5662 put_device(&wq_dev->dev);
5663 wq->wq_dev = NULL;
5664 return ret;
5665 }
5666
5667 if (wq->flags & WQ_UNBOUND) {
5668 struct device_attribute *attr;
5669
5670 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5671 ret = device_create_file(&wq_dev->dev, attr);
5672 if (ret) {
5673 device_unregister(&wq_dev->dev);
5674 wq->wq_dev = NULL;
5675 return ret;
5676 }
5677 }
5678 }
5679
5680 dev_set_uevent_suppress(&wq_dev->dev, false);
5681 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5682 return 0;
5683 }
5684
5685 /**
5686 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5687 * @wq: the workqueue to unregister
5688 *
5689 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5690 */
5691 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5692 {
5693 struct wq_device *wq_dev = wq->wq_dev;
5694
5695 if (!wq->wq_dev)
5696 return;
5697
5698 wq->wq_dev = NULL;
5699 device_unregister(&wq_dev->dev);
5700 }
5701 #else /* CONFIG_SYSFS */
5702 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5703 #endif /* CONFIG_SYSFS */
5704
5705 /*
5706 * Workqueue watchdog.
5707 *
5708 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5709 * flush dependency, a concurrency managed work item which stays RUNNING
5710 * indefinitely. Workqueue stalls can be very difficult to debug as the
5711 * usual warning mechanisms don't trigger and internal workqueue state is
5712 * largely opaque.
5713 *
5714 * Workqueue watchdog monitors all worker pools periodically and dumps
5715 * state if some pools failed to make forward progress for a while where
5716 * forward progress is defined as the first item on ->worklist changing.
5717 *
5718 * This mechanism is controlled through the kernel parameter
5719 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5720 * corresponding sysfs parameter file.
5721 */
5722 #ifdef CONFIG_WQ_WATCHDOG
5723
5724 static unsigned long wq_watchdog_thresh = 30;
5725 static struct timer_list wq_watchdog_timer;
5726
5727 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5728 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5729
5730 static void wq_watchdog_reset_touched(void)
5731 {
5732 int cpu;
5733
5734 wq_watchdog_touched = jiffies;
5735 for_each_possible_cpu(cpu)
5736 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5737 }
5738
5739 static void wq_watchdog_timer_fn(struct timer_list *unused)
5740 {
5741 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5742 bool lockup_detected = false;
5743 struct worker_pool *pool;
5744 int pi;
5745
5746 if (!thresh)
5747 return;
5748
5749 rcu_read_lock();
5750
5751 for_each_pool(pool, pi) {
5752 unsigned long pool_ts, touched, ts;
5753
5754 if (list_empty(&pool->worklist))
5755 continue;
5756
5757 /* get the latest of pool and touched timestamps */
5758 pool_ts = READ_ONCE(pool->watchdog_ts);
5759 touched = READ_ONCE(wq_watchdog_touched);
5760
5761 if (time_after(pool_ts, touched))
5762 ts = pool_ts;
5763 else
5764 ts = touched;
5765
5766 if (pool->cpu >= 0) {
5767 unsigned long cpu_touched =
5768 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5769 pool->cpu));
5770 if (time_after(cpu_touched, ts))
5771 ts = cpu_touched;
5772 }
5773
5774 /* did we stall? */
5775 if (time_after(jiffies, ts + thresh)) {
5776 lockup_detected = true;
5777 pr_emerg("BUG: workqueue lockup - pool");
5778 pr_cont_pool_info(pool);
5779 pr_cont(" stuck for %us!\n",
5780 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5781 }
5782 }
5783
5784 rcu_read_unlock();
5785
5786 if (lockup_detected)
5787 show_workqueue_state();
5788
5789 wq_watchdog_reset_touched();
5790 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5791 }
5792
5793 notrace void wq_watchdog_touch(int cpu)
5794 {
5795 if (cpu >= 0)
5796 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5797 else
5798 wq_watchdog_touched = jiffies;
5799 }
5800
5801 static void wq_watchdog_set_thresh(unsigned long thresh)
5802 {
5803 wq_watchdog_thresh = 0;
5804 del_timer_sync(&wq_watchdog_timer);
5805
5806 if (thresh) {
5807 wq_watchdog_thresh = thresh;
5808 wq_watchdog_reset_touched();
5809 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5810 }
5811 }
5812
5813 static int wq_watchdog_param_set_thresh(const char *val,
5814 const struct kernel_param *kp)
5815 {
5816 unsigned long thresh;
5817 int ret;
5818
5819 ret = kstrtoul(val, 0, &thresh);
5820 if (ret)
5821 return ret;
5822
5823 if (system_wq)
5824 wq_watchdog_set_thresh(thresh);
5825 else
5826 wq_watchdog_thresh = thresh;
5827
5828 return 0;
5829 }
5830
5831 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5832 .set = wq_watchdog_param_set_thresh,
5833 .get = param_get_ulong,
5834 };
5835
5836 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5837 0644);
5838
5839 static void wq_watchdog_init(void)
5840 {
5841 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5842 wq_watchdog_set_thresh(wq_watchdog_thresh);
5843 }
5844
5845 #else /* CONFIG_WQ_WATCHDOG */
5846
5847 static inline void wq_watchdog_init(void) { }
5848
5849 #endif /* CONFIG_WQ_WATCHDOG */
5850
5851 static void __init wq_numa_init(void)
5852 {
5853 cpumask_var_t *tbl;
5854 int node, cpu;
5855
5856 if (num_possible_nodes() <= 1)
5857 return;
5858
5859 if (wq_disable_numa) {
5860 pr_info("workqueue: NUMA affinity support disabled\n");
5861 return;
5862 }
5863
5864 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5865 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5866
5867 /*
5868 * We want masks of possible CPUs of each node which isn't readily
5869 * available. Build one from cpu_to_node() which should have been
5870 * fully initialized by now.
5871 */
5872 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5873 BUG_ON(!tbl);
5874
5875 for_each_node(node)
5876 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5877 node_online(node) ? node : NUMA_NO_NODE));
5878
5879 for_each_possible_cpu(cpu) {
5880 node = cpu_to_node(cpu);
5881 if (WARN_ON(node == NUMA_NO_NODE)) {
5882 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5883 /* happens iff arch is bonkers, let's just proceed */
5884 return;
5885 }
5886 cpumask_set_cpu(cpu, tbl[node]);
5887 }
5888
5889 wq_numa_possible_cpumask = tbl;
5890 wq_numa_enabled = true;
5891 }
5892
5893 /**
5894 * workqueue_init_early - early init for workqueue subsystem
5895 *
5896 * This is the first half of two-staged workqueue subsystem initialization
5897 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5898 * idr are up. It sets up all the data structures and system workqueues
5899 * and allows early boot code to create workqueues and queue/cancel work
5900 * items. Actual work item execution starts only after kthreads can be
5901 * created and scheduled right before early initcalls.
5902 */
5903 void __init workqueue_init_early(void)
5904 {
5905 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5906 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5907 int i, cpu;
5908
5909 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5910
5911 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5912 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5913
5914 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5915
5916 /* initialize CPU pools */
5917 for_each_possible_cpu(cpu) {
5918 struct worker_pool *pool;
5919
5920 i = 0;
5921 for_each_cpu_worker_pool(pool, cpu) {
5922 BUG_ON(init_worker_pool(pool));
5923 pool->cpu = cpu;
5924 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5925 pool->attrs->nice = std_nice[i++];
5926 pool->node = cpu_to_node(cpu);
5927
5928 /* alloc pool ID */
5929 mutex_lock(&wq_pool_mutex);
5930 BUG_ON(worker_pool_assign_id(pool));
5931 mutex_unlock(&wq_pool_mutex);
5932 }
5933 }
5934
5935 /* create default unbound and ordered wq attrs */
5936 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5937 struct workqueue_attrs *attrs;
5938
5939 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5940 attrs->nice = std_nice[i];
5941 unbound_std_wq_attrs[i] = attrs;
5942
5943 /*
5944 * An ordered wq should have only one pwq as ordering is
5945 * guaranteed by max_active which is enforced by pwqs.
5946 * Turn off NUMA so that dfl_pwq is used for all nodes.
5947 */
5948 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5949 attrs->nice = std_nice[i];
5950 attrs->no_numa = true;
5951 ordered_wq_attrs[i] = attrs;
5952 }
5953
5954 system_wq = alloc_workqueue("events", 0, 0);
5955 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5956 system_long_wq = alloc_workqueue("events_long", 0, 0);
5957 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5958 WQ_UNBOUND_MAX_ACTIVE);
5959 system_freezable_wq = alloc_workqueue("events_freezable",
5960 WQ_FREEZABLE, 0);
5961 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5962 WQ_POWER_EFFICIENT, 0);
5963 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5964 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5965 0);
5966 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5967 !system_unbound_wq || !system_freezable_wq ||
5968 !system_power_efficient_wq ||
5969 !system_freezable_power_efficient_wq);
5970 }
5971
5972 /**
5973 * workqueue_init - bring workqueue subsystem fully online
5974 *
5975 * This is the latter half of two-staged workqueue subsystem initialization
5976 * and invoked as soon as kthreads can be created and scheduled.
5977 * Workqueues have been created and work items queued on them, but there
5978 * are no kworkers executing the work items yet. Populate the worker pools
5979 * with the initial workers and enable future kworker creations.
5980 */
5981 void __init workqueue_init(void)
5982 {
5983 struct workqueue_struct *wq;
5984 struct worker_pool *pool;
5985 int cpu, bkt;
5986
5987 /*
5988 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5989 * CPU to node mapping may not be available that early on some
5990 * archs such as power and arm64. As per-cpu pools created
5991 * previously could be missing node hint and unbound pools NUMA
5992 * affinity, fix them up.
5993 *
5994 * Also, while iterating workqueues, create rescuers if requested.
5995 */
5996 wq_numa_init();
5997
5998 mutex_lock(&wq_pool_mutex);
5999
6000 for_each_possible_cpu(cpu) {
6001 for_each_cpu_worker_pool(pool, cpu) {
6002 pool->node = cpu_to_node(cpu);
6003 }
6004 }
6005
6006 list_for_each_entry(wq, &workqueues, list) {
6007 wq_update_unbound_numa(wq, smp_processor_id(), true);
6008 WARN(init_rescuer(wq),
6009 "workqueue: failed to create early rescuer for %s",
6010 wq->name);
6011 }
6012
6013 mutex_unlock(&wq_pool_mutex);
6014
6015 /* create the initial workers */
6016 for_each_online_cpu(cpu) {
6017 for_each_cpu_worker_pool(pool, cpu) {
6018 pool->flags &= ~POOL_DISASSOCIATED;
6019 BUG_ON(!create_worker(pool));
6020 }
6021 }
6022
6023 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6024 BUG_ON(!create_worker(pool));
6025
6026 wq_online = true;
6027 wq_watchdog_init();
6028 }