]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/workqueue.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[thirdparty/linux.git] / kernel / workqueue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53
54 #include "workqueue_internal.h"
55
56 enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: wq_pool_attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145 /* struct worker is defined in workqueue_internal.h */
146
147 struct worker_pool {
148 spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
172
173 struct ida worker_ida; /* worker IDs for task name */
174
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
178
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
185
186 /*
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
191 } ____cacheline_aligned_in_smp;
192
193 /*
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
198 */
199 struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222
223 /*
224 * Structure used to wait for workqueue flush.
225 */
226 struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
230 };
231
232 struct wq_device;
233
234 /*
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
237 */
238 struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
241
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
249
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* I: rescue worker */
252
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
255
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
258
259 #ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305
306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
307 static bool workqueue_freezing; /* PL: have wqs started freezing? */
308
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314
315 /*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329
330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
331
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358
359 #define CREATE_TRACE_POINTS
360 #include <trace/events/workqueue.h>
361
362 #define assert_rcu_or_pool_mutex() \
363 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
364 !lockdep_is_held(&wq_pool_mutex), \
365 "RCU or wq_pool_mutex should be held")
366
367 #define assert_rcu_or_wq_mutex(wq) \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
369 !lockdep_is_held(&wq->mutex), \
370 "RCU or wq->mutex should be held")
371
372 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
373 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
374 !lockdep_is_held(&wq->mutex) && \
375 !lockdep_is_held(&wq_pool_mutex), \
376 "RCU, wq->mutex or wq_pool_mutex should be held")
377
378 #define for_each_cpu_worker_pool(pool, cpu) \
379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
381 (pool)++)
382
383 /**
384 * for_each_pool - iterate through all worker_pools in the system
385 * @pool: iteration cursor
386 * @pi: integer used for iteration
387 *
388 * This must be called either with wq_pool_mutex held or RCU read
389 * locked. If the pool needs to be used beyond the locking in effect, the
390 * caller is responsible for guaranteeing that the pool stays online.
391 *
392 * The if/else clause exists only for the lockdep assertion and can be
393 * ignored.
394 */
395 #define for_each_pool(pool, pi) \
396 idr_for_each_entry(&worker_pool_idr, pool, pi) \
397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
398 else
399
400 /**
401 * for_each_pool_worker - iterate through all workers of a worker_pool
402 * @worker: iteration cursor
403 * @pool: worker_pool to iterate workers of
404 *
405 * This must be called with wq_pool_attach_mutex.
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
410 #define for_each_pool_worker(worker, pool) \
411 list_for_each_entry((worker), &(pool)->workers, node) \
412 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
413 else
414
415 /**
416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
417 * @pwq: iteration cursor
418 * @wq: the target workqueue
419 *
420 * This must be called either with wq->mutex held or RCU read locked.
421 * If the pwq needs to be used beyond the locking in effect, the caller is
422 * responsible for guaranteeing that the pwq stays online.
423 *
424 * The if/else clause exists only for the lockdep assertion and can be
425 * ignored.
426 */
427 #define for_each_pwq(pwq, wq) \
428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
429 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
430 else
431
432 #ifdef CONFIG_DEBUG_OBJECTS_WORK
433
434 static struct debug_obj_descr work_debug_descr;
435
436 static void *work_debug_hint(void *addr)
437 {
438 return ((struct work_struct *) addr)->func;
439 }
440
441 static bool work_is_static_object(void *addr)
442 {
443 struct work_struct *work = addr;
444
445 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446 }
447
448 /*
449 * fixup_init is called when:
450 * - an active object is initialized
451 */
452 static bool work_fixup_init(void *addr, enum debug_obj_state state)
453 {
454 struct work_struct *work = addr;
455
456 switch (state) {
457 case ODEBUG_STATE_ACTIVE:
458 cancel_work_sync(work);
459 debug_object_init(work, &work_debug_descr);
460 return true;
461 default:
462 return false;
463 }
464 }
465
466 /*
467 * fixup_free is called when:
468 * - an active object is freed
469 */
470 static bool work_fixup_free(void *addr, enum debug_obj_state state)
471 {
472 struct work_struct *work = addr;
473
474 switch (state) {
475 case ODEBUG_STATE_ACTIVE:
476 cancel_work_sync(work);
477 debug_object_free(work, &work_debug_descr);
478 return true;
479 default:
480 return false;
481 }
482 }
483
484 static struct debug_obj_descr work_debug_descr = {
485 .name = "work_struct",
486 .debug_hint = work_debug_hint,
487 .is_static_object = work_is_static_object,
488 .fixup_init = work_fixup_init,
489 .fixup_free = work_fixup_free,
490 };
491
492 static inline void debug_work_activate(struct work_struct *work)
493 {
494 debug_object_activate(work, &work_debug_descr);
495 }
496
497 static inline void debug_work_deactivate(struct work_struct *work)
498 {
499 debug_object_deactivate(work, &work_debug_descr);
500 }
501
502 void __init_work(struct work_struct *work, int onstack)
503 {
504 if (onstack)
505 debug_object_init_on_stack(work, &work_debug_descr);
506 else
507 debug_object_init(work, &work_debug_descr);
508 }
509 EXPORT_SYMBOL_GPL(__init_work);
510
511 void destroy_work_on_stack(struct work_struct *work)
512 {
513 debug_object_free(work, &work_debug_descr);
514 }
515 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
516
517 void destroy_delayed_work_on_stack(struct delayed_work *work)
518 {
519 destroy_timer_on_stack(&work->timer);
520 debug_object_free(&work->work, &work_debug_descr);
521 }
522 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
523
524 #else
525 static inline void debug_work_activate(struct work_struct *work) { }
526 static inline void debug_work_deactivate(struct work_struct *work) { }
527 #endif
528
529 /**
530 * worker_pool_assign_id - allocate ID and assing it to @pool
531 * @pool: the pool pointer of interest
532 *
533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
534 * successfully, -errno on failure.
535 */
536 static int worker_pool_assign_id(struct worker_pool *pool)
537 {
538 int ret;
539
540 lockdep_assert_held(&wq_pool_mutex);
541
542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
543 GFP_KERNEL);
544 if (ret >= 0) {
545 pool->id = ret;
546 return 0;
547 }
548 return ret;
549 }
550
551 /**
552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
553 * @wq: the target workqueue
554 * @node: the node ID
555 *
556 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
557 * read locked.
558 * If the pwq needs to be used beyond the locking in effect, the caller is
559 * responsible for guaranteeing that the pwq stays online.
560 *
561 * Return: The unbound pool_workqueue for @node.
562 */
563 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
564 int node)
565 {
566 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
567
568 /*
569 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
570 * delayed item is pending. The plan is to keep CPU -> NODE
571 * mapping valid and stable across CPU on/offlines. Once that
572 * happens, this workaround can be removed.
573 */
574 if (unlikely(node == NUMA_NO_NODE))
575 return wq->dfl_pwq;
576
577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
578 }
579
580 static unsigned int work_color_to_flags(int color)
581 {
582 return color << WORK_STRUCT_COLOR_SHIFT;
583 }
584
585 static int get_work_color(struct work_struct *work)
586 {
587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
588 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
589 }
590
591 static int work_next_color(int color)
592 {
593 return (color + 1) % WORK_NR_COLORS;
594 }
595
596 /*
597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
598 * contain the pointer to the queued pwq. Once execution starts, the flag
599 * is cleared and the high bits contain OFFQ flags and pool ID.
600 *
601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
602 * and clear_work_data() can be used to set the pwq, pool or clear
603 * work->data. These functions should only be called while the work is
604 * owned - ie. while the PENDING bit is set.
605 *
606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
607 * corresponding to a work. Pool is available once the work has been
608 * queued anywhere after initialization until it is sync canceled. pwq is
609 * available only while the work item is queued.
610 *
611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
612 * canceled. While being canceled, a work item may have its PENDING set
613 * but stay off timer and worklist for arbitrarily long and nobody should
614 * try to steal the PENDING bit.
615 */
616 static inline void set_work_data(struct work_struct *work, unsigned long data,
617 unsigned long flags)
618 {
619 WARN_ON_ONCE(!work_pending(work));
620 atomic_long_set(&work->data, data | flags | work_static(work));
621 }
622
623 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
624 unsigned long extra_flags)
625 {
626 set_work_data(work, (unsigned long)pwq,
627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
628 }
629
630 static void set_work_pool_and_keep_pending(struct work_struct *work,
631 int pool_id)
632 {
633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
634 WORK_STRUCT_PENDING);
635 }
636
637 static void set_work_pool_and_clear_pending(struct work_struct *work,
638 int pool_id)
639 {
640 /*
641 * The following wmb is paired with the implied mb in
642 * test_and_set_bit(PENDING) and ensures all updates to @work made
643 * here are visible to and precede any updates by the next PENDING
644 * owner.
645 */
646 smp_wmb();
647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
648 /*
649 * The following mb guarantees that previous clear of a PENDING bit
650 * will not be reordered with any speculative LOADS or STORES from
651 * work->current_func, which is executed afterwards. This possible
652 * reordering can lead to a missed execution on attempt to queue
653 * the same @work. E.g. consider this case:
654 *
655 * CPU#0 CPU#1
656 * ---------------------------- --------------------------------
657 *
658 * 1 STORE event_indicated
659 * 2 queue_work_on() {
660 * 3 test_and_set_bit(PENDING)
661 * 4 } set_..._and_clear_pending() {
662 * 5 set_work_data() # clear bit
663 * 6 smp_mb()
664 * 7 work->current_func() {
665 * 8 LOAD event_indicated
666 * }
667 *
668 * Without an explicit full barrier speculative LOAD on line 8 can
669 * be executed before CPU#0 does STORE on line 1. If that happens,
670 * CPU#0 observes the PENDING bit is still set and new execution of
671 * a @work is not queued in a hope, that CPU#1 will eventually
672 * finish the queued @work. Meanwhile CPU#1 does not see
673 * event_indicated is set, because speculative LOAD was executed
674 * before actual STORE.
675 */
676 smp_mb();
677 }
678
679 static void clear_work_data(struct work_struct *work)
680 {
681 smp_wmb(); /* see set_work_pool_and_clear_pending() */
682 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
683 }
684
685 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
686 {
687 unsigned long data = atomic_long_read(&work->data);
688
689 if (data & WORK_STRUCT_PWQ)
690 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
691 else
692 return NULL;
693 }
694
695 /**
696 * get_work_pool - return the worker_pool a given work was associated with
697 * @work: the work item of interest
698 *
699 * Pools are created and destroyed under wq_pool_mutex, and allows read
700 * access under RCU read lock. As such, this function should be
701 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
702 *
703 * All fields of the returned pool are accessible as long as the above
704 * mentioned locking is in effect. If the returned pool needs to be used
705 * beyond the critical section, the caller is responsible for ensuring the
706 * returned pool is and stays online.
707 *
708 * Return: The worker_pool @work was last associated with. %NULL if none.
709 */
710 static struct worker_pool *get_work_pool(struct work_struct *work)
711 {
712 unsigned long data = atomic_long_read(&work->data);
713 int pool_id;
714
715 assert_rcu_or_pool_mutex();
716
717 if (data & WORK_STRUCT_PWQ)
718 return ((struct pool_workqueue *)
719 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
720
721 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
722 if (pool_id == WORK_OFFQ_POOL_NONE)
723 return NULL;
724
725 return idr_find(&worker_pool_idr, pool_id);
726 }
727
728 /**
729 * get_work_pool_id - return the worker pool ID a given work is associated with
730 * @work: the work item of interest
731 *
732 * Return: The worker_pool ID @work was last associated with.
733 * %WORK_OFFQ_POOL_NONE if none.
734 */
735 static int get_work_pool_id(struct work_struct *work)
736 {
737 unsigned long data = atomic_long_read(&work->data);
738
739 if (data & WORK_STRUCT_PWQ)
740 return ((struct pool_workqueue *)
741 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
742
743 return data >> WORK_OFFQ_POOL_SHIFT;
744 }
745
746 static void mark_work_canceling(struct work_struct *work)
747 {
748 unsigned long pool_id = get_work_pool_id(work);
749
750 pool_id <<= WORK_OFFQ_POOL_SHIFT;
751 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
752 }
753
754 static bool work_is_canceling(struct work_struct *work)
755 {
756 unsigned long data = atomic_long_read(&work->data);
757
758 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
759 }
760
761 /*
762 * Policy functions. These define the policies on how the global worker
763 * pools are managed. Unless noted otherwise, these functions assume that
764 * they're being called with pool->lock held.
765 */
766
767 static bool __need_more_worker(struct worker_pool *pool)
768 {
769 return !atomic_read(&pool->nr_running);
770 }
771
772 /*
773 * Need to wake up a worker? Called from anything but currently
774 * running workers.
775 *
776 * Note that, because unbound workers never contribute to nr_running, this
777 * function will always return %true for unbound pools as long as the
778 * worklist isn't empty.
779 */
780 static bool need_more_worker(struct worker_pool *pool)
781 {
782 return !list_empty(&pool->worklist) && __need_more_worker(pool);
783 }
784
785 /* Can I start working? Called from busy but !running workers. */
786 static bool may_start_working(struct worker_pool *pool)
787 {
788 return pool->nr_idle;
789 }
790
791 /* Do I need to keep working? Called from currently running workers. */
792 static bool keep_working(struct worker_pool *pool)
793 {
794 return !list_empty(&pool->worklist) &&
795 atomic_read(&pool->nr_running) <= 1;
796 }
797
798 /* Do we need a new worker? Called from manager. */
799 static bool need_to_create_worker(struct worker_pool *pool)
800 {
801 return need_more_worker(pool) && !may_start_working(pool);
802 }
803
804 /* Do we have too many workers and should some go away? */
805 static bool too_many_workers(struct worker_pool *pool)
806 {
807 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
808 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
809 int nr_busy = pool->nr_workers - nr_idle;
810
811 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
812 }
813
814 /*
815 * Wake up functions.
816 */
817
818 /* Return the first idle worker. Safe with preemption disabled */
819 static struct worker *first_idle_worker(struct worker_pool *pool)
820 {
821 if (unlikely(list_empty(&pool->idle_list)))
822 return NULL;
823
824 return list_first_entry(&pool->idle_list, struct worker, entry);
825 }
826
827 /**
828 * wake_up_worker - wake up an idle worker
829 * @pool: worker pool to wake worker from
830 *
831 * Wake up the first idle worker of @pool.
832 *
833 * CONTEXT:
834 * spin_lock_irq(pool->lock).
835 */
836 static void wake_up_worker(struct worker_pool *pool)
837 {
838 struct worker *worker = first_idle_worker(pool);
839
840 if (likely(worker))
841 wake_up_process(worker->task);
842 }
843
844 /**
845 * wq_worker_running - a worker is running again
846 * @task: task waking up
847 *
848 * This function is called when a worker returns from schedule()
849 */
850 void wq_worker_running(struct task_struct *task)
851 {
852 struct worker *worker = kthread_data(task);
853
854 if (!worker->sleeping)
855 return;
856 if (!(worker->flags & WORKER_NOT_RUNNING))
857 atomic_inc(&worker->pool->nr_running);
858 worker->sleeping = 0;
859 }
860
861 /**
862 * wq_worker_sleeping - a worker is going to sleep
863 * @task: task going to sleep
864 *
865 * This function is called from schedule() when a busy worker is
866 * going to sleep.
867 */
868 void wq_worker_sleeping(struct task_struct *task)
869 {
870 struct worker *next, *worker = kthread_data(task);
871 struct worker_pool *pool;
872
873 /*
874 * Rescuers, which may not have all the fields set up like normal
875 * workers, also reach here, let's not access anything before
876 * checking NOT_RUNNING.
877 */
878 if (worker->flags & WORKER_NOT_RUNNING)
879 return;
880
881 pool = worker->pool;
882
883 if (WARN_ON_ONCE(worker->sleeping))
884 return;
885
886 worker->sleeping = 1;
887 spin_lock_irq(&pool->lock);
888
889 /*
890 * The counterpart of the following dec_and_test, implied mb,
891 * worklist not empty test sequence is in insert_work().
892 * Please read comment there.
893 *
894 * NOT_RUNNING is clear. This means that we're bound to and
895 * running on the local cpu w/ rq lock held and preemption
896 * disabled, which in turn means that none else could be
897 * manipulating idle_list, so dereferencing idle_list without pool
898 * lock is safe.
899 */
900 if (atomic_dec_and_test(&pool->nr_running) &&
901 !list_empty(&pool->worklist)) {
902 next = first_idle_worker(pool);
903 if (next)
904 wake_up_process(next->task);
905 }
906 spin_unlock_irq(&pool->lock);
907 }
908
909 /**
910 * wq_worker_last_func - retrieve worker's last work function
911 * @task: Task to retrieve last work function of.
912 *
913 * Determine the last function a worker executed. This is called from
914 * the scheduler to get a worker's last known identity.
915 *
916 * CONTEXT:
917 * spin_lock_irq(rq->lock)
918 *
919 * This function is called during schedule() when a kworker is going
920 * to sleep. It's used by psi to identify aggregation workers during
921 * dequeuing, to allow periodic aggregation to shut-off when that
922 * worker is the last task in the system or cgroup to go to sleep.
923 *
924 * As this function doesn't involve any workqueue-related locking, it
925 * only returns stable values when called from inside the scheduler's
926 * queuing and dequeuing paths, when @task, which must be a kworker,
927 * is guaranteed to not be processing any works.
928 *
929 * Return:
930 * The last work function %current executed as a worker, NULL if it
931 * hasn't executed any work yet.
932 */
933 work_func_t wq_worker_last_func(struct task_struct *task)
934 {
935 struct worker *worker = kthread_data(task);
936
937 return worker->last_func;
938 }
939
940 /**
941 * worker_set_flags - set worker flags and adjust nr_running accordingly
942 * @worker: self
943 * @flags: flags to set
944 *
945 * Set @flags in @worker->flags and adjust nr_running accordingly.
946 *
947 * CONTEXT:
948 * spin_lock_irq(pool->lock)
949 */
950 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
951 {
952 struct worker_pool *pool = worker->pool;
953
954 WARN_ON_ONCE(worker->task != current);
955
956 /* If transitioning into NOT_RUNNING, adjust nr_running. */
957 if ((flags & WORKER_NOT_RUNNING) &&
958 !(worker->flags & WORKER_NOT_RUNNING)) {
959 atomic_dec(&pool->nr_running);
960 }
961
962 worker->flags |= flags;
963 }
964
965 /**
966 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
967 * @worker: self
968 * @flags: flags to clear
969 *
970 * Clear @flags in @worker->flags and adjust nr_running accordingly.
971 *
972 * CONTEXT:
973 * spin_lock_irq(pool->lock)
974 */
975 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
976 {
977 struct worker_pool *pool = worker->pool;
978 unsigned int oflags = worker->flags;
979
980 WARN_ON_ONCE(worker->task != current);
981
982 worker->flags &= ~flags;
983
984 /*
985 * If transitioning out of NOT_RUNNING, increment nr_running. Note
986 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
987 * of multiple flags, not a single flag.
988 */
989 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
990 if (!(worker->flags & WORKER_NOT_RUNNING))
991 atomic_inc(&pool->nr_running);
992 }
993
994 /**
995 * find_worker_executing_work - find worker which is executing a work
996 * @pool: pool of interest
997 * @work: work to find worker for
998 *
999 * Find a worker which is executing @work on @pool by searching
1000 * @pool->busy_hash which is keyed by the address of @work. For a worker
1001 * to match, its current execution should match the address of @work and
1002 * its work function. This is to avoid unwanted dependency between
1003 * unrelated work executions through a work item being recycled while still
1004 * being executed.
1005 *
1006 * This is a bit tricky. A work item may be freed once its execution
1007 * starts and nothing prevents the freed area from being recycled for
1008 * another work item. If the same work item address ends up being reused
1009 * before the original execution finishes, workqueue will identify the
1010 * recycled work item as currently executing and make it wait until the
1011 * current execution finishes, introducing an unwanted dependency.
1012 *
1013 * This function checks the work item address and work function to avoid
1014 * false positives. Note that this isn't complete as one may construct a
1015 * work function which can introduce dependency onto itself through a
1016 * recycled work item. Well, if somebody wants to shoot oneself in the
1017 * foot that badly, there's only so much we can do, and if such deadlock
1018 * actually occurs, it should be easy to locate the culprit work function.
1019 *
1020 * CONTEXT:
1021 * spin_lock_irq(pool->lock).
1022 *
1023 * Return:
1024 * Pointer to worker which is executing @work if found, %NULL
1025 * otherwise.
1026 */
1027 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1028 struct work_struct *work)
1029 {
1030 struct worker *worker;
1031
1032 hash_for_each_possible(pool->busy_hash, worker, hentry,
1033 (unsigned long)work)
1034 if (worker->current_work == work &&
1035 worker->current_func == work->func)
1036 return worker;
1037
1038 return NULL;
1039 }
1040
1041 /**
1042 * move_linked_works - move linked works to a list
1043 * @work: start of series of works to be scheduled
1044 * @head: target list to append @work to
1045 * @nextp: out parameter for nested worklist walking
1046 *
1047 * Schedule linked works starting from @work to @head. Work series to
1048 * be scheduled starts at @work and includes any consecutive work with
1049 * WORK_STRUCT_LINKED set in its predecessor.
1050 *
1051 * If @nextp is not NULL, it's updated to point to the next work of
1052 * the last scheduled work. This allows move_linked_works() to be
1053 * nested inside outer list_for_each_entry_safe().
1054 *
1055 * CONTEXT:
1056 * spin_lock_irq(pool->lock).
1057 */
1058 static void move_linked_works(struct work_struct *work, struct list_head *head,
1059 struct work_struct **nextp)
1060 {
1061 struct work_struct *n;
1062
1063 /*
1064 * Linked worklist will always end before the end of the list,
1065 * use NULL for list head.
1066 */
1067 list_for_each_entry_safe_from(work, n, NULL, entry) {
1068 list_move_tail(&work->entry, head);
1069 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1070 break;
1071 }
1072
1073 /*
1074 * If we're already inside safe list traversal and have moved
1075 * multiple works to the scheduled queue, the next position
1076 * needs to be updated.
1077 */
1078 if (nextp)
1079 *nextp = n;
1080 }
1081
1082 /**
1083 * get_pwq - get an extra reference on the specified pool_workqueue
1084 * @pwq: pool_workqueue to get
1085 *
1086 * Obtain an extra reference on @pwq. The caller should guarantee that
1087 * @pwq has positive refcnt and be holding the matching pool->lock.
1088 */
1089 static void get_pwq(struct pool_workqueue *pwq)
1090 {
1091 lockdep_assert_held(&pwq->pool->lock);
1092 WARN_ON_ONCE(pwq->refcnt <= 0);
1093 pwq->refcnt++;
1094 }
1095
1096 /**
1097 * put_pwq - put a pool_workqueue reference
1098 * @pwq: pool_workqueue to put
1099 *
1100 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1101 * destruction. The caller should be holding the matching pool->lock.
1102 */
1103 static void put_pwq(struct pool_workqueue *pwq)
1104 {
1105 lockdep_assert_held(&pwq->pool->lock);
1106 if (likely(--pwq->refcnt))
1107 return;
1108 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1109 return;
1110 /*
1111 * @pwq can't be released under pool->lock, bounce to
1112 * pwq_unbound_release_workfn(). This never recurses on the same
1113 * pool->lock as this path is taken only for unbound workqueues and
1114 * the release work item is scheduled on a per-cpu workqueue. To
1115 * avoid lockdep warning, unbound pool->locks are given lockdep
1116 * subclass of 1 in get_unbound_pool().
1117 */
1118 schedule_work(&pwq->unbound_release_work);
1119 }
1120
1121 /**
1122 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1123 * @pwq: pool_workqueue to put (can be %NULL)
1124 *
1125 * put_pwq() with locking. This function also allows %NULL @pwq.
1126 */
1127 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1128 {
1129 if (pwq) {
1130 /*
1131 * As both pwqs and pools are RCU protected, the
1132 * following lock operations are safe.
1133 */
1134 spin_lock_irq(&pwq->pool->lock);
1135 put_pwq(pwq);
1136 spin_unlock_irq(&pwq->pool->lock);
1137 }
1138 }
1139
1140 static void pwq_activate_delayed_work(struct work_struct *work)
1141 {
1142 struct pool_workqueue *pwq = get_work_pwq(work);
1143
1144 trace_workqueue_activate_work(work);
1145 if (list_empty(&pwq->pool->worklist))
1146 pwq->pool->watchdog_ts = jiffies;
1147 move_linked_works(work, &pwq->pool->worklist, NULL);
1148 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1149 pwq->nr_active++;
1150 }
1151
1152 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1153 {
1154 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1155 struct work_struct, entry);
1156
1157 pwq_activate_delayed_work(work);
1158 }
1159
1160 /**
1161 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1162 * @pwq: pwq of interest
1163 * @color: color of work which left the queue
1164 *
1165 * A work either has completed or is removed from pending queue,
1166 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1167 *
1168 * CONTEXT:
1169 * spin_lock_irq(pool->lock).
1170 */
1171 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1172 {
1173 /* uncolored work items don't participate in flushing or nr_active */
1174 if (color == WORK_NO_COLOR)
1175 goto out_put;
1176
1177 pwq->nr_in_flight[color]--;
1178
1179 pwq->nr_active--;
1180 if (!list_empty(&pwq->delayed_works)) {
1181 /* one down, submit a delayed one */
1182 if (pwq->nr_active < pwq->max_active)
1183 pwq_activate_first_delayed(pwq);
1184 }
1185
1186 /* is flush in progress and are we at the flushing tip? */
1187 if (likely(pwq->flush_color != color))
1188 goto out_put;
1189
1190 /* are there still in-flight works? */
1191 if (pwq->nr_in_flight[color])
1192 goto out_put;
1193
1194 /* this pwq is done, clear flush_color */
1195 pwq->flush_color = -1;
1196
1197 /*
1198 * If this was the last pwq, wake up the first flusher. It
1199 * will handle the rest.
1200 */
1201 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1202 complete(&pwq->wq->first_flusher->done);
1203 out_put:
1204 put_pwq(pwq);
1205 }
1206
1207 /**
1208 * try_to_grab_pending - steal work item from worklist and disable irq
1209 * @work: work item to steal
1210 * @is_dwork: @work is a delayed_work
1211 * @flags: place to store irq state
1212 *
1213 * Try to grab PENDING bit of @work. This function can handle @work in any
1214 * stable state - idle, on timer or on worklist.
1215 *
1216 * Return:
1217 * 1 if @work was pending and we successfully stole PENDING
1218 * 0 if @work was idle and we claimed PENDING
1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220 * -ENOENT if someone else is canceling @work, this state may persist
1221 * for arbitrarily long
1222 *
1223 * Note:
1224 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1225 * interrupted while holding PENDING and @work off queue, irq must be
1226 * disabled on entry. This, combined with delayed_work->timer being
1227 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1228 *
1229 * On successful return, >= 0, irq is disabled and the caller is
1230 * responsible for releasing it using local_irq_restore(*@flags).
1231 *
1232 * This function is safe to call from any context including IRQ handler.
1233 */
1234 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1235 unsigned long *flags)
1236 {
1237 struct worker_pool *pool;
1238 struct pool_workqueue *pwq;
1239
1240 local_irq_save(*flags);
1241
1242 /* try to steal the timer if it exists */
1243 if (is_dwork) {
1244 struct delayed_work *dwork = to_delayed_work(work);
1245
1246 /*
1247 * dwork->timer is irqsafe. If del_timer() fails, it's
1248 * guaranteed that the timer is not queued anywhere and not
1249 * running on the local CPU.
1250 */
1251 if (likely(del_timer(&dwork->timer)))
1252 return 1;
1253 }
1254
1255 /* try to claim PENDING the normal way */
1256 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1257 return 0;
1258
1259 rcu_read_lock();
1260 /*
1261 * The queueing is in progress, or it is already queued. Try to
1262 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1263 */
1264 pool = get_work_pool(work);
1265 if (!pool)
1266 goto fail;
1267
1268 spin_lock(&pool->lock);
1269 /*
1270 * work->data is guaranteed to point to pwq only while the work
1271 * item is queued on pwq->wq, and both updating work->data to point
1272 * to pwq on queueing and to pool on dequeueing are done under
1273 * pwq->pool->lock. This in turn guarantees that, if work->data
1274 * points to pwq which is associated with a locked pool, the work
1275 * item is currently queued on that pool.
1276 */
1277 pwq = get_work_pwq(work);
1278 if (pwq && pwq->pool == pool) {
1279 debug_work_deactivate(work);
1280
1281 /*
1282 * A delayed work item cannot be grabbed directly because
1283 * it might have linked NO_COLOR work items which, if left
1284 * on the delayed_list, will confuse pwq->nr_active
1285 * management later on and cause stall. Make sure the work
1286 * item is activated before grabbing.
1287 */
1288 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1289 pwq_activate_delayed_work(work);
1290
1291 list_del_init(&work->entry);
1292 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1293
1294 /* work->data points to pwq iff queued, point to pool */
1295 set_work_pool_and_keep_pending(work, pool->id);
1296
1297 spin_unlock(&pool->lock);
1298 rcu_read_unlock();
1299 return 1;
1300 }
1301 spin_unlock(&pool->lock);
1302 fail:
1303 rcu_read_unlock();
1304 local_irq_restore(*flags);
1305 if (work_is_canceling(work))
1306 return -ENOENT;
1307 cpu_relax();
1308 return -EAGAIN;
1309 }
1310
1311 /**
1312 * insert_work - insert a work into a pool
1313 * @pwq: pwq @work belongs to
1314 * @work: work to insert
1315 * @head: insertion point
1316 * @extra_flags: extra WORK_STRUCT_* flags to set
1317 *
1318 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1319 * work_struct flags.
1320 *
1321 * CONTEXT:
1322 * spin_lock_irq(pool->lock).
1323 */
1324 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1325 struct list_head *head, unsigned int extra_flags)
1326 {
1327 struct worker_pool *pool = pwq->pool;
1328
1329 /* we own @work, set data and link */
1330 set_work_pwq(work, pwq, extra_flags);
1331 list_add_tail(&work->entry, head);
1332 get_pwq(pwq);
1333
1334 /*
1335 * Ensure either wq_worker_sleeping() sees the above
1336 * list_add_tail() or we see zero nr_running to avoid workers lying
1337 * around lazily while there are works to be processed.
1338 */
1339 smp_mb();
1340
1341 if (__need_more_worker(pool))
1342 wake_up_worker(pool);
1343 }
1344
1345 /*
1346 * Test whether @work is being queued from another work executing on the
1347 * same workqueue.
1348 */
1349 static bool is_chained_work(struct workqueue_struct *wq)
1350 {
1351 struct worker *worker;
1352
1353 worker = current_wq_worker();
1354 /*
1355 * Return %true iff I'm a worker executing a work item on @wq. If
1356 * I'm @worker, it's safe to dereference it without locking.
1357 */
1358 return worker && worker->current_pwq->wq == wq;
1359 }
1360
1361 /*
1362 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1363 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1364 * avoid perturbing sensitive tasks.
1365 */
1366 static int wq_select_unbound_cpu(int cpu)
1367 {
1368 static bool printed_dbg_warning;
1369 int new_cpu;
1370
1371 if (likely(!wq_debug_force_rr_cpu)) {
1372 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1373 return cpu;
1374 } else if (!printed_dbg_warning) {
1375 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1376 printed_dbg_warning = true;
1377 }
1378
1379 if (cpumask_empty(wq_unbound_cpumask))
1380 return cpu;
1381
1382 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1383 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1384 if (unlikely(new_cpu >= nr_cpu_ids)) {
1385 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1386 if (unlikely(new_cpu >= nr_cpu_ids))
1387 return cpu;
1388 }
1389 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1390
1391 return new_cpu;
1392 }
1393
1394 static void __queue_work(int cpu, struct workqueue_struct *wq,
1395 struct work_struct *work)
1396 {
1397 struct pool_workqueue *pwq;
1398 struct worker_pool *last_pool;
1399 struct list_head *worklist;
1400 unsigned int work_flags;
1401 unsigned int req_cpu = cpu;
1402
1403 /*
1404 * While a work item is PENDING && off queue, a task trying to
1405 * steal the PENDING will busy-loop waiting for it to either get
1406 * queued or lose PENDING. Grabbing PENDING and queueing should
1407 * happen with IRQ disabled.
1408 */
1409 lockdep_assert_irqs_disabled();
1410
1411 debug_work_activate(work);
1412
1413 /* if draining, only works from the same workqueue are allowed */
1414 if (unlikely(wq->flags & __WQ_DRAINING) &&
1415 WARN_ON_ONCE(!is_chained_work(wq)))
1416 return;
1417 rcu_read_lock();
1418 retry:
1419 if (req_cpu == WORK_CPU_UNBOUND)
1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1421
1422 /* pwq which will be used unless @work is executing elsewhere */
1423 if (!(wq->flags & WQ_UNBOUND))
1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425 else
1426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1427
1428 /*
1429 * If @work was previously on a different pool, it might still be
1430 * running there, in which case the work needs to be queued on that
1431 * pool to guarantee non-reentrancy.
1432 */
1433 last_pool = get_work_pool(work);
1434 if (last_pool && last_pool != pwq->pool) {
1435 struct worker *worker;
1436
1437 spin_lock(&last_pool->lock);
1438
1439 worker = find_worker_executing_work(last_pool, work);
1440
1441 if (worker && worker->current_pwq->wq == wq) {
1442 pwq = worker->current_pwq;
1443 } else {
1444 /* meh... not running there, queue here */
1445 spin_unlock(&last_pool->lock);
1446 spin_lock(&pwq->pool->lock);
1447 }
1448 } else {
1449 spin_lock(&pwq->pool->lock);
1450 }
1451
1452 /*
1453 * pwq is determined and locked. For unbound pools, we could have
1454 * raced with pwq release and it could already be dead. If its
1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1456 * without another pwq replacing it in the numa_pwq_tbl or while
1457 * work items are executing on it, so the retrying is guaranteed to
1458 * make forward-progress.
1459 */
1460 if (unlikely(!pwq->refcnt)) {
1461 if (wq->flags & WQ_UNBOUND) {
1462 spin_unlock(&pwq->pool->lock);
1463 cpu_relax();
1464 goto retry;
1465 }
1466 /* oops */
1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 wq->name, cpu);
1469 }
1470
1471 /* pwq determined, queue */
1472 trace_workqueue_queue_work(req_cpu, pwq, work);
1473
1474 if (WARN_ON(!list_empty(&work->entry)))
1475 goto out;
1476
1477 pwq->nr_in_flight[pwq->work_color]++;
1478 work_flags = work_color_to_flags(pwq->work_color);
1479
1480 if (likely(pwq->nr_active < pwq->max_active)) {
1481 trace_workqueue_activate_work(work);
1482 pwq->nr_active++;
1483 worklist = &pwq->pool->worklist;
1484 if (list_empty(worklist))
1485 pwq->pool->watchdog_ts = jiffies;
1486 } else {
1487 work_flags |= WORK_STRUCT_DELAYED;
1488 worklist = &pwq->delayed_works;
1489 }
1490
1491 insert_work(pwq, work, worklist, work_flags);
1492
1493 out:
1494 spin_unlock(&pwq->pool->lock);
1495 rcu_read_unlock();
1496 }
1497
1498 /**
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
1501 * @wq: workqueue to use
1502 * @work: work to queue
1503 *
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
1506 *
1507 * Return: %false if @work was already on a queue, %true otherwise.
1508 */
1509 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 struct work_struct *work)
1511 {
1512 bool ret = false;
1513 unsigned long flags;
1514
1515 local_irq_save(flags);
1516
1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518 __queue_work(cpu, wq, work);
1519 ret = true;
1520 }
1521
1522 local_irq_restore(flags);
1523 return ret;
1524 }
1525 EXPORT_SYMBOL(queue_work_on);
1526
1527 /**
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1530 *
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1535 */
1536 static int workqueue_select_cpu_near(int node)
1537 {
1538 int cpu;
1539
1540 /* No point in doing this if NUMA isn't enabled for workqueues */
1541 if (!wq_numa_enabled)
1542 return WORK_CPU_UNBOUND;
1543
1544 /* Delay binding to CPU if node is not valid or online */
1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 return WORK_CPU_UNBOUND;
1547
1548 /* Use local node/cpu if we are already there */
1549 cpu = raw_smp_processor_id();
1550 if (node == cpu_to_node(cpu))
1551 return cpu;
1552
1553 /* Use "random" otherwise know as "first" online CPU of node */
1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555
1556 /* If CPU is valid return that, otherwise just defer */
1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558 }
1559
1560 /**
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1565 *
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1569 *
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1573 *
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1577 *
1578 * Return: %false if @work was already on a queue, %true otherwise.
1579 */
1580 bool queue_work_node(int node, struct workqueue_struct *wq,
1581 struct work_struct *work)
1582 {
1583 unsigned long flags;
1584 bool ret = false;
1585
1586 /*
1587 * This current implementation is specific to unbound workqueues.
1588 * Specifically we only return the first available CPU for a given
1589 * node instead of cycling through individual CPUs within the node.
1590 *
1591 * If this is used with a per-cpu workqueue then the logic in
1592 * workqueue_select_cpu_near would need to be updated to allow for
1593 * some round robin type logic.
1594 */
1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596
1597 local_irq_save(flags);
1598
1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 int cpu = workqueue_select_cpu_near(node);
1601
1602 __queue_work(cpu, wq, work);
1603 ret = true;
1604 }
1605
1606 local_irq_restore(flags);
1607 return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(queue_work_node);
1610
1611 void delayed_work_timer_fn(struct timer_list *t)
1612 {
1613 struct delayed_work *dwork = from_timer(dwork, t, timer);
1614
1615 /* should have been called from irqsafe timer with irq already off */
1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1617 }
1618 EXPORT_SYMBOL(delayed_work_timer_fn);
1619
1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 struct delayed_work *dwork, unsigned long delay)
1622 {
1623 struct timer_list *timer = &dwork->timer;
1624 struct work_struct *work = &dwork->work;
1625
1626 WARN_ON_ONCE(!wq);
1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628 WARN_ON_ONCE(timer_pending(timer));
1629 WARN_ON_ONCE(!list_empty(&work->entry));
1630
1631 /*
1632 * If @delay is 0, queue @dwork->work immediately. This is for
1633 * both optimization and correctness. The earliest @timer can
1634 * expire is on the closest next tick and delayed_work users depend
1635 * on that there's no such delay when @delay is 0.
1636 */
1637 if (!delay) {
1638 __queue_work(cpu, wq, &dwork->work);
1639 return;
1640 }
1641
1642 dwork->wq = wq;
1643 dwork->cpu = cpu;
1644 timer->expires = jiffies + delay;
1645
1646 if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 add_timer_on(timer, cpu);
1648 else
1649 add_timer(timer);
1650 }
1651
1652 /**
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
1656 * @dwork: work to queue
1657 * @delay: number of jiffies to wait before queueing
1658 *
1659 * Return: %false if @work was already on a queue, %true otherwise. If
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
1662 */
1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 struct delayed_work *dwork, unsigned long delay)
1665 {
1666 struct work_struct *work = &dwork->work;
1667 bool ret = false;
1668 unsigned long flags;
1669
1670 /* read the comment in __queue_work() */
1671 local_irq_save(flags);
1672
1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674 __queue_delayed_work(cpu, wq, dwork, delay);
1675 ret = true;
1676 }
1677
1678 local_irq_restore(flags);
1679 return ret;
1680 }
1681 EXPORT_SYMBOL(queue_delayed_work_on);
1682
1683 /**
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay. If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1694 *
1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
1696 * pending and its timer was modified.
1697 *
1698 * This function is safe to call from any context including IRQ handler.
1699 * See try_to_grab_pending() for details.
1700 */
1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 struct delayed_work *dwork, unsigned long delay)
1703 {
1704 unsigned long flags;
1705 int ret;
1706
1707 do {
1708 ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 } while (unlikely(ret == -EAGAIN));
1710
1711 if (likely(ret >= 0)) {
1712 __queue_delayed_work(cpu, wq, dwork, delay);
1713 local_irq_restore(flags);
1714 }
1715
1716 /* -ENOENT from try_to_grab_pending() becomes %true */
1717 return ret;
1718 }
1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720
1721 static void rcu_work_rcufn(struct rcu_head *rcu)
1722 {
1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724
1725 /* read the comment in __queue_work() */
1726 local_irq_disable();
1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 local_irq_enable();
1729 }
1730
1731 /**
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1735 *
1736 * Return: %false if @rwork was already pending, %true otherwise. Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
1738 * While @rwork is guaranteed to be executed after a %false return, the
1739 * execution may happen before a full RCU grace period has passed.
1740 */
1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742 {
1743 struct work_struct *work = &rwork->work;
1744
1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 rwork->wq = wq;
1747 call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 return true;
1749 }
1750
1751 return false;
1752 }
1753 EXPORT_SYMBOL(queue_rcu_work);
1754
1755 /**
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1758 *
1759 * @worker is entering idle state. Update stats and idle timer if
1760 * necessary.
1761 *
1762 * LOCKING:
1763 * spin_lock_irq(pool->lock).
1764 */
1765 static void worker_enter_idle(struct worker *worker)
1766 {
1767 struct worker_pool *pool = worker->pool;
1768
1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 (worker->hentry.next || worker->hentry.pprev)))
1772 return;
1773
1774 /* can't use worker_set_flags(), also called from create_worker() */
1775 worker->flags |= WORKER_IDLE;
1776 pool->nr_idle++;
1777 worker->last_active = jiffies;
1778
1779 /* idle_list is LIFO */
1780 list_add(&worker->entry, &pool->idle_list);
1781
1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1784
1785 /*
1786 * Sanity check nr_running. Because unbind_workers() releases
1787 * pool->lock between setting %WORKER_UNBOUND and zapping
1788 * nr_running, the warning may trigger spuriously. Check iff
1789 * unbind is not in progress.
1790 */
1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792 pool->nr_workers == pool->nr_idle &&
1793 atomic_read(&pool->nr_running));
1794 }
1795
1796 /**
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1799 *
1800 * @worker is leaving idle state. Update stats.
1801 *
1802 * LOCKING:
1803 * spin_lock_irq(pool->lock).
1804 */
1805 static void worker_leave_idle(struct worker *worker)
1806 {
1807 struct worker_pool *pool = worker->pool;
1808
1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 return;
1811 worker_clr_flags(worker, WORKER_IDLE);
1812 pool->nr_idle--;
1813 list_del_init(&worker->entry);
1814 }
1815
1816 static struct worker *alloc_worker(int node)
1817 {
1818 struct worker *worker;
1819
1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821 if (worker) {
1822 INIT_LIST_HEAD(&worker->entry);
1823 INIT_LIST_HEAD(&worker->scheduled);
1824 INIT_LIST_HEAD(&worker->node);
1825 /* on creation a worker is in !idle && prep state */
1826 worker->flags = WORKER_PREP;
1827 }
1828 return worker;
1829 }
1830
1831 /**
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1835 *
1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1839 */
1840 static void worker_attach_to_pool(struct worker *worker,
1841 struct worker_pool *pool)
1842 {
1843 mutex_lock(&wq_pool_attach_mutex);
1844
1845 /*
1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 * online CPUs. It'll be re-applied when any of the CPUs come up.
1848 */
1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850
1851 /*
1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
1855 */
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1858
1859 list_add_tail(&worker->node, &pool->workers);
1860 worker->pool = pool;
1861
1862 mutex_unlock(&wq_pool_attach_mutex);
1863 }
1864
1865 /**
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
1868 *
1869 * Undo the attaching which had been done in worker_attach_to_pool(). The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
1872 */
1873 static void worker_detach_from_pool(struct worker *worker)
1874 {
1875 struct worker_pool *pool = worker->pool;
1876 struct completion *detach_completion = NULL;
1877
1878 mutex_lock(&wq_pool_attach_mutex);
1879
1880 list_del(&worker->node);
1881 worker->pool = NULL;
1882
1883 if (list_empty(&pool->workers))
1884 detach_completion = pool->detach_completion;
1885 mutex_unlock(&wq_pool_attach_mutex);
1886
1887 /* clear leftover flags without pool->lock after it is detached */
1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889
1890 if (detach_completion)
1891 complete(detach_completion);
1892 }
1893
1894 /**
1895 * create_worker - create a new workqueue worker
1896 * @pool: pool the new worker will belong to
1897 *
1898 * Create and start a new worker which is attached to @pool.
1899 *
1900 * CONTEXT:
1901 * Might sleep. Does GFP_KERNEL allocations.
1902 *
1903 * Return:
1904 * Pointer to the newly created worker.
1905 */
1906 static struct worker *create_worker(struct worker_pool *pool)
1907 {
1908 struct worker *worker = NULL;
1909 int id = -1;
1910 char id_buf[16];
1911
1912 /* ID is needed to determine kthread name */
1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914 if (id < 0)
1915 goto fail;
1916
1917 worker = alloc_worker(pool->node);
1918 if (!worker)
1919 goto fail;
1920
1921 worker->id = id;
1922
1923 if (pool->cpu >= 0)
1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 pool->attrs->nice < 0 ? "H" : "");
1926 else
1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928
1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930 "kworker/%s", id_buf);
1931 if (IS_ERR(worker->task))
1932 goto fail;
1933
1934 set_user_nice(worker->task, pool->attrs->nice);
1935 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1936
1937 /* successful, attach the worker to the pool */
1938 worker_attach_to_pool(worker, pool);
1939
1940 /* start the newly created worker */
1941 spin_lock_irq(&pool->lock);
1942 worker->pool->nr_workers++;
1943 worker_enter_idle(worker);
1944 wake_up_process(worker->task);
1945 spin_unlock_irq(&pool->lock);
1946
1947 return worker;
1948
1949 fail:
1950 if (id >= 0)
1951 ida_simple_remove(&pool->worker_ida, id);
1952 kfree(worker);
1953 return NULL;
1954 }
1955
1956 /**
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
1959 *
1960 * Destroy @worker and adjust @pool stats accordingly. The worker should
1961 * be idle.
1962 *
1963 * CONTEXT:
1964 * spin_lock_irq(pool->lock).
1965 */
1966 static void destroy_worker(struct worker *worker)
1967 {
1968 struct worker_pool *pool = worker->pool;
1969
1970 lockdep_assert_held(&pool->lock);
1971
1972 /* sanity check frenzy */
1973 if (WARN_ON(worker->current_work) ||
1974 WARN_ON(!list_empty(&worker->scheduled)) ||
1975 WARN_ON(!(worker->flags & WORKER_IDLE)))
1976 return;
1977
1978 pool->nr_workers--;
1979 pool->nr_idle--;
1980
1981 list_del_init(&worker->entry);
1982 worker->flags |= WORKER_DIE;
1983 wake_up_process(worker->task);
1984 }
1985
1986 static void idle_worker_timeout(struct timer_list *t)
1987 {
1988 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1989
1990 spin_lock_irq(&pool->lock);
1991
1992 while (too_many_workers(pool)) {
1993 struct worker *worker;
1994 unsigned long expires;
1995
1996 /* idle_list is kept in LIFO order, check the last one */
1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
2000 if (time_before(jiffies, expires)) {
2001 mod_timer(&pool->idle_timer, expires);
2002 break;
2003 }
2004
2005 destroy_worker(worker);
2006 }
2007
2008 spin_unlock_irq(&pool->lock);
2009 }
2010
2011 static void send_mayday(struct work_struct *work)
2012 {
2013 struct pool_workqueue *pwq = get_work_pwq(work);
2014 struct workqueue_struct *wq = pwq->wq;
2015
2016 lockdep_assert_held(&wq_mayday_lock);
2017
2018 if (!wq->rescuer)
2019 return;
2020
2021 /* mayday mayday mayday */
2022 if (list_empty(&pwq->mayday_node)) {
2023 /*
2024 * If @pwq is for an unbound wq, its base ref may be put at
2025 * any time due to an attribute change. Pin @pwq until the
2026 * rescuer is done with it.
2027 */
2028 get_pwq(pwq);
2029 list_add_tail(&pwq->mayday_node, &wq->maydays);
2030 wake_up_process(wq->rescuer->task);
2031 }
2032 }
2033
2034 static void pool_mayday_timeout(struct timer_list *t)
2035 {
2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037 struct work_struct *work;
2038
2039 spin_lock_irq(&pool->lock);
2040 spin_lock(&wq_mayday_lock); /* for wq->maydays */
2041
2042 if (need_to_create_worker(pool)) {
2043 /*
2044 * We've been trying to create a new worker but
2045 * haven't been successful. We might be hitting an
2046 * allocation deadlock. Send distress signals to
2047 * rescuers.
2048 */
2049 list_for_each_entry(work, &pool->worklist, entry)
2050 send_mayday(work);
2051 }
2052
2053 spin_unlock(&wq_mayday_lock);
2054 spin_unlock_irq(&pool->lock);
2055
2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2057 }
2058
2059 /**
2060 * maybe_create_worker - create a new worker if necessary
2061 * @pool: pool to create a new worker for
2062 *
2063 * Create a new worker for @pool if necessary. @pool is guaranteed to
2064 * have at least one idle worker on return from this function. If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066 * sent to all rescuers with works scheduled on @pool to resolve
2067 * possible allocation deadlock.
2068 *
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
2071 *
2072 * LOCKING:
2073 * spin_lock_irq(pool->lock) which may be released and regrabbed
2074 * multiple times. Does GFP_KERNEL allocations. Called only from
2075 * manager.
2076 */
2077 static void maybe_create_worker(struct worker_pool *pool)
2078 __releases(&pool->lock)
2079 __acquires(&pool->lock)
2080 {
2081 restart:
2082 spin_unlock_irq(&pool->lock);
2083
2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2086
2087 while (true) {
2088 if (create_worker(pool) || !need_to_create_worker(pool))
2089 break;
2090
2091 schedule_timeout_interruptible(CREATE_COOLDOWN);
2092
2093 if (!need_to_create_worker(pool))
2094 break;
2095 }
2096
2097 del_timer_sync(&pool->mayday_timer);
2098 spin_lock_irq(&pool->lock);
2099 /*
2100 * This is necessary even after a new worker was just successfully
2101 * created as @pool->lock was dropped and the new worker might have
2102 * already become busy.
2103 */
2104 if (need_to_create_worker(pool))
2105 goto restart;
2106 }
2107
2108 /**
2109 * manage_workers - manage worker pool
2110 * @worker: self
2111 *
2112 * Assume the manager role and manage the worker pool @worker belongs
2113 * to. At any given time, there can be only zero or one manager per
2114 * pool. The exclusion is handled automatically by this function.
2115 *
2116 * The caller can safely start processing works on false return. On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
2119 *
2120 * CONTEXT:
2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
2122 * multiple times. Does GFP_KERNEL allocations.
2123 *
2124 * Return:
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
2129 */
2130 static bool manage_workers(struct worker *worker)
2131 {
2132 struct worker_pool *pool = worker->pool;
2133
2134 if (pool->flags & POOL_MANAGER_ACTIVE)
2135 return false;
2136
2137 pool->flags |= POOL_MANAGER_ACTIVE;
2138 pool->manager = worker;
2139
2140 maybe_create_worker(pool);
2141
2142 pool->manager = NULL;
2143 pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 wake_up(&wq_manager_wait);
2145 return true;
2146 }
2147
2148 /**
2149 * process_one_work - process single work
2150 * @worker: self
2151 * @work: work to process
2152 *
2153 * Process @work. This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing. As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
2160 * spin_lock_irq(pool->lock) which is released and regrabbed.
2161 */
2162 static void process_one_work(struct worker *worker, struct work_struct *work)
2163 __releases(&pool->lock)
2164 __acquires(&pool->lock)
2165 {
2166 struct pool_workqueue *pwq = get_work_pwq(work);
2167 struct worker_pool *pool = worker->pool;
2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169 int work_color;
2170 struct worker *collision;
2171 #ifdef CONFIG_LOCKDEP
2172 /*
2173 * It is permissible to free the struct work_struct from
2174 * inside the function that is called from it, this we need to
2175 * take into account for lockdep too. To avoid bogus "held
2176 * lock freed" warnings as well as problems when looking into
2177 * work->lockdep_map, make a copy and use that here.
2178 */
2179 struct lockdep_map lockdep_map;
2180
2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182 #endif
2183 /* ensure we're on the correct CPU */
2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185 raw_smp_processor_id() != pool->cpu);
2186
2187 /*
2188 * A single work shouldn't be executed concurrently by
2189 * multiple workers on a single cpu. Check whether anyone is
2190 * already processing the work. If so, defer the work to the
2191 * currently executing one.
2192 */
2193 collision = find_worker_executing_work(pool, work);
2194 if (unlikely(collision)) {
2195 move_linked_works(work, &collision->scheduled, NULL);
2196 return;
2197 }
2198
2199 /* claim and dequeue */
2200 debug_work_deactivate(work);
2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202 worker->current_work = work;
2203 worker->current_func = work->func;
2204 worker->current_pwq = pwq;
2205 work_color = get_work_color(work);
2206
2207 /*
2208 * Record wq name for cmdline and debug reporting, may get
2209 * overridden through set_worker_desc().
2210 */
2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212
2213 list_del_init(&work->entry);
2214
2215 /*
2216 * CPU intensive works don't participate in concurrency management.
2217 * They're the scheduler's responsibility. This takes @worker out
2218 * of concurrency management and the next code block will chain
2219 * execution of the pending work items.
2220 */
2221 if (unlikely(cpu_intensive))
2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2223
2224 /*
2225 * Wake up another worker if necessary. The condition is always
2226 * false for normal per-cpu workers since nr_running would always
2227 * be >= 1 at this point. This is used to chain execution of the
2228 * pending work items for WORKER_NOT_RUNNING workers such as the
2229 * UNBOUND and CPU_INTENSIVE ones.
2230 */
2231 if (need_more_worker(pool))
2232 wake_up_worker(pool);
2233
2234 /*
2235 * Record the last pool and clear PENDING which should be the last
2236 * update to @work. Also, do this inside @pool->lock so that
2237 * PENDING and queued state changes happen together while IRQ is
2238 * disabled.
2239 */
2240 set_work_pool_and_clear_pending(work, pool->id);
2241
2242 spin_unlock_irq(&pool->lock);
2243
2244 lock_map_acquire(&pwq->wq->lockdep_map);
2245 lock_map_acquire(&lockdep_map);
2246 /*
2247 * Strictly speaking we should mark the invariant state without holding
2248 * any locks, that is, before these two lock_map_acquire()'s.
2249 *
2250 * However, that would result in:
2251 *
2252 * A(W1)
2253 * WFC(C)
2254 * A(W1)
2255 * C(C)
2256 *
2257 * Which would create W1->C->W1 dependencies, even though there is no
2258 * actual deadlock possible. There are two solutions, using a
2259 * read-recursive acquire on the work(queue) 'locks', but this will then
2260 * hit the lockdep limitation on recursive locks, or simply discard
2261 * these locks.
2262 *
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for single-threaded
2265 * workqueues), so hiding them isn't a problem.
2266 */
2267 lockdep_invariant_state(true);
2268 trace_workqueue_execute_start(work);
2269 worker->current_func(work);
2270 /*
2271 * While we must be careful to not use "work" after this, the trace
2272 * point will only record its address.
2273 */
2274 trace_workqueue_execute_end(work);
2275 lock_map_release(&lockdep_map);
2276 lock_map_release(&pwq->wq->lockdep_map);
2277
2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280 " last function: %ps\n",
2281 current->comm, preempt_count(), task_pid_nr(current),
2282 worker->current_func);
2283 debug_show_held_locks(current);
2284 dump_stack();
2285 }
2286
2287 /*
2288 * The following prevents a kworker from hogging CPU on !PREEMPT
2289 * kernels, where a requeueing work item waiting for something to
2290 * happen could deadlock with stop_machine as such work item could
2291 * indefinitely requeue itself while all other CPUs are trapped in
2292 * stop_machine. At the same time, report a quiescent RCU state so
2293 * the same condition doesn't freeze RCU.
2294 */
2295 cond_resched();
2296
2297 spin_lock_irq(&pool->lock);
2298
2299 /* clear cpu intensive status */
2300 if (unlikely(cpu_intensive))
2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302
2303 /* tag the worker for identification in schedule() */
2304 worker->last_func = worker->current_func;
2305
2306 /* we're done with it, release */
2307 hash_del(&worker->hentry);
2308 worker->current_work = NULL;
2309 worker->current_func = NULL;
2310 worker->current_pwq = NULL;
2311 pwq_dec_nr_in_flight(pwq, work_color);
2312 }
2313
2314 /**
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2317 *
2318 * Process all scheduled works. Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2321 *
2322 * CONTEXT:
2323 * spin_lock_irq(pool->lock) which may be released and regrabbed
2324 * multiple times.
2325 */
2326 static void process_scheduled_works(struct worker *worker)
2327 {
2328 while (!list_empty(&worker->scheduled)) {
2329 struct work_struct *work = list_first_entry(&worker->scheduled,
2330 struct work_struct, entry);
2331 process_one_work(worker, work);
2332 }
2333 }
2334
2335 static void set_pf_worker(bool val)
2336 {
2337 mutex_lock(&wq_pool_attach_mutex);
2338 if (val)
2339 current->flags |= PF_WQ_WORKER;
2340 else
2341 current->flags &= ~PF_WQ_WORKER;
2342 mutex_unlock(&wq_pool_attach_mutex);
2343 }
2344
2345 /**
2346 * worker_thread - the worker thread function
2347 * @__worker: self
2348 *
2349 * The worker thread function. All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one. These workers process all
2351 * work items regardless of their specific target workqueue. The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
2354 *
2355 * Return: 0
2356 */
2357 static int worker_thread(void *__worker)
2358 {
2359 struct worker *worker = __worker;
2360 struct worker_pool *pool = worker->pool;
2361
2362 /* tell the scheduler that this is a workqueue worker */
2363 set_pf_worker(true);
2364 woke_up:
2365 spin_lock_irq(&pool->lock);
2366
2367 /* am I supposed to die? */
2368 if (unlikely(worker->flags & WORKER_DIE)) {
2369 spin_unlock_irq(&pool->lock);
2370 WARN_ON_ONCE(!list_empty(&worker->entry));
2371 set_pf_worker(false);
2372
2373 set_task_comm(worker->task, "kworker/dying");
2374 ida_simple_remove(&pool->worker_ida, worker->id);
2375 worker_detach_from_pool(worker);
2376 kfree(worker);
2377 return 0;
2378 }
2379
2380 worker_leave_idle(worker);
2381 recheck:
2382 /* no more worker necessary? */
2383 if (!need_more_worker(pool))
2384 goto sleep;
2385
2386 /* do we need to manage? */
2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388 goto recheck;
2389
2390 /*
2391 * ->scheduled list can only be filled while a worker is
2392 * preparing to process a work or actually processing it.
2393 * Make sure nobody diddled with it while I was sleeping.
2394 */
2395 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2396
2397 /*
2398 * Finish PREP stage. We're guaranteed to have at least one idle
2399 * worker or that someone else has already assumed the manager
2400 * role. This is where @worker starts participating in concurrency
2401 * management if applicable and concurrency management is restored
2402 * after being rebound. See rebind_workers() for details.
2403 */
2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2405
2406 do {
2407 struct work_struct *work =
2408 list_first_entry(&pool->worklist,
2409 struct work_struct, entry);
2410
2411 pool->watchdog_ts = jiffies;
2412
2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 /* optimization path, not strictly necessary */
2415 process_one_work(worker, work);
2416 if (unlikely(!list_empty(&worker->scheduled)))
2417 process_scheduled_works(worker);
2418 } else {
2419 move_linked_works(work, &worker->scheduled, NULL);
2420 process_scheduled_works(worker);
2421 }
2422 } while (keep_working(pool));
2423
2424 worker_set_flags(worker, WORKER_PREP);
2425 sleep:
2426 /*
2427 * pool->lock is held and there's no work to process and no need to
2428 * manage, sleep. Workers are woken up only while holding
2429 * pool->lock or from local cpu, so setting the current state
2430 * before releasing pool->lock is enough to prevent losing any
2431 * event.
2432 */
2433 worker_enter_idle(worker);
2434 __set_current_state(TASK_IDLE);
2435 spin_unlock_irq(&pool->lock);
2436 schedule();
2437 goto woke_up;
2438 }
2439
2440 /**
2441 * rescuer_thread - the rescuer thread function
2442 * @__rescuer: self
2443 *
2444 * Workqueue rescuer thread function. There's one rescuer for each
2445 * workqueue which has WQ_MEM_RECLAIM set.
2446 *
2447 * Regular work processing on a pool may block trying to create a new
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2451 * the problem rescuer solves.
2452 *
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
2455 * those works so that forward progress can be guaranteed.
2456 *
2457 * This should happen rarely.
2458 *
2459 * Return: 0
2460 */
2461 static int rescuer_thread(void *__rescuer)
2462 {
2463 struct worker *rescuer = __rescuer;
2464 struct workqueue_struct *wq = rescuer->rescue_wq;
2465 struct list_head *scheduled = &rescuer->scheduled;
2466 bool should_stop;
2467
2468 set_user_nice(current, RESCUER_NICE_LEVEL);
2469
2470 /*
2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2472 * doesn't participate in concurrency management.
2473 */
2474 set_pf_worker(true);
2475 repeat:
2476 set_current_state(TASK_IDLE);
2477
2478 /*
2479 * By the time the rescuer is requested to stop, the workqueue
2480 * shouldn't have any work pending, but @wq->maydays may still have
2481 * pwq(s) queued. This can happen by non-rescuer workers consuming
2482 * all the work items before the rescuer got to them. Go through
2483 * @wq->maydays processing before acting on should_stop so that the
2484 * list is always empty on exit.
2485 */
2486 should_stop = kthread_should_stop();
2487
2488 /* see whether any pwq is asking for help */
2489 spin_lock_irq(&wq_mayday_lock);
2490
2491 while (!list_empty(&wq->maydays)) {
2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 struct pool_workqueue, mayday_node);
2494 struct worker_pool *pool = pwq->pool;
2495 struct work_struct *work, *n;
2496 bool first = true;
2497
2498 __set_current_state(TASK_RUNNING);
2499 list_del_init(&pwq->mayday_node);
2500
2501 spin_unlock_irq(&wq_mayday_lock);
2502
2503 worker_attach_to_pool(rescuer, pool);
2504
2505 spin_lock_irq(&pool->lock);
2506
2507 /*
2508 * Slurp in all works issued via this workqueue and
2509 * process'em.
2510 */
2511 WARN_ON_ONCE(!list_empty(scheduled));
2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 if (get_work_pwq(work) == pwq) {
2514 if (first)
2515 pool->watchdog_ts = jiffies;
2516 move_linked_works(work, scheduled, &n);
2517 }
2518 first = false;
2519 }
2520
2521 if (!list_empty(scheduled)) {
2522 process_scheduled_works(rescuer);
2523
2524 /*
2525 * The above execution of rescued work items could
2526 * have created more to rescue through
2527 * pwq_activate_first_delayed() or chained
2528 * queueing. Let's put @pwq back on mayday list so
2529 * that such back-to-back work items, which may be
2530 * being used to relieve memory pressure, don't
2531 * incur MAYDAY_INTERVAL delay inbetween.
2532 */
2533 if (need_to_create_worker(pool)) {
2534 spin_lock(&wq_mayday_lock);
2535 get_pwq(pwq);
2536 list_move_tail(&pwq->mayday_node, &wq->maydays);
2537 spin_unlock(&wq_mayday_lock);
2538 }
2539 }
2540
2541 /*
2542 * Put the reference grabbed by send_mayday(). @pool won't
2543 * go away while we're still attached to it.
2544 */
2545 put_pwq(pwq);
2546
2547 /*
2548 * Leave this pool. If need_more_worker() is %true, notify a
2549 * regular worker; otherwise, we end up with 0 concurrency
2550 * and stalling the execution.
2551 */
2552 if (need_more_worker(pool))
2553 wake_up_worker(pool);
2554
2555 spin_unlock_irq(&pool->lock);
2556
2557 worker_detach_from_pool(rescuer);
2558
2559 spin_lock_irq(&wq_mayday_lock);
2560 }
2561
2562 spin_unlock_irq(&wq_mayday_lock);
2563
2564 if (should_stop) {
2565 __set_current_state(TASK_RUNNING);
2566 set_pf_worker(false);
2567 return 0;
2568 }
2569
2570 /* rescuers should never participate in concurrency management */
2571 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2572 schedule();
2573 goto repeat;
2574 }
2575
2576 /**
2577 * check_flush_dependency - check for flush dependency sanity
2578 * @target_wq: workqueue being flushed
2579 * @target_work: work item being flushed (NULL for workqueue flushes)
2580 *
2581 * %current is trying to flush the whole @target_wq or @target_work on it.
2582 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2583 * reclaiming memory or running on a workqueue which doesn't have
2584 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2585 * a deadlock.
2586 */
2587 static void check_flush_dependency(struct workqueue_struct *target_wq,
2588 struct work_struct *target_work)
2589 {
2590 work_func_t target_func = target_work ? target_work->func : NULL;
2591 struct worker *worker;
2592
2593 if (target_wq->flags & WQ_MEM_RECLAIM)
2594 return;
2595
2596 worker = current_wq_worker();
2597
2598 WARN_ONCE(current->flags & PF_MEMALLOC,
2599 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2600 current->pid, current->comm, target_wq->name, target_func);
2601 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2602 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2603 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2604 worker->current_pwq->wq->name, worker->current_func,
2605 target_wq->name, target_func);
2606 }
2607
2608 struct wq_barrier {
2609 struct work_struct work;
2610 struct completion done;
2611 struct task_struct *task; /* purely informational */
2612 };
2613
2614 static void wq_barrier_func(struct work_struct *work)
2615 {
2616 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2617 complete(&barr->done);
2618 }
2619
2620 /**
2621 * insert_wq_barrier - insert a barrier work
2622 * @pwq: pwq to insert barrier into
2623 * @barr: wq_barrier to insert
2624 * @target: target work to attach @barr to
2625 * @worker: worker currently executing @target, NULL if @target is not executing
2626 *
2627 * @barr is linked to @target such that @barr is completed only after
2628 * @target finishes execution. Please note that the ordering
2629 * guarantee is observed only with respect to @target and on the local
2630 * cpu.
2631 *
2632 * Currently, a queued barrier can't be canceled. This is because
2633 * try_to_grab_pending() can't determine whether the work to be
2634 * grabbed is at the head of the queue and thus can't clear LINKED
2635 * flag of the previous work while there must be a valid next work
2636 * after a work with LINKED flag set.
2637 *
2638 * Note that when @worker is non-NULL, @target may be modified
2639 * underneath us, so we can't reliably determine pwq from @target.
2640 *
2641 * CONTEXT:
2642 * spin_lock_irq(pool->lock).
2643 */
2644 static void insert_wq_barrier(struct pool_workqueue *pwq,
2645 struct wq_barrier *barr,
2646 struct work_struct *target, struct worker *worker)
2647 {
2648 struct list_head *head;
2649 unsigned int linked = 0;
2650
2651 /*
2652 * debugobject calls are safe here even with pool->lock locked
2653 * as we know for sure that this will not trigger any of the
2654 * checks and call back into the fixup functions where we
2655 * might deadlock.
2656 */
2657 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2658 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2659
2660 init_completion_map(&barr->done, &target->lockdep_map);
2661
2662 barr->task = current;
2663
2664 /*
2665 * If @target is currently being executed, schedule the
2666 * barrier to the worker; otherwise, put it after @target.
2667 */
2668 if (worker)
2669 head = worker->scheduled.next;
2670 else {
2671 unsigned long *bits = work_data_bits(target);
2672
2673 head = target->entry.next;
2674 /* there can already be other linked works, inherit and set */
2675 linked = *bits & WORK_STRUCT_LINKED;
2676 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2677 }
2678
2679 debug_work_activate(&barr->work);
2680 insert_work(pwq, &barr->work, head,
2681 work_color_to_flags(WORK_NO_COLOR) | linked);
2682 }
2683
2684 /**
2685 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2686 * @wq: workqueue being flushed
2687 * @flush_color: new flush color, < 0 for no-op
2688 * @work_color: new work color, < 0 for no-op
2689 *
2690 * Prepare pwqs for workqueue flushing.
2691 *
2692 * If @flush_color is non-negative, flush_color on all pwqs should be
2693 * -1. If no pwq has in-flight commands at the specified color, all
2694 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2695 * has in flight commands, its pwq->flush_color is set to
2696 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2697 * wakeup logic is armed and %true is returned.
2698 *
2699 * The caller should have initialized @wq->first_flusher prior to
2700 * calling this function with non-negative @flush_color. If
2701 * @flush_color is negative, no flush color update is done and %false
2702 * is returned.
2703 *
2704 * If @work_color is non-negative, all pwqs should have the same
2705 * work_color which is previous to @work_color and all will be
2706 * advanced to @work_color.
2707 *
2708 * CONTEXT:
2709 * mutex_lock(wq->mutex).
2710 *
2711 * Return:
2712 * %true if @flush_color >= 0 and there's something to flush. %false
2713 * otherwise.
2714 */
2715 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2716 int flush_color, int work_color)
2717 {
2718 bool wait = false;
2719 struct pool_workqueue *pwq;
2720
2721 if (flush_color >= 0) {
2722 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2723 atomic_set(&wq->nr_pwqs_to_flush, 1);
2724 }
2725
2726 for_each_pwq(pwq, wq) {
2727 struct worker_pool *pool = pwq->pool;
2728
2729 spin_lock_irq(&pool->lock);
2730
2731 if (flush_color >= 0) {
2732 WARN_ON_ONCE(pwq->flush_color != -1);
2733
2734 if (pwq->nr_in_flight[flush_color]) {
2735 pwq->flush_color = flush_color;
2736 atomic_inc(&wq->nr_pwqs_to_flush);
2737 wait = true;
2738 }
2739 }
2740
2741 if (work_color >= 0) {
2742 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2743 pwq->work_color = work_color;
2744 }
2745
2746 spin_unlock_irq(&pool->lock);
2747 }
2748
2749 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2750 complete(&wq->first_flusher->done);
2751
2752 return wait;
2753 }
2754
2755 /**
2756 * flush_workqueue - ensure that any scheduled work has run to completion.
2757 * @wq: workqueue to flush
2758 *
2759 * This function sleeps until all work items which were queued on entry
2760 * have finished execution, but it is not livelocked by new incoming ones.
2761 */
2762 void flush_workqueue(struct workqueue_struct *wq)
2763 {
2764 struct wq_flusher this_flusher = {
2765 .list = LIST_HEAD_INIT(this_flusher.list),
2766 .flush_color = -1,
2767 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2768 };
2769 int next_color;
2770
2771 if (WARN_ON(!wq_online))
2772 return;
2773
2774 lock_map_acquire(&wq->lockdep_map);
2775 lock_map_release(&wq->lockdep_map);
2776
2777 mutex_lock(&wq->mutex);
2778
2779 /*
2780 * Start-to-wait phase
2781 */
2782 next_color = work_next_color(wq->work_color);
2783
2784 if (next_color != wq->flush_color) {
2785 /*
2786 * Color space is not full. The current work_color
2787 * becomes our flush_color and work_color is advanced
2788 * by one.
2789 */
2790 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2791 this_flusher.flush_color = wq->work_color;
2792 wq->work_color = next_color;
2793
2794 if (!wq->first_flusher) {
2795 /* no flush in progress, become the first flusher */
2796 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2797
2798 wq->first_flusher = &this_flusher;
2799
2800 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2801 wq->work_color)) {
2802 /* nothing to flush, done */
2803 wq->flush_color = next_color;
2804 wq->first_flusher = NULL;
2805 goto out_unlock;
2806 }
2807 } else {
2808 /* wait in queue */
2809 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2810 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2811 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2812 }
2813 } else {
2814 /*
2815 * Oops, color space is full, wait on overflow queue.
2816 * The next flush completion will assign us
2817 * flush_color and transfer to flusher_queue.
2818 */
2819 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2820 }
2821
2822 check_flush_dependency(wq, NULL);
2823
2824 mutex_unlock(&wq->mutex);
2825
2826 wait_for_completion(&this_flusher.done);
2827
2828 /*
2829 * Wake-up-and-cascade phase
2830 *
2831 * First flushers are responsible for cascading flushes and
2832 * handling overflow. Non-first flushers can simply return.
2833 */
2834 if (wq->first_flusher != &this_flusher)
2835 return;
2836
2837 mutex_lock(&wq->mutex);
2838
2839 /* we might have raced, check again with mutex held */
2840 if (wq->first_flusher != &this_flusher)
2841 goto out_unlock;
2842
2843 wq->first_flusher = NULL;
2844
2845 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2846 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2847
2848 while (true) {
2849 struct wq_flusher *next, *tmp;
2850
2851 /* complete all the flushers sharing the current flush color */
2852 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2853 if (next->flush_color != wq->flush_color)
2854 break;
2855 list_del_init(&next->list);
2856 complete(&next->done);
2857 }
2858
2859 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2860 wq->flush_color != work_next_color(wq->work_color));
2861
2862 /* this flush_color is finished, advance by one */
2863 wq->flush_color = work_next_color(wq->flush_color);
2864
2865 /* one color has been freed, handle overflow queue */
2866 if (!list_empty(&wq->flusher_overflow)) {
2867 /*
2868 * Assign the same color to all overflowed
2869 * flushers, advance work_color and append to
2870 * flusher_queue. This is the start-to-wait
2871 * phase for these overflowed flushers.
2872 */
2873 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2874 tmp->flush_color = wq->work_color;
2875
2876 wq->work_color = work_next_color(wq->work_color);
2877
2878 list_splice_tail_init(&wq->flusher_overflow,
2879 &wq->flusher_queue);
2880 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2881 }
2882
2883 if (list_empty(&wq->flusher_queue)) {
2884 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2885 break;
2886 }
2887
2888 /*
2889 * Need to flush more colors. Make the next flusher
2890 * the new first flusher and arm pwqs.
2891 */
2892 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2893 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2894
2895 list_del_init(&next->list);
2896 wq->first_flusher = next;
2897
2898 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2899 break;
2900
2901 /*
2902 * Meh... this color is already done, clear first
2903 * flusher and repeat cascading.
2904 */
2905 wq->first_flusher = NULL;
2906 }
2907
2908 out_unlock:
2909 mutex_unlock(&wq->mutex);
2910 }
2911 EXPORT_SYMBOL(flush_workqueue);
2912
2913 /**
2914 * drain_workqueue - drain a workqueue
2915 * @wq: workqueue to drain
2916 *
2917 * Wait until the workqueue becomes empty. While draining is in progress,
2918 * only chain queueing is allowed. IOW, only currently pending or running
2919 * work items on @wq can queue further work items on it. @wq is flushed
2920 * repeatedly until it becomes empty. The number of flushing is determined
2921 * by the depth of chaining and should be relatively short. Whine if it
2922 * takes too long.
2923 */
2924 void drain_workqueue(struct workqueue_struct *wq)
2925 {
2926 unsigned int flush_cnt = 0;
2927 struct pool_workqueue *pwq;
2928
2929 /*
2930 * __queue_work() needs to test whether there are drainers, is much
2931 * hotter than drain_workqueue() and already looks at @wq->flags.
2932 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2933 */
2934 mutex_lock(&wq->mutex);
2935 if (!wq->nr_drainers++)
2936 wq->flags |= __WQ_DRAINING;
2937 mutex_unlock(&wq->mutex);
2938 reflush:
2939 flush_workqueue(wq);
2940
2941 mutex_lock(&wq->mutex);
2942
2943 for_each_pwq(pwq, wq) {
2944 bool drained;
2945
2946 spin_lock_irq(&pwq->pool->lock);
2947 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2948 spin_unlock_irq(&pwq->pool->lock);
2949
2950 if (drained)
2951 continue;
2952
2953 if (++flush_cnt == 10 ||
2954 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2955 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2956 wq->name, flush_cnt);
2957
2958 mutex_unlock(&wq->mutex);
2959 goto reflush;
2960 }
2961
2962 if (!--wq->nr_drainers)
2963 wq->flags &= ~__WQ_DRAINING;
2964 mutex_unlock(&wq->mutex);
2965 }
2966 EXPORT_SYMBOL_GPL(drain_workqueue);
2967
2968 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2969 bool from_cancel)
2970 {
2971 struct worker *worker = NULL;
2972 struct worker_pool *pool;
2973 struct pool_workqueue *pwq;
2974
2975 might_sleep();
2976
2977 rcu_read_lock();
2978 pool = get_work_pool(work);
2979 if (!pool) {
2980 rcu_read_unlock();
2981 return false;
2982 }
2983
2984 spin_lock_irq(&pool->lock);
2985 /* see the comment in try_to_grab_pending() with the same code */
2986 pwq = get_work_pwq(work);
2987 if (pwq) {
2988 if (unlikely(pwq->pool != pool))
2989 goto already_gone;
2990 } else {
2991 worker = find_worker_executing_work(pool, work);
2992 if (!worker)
2993 goto already_gone;
2994 pwq = worker->current_pwq;
2995 }
2996
2997 check_flush_dependency(pwq->wq, work);
2998
2999 insert_wq_barrier(pwq, barr, work, worker);
3000 spin_unlock_irq(&pool->lock);
3001
3002 /*
3003 * Force a lock recursion deadlock when using flush_work() inside a
3004 * single-threaded or rescuer equipped workqueue.
3005 *
3006 * For single threaded workqueues the deadlock happens when the work
3007 * is after the work issuing the flush_work(). For rescuer equipped
3008 * workqueues the deadlock happens when the rescuer stalls, blocking
3009 * forward progress.
3010 */
3011 if (!from_cancel &&
3012 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3013 lock_map_acquire(&pwq->wq->lockdep_map);
3014 lock_map_release(&pwq->wq->lockdep_map);
3015 }
3016 rcu_read_unlock();
3017 return true;
3018 already_gone:
3019 spin_unlock_irq(&pool->lock);
3020 rcu_read_unlock();
3021 return false;
3022 }
3023
3024 static bool __flush_work(struct work_struct *work, bool from_cancel)
3025 {
3026 struct wq_barrier barr;
3027
3028 if (WARN_ON(!wq_online))
3029 return false;
3030
3031 if (WARN_ON(!work->func))
3032 return false;
3033
3034 if (!from_cancel) {
3035 lock_map_acquire(&work->lockdep_map);
3036 lock_map_release(&work->lockdep_map);
3037 }
3038
3039 if (start_flush_work(work, &barr, from_cancel)) {
3040 wait_for_completion(&barr.done);
3041 destroy_work_on_stack(&barr.work);
3042 return true;
3043 } else {
3044 return false;
3045 }
3046 }
3047
3048 /**
3049 * flush_work - wait for a work to finish executing the last queueing instance
3050 * @work: the work to flush
3051 *
3052 * Wait until @work has finished execution. @work is guaranteed to be idle
3053 * on return if it hasn't been requeued since flush started.
3054 *
3055 * Return:
3056 * %true if flush_work() waited for the work to finish execution,
3057 * %false if it was already idle.
3058 */
3059 bool flush_work(struct work_struct *work)
3060 {
3061 return __flush_work(work, false);
3062 }
3063 EXPORT_SYMBOL_GPL(flush_work);
3064
3065 struct cwt_wait {
3066 wait_queue_entry_t wait;
3067 struct work_struct *work;
3068 };
3069
3070 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3071 {
3072 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3073
3074 if (cwait->work != key)
3075 return 0;
3076 return autoremove_wake_function(wait, mode, sync, key);
3077 }
3078
3079 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3080 {
3081 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3082 unsigned long flags;
3083 int ret;
3084
3085 do {
3086 ret = try_to_grab_pending(work, is_dwork, &flags);
3087 /*
3088 * If someone else is already canceling, wait for it to
3089 * finish. flush_work() doesn't work for PREEMPT_NONE
3090 * because we may get scheduled between @work's completion
3091 * and the other canceling task resuming and clearing
3092 * CANCELING - flush_work() will return false immediately
3093 * as @work is no longer busy, try_to_grab_pending() will
3094 * return -ENOENT as @work is still being canceled and the
3095 * other canceling task won't be able to clear CANCELING as
3096 * we're hogging the CPU.
3097 *
3098 * Let's wait for completion using a waitqueue. As this
3099 * may lead to the thundering herd problem, use a custom
3100 * wake function which matches @work along with exclusive
3101 * wait and wakeup.
3102 */
3103 if (unlikely(ret == -ENOENT)) {
3104 struct cwt_wait cwait;
3105
3106 init_wait(&cwait.wait);
3107 cwait.wait.func = cwt_wakefn;
3108 cwait.work = work;
3109
3110 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3111 TASK_UNINTERRUPTIBLE);
3112 if (work_is_canceling(work))
3113 schedule();
3114 finish_wait(&cancel_waitq, &cwait.wait);
3115 }
3116 } while (unlikely(ret < 0));
3117
3118 /* tell other tasks trying to grab @work to back off */
3119 mark_work_canceling(work);
3120 local_irq_restore(flags);
3121
3122 /*
3123 * This allows canceling during early boot. We know that @work
3124 * isn't executing.
3125 */
3126 if (wq_online)
3127 __flush_work(work, true);
3128
3129 clear_work_data(work);
3130
3131 /*
3132 * Paired with prepare_to_wait() above so that either
3133 * waitqueue_active() is visible here or !work_is_canceling() is
3134 * visible there.
3135 */
3136 smp_mb();
3137 if (waitqueue_active(&cancel_waitq))
3138 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3139
3140 return ret;
3141 }
3142
3143 /**
3144 * cancel_work_sync - cancel a work and wait for it to finish
3145 * @work: the work to cancel
3146 *
3147 * Cancel @work and wait for its execution to finish. This function
3148 * can be used even if the work re-queues itself or migrates to
3149 * another workqueue. On return from this function, @work is
3150 * guaranteed to be not pending or executing on any CPU.
3151 *
3152 * cancel_work_sync(&delayed_work->work) must not be used for
3153 * delayed_work's. Use cancel_delayed_work_sync() instead.
3154 *
3155 * The caller must ensure that the workqueue on which @work was last
3156 * queued can't be destroyed before this function returns.
3157 *
3158 * Return:
3159 * %true if @work was pending, %false otherwise.
3160 */
3161 bool cancel_work_sync(struct work_struct *work)
3162 {
3163 return __cancel_work_timer(work, false);
3164 }
3165 EXPORT_SYMBOL_GPL(cancel_work_sync);
3166
3167 /**
3168 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3169 * @dwork: the delayed work to flush
3170 *
3171 * Delayed timer is cancelled and the pending work is queued for
3172 * immediate execution. Like flush_work(), this function only
3173 * considers the last queueing instance of @dwork.
3174 *
3175 * Return:
3176 * %true if flush_work() waited for the work to finish execution,
3177 * %false if it was already idle.
3178 */
3179 bool flush_delayed_work(struct delayed_work *dwork)
3180 {
3181 local_irq_disable();
3182 if (del_timer_sync(&dwork->timer))
3183 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3184 local_irq_enable();
3185 return flush_work(&dwork->work);
3186 }
3187 EXPORT_SYMBOL(flush_delayed_work);
3188
3189 /**
3190 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3191 * @rwork: the rcu work to flush
3192 *
3193 * Return:
3194 * %true if flush_rcu_work() waited for the work to finish execution,
3195 * %false if it was already idle.
3196 */
3197 bool flush_rcu_work(struct rcu_work *rwork)
3198 {
3199 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3200 rcu_barrier();
3201 flush_work(&rwork->work);
3202 return true;
3203 } else {
3204 return flush_work(&rwork->work);
3205 }
3206 }
3207 EXPORT_SYMBOL(flush_rcu_work);
3208
3209 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3210 {
3211 unsigned long flags;
3212 int ret;
3213
3214 do {
3215 ret = try_to_grab_pending(work, is_dwork, &flags);
3216 } while (unlikely(ret == -EAGAIN));
3217
3218 if (unlikely(ret < 0))
3219 return false;
3220
3221 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3222 local_irq_restore(flags);
3223 return ret;
3224 }
3225
3226 /**
3227 * cancel_delayed_work - cancel a delayed work
3228 * @dwork: delayed_work to cancel
3229 *
3230 * Kill off a pending delayed_work.
3231 *
3232 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3233 * pending.
3234 *
3235 * Note:
3236 * The work callback function may still be running on return, unless
3237 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3238 * use cancel_delayed_work_sync() to wait on it.
3239 *
3240 * This function is safe to call from any context including IRQ handler.
3241 */
3242 bool cancel_delayed_work(struct delayed_work *dwork)
3243 {
3244 return __cancel_work(&dwork->work, true);
3245 }
3246 EXPORT_SYMBOL(cancel_delayed_work);
3247
3248 /**
3249 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3250 * @dwork: the delayed work cancel
3251 *
3252 * This is cancel_work_sync() for delayed works.
3253 *
3254 * Return:
3255 * %true if @dwork was pending, %false otherwise.
3256 */
3257 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3258 {
3259 return __cancel_work_timer(&dwork->work, true);
3260 }
3261 EXPORT_SYMBOL(cancel_delayed_work_sync);
3262
3263 /**
3264 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3265 * @func: the function to call
3266 *
3267 * schedule_on_each_cpu() executes @func on each online CPU using the
3268 * system workqueue and blocks until all CPUs have completed.
3269 * schedule_on_each_cpu() is very slow.
3270 *
3271 * Return:
3272 * 0 on success, -errno on failure.
3273 */
3274 int schedule_on_each_cpu(work_func_t func)
3275 {
3276 int cpu;
3277 struct work_struct __percpu *works;
3278
3279 works = alloc_percpu(struct work_struct);
3280 if (!works)
3281 return -ENOMEM;
3282
3283 get_online_cpus();
3284
3285 for_each_online_cpu(cpu) {
3286 struct work_struct *work = per_cpu_ptr(works, cpu);
3287
3288 INIT_WORK(work, func);
3289 schedule_work_on(cpu, work);
3290 }
3291
3292 for_each_online_cpu(cpu)
3293 flush_work(per_cpu_ptr(works, cpu));
3294
3295 put_online_cpus();
3296 free_percpu(works);
3297 return 0;
3298 }
3299
3300 /**
3301 * execute_in_process_context - reliably execute the routine with user context
3302 * @fn: the function to execute
3303 * @ew: guaranteed storage for the execute work structure (must
3304 * be available when the work executes)
3305 *
3306 * Executes the function immediately if process context is available,
3307 * otherwise schedules the function for delayed execution.
3308 *
3309 * Return: 0 - function was executed
3310 * 1 - function was scheduled for execution
3311 */
3312 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3313 {
3314 if (!in_interrupt()) {
3315 fn(&ew->work);
3316 return 0;
3317 }
3318
3319 INIT_WORK(&ew->work, fn);
3320 schedule_work(&ew->work);
3321
3322 return 1;
3323 }
3324 EXPORT_SYMBOL_GPL(execute_in_process_context);
3325
3326 /**
3327 * free_workqueue_attrs - free a workqueue_attrs
3328 * @attrs: workqueue_attrs to free
3329 *
3330 * Undo alloc_workqueue_attrs().
3331 */
3332 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3333 {
3334 if (attrs) {
3335 free_cpumask_var(attrs->cpumask);
3336 kfree(attrs);
3337 }
3338 }
3339
3340 /**
3341 * alloc_workqueue_attrs - allocate a workqueue_attrs
3342 * @gfp_mask: allocation mask to use
3343 *
3344 * Allocate a new workqueue_attrs, initialize with default settings and
3345 * return it.
3346 *
3347 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3348 */
3349 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3350 {
3351 struct workqueue_attrs *attrs;
3352
3353 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3354 if (!attrs)
3355 goto fail;
3356 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3357 goto fail;
3358
3359 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3360 return attrs;
3361 fail:
3362 free_workqueue_attrs(attrs);
3363 return NULL;
3364 }
3365
3366 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3367 const struct workqueue_attrs *from)
3368 {
3369 to->nice = from->nice;
3370 cpumask_copy(to->cpumask, from->cpumask);
3371 /*
3372 * Unlike hash and equality test, this function doesn't ignore
3373 * ->no_numa as it is used for both pool and wq attrs. Instead,
3374 * get_unbound_pool() explicitly clears ->no_numa after copying.
3375 */
3376 to->no_numa = from->no_numa;
3377 }
3378
3379 /* hash value of the content of @attr */
3380 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3381 {
3382 u32 hash = 0;
3383
3384 hash = jhash_1word(attrs->nice, hash);
3385 hash = jhash(cpumask_bits(attrs->cpumask),
3386 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3387 return hash;
3388 }
3389
3390 /* content equality test */
3391 static bool wqattrs_equal(const struct workqueue_attrs *a,
3392 const struct workqueue_attrs *b)
3393 {
3394 if (a->nice != b->nice)
3395 return false;
3396 if (!cpumask_equal(a->cpumask, b->cpumask))
3397 return false;
3398 return true;
3399 }
3400
3401 /**
3402 * init_worker_pool - initialize a newly zalloc'd worker_pool
3403 * @pool: worker_pool to initialize
3404 *
3405 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3406 *
3407 * Return: 0 on success, -errno on failure. Even on failure, all fields
3408 * inside @pool proper are initialized and put_unbound_pool() can be called
3409 * on @pool safely to release it.
3410 */
3411 static int init_worker_pool(struct worker_pool *pool)
3412 {
3413 spin_lock_init(&pool->lock);
3414 pool->id = -1;
3415 pool->cpu = -1;
3416 pool->node = NUMA_NO_NODE;
3417 pool->flags |= POOL_DISASSOCIATED;
3418 pool->watchdog_ts = jiffies;
3419 INIT_LIST_HEAD(&pool->worklist);
3420 INIT_LIST_HEAD(&pool->idle_list);
3421 hash_init(pool->busy_hash);
3422
3423 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3424
3425 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3426
3427 INIT_LIST_HEAD(&pool->workers);
3428
3429 ida_init(&pool->worker_ida);
3430 INIT_HLIST_NODE(&pool->hash_node);
3431 pool->refcnt = 1;
3432
3433 /* shouldn't fail above this point */
3434 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3435 if (!pool->attrs)
3436 return -ENOMEM;
3437 return 0;
3438 }
3439
3440 #ifdef CONFIG_LOCKDEP
3441 static void wq_init_lockdep(struct workqueue_struct *wq)
3442 {
3443 char *lock_name;
3444
3445 lockdep_register_key(&wq->key);
3446 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3447 if (!lock_name)
3448 lock_name = wq->name;
3449
3450 wq->lock_name = lock_name;
3451 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3452 }
3453
3454 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3455 {
3456 lockdep_unregister_key(&wq->key);
3457 }
3458
3459 static void wq_free_lockdep(struct workqueue_struct *wq)
3460 {
3461 if (wq->lock_name != wq->name)
3462 kfree(wq->lock_name);
3463 }
3464 #else
3465 static void wq_init_lockdep(struct workqueue_struct *wq)
3466 {
3467 }
3468
3469 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3470 {
3471 }
3472
3473 static void wq_free_lockdep(struct workqueue_struct *wq)
3474 {
3475 }
3476 #endif
3477
3478 static void rcu_free_wq(struct rcu_head *rcu)
3479 {
3480 struct workqueue_struct *wq =
3481 container_of(rcu, struct workqueue_struct, rcu);
3482
3483 wq_free_lockdep(wq);
3484
3485 if (!(wq->flags & WQ_UNBOUND))
3486 free_percpu(wq->cpu_pwqs);
3487 else
3488 free_workqueue_attrs(wq->unbound_attrs);
3489
3490 kfree(wq->rescuer);
3491 kfree(wq);
3492 }
3493
3494 static void rcu_free_pool(struct rcu_head *rcu)
3495 {
3496 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3497
3498 ida_destroy(&pool->worker_ida);
3499 free_workqueue_attrs(pool->attrs);
3500 kfree(pool);
3501 }
3502
3503 /**
3504 * put_unbound_pool - put a worker_pool
3505 * @pool: worker_pool to put
3506 *
3507 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3508 * safe manner. get_unbound_pool() calls this function on its failure path
3509 * and this function should be able to release pools which went through,
3510 * successfully or not, init_worker_pool().
3511 *
3512 * Should be called with wq_pool_mutex held.
3513 */
3514 static void put_unbound_pool(struct worker_pool *pool)
3515 {
3516 DECLARE_COMPLETION_ONSTACK(detach_completion);
3517 struct worker *worker;
3518
3519 lockdep_assert_held(&wq_pool_mutex);
3520
3521 if (--pool->refcnt)
3522 return;
3523
3524 /* sanity checks */
3525 if (WARN_ON(!(pool->cpu < 0)) ||
3526 WARN_ON(!list_empty(&pool->worklist)))
3527 return;
3528
3529 /* release id and unhash */
3530 if (pool->id >= 0)
3531 idr_remove(&worker_pool_idr, pool->id);
3532 hash_del(&pool->hash_node);
3533
3534 /*
3535 * Become the manager and destroy all workers. This prevents
3536 * @pool's workers from blocking on attach_mutex. We're the last
3537 * manager and @pool gets freed with the flag set.
3538 */
3539 spin_lock_irq(&pool->lock);
3540 wait_event_lock_irq(wq_manager_wait,
3541 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3542 pool->flags |= POOL_MANAGER_ACTIVE;
3543
3544 while ((worker = first_idle_worker(pool)))
3545 destroy_worker(worker);
3546 WARN_ON(pool->nr_workers || pool->nr_idle);
3547 spin_unlock_irq(&pool->lock);
3548
3549 mutex_lock(&wq_pool_attach_mutex);
3550 if (!list_empty(&pool->workers))
3551 pool->detach_completion = &detach_completion;
3552 mutex_unlock(&wq_pool_attach_mutex);
3553
3554 if (pool->detach_completion)
3555 wait_for_completion(pool->detach_completion);
3556
3557 /* shut down the timers */
3558 del_timer_sync(&pool->idle_timer);
3559 del_timer_sync(&pool->mayday_timer);
3560
3561 /* RCU protected to allow dereferences from get_work_pool() */
3562 call_rcu(&pool->rcu, rcu_free_pool);
3563 }
3564
3565 /**
3566 * get_unbound_pool - get a worker_pool with the specified attributes
3567 * @attrs: the attributes of the worker_pool to get
3568 *
3569 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3570 * reference count and return it. If there already is a matching
3571 * worker_pool, it will be used; otherwise, this function attempts to
3572 * create a new one.
3573 *
3574 * Should be called with wq_pool_mutex held.
3575 *
3576 * Return: On success, a worker_pool with the same attributes as @attrs.
3577 * On failure, %NULL.
3578 */
3579 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3580 {
3581 u32 hash = wqattrs_hash(attrs);
3582 struct worker_pool *pool;
3583 int node;
3584 int target_node = NUMA_NO_NODE;
3585
3586 lockdep_assert_held(&wq_pool_mutex);
3587
3588 /* do we already have a matching pool? */
3589 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3590 if (wqattrs_equal(pool->attrs, attrs)) {
3591 pool->refcnt++;
3592 return pool;
3593 }
3594 }
3595
3596 /* if cpumask is contained inside a NUMA node, we belong to that node */
3597 if (wq_numa_enabled) {
3598 for_each_node(node) {
3599 if (cpumask_subset(attrs->cpumask,
3600 wq_numa_possible_cpumask[node])) {
3601 target_node = node;
3602 break;
3603 }
3604 }
3605 }
3606
3607 /* nope, create a new one */
3608 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3609 if (!pool || init_worker_pool(pool) < 0)
3610 goto fail;
3611
3612 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3613 copy_workqueue_attrs(pool->attrs, attrs);
3614 pool->node = target_node;
3615
3616 /*
3617 * no_numa isn't a worker_pool attribute, always clear it. See
3618 * 'struct workqueue_attrs' comments for detail.
3619 */
3620 pool->attrs->no_numa = false;
3621
3622 if (worker_pool_assign_id(pool) < 0)
3623 goto fail;
3624
3625 /* create and start the initial worker */
3626 if (wq_online && !create_worker(pool))
3627 goto fail;
3628
3629 /* install */
3630 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3631
3632 return pool;
3633 fail:
3634 if (pool)
3635 put_unbound_pool(pool);
3636 return NULL;
3637 }
3638
3639 static void rcu_free_pwq(struct rcu_head *rcu)
3640 {
3641 kmem_cache_free(pwq_cache,
3642 container_of(rcu, struct pool_workqueue, rcu));
3643 }
3644
3645 /*
3646 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3647 * and needs to be destroyed.
3648 */
3649 static void pwq_unbound_release_workfn(struct work_struct *work)
3650 {
3651 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3652 unbound_release_work);
3653 struct workqueue_struct *wq = pwq->wq;
3654 struct worker_pool *pool = pwq->pool;
3655 bool is_last;
3656
3657 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3658 return;
3659
3660 mutex_lock(&wq->mutex);
3661 list_del_rcu(&pwq->pwqs_node);
3662 is_last = list_empty(&wq->pwqs);
3663 mutex_unlock(&wq->mutex);
3664
3665 mutex_lock(&wq_pool_mutex);
3666 put_unbound_pool(pool);
3667 mutex_unlock(&wq_pool_mutex);
3668
3669 call_rcu(&pwq->rcu, rcu_free_pwq);
3670
3671 /*
3672 * If we're the last pwq going away, @wq is already dead and no one
3673 * is gonna access it anymore. Schedule RCU free.
3674 */
3675 if (is_last) {
3676 wq_unregister_lockdep(wq);
3677 call_rcu(&wq->rcu, rcu_free_wq);
3678 }
3679 }
3680
3681 /**
3682 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3683 * @pwq: target pool_workqueue
3684 *
3685 * If @pwq isn't freezing, set @pwq->max_active to the associated
3686 * workqueue's saved_max_active and activate delayed work items
3687 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3688 */
3689 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3690 {
3691 struct workqueue_struct *wq = pwq->wq;
3692 bool freezable = wq->flags & WQ_FREEZABLE;
3693 unsigned long flags;
3694
3695 /* for @wq->saved_max_active */
3696 lockdep_assert_held(&wq->mutex);
3697
3698 /* fast exit for non-freezable wqs */
3699 if (!freezable && pwq->max_active == wq->saved_max_active)
3700 return;
3701
3702 /* this function can be called during early boot w/ irq disabled */
3703 spin_lock_irqsave(&pwq->pool->lock, flags);
3704
3705 /*
3706 * During [un]freezing, the caller is responsible for ensuring that
3707 * this function is called at least once after @workqueue_freezing
3708 * is updated and visible.
3709 */
3710 if (!freezable || !workqueue_freezing) {
3711 pwq->max_active = wq->saved_max_active;
3712
3713 while (!list_empty(&pwq->delayed_works) &&
3714 pwq->nr_active < pwq->max_active)
3715 pwq_activate_first_delayed(pwq);
3716
3717 /*
3718 * Need to kick a worker after thawed or an unbound wq's
3719 * max_active is bumped. It's a slow path. Do it always.
3720 */
3721 wake_up_worker(pwq->pool);
3722 } else {
3723 pwq->max_active = 0;
3724 }
3725
3726 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3727 }
3728
3729 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3730 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3731 struct worker_pool *pool)
3732 {
3733 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3734
3735 memset(pwq, 0, sizeof(*pwq));
3736
3737 pwq->pool = pool;
3738 pwq->wq = wq;
3739 pwq->flush_color = -1;
3740 pwq->refcnt = 1;
3741 INIT_LIST_HEAD(&pwq->delayed_works);
3742 INIT_LIST_HEAD(&pwq->pwqs_node);
3743 INIT_LIST_HEAD(&pwq->mayday_node);
3744 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3745 }
3746
3747 /* sync @pwq with the current state of its associated wq and link it */
3748 static void link_pwq(struct pool_workqueue *pwq)
3749 {
3750 struct workqueue_struct *wq = pwq->wq;
3751
3752 lockdep_assert_held(&wq->mutex);
3753
3754 /* may be called multiple times, ignore if already linked */
3755 if (!list_empty(&pwq->pwqs_node))
3756 return;
3757
3758 /* set the matching work_color */
3759 pwq->work_color = wq->work_color;
3760
3761 /* sync max_active to the current setting */
3762 pwq_adjust_max_active(pwq);
3763
3764 /* link in @pwq */
3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3766 }
3767
3768 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3769 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3770 const struct workqueue_attrs *attrs)
3771 {
3772 struct worker_pool *pool;
3773 struct pool_workqueue *pwq;
3774
3775 lockdep_assert_held(&wq_pool_mutex);
3776
3777 pool = get_unbound_pool(attrs);
3778 if (!pool)
3779 return NULL;
3780
3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3782 if (!pwq) {
3783 put_unbound_pool(pool);
3784 return NULL;
3785 }
3786
3787 init_pwq(pwq, wq, pool);
3788 return pwq;
3789 }
3790
3791 /**
3792 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3793 * @attrs: the wq_attrs of the default pwq of the target workqueue
3794 * @node: the target NUMA node
3795 * @cpu_going_down: if >= 0, the CPU to consider as offline
3796 * @cpumask: outarg, the resulting cpumask
3797 *
3798 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3799 * @cpu_going_down is >= 0, that cpu is considered offline during
3800 * calculation. The result is stored in @cpumask.
3801 *
3802 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3803 * enabled and @node has online CPUs requested by @attrs, the returned
3804 * cpumask is the intersection of the possible CPUs of @node and
3805 * @attrs->cpumask.
3806 *
3807 * The caller is responsible for ensuring that the cpumask of @node stays
3808 * stable.
3809 *
3810 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3811 * %false if equal.
3812 */
3813 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3814 int cpu_going_down, cpumask_t *cpumask)
3815 {
3816 if (!wq_numa_enabled || attrs->no_numa)
3817 goto use_dfl;
3818
3819 /* does @node have any online CPUs @attrs wants? */
3820 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3821 if (cpu_going_down >= 0)
3822 cpumask_clear_cpu(cpu_going_down, cpumask);
3823
3824 if (cpumask_empty(cpumask))
3825 goto use_dfl;
3826
3827 /* yeap, return possible CPUs in @node that @attrs wants */
3828 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3829
3830 if (cpumask_empty(cpumask)) {
3831 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3832 "possible intersect\n");
3833 return false;
3834 }
3835
3836 return !cpumask_equal(cpumask, attrs->cpumask);
3837
3838 use_dfl:
3839 cpumask_copy(cpumask, attrs->cpumask);
3840 return false;
3841 }
3842
3843 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3844 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3845 int node,
3846 struct pool_workqueue *pwq)
3847 {
3848 struct pool_workqueue *old_pwq;
3849
3850 lockdep_assert_held(&wq_pool_mutex);
3851 lockdep_assert_held(&wq->mutex);
3852
3853 /* link_pwq() can handle duplicate calls */
3854 link_pwq(pwq);
3855
3856 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3857 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3858 return old_pwq;
3859 }
3860
3861 /* context to store the prepared attrs & pwqs before applying */
3862 struct apply_wqattrs_ctx {
3863 struct workqueue_struct *wq; /* target workqueue */
3864 struct workqueue_attrs *attrs; /* attrs to apply */
3865 struct list_head list; /* queued for batching commit */
3866 struct pool_workqueue *dfl_pwq;
3867 struct pool_workqueue *pwq_tbl[];
3868 };
3869
3870 /* free the resources after success or abort */
3871 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3872 {
3873 if (ctx) {
3874 int node;
3875
3876 for_each_node(node)
3877 put_pwq_unlocked(ctx->pwq_tbl[node]);
3878 put_pwq_unlocked(ctx->dfl_pwq);
3879
3880 free_workqueue_attrs(ctx->attrs);
3881
3882 kfree(ctx);
3883 }
3884 }
3885
3886 /* allocate the attrs and pwqs for later installation */
3887 static struct apply_wqattrs_ctx *
3888 apply_wqattrs_prepare(struct workqueue_struct *wq,
3889 const struct workqueue_attrs *attrs)
3890 {
3891 struct apply_wqattrs_ctx *ctx;
3892 struct workqueue_attrs *new_attrs, *tmp_attrs;
3893 int node;
3894
3895 lockdep_assert_held(&wq_pool_mutex);
3896
3897 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3898
3899 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3900 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3901 if (!ctx || !new_attrs || !tmp_attrs)
3902 goto out_free;
3903
3904 /*
3905 * Calculate the attrs of the default pwq.
3906 * If the user configured cpumask doesn't overlap with the
3907 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3908 */
3909 copy_workqueue_attrs(new_attrs, attrs);
3910 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3911 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3912 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3913
3914 /*
3915 * We may create multiple pwqs with differing cpumasks. Make a
3916 * copy of @new_attrs which will be modified and used to obtain
3917 * pools.
3918 */
3919 copy_workqueue_attrs(tmp_attrs, new_attrs);
3920
3921 /*
3922 * If something goes wrong during CPU up/down, we'll fall back to
3923 * the default pwq covering whole @attrs->cpumask. Always create
3924 * it even if we don't use it immediately.
3925 */
3926 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3927 if (!ctx->dfl_pwq)
3928 goto out_free;
3929
3930 for_each_node(node) {
3931 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3932 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3933 if (!ctx->pwq_tbl[node])
3934 goto out_free;
3935 } else {
3936 ctx->dfl_pwq->refcnt++;
3937 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3938 }
3939 }
3940
3941 /* save the user configured attrs and sanitize it. */
3942 copy_workqueue_attrs(new_attrs, attrs);
3943 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3944 ctx->attrs = new_attrs;
3945
3946 ctx->wq = wq;
3947 free_workqueue_attrs(tmp_attrs);
3948 return ctx;
3949
3950 out_free:
3951 free_workqueue_attrs(tmp_attrs);
3952 free_workqueue_attrs(new_attrs);
3953 apply_wqattrs_cleanup(ctx);
3954 return NULL;
3955 }
3956
3957 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3958 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3959 {
3960 int node;
3961
3962 /* all pwqs have been created successfully, let's install'em */
3963 mutex_lock(&ctx->wq->mutex);
3964
3965 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3966
3967 /* save the previous pwq and install the new one */
3968 for_each_node(node)
3969 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3970 ctx->pwq_tbl[node]);
3971
3972 /* @dfl_pwq might not have been used, ensure it's linked */
3973 link_pwq(ctx->dfl_pwq);
3974 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3975
3976 mutex_unlock(&ctx->wq->mutex);
3977 }
3978
3979 static void apply_wqattrs_lock(void)
3980 {
3981 /* CPUs should stay stable across pwq creations and installations */
3982 get_online_cpus();
3983 mutex_lock(&wq_pool_mutex);
3984 }
3985
3986 static void apply_wqattrs_unlock(void)
3987 {
3988 mutex_unlock(&wq_pool_mutex);
3989 put_online_cpus();
3990 }
3991
3992 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3993 const struct workqueue_attrs *attrs)
3994 {
3995 struct apply_wqattrs_ctx *ctx;
3996
3997 /* only unbound workqueues can change attributes */
3998 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3999 return -EINVAL;
4000
4001 /* creating multiple pwqs breaks ordering guarantee */
4002 if (!list_empty(&wq->pwqs)) {
4003 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4004 return -EINVAL;
4005
4006 wq->flags &= ~__WQ_ORDERED;
4007 }
4008
4009 ctx = apply_wqattrs_prepare(wq, attrs);
4010 if (!ctx)
4011 return -ENOMEM;
4012
4013 /* the ctx has been prepared successfully, let's commit it */
4014 apply_wqattrs_commit(ctx);
4015 apply_wqattrs_cleanup(ctx);
4016
4017 return 0;
4018 }
4019
4020 /**
4021 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4022 * @wq: the target workqueue
4023 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4024 *
4025 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4026 * machines, this function maps a separate pwq to each NUMA node with
4027 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4028 * NUMA node it was issued on. Older pwqs are released as in-flight work
4029 * items finish. Note that a work item which repeatedly requeues itself
4030 * back-to-back will stay on its current pwq.
4031 *
4032 * Performs GFP_KERNEL allocations.
4033 *
4034 * Return: 0 on success and -errno on failure.
4035 */
4036 int apply_workqueue_attrs(struct workqueue_struct *wq,
4037 const struct workqueue_attrs *attrs)
4038 {
4039 int ret;
4040
4041 apply_wqattrs_lock();
4042 ret = apply_workqueue_attrs_locked(wq, attrs);
4043 apply_wqattrs_unlock();
4044
4045 return ret;
4046 }
4047 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
4048
4049 /**
4050 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4051 * @wq: the target workqueue
4052 * @cpu: the CPU coming up or going down
4053 * @online: whether @cpu is coming up or going down
4054 *
4055 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4056 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4057 * @wq accordingly.
4058 *
4059 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4060 * falls back to @wq->dfl_pwq which may not be optimal but is always
4061 * correct.
4062 *
4063 * Note that when the last allowed CPU of a NUMA node goes offline for a
4064 * workqueue with a cpumask spanning multiple nodes, the workers which were
4065 * already executing the work items for the workqueue will lose their CPU
4066 * affinity and may execute on any CPU. This is similar to how per-cpu
4067 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4068 * affinity, it's the user's responsibility to flush the work item from
4069 * CPU_DOWN_PREPARE.
4070 */
4071 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4072 bool online)
4073 {
4074 int node = cpu_to_node(cpu);
4075 int cpu_off = online ? -1 : cpu;
4076 struct pool_workqueue *old_pwq = NULL, *pwq;
4077 struct workqueue_attrs *target_attrs;
4078 cpumask_t *cpumask;
4079
4080 lockdep_assert_held(&wq_pool_mutex);
4081
4082 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4083 wq->unbound_attrs->no_numa)
4084 return;
4085
4086 /*
4087 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4088 * Let's use a preallocated one. The following buf is protected by
4089 * CPU hotplug exclusion.
4090 */
4091 target_attrs = wq_update_unbound_numa_attrs_buf;
4092 cpumask = target_attrs->cpumask;
4093
4094 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4095 pwq = unbound_pwq_by_node(wq, node);
4096
4097 /*
4098 * Let's determine what needs to be done. If the target cpumask is
4099 * different from the default pwq's, we need to compare it to @pwq's
4100 * and create a new one if they don't match. If the target cpumask
4101 * equals the default pwq's, the default pwq should be used.
4102 */
4103 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4104 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4105 return;
4106 } else {
4107 goto use_dfl_pwq;
4108 }
4109
4110 /* create a new pwq */
4111 pwq = alloc_unbound_pwq(wq, target_attrs);
4112 if (!pwq) {
4113 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4114 wq->name);
4115 goto use_dfl_pwq;
4116 }
4117
4118 /* Install the new pwq. */
4119 mutex_lock(&wq->mutex);
4120 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4121 goto out_unlock;
4122
4123 use_dfl_pwq:
4124 mutex_lock(&wq->mutex);
4125 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4126 get_pwq(wq->dfl_pwq);
4127 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4128 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4129 out_unlock:
4130 mutex_unlock(&wq->mutex);
4131 put_pwq_unlocked(old_pwq);
4132 }
4133
4134 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4135 {
4136 bool highpri = wq->flags & WQ_HIGHPRI;
4137 int cpu, ret;
4138
4139 if (!(wq->flags & WQ_UNBOUND)) {
4140 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4141 if (!wq->cpu_pwqs)
4142 return -ENOMEM;
4143
4144 for_each_possible_cpu(cpu) {
4145 struct pool_workqueue *pwq =
4146 per_cpu_ptr(wq->cpu_pwqs, cpu);
4147 struct worker_pool *cpu_pools =
4148 per_cpu(cpu_worker_pools, cpu);
4149
4150 init_pwq(pwq, wq, &cpu_pools[highpri]);
4151
4152 mutex_lock(&wq->mutex);
4153 link_pwq(pwq);
4154 mutex_unlock(&wq->mutex);
4155 }
4156 return 0;
4157 } else if (wq->flags & __WQ_ORDERED) {
4158 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4159 /* there should only be single pwq for ordering guarantee */
4160 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4161 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4162 "ordering guarantee broken for workqueue %s\n", wq->name);
4163 return ret;
4164 } else {
4165 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4166 }
4167 }
4168
4169 static int wq_clamp_max_active(int max_active, unsigned int flags,
4170 const char *name)
4171 {
4172 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4173
4174 if (max_active < 1 || max_active > lim)
4175 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4176 max_active, name, 1, lim);
4177
4178 return clamp_val(max_active, 1, lim);
4179 }
4180
4181 /*
4182 * Workqueues which may be used during memory reclaim should have a rescuer
4183 * to guarantee forward progress.
4184 */
4185 static int init_rescuer(struct workqueue_struct *wq)
4186 {
4187 struct worker *rescuer;
4188 int ret;
4189
4190 if (!(wq->flags & WQ_MEM_RECLAIM))
4191 return 0;
4192
4193 rescuer = alloc_worker(NUMA_NO_NODE);
4194 if (!rescuer)
4195 return -ENOMEM;
4196
4197 rescuer->rescue_wq = wq;
4198 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4199 ret = PTR_ERR_OR_ZERO(rescuer->task);
4200 if (ret) {
4201 kfree(rescuer);
4202 return ret;
4203 }
4204
4205 wq->rescuer = rescuer;
4206 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4207 wake_up_process(rescuer->task);
4208
4209 return 0;
4210 }
4211
4212 __printf(1, 4)
4213 struct workqueue_struct *alloc_workqueue(const char *fmt,
4214 unsigned int flags,
4215 int max_active, ...)
4216 {
4217 size_t tbl_size = 0;
4218 va_list args;
4219 struct workqueue_struct *wq;
4220 struct pool_workqueue *pwq;
4221
4222 /*
4223 * Unbound && max_active == 1 used to imply ordered, which is no
4224 * longer the case on NUMA machines due to per-node pools. While
4225 * alloc_ordered_workqueue() is the right way to create an ordered
4226 * workqueue, keep the previous behavior to avoid subtle breakages
4227 * on NUMA.
4228 */
4229 if ((flags & WQ_UNBOUND) && max_active == 1)
4230 flags |= __WQ_ORDERED;
4231
4232 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4233 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4234 flags |= WQ_UNBOUND;
4235
4236 /* allocate wq and format name */
4237 if (flags & WQ_UNBOUND)
4238 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4239
4240 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4241 if (!wq)
4242 return NULL;
4243
4244 if (flags & WQ_UNBOUND) {
4245 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4246 if (!wq->unbound_attrs)
4247 goto err_free_wq;
4248 }
4249
4250 va_start(args, max_active);
4251 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4252 va_end(args);
4253
4254 max_active = max_active ?: WQ_DFL_ACTIVE;
4255 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4256
4257 /* init wq */
4258 wq->flags = flags;
4259 wq->saved_max_active = max_active;
4260 mutex_init(&wq->mutex);
4261 atomic_set(&wq->nr_pwqs_to_flush, 0);
4262 INIT_LIST_HEAD(&wq->pwqs);
4263 INIT_LIST_HEAD(&wq->flusher_queue);
4264 INIT_LIST_HEAD(&wq->flusher_overflow);
4265 INIT_LIST_HEAD(&wq->maydays);
4266
4267 wq_init_lockdep(wq);
4268 INIT_LIST_HEAD(&wq->list);
4269
4270 if (alloc_and_link_pwqs(wq) < 0)
4271 goto err_unreg_lockdep;
4272
4273 if (wq_online && init_rescuer(wq) < 0)
4274 goto err_destroy;
4275
4276 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4277 goto err_destroy;
4278
4279 /*
4280 * wq_pool_mutex protects global freeze state and workqueues list.
4281 * Grab it, adjust max_active and add the new @wq to workqueues
4282 * list.
4283 */
4284 mutex_lock(&wq_pool_mutex);
4285
4286 mutex_lock(&wq->mutex);
4287 for_each_pwq(pwq, wq)
4288 pwq_adjust_max_active(pwq);
4289 mutex_unlock(&wq->mutex);
4290
4291 list_add_tail_rcu(&wq->list, &workqueues);
4292
4293 mutex_unlock(&wq_pool_mutex);
4294
4295 return wq;
4296
4297 err_unreg_lockdep:
4298 wq_unregister_lockdep(wq);
4299 wq_free_lockdep(wq);
4300 err_free_wq:
4301 free_workqueue_attrs(wq->unbound_attrs);
4302 kfree(wq);
4303 return NULL;
4304 err_destroy:
4305 destroy_workqueue(wq);
4306 return NULL;
4307 }
4308 EXPORT_SYMBOL_GPL(alloc_workqueue);
4309
4310 /**
4311 * destroy_workqueue - safely terminate a workqueue
4312 * @wq: target workqueue
4313 *
4314 * Safely destroy a workqueue. All work currently pending will be done first.
4315 */
4316 void destroy_workqueue(struct workqueue_struct *wq)
4317 {
4318 struct pool_workqueue *pwq;
4319 int node;
4320
4321 /* drain it before proceeding with destruction */
4322 drain_workqueue(wq);
4323
4324 /* sanity checks */
4325 mutex_lock(&wq->mutex);
4326 for_each_pwq(pwq, wq) {
4327 int i;
4328
4329 for (i = 0; i < WORK_NR_COLORS; i++) {
4330 if (WARN_ON(pwq->nr_in_flight[i])) {
4331 mutex_unlock(&wq->mutex);
4332 show_workqueue_state();
4333 return;
4334 }
4335 }
4336
4337 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4338 WARN_ON(pwq->nr_active) ||
4339 WARN_ON(!list_empty(&pwq->delayed_works))) {
4340 mutex_unlock(&wq->mutex);
4341 show_workqueue_state();
4342 return;
4343 }
4344 }
4345 mutex_unlock(&wq->mutex);
4346
4347 /*
4348 * wq list is used to freeze wq, remove from list after
4349 * flushing is complete in case freeze races us.
4350 */
4351 mutex_lock(&wq_pool_mutex);
4352 list_del_rcu(&wq->list);
4353 mutex_unlock(&wq_pool_mutex);
4354
4355 workqueue_sysfs_unregister(wq);
4356
4357 if (wq->rescuer)
4358 kthread_stop(wq->rescuer->task);
4359
4360 if (!(wq->flags & WQ_UNBOUND)) {
4361 wq_unregister_lockdep(wq);
4362 /*
4363 * The base ref is never dropped on per-cpu pwqs. Directly
4364 * schedule RCU free.
4365 */
4366 call_rcu(&wq->rcu, rcu_free_wq);
4367 } else {
4368 /*
4369 * We're the sole accessor of @wq at this point. Directly
4370 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4371 * @wq will be freed when the last pwq is released.
4372 */
4373 for_each_node(node) {
4374 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4375 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4376 put_pwq_unlocked(pwq);
4377 }
4378
4379 /*
4380 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4381 * put. Don't access it afterwards.
4382 */
4383 pwq = wq->dfl_pwq;
4384 wq->dfl_pwq = NULL;
4385 put_pwq_unlocked(pwq);
4386 }
4387 }
4388 EXPORT_SYMBOL_GPL(destroy_workqueue);
4389
4390 /**
4391 * workqueue_set_max_active - adjust max_active of a workqueue
4392 * @wq: target workqueue
4393 * @max_active: new max_active value.
4394 *
4395 * Set max_active of @wq to @max_active.
4396 *
4397 * CONTEXT:
4398 * Don't call from IRQ context.
4399 */
4400 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4401 {
4402 struct pool_workqueue *pwq;
4403
4404 /* disallow meddling with max_active for ordered workqueues */
4405 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4406 return;
4407
4408 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4409
4410 mutex_lock(&wq->mutex);
4411
4412 wq->flags &= ~__WQ_ORDERED;
4413 wq->saved_max_active = max_active;
4414
4415 for_each_pwq(pwq, wq)
4416 pwq_adjust_max_active(pwq);
4417
4418 mutex_unlock(&wq->mutex);
4419 }
4420 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4421
4422 /**
4423 * current_work - retrieve %current task's work struct
4424 *
4425 * Determine if %current task is a workqueue worker and what it's working on.
4426 * Useful to find out the context that the %current task is running in.
4427 *
4428 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4429 */
4430 struct work_struct *current_work(void)
4431 {
4432 struct worker *worker = current_wq_worker();
4433
4434 return worker ? worker->current_work : NULL;
4435 }
4436 EXPORT_SYMBOL(current_work);
4437
4438 /**
4439 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4440 *
4441 * Determine whether %current is a workqueue rescuer. Can be used from
4442 * work functions to determine whether it's being run off the rescuer task.
4443 *
4444 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4445 */
4446 bool current_is_workqueue_rescuer(void)
4447 {
4448 struct worker *worker = current_wq_worker();
4449
4450 return worker && worker->rescue_wq;
4451 }
4452
4453 /**
4454 * workqueue_congested - test whether a workqueue is congested
4455 * @cpu: CPU in question
4456 * @wq: target workqueue
4457 *
4458 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4459 * no synchronization around this function and the test result is
4460 * unreliable and only useful as advisory hints or for debugging.
4461 *
4462 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4463 * Note that both per-cpu and unbound workqueues may be associated with
4464 * multiple pool_workqueues which have separate congested states. A
4465 * workqueue being congested on one CPU doesn't mean the workqueue is also
4466 * contested on other CPUs / NUMA nodes.
4467 *
4468 * Return:
4469 * %true if congested, %false otherwise.
4470 */
4471 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4472 {
4473 struct pool_workqueue *pwq;
4474 bool ret;
4475
4476 rcu_read_lock();
4477 preempt_disable();
4478
4479 if (cpu == WORK_CPU_UNBOUND)
4480 cpu = smp_processor_id();
4481
4482 if (!(wq->flags & WQ_UNBOUND))
4483 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4484 else
4485 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4486
4487 ret = !list_empty(&pwq->delayed_works);
4488 preempt_enable();
4489 rcu_read_unlock();
4490
4491 return ret;
4492 }
4493 EXPORT_SYMBOL_GPL(workqueue_congested);
4494
4495 /**
4496 * work_busy - test whether a work is currently pending or running
4497 * @work: the work to be tested
4498 *
4499 * Test whether @work is currently pending or running. There is no
4500 * synchronization around this function and the test result is
4501 * unreliable and only useful as advisory hints or for debugging.
4502 *
4503 * Return:
4504 * OR'd bitmask of WORK_BUSY_* bits.
4505 */
4506 unsigned int work_busy(struct work_struct *work)
4507 {
4508 struct worker_pool *pool;
4509 unsigned long flags;
4510 unsigned int ret = 0;
4511
4512 if (work_pending(work))
4513 ret |= WORK_BUSY_PENDING;
4514
4515 rcu_read_lock();
4516 pool = get_work_pool(work);
4517 if (pool) {
4518 spin_lock_irqsave(&pool->lock, flags);
4519 if (find_worker_executing_work(pool, work))
4520 ret |= WORK_BUSY_RUNNING;
4521 spin_unlock_irqrestore(&pool->lock, flags);
4522 }
4523 rcu_read_unlock();
4524
4525 return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(work_busy);
4528
4529 /**
4530 * set_worker_desc - set description for the current work item
4531 * @fmt: printf-style format string
4532 * @...: arguments for the format string
4533 *
4534 * This function can be called by a running work function to describe what
4535 * the work item is about. If the worker task gets dumped, this
4536 * information will be printed out together to help debugging. The
4537 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4538 */
4539 void set_worker_desc(const char *fmt, ...)
4540 {
4541 struct worker *worker = current_wq_worker();
4542 va_list args;
4543
4544 if (worker) {
4545 va_start(args, fmt);
4546 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4547 va_end(args);
4548 }
4549 }
4550 EXPORT_SYMBOL_GPL(set_worker_desc);
4551
4552 /**
4553 * print_worker_info - print out worker information and description
4554 * @log_lvl: the log level to use when printing
4555 * @task: target task
4556 *
4557 * If @task is a worker and currently executing a work item, print out the
4558 * name of the workqueue being serviced and worker description set with
4559 * set_worker_desc() by the currently executing work item.
4560 *
4561 * This function can be safely called on any task as long as the
4562 * task_struct itself is accessible. While safe, this function isn't
4563 * synchronized and may print out mixups or garbages of limited length.
4564 */
4565 void print_worker_info(const char *log_lvl, struct task_struct *task)
4566 {
4567 work_func_t *fn = NULL;
4568 char name[WQ_NAME_LEN] = { };
4569 char desc[WORKER_DESC_LEN] = { };
4570 struct pool_workqueue *pwq = NULL;
4571 struct workqueue_struct *wq = NULL;
4572 struct worker *worker;
4573
4574 if (!(task->flags & PF_WQ_WORKER))
4575 return;
4576
4577 /*
4578 * This function is called without any synchronization and @task
4579 * could be in any state. Be careful with dereferences.
4580 */
4581 worker = kthread_probe_data(task);
4582
4583 /*
4584 * Carefully copy the associated workqueue's workfn, name and desc.
4585 * Keep the original last '\0' in case the original is garbage.
4586 */
4587 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4588 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4589 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4590 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4591 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4592
4593 if (fn || name[0] || desc[0]) {
4594 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4595 if (strcmp(name, desc))
4596 pr_cont(" (%s)", desc);
4597 pr_cont("\n");
4598 }
4599 }
4600
4601 static void pr_cont_pool_info(struct worker_pool *pool)
4602 {
4603 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4604 if (pool->node != NUMA_NO_NODE)
4605 pr_cont(" node=%d", pool->node);
4606 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4607 }
4608
4609 static void pr_cont_work(bool comma, struct work_struct *work)
4610 {
4611 if (work->func == wq_barrier_func) {
4612 struct wq_barrier *barr;
4613
4614 barr = container_of(work, struct wq_barrier, work);
4615
4616 pr_cont("%s BAR(%d)", comma ? "," : "",
4617 task_pid_nr(barr->task));
4618 } else {
4619 pr_cont("%s %ps", comma ? "," : "", work->func);
4620 }
4621 }
4622
4623 static void show_pwq(struct pool_workqueue *pwq)
4624 {
4625 struct worker_pool *pool = pwq->pool;
4626 struct work_struct *work;
4627 struct worker *worker;
4628 bool has_in_flight = false, has_pending = false;
4629 int bkt;
4630
4631 pr_info(" pwq %d:", pool->id);
4632 pr_cont_pool_info(pool);
4633
4634 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4635 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4636
4637 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4638 if (worker->current_pwq == pwq) {
4639 has_in_flight = true;
4640 break;
4641 }
4642 }
4643 if (has_in_flight) {
4644 bool comma = false;
4645
4646 pr_info(" in-flight:");
4647 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4648 if (worker->current_pwq != pwq)
4649 continue;
4650
4651 pr_cont("%s %d%s:%ps", comma ? "," : "",
4652 task_pid_nr(worker->task),
4653 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4654 worker->current_func);
4655 list_for_each_entry(work, &worker->scheduled, entry)
4656 pr_cont_work(false, work);
4657 comma = true;
4658 }
4659 pr_cont("\n");
4660 }
4661
4662 list_for_each_entry(work, &pool->worklist, entry) {
4663 if (get_work_pwq(work) == pwq) {
4664 has_pending = true;
4665 break;
4666 }
4667 }
4668 if (has_pending) {
4669 bool comma = false;
4670
4671 pr_info(" pending:");
4672 list_for_each_entry(work, &pool->worklist, entry) {
4673 if (get_work_pwq(work) != pwq)
4674 continue;
4675
4676 pr_cont_work(comma, work);
4677 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4678 }
4679 pr_cont("\n");
4680 }
4681
4682 if (!list_empty(&pwq->delayed_works)) {
4683 bool comma = false;
4684
4685 pr_info(" delayed:");
4686 list_for_each_entry(work, &pwq->delayed_works, entry) {
4687 pr_cont_work(comma, work);
4688 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4689 }
4690 pr_cont("\n");
4691 }
4692 }
4693
4694 /**
4695 * show_workqueue_state - dump workqueue state
4696 *
4697 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4698 * all busy workqueues and pools.
4699 */
4700 void show_workqueue_state(void)
4701 {
4702 struct workqueue_struct *wq;
4703 struct worker_pool *pool;
4704 unsigned long flags;
4705 int pi;
4706
4707 rcu_read_lock();
4708
4709 pr_info("Showing busy workqueues and worker pools:\n");
4710
4711 list_for_each_entry_rcu(wq, &workqueues, list) {
4712 struct pool_workqueue *pwq;
4713 bool idle = true;
4714
4715 for_each_pwq(pwq, wq) {
4716 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4717 idle = false;
4718 break;
4719 }
4720 }
4721 if (idle)
4722 continue;
4723
4724 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4725
4726 for_each_pwq(pwq, wq) {
4727 spin_lock_irqsave(&pwq->pool->lock, flags);
4728 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4729 show_pwq(pwq);
4730 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4731 /*
4732 * We could be printing a lot from atomic context, e.g.
4733 * sysrq-t -> show_workqueue_state(). Avoid triggering
4734 * hard lockup.
4735 */
4736 touch_nmi_watchdog();
4737 }
4738 }
4739
4740 for_each_pool(pool, pi) {
4741 struct worker *worker;
4742 bool first = true;
4743
4744 spin_lock_irqsave(&pool->lock, flags);
4745 if (pool->nr_workers == pool->nr_idle)
4746 goto next_pool;
4747
4748 pr_info("pool %d:", pool->id);
4749 pr_cont_pool_info(pool);
4750 pr_cont(" hung=%us workers=%d",
4751 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4752 pool->nr_workers);
4753 if (pool->manager)
4754 pr_cont(" manager: %d",
4755 task_pid_nr(pool->manager->task));
4756 list_for_each_entry(worker, &pool->idle_list, entry) {
4757 pr_cont(" %s%d", first ? "idle: " : "",
4758 task_pid_nr(worker->task));
4759 first = false;
4760 }
4761 pr_cont("\n");
4762 next_pool:
4763 spin_unlock_irqrestore(&pool->lock, flags);
4764 /*
4765 * We could be printing a lot from atomic context, e.g.
4766 * sysrq-t -> show_workqueue_state(). Avoid triggering
4767 * hard lockup.
4768 */
4769 touch_nmi_watchdog();
4770 }
4771
4772 rcu_read_unlock();
4773 }
4774
4775 /* used to show worker information through /proc/PID/{comm,stat,status} */
4776 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4777 {
4778 int off;
4779
4780 /* always show the actual comm */
4781 off = strscpy(buf, task->comm, size);
4782 if (off < 0)
4783 return;
4784
4785 /* stabilize PF_WQ_WORKER and worker pool association */
4786 mutex_lock(&wq_pool_attach_mutex);
4787
4788 if (task->flags & PF_WQ_WORKER) {
4789 struct worker *worker = kthread_data(task);
4790 struct worker_pool *pool = worker->pool;
4791
4792 if (pool) {
4793 spin_lock_irq(&pool->lock);
4794 /*
4795 * ->desc tracks information (wq name or
4796 * set_worker_desc()) for the latest execution. If
4797 * current, prepend '+', otherwise '-'.
4798 */
4799 if (worker->desc[0] != '\0') {
4800 if (worker->current_work)
4801 scnprintf(buf + off, size - off, "+%s",
4802 worker->desc);
4803 else
4804 scnprintf(buf + off, size - off, "-%s",
4805 worker->desc);
4806 }
4807 spin_unlock_irq(&pool->lock);
4808 }
4809 }
4810
4811 mutex_unlock(&wq_pool_attach_mutex);
4812 }
4813
4814 #ifdef CONFIG_SMP
4815
4816 /*
4817 * CPU hotplug.
4818 *
4819 * There are two challenges in supporting CPU hotplug. Firstly, there
4820 * are a lot of assumptions on strong associations among work, pwq and
4821 * pool which make migrating pending and scheduled works very
4822 * difficult to implement without impacting hot paths. Secondly,
4823 * worker pools serve mix of short, long and very long running works making
4824 * blocked draining impractical.
4825 *
4826 * This is solved by allowing the pools to be disassociated from the CPU
4827 * running as an unbound one and allowing it to be reattached later if the
4828 * cpu comes back online.
4829 */
4830
4831 static void unbind_workers(int cpu)
4832 {
4833 struct worker_pool *pool;
4834 struct worker *worker;
4835
4836 for_each_cpu_worker_pool(pool, cpu) {
4837 mutex_lock(&wq_pool_attach_mutex);
4838 spin_lock_irq(&pool->lock);
4839
4840 /*
4841 * We've blocked all attach/detach operations. Make all workers
4842 * unbound and set DISASSOCIATED. Before this, all workers
4843 * except for the ones which are still executing works from
4844 * before the last CPU down must be on the cpu. After
4845 * this, they may become diasporas.
4846 */
4847 for_each_pool_worker(worker, pool)
4848 worker->flags |= WORKER_UNBOUND;
4849
4850 pool->flags |= POOL_DISASSOCIATED;
4851
4852 spin_unlock_irq(&pool->lock);
4853 mutex_unlock(&wq_pool_attach_mutex);
4854
4855 /*
4856 * Call schedule() so that we cross rq->lock and thus can
4857 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4858 * This is necessary as scheduler callbacks may be invoked
4859 * from other cpus.
4860 */
4861 schedule();
4862
4863 /*
4864 * Sched callbacks are disabled now. Zap nr_running.
4865 * After this, nr_running stays zero and need_more_worker()
4866 * and keep_working() are always true as long as the
4867 * worklist is not empty. This pool now behaves as an
4868 * unbound (in terms of concurrency management) pool which
4869 * are served by workers tied to the pool.
4870 */
4871 atomic_set(&pool->nr_running, 0);
4872
4873 /*
4874 * With concurrency management just turned off, a busy
4875 * worker blocking could lead to lengthy stalls. Kick off
4876 * unbound chain execution of currently pending work items.
4877 */
4878 spin_lock_irq(&pool->lock);
4879 wake_up_worker(pool);
4880 spin_unlock_irq(&pool->lock);
4881 }
4882 }
4883
4884 /**
4885 * rebind_workers - rebind all workers of a pool to the associated CPU
4886 * @pool: pool of interest
4887 *
4888 * @pool->cpu is coming online. Rebind all workers to the CPU.
4889 */
4890 static void rebind_workers(struct worker_pool *pool)
4891 {
4892 struct worker *worker;
4893
4894 lockdep_assert_held(&wq_pool_attach_mutex);
4895
4896 /*
4897 * Restore CPU affinity of all workers. As all idle workers should
4898 * be on the run-queue of the associated CPU before any local
4899 * wake-ups for concurrency management happen, restore CPU affinity
4900 * of all workers first and then clear UNBOUND. As we're called
4901 * from CPU_ONLINE, the following shouldn't fail.
4902 */
4903 for_each_pool_worker(worker, pool)
4904 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4905 pool->attrs->cpumask) < 0);
4906
4907 spin_lock_irq(&pool->lock);
4908
4909 pool->flags &= ~POOL_DISASSOCIATED;
4910
4911 for_each_pool_worker(worker, pool) {
4912 unsigned int worker_flags = worker->flags;
4913
4914 /*
4915 * A bound idle worker should actually be on the runqueue
4916 * of the associated CPU for local wake-ups targeting it to
4917 * work. Kick all idle workers so that they migrate to the
4918 * associated CPU. Doing this in the same loop as
4919 * replacing UNBOUND with REBOUND is safe as no worker will
4920 * be bound before @pool->lock is released.
4921 */
4922 if (worker_flags & WORKER_IDLE)
4923 wake_up_process(worker->task);
4924
4925 /*
4926 * We want to clear UNBOUND but can't directly call
4927 * worker_clr_flags() or adjust nr_running. Atomically
4928 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4929 * @worker will clear REBOUND using worker_clr_flags() when
4930 * it initiates the next execution cycle thus restoring
4931 * concurrency management. Note that when or whether
4932 * @worker clears REBOUND doesn't affect correctness.
4933 *
4934 * WRITE_ONCE() is necessary because @worker->flags may be
4935 * tested without holding any lock in
4936 * wq_worker_running(). Without it, NOT_RUNNING test may
4937 * fail incorrectly leading to premature concurrency
4938 * management operations.
4939 */
4940 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4941 worker_flags |= WORKER_REBOUND;
4942 worker_flags &= ~WORKER_UNBOUND;
4943 WRITE_ONCE(worker->flags, worker_flags);
4944 }
4945
4946 spin_unlock_irq(&pool->lock);
4947 }
4948
4949 /**
4950 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4951 * @pool: unbound pool of interest
4952 * @cpu: the CPU which is coming up
4953 *
4954 * An unbound pool may end up with a cpumask which doesn't have any online
4955 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4956 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4957 * online CPU before, cpus_allowed of all its workers should be restored.
4958 */
4959 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4960 {
4961 static cpumask_t cpumask;
4962 struct worker *worker;
4963
4964 lockdep_assert_held(&wq_pool_attach_mutex);
4965
4966 /* is @cpu allowed for @pool? */
4967 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4968 return;
4969
4970 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4971
4972 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4973 for_each_pool_worker(worker, pool)
4974 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4975 }
4976
4977 int workqueue_prepare_cpu(unsigned int cpu)
4978 {
4979 struct worker_pool *pool;
4980
4981 for_each_cpu_worker_pool(pool, cpu) {
4982 if (pool->nr_workers)
4983 continue;
4984 if (!create_worker(pool))
4985 return -ENOMEM;
4986 }
4987 return 0;
4988 }
4989
4990 int workqueue_online_cpu(unsigned int cpu)
4991 {
4992 struct worker_pool *pool;
4993 struct workqueue_struct *wq;
4994 int pi;
4995
4996 mutex_lock(&wq_pool_mutex);
4997
4998 for_each_pool(pool, pi) {
4999 mutex_lock(&wq_pool_attach_mutex);
5000
5001 if (pool->cpu == cpu)
5002 rebind_workers(pool);
5003 else if (pool->cpu < 0)
5004 restore_unbound_workers_cpumask(pool, cpu);
5005
5006 mutex_unlock(&wq_pool_attach_mutex);
5007 }
5008
5009 /* update NUMA affinity of unbound workqueues */
5010 list_for_each_entry(wq, &workqueues, list)
5011 wq_update_unbound_numa(wq, cpu, true);
5012
5013 mutex_unlock(&wq_pool_mutex);
5014 return 0;
5015 }
5016
5017 int workqueue_offline_cpu(unsigned int cpu)
5018 {
5019 struct workqueue_struct *wq;
5020
5021 /* unbinding per-cpu workers should happen on the local CPU */
5022 if (WARN_ON(cpu != smp_processor_id()))
5023 return -1;
5024
5025 unbind_workers(cpu);
5026
5027 /* update NUMA affinity of unbound workqueues */
5028 mutex_lock(&wq_pool_mutex);
5029 list_for_each_entry(wq, &workqueues, list)
5030 wq_update_unbound_numa(wq, cpu, false);
5031 mutex_unlock(&wq_pool_mutex);
5032
5033 return 0;
5034 }
5035
5036 struct work_for_cpu {
5037 struct work_struct work;
5038 long (*fn)(void *);
5039 void *arg;
5040 long ret;
5041 };
5042
5043 static void work_for_cpu_fn(struct work_struct *work)
5044 {
5045 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5046
5047 wfc->ret = wfc->fn(wfc->arg);
5048 }
5049
5050 /**
5051 * work_on_cpu - run a function in thread context on a particular cpu
5052 * @cpu: the cpu to run on
5053 * @fn: the function to run
5054 * @arg: the function arg
5055 *
5056 * It is up to the caller to ensure that the cpu doesn't go offline.
5057 * The caller must not hold any locks which would prevent @fn from completing.
5058 *
5059 * Return: The value @fn returns.
5060 */
5061 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5062 {
5063 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5064
5065 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5066 schedule_work_on(cpu, &wfc.work);
5067 flush_work(&wfc.work);
5068 destroy_work_on_stack(&wfc.work);
5069 return wfc.ret;
5070 }
5071 EXPORT_SYMBOL_GPL(work_on_cpu);
5072
5073 /**
5074 * work_on_cpu_safe - run a function in thread context on a particular cpu
5075 * @cpu: the cpu to run on
5076 * @fn: the function to run
5077 * @arg: the function argument
5078 *
5079 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5080 * any locks which would prevent @fn from completing.
5081 *
5082 * Return: The value @fn returns.
5083 */
5084 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5085 {
5086 long ret = -ENODEV;
5087
5088 get_online_cpus();
5089 if (cpu_online(cpu))
5090 ret = work_on_cpu(cpu, fn, arg);
5091 put_online_cpus();
5092 return ret;
5093 }
5094 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5095 #endif /* CONFIG_SMP */
5096
5097 #ifdef CONFIG_FREEZER
5098
5099 /**
5100 * freeze_workqueues_begin - begin freezing workqueues
5101 *
5102 * Start freezing workqueues. After this function returns, all freezable
5103 * workqueues will queue new works to their delayed_works list instead of
5104 * pool->worklist.
5105 *
5106 * CONTEXT:
5107 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5108 */
5109 void freeze_workqueues_begin(void)
5110 {
5111 struct workqueue_struct *wq;
5112 struct pool_workqueue *pwq;
5113
5114 mutex_lock(&wq_pool_mutex);
5115
5116 WARN_ON_ONCE(workqueue_freezing);
5117 workqueue_freezing = true;
5118
5119 list_for_each_entry(wq, &workqueues, list) {
5120 mutex_lock(&wq->mutex);
5121 for_each_pwq(pwq, wq)
5122 pwq_adjust_max_active(pwq);
5123 mutex_unlock(&wq->mutex);
5124 }
5125
5126 mutex_unlock(&wq_pool_mutex);
5127 }
5128
5129 /**
5130 * freeze_workqueues_busy - are freezable workqueues still busy?
5131 *
5132 * Check whether freezing is complete. This function must be called
5133 * between freeze_workqueues_begin() and thaw_workqueues().
5134 *
5135 * CONTEXT:
5136 * Grabs and releases wq_pool_mutex.
5137 *
5138 * Return:
5139 * %true if some freezable workqueues are still busy. %false if freezing
5140 * is complete.
5141 */
5142 bool freeze_workqueues_busy(void)
5143 {
5144 bool busy = false;
5145 struct workqueue_struct *wq;
5146 struct pool_workqueue *pwq;
5147
5148 mutex_lock(&wq_pool_mutex);
5149
5150 WARN_ON_ONCE(!workqueue_freezing);
5151
5152 list_for_each_entry(wq, &workqueues, list) {
5153 if (!(wq->flags & WQ_FREEZABLE))
5154 continue;
5155 /*
5156 * nr_active is monotonically decreasing. It's safe
5157 * to peek without lock.
5158 */
5159 rcu_read_lock();
5160 for_each_pwq(pwq, wq) {
5161 WARN_ON_ONCE(pwq->nr_active < 0);
5162 if (pwq->nr_active) {
5163 busy = true;
5164 rcu_read_unlock();
5165 goto out_unlock;
5166 }
5167 }
5168 rcu_read_unlock();
5169 }
5170 out_unlock:
5171 mutex_unlock(&wq_pool_mutex);
5172 return busy;
5173 }
5174
5175 /**
5176 * thaw_workqueues - thaw workqueues
5177 *
5178 * Thaw workqueues. Normal queueing is restored and all collected
5179 * frozen works are transferred to their respective pool worklists.
5180 *
5181 * CONTEXT:
5182 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5183 */
5184 void thaw_workqueues(void)
5185 {
5186 struct workqueue_struct *wq;
5187 struct pool_workqueue *pwq;
5188
5189 mutex_lock(&wq_pool_mutex);
5190
5191 if (!workqueue_freezing)
5192 goto out_unlock;
5193
5194 workqueue_freezing = false;
5195
5196 /* restore max_active and repopulate worklist */
5197 list_for_each_entry(wq, &workqueues, list) {
5198 mutex_lock(&wq->mutex);
5199 for_each_pwq(pwq, wq)
5200 pwq_adjust_max_active(pwq);
5201 mutex_unlock(&wq->mutex);
5202 }
5203
5204 out_unlock:
5205 mutex_unlock(&wq_pool_mutex);
5206 }
5207 #endif /* CONFIG_FREEZER */
5208
5209 static int workqueue_apply_unbound_cpumask(void)
5210 {
5211 LIST_HEAD(ctxs);
5212 int ret = 0;
5213 struct workqueue_struct *wq;
5214 struct apply_wqattrs_ctx *ctx, *n;
5215
5216 lockdep_assert_held(&wq_pool_mutex);
5217
5218 list_for_each_entry(wq, &workqueues, list) {
5219 if (!(wq->flags & WQ_UNBOUND))
5220 continue;
5221 /* creating multiple pwqs breaks ordering guarantee */
5222 if (wq->flags & __WQ_ORDERED)
5223 continue;
5224
5225 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5226 if (!ctx) {
5227 ret = -ENOMEM;
5228 break;
5229 }
5230
5231 list_add_tail(&ctx->list, &ctxs);
5232 }
5233
5234 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5235 if (!ret)
5236 apply_wqattrs_commit(ctx);
5237 apply_wqattrs_cleanup(ctx);
5238 }
5239
5240 return ret;
5241 }
5242
5243 /**
5244 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5245 * @cpumask: the cpumask to set
5246 *
5247 * The low-level workqueues cpumask is a global cpumask that limits
5248 * the affinity of all unbound workqueues. This function check the @cpumask
5249 * and apply it to all unbound workqueues and updates all pwqs of them.
5250 *
5251 * Retun: 0 - Success
5252 * -EINVAL - Invalid @cpumask
5253 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5254 */
5255 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5256 {
5257 int ret = -EINVAL;
5258 cpumask_var_t saved_cpumask;
5259
5260 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5261 return -ENOMEM;
5262
5263 /*
5264 * Not excluding isolated cpus on purpose.
5265 * If the user wishes to include them, we allow that.
5266 */
5267 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5268 if (!cpumask_empty(cpumask)) {
5269 apply_wqattrs_lock();
5270
5271 /* save the old wq_unbound_cpumask. */
5272 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5273
5274 /* update wq_unbound_cpumask at first and apply it to wqs. */
5275 cpumask_copy(wq_unbound_cpumask, cpumask);
5276 ret = workqueue_apply_unbound_cpumask();
5277
5278 /* restore the wq_unbound_cpumask when failed. */
5279 if (ret < 0)
5280 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5281
5282 apply_wqattrs_unlock();
5283 }
5284
5285 free_cpumask_var(saved_cpumask);
5286 return ret;
5287 }
5288
5289 #ifdef CONFIG_SYSFS
5290 /*
5291 * Workqueues with WQ_SYSFS flag set is visible to userland via
5292 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5293 * following attributes.
5294 *
5295 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5296 * max_active RW int : maximum number of in-flight work items
5297 *
5298 * Unbound workqueues have the following extra attributes.
5299 *
5300 * pool_ids RO int : the associated pool IDs for each node
5301 * nice RW int : nice value of the workers
5302 * cpumask RW mask : bitmask of allowed CPUs for the workers
5303 * numa RW bool : whether enable NUMA affinity
5304 */
5305 struct wq_device {
5306 struct workqueue_struct *wq;
5307 struct device dev;
5308 };
5309
5310 static struct workqueue_struct *dev_to_wq(struct device *dev)
5311 {
5312 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5313
5314 return wq_dev->wq;
5315 }
5316
5317 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5318 char *buf)
5319 {
5320 struct workqueue_struct *wq = dev_to_wq(dev);
5321
5322 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5323 }
5324 static DEVICE_ATTR_RO(per_cpu);
5325
5326 static ssize_t max_active_show(struct device *dev,
5327 struct device_attribute *attr, char *buf)
5328 {
5329 struct workqueue_struct *wq = dev_to_wq(dev);
5330
5331 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5332 }
5333
5334 static ssize_t max_active_store(struct device *dev,
5335 struct device_attribute *attr, const char *buf,
5336 size_t count)
5337 {
5338 struct workqueue_struct *wq = dev_to_wq(dev);
5339 int val;
5340
5341 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5342 return -EINVAL;
5343
5344 workqueue_set_max_active(wq, val);
5345 return count;
5346 }
5347 static DEVICE_ATTR_RW(max_active);
5348
5349 static struct attribute *wq_sysfs_attrs[] = {
5350 &dev_attr_per_cpu.attr,
5351 &dev_attr_max_active.attr,
5352 NULL,
5353 };
5354 ATTRIBUTE_GROUPS(wq_sysfs);
5355
5356 static ssize_t wq_pool_ids_show(struct device *dev,
5357 struct device_attribute *attr, char *buf)
5358 {
5359 struct workqueue_struct *wq = dev_to_wq(dev);
5360 const char *delim = "";
5361 int node, written = 0;
5362
5363 get_online_cpus();
5364 rcu_read_lock();
5365 for_each_node(node) {
5366 written += scnprintf(buf + written, PAGE_SIZE - written,
5367 "%s%d:%d", delim, node,
5368 unbound_pwq_by_node(wq, node)->pool->id);
5369 delim = " ";
5370 }
5371 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5372 rcu_read_unlock();
5373 put_online_cpus();
5374
5375 return written;
5376 }
5377
5378 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5379 char *buf)
5380 {
5381 struct workqueue_struct *wq = dev_to_wq(dev);
5382 int written;
5383
5384 mutex_lock(&wq->mutex);
5385 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5386 mutex_unlock(&wq->mutex);
5387
5388 return written;
5389 }
5390
5391 /* prepare workqueue_attrs for sysfs store operations */
5392 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5393 {
5394 struct workqueue_attrs *attrs;
5395
5396 lockdep_assert_held(&wq_pool_mutex);
5397
5398 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5399 if (!attrs)
5400 return NULL;
5401
5402 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5403 return attrs;
5404 }
5405
5406 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5407 const char *buf, size_t count)
5408 {
5409 struct workqueue_struct *wq = dev_to_wq(dev);
5410 struct workqueue_attrs *attrs;
5411 int ret = -ENOMEM;
5412
5413 apply_wqattrs_lock();
5414
5415 attrs = wq_sysfs_prep_attrs(wq);
5416 if (!attrs)
5417 goto out_unlock;
5418
5419 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5420 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5421 ret = apply_workqueue_attrs_locked(wq, attrs);
5422 else
5423 ret = -EINVAL;
5424
5425 out_unlock:
5426 apply_wqattrs_unlock();
5427 free_workqueue_attrs(attrs);
5428 return ret ?: count;
5429 }
5430
5431 static ssize_t wq_cpumask_show(struct device *dev,
5432 struct device_attribute *attr, char *buf)
5433 {
5434 struct workqueue_struct *wq = dev_to_wq(dev);
5435 int written;
5436
5437 mutex_lock(&wq->mutex);
5438 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5439 cpumask_pr_args(wq->unbound_attrs->cpumask));
5440 mutex_unlock(&wq->mutex);
5441 return written;
5442 }
5443
5444 static ssize_t wq_cpumask_store(struct device *dev,
5445 struct device_attribute *attr,
5446 const char *buf, size_t count)
5447 {
5448 struct workqueue_struct *wq = dev_to_wq(dev);
5449 struct workqueue_attrs *attrs;
5450 int ret = -ENOMEM;
5451
5452 apply_wqattrs_lock();
5453
5454 attrs = wq_sysfs_prep_attrs(wq);
5455 if (!attrs)
5456 goto out_unlock;
5457
5458 ret = cpumask_parse(buf, attrs->cpumask);
5459 if (!ret)
5460 ret = apply_workqueue_attrs_locked(wq, attrs);
5461
5462 out_unlock:
5463 apply_wqattrs_unlock();
5464 free_workqueue_attrs(attrs);
5465 return ret ?: count;
5466 }
5467
5468 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5469 char *buf)
5470 {
5471 struct workqueue_struct *wq = dev_to_wq(dev);
5472 int written;
5473
5474 mutex_lock(&wq->mutex);
5475 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5476 !wq->unbound_attrs->no_numa);
5477 mutex_unlock(&wq->mutex);
5478
5479 return written;
5480 }
5481
5482 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5483 const char *buf, size_t count)
5484 {
5485 struct workqueue_struct *wq = dev_to_wq(dev);
5486 struct workqueue_attrs *attrs;
5487 int v, ret = -ENOMEM;
5488
5489 apply_wqattrs_lock();
5490
5491 attrs = wq_sysfs_prep_attrs(wq);
5492 if (!attrs)
5493 goto out_unlock;
5494
5495 ret = -EINVAL;
5496 if (sscanf(buf, "%d", &v) == 1) {
5497 attrs->no_numa = !v;
5498 ret = apply_workqueue_attrs_locked(wq, attrs);
5499 }
5500
5501 out_unlock:
5502 apply_wqattrs_unlock();
5503 free_workqueue_attrs(attrs);
5504 return ret ?: count;
5505 }
5506
5507 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5508 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5509 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5510 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5511 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5512 __ATTR_NULL,
5513 };
5514
5515 static struct bus_type wq_subsys = {
5516 .name = "workqueue",
5517 .dev_groups = wq_sysfs_groups,
5518 };
5519
5520 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5521 struct device_attribute *attr, char *buf)
5522 {
5523 int written;
5524
5525 mutex_lock(&wq_pool_mutex);
5526 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5527 cpumask_pr_args(wq_unbound_cpumask));
5528 mutex_unlock(&wq_pool_mutex);
5529
5530 return written;
5531 }
5532
5533 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5534 struct device_attribute *attr, const char *buf, size_t count)
5535 {
5536 cpumask_var_t cpumask;
5537 int ret;
5538
5539 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5540 return -ENOMEM;
5541
5542 ret = cpumask_parse(buf, cpumask);
5543 if (!ret)
5544 ret = workqueue_set_unbound_cpumask(cpumask);
5545
5546 free_cpumask_var(cpumask);
5547 return ret ? ret : count;
5548 }
5549
5550 static struct device_attribute wq_sysfs_cpumask_attr =
5551 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5552 wq_unbound_cpumask_store);
5553
5554 static int __init wq_sysfs_init(void)
5555 {
5556 int err;
5557
5558 err = subsys_virtual_register(&wq_subsys, NULL);
5559 if (err)
5560 return err;
5561
5562 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5563 }
5564 core_initcall(wq_sysfs_init);
5565
5566 static void wq_device_release(struct device *dev)
5567 {
5568 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5569
5570 kfree(wq_dev);
5571 }
5572
5573 /**
5574 * workqueue_sysfs_register - make a workqueue visible in sysfs
5575 * @wq: the workqueue to register
5576 *
5577 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5578 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5579 * which is the preferred method.
5580 *
5581 * Workqueue user should use this function directly iff it wants to apply
5582 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5583 * apply_workqueue_attrs() may race against userland updating the
5584 * attributes.
5585 *
5586 * Return: 0 on success, -errno on failure.
5587 */
5588 int workqueue_sysfs_register(struct workqueue_struct *wq)
5589 {
5590 struct wq_device *wq_dev;
5591 int ret;
5592
5593 /*
5594 * Adjusting max_active or creating new pwqs by applying
5595 * attributes breaks ordering guarantee. Disallow exposing ordered
5596 * workqueues.
5597 */
5598 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5599 return -EINVAL;
5600
5601 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5602 if (!wq_dev)
5603 return -ENOMEM;
5604
5605 wq_dev->wq = wq;
5606 wq_dev->dev.bus = &wq_subsys;
5607 wq_dev->dev.release = wq_device_release;
5608 dev_set_name(&wq_dev->dev, "%s", wq->name);
5609
5610 /*
5611 * unbound_attrs are created separately. Suppress uevent until
5612 * everything is ready.
5613 */
5614 dev_set_uevent_suppress(&wq_dev->dev, true);
5615
5616 ret = device_register(&wq_dev->dev);
5617 if (ret) {
5618 put_device(&wq_dev->dev);
5619 wq->wq_dev = NULL;
5620 return ret;
5621 }
5622
5623 if (wq->flags & WQ_UNBOUND) {
5624 struct device_attribute *attr;
5625
5626 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5627 ret = device_create_file(&wq_dev->dev, attr);
5628 if (ret) {
5629 device_unregister(&wq_dev->dev);
5630 wq->wq_dev = NULL;
5631 return ret;
5632 }
5633 }
5634 }
5635
5636 dev_set_uevent_suppress(&wq_dev->dev, false);
5637 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5638 return 0;
5639 }
5640
5641 /**
5642 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5643 * @wq: the workqueue to unregister
5644 *
5645 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5646 */
5647 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5648 {
5649 struct wq_device *wq_dev = wq->wq_dev;
5650
5651 if (!wq->wq_dev)
5652 return;
5653
5654 wq->wq_dev = NULL;
5655 device_unregister(&wq_dev->dev);
5656 }
5657 #else /* CONFIG_SYSFS */
5658 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5659 #endif /* CONFIG_SYSFS */
5660
5661 /*
5662 * Workqueue watchdog.
5663 *
5664 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5665 * flush dependency, a concurrency managed work item which stays RUNNING
5666 * indefinitely. Workqueue stalls can be very difficult to debug as the
5667 * usual warning mechanisms don't trigger and internal workqueue state is
5668 * largely opaque.
5669 *
5670 * Workqueue watchdog monitors all worker pools periodically and dumps
5671 * state if some pools failed to make forward progress for a while where
5672 * forward progress is defined as the first item on ->worklist changing.
5673 *
5674 * This mechanism is controlled through the kernel parameter
5675 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5676 * corresponding sysfs parameter file.
5677 */
5678 #ifdef CONFIG_WQ_WATCHDOG
5679
5680 static unsigned long wq_watchdog_thresh = 30;
5681 static struct timer_list wq_watchdog_timer;
5682
5683 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5684 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5685
5686 static void wq_watchdog_reset_touched(void)
5687 {
5688 int cpu;
5689
5690 wq_watchdog_touched = jiffies;
5691 for_each_possible_cpu(cpu)
5692 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5693 }
5694
5695 static void wq_watchdog_timer_fn(struct timer_list *unused)
5696 {
5697 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5698 bool lockup_detected = false;
5699 struct worker_pool *pool;
5700 int pi;
5701
5702 if (!thresh)
5703 return;
5704
5705 rcu_read_lock();
5706
5707 for_each_pool(pool, pi) {
5708 unsigned long pool_ts, touched, ts;
5709
5710 if (list_empty(&pool->worklist))
5711 continue;
5712
5713 /* get the latest of pool and touched timestamps */
5714 pool_ts = READ_ONCE(pool->watchdog_ts);
5715 touched = READ_ONCE(wq_watchdog_touched);
5716
5717 if (time_after(pool_ts, touched))
5718 ts = pool_ts;
5719 else
5720 ts = touched;
5721
5722 if (pool->cpu >= 0) {
5723 unsigned long cpu_touched =
5724 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5725 pool->cpu));
5726 if (time_after(cpu_touched, ts))
5727 ts = cpu_touched;
5728 }
5729
5730 /* did we stall? */
5731 if (time_after(jiffies, ts + thresh)) {
5732 lockup_detected = true;
5733 pr_emerg("BUG: workqueue lockup - pool");
5734 pr_cont_pool_info(pool);
5735 pr_cont(" stuck for %us!\n",
5736 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5737 }
5738 }
5739
5740 rcu_read_unlock();
5741
5742 if (lockup_detected)
5743 show_workqueue_state();
5744
5745 wq_watchdog_reset_touched();
5746 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5747 }
5748
5749 notrace void wq_watchdog_touch(int cpu)
5750 {
5751 if (cpu >= 0)
5752 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5753 else
5754 wq_watchdog_touched = jiffies;
5755 }
5756
5757 static void wq_watchdog_set_thresh(unsigned long thresh)
5758 {
5759 wq_watchdog_thresh = 0;
5760 del_timer_sync(&wq_watchdog_timer);
5761
5762 if (thresh) {
5763 wq_watchdog_thresh = thresh;
5764 wq_watchdog_reset_touched();
5765 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5766 }
5767 }
5768
5769 static int wq_watchdog_param_set_thresh(const char *val,
5770 const struct kernel_param *kp)
5771 {
5772 unsigned long thresh;
5773 int ret;
5774
5775 ret = kstrtoul(val, 0, &thresh);
5776 if (ret)
5777 return ret;
5778
5779 if (system_wq)
5780 wq_watchdog_set_thresh(thresh);
5781 else
5782 wq_watchdog_thresh = thresh;
5783
5784 return 0;
5785 }
5786
5787 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5788 .set = wq_watchdog_param_set_thresh,
5789 .get = param_get_ulong,
5790 };
5791
5792 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5793 0644);
5794
5795 static void wq_watchdog_init(void)
5796 {
5797 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5798 wq_watchdog_set_thresh(wq_watchdog_thresh);
5799 }
5800
5801 #else /* CONFIG_WQ_WATCHDOG */
5802
5803 static inline void wq_watchdog_init(void) { }
5804
5805 #endif /* CONFIG_WQ_WATCHDOG */
5806
5807 static void __init wq_numa_init(void)
5808 {
5809 cpumask_var_t *tbl;
5810 int node, cpu;
5811
5812 if (num_possible_nodes() <= 1)
5813 return;
5814
5815 if (wq_disable_numa) {
5816 pr_info("workqueue: NUMA affinity support disabled\n");
5817 return;
5818 }
5819
5820 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5821 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5822
5823 /*
5824 * We want masks of possible CPUs of each node which isn't readily
5825 * available. Build one from cpu_to_node() which should have been
5826 * fully initialized by now.
5827 */
5828 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5829 BUG_ON(!tbl);
5830
5831 for_each_node(node)
5832 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5833 node_online(node) ? node : NUMA_NO_NODE));
5834
5835 for_each_possible_cpu(cpu) {
5836 node = cpu_to_node(cpu);
5837 if (WARN_ON(node == NUMA_NO_NODE)) {
5838 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5839 /* happens iff arch is bonkers, let's just proceed */
5840 return;
5841 }
5842 cpumask_set_cpu(cpu, tbl[node]);
5843 }
5844
5845 wq_numa_possible_cpumask = tbl;
5846 wq_numa_enabled = true;
5847 }
5848
5849 /**
5850 * workqueue_init_early - early init for workqueue subsystem
5851 *
5852 * This is the first half of two-staged workqueue subsystem initialization
5853 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5854 * idr are up. It sets up all the data structures and system workqueues
5855 * and allows early boot code to create workqueues and queue/cancel work
5856 * items. Actual work item execution starts only after kthreads can be
5857 * created and scheduled right before early initcalls.
5858 */
5859 int __init workqueue_init_early(void)
5860 {
5861 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5862 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5863 int i, cpu;
5864
5865 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5866
5867 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5868 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5869
5870 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5871
5872 /* initialize CPU pools */
5873 for_each_possible_cpu(cpu) {
5874 struct worker_pool *pool;
5875
5876 i = 0;
5877 for_each_cpu_worker_pool(pool, cpu) {
5878 BUG_ON(init_worker_pool(pool));
5879 pool->cpu = cpu;
5880 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5881 pool->attrs->nice = std_nice[i++];
5882 pool->node = cpu_to_node(cpu);
5883
5884 /* alloc pool ID */
5885 mutex_lock(&wq_pool_mutex);
5886 BUG_ON(worker_pool_assign_id(pool));
5887 mutex_unlock(&wq_pool_mutex);
5888 }
5889 }
5890
5891 /* create default unbound and ordered wq attrs */
5892 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5893 struct workqueue_attrs *attrs;
5894
5895 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5896 attrs->nice = std_nice[i];
5897 unbound_std_wq_attrs[i] = attrs;
5898
5899 /*
5900 * An ordered wq should have only one pwq as ordering is
5901 * guaranteed by max_active which is enforced by pwqs.
5902 * Turn off NUMA so that dfl_pwq is used for all nodes.
5903 */
5904 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5905 attrs->nice = std_nice[i];
5906 attrs->no_numa = true;
5907 ordered_wq_attrs[i] = attrs;
5908 }
5909
5910 system_wq = alloc_workqueue("events", 0, 0);
5911 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5912 system_long_wq = alloc_workqueue("events_long", 0, 0);
5913 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5914 WQ_UNBOUND_MAX_ACTIVE);
5915 system_freezable_wq = alloc_workqueue("events_freezable",
5916 WQ_FREEZABLE, 0);
5917 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5918 WQ_POWER_EFFICIENT, 0);
5919 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5920 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5921 0);
5922 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5923 !system_unbound_wq || !system_freezable_wq ||
5924 !system_power_efficient_wq ||
5925 !system_freezable_power_efficient_wq);
5926
5927 return 0;
5928 }
5929
5930 /**
5931 * workqueue_init - bring workqueue subsystem fully online
5932 *
5933 * This is the latter half of two-staged workqueue subsystem initialization
5934 * and invoked as soon as kthreads can be created and scheduled.
5935 * Workqueues have been created and work items queued on them, but there
5936 * are no kworkers executing the work items yet. Populate the worker pools
5937 * with the initial workers and enable future kworker creations.
5938 */
5939 int __init workqueue_init(void)
5940 {
5941 struct workqueue_struct *wq;
5942 struct worker_pool *pool;
5943 int cpu, bkt;
5944
5945 /*
5946 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5947 * CPU to node mapping may not be available that early on some
5948 * archs such as power and arm64. As per-cpu pools created
5949 * previously could be missing node hint and unbound pools NUMA
5950 * affinity, fix them up.
5951 *
5952 * Also, while iterating workqueues, create rescuers if requested.
5953 */
5954 wq_numa_init();
5955
5956 mutex_lock(&wq_pool_mutex);
5957
5958 for_each_possible_cpu(cpu) {
5959 for_each_cpu_worker_pool(pool, cpu) {
5960 pool->node = cpu_to_node(cpu);
5961 }
5962 }
5963
5964 list_for_each_entry(wq, &workqueues, list) {
5965 wq_update_unbound_numa(wq, smp_processor_id(), true);
5966 WARN(init_rescuer(wq),
5967 "workqueue: failed to create early rescuer for %s",
5968 wq->name);
5969 }
5970
5971 mutex_unlock(&wq_pool_mutex);
5972
5973 /* create the initial workers */
5974 for_each_online_cpu(cpu) {
5975 for_each_cpu_worker_pool(pool, cpu) {
5976 pool->flags &= ~POOL_DISASSOCIATED;
5977 BUG_ON(!create_worker(pool));
5978 }
5979 }
5980
5981 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5982 BUG_ON(!create_worker(pool));
5983
5984 wq_online = true;
5985 wq_watchdog_init();
5986
5987 return 0;
5988 }