]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/workqueue.c
Merge tag 'for-5.2-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/core-api/workqueue.rst for details.
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52
53 #include "workqueue_internal.h"
54
55 enum {
56 /*
57 * worker_pool flags
58 *
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
67 *
68 * Note that DISASSOCIATED should be flipped only while holding
69 * wq_pool_attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
71 */
72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
74
75 /* worker flags */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
103 */
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * A: wq_pool_attach_mutex protected.
127 *
128 * PL: wq_pool_mutex protected.
129 *
130 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
131 *
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * RCU for reads.
136 *
137 * WQ: wq->mutex protected.
138 *
139 * WR: wq->mutex protected for writes. RCU protected for reads.
140 *
141 * MD: wq_mayday_lock protected.
142 */
143
144 /* struct worker is defined in workqueue_internal.h */
145
146 struct worker_pool {
147 spinlock_t lock; /* the pool lock */
148 int cpu; /* I: the associated cpu */
149 int node; /* I: the associated node ID */
150 int id; /* I: pool ID */
151 unsigned int flags; /* X: flags */
152
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
155 struct list_head worklist; /* L: list of pending works */
156
157 int nr_workers; /* L: total number of workers */
158 int nr_idle; /* L: currently idle workers */
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
164 /* a workers is either on busy_hash or idle_list, or the manager */
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
168 struct worker *manager; /* L: purely informational */
169 struct list_head workers; /* A: attached workers */
170 struct completion *detach_completion; /* all workers detached */
171
172 struct ida worker_ida; /* worker IDs for task name */
173
174 struct workqueue_attrs *attrs; /* I: worker attributes */
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
177
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
184
185 /*
186 * Destruction of pool is RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
190 } ____cacheline_aligned_in_smp;
191
192 /*
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
197 */
198 struct pool_workqueue {
199 struct worker_pool *pool; /* I: the associated pool */
200 struct workqueue_struct *wq; /* I: the owning workqueue */
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
203 int refcnt; /* L: reference count */
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
206 int nr_active; /* L: nr of active works */
207 int max_active; /* L: max active works */
208 struct list_head delayed_works; /* L: delayed works */
209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
210 struct list_head mayday_node; /* MD: node on wq->maydays */
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also RCU protected so that the first pwq can be
216 * determined without grabbing wq->mutex.
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221
222 /*
223 * Structure used to wait for workqueue flush.
224 */
225 struct wq_flusher {
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
228 struct completion done; /* flush completion */
229 };
230
231 struct wq_device;
232
233 /*
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
236 */
237 struct workqueue_struct {
238 struct list_head pwqs; /* WR: all pwqs of this wq */
239 struct list_head list; /* PR: list of all workqueues */
240
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
244 atomic_t nr_pwqs_to_flush; /* flush in progress */
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
248
249 struct list_head maydays; /* MD: pwqs requesting rescue */
250 struct worker *rescuer; /* I: rescue worker */
251
252 int nr_drainers; /* WQ: drain in progress */
253 int saved_max_active; /* WQ: saved pwq max_active */
254
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
257
258 #ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 char *lock_name;
263 struct lock_class_key key;
264 struct lockdep_map lockdep_map;
265 #endif
266 char name[WQ_NAME_LEN]; /* I: workqueue name */
267
268 /*
269 * Destruction of workqueue_struct is RCU protected to allow walking
270 * the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280
281 static struct kmem_cache *pwq_cache;
282
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
293 static bool wq_online; /* can kworkers be created yet? */
294
295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
301 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304
305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
306 static bool workqueue_freezing; /* PL: have wqs started freezing? */
307
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313
314 /*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328
329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
330
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360
361 #define assert_rcu_or_pool_mutex() \
362 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "RCU or wq_pool_mutex should be held")
365
366 #define assert_rcu_or_wq_mutex(wq) \
367 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "RCU or wq->mutex should be held")
370
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
372 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "RCU, wq->mutex or wq_pool_mutex should be held")
376
377 #define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 (pool)++)
381
382 /**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
385 * @pi: integer used for iteration
386 *
387 * This must be called either with wq_pool_mutex held or RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
393 */
394 #define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
397 else
398
399 /**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
402 * @pool: worker_pool to iterate workers of
403 *
404 * This must be called with wq_pool_attach_mutex.
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
409 #define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
411 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
412 else
413
414 /**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
418 *
419 * This must be called either with wq->mutex held or RCU read locked.
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
425 */
426 #define for_each_pwq(pwq, wq) \
427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
429 else
430
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433 static struct debug_obj_descr work_debug_descr;
434
435 static void *work_debug_hint(void *addr)
436 {
437 return ((struct work_struct *) addr)->func;
438 }
439
440 static bool work_is_static_object(void *addr)
441 {
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446
447 /*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
459 return true;
460 default:
461 return false;
462 }
463 }
464
465 /*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
477 return true;
478 default:
479 return false;
480 }
481 }
482
483 static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
485 .debug_hint = work_debug_hint,
486 .is_static_object = work_is_static_object,
487 .fixup_init = work_fixup_init,
488 .fixup_free = work_fixup_free,
489 };
490
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 debug_object_activate(work, &work_debug_descr);
494 }
495
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 debug_object_deactivate(work, &work_debug_descr);
499 }
500
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527
528 /**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 int ret;
538
539 lockdep_assert_held(&wq_pool_mutex);
540
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
543 if (ret >= 0) {
544 pool->id = ret;
545 return 0;
546 }
547 return ret;
548 }
549
550 /**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
555 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
556 * read locked.
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
559 *
560 * Return: The unbound pool_workqueue for @node.
561 */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564 {
565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578
579 static unsigned int work_color_to_flags(int color)
580 {
581 return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583
584 static int get_work_color(struct work_struct *work)
585 {
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589
590 static int work_next_color(int color)
591 {
592 return (color + 1) % WORK_NR_COLORS;
593 }
594
595 /*
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
598 * is cleared and the high bits contain OFFQ flags and pool ID.
599 *
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
604 *
605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606 * corresponding to a work. Pool is available once the work has been
607 * queued anywhere after initialization until it is sync canceled. pwq is
608 * available only while the work item is queued.
609 *
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
614 */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
617 {
618 WARN_ON_ONCE(!work_pending(work));
619 atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 unsigned long extra_flags)
624 {
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631 {
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634 }
635
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
638 {
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
651 * reordering can lead to a missed execution on attempt to queue
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
676 }
677
678 static void clear_work_data(struct work_struct *work)
679 {
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 unsigned long data = atomic_long_read(&work->data);
687
688 if (data & WORK_STRUCT_PWQ)
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
692 }
693
694 /**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
708 */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 unsigned long data = atomic_long_read(&work->data);
712 int pool_id;
713
714 assert_rcu_or_pool_mutex();
715
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
722 return NULL;
723
724 return idr_find(&worker_pool_idr, pool_id);
725 }
726
727 /**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
731 * Return: The worker_pool ID @work was last associated with.
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 unsigned long data = atomic_long_read(&work->data);
737
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741
742 return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 unsigned long pool_id = get_work_pool_id(work);
748
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 unsigned long data = atomic_long_read(&work->data);
756
757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759
760 /*
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
763 * they're being called with pool->lock held.
764 */
765
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 return !atomic_read(&pool->nr_running);
769 }
770
771 /*
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
776 * function will always return %true for unbound pools as long as the
777 * worklist isn't empty.
778 */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783
784 /* Can I start working? Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 return pool->nr_idle;
788 }
789
790 /* Do I need to keep working? Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
795 }
796
797 /* Do we need a new worker? Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 return need_more_worker(pool) && !may_start_working(pool);
801 }
802
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812
813 /*
814 * Wake up functions.
815 */
816
817 /* Return the first idle worker. Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 if (unlikely(list_empty(&pool->idle_list)))
821 return NULL;
822
823 return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825
826 /**
827 * wake_up_worker - wake up an idle worker
828 * @pool: worker pool to wake worker from
829 *
830 * Wake up the first idle worker of @pool.
831 *
832 * CONTEXT:
833 * spin_lock_irq(pool->lock).
834 */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 struct worker *worker = first_idle_worker(pool);
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841 }
842
843 /**
844 * wq_worker_running - a worker is running again
845 * @task: task waking up
846 *
847 * This function is called when a worker returns from schedule()
848 */
849 void wq_worker_running(struct task_struct *task)
850 {
851 struct worker *worker = kthread_data(task);
852
853 if (!worker->sleeping)
854 return;
855 if (!(worker->flags & WORKER_NOT_RUNNING))
856 atomic_inc(&worker->pool->nr_running);
857 worker->sleeping = 0;
858 }
859
860 /**
861 * wq_worker_sleeping - a worker is going to sleep
862 * @task: task going to sleep
863 *
864 * This function is called from schedule() when a busy worker is
865 * going to sleep.
866 */
867 void wq_worker_sleeping(struct task_struct *task)
868 {
869 struct worker *next, *worker = kthread_data(task);
870 struct worker_pool *pool;
871
872 /*
873 * Rescuers, which may not have all the fields set up like normal
874 * workers, also reach here, let's not access anything before
875 * checking NOT_RUNNING.
876 */
877 if (worker->flags & WORKER_NOT_RUNNING)
878 return;
879
880 pool = worker->pool;
881
882 if (WARN_ON_ONCE(worker->sleeping))
883 return;
884
885 worker->sleeping = 1;
886 spin_lock_irq(&pool->lock);
887
888 /*
889 * The counterpart of the following dec_and_test, implied mb,
890 * worklist not empty test sequence is in insert_work().
891 * Please read comment there.
892 *
893 * NOT_RUNNING is clear. This means that we're bound to and
894 * running on the local cpu w/ rq lock held and preemption
895 * disabled, which in turn means that none else could be
896 * manipulating idle_list, so dereferencing idle_list without pool
897 * lock is safe.
898 */
899 if (atomic_dec_and_test(&pool->nr_running) &&
900 !list_empty(&pool->worklist)) {
901 next = first_idle_worker(pool);
902 if (next)
903 wake_up_process(next->task);
904 }
905 spin_unlock_irq(&pool->lock);
906 }
907
908 /**
909 * wq_worker_last_func - retrieve worker's last work function
910 * @task: Task to retrieve last work function of.
911 *
912 * Determine the last function a worker executed. This is called from
913 * the scheduler to get a worker's last known identity.
914 *
915 * CONTEXT:
916 * spin_lock_irq(rq->lock)
917 *
918 * This function is called during schedule() when a kworker is going
919 * to sleep. It's used by psi to identify aggregation workers during
920 * dequeuing, to allow periodic aggregation to shut-off when that
921 * worker is the last task in the system or cgroup to go to sleep.
922 *
923 * As this function doesn't involve any workqueue-related locking, it
924 * only returns stable values when called from inside the scheduler's
925 * queuing and dequeuing paths, when @task, which must be a kworker,
926 * is guaranteed to not be processing any works.
927 *
928 * Return:
929 * The last work function %current executed as a worker, NULL if it
930 * hasn't executed any work yet.
931 */
932 work_func_t wq_worker_last_func(struct task_struct *task)
933 {
934 struct worker *worker = kthread_data(task);
935
936 return worker->last_func;
937 }
938
939 /**
940 * worker_set_flags - set worker flags and adjust nr_running accordingly
941 * @worker: self
942 * @flags: flags to set
943 *
944 * Set @flags in @worker->flags and adjust nr_running accordingly.
945 *
946 * CONTEXT:
947 * spin_lock_irq(pool->lock)
948 */
949 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
950 {
951 struct worker_pool *pool = worker->pool;
952
953 WARN_ON_ONCE(worker->task != current);
954
955 /* If transitioning into NOT_RUNNING, adjust nr_running. */
956 if ((flags & WORKER_NOT_RUNNING) &&
957 !(worker->flags & WORKER_NOT_RUNNING)) {
958 atomic_dec(&pool->nr_running);
959 }
960
961 worker->flags |= flags;
962 }
963
964 /**
965 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
966 * @worker: self
967 * @flags: flags to clear
968 *
969 * Clear @flags in @worker->flags and adjust nr_running accordingly.
970 *
971 * CONTEXT:
972 * spin_lock_irq(pool->lock)
973 */
974 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
975 {
976 struct worker_pool *pool = worker->pool;
977 unsigned int oflags = worker->flags;
978
979 WARN_ON_ONCE(worker->task != current);
980
981 worker->flags &= ~flags;
982
983 /*
984 * If transitioning out of NOT_RUNNING, increment nr_running. Note
985 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
986 * of multiple flags, not a single flag.
987 */
988 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
989 if (!(worker->flags & WORKER_NOT_RUNNING))
990 atomic_inc(&pool->nr_running);
991 }
992
993 /**
994 * find_worker_executing_work - find worker which is executing a work
995 * @pool: pool of interest
996 * @work: work to find worker for
997 *
998 * Find a worker which is executing @work on @pool by searching
999 * @pool->busy_hash which is keyed by the address of @work. For a worker
1000 * to match, its current execution should match the address of @work and
1001 * its work function. This is to avoid unwanted dependency between
1002 * unrelated work executions through a work item being recycled while still
1003 * being executed.
1004 *
1005 * This is a bit tricky. A work item may be freed once its execution
1006 * starts and nothing prevents the freed area from being recycled for
1007 * another work item. If the same work item address ends up being reused
1008 * before the original execution finishes, workqueue will identify the
1009 * recycled work item as currently executing and make it wait until the
1010 * current execution finishes, introducing an unwanted dependency.
1011 *
1012 * This function checks the work item address and work function to avoid
1013 * false positives. Note that this isn't complete as one may construct a
1014 * work function which can introduce dependency onto itself through a
1015 * recycled work item. Well, if somebody wants to shoot oneself in the
1016 * foot that badly, there's only so much we can do, and if such deadlock
1017 * actually occurs, it should be easy to locate the culprit work function.
1018 *
1019 * CONTEXT:
1020 * spin_lock_irq(pool->lock).
1021 *
1022 * Return:
1023 * Pointer to worker which is executing @work if found, %NULL
1024 * otherwise.
1025 */
1026 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1027 struct work_struct *work)
1028 {
1029 struct worker *worker;
1030
1031 hash_for_each_possible(pool->busy_hash, worker, hentry,
1032 (unsigned long)work)
1033 if (worker->current_work == work &&
1034 worker->current_func == work->func)
1035 return worker;
1036
1037 return NULL;
1038 }
1039
1040 /**
1041 * move_linked_works - move linked works to a list
1042 * @work: start of series of works to be scheduled
1043 * @head: target list to append @work to
1044 * @nextp: out parameter for nested worklist walking
1045 *
1046 * Schedule linked works starting from @work to @head. Work series to
1047 * be scheduled starts at @work and includes any consecutive work with
1048 * WORK_STRUCT_LINKED set in its predecessor.
1049 *
1050 * If @nextp is not NULL, it's updated to point to the next work of
1051 * the last scheduled work. This allows move_linked_works() to be
1052 * nested inside outer list_for_each_entry_safe().
1053 *
1054 * CONTEXT:
1055 * spin_lock_irq(pool->lock).
1056 */
1057 static void move_linked_works(struct work_struct *work, struct list_head *head,
1058 struct work_struct **nextp)
1059 {
1060 struct work_struct *n;
1061
1062 /*
1063 * Linked worklist will always end before the end of the list,
1064 * use NULL for list head.
1065 */
1066 list_for_each_entry_safe_from(work, n, NULL, entry) {
1067 list_move_tail(&work->entry, head);
1068 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1069 break;
1070 }
1071
1072 /*
1073 * If we're already inside safe list traversal and have moved
1074 * multiple works to the scheduled queue, the next position
1075 * needs to be updated.
1076 */
1077 if (nextp)
1078 *nextp = n;
1079 }
1080
1081 /**
1082 * get_pwq - get an extra reference on the specified pool_workqueue
1083 * @pwq: pool_workqueue to get
1084 *
1085 * Obtain an extra reference on @pwq. The caller should guarantee that
1086 * @pwq has positive refcnt and be holding the matching pool->lock.
1087 */
1088 static void get_pwq(struct pool_workqueue *pwq)
1089 {
1090 lockdep_assert_held(&pwq->pool->lock);
1091 WARN_ON_ONCE(pwq->refcnt <= 0);
1092 pwq->refcnt++;
1093 }
1094
1095 /**
1096 * put_pwq - put a pool_workqueue reference
1097 * @pwq: pool_workqueue to put
1098 *
1099 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1100 * destruction. The caller should be holding the matching pool->lock.
1101 */
1102 static void put_pwq(struct pool_workqueue *pwq)
1103 {
1104 lockdep_assert_held(&pwq->pool->lock);
1105 if (likely(--pwq->refcnt))
1106 return;
1107 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1108 return;
1109 /*
1110 * @pwq can't be released under pool->lock, bounce to
1111 * pwq_unbound_release_workfn(). This never recurses on the same
1112 * pool->lock as this path is taken only for unbound workqueues and
1113 * the release work item is scheduled on a per-cpu workqueue. To
1114 * avoid lockdep warning, unbound pool->locks are given lockdep
1115 * subclass of 1 in get_unbound_pool().
1116 */
1117 schedule_work(&pwq->unbound_release_work);
1118 }
1119
1120 /**
1121 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1122 * @pwq: pool_workqueue to put (can be %NULL)
1123 *
1124 * put_pwq() with locking. This function also allows %NULL @pwq.
1125 */
1126 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1127 {
1128 if (pwq) {
1129 /*
1130 * As both pwqs and pools are RCU protected, the
1131 * following lock operations are safe.
1132 */
1133 spin_lock_irq(&pwq->pool->lock);
1134 put_pwq(pwq);
1135 spin_unlock_irq(&pwq->pool->lock);
1136 }
1137 }
1138
1139 static void pwq_activate_delayed_work(struct work_struct *work)
1140 {
1141 struct pool_workqueue *pwq = get_work_pwq(work);
1142
1143 trace_workqueue_activate_work(work);
1144 if (list_empty(&pwq->pool->worklist))
1145 pwq->pool->watchdog_ts = jiffies;
1146 move_linked_works(work, &pwq->pool->worklist, NULL);
1147 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1148 pwq->nr_active++;
1149 }
1150
1151 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1152 {
1153 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1154 struct work_struct, entry);
1155
1156 pwq_activate_delayed_work(work);
1157 }
1158
1159 /**
1160 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1161 * @pwq: pwq of interest
1162 * @color: color of work which left the queue
1163 *
1164 * A work either has completed or is removed from pending queue,
1165 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1166 *
1167 * CONTEXT:
1168 * spin_lock_irq(pool->lock).
1169 */
1170 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1171 {
1172 /* uncolored work items don't participate in flushing or nr_active */
1173 if (color == WORK_NO_COLOR)
1174 goto out_put;
1175
1176 pwq->nr_in_flight[color]--;
1177
1178 pwq->nr_active--;
1179 if (!list_empty(&pwq->delayed_works)) {
1180 /* one down, submit a delayed one */
1181 if (pwq->nr_active < pwq->max_active)
1182 pwq_activate_first_delayed(pwq);
1183 }
1184
1185 /* is flush in progress and are we at the flushing tip? */
1186 if (likely(pwq->flush_color != color))
1187 goto out_put;
1188
1189 /* are there still in-flight works? */
1190 if (pwq->nr_in_flight[color])
1191 goto out_put;
1192
1193 /* this pwq is done, clear flush_color */
1194 pwq->flush_color = -1;
1195
1196 /*
1197 * If this was the last pwq, wake up the first flusher. It
1198 * will handle the rest.
1199 */
1200 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1201 complete(&pwq->wq->first_flusher->done);
1202 out_put:
1203 put_pwq(pwq);
1204 }
1205
1206 /**
1207 * try_to_grab_pending - steal work item from worklist and disable irq
1208 * @work: work item to steal
1209 * @is_dwork: @work is a delayed_work
1210 * @flags: place to store irq state
1211 *
1212 * Try to grab PENDING bit of @work. This function can handle @work in any
1213 * stable state - idle, on timer or on worklist.
1214 *
1215 * Return:
1216 * 1 if @work was pending and we successfully stole PENDING
1217 * 0 if @work was idle and we claimed PENDING
1218 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1219 * -ENOENT if someone else is canceling @work, this state may persist
1220 * for arbitrarily long
1221 *
1222 * Note:
1223 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1224 * interrupted while holding PENDING and @work off queue, irq must be
1225 * disabled on entry. This, combined with delayed_work->timer being
1226 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1227 *
1228 * On successful return, >= 0, irq is disabled and the caller is
1229 * responsible for releasing it using local_irq_restore(*@flags).
1230 *
1231 * This function is safe to call from any context including IRQ handler.
1232 */
1233 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1234 unsigned long *flags)
1235 {
1236 struct worker_pool *pool;
1237 struct pool_workqueue *pwq;
1238
1239 local_irq_save(*flags);
1240
1241 /* try to steal the timer if it exists */
1242 if (is_dwork) {
1243 struct delayed_work *dwork = to_delayed_work(work);
1244
1245 /*
1246 * dwork->timer is irqsafe. If del_timer() fails, it's
1247 * guaranteed that the timer is not queued anywhere and not
1248 * running on the local CPU.
1249 */
1250 if (likely(del_timer(&dwork->timer)))
1251 return 1;
1252 }
1253
1254 /* try to claim PENDING the normal way */
1255 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1256 return 0;
1257
1258 rcu_read_lock();
1259 /*
1260 * The queueing is in progress, or it is already queued. Try to
1261 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1262 */
1263 pool = get_work_pool(work);
1264 if (!pool)
1265 goto fail;
1266
1267 spin_lock(&pool->lock);
1268 /*
1269 * work->data is guaranteed to point to pwq only while the work
1270 * item is queued on pwq->wq, and both updating work->data to point
1271 * to pwq on queueing and to pool on dequeueing are done under
1272 * pwq->pool->lock. This in turn guarantees that, if work->data
1273 * points to pwq which is associated with a locked pool, the work
1274 * item is currently queued on that pool.
1275 */
1276 pwq = get_work_pwq(work);
1277 if (pwq && pwq->pool == pool) {
1278 debug_work_deactivate(work);
1279
1280 /*
1281 * A delayed work item cannot be grabbed directly because
1282 * it might have linked NO_COLOR work items which, if left
1283 * on the delayed_list, will confuse pwq->nr_active
1284 * management later on and cause stall. Make sure the work
1285 * item is activated before grabbing.
1286 */
1287 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1288 pwq_activate_delayed_work(work);
1289
1290 list_del_init(&work->entry);
1291 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1292
1293 /* work->data points to pwq iff queued, point to pool */
1294 set_work_pool_and_keep_pending(work, pool->id);
1295
1296 spin_unlock(&pool->lock);
1297 rcu_read_unlock();
1298 return 1;
1299 }
1300 spin_unlock(&pool->lock);
1301 fail:
1302 rcu_read_unlock();
1303 local_irq_restore(*flags);
1304 if (work_is_canceling(work))
1305 return -ENOENT;
1306 cpu_relax();
1307 return -EAGAIN;
1308 }
1309
1310 /**
1311 * insert_work - insert a work into a pool
1312 * @pwq: pwq @work belongs to
1313 * @work: work to insert
1314 * @head: insertion point
1315 * @extra_flags: extra WORK_STRUCT_* flags to set
1316 *
1317 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1318 * work_struct flags.
1319 *
1320 * CONTEXT:
1321 * spin_lock_irq(pool->lock).
1322 */
1323 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1324 struct list_head *head, unsigned int extra_flags)
1325 {
1326 struct worker_pool *pool = pwq->pool;
1327
1328 /* we own @work, set data and link */
1329 set_work_pwq(work, pwq, extra_flags);
1330 list_add_tail(&work->entry, head);
1331 get_pwq(pwq);
1332
1333 /*
1334 * Ensure either wq_worker_sleeping() sees the above
1335 * list_add_tail() or we see zero nr_running to avoid workers lying
1336 * around lazily while there are works to be processed.
1337 */
1338 smp_mb();
1339
1340 if (__need_more_worker(pool))
1341 wake_up_worker(pool);
1342 }
1343
1344 /*
1345 * Test whether @work is being queued from another work executing on the
1346 * same workqueue.
1347 */
1348 static bool is_chained_work(struct workqueue_struct *wq)
1349 {
1350 struct worker *worker;
1351
1352 worker = current_wq_worker();
1353 /*
1354 * Return %true iff I'm a worker executing a work item on @wq. If
1355 * I'm @worker, it's safe to dereference it without locking.
1356 */
1357 return worker && worker->current_pwq->wq == wq;
1358 }
1359
1360 /*
1361 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1362 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1363 * avoid perturbing sensitive tasks.
1364 */
1365 static int wq_select_unbound_cpu(int cpu)
1366 {
1367 static bool printed_dbg_warning;
1368 int new_cpu;
1369
1370 if (likely(!wq_debug_force_rr_cpu)) {
1371 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1372 return cpu;
1373 } else if (!printed_dbg_warning) {
1374 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1375 printed_dbg_warning = true;
1376 }
1377
1378 if (cpumask_empty(wq_unbound_cpumask))
1379 return cpu;
1380
1381 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1382 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1383 if (unlikely(new_cpu >= nr_cpu_ids)) {
1384 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1385 if (unlikely(new_cpu >= nr_cpu_ids))
1386 return cpu;
1387 }
1388 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1389
1390 return new_cpu;
1391 }
1392
1393 static void __queue_work(int cpu, struct workqueue_struct *wq,
1394 struct work_struct *work)
1395 {
1396 struct pool_workqueue *pwq;
1397 struct worker_pool *last_pool;
1398 struct list_head *worklist;
1399 unsigned int work_flags;
1400 unsigned int req_cpu = cpu;
1401
1402 /*
1403 * While a work item is PENDING && off queue, a task trying to
1404 * steal the PENDING will busy-loop waiting for it to either get
1405 * queued or lose PENDING. Grabbing PENDING and queueing should
1406 * happen with IRQ disabled.
1407 */
1408 lockdep_assert_irqs_disabled();
1409
1410 debug_work_activate(work);
1411
1412 /* if draining, only works from the same workqueue are allowed */
1413 if (unlikely(wq->flags & __WQ_DRAINING) &&
1414 WARN_ON_ONCE(!is_chained_work(wq)))
1415 return;
1416 rcu_read_lock();
1417 retry:
1418 if (req_cpu == WORK_CPU_UNBOUND)
1419 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1420
1421 /* pwq which will be used unless @work is executing elsewhere */
1422 if (!(wq->flags & WQ_UNBOUND))
1423 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1424 else
1425 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1426
1427 /*
1428 * If @work was previously on a different pool, it might still be
1429 * running there, in which case the work needs to be queued on that
1430 * pool to guarantee non-reentrancy.
1431 */
1432 last_pool = get_work_pool(work);
1433 if (last_pool && last_pool != pwq->pool) {
1434 struct worker *worker;
1435
1436 spin_lock(&last_pool->lock);
1437
1438 worker = find_worker_executing_work(last_pool, work);
1439
1440 if (worker && worker->current_pwq->wq == wq) {
1441 pwq = worker->current_pwq;
1442 } else {
1443 /* meh... not running there, queue here */
1444 spin_unlock(&last_pool->lock);
1445 spin_lock(&pwq->pool->lock);
1446 }
1447 } else {
1448 spin_lock(&pwq->pool->lock);
1449 }
1450
1451 /*
1452 * pwq is determined and locked. For unbound pools, we could have
1453 * raced with pwq release and it could already be dead. If its
1454 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1455 * without another pwq replacing it in the numa_pwq_tbl or while
1456 * work items are executing on it, so the retrying is guaranteed to
1457 * make forward-progress.
1458 */
1459 if (unlikely(!pwq->refcnt)) {
1460 if (wq->flags & WQ_UNBOUND) {
1461 spin_unlock(&pwq->pool->lock);
1462 cpu_relax();
1463 goto retry;
1464 }
1465 /* oops */
1466 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1467 wq->name, cpu);
1468 }
1469
1470 /* pwq determined, queue */
1471 trace_workqueue_queue_work(req_cpu, pwq, work);
1472
1473 if (WARN_ON(!list_empty(&work->entry)))
1474 goto out;
1475
1476 pwq->nr_in_flight[pwq->work_color]++;
1477 work_flags = work_color_to_flags(pwq->work_color);
1478
1479 if (likely(pwq->nr_active < pwq->max_active)) {
1480 trace_workqueue_activate_work(work);
1481 pwq->nr_active++;
1482 worklist = &pwq->pool->worklist;
1483 if (list_empty(worklist))
1484 pwq->pool->watchdog_ts = jiffies;
1485 } else {
1486 work_flags |= WORK_STRUCT_DELAYED;
1487 worklist = &pwq->delayed_works;
1488 }
1489
1490 insert_work(pwq, work, worklist, work_flags);
1491
1492 out:
1493 spin_unlock(&pwq->pool->lock);
1494 rcu_read_unlock();
1495 }
1496
1497 /**
1498 * queue_work_on - queue work on specific cpu
1499 * @cpu: CPU number to execute work on
1500 * @wq: workqueue to use
1501 * @work: work to queue
1502 *
1503 * We queue the work to a specific CPU, the caller must ensure it
1504 * can't go away.
1505 *
1506 * Return: %false if @work was already on a queue, %true otherwise.
1507 */
1508 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1509 struct work_struct *work)
1510 {
1511 bool ret = false;
1512 unsigned long flags;
1513
1514 local_irq_save(flags);
1515
1516 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1517 __queue_work(cpu, wq, work);
1518 ret = true;
1519 }
1520
1521 local_irq_restore(flags);
1522 return ret;
1523 }
1524 EXPORT_SYMBOL(queue_work_on);
1525
1526 /**
1527 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1528 * @node: NUMA node ID that we want to select a CPU from
1529 *
1530 * This function will attempt to find a "random" cpu available on a given
1531 * node. If there are no CPUs available on the given node it will return
1532 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1533 * available CPU if we need to schedule this work.
1534 */
1535 static int workqueue_select_cpu_near(int node)
1536 {
1537 int cpu;
1538
1539 /* No point in doing this if NUMA isn't enabled for workqueues */
1540 if (!wq_numa_enabled)
1541 return WORK_CPU_UNBOUND;
1542
1543 /* Delay binding to CPU if node is not valid or online */
1544 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1545 return WORK_CPU_UNBOUND;
1546
1547 /* Use local node/cpu if we are already there */
1548 cpu = raw_smp_processor_id();
1549 if (node == cpu_to_node(cpu))
1550 return cpu;
1551
1552 /* Use "random" otherwise know as "first" online CPU of node */
1553 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1554
1555 /* If CPU is valid return that, otherwise just defer */
1556 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1557 }
1558
1559 /**
1560 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1561 * @node: NUMA node that we are targeting the work for
1562 * @wq: workqueue to use
1563 * @work: work to queue
1564 *
1565 * We queue the work to a "random" CPU within a given NUMA node. The basic
1566 * idea here is to provide a way to somehow associate work with a given
1567 * NUMA node.
1568 *
1569 * This function will only make a best effort attempt at getting this onto
1570 * the right NUMA node. If no node is requested or the requested node is
1571 * offline then we just fall back to standard queue_work behavior.
1572 *
1573 * Currently the "random" CPU ends up being the first available CPU in the
1574 * intersection of cpu_online_mask and the cpumask of the node, unless we
1575 * are running on the node. In that case we just use the current CPU.
1576 *
1577 * Return: %false if @work was already on a queue, %true otherwise.
1578 */
1579 bool queue_work_node(int node, struct workqueue_struct *wq,
1580 struct work_struct *work)
1581 {
1582 unsigned long flags;
1583 bool ret = false;
1584
1585 /*
1586 * This current implementation is specific to unbound workqueues.
1587 * Specifically we only return the first available CPU for a given
1588 * node instead of cycling through individual CPUs within the node.
1589 *
1590 * If this is used with a per-cpu workqueue then the logic in
1591 * workqueue_select_cpu_near would need to be updated to allow for
1592 * some round robin type logic.
1593 */
1594 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1595
1596 local_irq_save(flags);
1597
1598 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1599 int cpu = workqueue_select_cpu_near(node);
1600
1601 __queue_work(cpu, wq, work);
1602 ret = true;
1603 }
1604
1605 local_irq_restore(flags);
1606 return ret;
1607 }
1608 EXPORT_SYMBOL_GPL(queue_work_node);
1609
1610 void delayed_work_timer_fn(struct timer_list *t)
1611 {
1612 struct delayed_work *dwork = from_timer(dwork, t, timer);
1613
1614 /* should have been called from irqsafe timer with irq already off */
1615 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1616 }
1617 EXPORT_SYMBOL(delayed_work_timer_fn);
1618
1619 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1620 struct delayed_work *dwork, unsigned long delay)
1621 {
1622 struct timer_list *timer = &dwork->timer;
1623 struct work_struct *work = &dwork->work;
1624
1625 WARN_ON_ONCE(!wq);
1626 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1627 WARN_ON_ONCE(timer_pending(timer));
1628 WARN_ON_ONCE(!list_empty(&work->entry));
1629
1630 /*
1631 * If @delay is 0, queue @dwork->work immediately. This is for
1632 * both optimization and correctness. The earliest @timer can
1633 * expire is on the closest next tick and delayed_work users depend
1634 * on that there's no such delay when @delay is 0.
1635 */
1636 if (!delay) {
1637 __queue_work(cpu, wq, &dwork->work);
1638 return;
1639 }
1640
1641 dwork->wq = wq;
1642 dwork->cpu = cpu;
1643 timer->expires = jiffies + delay;
1644
1645 if (unlikely(cpu != WORK_CPU_UNBOUND))
1646 add_timer_on(timer, cpu);
1647 else
1648 add_timer(timer);
1649 }
1650
1651 /**
1652 * queue_delayed_work_on - queue work on specific CPU after delay
1653 * @cpu: CPU number to execute work on
1654 * @wq: workqueue to use
1655 * @dwork: work to queue
1656 * @delay: number of jiffies to wait before queueing
1657 *
1658 * Return: %false if @work was already on a queue, %true otherwise. If
1659 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1660 * execution.
1661 */
1662 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1663 struct delayed_work *dwork, unsigned long delay)
1664 {
1665 struct work_struct *work = &dwork->work;
1666 bool ret = false;
1667 unsigned long flags;
1668
1669 /* read the comment in __queue_work() */
1670 local_irq_save(flags);
1671
1672 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1673 __queue_delayed_work(cpu, wq, dwork, delay);
1674 ret = true;
1675 }
1676
1677 local_irq_restore(flags);
1678 return ret;
1679 }
1680 EXPORT_SYMBOL(queue_delayed_work_on);
1681
1682 /**
1683 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1684 * @cpu: CPU number to execute work on
1685 * @wq: workqueue to use
1686 * @dwork: work to queue
1687 * @delay: number of jiffies to wait before queueing
1688 *
1689 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1690 * modify @dwork's timer so that it expires after @delay. If @delay is
1691 * zero, @work is guaranteed to be scheduled immediately regardless of its
1692 * current state.
1693 *
1694 * Return: %false if @dwork was idle and queued, %true if @dwork was
1695 * pending and its timer was modified.
1696 *
1697 * This function is safe to call from any context including IRQ handler.
1698 * See try_to_grab_pending() for details.
1699 */
1700 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1701 struct delayed_work *dwork, unsigned long delay)
1702 {
1703 unsigned long flags;
1704 int ret;
1705
1706 do {
1707 ret = try_to_grab_pending(&dwork->work, true, &flags);
1708 } while (unlikely(ret == -EAGAIN));
1709
1710 if (likely(ret >= 0)) {
1711 __queue_delayed_work(cpu, wq, dwork, delay);
1712 local_irq_restore(flags);
1713 }
1714
1715 /* -ENOENT from try_to_grab_pending() becomes %true */
1716 return ret;
1717 }
1718 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1719
1720 static void rcu_work_rcufn(struct rcu_head *rcu)
1721 {
1722 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1723
1724 /* read the comment in __queue_work() */
1725 local_irq_disable();
1726 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1727 local_irq_enable();
1728 }
1729
1730 /**
1731 * queue_rcu_work - queue work after a RCU grace period
1732 * @wq: workqueue to use
1733 * @rwork: work to queue
1734 *
1735 * Return: %false if @rwork was already pending, %true otherwise. Note
1736 * that a full RCU grace period is guaranteed only after a %true return.
1737 * While @rwork is guaranteed to be executed after a %false return, the
1738 * execution may happen before a full RCU grace period has passed.
1739 */
1740 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1741 {
1742 struct work_struct *work = &rwork->work;
1743
1744 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1745 rwork->wq = wq;
1746 call_rcu(&rwork->rcu, rcu_work_rcufn);
1747 return true;
1748 }
1749
1750 return false;
1751 }
1752 EXPORT_SYMBOL(queue_rcu_work);
1753
1754 /**
1755 * worker_enter_idle - enter idle state
1756 * @worker: worker which is entering idle state
1757 *
1758 * @worker is entering idle state. Update stats and idle timer if
1759 * necessary.
1760 *
1761 * LOCKING:
1762 * spin_lock_irq(pool->lock).
1763 */
1764 static void worker_enter_idle(struct worker *worker)
1765 {
1766 struct worker_pool *pool = worker->pool;
1767
1768 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1769 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1770 (worker->hentry.next || worker->hentry.pprev)))
1771 return;
1772
1773 /* can't use worker_set_flags(), also called from create_worker() */
1774 worker->flags |= WORKER_IDLE;
1775 pool->nr_idle++;
1776 worker->last_active = jiffies;
1777
1778 /* idle_list is LIFO */
1779 list_add(&worker->entry, &pool->idle_list);
1780
1781 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1782 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1783
1784 /*
1785 * Sanity check nr_running. Because unbind_workers() releases
1786 * pool->lock between setting %WORKER_UNBOUND and zapping
1787 * nr_running, the warning may trigger spuriously. Check iff
1788 * unbind is not in progress.
1789 */
1790 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1791 pool->nr_workers == pool->nr_idle &&
1792 atomic_read(&pool->nr_running));
1793 }
1794
1795 /**
1796 * worker_leave_idle - leave idle state
1797 * @worker: worker which is leaving idle state
1798 *
1799 * @worker is leaving idle state. Update stats.
1800 *
1801 * LOCKING:
1802 * spin_lock_irq(pool->lock).
1803 */
1804 static void worker_leave_idle(struct worker *worker)
1805 {
1806 struct worker_pool *pool = worker->pool;
1807
1808 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1809 return;
1810 worker_clr_flags(worker, WORKER_IDLE);
1811 pool->nr_idle--;
1812 list_del_init(&worker->entry);
1813 }
1814
1815 static struct worker *alloc_worker(int node)
1816 {
1817 struct worker *worker;
1818
1819 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1820 if (worker) {
1821 INIT_LIST_HEAD(&worker->entry);
1822 INIT_LIST_HEAD(&worker->scheduled);
1823 INIT_LIST_HEAD(&worker->node);
1824 /* on creation a worker is in !idle && prep state */
1825 worker->flags = WORKER_PREP;
1826 }
1827 return worker;
1828 }
1829
1830 /**
1831 * worker_attach_to_pool() - attach a worker to a pool
1832 * @worker: worker to be attached
1833 * @pool: the target pool
1834 *
1835 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1836 * cpu-binding of @worker are kept coordinated with the pool across
1837 * cpu-[un]hotplugs.
1838 */
1839 static void worker_attach_to_pool(struct worker *worker,
1840 struct worker_pool *pool)
1841 {
1842 mutex_lock(&wq_pool_attach_mutex);
1843
1844 /*
1845 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1846 * online CPUs. It'll be re-applied when any of the CPUs come up.
1847 */
1848 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1849
1850 /*
1851 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1852 * stable across this function. See the comments above the flag
1853 * definition for details.
1854 */
1855 if (pool->flags & POOL_DISASSOCIATED)
1856 worker->flags |= WORKER_UNBOUND;
1857
1858 list_add_tail(&worker->node, &pool->workers);
1859 worker->pool = pool;
1860
1861 mutex_unlock(&wq_pool_attach_mutex);
1862 }
1863
1864 /**
1865 * worker_detach_from_pool() - detach a worker from its pool
1866 * @worker: worker which is attached to its pool
1867 *
1868 * Undo the attaching which had been done in worker_attach_to_pool(). The
1869 * caller worker shouldn't access to the pool after detached except it has
1870 * other reference to the pool.
1871 */
1872 static void worker_detach_from_pool(struct worker *worker)
1873 {
1874 struct worker_pool *pool = worker->pool;
1875 struct completion *detach_completion = NULL;
1876
1877 mutex_lock(&wq_pool_attach_mutex);
1878
1879 list_del(&worker->node);
1880 worker->pool = NULL;
1881
1882 if (list_empty(&pool->workers))
1883 detach_completion = pool->detach_completion;
1884 mutex_unlock(&wq_pool_attach_mutex);
1885
1886 /* clear leftover flags without pool->lock after it is detached */
1887 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1888
1889 if (detach_completion)
1890 complete(detach_completion);
1891 }
1892
1893 /**
1894 * create_worker - create a new workqueue worker
1895 * @pool: pool the new worker will belong to
1896 *
1897 * Create and start a new worker which is attached to @pool.
1898 *
1899 * CONTEXT:
1900 * Might sleep. Does GFP_KERNEL allocations.
1901 *
1902 * Return:
1903 * Pointer to the newly created worker.
1904 */
1905 static struct worker *create_worker(struct worker_pool *pool)
1906 {
1907 struct worker *worker = NULL;
1908 int id = -1;
1909 char id_buf[16];
1910
1911 /* ID is needed to determine kthread name */
1912 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1913 if (id < 0)
1914 goto fail;
1915
1916 worker = alloc_worker(pool->node);
1917 if (!worker)
1918 goto fail;
1919
1920 worker->id = id;
1921
1922 if (pool->cpu >= 0)
1923 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1924 pool->attrs->nice < 0 ? "H" : "");
1925 else
1926 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1927
1928 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1929 "kworker/%s", id_buf);
1930 if (IS_ERR(worker->task))
1931 goto fail;
1932
1933 set_user_nice(worker->task, pool->attrs->nice);
1934 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1935
1936 /* successful, attach the worker to the pool */
1937 worker_attach_to_pool(worker, pool);
1938
1939 /* start the newly created worker */
1940 spin_lock_irq(&pool->lock);
1941 worker->pool->nr_workers++;
1942 worker_enter_idle(worker);
1943 wake_up_process(worker->task);
1944 spin_unlock_irq(&pool->lock);
1945
1946 return worker;
1947
1948 fail:
1949 if (id >= 0)
1950 ida_simple_remove(&pool->worker_ida, id);
1951 kfree(worker);
1952 return NULL;
1953 }
1954
1955 /**
1956 * destroy_worker - destroy a workqueue worker
1957 * @worker: worker to be destroyed
1958 *
1959 * Destroy @worker and adjust @pool stats accordingly. The worker should
1960 * be idle.
1961 *
1962 * CONTEXT:
1963 * spin_lock_irq(pool->lock).
1964 */
1965 static void destroy_worker(struct worker *worker)
1966 {
1967 struct worker_pool *pool = worker->pool;
1968
1969 lockdep_assert_held(&pool->lock);
1970
1971 /* sanity check frenzy */
1972 if (WARN_ON(worker->current_work) ||
1973 WARN_ON(!list_empty(&worker->scheduled)) ||
1974 WARN_ON(!(worker->flags & WORKER_IDLE)))
1975 return;
1976
1977 pool->nr_workers--;
1978 pool->nr_idle--;
1979
1980 list_del_init(&worker->entry);
1981 worker->flags |= WORKER_DIE;
1982 wake_up_process(worker->task);
1983 }
1984
1985 static void idle_worker_timeout(struct timer_list *t)
1986 {
1987 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1988
1989 spin_lock_irq(&pool->lock);
1990
1991 while (too_many_workers(pool)) {
1992 struct worker *worker;
1993 unsigned long expires;
1994
1995 /* idle_list is kept in LIFO order, check the last one */
1996 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1997 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1998
1999 if (time_before(jiffies, expires)) {
2000 mod_timer(&pool->idle_timer, expires);
2001 break;
2002 }
2003
2004 destroy_worker(worker);
2005 }
2006
2007 spin_unlock_irq(&pool->lock);
2008 }
2009
2010 static void send_mayday(struct work_struct *work)
2011 {
2012 struct pool_workqueue *pwq = get_work_pwq(work);
2013 struct workqueue_struct *wq = pwq->wq;
2014
2015 lockdep_assert_held(&wq_mayday_lock);
2016
2017 if (!wq->rescuer)
2018 return;
2019
2020 /* mayday mayday mayday */
2021 if (list_empty(&pwq->mayday_node)) {
2022 /*
2023 * If @pwq is for an unbound wq, its base ref may be put at
2024 * any time due to an attribute change. Pin @pwq until the
2025 * rescuer is done with it.
2026 */
2027 get_pwq(pwq);
2028 list_add_tail(&pwq->mayday_node, &wq->maydays);
2029 wake_up_process(wq->rescuer->task);
2030 }
2031 }
2032
2033 static void pool_mayday_timeout(struct timer_list *t)
2034 {
2035 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2036 struct work_struct *work;
2037
2038 spin_lock_irq(&pool->lock);
2039 spin_lock(&wq_mayday_lock); /* for wq->maydays */
2040
2041 if (need_to_create_worker(pool)) {
2042 /*
2043 * We've been trying to create a new worker but
2044 * haven't been successful. We might be hitting an
2045 * allocation deadlock. Send distress signals to
2046 * rescuers.
2047 */
2048 list_for_each_entry(work, &pool->worklist, entry)
2049 send_mayday(work);
2050 }
2051
2052 spin_unlock(&wq_mayday_lock);
2053 spin_unlock_irq(&pool->lock);
2054
2055 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2056 }
2057
2058 /**
2059 * maybe_create_worker - create a new worker if necessary
2060 * @pool: pool to create a new worker for
2061 *
2062 * Create a new worker for @pool if necessary. @pool is guaranteed to
2063 * have at least one idle worker on return from this function. If
2064 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2065 * sent to all rescuers with works scheduled on @pool to resolve
2066 * possible allocation deadlock.
2067 *
2068 * On return, need_to_create_worker() is guaranteed to be %false and
2069 * may_start_working() %true.
2070 *
2071 * LOCKING:
2072 * spin_lock_irq(pool->lock) which may be released and regrabbed
2073 * multiple times. Does GFP_KERNEL allocations. Called only from
2074 * manager.
2075 */
2076 static void maybe_create_worker(struct worker_pool *pool)
2077 __releases(&pool->lock)
2078 __acquires(&pool->lock)
2079 {
2080 restart:
2081 spin_unlock_irq(&pool->lock);
2082
2083 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2084 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2085
2086 while (true) {
2087 if (create_worker(pool) || !need_to_create_worker(pool))
2088 break;
2089
2090 schedule_timeout_interruptible(CREATE_COOLDOWN);
2091
2092 if (!need_to_create_worker(pool))
2093 break;
2094 }
2095
2096 del_timer_sync(&pool->mayday_timer);
2097 spin_lock_irq(&pool->lock);
2098 /*
2099 * This is necessary even after a new worker was just successfully
2100 * created as @pool->lock was dropped and the new worker might have
2101 * already become busy.
2102 */
2103 if (need_to_create_worker(pool))
2104 goto restart;
2105 }
2106
2107 /**
2108 * manage_workers - manage worker pool
2109 * @worker: self
2110 *
2111 * Assume the manager role and manage the worker pool @worker belongs
2112 * to. At any given time, there can be only zero or one manager per
2113 * pool. The exclusion is handled automatically by this function.
2114 *
2115 * The caller can safely start processing works on false return. On
2116 * true return, it's guaranteed that need_to_create_worker() is false
2117 * and may_start_working() is true.
2118 *
2119 * CONTEXT:
2120 * spin_lock_irq(pool->lock) which may be released and regrabbed
2121 * multiple times. Does GFP_KERNEL allocations.
2122 *
2123 * Return:
2124 * %false if the pool doesn't need management and the caller can safely
2125 * start processing works, %true if management function was performed and
2126 * the conditions that the caller verified before calling the function may
2127 * no longer be true.
2128 */
2129 static bool manage_workers(struct worker *worker)
2130 {
2131 struct worker_pool *pool = worker->pool;
2132
2133 if (pool->flags & POOL_MANAGER_ACTIVE)
2134 return false;
2135
2136 pool->flags |= POOL_MANAGER_ACTIVE;
2137 pool->manager = worker;
2138
2139 maybe_create_worker(pool);
2140
2141 pool->manager = NULL;
2142 pool->flags &= ~POOL_MANAGER_ACTIVE;
2143 wake_up(&wq_manager_wait);
2144 return true;
2145 }
2146
2147 /**
2148 * process_one_work - process single work
2149 * @worker: self
2150 * @work: work to process
2151 *
2152 * Process @work. This function contains all the logics necessary to
2153 * process a single work including synchronization against and
2154 * interaction with other workers on the same cpu, queueing and
2155 * flushing. As long as context requirement is met, any worker can
2156 * call this function to process a work.
2157 *
2158 * CONTEXT:
2159 * spin_lock_irq(pool->lock) which is released and regrabbed.
2160 */
2161 static void process_one_work(struct worker *worker, struct work_struct *work)
2162 __releases(&pool->lock)
2163 __acquires(&pool->lock)
2164 {
2165 struct pool_workqueue *pwq = get_work_pwq(work);
2166 struct worker_pool *pool = worker->pool;
2167 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2168 int work_color;
2169 struct worker *collision;
2170 #ifdef CONFIG_LOCKDEP
2171 /*
2172 * It is permissible to free the struct work_struct from
2173 * inside the function that is called from it, this we need to
2174 * take into account for lockdep too. To avoid bogus "held
2175 * lock freed" warnings as well as problems when looking into
2176 * work->lockdep_map, make a copy and use that here.
2177 */
2178 struct lockdep_map lockdep_map;
2179
2180 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2181 #endif
2182 /* ensure we're on the correct CPU */
2183 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2184 raw_smp_processor_id() != pool->cpu);
2185
2186 /*
2187 * A single work shouldn't be executed concurrently by
2188 * multiple workers on a single cpu. Check whether anyone is
2189 * already processing the work. If so, defer the work to the
2190 * currently executing one.
2191 */
2192 collision = find_worker_executing_work(pool, work);
2193 if (unlikely(collision)) {
2194 move_linked_works(work, &collision->scheduled, NULL);
2195 return;
2196 }
2197
2198 /* claim and dequeue */
2199 debug_work_deactivate(work);
2200 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2201 worker->current_work = work;
2202 worker->current_func = work->func;
2203 worker->current_pwq = pwq;
2204 work_color = get_work_color(work);
2205
2206 /*
2207 * Record wq name for cmdline and debug reporting, may get
2208 * overridden through set_worker_desc().
2209 */
2210 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2211
2212 list_del_init(&work->entry);
2213
2214 /*
2215 * CPU intensive works don't participate in concurrency management.
2216 * They're the scheduler's responsibility. This takes @worker out
2217 * of concurrency management and the next code block will chain
2218 * execution of the pending work items.
2219 */
2220 if (unlikely(cpu_intensive))
2221 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2222
2223 /*
2224 * Wake up another worker if necessary. The condition is always
2225 * false for normal per-cpu workers since nr_running would always
2226 * be >= 1 at this point. This is used to chain execution of the
2227 * pending work items for WORKER_NOT_RUNNING workers such as the
2228 * UNBOUND and CPU_INTENSIVE ones.
2229 */
2230 if (need_more_worker(pool))
2231 wake_up_worker(pool);
2232
2233 /*
2234 * Record the last pool and clear PENDING which should be the last
2235 * update to @work. Also, do this inside @pool->lock so that
2236 * PENDING and queued state changes happen together while IRQ is
2237 * disabled.
2238 */
2239 set_work_pool_and_clear_pending(work, pool->id);
2240
2241 spin_unlock_irq(&pool->lock);
2242
2243 lock_map_acquire(&pwq->wq->lockdep_map);
2244 lock_map_acquire(&lockdep_map);
2245 /*
2246 * Strictly speaking we should mark the invariant state without holding
2247 * any locks, that is, before these two lock_map_acquire()'s.
2248 *
2249 * However, that would result in:
2250 *
2251 * A(W1)
2252 * WFC(C)
2253 * A(W1)
2254 * C(C)
2255 *
2256 * Which would create W1->C->W1 dependencies, even though there is no
2257 * actual deadlock possible. There are two solutions, using a
2258 * read-recursive acquire on the work(queue) 'locks', but this will then
2259 * hit the lockdep limitation on recursive locks, or simply discard
2260 * these locks.
2261 *
2262 * AFAICT there is no possible deadlock scenario between the
2263 * flush_work() and complete() primitives (except for single-threaded
2264 * workqueues), so hiding them isn't a problem.
2265 */
2266 lockdep_invariant_state(true);
2267 trace_workqueue_execute_start(work);
2268 worker->current_func(work);
2269 /*
2270 * While we must be careful to not use "work" after this, the trace
2271 * point will only record its address.
2272 */
2273 trace_workqueue_execute_end(work);
2274 lock_map_release(&lockdep_map);
2275 lock_map_release(&pwq->wq->lockdep_map);
2276
2277 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2278 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2279 " last function: %ps\n",
2280 current->comm, preempt_count(), task_pid_nr(current),
2281 worker->current_func);
2282 debug_show_held_locks(current);
2283 dump_stack();
2284 }
2285
2286 /*
2287 * The following prevents a kworker from hogging CPU on !PREEMPT
2288 * kernels, where a requeueing work item waiting for something to
2289 * happen could deadlock with stop_machine as such work item could
2290 * indefinitely requeue itself while all other CPUs are trapped in
2291 * stop_machine. At the same time, report a quiescent RCU state so
2292 * the same condition doesn't freeze RCU.
2293 */
2294 cond_resched();
2295
2296 spin_lock_irq(&pool->lock);
2297
2298 /* clear cpu intensive status */
2299 if (unlikely(cpu_intensive))
2300 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2301
2302 /* tag the worker for identification in schedule() */
2303 worker->last_func = worker->current_func;
2304
2305 /* we're done with it, release */
2306 hash_del(&worker->hentry);
2307 worker->current_work = NULL;
2308 worker->current_func = NULL;
2309 worker->current_pwq = NULL;
2310 pwq_dec_nr_in_flight(pwq, work_color);
2311 }
2312
2313 /**
2314 * process_scheduled_works - process scheduled works
2315 * @worker: self
2316 *
2317 * Process all scheduled works. Please note that the scheduled list
2318 * may change while processing a work, so this function repeatedly
2319 * fetches a work from the top and executes it.
2320 *
2321 * CONTEXT:
2322 * spin_lock_irq(pool->lock) which may be released and regrabbed
2323 * multiple times.
2324 */
2325 static void process_scheduled_works(struct worker *worker)
2326 {
2327 while (!list_empty(&worker->scheduled)) {
2328 struct work_struct *work = list_first_entry(&worker->scheduled,
2329 struct work_struct, entry);
2330 process_one_work(worker, work);
2331 }
2332 }
2333
2334 static void set_pf_worker(bool val)
2335 {
2336 mutex_lock(&wq_pool_attach_mutex);
2337 if (val)
2338 current->flags |= PF_WQ_WORKER;
2339 else
2340 current->flags &= ~PF_WQ_WORKER;
2341 mutex_unlock(&wq_pool_attach_mutex);
2342 }
2343
2344 /**
2345 * worker_thread - the worker thread function
2346 * @__worker: self
2347 *
2348 * The worker thread function. All workers belong to a worker_pool -
2349 * either a per-cpu one or dynamic unbound one. These workers process all
2350 * work items regardless of their specific target workqueue. The only
2351 * exception is work items which belong to workqueues with a rescuer which
2352 * will be explained in rescuer_thread().
2353 *
2354 * Return: 0
2355 */
2356 static int worker_thread(void *__worker)
2357 {
2358 struct worker *worker = __worker;
2359 struct worker_pool *pool = worker->pool;
2360
2361 /* tell the scheduler that this is a workqueue worker */
2362 set_pf_worker(true);
2363 woke_up:
2364 spin_lock_irq(&pool->lock);
2365
2366 /* am I supposed to die? */
2367 if (unlikely(worker->flags & WORKER_DIE)) {
2368 spin_unlock_irq(&pool->lock);
2369 WARN_ON_ONCE(!list_empty(&worker->entry));
2370 set_pf_worker(false);
2371
2372 set_task_comm(worker->task, "kworker/dying");
2373 ida_simple_remove(&pool->worker_ida, worker->id);
2374 worker_detach_from_pool(worker);
2375 kfree(worker);
2376 return 0;
2377 }
2378
2379 worker_leave_idle(worker);
2380 recheck:
2381 /* no more worker necessary? */
2382 if (!need_more_worker(pool))
2383 goto sleep;
2384
2385 /* do we need to manage? */
2386 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2387 goto recheck;
2388
2389 /*
2390 * ->scheduled list can only be filled while a worker is
2391 * preparing to process a work or actually processing it.
2392 * Make sure nobody diddled with it while I was sleeping.
2393 */
2394 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2395
2396 /*
2397 * Finish PREP stage. We're guaranteed to have at least one idle
2398 * worker or that someone else has already assumed the manager
2399 * role. This is where @worker starts participating in concurrency
2400 * management if applicable and concurrency management is restored
2401 * after being rebound. See rebind_workers() for details.
2402 */
2403 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2404
2405 do {
2406 struct work_struct *work =
2407 list_first_entry(&pool->worklist,
2408 struct work_struct, entry);
2409
2410 pool->watchdog_ts = jiffies;
2411
2412 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2413 /* optimization path, not strictly necessary */
2414 process_one_work(worker, work);
2415 if (unlikely(!list_empty(&worker->scheduled)))
2416 process_scheduled_works(worker);
2417 } else {
2418 move_linked_works(work, &worker->scheduled, NULL);
2419 process_scheduled_works(worker);
2420 }
2421 } while (keep_working(pool));
2422
2423 worker_set_flags(worker, WORKER_PREP);
2424 sleep:
2425 /*
2426 * pool->lock is held and there's no work to process and no need to
2427 * manage, sleep. Workers are woken up only while holding
2428 * pool->lock or from local cpu, so setting the current state
2429 * before releasing pool->lock is enough to prevent losing any
2430 * event.
2431 */
2432 worker_enter_idle(worker);
2433 __set_current_state(TASK_IDLE);
2434 spin_unlock_irq(&pool->lock);
2435 schedule();
2436 goto woke_up;
2437 }
2438
2439 /**
2440 * rescuer_thread - the rescuer thread function
2441 * @__rescuer: self
2442 *
2443 * Workqueue rescuer thread function. There's one rescuer for each
2444 * workqueue which has WQ_MEM_RECLAIM set.
2445 *
2446 * Regular work processing on a pool may block trying to create a new
2447 * worker which uses GFP_KERNEL allocation which has slight chance of
2448 * developing into deadlock if some works currently on the same queue
2449 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2450 * the problem rescuer solves.
2451 *
2452 * When such condition is possible, the pool summons rescuers of all
2453 * workqueues which have works queued on the pool and let them process
2454 * those works so that forward progress can be guaranteed.
2455 *
2456 * This should happen rarely.
2457 *
2458 * Return: 0
2459 */
2460 static int rescuer_thread(void *__rescuer)
2461 {
2462 struct worker *rescuer = __rescuer;
2463 struct workqueue_struct *wq = rescuer->rescue_wq;
2464 struct list_head *scheduled = &rescuer->scheduled;
2465 bool should_stop;
2466
2467 set_user_nice(current, RESCUER_NICE_LEVEL);
2468
2469 /*
2470 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2471 * doesn't participate in concurrency management.
2472 */
2473 set_pf_worker(true);
2474 repeat:
2475 set_current_state(TASK_IDLE);
2476
2477 /*
2478 * By the time the rescuer is requested to stop, the workqueue
2479 * shouldn't have any work pending, but @wq->maydays may still have
2480 * pwq(s) queued. This can happen by non-rescuer workers consuming
2481 * all the work items before the rescuer got to them. Go through
2482 * @wq->maydays processing before acting on should_stop so that the
2483 * list is always empty on exit.
2484 */
2485 should_stop = kthread_should_stop();
2486
2487 /* see whether any pwq is asking for help */
2488 spin_lock_irq(&wq_mayday_lock);
2489
2490 while (!list_empty(&wq->maydays)) {
2491 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2492 struct pool_workqueue, mayday_node);
2493 struct worker_pool *pool = pwq->pool;
2494 struct work_struct *work, *n;
2495 bool first = true;
2496
2497 __set_current_state(TASK_RUNNING);
2498 list_del_init(&pwq->mayday_node);
2499
2500 spin_unlock_irq(&wq_mayday_lock);
2501
2502 worker_attach_to_pool(rescuer, pool);
2503
2504 spin_lock_irq(&pool->lock);
2505
2506 /*
2507 * Slurp in all works issued via this workqueue and
2508 * process'em.
2509 */
2510 WARN_ON_ONCE(!list_empty(scheduled));
2511 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2512 if (get_work_pwq(work) == pwq) {
2513 if (first)
2514 pool->watchdog_ts = jiffies;
2515 move_linked_works(work, scheduled, &n);
2516 }
2517 first = false;
2518 }
2519
2520 if (!list_empty(scheduled)) {
2521 process_scheduled_works(rescuer);
2522
2523 /*
2524 * The above execution of rescued work items could
2525 * have created more to rescue through
2526 * pwq_activate_first_delayed() or chained
2527 * queueing. Let's put @pwq back on mayday list so
2528 * that such back-to-back work items, which may be
2529 * being used to relieve memory pressure, don't
2530 * incur MAYDAY_INTERVAL delay inbetween.
2531 */
2532 if (need_to_create_worker(pool)) {
2533 spin_lock(&wq_mayday_lock);
2534 get_pwq(pwq);
2535 list_move_tail(&pwq->mayday_node, &wq->maydays);
2536 spin_unlock(&wq_mayday_lock);
2537 }
2538 }
2539
2540 /*
2541 * Put the reference grabbed by send_mayday(). @pool won't
2542 * go away while we're still attached to it.
2543 */
2544 put_pwq(pwq);
2545
2546 /*
2547 * Leave this pool. If need_more_worker() is %true, notify a
2548 * regular worker; otherwise, we end up with 0 concurrency
2549 * and stalling the execution.
2550 */
2551 if (need_more_worker(pool))
2552 wake_up_worker(pool);
2553
2554 spin_unlock_irq(&pool->lock);
2555
2556 worker_detach_from_pool(rescuer);
2557
2558 spin_lock_irq(&wq_mayday_lock);
2559 }
2560
2561 spin_unlock_irq(&wq_mayday_lock);
2562
2563 if (should_stop) {
2564 __set_current_state(TASK_RUNNING);
2565 set_pf_worker(false);
2566 return 0;
2567 }
2568
2569 /* rescuers should never participate in concurrency management */
2570 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2571 schedule();
2572 goto repeat;
2573 }
2574
2575 /**
2576 * check_flush_dependency - check for flush dependency sanity
2577 * @target_wq: workqueue being flushed
2578 * @target_work: work item being flushed (NULL for workqueue flushes)
2579 *
2580 * %current is trying to flush the whole @target_wq or @target_work on it.
2581 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2582 * reclaiming memory or running on a workqueue which doesn't have
2583 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2584 * a deadlock.
2585 */
2586 static void check_flush_dependency(struct workqueue_struct *target_wq,
2587 struct work_struct *target_work)
2588 {
2589 work_func_t target_func = target_work ? target_work->func : NULL;
2590 struct worker *worker;
2591
2592 if (target_wq->flags & WQ_MEM_RECLAIM)
2593 return;
2594
2595 worker = current_wq_worker();
2596
2597 WARN_ONCE(current->flags & PF_MEMALLOC,
2598 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2599 current->pid, current->comm, target_wq->name, target_func);
2600 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2601 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2602 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2603 worker->current_pwq->wq->name, worker->current_func,
2604 target_wq->name, target_func);
2605 }
2606
2607 struct wq_barrier {
2608 struct work_struct work;
2609 struct completion done;
2610 struct task_struct *task; /* purely informational */
2611 };
2612
2613 static void wq_barrier_func(struct work_struct *work)
2614 {
2615 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2616 complete(&barr->done);
2617 }
2618
2619 /**
2620 * insert_wq_barrier - insert a barrier work
2621 * @pwq: pwq to insert barrier into
2622 * @barr: wq_barrier to insert
2623 * @target: target work to attach @barr to
2624 * @worker: worker currently executing @target, NULL if @target is not executing
2625 *
2626 * @barr is linked to @target such that @barr is completed only after
2627 * @target finishes execution. Please note that the ordering
2628 * guarantee is observed only with respect to @target and on the local
2629 * cpu.
2630 *
2631 * Currently, a queued barrier can't be canceled. This is because
2632 * try_to_grab_pending() can't determine whether the work to be
2633 * grabbed is at the head of the queue and thus can't clear LINKED
2634 * flag of the previous work while there must be a valid next work
2635 * after a work with LINKED flag set.
2636 *
2637 * Note that when @worker is non-NULL, @target may be modified
2638 * underneath us, so we can't reliably determine pwq from @target.
2639 *
2640 * CONTEXT:
2641 * spin_lock_irq(pool->lock).
2642 */
2643 static void insert_wq_barrier(struct pool_workqueue *pwq,
2644 struct wq_barrier *barr,
2645 struct work_struct *target, struct worker *worker)
2646 {
2647 struct list_head *head;
2648 unsigned int linked = 0;
2649
2650 /*
2651 * debugobject calls are safe here even with pool->lock locked
2652 * as we know for sure that this will not trigger any of the
2653 * checks and call back into the fixup functions where we
2654 * might deadlock.
2655 */
2656 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2657 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2658
2659 init_completion_map(&barr->done, &target->lockdep_map);
2660
2661 barr->task = current;
2662
2663 /*
2664 * If @target is currently being executed, schedule the
2665 * barrier to the worker; otherwise, put it after @target.
2666 */
2667 if (worker)
2668 head = worker->scheduled.next;
2669 else {
2670 unsigned long *bits = work_data_bits(target);
2671
2672 head = target->entry.next;
2673 /* there can already be other linked works, inherit and set */
2674 linked = *bits & WORK_STRUCT_LINKED;
2675 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2676 }
2677
2678 debug_work_activate(&barr->work);
2679 insert_work(pwq, &barr->work, head,
2680 work_color_to_flags(WORK_NO_COLOR) | linked);
2681 }
2682
2683 /**
2684 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2685 * @wq: workqueue being flushed
2686 * @flush_color: new flush color, < 0 for no-op
2687 * @work_color: new work color, < 0 for no-op
2688 *
2689 * Prepare pwqs for workqueue flushing.
2690 *
2691 * If @flush_color is non-negative, flush_color on all pwqs should be
2692 * -1. If no pwq has in-flight commands at the specified color, all
2693 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2694 * has in flight commands, its pwq->flush_color is set to
2695 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2696 * wakeup logic is armed and %true is returned.
2697 *
2698 * The caller should have initialized @wq->first_flusher prior to
2699 * calling this function with non-negative @flush_color. If
2700 * @flush_color is negative, no flush color update is done and %false
2701 * is returned.
2702 *
2703 * If @work_color is non-negative, all pwqs should have the same
2704 * work_color which is previous to @work_color and all will be
2705 * advanced to @work_color.
2706 *
2707 * CONTEXT:
2708 * mutex_lock(wq->mutex).
2709 *
2710 * Return:
2711 * %true if @flush_color >= 0 and there's something to flush. %false
2712 * otherwise.
2713 */
2714 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2715 int flush_color, int work_color)
2716 {
2717 bool wait = false;
2718 struct pool_workqueue *pwq;
2719
2720 if (flush_color >= 0) {
2721 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2722 atomic_set(&wq->nr_pwqs_to_flush, 1);
2723 }
2724
2725 for_each_pwq(pwq, wq) {
2726 struct worker_pool *pool = pwq->pool;
2727
2728 spin_lock_irq(&pool->lock);
2729
2730 if (flush_color >= 0) {
2731 WARN_ON_ONCE(pwq->flush_color != -1);
2732
2733 if (pwq->nr_in_flight[flush_color]) {
2734 pwq->flush_color = flush_color;
2735 atomic_inc(&wq->nr_pwqs_to_flush);
2736 wait = true;
2737 }
2738 }
2739
2740 if (work_color >= 0) {
2741 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2742 pwq->work_color = work_color;
2743 }
2744
2745 spin_unlock_irq(&pool->lock);
2746 }
2747
2748 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2749 complete(&wq->first_flusher->done);
2750
2751 return wait;
2752 }
2753
2754 /**
2755 * flush_workqueue - ensure that any scheduled work has run to completion.
2756 * @wq: workqueue to flush
2757 *
2758 * This function sleeps until all work items which were queued on entry
2759 * have finished execution, but it is not livelocked by new incoming ones.
2760 */
2761 void flush_workqueue(struct workqueue_struct *wq)
2762 {
2763 struct wq_flusher this_flusher = {
2764 .list = LIST_HEAD_INIT(this_flusher.list),
2765 .flush_color = -1,
2766 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2767 };
2768 int next_color;
2769
2770 if (WARN_ON(!wq_online))
2771 return;
2772
2773 lock_map_acquire(&wq->lockdep_map);
2774 lock_map_release(&wq->lockdep_map);
2775
2776 mutex_lock(&wq->mutex);
2777
2778 /*
2779 * Start-to-wait phase
2780 */
2781 next_color = work_next_color(wq->work_color);
2782
2783 if (next_color != wq->flush_color) {
2784 /*
2785 * Color space is not full. The current work_color
2786 * becomes our flush_color and work_color is advanced
2787 * by one.
2788 */
2789 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2790 this_flusher.flush_color = wq->work_color;
2791 wq->work_color = next_color;
2792
2793 if (!wq->first_flusher) {
2794 /* no flush in progress, become the first flusher */
2795 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2796
2797 wq->first_flusher = &this_flusher;
2798
2799 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2800 wq->work_color)) {
2801 /* nothing to flush, done */
2802 wq->flush_color = next_color;
2803 wq->first_flusher = NULL;
2804 goto out_unlock;
2805 }
2806 } else {
2807 /* wait in queue */
2808 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2809 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2810 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2811 }
2812 } else {
2813 /*
2814 * Oops, color space is full, wait on overflow queue.
2815 * The next flush completion will assign us
2816 * flush_color and transfer to flusher_queue.
2817 */
2818 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2819 }
2820
2821 check_flush_dependency(wq, NULL);
2822
2823 mutex_unlock(&wq->mutex);
2824
2825 wait_for_completion(&this_flusher.done);
2826
2827 /*
2828 * Wake-up-and-cascade phase
2829 *
2830 * First flushers are responsible for cascading flushes and
2831 * handling overflow. Non-first flushers can simply return.
2832 */
2833 if (wq->first_flusher != &this_flusher)
2834 return;
2835
2836 mutex_lock(&wq->mutex);
2837
2838 /* we might have raced, check again with mutex held */
2839 if (wq->first_flusher != &this_flusher)
2840 goto out_unlock;
2841
2842 wq->first_flusher = NULL;
2843
2844 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2845 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2846
2847 while (true) {
2848 struct wq_flusher *next, *tmp;
2849
2850 /* complete all the flushers sharing the current flush color */
2851 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2852 if (next->flush_color != wq->flush_color)
2853 break;
2854 list_del_init(&next->list);
2855 complete(&next->done);
2856 }
2857
2858 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2859 wq->flush_color != work_next_color(wq->work_color));
2860
2861 /* this flush_color is finished, advance by one */
2862 wq->flush_color = work_next_color(wq->flush_color);
2863
2864 /* one color has been freed, handle overflow queue */
2865 if (!list_empty(&wq->flusher_overflow)) {
2866 /*
2867 * Assign the same color to all overflowed
2868 * flushers, advance work_color and append to
2869 * flusher_queue. This is the start-to-wait
2870 * phase for these overflowed flushers.
2871 */
2872 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2873 tmp->flush_color = wq->work_color;
2874
2875 wq->work_color = work_next_color(wq->work_color);
2876
2877 list_splice_tail_init(&wq->flusher_overflow,
2878 &wq->flusher_queue);
2879 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2880 }
2881
2882 if (list_empty(&wq->flusher_queue)) {
2883 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2884 break;
2885 }
2886
2887 /*
2888 * Need to flush more colors. Make the next flusher
2889 * the new first flusher and arm pwqs.
2890 */
2891 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2892 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2893
2894 list_del_init(&next->list);
2895 wq->first_flusher = next;
2896
2897 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2898 break;
2899
2900 /*
2901 * Meh... this color is already done, clear first
2902 * flusher and repeat cascading.
2903 */
2904 wq->first_flusher = NULL;
2905 }
2906
2907 out_unlock:
2908 mutex_unlock(&wq->mutex);
2909 }
2910 EXPORT_SYMBOL(flush_workqueue);
2911
2912 /**
2913 * drain_workqueue - drain a workqueue
2914 * @wq: workqueue to drain
2915 *
2916 * Wait until the workqueue becomes empty. While draining is in progress,
2917 * only chain queueing is allowed. IOW, only currently pending or running
2918 * work items on @wq can queue further work items on it. @wq is flushed
2919 * repeatedly until it becomes empty. The number of flushing is determined
2920 * by the depth of chaining and should be relatively short. Whine if it
2921 * takes too long.
2922 */
2923 void drain_workqueue(struct workqueue_struct *wq)
2924 {
2925 unsigned int flush_cnt = 0;
2926 struct pool_workqueue *pwq;
2927
2928 /*
2929 * __queue_work() needs to test whether there are drainers, is much
2930 * hotter than drain_workqueue() and already looks at @wq->flags.
2931 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2932 */
2933 mutex_lock(&wq->mutex);
2934 if (!wq->nr_drainers++)
2935 wq->flags |= __WQ_DRAINING;
2936 mutex_unlock(&wq->mutex);
2937 reflush:
2938 flush_workqueue(wq);
2939
2940 mutex_lock(&wq->mutex);
2941
2942 for_each_pwq(pwq, wq) {
2943 bool drained;
2944
2945 spin_lock_irq(&pwq->pool->lock);
2946 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2947 spin_unlock_irq(&pwq->pool->lock);
2948
2949 if (drained)
2950 continue;
2951
2952 if (++flush_cnt == 10 ||
2953 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2954 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2955 wq->name, flush_cnt);
2956
2957 mutex_unlock(&wq->mutex);
2958 goto reflush;
2959 }
2960
2961 if (!--wq->nr_drainers)
2962 wq->flags &= ~__WQ_DRAINING;
2963 mutex_unlock(&wq->mutex);
2964 }
2965 EXPORT_SYMBOL_GPL(drain_workqueue);
2966
2967 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2968 bool from_cancel)
2969 {
2970 struct worker *worker = NULL;
2971 struct worker_pool *pool;
2972 struct pool_workqueue *pwq;
2973
2974 might_sleep();
2975
2976 rcu_read_lock();
2977 pool = get_work_pool(work);
2978 if (!pool) {
2979 rcu_read_unlock();
2980 return false;
2981 }
2982
2983 spin_lock_irq(&pool->lock);
2984 /* see the comment in try_to_grab_pending() with the same code */
2985 pwq = get_work_pwq(work);
2986 if (pwq) {
2987 if (unlikely(pwq->pool != pool))
2988 goto already_gone;
2989 } else {
2990 worker = find_worker_executing_work(pool, work);
2991 if (!worker)
2992 goto already_gone;
2993 pwq = worker->current_pwq;
2994 }
2995
2996 check_flush_dependency(pwq->wq, work);
2997
2998 insert_wq_barrier(pwq, barr, work, worker);
2999 spin_unlock_irq(&pool->lock);
3000
3001 /*
3002 * Force a lock recursion deadlock when using flush_work() inside a
3003 * single-threaded or rescuer equipped workqueue.
3004 *
3005 * For single threaded workqueues the deadlock happens when the work
3006 * is after the work issuing the flush_work(). For rescuer equipped
3007 * workqueues the deadlock happens when the rescuer stalls, blocking
3008 * forward progress.
3009 */
3010 if (!from_cancel &&
3011 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3012 lock_map_acquire(&pwq->wq->lockdep_map);
3013 lock_map_release(&pwq->wq->lockdep_map);
3014 }
3015 rcu_read_unlock();
3016 return true;
3017 already_gone:
3018 spin_unlock_irq(&pool->lock);
3019 rcu_read_unlock();
3020 return false;
3021 }
3022
3023 static bool __flush_work(struct work_struct *work, bool from_cancel)
3024 {
3025 struct wq_barrier barr;
3026
3027 if (WARN_ON(!wq_online))
3028 return false;
3029
3030 if (WARN_ON(!work->func))
3031 return false;
3032
3033 if (!from_cancel) {
3034 lock_map_acquire(&work->lockdep_map);
3035 lock_map_release(&work->lockdep_map);
3036 }
3037
3038 if (start_flush_work(work, &barr, from_cancel)) {
3039 wait_for_completion(&barr.done);
3040 destroy_work_on_stack(&barr.work);
3041 return true;
3042 } else {
3043 return false;
3044 }
3045 }
3046
3047 /**
3048 * flush_work - wait for a work to finish executing the last queueing instance
3049 * @work: the work to flush
3050 *
3051 * Wait until @work has finished execution. @work is guaranteed to be idle
3052 * on return if it hasn't been requeued since flush started.
3053 *
3054 * Return:
3055 * %true if flush_work() waited for the work to finish execution,
3056 * %false if it was already idle.
3057 */
3058 bool flush_work(struct work_struct *work)
3059 {
3060 return __flush_work(work, false);
3061 }
3062 EXPORT_SYMBOL_GPL(flush_work);
3063
3064 struct cwt_wait {
3065 wait_queue_entry_t wait;
3066 struct work_struct *work;
3067 };
3068
3069 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3070 {
3071 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3072
3073 if (cwait->work != key)
3074 return 0;
3075 return autoremove_wake_function(wait, mode, sync, key);
3076 }
3077
3078 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3079 {
3080 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3081 unsigned long flags;
3082 int ret;
3083
3084 do {
3085 ret = try_to_grab_pending(work, is_dwork, &flags);
3086 /*
3087 * If someone else is already canceling, wait for it to
3088 * finish. flush_work() doesn't work for PREEMPT_NONE
3089 * because we may get scheduled between @work's completion
3090 * and the other canceling task resuming and clearing
3091 * CANCELING - flush_work() will return false immediately
3092 * as @work is no longer busy, try_to_grab_pending() will
3093 * return -ENOENT as @work is still being canceled and the
3094 * other canceling task won't be able to clear CANCELING as
3095 * we're hogging the CPU.
3096 *
3097 * Let's wait for completion using a waitqueue. As this
3098 * may lead to the thundering herd problem, use a custom
3099 * wake function which matches @work along with exclusive
3100 * wait and wakeup.
3101 */
3102 if (unlikely(ret == -ENOENT)) {
3103 struct cwt_wait cwait;
3104
3105 init_wait(&cwait.wait);
3106 cwait.wait.func = cwt_wakefn;
3107 cwait.work = work;
3108
3109 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3110 TASK_UNINTERRUPTIBLE);
3111 if (work_is_canceling(work))
3112 schedule();
3113 finish_wait(&cancel_waitq, &cwait.wait);
3114 }
3115 } while (unlikely(ret < 0));
3116
3117 /* tell other tasks trying to grab @work to back off */
3118 mark_work_canceling(work);
3119 local_irq_restore(flags);
3120
3121 /*
3122 * This allows canceling during early boot. We know that @work
3123 * isn't executing.
3124 */
3125 if (wq_online)
3126 __flush_work(work, true);
3127
3128 clear_work_data(work);
3129
3130 /*
3131 * Paired with prepare_to_wait() above so that either
3132 * waitqueue_active() is visible here or !work_is_canceling() is
3133 * visible there.
3134 */
3135 smp_mb();
3136 if (waitqueue_active(&cancel_waitq))
3137 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3138
3139 return ret;
3140 }
3141
3142 /**
3143 * cancel_work_sync - cancel a work and wait for it to finish
3144 * @work: the work to cancel
3145 *
3146 * Cancel @work and wait for its execution to finish. This function
3147 * can be used even if the work re-queues itself or migrates to
3148 * another workqueue. On return from this function, @work is
3149 * guaranteed to be not pending or executing on any CPU.
3150 *
3151 * cancel_work_sync(&delayed_work->work) must not be used for
3152 * delayed_work's. Use cancel_delayed_work_sync() instead.
3153 *
3154 * The caller must ensure that the workqueue on which @work was last
3155 * queued can't be destroyed before this function returns.
3156 *
3157 * Return:
3158 * %true if @work was pending, %false otherwise.
3159 */
3160 bool cancel_work_sync(struct work_struct *work)
3161 {
3162 return __cancel_work_timer(work, false);
3163 }
3164 EXPORT_SYMBOL_GPL(cancel_work_sync);
3165
3166 /**
3167 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3168 * @dwork: the delayed work to flush
3169 *
3170 * Delayed timer is cancelled and the pending work is queued for
3171 * immediate execution. Like flush_work(), this function only
3172 * considers the last queueing instance of @dwork.
3173 *
3174 * Return:
3175 * %true if flush_work() waited for the work to finish execution,
3176 * %false if it was already idle.
3177 */
3178 bool flush_delayed_work(struct delayed_work *dwork)
3179 {
3180 local_irq_disable();
3181 if (del_timer_sync(&dwork->timer))
3182 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3183 local_irq_enable();
3184 return flush_work(&dwork->work);
3185 }
3186 EXPORT_SYMBOL(flush_delayed_work);
3187
3188 /**
3189 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3190 * @rwork: the rcu work to flush
3191 *
3192 * Return:
3193 * %true if flush_rcu_work() waited for the work to finish execution,
3194 * %false if it was already idle.
3195 */
3196 bool flush_rcu_work(struct rcu_work *rwork)
3197 {
3198 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3199 rcu_barrier();
3200 flush_work(&rwork->work);
3201 return true;
3202 } else {
3203 return flush_work(&rwork->work);
3204 }
3205 }
3206 EXPORT_SYMBOL(flush_rcu_work);
3207
3208 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3209 {
3210 unsigned long flags;
3211 int ret;
3212
3213 do {
3214 ret = try_to_grab_pending(work, is_dwork, &flags);
3215 } while (unlikely(ret == -EAGAIN));
3216
3217 if (unlikely(ret < 0))
3218 return false;
3219
3220 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3221 local_irq_restore(flags);
3222 return ret;
3223 }
3224
3225 /**
3226 * cancel_delayed_work - cancel a delayed work
3227 * @dwork: delayed_work to cancel
3228 *
3229 * Kill off a pending delayed_work.
3230 *
3231 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3232 * pending.
3233 *
3234 * Note:
3235 * The work callback function may still be running on return, unless
3236 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3237 * use cancel_delayed_work_sync() to wait on it.
3238 *
3239 * This function is safe to call from any context including IRQ handler.
3240 */
3241 bool cancel_delayed_work(struct delayed_work *dwork)
3242 {
3243 return __cancel_work(&dwork->work, true);
3244 }
3245 EXPORT_SYMBOL(cancel_delayed_work);
3246
3247 /**
3248 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3249 * @dwork: the delayed work cancel
3250 *
3251 * This is cancel_work_sync() for delayed works.
3252 *
3253 * Return:
3254 * %true if @dwork was pending, %false otherwise.
3255 */
3256 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3257 {
3258 return __cancel_work_timer(&dwork->work, true);
3259 }
3260 EXPORT_SYMBOL(cancel_delayed_work_sync);
3261
3262 /**
3263 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3264 * @func: the function to call
3265 *
3266 * schedule_on_each_cpu() executes @func on each online CPU using the
3267 * system workqueue and blocks until all CPUs have completed.
3268 * schedule_on_each_cpu() is very slow.
3269 *
3270 * Return:
3271 * 0 on success, -errno on failure.
3272 */
3273 int schedule_on_each_cpu(work_func_t func)
3274 {
3275 int cpu;
3276 struct work_struct __percpu *works;
3277
3278 works = alloc_percpu(struct work_struct);
3279 if (!works)
3280 return -ENOMEM;
3281
3282 get_online_cpus();
3283
3284 for_each_online_cpu(cpu) {
3285 struct work_struct *work = per_cpu_ptr(works, cpu);
3286
3287 INIT_WORK(work, func);
3288 schedule_work_on(cpu, work);
3289 }
3290
3291 for_each_online_cpu(cpu)
3292 flush_work(per_cpu_ptr(works, cpu));
3293
3294 put_online_cpus();
3295 free_percpu(works);
3296 return 0;
3297 }
3298
3299 /**
3300 * execute_in_process_context - reliably execute the routine with user context
3301 * @fn: the function to execute
3302 * @ew: guaranteed storage for the execute work structure (must
3303 * be available when the work executes)
3304 *
3305 * Executes the function immediately if process context is available,
3306 * otherwise schedules the function for delayed execution.
3307 *
3308 * Return: 0 - function was executed
3309 * 1 - function was scheduled for execution
3310 */
3311 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3312 {
3313 if (!in_interrupt()) {
3314 fn(&ew->work);
3315 return 0;
3316 }
3317
3318 INIT_WORK(&ew->work, fn);
3319 schedule_work(&ew->work);
3320
3321 return 1;
3322 }
3323 EXPORT_SYMBOL_GPL(execute_in_process_context);
3324
3325 /**
3326 * free_workqueue_attrs - free a workqueue_attrs
3327 * @attrs: workqueue_attrs to free
3328 *
3329 * Undo alloc_workqueue_attrs().
3330 */
3331 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3332 {
3333 if (attrs) {
3334 free_cpumask_var(attrs->cpumask);
3335 kfree(attrs);
3336 }
3337 }
3338
3339 /**
3340 * alloc_workqueue_attrs - allocate a workqueue_attrs
3341 * @gfp_mask: allocation mask to use
3342 *
3343 * Allocate a new workqueue_attrs, initialize with default settings and
3344 * return it.
3345 *
3346 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3347 */
3348 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3349 {
3350 struct workqueue_attrs *attrs;
3351
3352 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3353 if (!attrs)
3354 goto fail;
3355 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3356 goto fail;
3357
3358 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3359 return attrs;
3360 fail:
3361 free_workqueue_attrs(attrs);
3362 return NULL;
3363 }
3364
3365 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3366 const struct workqueue_attrs *from)
3367 {
3368 to->nice = from->nice;
3369 cpumask_copy(to->cpumask, from->cpumask);
3370 /*
3371 * Unlike hash and equality test, this function doesn't ignore
3372 * ->no_numa as it is used for both pool and wq attrs. Instead,
3373 * get_unbound_pool() explicitly clears ->no_numa after copying.
3374 */
3375 to->no_numa = from->no_numa;
3376 }
3377
3378 /* hash value of the content of @attr */
3379 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3380 {
3381 u32 hash = 0;
3382
3383 hash = jhash_1word(attrs->nice, hash);
3384 hash = jhash(cpumask_bits(attrs->cpumask),
3385 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3386 return hash;
3387 }
3388
3389 /* content equality test */
3390 static bool wqattrs_equal(const struct workqueue_attrs *a,
3391 const struct workqueue_attrs *b)
3392 {
3393 if (a->nice != b->nice)
3394 return false;
3395 if (!cpumask_equal(a->cpumask, b->cpumask))
3396 return false;
3397 return true;
3398 }
3399
3400 /**
3401 * init_worker_pool - initialize a newly zalloc'd worker_pool
3402 * @pool: worker_pool to initialize
3403 *
3404 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3405 *
3406 * Return: 0 on success, -errno on failure. Even on failure, all fields
3407 * inside @pool proper are initialized and put_unbound_pool() can be called
3408 * on @pool safely to release it.
3409 */
3410 static int init_worker_pool(struct worker_pool *pool)
3411 {
3412 spin_lock_init(&pool->lock);
3413 pool->id = -1;
3414 pool->cpu = -1;
3415 pool->node = NUMA_NO_NODE;
3416 pool->flags |= POOL_DISASSOCIATED;
3417 pool->watchdog_ts = jiffies;
3418 INIT_LIST_HEAD(&pool->worklist);
3419 INIT_LIST_HEAD(&pool->idle_list);
3420 hash_init(pool->busy_hash);
3421
3422 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3423
3424 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3425
3426 INIT_LIST_HEAD(&pool->workers);
3427
3428 ida_init(&pool->worker_ida);
3429 INIT_HLIST_NODE(&pool->hash_node);
3430 pool->refcnt = 1;
3431
3432 /* shouldn't fail above this point */
3433 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3434 if (!pool->attrs)
3435 return -ENOMEM;
3436 return 0;
3437 }
3438
3439 #ifdef CONFIG_LOCKDEP
3440 static void wq_init_lockdep(struct workqueue_struct *wq)
3441 {
3442 char *lock_name;
3443
3444 lockdep_register_key(&wq->key);
3445 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3446 if (!lock_name)
3447 lock_name = wq->name;
3448
3449 wq->lock_name = lock_name;
3450 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3451 }
3452
3453 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3454 {
3455 lockdep_unregister_key(&wq->key);
3456 }
3457
3458 static void wq_free_lockdep(struct workqueue_struct *wq)
3459 {
3460 if (wq->lock_name != wq->name)
3461 kfree(wq->lock_name);
3462 }
3463 #else
3464 static void wq_init_lockdep(struct workqueue_struct *wq)
3465 {
3466 }
3467
3468 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3469 {
3470 }
3471
3472 static void wq_free_lockdep(struct workqueue_struct *wq)
3473 {
3474 }
3475 #endif
3476
3477 static void rcu_free_wq(struct rcu_head *rcu)
3478 {
3479 struct workqueue_struct *wq =
3480 container_of(rcu, struct workqueue_struct, rcu);
3481
3482 wq_free_lockdep(wq);
3483
3484 if (!(wq->flags & WQ_UNBOUND))
3485 free_percpu(wq->cpu_pwqs);
3486 else
3487 free_workqueue_attrs(wq->unbound_attrs);
3488
3489 kfree(wq->rescuer);
3490 kfree(wq);
3491 }
3492
3493 static void rcu_free_pool(struct rcu_head *rcu)
3494 {
3495 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3496
3497 ida_destroy(&pool->worker_ida);
3498 free_workqueue_attrs(pool->attrs);
3499 kfree(pool);
3500 }
3501
3502 /**
3503 * put_unbound_pool - put a worker_pool
3504 * @pool: worker_pool to put
3505 *
3506 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3507 * safe manner. get_unbound_pool() calls this function on its failure path
3508 * and this function should be able to release pools which went through,
3509 * successfully or not, init_worker_pool().
3510 *
3511 * Should be called with wq_pool_mutex held.
3512 */
3513 static void put_unbound_pool(struct worker_pool *pool)
3514 {
3515 DECLARE_COMPLETION_ONSTACK(detach_completion);
3516 struct worker *worker;
3517
3518 lockdep_assert_held(&wq_pool_mutex);
3519
3520 if (--pool->refcnt)
3521 return;
3522
3523 /* sanity checks */
3524 if (WARN_ON(!(pool->cpu < 0)) ||
3525 WARN_ON(!list_empty(&pool->worklist)))
3526 return;
3527
3528 /* release id and unhash */
3529 if (pool->id >= 0)
3530 idr_remove(&worker_pool_idr, pool->id);
3531 hash_del(&pool->hash_node);
3532
3533 /*
3534 * Become the manager and destroy all workers. This prevents
3535 * @pool's workers from blocking on attach_mutex. We're the last
3536 * manager and @pool gets freed with the flag set.
3537 */
3538 spin_lock_irq(&pool->lock);
3539 wait_event_lock_irq(wq_manager_wait,
3540 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3541 pool->flags |= POOL_MANAGER_ACTIVE;
3542
3543 while ((worker = first_idle_worker(pool)))
3544 destroy_worker(worker);
3545 WARN_ON(pool->nr_workers || pool->nr_idle);
3546 spin_unlock_irq(&pool->lock);
3547
3548 mutex_lock(&wq_pool_attach_mutex);
3549 if (!list_empty(&pool->workers))
3550 pool->detach_completion = &detach_completion;
3551 mutex_unlock(&wq_pool_attach_mutex);
3552
3553 if (pool->detach_completion)
3554 wait_for_completion(pool->detach_completion);
3555
3556 /* shut down the timers */
3557 del_timer_sync(&pool->idle_timer);
3558 del_timer_sync(&pool->mayday_timer);
3559
3560 /* RCU protected to allow dereferences from get_work_pool() */
3561 call_rcu(&pool->rcu, rcu_free_pool);
3562 }
3563
3564 /**
3565 * get_unbound_pool - get a worker_pool with the specified attributes
3566 * @attrs: the attributes of the worker_pool to get
3567 *
3568 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3569 * reference count and return it. If there already is a matching
3570 * worker_pool, it will be used; otherwise, this function attempts to
3571 * create a new one.
3572 *
3573 * Should be called with wq_pool_mutex held.
3574 *
3575 * Return: On success, a worker_pool with the same attributes as @attrs.
3576 * On failure, %NULL.
3577 */
3578 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3579 {
3580 u32 hash = wqattrs_hash(attrs);
3581 struct worker_pool *pool;
3582 int node;
3583 int target_node = NUMA_NO_NODE;
3584
3585 lockdep_assert_held(&wq_pool_mutex);
3586
3587 /* do we already have a matching pool? */
3588 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3589 if (wqattrs_equal(pool->attrs, attrs)) {
3590 pool->refcnt++;
3591 return pool;
3592 }
3593 }
3594
3595 /* if cpumask is contained inside a NUMA node, we belong to that node */
3596 if (wq_numa_enabled) {
3597 for_each_node(node) {
3598 if (cpumask_subset(attrs->cpumask,
3599 wq_numa_possible_cpumask[node])) {
3600 target_node = node;
3601 break;
3602 }
3603 }
3604 }
3605
3606 /* nope, create a new one */
3607 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3608 if (!pool || init_worker_pool(pool) < 0)
3609 goto fail;
3610
3611 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3612 copy_workqueue_attrs(pool->attrs, attrs);
3613 pool->node = target_node;
3614
3615 /*
3616 * no_numa isn't a worker_pool attribute, always clear it. See
3617 * 'struct workqueue_attrs' comments for detail.
3618 */
3619 pool->attrs->no_numa = false;
3620
3621 if (worker_pool_assign_id(pool) < 0)
3622 goto fail;
3623
3624 /* create and start the initial worker */
3625 if (wq_online && !create_worker(pool))
3626 goto fail;
3627
3628 /* install */
3629 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3630
3631 return pool;
3632 fail:
3633 if (pool)
3634 put_unbound_pool(pool);
3635 return NULL;
3636 }
3637
3638 static void rcu_free_pwq(struct rcu_head *rcu)
3639 {
3640 kmem_cache_free(pwq_cache,
3641 container_of(rcu, struct pool_workqueue, rcu));
3642 }
3643
3644 /*
3645 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3646 * and needs to be destroyed.
3647 */
3648 static void pwq_unbound_release_workfn(struct work_struct *work)
3649 {
3650 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3651 unbound_release_work);
3652 struct workqueue_struct *wq = pwq->wq;
3653 struct worker_pool *pool = pwq->pool;
3654 bool is_last;
3655
3656 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3657 return;
3658
3659 mutex_lock(&wq->mutex);
3660 list_del_rcu(&pwq->pwqs_node);
3661 is_last = list_empty(&wq->pwqs);
3662 mutex_unlock(&wq->mutex);
3663
3664 mutex_lock(&wq_pool_mutex);
3665 put_unbound_pool(pool);
3666 mutex_unlock(&wq_pool_mutex);
3667
3668 call_rcu(&pwq->rcu, rcu_free_pwq);
3669
3670 /*
3671 * If we're the last pwq going away, @wq is already dead and no one
3672 * is gonna access it anymore. Schedule RCU free.
3673 */
3674 if (is_last) {
3675 wq_unregister_lockdep(wq);
3676 call_rcu(&wq->rcu, rcu_free_wq);
3677 }
3678 }
3679
3680 /**
3681 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3682 * @pwq: target pool_workqueue
3683 *
3684 * If @pwq isn't freezing, set @pwq->max_active to the associated
3685 * workqueue's saved_max_active and activate delayed work items
3686 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3687 */
3688 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3689 {
3690 struct workqueue_struct *wq = pwq->wq;
3691 bool freezable = wq->flags & WQ_FREEZABLE;
3692 unsigned long flags;
3693
3694 /* for @wq->saved_max_active */
3695 lockdep_assert_held(&wq->mutex);
3696
3697 /* fast exit for non-freezable wqs */
3698 if (!freezable && pwq->max_active == wq->saved_max_active)
3699 return;
3700
3701 /* this function can be called during early boot w/ irq disabled */
3702 spin_lock_irqsave(&pwq->pool->lock, flags);
3703
3704 /*
3705 * During [un]freezing, the caller is responsible for ensuring that
3706 * this function is called at least once after @workqueue_freezing
3707 * is updated and visible.
3708 */
3709 if (!freezable || !workqueue_freezing) {
3710 pwq->max_active = wq->saved_max_active;
3711
3712 while (!list_empty(&pwq->delayed_works) &&
3713 pwq->nr_active < pwq->max_active)
3714 pwq_activate_first_delayed(pwq);
3715
3716 /*
3717 * Need to kick a worker after thawed or an unbound wq's
3718 * max_active is bumped. It's a slow path. Do it always.
3719 */
3720 wake_up_worker(pwq->pool);
3721 } else {
3722 pwq->max_active = 0;
3723 }
3724
3725 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3726 }
3727
3728 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3729 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3730 struct worker_pool *pool)
3731 {
3732 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3733
3734 memset(pwq, 0, sizeof(*pwq));
3735
3736 pwq->pool = pool;
3737 pwq->wq = wq;
3738 pwq->flush_color = -1;
3739 pwq->refcnt = 1;
3740 INIT_LIST_HEAD(&pwq->delayed_works);
3741 INIT_LIST_HEAD(&pwq->pwqs_node);
3742 INIT_LIST_HEAD(&pwq->mayday_node);
3743 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3744 }
3745
3746 /* sync @pwq with the current state of its associated wq and link it */
3747 static void link_pwq(struct pool_workqueue *pwq)
3748 {
3749 struct workqueue_struct *wq = pwq->wq;
3750
3751 lockdep_assert_held(&wq->mutex);
3752
3753 /* may be called multiple times, ignore if already linked */
3754 if (!list_empty(&pwq->pwqs_node))
3755 return;
3756
3757 /* set the matching work_color */
3758 pwq->work_color = wq->work_color;
3759
3760 /* sync max_active to the current setting */
3761 pwq_adjust_max_active(pwq);
3762
3763 /* link in @pwq */
3764 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3765 }
3766
3767 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3768 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3769 const struct workqueue_attrs *attrs)
3770 {
3771 struct worker_pool *pool;
3772 struct pool_workqueue *pwq;
3773
3774 lockdep_assert_held(&wq_pool_mutex);
3775
3776 pool = get_unbound_pool(attrs);
3777 if (!pool)
3778 return NULL;
3779
3780 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3781 if (!pwq) {
3782 put_unbound_pool(pool);
3783 return NULL;
3784 }
3785
3786 init_pwq(pwq, wq, pool);
3787 return pwq;
3788 }
3789
3790 /**
3791 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3792 * @attrs: the wq_attrs of the default pwq of the target workqueue
3793 * @node: the target NUMA node
3794 * @cpu_going_down: if >= 0, the CPU to consider as offline
3795 * @cpumask: outarg, the resulting cpumask
3796 *
3797 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3798 * @cpu_going_down is >= 0, that cpu is considered offline during
3799 * calculation. The result is stored in @cpumask.
3800 *
3801 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3802 * enabled and @node has online CPUs requested by @attrs, the returned
3803 * cpumask is the intersection of the possible CPUs of @node and
3804 * @attrs->cpumask.
3805 *
3806 * The caller is responsible for ensuring that the cpumask of @node stays
3807 * stable.
3808 *
3809 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3810 * %false if equal.
3811 */
3812 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3813 int cpu_going_down, cpumask_t *cpumask)
3814 {
3815 if (!wq_numa_enabled || attrs->no_numa)
3816 goto use_dfl;
3817
3818 /* does @node have any online CPUs @attrs wants? */
3819 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3820 if (cpu_going_down >= 0)
3821 cpumask_clear_cpu(cpu_going_down, cpumask);
3822
3823 if (cpumask_empty(cpumask))
3824 goto use_dfl;
3825
3826 /* yeap, return possible CPUs in @node that @attrs wants */
3827 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3828
3829 if (cpumask_empty(cpumask)) {
3830 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3831 "possible intersect\n");
3832 return false;
3833 }
3834
3835 return !cpumask_equal(cpumask, attrs->cpumask);
3836
3837 use_dfl:
3838 cpumask_copy(cpumask, attrs->cpumask);
3839 return false;
3840 }
3841
3842 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3843 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3844 int node,
3845 struct pool_workqueue *pwq)
3846 {
3847 struct pool_workqueue *old_pwq;
3848
3849 lockdep_assert_held(&wq_pool_mutex);
3850 lockdep_assert_held(&wq->mutex);
3851
3852 /* link_pwq() can handle duplicate calls */
3853 link_pwq(pwq);
3854
3855 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3856 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3857 return old_pwq;
3858 }
3859
3860 /* context to store the prepared attrs & pwqs before applying */
3861 struct apply_wqattrs_ctx {
3862 struct workqueue_struct *wq; /* target workqueue */
3863 struct workqueue_attrs *attrs; /* attrs to apply */
3864 struct list_head list; /* queued for batching commit */
3865 struct pool_workqueue *dfl_pwq;
3866 struct pool_workqueue *pwq_tbl[];
3867 };
3868
3869 /* free the resources after success or abort */
3870 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3871 {
3872 if (ctx) {
3873 int node;
3874
3875 for_each_node(node)
3876 put_pwq_unlocked(ctx->pwq_tbl[node]);
3877 put_pwq_unlocked(ctx->dfl_pwq);
3878
3879 free_workqueue_attrs(ctx->attrs);
3880
3881 kfree(ctx);
3882 }
3883 }
3884
3885 /* allocate the attrs and pwqs for later installation */
3886 static struct apply_wqattrs_ctx *
3887 apply_wqattrs_prepare(struct workqueue_struct *wq,
3888 const struct workqueue_attrs *attrs)
3889 {
3890 struct apply_wqattrs_ctx *ctx;
3891 struct workqueue_attrs *new_attrs, *tmp_attrs;
3892 int node;
3893
3894 lockdep_assert_held(&wq_pool_mutex);
3895
3896 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3897
3898 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3899 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3900 if (!ctx || !new_attrs || !tmp_attrs)
3901 goto out_free;
3902
3903 /*
3904 * Calculate the attrs of the default pwq.
3905 * If the user configured cpumask doesn't overlap with the
3906 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3907 */
3908 copy_workqueue_attrs(new_attrs, attrs);
3909 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3910 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3911 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3912
3913 /*
3914 * We may create multiple pwqs with differing cpumasks. Make a
3915 * copy of @new_attrs which will be modified and used to obtain
3916 * pools.
3917 */
3918 copy_workqueue_attrs(tmp_attrs, new_attrs);
3919
3920 /*
3921 * If something goes wrong during CPU up/down, we'll fall back to
3922 * the default pwq covering whole @attrs->cpumask. Always create
3923 * it even if we don't use it immediately.
3924 */
3925 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3926 if (!ctx->dfl_pwq)
3927 goto out_free;
3928
3929 for_each_node(node) {
3930 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3931 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3932 if (!ctx->pwq_tbl[node])
3933 goto out_free;
3934 } else {
3935 ctx->dfl_pwq->refcnt++;
3936 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3937 }
3938 }
3939
3940 /* save the user configured attrs and sanitize it. */
3941 copy_workqueue_attrs(new_attrs, attrs);
3942 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3943 ctx->attrs = new_attrs;
3944
3945 ctx->wq = wq;
3946 free_workqueue_attrs(tmp_attrs);
3947 return ctx;
3948
3949 out_free:
3950 free_workqueue_attrs(tmp_attrs);
3951 free_workqueue_attrs(new_attrs);
3952 apply_wqattrs_cleanup(ctx);
3953 return NULL;
3954 }
3955
3956 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3957 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3958 {
3959 int node;
3960
3961 /* all pwqs have been created successfully, let's install'em */
3962 mutex_lock(&ctx->wq->mutex);
3963
3964 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3965
3966 /* save the previous pwq and install the new one */
3967 for_each_node(node)
3968 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3969 ctx->pwq_tbl[node]);
3970
3971 /* @dfl_pwq might not have been used, ensure it's linked */
3972 link_pwq(ctx->dfl_pwq);
3973 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3974
3975 mutex_unlock(&ctx->wq->mutex);
3976 }
3977
3978 static void apply_wqattrs_lock(void)
3979 {
3980 /* CPUs should stay stable across pwq creations and installations */
3981 get_online_cpus();
3982 mutex_lock(&wq_pool_mutex);
3983 }
3984
3985 static void apply_wqattrs_unlock(void)
3986 {
3987 mutex_unlock(&wq_pool_mutex);
3988 put_online_cpus();
3989 }
3990
3991 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3992 const struct workqueue_attrs *attrs)
3993 {
3994 struct apply_wqattrs_ctx *ctx;
3995
3996 /* only unbound workqueues can change attributes */
3997 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3998 return -EINVAL;
3999
4000 /* creating multiple pwqs breaks ordering guarantee */
4001 if (!list_empty(&wq->pwqs)) {
4002 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4003 return -EINVAL;
4004
4005 wq->flags &= ~__WQ_ORDERED;
4006 }
4007
4008 ctx = apply_wqattrs_prepare(wq, attrs);
4009 if (!ctx)
4010 return -ENOMEM;
4011
4012 /* the ctx has been prepared successfully, let's commit it */
4013 apply_wqattrs_commit(ctx);
4014 apply_wqattrs_cleanup(ctx);
4015
4016 return 0;
4017 }
4018
4019 /**
4020 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4021 * @wq: the target workqueue
4022 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4023 *
4024 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4025 * machines, this function maps a separate pwq to each NUMA node with
4026 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4027 * NUMA node it was issued on. Older pwqs are released as in-flight work
4028 * items finish. Note that a work item which repeatedly requeues itself
4029 * back-to-back will stay on its current pwq.
4030 *
4031 * Performs GFP_KERNEL allocations.
4032 *
4033 * Return: 0 on success and -errno on failure.
4034 */
4035 int apply_workqueue_attrs(struct workqueue_struct *wq,
4036 const struct workqueue_attrs *attrs)
4037 {
4038 int ret;
4039
4040 apply_wqattrs_lock();
4041 ret = apply_workqueue_attrs_locked(wq, attrs);
4042 apply_wqattrs_unlock();
4043
4044 return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
4047
4048 /**
4049 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4050 * @wq: the target workqueue
4051 * @cpu: the CPU coming up or going down
4052 * @online: whether @cpu is coming up or going down
4053 *
4054 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4055 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4056 * @wq accordingly.
4057 *
4058 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4059 * falls back to @wq->dfl_pwq which may not be optimal but is always
4060 * correct.
4061 *
4062 * Note that when the last allowed CPU of a NUMA node goes offline for a
4063 * workqueue with a cpumask spanning multiple nodes, the workers which were
4064 * already executing the work items for the workqueue will lose their CPU
4065 * affinity and may execute on any CPU. This is similar to how per-cpu
4066 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4067 * affinity, it's the user's responsibility to flush the work item from
4068 * CPU_DOWN_PREPARE.
4069 */
4070 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4071 bool online)
4072 {
4073 int node = cpu_to_node(cpu);
4074 int cpu_off = online ? -1 : cpu;
4075 struct pool_workqueue *old_pwq = NULL, *pwq;
4076 struct workqueue_attrs *target_attrs;
4077 cpumask_t *cpumask;
4078
4079 lockdep_assert_held(&wq_pool_mutex);
4080
4081 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4082 wq->unbound_attrs->no_numa)
4083 return;
4084
4085 /*
4086 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4087 * Let's use a preallocated one. The following buf is protected by
4088 * CPU hotplug exclusion.
4089 */
4090 target_attrs = wq_update_unbound_numa_attrs_buf;
4091 cpumask = target_attrs->cpumask;
4092
4093 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4094 pwq = unbound_pwq_by_node(wq, node);
4095
4096 /*
4097 * Let's determine what needs to be done. If the target cpumask is
4098 * different from the default pwq's, we need to compare it to @pwq's
4099 * and create a new one if they don't match. If the target cpumask
4100 * equals the default pwq's, the default pwq should be used.
4101 */
4102 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4103 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4104 return;
4105 } else {
4106 goto use_dfl_pwq;
4107 }
4108
4109 /* create a new pwq */
4110 pwq = alloc_unbound_pwq(wq, target_attrs);
4111 if (!pwq) {
4112 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4113 wq->name);
4114 goto use_dfl_pwq;
4115 }
4116
4117 /* Install the new pwq. */
4118 mutex_lock(&wq->mutex);
4119 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4120 goto out_unlock;
4121
4122 use_dfl_pwq:
4123 mutex_lock(&wq->mutex);
4124 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4125 get_pwq(wq->dfl_pwq);
4126 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4127 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4128 out_unlock:
4129 mutex_unlock(&wq->mutex);
4130 put_pwq_unlocked(old_pwq);
4131 }
4132
4133 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4134 {
4135 bool highpri = wq->flags & WQ_HIGHPRI;
4136 int cpu, ret;
4137
4138 if (!(wq->flags & WQ_UNBOUND)) {
4139 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4140 if (!wq->cpu_pwqs)
4141 return -ENOMEM;
4142
4143 for_each_possible_cpu(cpu) {
4144 struct pool_workqueue *pwq =
4145 per_cpu_ptr(wq->cpu_pwqs, cpu);
4146 struct worker_pool *cpu_pools =
4147 per_cpu(cpu_worker_pools, cpu);
4148
4149 init_pwq(pwq, wq, &cpu_pools[highpri]);
4150
4151 mutex_lock(&wq->mutex);
4152 link_pwq(pwq);
4153 mutex_unlock(&wq->mutex);
4154 }
4155 return 0;
4156 } else if (wq->flags & __WQ_ORDERED) {
4157 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4158 /* there should only be single pwq for ordering guarantee */
4159 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4160 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4161 "ordering guarantee broken for workqueue %s\n", wq->name);
4162 return ret;
4163 } else {
4164 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4165 }
4166 }
4167
4168 static int wq_clamp_max_active(int max_active, unsigned int flags,
4169 const char *name)
4170 {
4171 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4172
4173 if (max_active < 1 || max_active > lim)
4174 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4175 max_active, name, 1, lim);
4176
4177 return clamp_val(max_active, 1, lim);
4178 }
4179
4180 /*
4181 * Workqueues which may be used during memory reclaim should have a rescuer
4182 * to guarantee forward progress.
4183 */
4184 static int init_rescuer(struct workqueue_struct *wq)
4185 {
4186 struct worker *rescuer;
4187 int ret;
4188
4189 if (!(wq->flags & WQ_MEM_RECLAIM))
4190 return 0;
4191
4192 rescuer = alloc_worker(NUMA_NO_NODE);
4193 if (!rescuer)
4194 return -ENOMEM;
4195
4196 rescuer->rescue_wq = wq;
4197 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4198 ret = PTR_ERR_OR_ZERO(rescuer->task);
4199 if (ret) {
4200 kfree(rescuer);
4201 return ret;
4202 }
4203
4204 wq->rescuer = rescuer;
4205 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4206 wake_up_process(rescuer->task);
4207
4208 return 0;
4209 }
4210
4211 __printf(1, 4)
4212 struct workqueue_struct *alloc_workqueue(const char *fmt,
4213 unsigned int flags,
4214 int max_active, ...)
4215 {
4216 size_t tbl_size = 0;
4217 va_list args;
4218 struct workqueue_struct *wq;
4219 struct pool_workqueue *pwq;
4220
4221 /*
4222 * Unbound && max_active == 1 used to imply ordered, which is no
4223 * longer the case on NUMA machines due to per-node pools. While
4224 * alloc_ordered_workqueue() is the right way to create an ordered
4225 * workqueue, keep the previous behavior to avoid subtle breakages
4226 * on NUMA.
4227 */
4228 if ((flags & WQ_UNBOUND) && max_active == 1)
4229 flags |= __WQ_ORDERED;
4230
4231 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4232 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4233 flags |= WQ_UNBOUND;
4234
4235 /* allocate wq and format name */
4236 if (flags & WQ_UNBOUND)
4237 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4238
4239 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4240 if (!wq)
4241 return NULL;
4242
4243 if (flags & WQ_UNBOUND) {
4244 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4245 if (!wq->unbound_attrs)
4246 goto err_free_wq;
4247 }
4248
4249 va_start(args, max_active);
4250 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4251 va_end(args);
4252
4253 max_active = max_active ?: WQ_DFL_ACTIVE;
4254 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4255
4256 /* init wq */
4257 wq->flags = flags;
4258 wq->saved_max_active = max_active;
4259 mutex_init(&wq->mutex);
4260 atomic_set(&wq->nr_pwqs_to_flush, 0);
4261 INIT_LIST_HEAD(&wq->pwqs);
4262 INIT_LIST_HEAD(&wq->flusher_queue);
4263 INIT_LIST_HEAD(&wq->flusher_overflow);
4264 INIT_LIST_HEAD(&wq->maydays);
4265
4266 wq_init_lockdep(wq);
4267 INIT_LIST_HEAD(&wq->list);
4268
4269 if (alloc_and_link_pwqs(wq) < 0)
4270 goto err_unreg_lockdep;
4271
4272 if (wq_online && init_rescuer(wq) < 0)
4273 goto err_destroy;
4274
4275 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4276 goto err_destroy;
4277
4278 /*
4279 * wq_pool_mutex protects global freeze state and workqueues list.
4280 * Grab it, adjust max_active and add the new @wq to workqueues
4281 * list.
4282 */
4283 mutex_lock(&wq_pool_mutex);
4284
4285 mutex_lock(&wq->mutex);
4286 for_each_pwq(pwq, wq)
4287 pwq_adjust_max_active(pwq);
4288 mutex_unlock(&wq->mutex);
4289
4290 list_add_tail_rcu(&wq->list, &workqueues);
4291
4292 mutex_unlock(&wq_pool_mutex);
4293
4294 return wq;
4295
4296 err_unreg_lockdep:
4297 wq_unregister_lockdep(wq);
4298 wq_free_lockdep(wq);
4299 err_free_wq:
4300 free_workqueue_attrs(wq->unbound_attrs);
4301 kfree(wq);
4302 return NULL;
4303 err_destroy:
4304 destroy_workqueue(wq);
4305 return NULL;
4306 }
4307 EXPORT_SYMBOL_GPL(alloc_workqueue);
4308
4309 /**
4310 * destroy_workqueue - safely terminate a workqueue
4311 * @wq: target workqueue
4312 *
4313 * Safely destroy a workqueue. All work currently pending will be done first.
4314 */
4315 void destroy_workqueue(struct workqueue_struct *wq)
4316 {
4317 struct pool_workqueue *pwq;
4318 int node;
4319
4320 /* drain it before proceeding with destruction */
4321 drain_workqueue(wq);
4322
4323 /* sanity checks */
4324 mutex_lock(&wq->mutex);
4325 for_each_pwq(pwq, wq) {
4326 int i;
4327
4328 for (i = 0; i < WORK_NR_COLORS; i++) {
4329 if (WARN_ON(pwq->nr_in_flight[i])) {
4330 mutex_unlock(&wq->mutex);
4331 show_workqueue_state();
4332 return;
4333 }
4334 }
4335
4336 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4337 WARN_ON(pwq->nr_active) ||
4338 WARN_ON(!list_empty(&pwq->delayed_works))) {
4339 mutex_unlock(&wq->mutex);
4340 show_workqueue_state();
4341 return;
4342 }
4343 }
4344 mutex_unlock(&wq->mutex);
4345
4346 /*
4347 * wq list is used to freeze wq, remove from list after
4348 * flushing is complete in case freeze races us.
4349 */
4350 mutex_lock(&wq_pool_mutex);
4351 list_del_rcu(&wq->list);
4352 mutex_unlock(&wq_pool_mutex);
4353
4354 workqueue_sysfs_unregister(wq);
4355
4356 if (wq->rescuer)
4357 kthread_stop(wq->rescuer->task);
4358
4359 if (!(wq->flags & WQ_UNBOUND)) {
4360 wq_unregister_lockdep(wq);
4361 /*
4362 * The base ref is never dropped on per-cpu pwqs. Directly
4363 * schedule RCU free.
4364 */
4365 call_rcu(&wq->rcu, rcu_free_wq);
4366 } else {
4367 /*
4368 * We're the sole accessor of @wq at this point. Directly
4369 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4370 * @wq will be freed when the last pwq is released.
4371 */
4372 for_each_node(node) {
4373 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4374 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4375 put_pwq_unlocked(pwq);
4376 }
4377
4378 /*
4379 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4380 * put. Don't access it afterwards.
4381 */
4382 pwq = wq->dfl_pwq;
4383 wq->dfl_pwq = NULL;
4384 put_pwq_unlocked(pwq);
4385 }
4386 }
4387 EXPORT_SYMBOL_GPL(destroy_workqueue);
4388
4389 /**
4390 * workqueue_set_max_active - adjust max_active of a workqueue
4391 * @wq: target workqueue
4392 * @max_active: new max_active value.
4393 *
4394 * Set max_active of @wq to @max_active.
4395 *
4396 * CONTEXT:
4397 * Don't call from IRQ context.
4398 */
4399 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4400 {
4401 struct pool_workqueue *pwq;
4402
4403 /* disallow meddling with max_active for ordered workqueues */
4404 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4405 return;
4406
4407 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4408
4409 mutex_lock(&wq->mutex);
4410
4411 wq->flags &= ~__WQ_ORDERED;
4412 wq->saved_max_active = max_active;
4413
4414 for_each_pwq(pwq, wq)
4415 pwq_adjust_max_active(pwq);
4416
4417 mutex_unlock(&wq->mutex);
4418 }
4419 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4420
4421 /**
4422 * current_work - retrieve %current task's work struct
4423 *
4424 * Determine if %current task is a workqueue worker and what it's working on.
4425 * Useful to find out the context that the %current task is running in.
4426 *
4427 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4428 */
4429 struct work_struct *current_work(void)
4430 {
4431 struct worker *worker = current_wq_worker();
4432
4433 return worker ? worker->current_work : NULL;
4434 }
4435 EXPORT_SYMBOL(current_work);
4436
4437 /**
4438 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4439 *
4440 * Determine whether %current is a workqueue rescuer. Can be used from
4441 * work functions to determine whether it's being run off the rescuer task.
4442 *
4443 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4444 */
4445 bool current_is_workqueue_rescuer(void)
4446 {
4447 struct worker *worker = current_wq_worker();
4448
4449 return worker && worker->rescue_wq;
4450 }
4451
4452 /**
4453 * workqueue_congested - test whether a workqueue is congested
4454 * @cpu: CPU in question
4455 * @wq: target workqueue
4456 *
4457 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4458 * no synchronization around this function and the test result is
4459 * unreliable and only useful as advisory hints or for debugging.
4460 *
4461 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4462 * Note that both per-cpu and unbound workqueues may be associated with
4463 * multiple pool_workqueues which have separate congested states. A
4464 * workqueue being congested on one CPU doesn't mean the workqueue is also
4465 * contested on other CPUs / NUMA nodes.
4466 *
4467 * Return:
4468 * %true if congested, %false otherwise.
4469 */
4470 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4471 {
4472 struct pool_workqueue *pwq;
4473 bool ret;
4474
4475 rcu_read_lock();
4476 preempt_disable();
4477
4478 if (cpu == WORK_CPU_UNBOUND)
4479 cpu = smp_processor_id();
4480
4481 if (!(wq->flags & WQ_UNBOUND))
4482 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4483 else
4484 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4485
4486 ret = !list_empty(&pwq->delayed_works);
4487 preempt_enable();
4488 rcu_read_unlock();
4489
4490 return ret;
4491 }
4492 EXPORT_SYMBOL_GPL(workqueue_congested);
4493
4494 /**
4495 * work_busy - test whether a work is currently pending or running
4496 * @work: the work to be tested
4497 *
4498 * Test whether @work is currently pending or running. There is no
4499 * synchronization around this function and the test result is
4500 * unreliable and only useful as advisory hints or for debugging.
4501 *
4502 * Return:
4503 * OR'd bitmask of WORK_BUSY_* bits.
4504 */
4505 unsigned int work_busy(struct work_struct *work)
4506 {
4507 struct worker_pool *pool;
4508 unsigned long flags;
4509 unsigned int ret = 0;
4510
4511 if (work_pending(work))
4512 ret |= WORK_BUSY_PENDING;
4513
4514 rcu_read_lock();
4515 pool = get_work_pool(work);
4516 if (pool) {
4517 spin_lock_irqsave(&pool->lock, flags);
4518 if (find_worker_executing_work(pool, work))
4519 ret |= WORK_BUSY_RUNNING;
4520 spin_unlock_irqrestore(&pool->lock, flags);
4521 }
4522 rcu_read_unlock();
4523
4524 return ret;
4525 }
4526 EXPORT_SYMBOL_GPL(work_busy);
4527
4528 /**
4529 * set_worker_desc - set description for the current work item
4530 * @fmt: printf-style format string
4531 * @...: arguments for the format string
4532 *
4533 * This function can be called by a running work function to describe what
4534 * the work item is about. If the worker task gets dumped, this
4535 * information will be printed out together to help debugging. The
4536 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4537 */
4538 void set_worker_desc(const char *fmt, ...)
4539 {
4540 struct worker *worker = current_wq_worker();
4541 va_list args;
4542
4543 if (worker) {
4544 va_start(args, fmt);
4545 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4546 va_end(args);
4547 }
4548 }
4549 EXPORT_SYMBOL_GPL(set_worker_desc);
4550
4551 /**
4552 * print_worker_info - print out worker information and description
4553 * @log_lvl: the log level to use when printing
4554 * @task: target task
4555 *
4556 * If @task is a worker and currently executing a work item, print out the
4557 * name of the workqueue being serviced and worker description set with
4558 * set_worker_desc() by the currently executing work item.
4559 *
4560 * This function can be safely called on any task as long as the
4561 * task_struct itself is accessible. While safe, this function isn't
4562 * synchronized and may print out mixups or garbages of limited length.
4563 */
4564 void print_worker_info(const char *log_lvl, struct task_struct *task)
4565 {
4566 work_func_t *fn = NULL;
4567 char name[WQ_NAME_LEN] = { };
4568 char desc[WORKER_DESC_LEN] = { };
4569 struct pool_workqueue *pwq = NULL;
4570 struct workqueue_struct *wq = NULL;
4571 struct worker *worker;
4572
4573 if (!(task->flags & PF_WQ_WORKER))
4574 return;
4575
4576 /*
4577 * This function is called without any synchronization and @task
4578 * could be in any state. Be careful with dereferences.
4579 */
4580 worker = kthread_probe_data(task);
4581
4582 /*
4583 * Carefully copy the associated workqueue's workfn, name and desc.
4584 * Keep the original last '\0' in case the original is garbage.
4585 */
4586 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4587 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4588 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4589 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4590 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4591
4592 if (fn || name[0] || desc[0]) {
4593 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4594 if (strcmp(name, desc))
4595 pr_cont(" (%s)", desc);
4596 pr_cont("\n");
4597 }
4598 }
4599
4600 static void pr_cont_pool_info(struct worker_pool *pool)
4601 {
4602 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4603 if (pool->node != NUMA_NO_NODE)
4604 pr_cont(" node=%d", pool->node);
4605 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4606 }
4607
4608 static void pr_cont_work(bool comma, struct work_struct *work)
4609 {
4610 if (work->func == wq_barrier_func) {
4611 struct wq_barrier *barr;
4612
4613 barr = container_of(work, struct wq_barrier, work);
4614
4615 pr_cont("%s BAR(%d)", comma ? "," : "",
4616 task_pid_nr(barr->task));
4617 } else {
4618 pr_cont("%s %ps", comma ? "," : "", work->func);
4619 }
4620 }
4621
4622 static void show_pwq(struct pool_workqueue *pwq)
4623 {
4624 struct worker_pool *pool = pwq->pool;
4625 struct work_struct *work;
4626 struct worker *worker;
4627 bool has_in_flight = false, has_pending = false;
4628 int bkt;
4629
4630 pr_info(" pwq %d:", pool->id);
4631 pr_cont_pool_info(pool);
4632
4633 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4634 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4635
4636 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4637 if (worker->current_pwq == pwq) {
4638 has_in_flight = true;
4639 break;
4640 }
4641 }
4642 if (has_in_flight) {
4643 bool comma = false;
4644
4645 pr_info(" in-flight:");
4646 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4647 if (worker->current_pwq != pwq)
4648 continue;
4649
4650 pr_cont("%s %d%s:%ps", comma ? "," : "",
4651 task_pid_nr(worker->task),
4652 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4653 worker->current_func);
4654 list_for_each_entry(work, &worker->scheduled, entry)
4655 pr_cont_work(false, work);
4656 comma = true;
4657 }
4658 pr_cont("\n");
4659 }
4660
4661 list_for_each_entry(work, &pool->worklist, entry) {
4662 if (get_work_pwq(work) == pwq) {
4663 has_pending = true;
4664 break;
4665 }
4666 }
4667 if (has_pending) {
4668 bool comma = false;
4669
4670 pr_info(" pending:");
4671 list_for_each_entry(work, &pool->worklist, entry) {
4672 if (get_work_pwq(work) != pwq)
4673 continue;
4674
4675 pr_cont_work(comma, work);
4676 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4677 }
4678 pr_cont("\n");
4679 }
4680
4681 if (!list_empty(&pwq->delayed_works)) {
4682 bool comma = false;
4683
4684 pr_info(" delayed:");
4685 list_for_each_entry(work, &pwq->delayed_works, entry) {
4686 pr_cont_work(comma, work);
4687 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4688 }
4689 pr_cont("\n");
4690 }
4691 }
4692
4693 /**
4694 * show_workqueue_state - dump workqueue state
4695 *
4696 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4697 * all busy workqueues and pools.
4698 */
4699 void show_workqueue_state(void)
4700 {
4701 struct workqueue_struct *wq;
4702 struct worker_pool *pool;
4703 unsigned long flags;
4704 int pi;
4705
4706 rcu_read_lock();
4707
4708 pr_info("Showing busy workqueues and worker pools:\n");
4709
4710 list_for_each_entry_rcu(wq, &workqueues, list) {
4711 struct pool_workqueue *pwq;
4712 bool idle = true;
4713
4714 for_each_pwq(pwq, wq) {
4715 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4716 idle = false;
4717 break;
4718 }
4719 }
4720 if (idle)
4721 continue;
4722
4723 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4724
4725 for_each_pwq(pwq, wq) {
4726 spin_lock_irqsave(&pwq->pool->lock, flags);
4727 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4728 show_pwq(pwq);
4729 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4730 /*
4731 * We could be printing a lot from atomic context, e.g.
4732 * sysrq-t -> show_workqueue_state(). Avoid triggering
4733 * hard lockup.
4734 */
4735 touch_nmi_watchdog();
4736 }
4737 }
4738
4739 for_each_pool(pool, pi) {
4740 struct worker *worker;
4741 bool first = true;
4742
4743 spin_lock_irqsave(&pool->lock, flags);
4744 if (pool->nr_workers == pool->nr_idle)
4745 goto next_pool;
4746
4747 pr_info("pool %d:", pool->id);
4748 pr_cont_pool_info(pool);
4749 pr_cont(" hung=%us workers=%d",
4750 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4751 pool->nr_workers);
4752 if (pool->manager)
4753 pr_cont(" manager: %d",
4754 task_pid_nr(pool->manager->task));
4755 list_for_each_entry(worker, &pool->idle_list, entry) {
4756 pr_cont(" %s%d", first ? "idle: " : "",
4757 task_pid_nr(worker->task));
4758 first = false;
4759 }
4760 pr_cont("\n");
4761 next_pool:
4762 spin_unlock_irqrestore(&pool->lock, flags);
4763 /*
4764 * We could be printing a lot from atomic context, e.g.
4765 * sysrq-t -> show_workqueue_state(). Avoid triggering
4766 * hard lockup.
4767 */
4768 touch_nmi_watchdog();
4769 }
4770
4771 rcu_read_unlock();
4772 }
4773
4774 /* used to show worker information through /proc/PID/{comm,stat,status} */
4775 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4776 {
4777 int off;
4778
4779 /* always show the actual comm */
4780 off = strscpy(buf, task->comm, size);
4781 if (off < 0)
4782 return;
4783
4784 /* stabilize PF_WQ_WORKER and worker pool association */
4785 mutex_lock(&wq_pool_attach_mutex);
4786
4787 if (task->flags & PF_WQ_WORKER) {
4788 struct worker *worker = kthread_data(task);
4789 struct worker_pool *pool = worker->pool;
4790
4791 if (pool) {
4792 spin_lock_irq(&pool->lock);
4793 /*
4794 * ->desc tracks information (wq name or
4795 * set_worker_desc()) for the latest execution. If
4796 * current, prepend '+', otherwise '-'.
4797 */
4798 if (worker->desc[0] != '\0') {
4799 if (worker->current_work)
4800 scnprintf(buf + off, size - off, "+%s",
4801 worker->desc);
4802 else
4803 scnprintf(buf + off, size - off, "-%s",
4804 worker->desc);
4805 }
4806 spin_unlock_irq(&pool->lock);
4807 }
4808 }
4809
4810 mutex_unlock(&wq_pool_attach_mutex);
4811 }
4812
4813 #ifdef CONFIG_SMP
4814
4815 /*
4816 * CPU hotplug.
4817 *
4818 * There are two challenges in supporting CPU hotplug. Firstly, there
4819 * are a lot of assumptions on strong associations among work, pwq and
4820 * pool which make migrating pending and scheduled works very
4821 * difficult to implement without impacting hot paths. Secondly,
4822 * worker pools serve mix of short, long and very long running works making
4823 * blocked draining impractical.
4824 *
4825 * This is solved by allowing the pools to be disassociated from the CPU
4826 * running as an unbound one and allowing it to be reattached later if the
4827 * cpu comes back online.
4828 */
4829
4830 static void unbind_workers(int cpu)
4831 {
4832 struct worker_pool *pool;
4833 struct worker *worker;
4834
4835 for_each_cpu_worker_pool(pool, cpu) {
4836 mutex_lock(&wq_pool_attach_mutex);
4837 spin_lock_irq(&pool->lock);
4838
4839 /*
4840 * We've blocked all attach/detach operations. Make all workers
4841 * unbound and set DISASSOCIATED. Before this, all workers
4842 * except for the ones which are still executing works from
4843 * before the last CPU down must be on the cpu. After
4844 * this, they may become diasporas.
4845 */
4846 for_each_pool_worker(worker, pool)
4847 worker->flags |= WORKER_UNBOUND;
4848
4849 pool->flags |= POOL_DISASSOCIATED;
4850
4851 spin_unlock_irq(&pool->lock);
4852 mutex_unlock(&wq_pool_attach_mutex);
4853
4854 /*
4855 * Call schedule() so that we cross rq->lock and thus can
4856 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4857 * This is necessary as scheduler callbacks may be invoked
4858 * from other cpus.
4859 */
4860 schedule();
4861
4862 /*
4863 * Sched callbacks are disabled now. Zap nr_running.
4864 * After this, nr_running stays zero and need_more_worker()
4865 * and keep_working() are always true as long as the
4866 * worklist is not empty. This pool now behaves as an
4867 * unbound (in terms of concurrency management) pool which
4868 * are served by workers tied to the pool.
4869 */
4870 atomic_set(&pool->nr_running, 0);
4871
4872 /*
4873 * With concurrency management just turned off, a busy
4874 * worker blocking could lead to lengthy stalls. Kick off
4875 * unbound chain execution of currently pending work items.
4876 */
4877 spin_lock_irq(&pool->lock);
4878 wake_up_worker(pool);
4879 spin_unlock_irq(&pool->lock);
4880 }
4881 }
4882
4883 /**
4884 * rebind_workers - rebind all workers of a pool to the associated CPU
4885 * @pool: pool of interest
4886 *
4887 * @pool->cpu is coming online. Rebind all workers to the CPU.
4888 */
4889 static void rebind_workers(struct worker_pool *pool)
4890 {
4891 struct worker *worker;
4892
4893 lockdep_assert_held(&wq_pool_attach_mutex);
4894
4895 /*
4896 * Restore CPU affinity of all workers. As all idle workers should
4897 * be on the run-queue of the associated CPU before any local
4898 * wake-ups for concurrency management happen, restore CPU affinity
4899 * of all workers first and then clear UNBOUND. As we're called
4900 * from CPU_ONLINE, the following shouldn't fail.
4901 */
4902 for_each_pool_worker(worker, pool)
4903 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4904 pool->attrs->cpumask) < 0);
4905
4906 spin_lock_irq(&pool->lock);
4907
4908 pool->flags &= ~POOL_DISASSOCIATED;
4909
4910 for_each_pool_worker(worker, pool) {
4911 unsigned int worker_flags = worker->flags;
4912
4913 /*
4914 * A bound idle worker should actually be on the runqueue
4915 * of the associated CPU for local wake-ups targeting it to
4916 * work. Kick all idle workers so that they migrate to the
4917 * associated CPU. Doing this in the same loop as
4918 * replacing UNBOUND with REBOUND is safe as no worker will
4919 * be bound before @pool->lock is released.
4920 */
4921 if (worker_flags & WORKER_IDLE)
4922 wake_up_process(worker->task);
4923
4924 /*
4925 * We want to clear UNBOUND but can't directly call
4926 * worker_clr_flags() or adjust nr_running. Atomically
4927 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4928 * @worker will clear REBOUND using worker_clr_flags() when
4929 * it initiates the next execution cycle thus restoring
4930 * concurrency management. Note that when or whether
4931 * @worker clears REBOUND doesn't affect correctness.
4932 *
4933 * WRITE_ONCE() is necessary because @worker->flags may be
4934 * tested without holding any lock in
4935 * wq_worker_running(). Without it, NOT_RUNNING test may
4936 * fail incorrectly leading to premature concurrency
4937 * management operations.
4938 */
4939 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4940 worker_flags |= WORKER_REBOUND;
4941 worker_flags &= ~WORKER_UNBOUND;
4942 WRITE_ONCE(worker->flags, worker_flags);
4943 }
4944
4945 spin_unlock_irq(&pool->lock);
4946 }
4947
4948 /**
4949 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4950 * @pool: unbound pool of interest
4951 * @cpu: the CPU which is coming up
4952 *
4953 * An unbound pool may end up with a cpumask which doesn't have any online
4954 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4955 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4956 * online CPU before, cpus_allowed of all its workers should be restored.
4957 */
4958 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4959 {
4960 static cpumask_t cpumask;
4961 struct worker *worker;
4962
4963 lockdep_assert_held(&wq_pool_attach_mutex);
4964
4965 /* is @cpu allowed for @pool? */
4966 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4967 return;
4968
4969 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4970
4971 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4972 for_each_pool_worker(worker, pool)
4973 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4974 }
4975
4976 int workqueue_prepare_cpu(unsigned int cpu)
4977 {
4978 struct worker_pool *pool;
4979
4980 for_each_cpu_worker_pool(pool, cpu) {
4981 if (pool->nr_workers)
4982 continue;
4983 if (!create_worker(pool))
4984 return -ENOMEM;
4985 }
4986 return 0;
4987 }
4988
4989 int workqueue_online_cpu(unsigned int cpu)
4990 {
4991 struct worker_pool *pool;
4992 struct workqueue_struct *wq;
4993 int pi;
4994
4995 mutex_lock(&wq_pool_mutex);
4996
4997 for_each_pool(pool, pi) {
4998 mutex_lock(&wq_pool_attach_mutex);
4999
5000 if (pool->cpu == cpu)
5001 rebind_workers(pool);
5002 else if (pool->cpu < 0)
5003 restore_unbound_workers_cpumask(pool, cpu);
5004
5005 mutex_unlock(&wq_pool_attach_mutex);
5006 }
5007
5008 /* update NUMA affinity of unbound workqueues */
5009 list_for_each_entry(wq, &workqueues, list)
5010 wq_update_unbound_numa(wq, cpu, true);
5011
5012 mutex_unlock(&wq_pool_mutex);
5013 return 0;
5014 }
5015
5016 int workqueue_offline_cpu(unsigned int cpu)
5017 {
5018 struct workqueue_struct *wq;
5019
5020 /* unbinding per-cpu workers should happen on the local CPU */
5021 if (WARN_ON(cpu != smp_processor_id()))
5022 return -1;
5023
5024 unbind_workers(cpu);
5025
5026 /* update NUMA affinity of unbound workqueues */
5027 mutex_lock(&wq_pool_mutex);
5028 list_for_each_entry(wq, &workqueues, list)
5029 wq_update_unbound_numa(wq, cpu, false);
5030 mutex_unlock(&wq_pool_mutex);
5031
5032 return 0;
5033 }
5034
5035 struct work_for_cpu {
5036 struct work_struct work;
5037 long (*fn)(void *);
5038 void *arg;
5039 long ret;
5040 };
5041
5042 static void work_for_cpu_fn(struct work_struct *work)
5043 {
5044 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5045
5046 wfc->ret = wfc->fn(wfc->arg);
5047 }
5048
5049 /**
5050 * work_on_cpu - run a function in thread context on a particular cpu
5051 * @cpu: the cpu to run on
5052 * @fn: the function to run
5053 * @arg: the function arg
5054 *
5055 * It is up to the caller to ensure that the cpu doesn't go offline.
5056 * The caller must not hold any locks which would prevent @fn from completing.
5057 *
5058 * Return: The value @fn returns.
5059 */
5060 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5061 {
5062 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5063
5064 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5065 schedule_work_on(cpu, &wfc.work);
5066 flush_work(&wfc.work);
5067 destroy_work_on_stack(&wfc.work);
5068 return wfc.ret;
5069 }
5070 EXPORT_SYMBOL_GPL(work_on_cpu);
5071
5072 /**
5073 * work_on_cpu_safe - run a function in thread context on a particular cpu
5074 * @cpu: the cpu to run on
5075 * @fn: the function to run
5076 * @arg: the function argument
5077 *
5078 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5079 * any locks which would prevent @fn from completing.
5080 *
5081 * Return: The value @fn returns.
5082 */
5083 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5084 {
5085 long ret = -ENODEV;
5086
5087 get_online_cpus();
5088 if (cpu_online(cpu))
5089 ret = work_on_cpu(cpu, fn, arg);
5090 put_online_cpus();
5091 return ret;
5092 }
5093 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5094 #endif /* CONFIG_SMP */
5095
5096 #ifdef CONFIG_FREEZER
5097
5098 /**
5099 * freeze_workqueues_begin - begin freezing workqueues
5100 *
5101 * Start freezing workqueues. After this function returns, all freezable
5102 * workqueues will queue new works to their delayed_works list instead of
5103 * pool->worklist.
5104 *
5105 * CONTEXT:
5106 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5107 */
5108 void freeze_workqueues_begin(void)
5109 {
5110 struct workqueue_struct *wq;
5111 struct pool_workqueue *pwq;
5112
5113 mutex_lock(&wq_pool_mutex);
5114
5115 WARN_ON_ONCE(workqueue_freezing);
5116 workqueue_freezing = true;
5117
5118 list_for_each_entry(wq, &workqueues, list) {
5119 mutex_lock(&wq->mutex);
5120 for_each_pwq(pwq, wq)
5121 pwq_adjust_max_active(pwq);
5122 mutex_unlock(&wq->mutex);
5123 }
5124
5125 mutex_unlock(&wq_pool_mutex);
5126 }
5127
5128 /**
5129 * freeze_workqueues_busy - are freezable workqueues still busy?
5130 *
5131 * Check whether freezing is complete. This function must be called
5132 * between freeze_workqueues_begin() and thaw_workqueues().
5133 *
5134 * CONTEXT:
5135 * Grabs and releases wq_pool_mutex.
5136 *
5137 * Return:
5138 * %true if some freezable workqueues are still busy. %false if freezing
5139 * is complete.
5140 */
5141 bool freeze_workqueues_busy(void)
5142 {
5143 bool busy = false;
5144 struct workqueue_struct *wq;
5145 struct pool_workqueue *pwq;
5146
5147 mutex_lock(&wq_pool_mutex);
5148
5149 WARN_ON_ONCE(!workqueue_freezing);
5150
5151 list_for_each_entry(wq, &workqueues, list) {
5152 if (!(wq->flags & WQ_FREEZABLE))
5153 continue;
5154 /*
5155 * nr_active is monotonically decreasing. It's safe
5156 * to peek without lock.
5157 */
5158 rcu_read_lock();
5159 for_each_pwq(pwq, wq) {
5160 WARN_ON_ONCE(pwq->nr_active < 0);
5161 if (pwq->nr_active) {
5162 busy = true;
5163 rcu_read_unlock();
5164 goto out_unlock;
5165 }
5166 }
5167 rcu_read_unlock();
5168 }
5169 out_unlock:
5170 mutex_unlock(&wq_pool_mutex);
5171 return busy;
5172 }
5173
5174 /**
5175 * thaw_workqueues - thaw workqueues
5176 *
5177 * Thaw workqueues. Normal queueing is restored and all collected
5178 * frozen works are transferred to their respective pool worklists.
5179 *
5180 * CONTEXT:
5181 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5182 */
5183 void thaw_workqueues(void)
5184 {
5185 struct workqueue_struct *wq;
5186 struct pool_workqueue *pwq;
5187
5188 mutex_lock(&wq_pool_mutex);
5189
5190 if (!workqueue_freezing)
5191 goto out_unlock;
5192
5193 workqueue_freezing = false;
5194
5195 /* restore max_active and repopulate worklist */
5196 list_for_each_entry(wq, &workqueues, list) {
5197 mutex_lock(&wq->mutex);
5198 for_each_pwq(pwq, wq)
5199 pwq_adjust_max_active(pwq);
5200 mutex_unlock(&wq->mutex);
5201 }
5202
5203 out_unlock:
5204 mutex_unlock(&wq_pool_mutex);
5205 }
5206 #endif /* CONFIG_FREEZER */
5207
5208 static int workqueue_apply_unbound_cpumask(void)
5209 {
5210 LIST_HEAD(ctxs);
5211 int ret = 0;
5212 struct workqueue_struct *wq;
5213 struct apply_wqattrs_ctx *ctx, *n;
5214
5215 lockdep_assert_held(&wq_pool_mutex);
5216
5217 list_for_each_entry(wq, &workqueues, list) {
5218 if (!(wq->flags & WQ_UNBOUND))
5219 continue;
5220 /* creating multiple pwqs breaks ordering guarantee */
5221 if (wq->flags & __WQ_ORDERED)
5222 continue;
5223
5224 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5225 if (!ctx) {
5226 ret = -ENOMEM;
5227 break;
5228 }
5229
5230 list_add_tail(&ctx->list, &ctxs);
5231 }
5232
5233 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5234 if (!ret)
5235 apply_wqattrs_commit(ctx);
5236 apply_wqattrs_cleanup(ctx);
5237 }
5238
5239 return ret;
5240 }
5241
5242 /**
5243 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5244 * @cpumask: the cpumask to set
5245 *
5246 * The low-level workqueues cpumask is a global cpumask that limits
5247 * the affinity of all unbound workqueues. This function check the @cpumask
5248 * and apply it to all unbound workqueues and updates all pwqs of them.
5249 *
5250 * Retun: 0 - Success
5251 * -EINVAL - Invalid @cpumask
5252 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5253 */
5254 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5255 {
5256 int ret = -EINVAL;
5257 cpumask_var_t saved_cpumask;
5258
5259 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5260 return -ENOMEM;
5261
5262 /*
5263 * Not excluding isolated cpus on purpose.
5264 * If the user wishes to include them, we allow that.
5265 */
5266 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5267 if (!cpumask_empty(cpumask)) {
5268 apply_wqattrs_lock();
5269
5270 /* save the old wq_unbound_cpumask. */
5271 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5272
5273 /* update wq_unbound_cpumask at first and apply it to wqs. */
5274 cpumask_copy(wq_unbound_cpumask, cpumask);
5275 ret = workqueue_apply_unbound_cpumask();
5276
5277 /* restore the wq_unbound_cpumask when failed. */
5278 if (ret < 0)
5279 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5280
5281 apply_wqattrs_unlock();
5282 }
5283
5284 free_cpumask_var(saved_cpumask);
5285 return ret;
5286 }
5287
5288 #ifdef CONFIG_SYSFS
5289 /*
5290 * Workqueues with WQ_SYSFS flag set is visible to userland via
5291 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5292 * following attributes.
5293 *
5294 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5295 * max_active RW int : maximum number of in-flight work items
5296 *
5297 * Unbound workqueues have the following extra attributes.
5298 *
5299 * pool_ids RO int : the associated pool IDs for each node
5300 * nice RW int : nice value of the workers
5301 * cpumask RW mask : bitmask of allowed CPUs for the workers
5302 * numa RW bool : whether enable NUMA affinity
5303 */
5304 struct wq_device {
5305 struct workqueue_struct *wq;
5306 struct device dev;
5307 };
5308
5309 static struct workqueue_struct *dev_to_wq(struct device *dev)
5310 {
5311 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5312
5313 return wq_dev->wq;
5314 }
5315
5316 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5317 char *buf)
5318 {
5319 struct workqueue_struct *wq = dev_to_wq(dev);
5320
5321 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5322 }
5323 static DEVICE_ATTR_RO(per_cpu);
5324
5325 static ssize_t max_active_show(struct device *dev,
5326 struct device_attribute *attr, char *buf)
5327 {
5328 struct workqueue_struct *wq = dev_to_wq(dev);
5329
5330 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5331 }
5332
5333 static ssize_t max_active_store(struct device *dev,
5334 struct device_attribute *attr, const char *buf,
5335 size_t count)
5336 {
5337 struct workqueue_struct *wq = dev_to_wq(dev);
5338 int val;
5339
5340 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5341 return -EINVAL;
5342
5343 workqueue_set_max_active(wq, val);
5344 return count;
5345 }
5346 static DEVICE_ATTR_RW(max_active);
5347
5348 static struct attribute *wq_sysfs_attrs[] = {
5349 &dev_attr_per_cpu.attr,
5350 &dev_attr_max_active.attr,
5351 NULL,
5352 };
5353 ATTRIBUTE_GROUPS(wq_sysfs);
5354
5355 static ssize_t wq_pool_ids_show(struct device *dev,
5356 struct device_attribute *attr, char *buf)
5357 {
5358 struct workqueue_struct *wq = dev_to_wq(dev);
5359 const char *delim = "";
5360 int node, written = 0;
5361
5362 get_online_cpus();
5363 rcu_read_lock();
5364 for_each_node(node) {
5365 written += scnprintf(buf + written, PAGE_SIZE - written,
5366 "%s%d:%d", delim, node,
5367 unbound_pwq_by_node(wq, node)->pool->id);
5368 delim = " ";
5369 }
5370 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5371 rcu_read_unlock();
5372 put_online_cpus();
5373
5374 return written;
5375 }
5376
5377 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5378 char *buf)
5379 {
5380 struct workqueue_struct *wq = dev_to_wq(dev);
5381 int written;
5382
5383 mutex_lock(&wq->mutex);
5384 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5385 mutex_unlock(&wq->mutex);
5386
5387 return written;
5388 }
5389
5390 /* prepare workqueue_attrs for sysfs store operations */
5391 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5392 {
5393 struct workqueue_attrs *attrs;
5394
5395 lockdep_assert_held(&wq_pool_mutex);
5396
5397 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5398 if (!attrs)
5399 return NULL;
5400
5401 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5402 return attrs;
5403 }
5404
5405 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5406 const char *buf, size_t count)
5407 {
5408 struct workqueue_struct *wq = dev_to_wq(dev);
5409 struct workqueue_attrs *attrs;
5410 int ret = -ENOMEM;
5411
5412 apply_wqattrs_lock();
5413
5414 attrs = wq_sysfs_prep_attrs(wq);
5415 if (!attrs)
5416 goto out_unlock;
5417
5418 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5419 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5420 ret = apply_workqueue_attrs_locked(wq, attrs);
5421 else
5422 ret = -EINVAL;
5423
5424 out_unlock:
5425 apply_wqattrs_unlock();
5426 free_workqueue_attrs(attrs);
5427 return ret ?: count;
5428 }
5429
5430 static ssize_t wq_cpumask_show(struct device *dev,
5431 struct device_attribute *attr, char *buf)
5432 {
5433 struct workqueue_struct *wq = dev_to_wq(dev);
5434 int written;
5435
5436 mutex_lock(&wq->mutex);
5437 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5438 cpumask_pr_args(wq->unbound_attrs->cpumask));
5439 mutex_unlock(&wq->mutex);
5440 return written;
5441 }
5442
5443 static ssize_t wq_cpumask_store(struct device *dev,
5444 struct device_attribute *attr,
5445 const char *buf, size_t count)
5446 {
5447 struct workqueue_struct *wq = dev_to_wq(dev);
5448 struct workqueue_attrs *attrs;
5449 int ret = -ENOMEM;
5450
5451 apply_wqattrs_lock();
5452
5453 attrs = wq_sysfs_prep_attrs(wq);
5454 if (!attrs)
5455 goto out_unlock;
5456
5457 ret = cpumask_parse(buf, attrs->cpumask);
5458 if (!ret)
5459 ret = apply_workqueue_attrs_locked(wq, attrs);
5460
5461 out_unlock:
5462 apply_wqattrs_unlock();
5463 free_workqueue_attrs(attrs);
5464 return ret ?: count;
5465 }
5466
5467 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5468 char *buf)
5469 {
5470 struct workqueue_struct *wq = dev_to_wq(dev);
5471 int written;
5472
5473 mutex_lock(&wq->mutex);
5474 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5475 !wq->unbound_attrs->no_numa);
5476 mutex_unlock(&wq->mutex);
5477
5478 return written;
5479 }
5480
5481 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5482 const char *buf, size_t count)
5483 {
5484 struct workqueue_struct *wq = dev_to_wq(dev);
5485 struct workqueue_attrs *attrs;
5486 int v, ret = -ENOMEM;
5487
5488 apply_wqattrs_lock();
5489
5490 attrs = wq_sysfs_prep_attrs(wq);
5491 if (!attrs)
5492 goto out_unlock;
5493
5494 ret = -EINVAL;
5495 if (sscanf(buf, "%d", &v) == 1) {
5496 attrs->no_numa = !v;
5497 ret = apply_workqueue_attrs_locked(wq, attrs);
5498 }
5499
5500 out_unlock:
5501 apply_wqattrs_unlock();
5502 free_workqueue_attrs(attrs);
5503 return ret ?: count;
5504 }
5505
5506 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5507 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5508 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5509 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5510 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5511 __ATTR_NULL,
5512 };
5513
5514 static struct bus_type wq_subsys = {
5515 .name = "workqueue",
5516 .dev_groups = wq_sysfs_groups,
5517 };
5518
5519 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5520 struct device_attribute *attr, char *buf)
5521 {
5522 int written;
5523
5524 mutex_lock(&wq_pool_mutex);
5525 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5526 cpumask_pr_args(wq_unbound_cpumask));
5527 mutex_unlock(&wq_pool_mutex);
5528
5529 return written;
5530 }
5531
5532 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5533 struct device_attribute *attr, const char *buf, size_t count)
5534 {
5535 cpumask_var_t cpumask;
5536 int ret;
5537
5538 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5539 return -ENOMEM;
5540
5541 ret = cpumask_parse(buf, cpumask);
5542 if (!ret)
5543 ret = workqueue_set_unbound_cpumask(cpumask);
5544
5545 free_cpumask_var(cpumask);
5546 return ret ? ret : count;
5547 }
5548
5549 static struct device_attribute wq_sysfs_cpumask_attr =
5550 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5551 wq_unbound_cpumask_store);
5552
5553 static int __init wq_sysfs_init(void)
5554 {
5555 int err;
5556
5557 err = subsys_virtual_register(&wq_subsys, NULL);
5558 if (err)
5559 return err;
5560
5561 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5562 }
5563 core_initcall(wq_sysfs_init);
5564
5565 static void wq_device_release(struct device *dev)
5566 {
5567 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5568
5569 kfree(wq_dev);
5570 }
5571
5572 /**
5573 * workqueue_sysfs_register - make a workqueue visible in sysfs
5574 * @wq: the workqueue to register
5575 *
5576 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5577 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5578 * which is the preferred method.
5579 *
5580 * Workqueue user should use this function directly iff it wants to apply
5581 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5582 * apply_workqueue_attrs() may race against userland updating the
5583 * attributes.
5584 *
5585 * Return: 0 on success, -errno on failure.
5586 */
5587 int workqueue_sysfs_register(struct workqueue_struct *wq)
5588 {
5589 struct wq_device *wq_dev;
5590 int ret;
5591
5592 /*
5593 * Adjusting max_active or creating new pwqs by applying
5594 * attributes breaks ordering guarantee. Disallow exposing ordered
5595 * workqueues.
5596 */
5597 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5598 return -EINVAL;
5599
5600 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5601 if (!wq_dev)
5602 return -ENOMEM;
5603
5604 wq_dev->wq = wq;
5605 wq_dev->dev.bus = &wq_subsys;
5606 wq_dev->dev.release = wq_device_release;
5607 dev_set_name(&wq_dev->dev, "%s", wq->name);
5608
5609 /*
5610 * unbound_attrs are created separately. Suppress uevent until
5611 * everything is ready.
5612 */
5613 dev_set_uevent_suppress(&wq_dev->dev, true);
5614
5615 ret = device_register(&wq_dev->dev);
5616 if (ret) {
5617 put_device(&wq_dev->dev);
5618 wq->wq_dev = NULL;
5619 return ret;
5620 }
5621
5622 if (wq->flags & WQ_UNBOUND) {
5623 struct device_attribute *attr;
5624
5625 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5626 ret = device_create_file(&wq_dev->dev, attr);
5627 if (ret) {
5628 device_unregister(&wq_dev->dev);
5629 wq->wq_dev = NULL;
5630 return ret;
5631 }
5632 }
5633 }
5634
5635 dev_set_uevent_suppress(&wq_dev->dev, false);
5636 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5637 return 0;
5638 }
5639
5640 /**
5641 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5642 * @wq: the workqueue to unregister
5643 *
5644 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5645 */
5646 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5647 {
5648 struct wq_device *wq_dev = wq->wq_dev;
5649
5650 if (!wq->wq_dev)
5651 return;
5652
5653 wq->wq_dev = NULL;
5654 device_unregister(&wq_dev->dev);
5655 }
5656 #else /* CONFIG_SYSFS */
5657 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5658 #endif /* CONFIG_SYSFS */
5659
5660 /*
5661 * Workqueue watchdog.
5662 *
5663 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5664 * flush dependency, a concurrency managed work item which stays RUNNING
5665 * indefinitely. Workqueue stalls can be very difficult to debug as the
5666 * usual warning mechanisms don't trigger and internal workqueue state is
5667 * largely opaque.
5668 *
5669 * Workqueue watchdog monitors all worker pools periodically and dumps
5670 * state if some pools failed to make forward progress for a while where
5671 * forward progress is defined as the first item on ->worklist changing.
5672 *
5673 * This mechanism is controlled through the kernel parameter
5674 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5675 * corresponding sysfs parameter file.
5676 */
5677 #ifdef CONFIG_WQ_WATCHDOG
5678
5679 static unsigned long wq_watchdog_thresh = 30;
5680 static struct timer_list wq_watchdog_timer;
5681
5682 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5683 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5684
5685 static void wq_watchdog_reset_touched(void)
5686 {
5687 int cpu;
5688
5689 wq_watchdog_touched = jiffies;
5690 for_each_possible_cpu(cpu)
5691 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5692 }
5693
5694 static void wq_watchdog_timer_fn(struct timer_list *unused)
5695 {
5696 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5697 bool lockup_detected = false;
5698 struct worker_pool *pool;
5699 int pi;
5700
5701 if (!thresh)
5702 return;
5703
5704 rcu_read_lock();
5705
5706 for_each_pool(pool, pi) {
5707 unsigned long pool_ts, touched, ts;
5708
5709 if (list_empty(&pool->worklist))
5710 continue;
5711
5712 /* get the latest of pool and touched timestamps */
5713 pool_ts = READ_ONCE(pool->watchdog_ts);
5714 touched = READ_ONCE(wq_watchdog_touched);
5715
5716 if (time_after(pool_ts, touched))
5717 ts = pool_ts;
5718 else
5719 ts = touched;
5720
5721 if (pool->cpu >= 0) {
5722 unsigned long cpu_touched =
5723 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5724 pool->cpu));
5725 if (time_after(cpu_touched, ts))
5726 ts = cpu_touched;
5727 }
5728
5729 /* did we stall? */
5730 if (time_after(jiffies, ts + thresh)) {
5731 lockup_detected = true;
5732 pr_emerg("BUG: workqueue lockup - pool");
5733 pr_cont_pool_info(pool);
5734 pr_cont(" stuck for %us!\n",
5735 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5736 }
5737 }
5738
5739 rcu_read_unlock();
5740
5741 if (lockup_detected)
5742 show_workqueue_state();
5743
5744 wq_watchdog_reset_touched();
5745 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5746 }
5747
5748 notrace void wq_watchdog_touch(int cpu)
5749 {
5750 if (cpu >= 0)
5751 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5752 else
5753 wq_watchdog_touched = jiffies;
5754 }
5755
5756 static void wq_watchdog_set_thresh(unsigned long thresh)
5757 {
5758 wq_watchdog_thresh = 0;
5759 del_timer_sync(&wq_watchdog_timer);
5760
5761 if (thresh) {
5762 wq_watchdog_thresh = thresh;
5763 wq_watchdog_reset_touched();
5764 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5765 }
5766 }
5767
5768 static int wq_watchdog_param_set_thresh(const char *val,
5769 const struct kernel_param *kp)
5770 {
5771 unsigned long thresh;
5772 int ret;
5773
5774 ret = kstrtoul(val, 0, &thresh);
5775 if (ret)
5776 return ret;
5777
5778 if (system_wq)
5779 wq_watchdog_set_thresh(thresh);
5780 else
5781 wq_watchdog_thresh = thresh;
5782
5783 return 0;
5784 }
5785
5786 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5787 .set = wq_watchdog_param_set_thresh,
5788 .get = param_get_ulong,
5789 };
5790
5791 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5792 0644);
5793
5794 static void wq_watchdog_init(void)
5795 {
5796 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5797 wq_watchdog_set_thresh(wq_watchdog_thresh);
5798 }
5799
5800 #else /* CONFIG_WQ_WATCHDOG */
5801
5802 static inline void wq_watchdog_init(void) { }
5803
5804 #endif /* CONFIG_WQ_WATCHDOG */
5805
5806 static void __init wq_numa_init(void)
5807 {
5808 cpumask_var_t *tbl;
5809 int node, cpu;
5810
5811 if (num_possible_nodes() <= 1)
5812 return;
5813
5814 if (wq_disable_numa) {
5815 pr_info("workqueue: NUMA affinity support disabled\n");
5816 return;
5817 }
5818
5819 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5820 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5821
5822 /*
5823 * We want masks of possible CPUs of each node which isn't readily
5824 * available. Build one from cpu_to_node() which should have been
5825 * fully initialized by now.
5826 */
5827 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5828 BUG_ON(!tbl);
5829
5830 for_each_node(node)
5831 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5832 node_online(node) ? node : NUMA_NO_NODE));
5833
5834 for_each_possible_cpu(cpu) {
5835 node = cpu_to_node(cpu);
5836 if (WARN_ON(node == NUMA_NO_NODE)) {
5837 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5838 /* happens iff arch is bonkers, let's just proceed */
5839 return;
5840 }
5841 cpumask_set_cpu(cpu, tbl[node]);
5842 }
5843
5844 wq_numa_possible_cpumask = tbl;
5845 wq_numa_enabled = true;
5846 }
5847
5848 /**
5849 * workqueue_init_early - early init for workqueue subsystem
5850 *
5851 * This is the first half of two-staged workqueue subsystem initialization
5852 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5853 * idr are up. It sets up all the data structures and system workqueues
5854 * and allows early boot code to create workqueues and queue/cancel work
5855 * items. Actual work item execution starts only after kthreads can be
5856 * created and scheduled right before early initcalls.
5857 */
5858 int __init workqueue_init_early(void)
5859 {
5860 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5861 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5862 int i, cpu;
5863
5864 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5865
5866 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5867 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5868
5869 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5870
5871 /* initialize CPU pools */
5872 for_each_possible_cpu(cpu) {
5873 struct worker_pool *pool;
5874
5875 i = 0;
5876 for_each_cpu_worker_pool(pool, cpu) {
5877 BUG_ON(init_worker_pool(pool));
5878 pool->cpu = cpu;
5879 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5880 pool->attrs->nice = std_nice[i++];
5881 pool->node = cpu_to_node(cpu);
5882
5883 /* alloc pool ID */
5884 mutex_lock(&wq_pool_mutex);
5885 BUG_ON(worker_pool_assign_id(pool));
5886 mutex_unlock(&wq_pool_mutex);
5887 }
5888 }
5889
5890 /* create default unbound and ordered wq attrs */
5891 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5892 struct workqueue_attrs *attrs;
5893
5894 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5895 attrs->nice = std_nice[i];
5896 unbound_std_wq_attrs[i] = attrs;
5897
5898 /*
5899 * An ordered wq should have only one pwq as ordering is
5900 * guaranteed by max_active which is enforced by pwqs.
5901 * Turn off NUMA so that dfl_pwq is used for all nodes.
5902 */
5903 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5904 attrs->nice = std_nice[i];
5905 attrs->no_numa = true;
5906 ordered_wq_attrs[i] = attrs;
5907 }
5908
5909 system_wq = alloc_workqueue("events", 0, 0);
5910 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5911 system_long_wq = alloc_workqueue("events_long", 0, 0);
5912 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5913 WQ_UNBOUND_MAX_ACTIVE);
5914 system_freezable_wq = alloc_workqueue("events_freezable",
5915 WQ_FREEZABLE, 0);
5916 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5917 WQ_POWER_EFFICIENT, 0);
5918 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5919 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5920 0);
5921 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5922 !system_unbound_wq || !system_freezable_wq ||
5923 !system_power_efficient_wq ||
5924 !system_freezable_power_efficient_wq);
5925
5926 return 0;
5927 }
5928
5929 /**
5930 * workqueue_init - bring workqueue subsystem fully online
5931 *
5932 * This is the latter half of two-staged workqueue subsystem initialization
5933 * and invoked as soon as kthreads can be created and scheduled.
5934 * Workqueues have been created and work items queued on them, but there
5935 * are no kworkers executing the work items yet. Populate the worker pools
5936 * with the initial workers and enable future kworker creations.
5937 */
5938 int __init workqueue_init(void)
5939 {
5940 struct workqueue_struct *wq;
5941 struct worker_pool *pool;
5942 int cpu, bkt;
5943
5944 /*
5945 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5946 * CPU to node mapping may not be available that early on some
5947 * archs such as power and arm64. As per-cpu pools created
5948 * previously could be missing node hint and unbound pools NUMA
5949 * affinity, fix them up.
5950 *
5951 * Also, while iterating workqueues, create rescuers if requested.
5952 */
5953 wq_numa_init();
5954
5955 mutex_lock(&wq_pool_mutex);
5956
5957 for_each_possible_cpu(cpu) {
5958 for_each_cpu_worker_pool(pool, cpu) {
5959 pool->node = cpu_to_node(cpu);
5960 }
5961 }
5962
5963 list_for_each_entry(wq, &workqueues, list) {
5964 wq_update_unbound_numa(wq, smp_processor_id(), true);
5965 WARN(init_rescuer(wq),
5966 "workqueue: failed to create early rescuer for %s",
5967 wq->name);
5968 }
5969
5970 mutex_unlock(&wq_pool_mutex);
5971
5972 /* create the initial workers */
5973 for_each_online_cpu(cpu) {
5974 for_each_cpu_worker_pool(pool, cpu) {
5975 pool->flags &= ~POOL_DISASSOCIATED;
5976 BUG_ON(!create_worker(pool));
5977 }
5978 }
5979
5980 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5981 BUG_ON(!create_worker(pool));
5982
5983 wq_online = true;
5984 wq_watchdog_init();
5985
5986 return 0;
5987 }