]> git.ipfire.org Git - thirdparty/qemu.git/blob - kvm-all.c
lan9118: fix emulation of MAC address loaded bit in E2P_CMD register
[thirdparty/qemu.git] / kvm-all.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
10 *
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
13 *
14 */
15
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "qemu/error-report.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
38 #include "trace.h"
39 #include "hw/irq.h"
40
41 #include "hw/boards.h"
42
43 /* This check must be after config-host.h is included */
44 #ifdef CONFIG_EVENTFD
45 #include <sys/eventfd.h>
46 #endif
47
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
50
51 //#define DEBUG_KVM
52
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
60
61 #define KVM_MSI_HASHTAB_SIZE 256
62
63 struct KVMState
64 {
65 AccelState parent_obj;
66
67 int nr_slots;
68 int fd;
69 int vmfd;
70 int coalesced_mmio;
71 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
72 bool coalesced_flush_in_progress;
73 int broken_set_mem_region;
74 int vcpu_events;
75 int robust_singlestep;
76 int debugregs;
77 #ifdef KVM_CAP_SET_GUEST_DEBUG
78 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
79 #endif
80 int many_ioeventfds;
81 int intx_set_mask;
82 /* The man page (and posix) say ioctl numbers are signed int, but
83 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
84 * unsigned, and treating them as signed here can break things */
85 unsigned irq_set_ioctl;
86 unsigned int sigmask_len;
87 GHashTable *gsimap;
88 #ifdef KVM_CAP_IRQ_ROUTING
89 struct kvm_irq_routing *irq_routes;
90 int nr_allocated_irq_routes;
91 uint32_t *used_gsi_bitmap;
92 unsigned int gsi_count;
93 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
94 #endif
95 KVMMemoryListener memory_listener;
96 };
97
98 KVMState *kvm_state;
99 bool kvm_kernel_irqchip;
100 bool kvm_async_interrupts_allowed;
101 bool kvm_halt_in_kernel_allowed;
102 bool kvm_eventfds_allowed;
103 bool kvm_irqfds_allowed;
104 bool kvm_resamplefds_allowed;
105 bool kvm_msi_via_irqfd_allowed;
106 bool kvm_gsi_routing_allowed;
107 bool kvm_gsi_direct_mapping;
108 bool kvm_allowed;
109 bool kvm_readonly_mem_allowed;
110 bool kvm_vm_attributes_allowed;
111 bool kvm_direct_msi_allowed;
112
113 static const KVMCapabilityInfo kvm_required_capabilites[] = {
114 KVM_CAP_INFO(USER_MEMORY),
115 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116 KVM_CAP_LAST_INFO
117 };
118
119 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
120 {
121 KVMState *s = kvm_state;
122 int i;
123
124 for (i = 0; i < s->nr_slots; i++) {
125 if (kml->slots[i].memory_size == 0) {
126 return &kml->slots[i];
127 }
128 }
129
130 return NULL;
131 }
132
133 bool kvm_has_free_slot(MachineState *ms)
134 {
135 KVMState *s = KVM_STATE(ms->accelerator);
136
137 return kvm_get_free_slot(&s->memory_listener);
138 }
139
140 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
141 {
142 KVMSlot *slot = kvm_get_free_slot(kml);
143
144 if (slot) {
145 return slot;
146 }
147
148 fprintf(stderr, "%s: no free slot available\n", __func__);
149 abort();
150 }
151
152 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
153 hwaddr start_addr,
154 hwaddr end_addr)
155 {
156 KVMState *s = kvm_state;
157 int i;
158
159 for (i = 0; i < s->nr_slots; i++) {
160 KVMSlot *mem = &kml->slots[i];
161
162 if (start_addr == mem->start_addr &&
163 end_addr == mem->start_addr + mem->memory_size) {
164 return mem;
165 }
166 }
167
168 return NULL;
169 }
170
171 /*
172 * Find overlapping slot with lowest start address
173 */
174 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
175 hwaddr start_addr,
176 hwaddr end_addr)
177 {
178 KVMState *s = kvm_state;
179 KVMSlot *found = NULL;
180 int i;
181
182 for (i = 0; i < s->nr_slots; i++) {
183 KVMSlot *mem = &kml->slots[i];
184
185 if (mem->memory_size == 0 ||
186 (found && found->start_addr < mem->start_addr)) {
187 continue;
188 }
189
190 if (end_addr > mem->start_addr &&
191 start_addr < mem->start_addr + mem->memory_size) {
192 found = mem;
193 }
194 }
195
196 return found;
197 }
198
199 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
200 hwaddr *phys_addr)
201 {
202 KVMMemoryListener *kml = &s->memory_listener;
203 int i;
204
205 for (i = 0; i < s->nr_slots; i++) {
206 KVMSlot *mem = &kml->slots[i];
207
208 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
209 *phys_addr = mem->start_addr + (ram - mem->ram);
210 return 1;
211 }
212 }
213
214 return 0;
215 }
216
217 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
218 {
219 KVMState *s = kvm_state;
220 struct kvm_userspace_memory_region mem;
221
222 mem.slot = slot->slot | (kml->as_id << 16);
223 mem.guest_phys_addr = slot->start_addr;
224 mem.userspace_addr = (unsigned long)slot->ram;
225 mem.flags = slot->flags;
226
227 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
228 /* Set the slot size to 0 before setting the slot to the desired
229 * value. This is needed based on KVM commit 75d61fbc. */
230 mem.memory_size = 0;
231 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
232 }
233 mem.memory_size = slot->memory_size;
234 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
235 }
236
237 int kvm_init_vcpu(CPUState *cpu)
238 {
239 KVMState *s = kvm_state;
240 long mmap_size;
241 int ret;
242
243 DPRINTF("kvm_init_vcpu\n");
244
245 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
246 if (ret < 0) {
247 DPRINTF("kvm_create_vcpu failed\n");
248 goto err;
249 }
250
251 cpu->kvm_fd = ret;
252 cpu->kvm_state = s;
253 cpu->kvm_vcpu_dirty = true;
254
255 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
256 if (mmap_size < 0) {
257 ret = mmap_size;
258 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
259 goto err;
260 }
261
262 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
263 cpu->kvm_fd, 0);
264 if (cpu->kvm_run == MAP_FAILED) {
265 ret = -errno;
266 DPRINTF("mmap'ing vcpu state failed\n");
267 goto err;
268 }
269
270 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
271 s->coalesced_mmio_ring =
272 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
273 }
274
275 ret = kvm_arch_init_vcpu(cpu);
276 err:
277 return ret;
278 }
279
280 /*
281 * dirty pages logging control
282 */
283
284 static int kvm_mem_flags(MemoryRegion *mr)
285 {
286 bool readonly = mr->readonly || memory_region_is_romd(mr);
287 int flags = 0;
288
289 if (memory_region_get_dirty_log_mask(mr) != 0) {
290 flags |= KVM_MEM_LOG_DIRTY_PAGES;
291 }
292 if (readonly && kvm_readonly_mem_allowed) {
293 flags |= KVM_MEM_READONLY;
294 }
295 return flags;
296 }
297
298 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
299 MemoryRegion *mr)
300 {
301 int old_flags;
302
303 old_flags = mem->flags;
304 mem->flags = kvm_mem_flags(mr);
305
306 /* If nothing changed effectively, no need to issue ioctl */
307 if (mem->flags == old_flags) {
308 return 0;
309 }
310
311 return kvm_set_user_memory_region(kml, mem);
312 }
313
314 static int kvm_section_update_flags(KVMMemoryListener *kml,
315 MemoryRegionSection *section)
316 {
317 hwaddr phys_addr = section->offset_within_address_space;
318 ram_addr_t size = int128_get64(section->size);
319 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
320
321 if (mem == NULL) {
322 return 0;
323 } else {
324 return kvm_slot_update_flags(kml, mem, section->mr);
325 }
326 }
327
328 static void kvm_log_start(MemoryListener *listener,
329 MemoryRegionSection *section,
330 int old, int new)
331 {
332 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
333 int r;
334
335 if (old != 0) {
336 return;
337 }
338
339 r = kvm_section_update_flags(kml, section);
340 if (r < 0) {
341 abort();
342 }
343 }
344
345 static void kvm_log_stop(MemoryListener *listener,
346 MemoryRegionSection *section,
347 int old, int new)
348 {
349 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
350 int r;
351
352 if (new != 0) {
353 return;
354 }
355
356 r = kvm_section_update_flags(kml, section);
357 if (r < 0) {
358 abort();
359 }
360 }
361
362 /* get kvm's dirty pages bitmap and update qemu's */
363 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
364 unsigned long *bitmap)
365 {
366 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
367 ram_addr_t pages = int128_get64(section->size) / getpagesize();
368
369 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
370 return 0;
371 }
372
373 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
374
375 /**
376 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
377 * This function updates qemu's dirty bitmap using
378 * memory_region_set_dirty(). This means all bits are set
379 * to dirty.
380 *
381 * @start_add: start of logged region.
382 * @end_addr: end of logged region.
383 */
384 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
385 MemoryRegionSection *section)
386 {
387 KVMState *s = kvm_state;
388 unsigned long size, allocated_size = 0;
389 struct kvm_dirty_log d = {};
390 KVMSlot *mem;
391 int ret = 0;
392 hwaddr start_addr = section->offset_within_address_space;
393 hwaddr end_addr = start_addr + int128_get64(section->size);
394
395 d.dirty_bitmap = NULL;
396 while (start_addr < end_addr) {
397 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
398 if (mem == NULL) {
399 break;
400 }
401
402 /* XXX bad kernel interface alert
403 * For dirty bitmap, kernel allocates array of size aligned to
404 * bits-per-long. But for case when the kernel is 64bits and
405 * the userspace is 32bits, userspace can't align to the same
406 * bits-per-long, since sizeof(long) is different between kernel
407 * and user space. This way, userspace will provide buffer which
408 * may be 4 bytes less than the kernel will use, resulting in
409 * userspace memory corruption (which is not detectable by valgrind
410 * too, in most cases).
411 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
412 * a hope that sizeof(long) wont become >8 any time soon.
413 */
414 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
415 /*HOST_LONG_BITS*/ 64) / 8;
416 if (!d.dirty_bitmap) {
417 d.dirty_bitmap = g_malloc(size);
418 } else if (size > allocated_size) {
419 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
420 }
421 allocated_size = size;
422 memset(d.dirty_bitmap, 0, allocated_size);
423
424 d.slot = mem->slot | (kml->as_id << 16);
425 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
426 DPRINTF("ioctl failed %d\n", errno);
427 ret = -1;
428 break;
429 }
430
431 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
432 start_addr = mem->start_addr + mem->memory_size;
433 }
434 g_free(d.dirty_bitmap);
435
436 return ret;
437 }
438
439 static void kvm_coalesce_mmio_region(MemoryListener *listener,
440 MemoryRegionSection *secion,
441 hwaddr start, hwaddr size)
442 {
443 KVMState *s = kvm_state;
444
445 if (s->coalesced_mmio) {
446 struct kvm_coalesced_mmio_zone zone;
447
448 zone.addr = start;
449 zone.size = size;
450 zone.pad = 0;
451
452 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
453 }
454 }
455
456 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
457 MemoryRegionSection *secion,
458 hwaddr start, hwaddr size)
459 {
460 KVMState *s = kvm_state;
461
462 if (s->coalesced_mmio) {
463 struct kvm_coalesced_mmio_zone zone;
464
465 zone.addr = start;
466 zone.size = size;
467 zone.pad = 0;
468
469 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
470 }
471 }
472
473 int kvm_check_extension(KVMState *s, unsigned int extension)
474 {
475 int ret;
476
477 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
478 if (ret < 0) {
479 ret = 0;
480 }
481
482 return ret;
483 }
484
485 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
486 {
487 int ret;
488
489 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
490 if (ret < 0) {
491 /* VM wide version not implemented, use global one instead */
492 ret = kvm_check_extension(s, extension);
493 }
494
495 return ret;
496 }
497
498 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
499 {
500 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
501 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
502 * endianness, but the memory core hands them in target endianness.
503 * For example, PPC is always treated as big-endian even if running
504 * on KVM and on PPC64LE. Correct here.
505 */
506 switch (size) {
507 case 2:
508 val = bswap16(val);
509 break;
510 case 4:
511 val = bswap32(val);
512 break;
513 }
514 #endif
515 return val;
516 }
517
518 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
519 bool assign, uint32_t size, bool datamatch)
520 {
521 int ret;
522 struct kvm_ioeventfd iofd = {
523 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
524 .addr = addr,
525 .len = size,
526 .flags = 0,
527 .fd = fd,
528 };
529
530 if (!kvm_enabled()) {
531 return -ENOSYS;
532 }
533
534 if (datamatch) {
535 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
536 }
537 if (!assign) {
538 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
539 }
540
541 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
542
543 if (ret < 0) {
544 return -errno;
545 }
546
547 return 0;
548 }
549
550 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
551 bool assign, uint32_t size, bool datamatch)
552 {
553 struct kvm_ioeventfd kick = {
554 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
555 .addr = addr,
556 .flags = KVM_IOEVENTFD_FLAG_PIO,
557 .len = size,
558 .fd = fd,
559 };
560 int r;
561 if (!kvm_enabled()) {
562 return -ENOSYS;
563 }
564 if (datamatch) {
565 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
566 }
567 if (!assign) {
568 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
569 }
570 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
571 if (r < 0) {
572 return r;
573 }
574 return 0;
575 }
576
577
578 static int kvm_check_many_ioeventfds(void)
579 {
580 /* Userspace can use ioeventfd for io notification. This requires a host
581 * that supports eventfd(2) and an I/O thread; since eventfd does not
582 * support SIGIO it cannot interrupt the vcpu.
583 *
584 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
585 * can avoid creating too many ioeventfds.
586 */
587 #if defined(CONFIG_EVENTFD)
588 int ioeventfds[7];
589 int i, ret = 0;
590 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
591 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
592 if (ioeventfds[i] < 0) {
593 break;
594 }
595 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
596 if (ret < 0) {
597 close(ioeventfds[i]);
598 break;
599 }
600 }
601
602 /* Decide whether many devices are supported or not */
603 ret = i == ARRAY_SIZE(ioeventfds);
604
605 while (i-- > 0) {
606 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
607 close(ioeventfds[i]);
608 }
609 return ret;
610 #else
611 return 0;
612 #endif
613 }
614
615 static const KVMCapabilityInfo *
616 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
617 {
618 while (list->name) {
619 if (!kvm_check_extension(s, list->value)) {
620 return list;
621 }
622 list++;
623 }
624 return NULL;
625 }
626
627 static void kvm_set_phys_mem(KVMMemoryListener *kml,
628 MemoryRegionSection *section, bool add)
629 {
630 KVMState *s = kvm_state;
631 KVMSlot *mem, old;
632 int err;
633 MemoryRegion *mr = section->mr;
634 bool writeable = !mr->readonly && !mr->rom_device;
635 hwaddr start_addr = section->offset_within_address_space;
636 ram_addr_t size = int128_get64(section->size);
637 void *ram = NULL;
638 unsigned delta;
639
640 /* kvm works in page size chunks, but the function may be called
641 with sub-page size and unaligned start address. Pad the start
642 address to next and truncate size to previous page boundary. */
643 delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
644 delta &= ~qemu_real_host_page_mask;
645 if (delta > size) {
646 return;
647 }
648 start_addr += delta;
649 size -= delta;
650 size &= qemu_real_host_page_mask;
651 if (!size || (start_addr & ~qemu_real_host_page_mask)) {
652 return;
653 }
654
655 if (!memory_region_is_ram(mr)) {
656 if (writeable || !kvm_readonly_mem_allowed) {
657 return;
658 } else if (!mr->romd_mode) {
659 /* If the memory device is not in romd_mode, then we actually want
660 * to remove the kvm memory slot so all accesses will trap. */
661 add = false;
662 }
663 }
664
665 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
666
667 while (1) {
668 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
669 if (!mem) {
670 break;
671 }
672
673 if (add && start_addr >= mem->start_addr &&
674 (start_addr + size <= mem->start_addr + mem->memory_size) &&
675 (ram - start_addr == mem->ram - mem->start_addr)) {
676 /* The new slot fits into the existing one and comes with
677 * identical parameters - update flags and done. */
678 kvm_slot_update_flags(kml, mem, mr);
679 return;
680 }
681
682 old = *mem;
683
684 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
685 kvm_physical_sync_dirty_bitmap(kml, section);
686 }
687
688 /* unregister the overlapping slot */
689 mem->memory_size = 0;
690 err = kvm_set_user_memory_region(kml, mem);
691 if (err) {
692 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
693 __func__, strerror(-err));
694 abort();
695 }
696
697 /* Workaround for older KVM versions: we can't join slots, even not by
698 * unregistering the previous ones and then registering the larger
699 * slot. We have to maintain the existing fragmentation. Sigh.
700 *
701 * This workaround assumes that the new slot starts at the same
702 * address as the first existing one. If not or if some overlapping
703 * slot comes around later, we will fail (not seen in practice so far)
704 * - and actually require a recent KVM version. */
705 if (s->broken_set_mem_region &&
706 old.start_addr == start_addr && old.memory_size < size && add) {
707 mem = kvm_alloc_slot(kml);
708 mem->memory_size = old.memory_size;
709 mem->start_addr = old.start_addr;
710 mem->ram = old.ram;
711 mem->flags = kvm_mem_flags(mr);
712
713 err = kvm_set_user_memory_region(kml, mem);
714 if (err) {
715 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
716 strerror(-err));
717 abort();
718 }
719
720 start_addr += old.memory_size;
721 ram += old.memory_size;
722 size -= old.memory_size;
723 continue;
724 }
725
726 /* register prefix slot */
727 if (old.start_addr < start_addr) {
728 mem = kvm_alloc_slot(kml);
729 mem->memory_size = start_addr - old.start_addr;
730 mem->start_addr = old.start_addr;
731 mem->ram = old.ram;
732 mem->flags = kvm_mem_flags(mr);
733
734 err = kvm_set_user_memory_region(kml, mem);
735 if (err) {
736 fprintf(stderr, "%s: error registering prefix slot: %s\n",
737 __func__, strerror(-err));
738 #ifdef TARGET_PPC
739 fprintf(stderr, "%s: This is probably because your kernel's " \
740 "PAGE_SIZE is too big. Please try to use 4k " \
741 "PAGE_SIZE!\n", __func__);
742 #endif
743 abort();
744 }
745 }
746
747 /* register suffix slot */
748 if (old.start_addr + old.memory_size > start_addr + size) {
749 ram_addr_t size_delta;
750
751 mem = kvm_alloc_slot(kml);
752 mem->start_addr = start_addr + size;
753 size_delta = mem->start_addr - old.start_addr;
754 mem->memory_size = old.memory_size - size_delta;
755 mem->ram = old.ram + size_delta;
756 mem->flags = kvm_mem_flags(mr);
757
758 err = kvm_set_user_memory_region(kml, mem);
759 if (err) {
760 fprintf(stderr, "%s: error registering suffix slot: %s\n",
761 __func__, strerror(-err));
762 abort();
763 }
764 }
765 }
766
767 /* in case the KVM bug workaround already "consumed" the new slot */
768 if (!size) {
769 return;
770 }
771 if (!add) {
772 return;
773 }
774 mem = kvm_alloc_slot(kml);
775 mem->memory_size = size;
776 mem->start_addr = start_addr;
777 mem->ram = ram;
778 mem->flags = kvm_mem_flags(mr);
779
780 err = kvm_set_user_memory_region(kml, mem);
781 if (err) {
782 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
783 strerror(-err));
784 abort();
785 }
786 }
787
788 static void kvm_region_add(MemoryListener *listener,
789 MemoryRegionSection *section)
790 {
791 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
792
793 memory_region_ref(section->mr);
794 kvm_set_phys_mem(kml, section, true);
795 }
796
797 static void kvm_region_del(MemoryListener *listener,
798 MemoryRegionSection *section)
799 {
800 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
801
802 kvm_set_phys_mem(kml, section, false);
803 memory_region_unref(section->mr);
804 }
805
806 static void kvm_log_sync(MemoryListener *listener,
807 MemoryRegionSection *section)
808 {
809 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
810 int r;
811
812 r = kvm_physical_sync_dirty_bitmap(kml, section);
813 if (r < 0) {
814 abort();
815 }
816 }
817
818 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
819 MemoryRegionSection *section,
820 bool match_data, uint64_t data,
821 EventNotifier *e)
822 {
823 int fd = event_notifier_get_fd(e);
824 int r;
825
826 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
827 data, true, int128_get64(section->size),
828 match_data);
829 if (r < 0) {
830 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
831 __func__, strerror(-r));
832 abort();
833 }
834 }
835
836 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
837 MemoryRegionSection *section,
838 bool match_data, uint64_t data,
839 EventNotifier *e)
840 {
841 int fd = event_notifier_get_fd(e);
842 int r;
843
844 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
845 data, false, int128_get64(section->size),
846 match_data);
847 if (r < 0) {
848 abort();
849 }
850 }
851
852 static void kvm_io_ioeventfd_add(MemoryListener *listener,
853 MemoryRegionSection *section,
854 bool match_data, uint64_t data,
855 EventNotifier *e)
856 {
857 int fd = event_notifier_get_fd(e);
858 int r;
859
860 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
861 data, true, int128_get64(section->size),
862 match_data);
863 if (r < 0) {
864 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
865 __func__, strerror(-r));
866 abort();
867 }
868 }
869
870 static void kvm_io_ioeventfd_del(MemoryListener *listener,
871 MemoryRegionSection *section,
872 bool match_data, uint64_t data,
873 EventNotifier *e)
874
875 {
876 int fd = event_notifier_get_fd(e);
877 int r;
878
879 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
880 data, false, int128_get64(section->size),
881 match_data);
882 if (r < 0) {
883 abort();
884 }
885 }
886
887 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
888 AddressSpace *as, int as_id)
889 {
890 int i;
891
892 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
893 kml->as_id = as_id;
894
895 for (i = 0; i < s->nr_slots; i++) {
896 kml->slots[i].slot = i;
897 }
898
899 kml->listener.region_add = kvm_region_add;
900 kml->listener.region_del = kvm_region_del;
901 kml->listener.log_start = kvm_log_start;
902 kml->listener.log_stop = kvm_log_stop;
903 kml->listener.log_sync = kvm_log_sync;
904 kml->listener.priority = 10;
905
906 memory_listener_register(&kml->listener, as);
907 }
908
909 static MemoryListener kvm_io_listener = {
910 .eventfd_add = kvm_io_ioeventfd_add,
911 .eventfd_del = kvm_io_ioeventfd_del,
912 .priority = 10,
913 };
914
915 static void kvm_handle_interrupt(CPUState *cpu, int mask)
916 {
917 cpu->interrupt_request |= mask;
918
919 if (!qemu_cpu_is_self(cpu)) {
920 qemu_cpu_kick(cpu);
921 }
922 }
923
924 int kvm_set_irq(KVMState *s, int irq, int level)
925 {
926 struct kvm_irq_level event;
927 int ret;
928
929 assert(kvm_async_interrupts_enabled());
930
931 event.level = level;
932 event.irq = irq;
933 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
934 if (ret < 0) {
935 perror("kvm_set_irq");
936 abort();
937 }
938
939 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
940 }
941
942 #ifdef KVM_CAP_IRQ_ROUTING
943 typedef struct KVMMSIRoute {
944 struct kvm_irq_routing_entry kroute;
945 QTAILQ_ENTRY(KVMMSIRoute) entry;
946 } KVMMSIRoute;
947
948 static void set_gsi(KVMState *s, unsigned int gsi)
949 {
950 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
951 }
952
953 static void clear_gsi(KVMState *s, unsigned int gsi)
954 {
955 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
956 }
957
958 void kvm_init_irq_routing(KVMState *s)
959 {
960 int gsi_count, i;
961
962 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
963 if (gsi_count > 0) {
964 unsigned int gsi_bits, i;
965
966 /* Round up so we can search ints using ffs */
967 gsi_bits = ALIGN(gsi_count, 32);
968 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
969 s->gsi_count = gsi_count;
970
971 /* Mark any over-allocated bits as already in use */
972 for (i = gsi_count; i < gsi_bits; i++) {
973 set_gsi(s, i);
974 }
975 }
976
977 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
978 s->nr_allocated_irq_routes = 0;
979
980 if (!kvm_direct_msi_allowed) {
981 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
982 QTAILQ_INIT(&s->msi_hashtab[i]);
983 }
984 }
985
986 kvm_arch_init_irq_routing(s);
987 }
988
989 void kvm_irqchip_commit_routes(KVMState *s)
990 {
991 int ret;
992
993 s->irq_routes->flags = 0;
994 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
995 assert(ret == 0);
996 }
997
998 static void kvm_add_routing_entry(KVMState *s,
999 struct kvm_irq_routing_entry *entry)
1000 {
1001 struct kvm_irq_routing_entry *new;
1002 int n, size;
1003
1004 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1005 n = s->nr_allocated_irq_routes * 2;
1006 if (n < 64) {
1007 n = 64;
1008 }
1009 size = sizeof(struct kvm_irq_routing);
1010 size += n * sizeof(*new);
1011 s->irq_routes = g_realloc(s->irq_routes, size);
1012 s->nr_allocated_irq_routes = n;
1013 }
1014 n = s->irq_routes->nr++;
1015 new = &s->irq_routes->entries[n];
1016
1017 *new = *entry;
1018
1019 set_gsi(s, entry->gsi);
1020 }
1021
1022 static int kvm_update_routing_entry(KVMState *s,
1023 struct kvm_irq_routing_entry *new_entry)
1024 {
1025 struct kvm_irq_routing_entry *entry;
1026 int n;
1027
1028 for (n = 0; n < s->irq_routes->nr; n++) {
1029 entry = &s->irq_routes->entries[n];
1030 if (entry->gsi != new_entry->gsi) {
1031 continue;
1032 }
1033
1034 if(!memcmp(entry, new_entry, sizeof *entry)) {
1035 return 0;
1036 }
1037
1038 *entry = *new_entry;
1039
1040 kvm_irqchip_commit_routes(s);
1041
1042 return 0;
1043 }
1044
1045 return -ESRCH;
1046 }
1047
1048 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1049 {
1050 struct kvm_irq_routing_entry e = {};
1051
1052 assert(pin < s->gsi_count);
1053
1054 e.gsi = irq;
1055 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1056 e.flags = 0;
1057 e.u.irqchip.irqchip = irqchip;
1058 e.u.irqchip.pin = pin;
1059 kvm_add_routing_entry(s, &e);
1060 }
1061
1062 void kvm_irqchip_release_virq(KVMState *s, int virq)
1063 {
1064 struct kvm_irq_routing_entry *e;
1065 int i;
1066
1067 if (kvm_gsi_direct_mapping()) {
1068 return;
1069 }
1070
1071 for (i = 0; i < s->irq_routes->nr; i++) {
1072 e = &s->irq_routes->entries[i];
1073 if (e->gsi == virq) {
1074 s->irq_routes->nr--;
1075 *e = s->irq_routes->entries[s->irq_routes->nr];
1076 }
1077 }
1078 clear_gsi(s, virq);
1079 }
1080
1081 static unsigned int kvm_hash_msi(uint32_t data)
1082 {
1083 /* This is optimized for IA32 MSI layout. However, no other arch shall
1084 * repeat the mistake of not providing a direct MSI injection API. */
1085 return data & 0xff;
1086 }
1087
1088 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1089 {
1090 KVMMSIRoute *route, *next;
1091 unsigned int hash;
1092
1093 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1094 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1095 kvm_irqchip_release_virq(s, route->kroute.gsi);
1096 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1097 g_free(route);
1098 }
1099 }
1100 }
1101
1102 static int kvm_irqchip_get_virq(KVMState *s)
1103 {
1104 uint32_t *word = s->used_gsi_bitmap;
1105 int max_words = ALIGN(s->gsi_count, 32) / 32;
1106 int i, zeroes;
1107
1108 /*
1109 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1110 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1111 * number can succeed even though a new route entry cannot be added.
1112 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1113 */
1114 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1115 kvm_flush_dynamic_msi_routes(s);
1116 }
1117
1118 /* Return the lowest unused GSI in the bitmap */
1119 for (i = 0; i < max_words; i++) {
1120 zeroes = ctz32(~word[i]);
1121 if (zeroes == 32) {
1122 continue;
1123 }
1124
1125 return zeroes + i * 32;
1126 }
1127 return -ENOSPC;
1128
1129 }
1130
1131 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1132 {
1133 unsigned int hash = kvm_hash_msi(msg.data);
1134 KVMMSIRoute *route;
1135
1136 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1137 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1138 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1139 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1140 return route;
1141 }
1142 }
1143 return NULL;
1144 }
1145
1146 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1147 {
1148 struct kvm_msi msi;
1149 KVMMSIRoute *route;
1150
1151 if (kvm_direct_msi_allowed) {
1152 msi.address_lo = (uint32_t)msg.address;
1153 msi.address_hi = msg.address >> 32;
1154 msi.data = le32_to_cpu(msg.data);
1155 msi.flags = 0;
1156 memset(msi.pad, 0, sizeof(msi.pad));
1157
1158 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1159 }
1160
1161 route = kvm_lookup_msi_route(s, msg);
1162 if (!route) {
1163 int virq;
1164
1165 virq = kvm_irqchip_get_virq(s);
1166 if (virq < 0) {
1167 return virq;
1168 }
1169
1170 route = g_malloc0(sizeof(KVMMSIRoute));
1171 route->kroute.gsi = virq;
1172 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1173 route->kroute.flags = 0;
1174 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1175 route->kroute.u.msi.address_hi = msg.address >> 32;
1176 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1177
1178 kvm_add_routing_entry(s, &route->kroute);
1179 kvm_irqchip_commit_routes(s);
1180
1181 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1182 entry);
1183 }
1184
1185 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1186
1187 return kvm_set_irq(s, route->kroute.gsi, 1);
1188 }
1189
1190 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg, PCIDevice *dev)
1191 {
1192 struct kvm_irq_routing_entry kroute = {};
1193 int virq;
1194
1195 if (kvm_gsi_direct_mapping()) {
1196 return kvm_arch_msi_data_to_gsi(msg.data);
1197 }
1198
1199 if (!kvm_gsi_routing_enabled()) {
1200 return -ENOSYS;
1201 }
1202
1203 virq = kvm_irqchip_get_virq(s);
1204 if (virq < 0) {
1205 return virq;
1206 }
1207
1208 kroute.gsi = virq;
1209 kroute.type = KVM_IRQ_ROUTING_MSI;
1210 kroute.flags = 0;
1211 kroute.u.msi.address_lo = (uint32_t)msg.address;
1212 kroute.u.msi.address_hi = msg.address >> 32;
1213 kroute.u.msi.data = le32_to_cpu(msg.data);
1214 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1215 kvm_irqchip_release_virq(s, virq);
1216 return -EINVAL;
1217 }
1218
1219 kvm_add_routing_entry(s, &kroute);
1220 kvm_irqchip_commit_routes(s);
1221
1222 return virq;
1223 }
1224
1225 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1226 PCIDevice *dev)
1227 {
1228 struct kvm_irq_routing_entry kroute = {};
1229
1230 if (kvm_gsi_direct_mapping()) {
1231 return 0;
1232 }
1233
1234 if (!kvm_irqchip_in_kernel()) {
1235 return -ENOSYS;
1236 }
1237
1238 kroute.gsi = virq;
1239 kroute.type = KVM_IRQ_ROUTING_MSI;
1240 kroute.flags = 0;
1241 kroute.u.msi.address_lo = (uint32_t)msg.address;
1242 kroute.u.msi.address_hi = msg.address >> 32;
1243 kroute.u.msi.data = le32_to_cpu(msg.data);
1244 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1245 return -EINVAL;
1246 }
1247
1248 return kvm_update_routing_entry(s, &kroute);
1249 }
1250
1251 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1252 bool assign)
1253 {
1254 struct kvm_irqfd irqfd = {
1255 .fd = fd,
1256 .gsi = virq,
1257 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1258 };
1259
1260 if (rfd != -1) {
1261 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1262 irqfd.resamplefd = rfd;
1263 }
1264
1265 if (!kvm_irqfds_enabled()) {
1266 return -ENOSYS;
1267 }
1268
1269 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1270 }
1271
1272 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1273 {
1274 struct kvm_irq_routing_entry kroute = {};
1275 int virq;
1276
1277 if (!kvm_gsi_routing_enabled()) {
1278 return -ENOSYS;
1279 }
1280
1281 virq = kvm_irqchip_get_virq(s);
1282 if (virq < 0) {
1283 return virq;
1284 }
1285
1286 kroute.gsi = virq;
1287 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1288 kroute.flags = 0;
1289 kroute.u.adapter.summary_addr = adapter->summary_addr;
1290 kroute.u.adapter.ind_addr = adapter->ind_addr;
1291 kroute.u.adapter.summary_offset = adapter->summary_offset;
1292 kroute.u.adapter.ind_offset = adapter->ind_offset;
1293 kroute.u.adapter.adapter_id = adapter->adapter_id;
1294
1295 kvm_add_routing_entry(s, &kroute);
1296
1297 return virq;
1298 }
1299
1300 #else /* !KVM_CAP_IRQ_ROUTING */
1301
1302 void kvm_init_irq_routing(KVMState *s)
1303 {
1304 }
1305
1306 void kvm_irqchip_release_virq(KVMState *s, int virq)
1307 {
1308 }
1309
1310 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1311 {
1312 abort();
1313 }
1314
1315 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1316 {
1317 return -ENOSYS;
1318 }
1319
1320 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1321 {
1322 return -ENOSYS;
1323 }
1324
1325 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1326 {
1327 abort();
1328 }
1329
1330 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1331 {
1332 return -ENOSYS;
1333 }
1334 #endif /* !KVM_CAP_IRQ_ROUTING */
1335
1336 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1337 EventNotifier *rn, int virq)
1338 {
1339 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1340 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1341 }
1342
1343 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1344 int virq)
1345 {
1346 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1347 false);
1348 }
1349
1350 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1351 EventNotifier *rn, qemu_irq irq)
1352 {
1353 gpointer key, gsi;
1354 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1355
1356 if (!found) {
1357 return -ENXIO;
1358 }
1359 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1360 }
1361
1362 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1363 qemu_irq irq)
1364 {
1365 gpointer key, gsi;
1366 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1367
1368 if (!found) {
1369 return -ENXIO;
1370 }
1371 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1372 }
1373
1374 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1375 {
1376 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1377 }
1378
1379 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1380 {
1381 int ret;
1382
1383 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1384 ;
1385 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1386 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1387 if (ret < 0) {
1388 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1389 exit(1);
1390 }
1391 } else {
1392 return;
1393 }
1394
1395 /* First probe and see if there's a arch-specific hook to create the
1396 * in-kernel irqchip for us */
1397 ret = kvm_arch_irqchip_create(s);
1398 if (ret == 0) {
1399 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1400 }
1401 if (ret < 0) {
1402 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1403 exit(1);
1404 }
1405
1406 kvm_kernel_irqchip = true;
1407 /* If we have an in-kernel IRQ chip then we must have asynchronous
1408 * interrupt delivery (though the reverse is not necessarily true)
1409 */
1410 kvm_async_interrupts_allowed = true;
1411 kvm_halt_in_kernel_allowed = true;
1412
1413 kvm_init_irq_routing(s);
1414
1415 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1416 }
1417
1418 /* Find number of supported CPUs using the recommended
1419 * procedure from the kernel API documentation to cope with
1420 * older kernels that may be missing capabilities.
1421 */
1422 static int kvm_recommended_vcpus(KVMState *s)
1423 {
1424 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1425 return (ret) ? ret : 4;
1426 }
1427
1428 static int kvm_max_vcpus(KVMState *s)
1429 {
1430 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1431 return (ret) ? ret : kvm_recommended_vcpus(s);
1432 }
1433
1434 static int kvm_init(MachineState *ms)
1435 {
1436 MachineClass *mc = MACHINE_GET_CLASS(ms);
1437 static const char upgrade_note[] =
1438 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1439 "(see http://sourceforge.net/projects/kvm).\n";
1440 struct {
1441 const char *name;
1442 int num;
1443 } num_cpus[] = {
1444 { "SMP", smp_cpus },
1445 { "hotpluggable", max_cpus },
1446 { NULL, }
1447 }, *nc = num_cpus;
1448 int soft_vcpus_limit, hard_vcpus_limit;
1449 KVMState *s;
1450 const KVMCapabilityInfo *missing_cap;
1451 int ret;
1452 int type = 0;
1453 const char *kvm_type;
1454
1455 s = KVM_STATE(ms->accelerator);
1456
1457 /*
1458 * On systems where the kernel can support different base page
1459 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1460 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1461 * page size for the system though.
1462 */
1463 assert(TARGET_PAGE_SIZE <= getpagesize());
1464 page_size_init();
1465
1466 s->sigmask_len = 8;
1467
1468 #ifdef KVM_CAP_SET_GUEST_DEBUG
1469 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1470 #endif
1471 s->vmfd = -1;
1472 s->fd = qemu_open("/dev/kvm", O_RDWR);
1473 if (s->fd == -1) {
1474 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1475 ret = -errno;
1476 goto err;
1477 }
1478
1479 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1480 if (ret < KVM_API_VERSION) {
1481 if (ret >= 0) {
1482 ret = -EINVAL;
1483 }
1484 fprintf(stderr, "kvm version too old\n");
1485 goto err;
1486 }
1487
1488 if (ret > KVM_API_VERSION) {
1489 ret = -EINVAL;
1490 fprintf(stderr, "kvm version not supported\n");
1491 goto err;
1492 }
1493
1494 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1495
1496 /* If unspecified, use the default value */
1497 if (!s->nr_slots) {
1498 s->nr_slots = 32;
1499 }
1500
1501 /* check the vcpu limits */
1502 soft_vcpus_limit = kvm_recommended_vcpus(s);
1503 hard_vcpus_limit = kvm_max_vcpus(s);
1504
1505 while (nc->name) {
1506 if (nc->num > soft_vcpus_limit) {
1507 fprintf(stderr,
1508 "Warning: Number of %s cpus requested (%d) exceeds "
1509 "the recommended cpus supported by KVM (%d)\n",
1510 nc->name, nc->num, soft_vcpus_limit);
1511
1512 if (nc->num > hard_vcpus_limit) {
1513 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1514 "the maximum cpus supported by KVM (%d)\n",
1515 nc->name, nc->num, hard_vcpus_limit);
1516 exit(1);
1517 }
1518 }
1519 nc++;
1520 }
1521
1522 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1523 if (mc->kvm_type) {
1524 type = mc->kvm_type(kvm_type);
1525 } else if (kvm_type) {
1526 ret = -EINVAL;
1527 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1528 goto err;
1529 }
1530
1531 do {
1532 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1533 } while (ret == -EINTR);
1534
1535 if (ret < 0) {
1536 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1537 strerror(-ret));
1538
1539 #ifdef TARGET_S390X
1540 if (ret == -EINVAL) {
1541 fprintf(stderr,
1542 "Host kernel setup problem detected. Please verify:\n");
1543 fprintf(stderr, "- for kernels supporting the switch_amode or"
1544 " user_mode parameters, whether\n");
1545 fprintf(stderr,
1546 " user space is running in primary address space\n");
1547 fprintf(stderr,
1548 "- for kernels supporting the vm.allocate_pgste sysctl, "
1549 "whether it is enabled\n");
1550 }
1551 #endif
1552 goto err;
1553 }
1554
1555 s->vmfd = ret;
1556 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1557 if (!missing_cap) {
1558 missing_cap =
1559 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1560 }
1561 if (missing_cap) {
1562 ret = -EINVAL;
1563 fprintf(stderr, "kvm does not support %s\n%s",
1564 missing_cap->name, upgrade_note);
1565 goto err;
1566 }
1567
1568 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1569
1570 s->broken_set_mem_region = 1;
1571 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1572 if (ret > 0) {
1573 s->broken_set_mem_region = 0;
1574 }
1575
1576 #ifdef KVM_CAP_VCPU_EVENTS
1577 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1578 #endif
1579
1580 s->robust_singlestep =
1581 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1582
1583 #ifdef KVM_CAP_DEBUGREGS
1584 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1585 #endif
1586
1587 #ifdef KVM_CAP_IRQ_ROUTING
1588 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1589 #endif
1590
1591 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1592
1593 s->irq_set_ioctl = KVM_IRQ_LINE;
1594 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1595 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1596 }
1597
1598 #ifdef KVM_CAP_READONLY_MEM
1599 kvm_readonly_mem_allowed =
1600 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1601 #endif
1602
1603 kvm_eventfds_allowed =
1604 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1605
1606 kvm_irqfds_allowed =
1607 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1608
1609 kvm_resamplefds_allowed =
1610 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1611
1612 kvm_vm_attributes_allowed =
1613 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1614
1615 ret = kvm_arch_init(ms, s);
1616 if (ret < 0) {
1617 goto err;
1618 }
1619
1620 if (machine_kernel_irqchip_allowed(ms)) {
1621 kvm_irqchip_create(ms, s);
1622 }
1623
1624 kvm_state = s;
1625
1626 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1627 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1628 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1629 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1630
1631 kvm_memory_listener_register(s, &s->memory_listener,
1632 &address_space_memory, 0);
1633 memory_listener_register(&kvm_io_listener,
1634 &address_space_io);
1635
1636 s->many_ioeventfds = kvm_check_many_ioeventfds();
1637
1638 cpu_interrupt_handler = kvm_handle_interrupt;
1639
1640 return 0;
1641
1642 err:
1643 assert(ret < 0);
1644 if (s->vmfd >= 0) {
1645 close(s->vmfd);
1646 }
1647 if (s->fd != -1) {
1648 close(s->fd);
1649 }
1650 g_free(s->memory_listener.slots);
1651
1652 return ret;
1653 }
1654
1655 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1656 {
1657 s->sigmask_len = sigmask_len;
1658 }
1659
1660 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1661 int size, uint32_t count)
1662 {
1663 int i;
1664 uint8_t *ptr = data;
1665
1666 for (i = 0; i < count; i++) {
1667 address_space_rw(&address_space_io, port, attrs,
1668 ptr, size,
1669 direction == KVM_EXIT_IO_OUT);
1670 ptr += size;
1671 }
1672 }
1673
1674 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1675 {
1676 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1677 run->internal.suberror);
1678
1679 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1680 int i;
1681
1682 for (i = 0; i < run->internal.ndata; ++i) {
1683 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1684 i, (uint64_t)run->internal.data[i]);
1685 }
1686 }
1687 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1688 fprintf(stderr, "emulation failure\n");
1689 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1690 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1691 return EXCP_INTERRUPT;
1692 }
1693 }
1694 /* FIXME: Should trigger a qmp message to let management know
1695 * something went wrong.
1696 */
1697 return -1;
1698 }
1699
1700 void kvm_flush_coalesced_mmio_buffer(void)
1701 {
1702 KVMState *s = kvm_state;
1703
1704 if (s->coalesced_flush_in_progress) {
1705 return;
1706 }
1707
1708 s->coalesced_flush_in_progress = true;
1709
1710 if (s->coalesced_mmio_ring) {
1711 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1712 while (ring->first != ring->last) {
1713 struct kvm_coalesced_mmio *ent;
1714
1715 ent = &ring->coalesced_mmio[ring->first];
1716
1717 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1718 smp_wmb();
1719 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1720 }
1721 }
1722
1723 s->coalesced_flush_in_progress = false;
1724 }
1725
1726 static void do_kvm_cpu_synchronize_state(void *arg)
1727 {
1728 CPUState *cpu = arg;
1729
1730 if (!cpu->kvm_vcpu_dirty) {
1731 kvm_arch_get_registers(cpu);
1732 cpu->kvm_vcpu_dirty = true;
1733 }
1734 }
1735
1736 void kvm_cpu_synchronize_state(CPUState *cpu)
1737 {
1738 if (!cpu->kvm_vcpu_dirty) {
1739 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1740 }
1741 }
1742
1743 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1744 {
1745 CPUState *cpu = arg;
1746
1747 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1748 cpu->kvm_vcpu_dirty = false;
1749 }
1750
1751 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1752 {
1753 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1754 }
1755
1756 static void do_kvm_cpu_synchronize_post_init(void *arg)
1757 {
1758 CPUState *cpu = arg;
1759
1760 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1761 cpu->kvm_vcpu_dirty = false;
1762 }
1763
1764 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1765 {
1766 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1767 }
1768
1769 void kvm_cpu_clean_state(CPUState *cpu)
1770 {
1771 cpu->kvm_vcpu_dirty = false;
1772 }
1773
1774 int kvm_cpu_exec(CPUState *cpu)
1775 {
1776 struct kvm_run *run = cpu->kvm_run;
1777 int ret, run_ret;
1778
1779 DPRINTF("kvm_cpu_exec()\n");
1780
1781 if (kvm_arch_process_async_events(cpu)) {
1782 cpu->exit_request = 0;
1783 return EXCP_HLT;
1784 }
1785
1786 qemu_mutex_unlock_iothread();
1787
1788 do {
1789 MemTxAttrs attrs;
1790
1791 if (cpu->kvm_vcpu_dirty) {
1792 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1793 cpu->kvm_vcpu_dirty = false;
1794 }
1795
1796 kvm_arch_pre_run(cpu, run);
1797 if (cpu->exit_request) {
1798 DPRINTF("interrupt exit requested\n");
1799 /*
1800 * KVM requires us to reenter the kernel after IO exits to complete
1801 * instruction emulation. This self-signal will ensure that we
1802 * leave ASAP again.
1803 */
1804 qemu_cpu_kick_self();
1805 }
1806
1807 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1808
1809 attrs = kvm_arch_post_run(cpu, run);
1810
1811 if (run_ret < 0) {
1812 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1813 DPRINTF("io window exit\n");
1814 ret = EXCP_INTERRUPT;
1815 break;
1816 }
1817 fprintf(stderr, "error: kvm run failed %s\n",
1818 strerror(-run_ret));
1819 #ifdef TARGET_PPC
1820 if (run_ret == -EBUSY) {
1821 fprintf(stderr,
1822 "This is probably because your SMT is enabled.\n"
1823 "VCPU can only run on primary threads with all "
1824 "secondary threads offline.\n");
1825 }
1826 #endif
1827 ret = -1;
1828 break;
1829 }
1830
1831 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1832 switch (run->exit_reason) {
1833 case KVM_EXIT_IO:
1834 DPRINTF("handle_io\n");
1835 /* Called outside BQL */
1836 kvm_handle_io(run->io.port, attrs,
1837 (uint8_t *)run + run->io.data_offset,
1838 run->io.direction,
1839 run->io.size,
1840 run->io.count);
1841 ret = 0;
1842 break;
1843 case KVM_EXIT_MMIO:
1844 DPRINTF("handle_mmio\n");
1845 /* Called outside BQL */
1846 address_space_rw(&address_space_memory,
1847 run->mmio.phys_addr, attrs,
1848 run->mmio.data,
1849 run->mmio.len,
1850 run->mmio.is_write);
1851 ret = 0;
1852 break;
1853 case KVM_EXIT_IRQ_WINDOW_OPEN:
1854 DPRINTF("irq_window_open\n");
1855 ret = EXCP_INTERRUPT;
1856 break;
1857 case KVM_EXIT_SHUTDOWN:
1858 DPRINTF("shutdown\n");
1859 qemu_system_reset_request();
1860 ret = EXCP_INTERRUPT;
1861 break;
1862 case KVM_EXIT_UNKNOWN:
1863 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1864 (uint64_t)run->hw.hardware_exit_reason);
1865 ret = -1;
1866 break;
1867 case KVM_EXIT_INTERNAL_ERROR:
1868 ret = kvm_handle_internal_error(cpu, run);
1869 break;
1870 case KVM_EXIT_SYSTEM_EVENT:
1871 switch (run->system_event.type) {
1872 case KVM_SYSTEM_EVENT_SHUTDOWN:
1873 qemu_system_shutdown_request();
1874 ret = EXCP_INTERRUPT;
1875 break;
1876 case KVM_SYSTEM_EVENT_RESET:
1877 qemu_system_reset_request();
1878 ret = EXCP_INTERRUPT;
1879 break;
1880 case KVM_SYSTEM_EVENT_CRASH:
1881 qemu_mutex_lock_iothread();
1882 qemu_system_guest_panicked();
1883 qemu_mutex_unlock_iothread();
1884 ret = 0;
1885 break;
1886 default:
1887 DPRINTF("kvm_arch_handle_exit\n");
1888 ret = kvm_arch_handle_exit(cpu, run);
1889 break;
1890 }
1891 break;
1892 default:
1893 DPRINTF("kvm_arch_handle_exit\n");
1894 ret = kvm_arch_handle_exit(cpu, run);
1895 break;
1896 }
1897 } while (ret == 0);
1898
1899 qemu_mutex_lock_iothread();
1900
1901 if (ret < 0) {
1902 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1903 vm_stop(RUN_STATE_INTERNAL_ERROR);
1904 }
1905
1906 cpu->exit_request = 0;
1907 return ret;
1908 }
1909
1910 int kvm_ioctl(KVMState *s, int type, ...)
1911 {
1912 int ret;
1913 void *arg;
1914 va_list ap;
1915
1916 va_start(ap, type);
1917 arg = va_arg(ap, void *);
1918 va_end(ap);
1919
1920 trace_kvm_ioctl(type, arg);
1921 ret = ioctl(s->fd, type, arg);
1922 if (ret == -1) {
1923 ret = -errno;
1924 }
1925 return ret;
1926 }
1927
1928 int kvm_vm_ioctl(KVMState *s, int type, ...)
1929 {
1930 int ret;
1931 void *arg;
1932 va_list ap;
1933
1934 va_start(ap, type);
1935 arg = va_arg(ap, void *);
1936 va_end(ap);
1937
1938 trace_kvm_vm_ioctl(type, arg);
1939 ret = ioctl(s->vmfd, type, arg);
1940 if (ret == -1) {
1941 ret = -errno;
1942 }
1943 return ret;
1944 }
1945
1946 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1947 {
1948 int ret;
1949 void *arg;
1950 va_list ap;
1951
1952 va_start(ap, type);
1953 arg = va_arg(ap, void *);
1954 va_end(ap);
1955
1956 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1957 ret = ioctl(cpu->kvm_fd, type, arg);
1958 if (ret == -1) {
1959 ret = -errno;
1960 }
1961 return ret;
1962 }
1963
1964 int kvm_device_ioctl(int fd, int type, ...)
1965 {
1966 int ret;
1967 void *arg;
1968 va_list ap;
1969
1970 va_start(ap, type);
1971 arg = va_arg(ap, void *);
1972 va_end(ap);
1973
1974 trace_kvm_device_ioctl(fd, type, arg);
1975 ret = ioctl(fd, type, arg);
1976 if (ret == -1) {
1977 ret = -errno;
1978 }
1979 return ret;
1980 }
1981
1982 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
1983 {
1984 int ret;
1985 struct kvm_device_attr attribute = {
1986 .group = group,
1987 .attr = attr,
1988 };
1989
1990 if (!kvm_vm_attributes_allowed) {
1991 return 0;
1992 }
1993
1994 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
1995 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1996 return ret ? 0 : 1;
1997 }
1998
1999 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2000 {
2001 struct kvm_device_attr attribute = {
2002 .group = group,
2003 .attr = attr,
2004 .flags = 0,
2005 };
2006
2007 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2008 }
2009
2010 void kvm_device_access(int fd, int group, uint64_t attr,
2011 void *val, bool write)
2012 {
2013 struct kvm_device_attr kvmattr;
2014 int err;
2015
2016 kvmattr.flags = 0;
2017 kvmattr.group = group;
2018 kvmattr.attr = attr;
2019 kvmattr.addr = (uintptr_t)val;
2020
2021 err = kvm_device_ioctl(fd,
2022 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2023 &kvmattr);
2024 if (err < 0) {
2025 error_report("KVM_%s_DEVICE_ATTR failed: %s\n"
2026 "Group %d attr 0x%016" PRIx64, write ? "SET" : "GET",
2027 strerror(-err), group, attr);
2028 abort();
2029 }
2030 }
2031
2032 int kvm_has_sync_mmu(void)
2033 {
2034 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2035 }
2036
2037 int kvm_has_vcpu_events(void)
2038 {
2039 return kvm_state->vcpu_events;
2040 }
2041
2042 int kvm_has_robust_singlestep(void)
2043 {
2044 return kvm_state->robust_singlestep;
2045 }
2046
2047 int kvm_has_debugregs(void)
2048 {
2049 return kvm_state->debugregs;
2050 }
2051
2052 int kvm_has_many_ioeventfds(void)
2053 {
2054 if (!kvm_enabled()) {
2055 return 0;
2056 }
2057 return kvm_state->many_ioeventfds;
2058 }
2059
2060 int kvm_has_gsi_routing(void)
2061 {
2062 #ifdef KVM_CAP_IRQ_ROUTING
2063 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2064 #else
2065 return false;
2066 #endif
2067 }
2068
2069 int kvm_has_intx_set_mask(void)
2070 {
2071 return kvm_state->intx_set_mask;
2072 }
2073
2074 void kvm_setup_guest_memory(void *start, size_t size)
2075 {
2076 if (!kvm_has_sync_mmu()) {
2077 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2078
2079 if (ret) {
2080 perror("qemu_madvise");
2081 fprintf(stderr,
2082 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2083 exit(1);
2084 }
2085 }
2086 }
2087
2088 #ifdef KVM_CAP_SET_GUEST_DEBUG
2089 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2090 target_ulong pc)
2091 {
2092 struct kvm_sw_breakpoint *bp;
2093
2094 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2095 if (bp->pc == pc) {
2096 return bp;
2097 }
2098 }
2099 return NULL;
2100 }
2101
2102 int kvm_sw_breakpoints_active(CPUState *cpu)
2103 {
2104 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2105 }
2106
2107 struct kvm_set_guest_debug_data {
2108 struct kvm_guest_debug dbg;
2109 CPUState *cpu;
2110 int err;
2111 };
2112
2113 static void kvm_invoke_set_guest_debug(void *data)
2114 {
2115 struct kvm_set_guest_debug_data *dbg_data = data;
2116
2117 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2118 &dbg_data->dbg);
2119 }
2120
2121 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2122 {
2123 struct kvm_set_guest_debug_data data;
2124
2125 data.dbg.control = reinject_trap;
2126
2127 if (cpu->singlestep_enabled) {
2128 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2129 }
2130 kvm_arch_update_guest_debug(cpu, &data.dbg);
2131 data.cpu = cpu;
2132
2133 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2134 return data.err;
2135 }
2136
2137 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2138 target_ulong len, int type)
2139 {
2140 struct kvm_sw_breakpoint *bp;
2141 int err;
2142
2143 if (type == GDB_BREAKPOINT_SW) {
2144 bp = kvm_find_sw_breakpoint(cpu, addr);
2145 if (bp) {
2146 bp->use_count++;
2147 return 0;
2148 }
2149
2150 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2151 bp->pc = addr;
2152 bp->use_count = 1;
2153 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2154 if (err) {
2155 g_free(bp);
2156 return err;
2157 }
2158
2159 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2160 } else {
2161 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2162 if (err) {
2163 return err;
2164 }
2165 }
2166
2167 CPU_FOREACH(cpu) {
2168 err = kvm_update_guest_debug(cpu, 0);
2169 if (err) {
2170 return err;
2171 }
2172 }
2173 return 0;
2174 }
2175
2176 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2177 target_ulong len, int type)
2178 {
2179 struct kvm_sw_breakpoint *bp;
2180 int err;
2181
2182 if (type == GDB_BREAKPOINT_SW) {
2183 bp = kvm_find_sw_breakpoint(cpu, addr);
2184 if (!bp) {
2185 return -ENOENT;
2186 }
2187
2188 if (bp->use_count > 1) {
2189 bp->use_count--;
2190 return 0;
2191 }
2192
2193 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2194 if (err) {
2195 return err;
2196 }
2197
2198 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2199 g_free(bp);
2200 } else {
2201 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2202 if (err) {
2203 return err;
2204 }
2205 }
2206
2207 CPU_FOREACH(cpu) {
2208 err = kvm_update_guest_debug(cpu, 0);
2209 if (err) {
2210 return err;
2211 }
2212 }
2213 return 0;
2214 }
2215
2216 void kvm_remove_all_breakpoints(CPUState *cpu)
2217 {
2218 struct kvm_sw_breakpoint *bp, *next;
2219 KVMState *s = cpu->kvm_state;
2220 CPUState *tmpcpu;
2221
2222 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2223 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2224 /* Try harder to find a CPU that currently sees the breakpoint. */
2225 CPU_FOREACH(tmpcpu) {
2226 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2227 break;
2228 }
2229 }
2230 }
2231 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2232 g_free(bp);
2233 }
2234 kvm_arch_remove_all_hw_breakpoints();
2235
2236 CPU_FOREACH(cpu) {
2237 kvm_update_guest_debug(cpu, 0);
2238 }
2239 }
2240
2241 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2242
2243 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2244 {
2245 return -EINVAL;
2246 }
2247
2248 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2249 target_ulong len, int type)
2250 {
2251 return -EINVAL;
2252 }
2253
2254 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2255 target_ulong len, int type)
2256 {
2257 return -EINVAL;
2258 }
2259
2260 void kvm_remove_all_breakpoints(CPUState *cpu)
2261 {
2262 }
2263 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2264
2265 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2266 {
2267 KVMState *s = kvm_state;
2268 struct kvm_signal_mask *sigmask;
2269 int r;
2270
2271 if (!sigset) {
2272 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2273 }
2274
2275 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2276
2277 sigmask->len = s->sigmask_len;
2278 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2279 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2280 g_free(sigmask);
2281
2282 return r;
2283 }
2284 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2285 {
2286 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2287 }
2288
2289 int kvm_on_sigbus(int code, void *addr)
2290 {
2291 return kvm_arch_on_sigbus(code, addr);
2292 }
2293
2294 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2295 {
2296 int ret;
2297 struct kvm_create_device create_dev;
2298
2299 create_dev.type = type;
2300 create_dev.fd = -1;
2301 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2302
2303 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2304 return -ENOTSUP;
2305 }
2306
2307 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2308 if (ret) {
2309 return ret;
2310 }
2311
2312 return test ? 0 : create_dev.fd;
2313 }
2314
2315 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2316 {
2317 struct kvm_one_reg reg;
2318 int r;
2319
2320 reg.id = id;
2321 reg.addr = (uintptr_t) source;
2322 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2323 if (r) {
2324 trace_kvm_failed_reg_set(id, strerror(r));
2325 }
2326 return r;
2327 }
2328
2329 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2330 {
2331 struct kvm_one_reg reg;
2332 int r;
2333
2334 reg.id = id;
2335 reg.addr = (uintptr_t) target;
2336 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2337 if (r) {
2338 trace_kvm_failed_reg_get(id, strerror(r));
2339 }
2340 return r;
2341 }
2342
2343 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2344 {
2345 AccelClass *ac = ACCEL_CLASS(oc);
2346 ac->name = "KVM";
2347 ac->init_machine = kvm_init;
2348 ac->allowed = &kvm_allowed;
2349 }
2350
2351 static const TypeInfo kvm_accel_type = {
2352 .name = TYPE_KVM_ACCEL,
2353 .parent = TYPE_ACCEL,
2354 .class_init = kvm_accel_class_init,
2355 .instance_size = sizeof(KVMState),
2356 };
2357
2358 static void kvm_type_init(void)
2359 {
2360 type_register_static(&kvm_accel_type);
2361 }
2362
2363 type_init(kvm_type_init);