]> git.ipfire.org Git - people/ms/u-boot.git/blob - lib/fdtdec.c
a954051f7e108d5e5e373c6e75eea088564f9001
[people/ms/u-boot.git] / lib / fdtdec.c
1 /*
2 * Copyright (c) 2011 The Chromium OS Authors.
3 * SPDX-License-Identifier: GPL-2.0+
4 */
5
6 #ifndef USE_HOSTCC
7 #include <common.h>
8 #include <errno.h>
9 #include <serial.h>
10 #include <libfdt.h>
11 #include <fdtdec.h>
12 #include <asm/sections.h>
13 #include <linux/ctype.h>
14
15 DECLARE_GLOBAL_DATA_PTR;
16
17 /*
18 * Here are the type we know about. One day we might allow drivers to
19 * register. For now we just put them here. The COMPAT macro allows us to
20 * turn this into a sparse list later, and keeps the ID with the name.
21 */
22 #define COMPAT(id, name) name
23 static const char * const compat_names[COMPAT_COUNT] = {
24 COMPAT(UNKNOWN, "<none>"),
25 COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"),
26 COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"),
27 COMPAT(NVIDIA_TEGRA20_KBC, "nvidia,tegra20-kbc"),
28 COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"),
29 COMPAT(NVIDIA_TEGRA20_PWM, "nvidia,tegra20-pwm"),
30 COMPAT(NVIDIA_TEGRA124_DC, "nvidia,tegra124-dc"),
31 COMPAT(NVIDIA_TEGRA124_SOR, "nvidia,tegra124-sor"),
32 COMPAT(NVIDIA_TEGRA124_PMC, "nvidia,tegra124-pmc"),
33 COMPAT(NVIDIA_TEGRA20_DC, "nvidia,tegra20-dc"),
34 COMPAT(NVIDIA_TEGRA210_SDMMC, "nvidia,tegra210-sdhci"),
35 COMPAT(NVIDIA_TEGRA124_SDMMC, "nvidia,tegra124-sdhci"),
36 COMPAT(NVIDIA_TEGRA30_SDMMC, "nvidia,tegra30-sdhci"),
37 COMPAT(NVIDIA_TEGRA20_SDMMC, "nvidia,tegra20-sdhci"),
38 COMPAT(NVIDIA_TEGRA124_PCIE, "nvidia,tegra124-pcie"),
39 COMPAT(NVIDIA_TEGRA30_PCIE, "nvidia,tegra30-pcie"),
40 COMPAT(NVIDIA_TEGRA20_PCIE, "nvidia,tegra20-pcie"),
41 COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"),
42 COMPAT(NVIDIA_TEGRA210_XUSB_PADCTL, "nvidia,tegra210-xusb-padctl"),
43 COMPAT(SMSC_LAN9215, "smsc,lan9215"),
44 COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"),
45 COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"),
46 COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"),
47 COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"),
48 COMPAT(GOOGLE_CROS_EC_KEYB, "google,cros-ec-keyb"),
49 COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"),
50 COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"),
51 COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"),
52 COMPAT(SAMSUNG_EXYNOS_FIMD, "samsung,exynos-fimd"),
53 COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"),
54 COMPAT(SAMSUNG_EXYNOS5_DP, "samsung,exynos5-dp"),
55 COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"),
56 COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"),
57 COMPAT(SAMSUNG_EXYNOS_SERIAL, "samsung,exynos4210-uart"),
58 COMPAT(MAXIM_MAX77686_PMIC, "maxim,max77686"),
59 COMPAT(GENERIC_SPI_FLASH, "spi-flash"),
60 COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"),
61 COMPAT(INFINEON_SLB9635_TPM, "infineon,slb9635-tpm"),
62 COMPAT(INFINEON_SLB9645_TPM, "infineon,slb9645tt"),
63 COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"),
64 COMPAT(SANDBOX_LCD_SDL, "sandbox,lcd-sdl"),
65 COMPAT(TI_TPS65090, "ti,tps65090"),
66 COMPAT(COMPAT_NXP_PTN3460, "nxp,ptn3460"),
67 COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"),
68 COMPAT(PARADE_PS8625, "parade,ps8625"),
69 COMPAT(INTEL_MICROCODE, "intel,microcode"),
70 COMPAT(MEMORY_SPD, "memory-spd"),
71 COMPAT(INTEL_PANTHERPOINT_AHCI, "intel,pantherpoint-ahci"),
72 COMPAT(INTEL_MODEL_206AX, "intel,model-206ax"),
73 COMPAT(INTEL_GMA, "intel,gma"),
74 COMPAT(AMS_AS3722, "ams,as3722"),
75 COMPAT(INTEL_ICH_SPI, "intel,ich-spi"),
76 COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"),
77 COMPAT(INTEL_X86_PINCTRL, "intel,x86-pinctrl"),
78 COMPAT(SOCIONEXT_XHCI, "socionext,uniphier-xhci"),
79 COMPAT(COMPAT_INTEL_PCH, "intel,bd82x6x"),
80 COMPAT(COMPAT_INTEL_IRQ_ROUTER, "intel,irq-router"),
81 };
82
83 const char *fdtdec_get_compatible(enum fdt_compat_id id)
84 {
85 /* We allow reading of the 'unknown' ID for testing purposes */
86 assert(id >= 0 && id < COMPAT_COUNT);
87 return compat_names[id];
88 }
89
90 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node,
91 const char *prop_name, fdt_size_t *sizep)
92 {
93 const fdt32_t *ptr, *end;
94 int parent, na, ns, len;
95 fdt_addr_t addr;
96
97 debug("%s: %s: ", __func__, prop_name);
98
99 parent = fdt_parent_offset(blob, node);
100 if (parent < 0) {
101 debug("(no parent found)\n");
102 return FDT_ADDR_T_NONE;
103 }
104
105 na = fdt_address_cells(blob, parent);
106 ns = fdt_size_cells(blob, parent);
107
108 ptr = fdt_getprop(blob, node, prop_name, &len);
109 if (!ptr) {
110 debug("(not found)\n");
111 return FDT_ADDR_T_NONE;
112 }
113
114 end = ptr + len / sizeof(*ptr);
115
116 if (ptr + na + ns > end) {
117 debug("(not enough data: expected %d bytes, got %d bytes)\n",
118 (na + ns) * 4, len);
119 return FDT_ADDR_T_NONE;
120 }
121
122 addr = fdtdec_get_number(ptr, na);
123
124 if (sizep) {
125 *sizep = fdtdec_get_number(ptr + na, ns);
126 debug("addr=%pa, size=%pa\n", &addr, sizep);
127 } else {
128 debug("%pa\n", &addr);
129 }
130
131 return addr;
132 }
133
134 fdt_addr_t fdtdec_get_addr(const void *blob, int node,
135 const char *prop_name)
136 {
137 return fdtdec_get_addr_size(blob, node, prop_name, NULL);
138 }
139
140 #ifdef CONFIG_PCI
141 int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type,
142 const char *prop_name, struct fdt_pci_addr *addr)
143 {
144 const u32 *cell;
145 int len;
146 int ret = -ENOENT;
147
148 debug("%s: %s: ", __func__, prop_name);
149
150 /*
151 * If we follow the pci bus bindings strictly, we should check
152 * the value of the node's parent node's #address-cells and
153 * #size-cells. They need to be 3 and 2 accordingly. However,
154 * for simplicity we skip the check here.
155 */
156 cell = fdt_getprop(blob, node, prop_name, &len);
157 if (!cell)
158 goto fail;
159
160 if ((len % FDT_PCI_REG_SIZE) == 0) {
161 int num = len / FDT_PCI_REG_SIZE;
162 int i;
163
164 for (i = 0; i < num; i++) {
165 debug("pci address #%d: %08lx %08lx %08lx\n", i,
166 (ulong)fdt_addr_to_cpu(cell[0]),
167 (ulong)fdt_addr_to_cpu(cell[1]),
168 (ulong)fdt_addr_to_cpu(cell[2]));
169 if ((fdt_addr_to_cpu(*cell) & type) == type) {
170 addr->phys_hi = fdt_addr_to_cpu(cell[0]);
171 addr->phys_mid = fdt_addr_to_cpu(cell[1]);
172 addr->phys_lo = fdt_addr_to_cpu(cell[2]);
173 break;
174 } else {
175 cell += (FDT_PCI_ADDR_CELLS +
176 FDT_PCI_SIZE_CELLS);
177 }
178 }
179
180 if (i == num) {
181 ret = -ENXIO;
182 goto fail;
183 }
184
185 return 0;
186 } else {
187 ret = -EINVAL;
188 }
189
190 fail:
191 debug("(not found)\n");
192 return ret;
193 }
194
195 int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device)
196 {
197 const char *list, *end;
198 int len;
199
200 list = fdt_getprop(blob, node, "compatible", &len);
201 if (!list)
202 return -ENOENT;
203
204 end = list + len;
205 while (list < end) {
206 char *s;
207
208 len = strlen(list);
209 if (len >= strlen("pciVVVV,DDDD")) {
210 s = strstr(list, "pci");
211
212 /*
213 * check if the string is something like pciVVVV,DDDD.RR
214 * or just pciVVVV,DDDD
215 */
216 if (s && s[7] == ',' &&
217 (s[12] == '.' || s[12] == 0)) {
218 s += 3;
219 *vendor = simple_strtol(s, NULL, 16);
220
221 s += 5;
222 *device = simple_strtol(s, NULL, 16);
223
224 return 0;
225 }
226 } else {
227 list += (len + 1);
228 }
229 }
230
231 return -ENOENT;
232 }
233
234 int fdtdec_get_pci_bdf(const void *blob, int node,
235 struct fdt_pci_addr *addr, pci_dev_t *bdf)
236 {
237 u16 dt_vendor, dt_device, vendor, device;
238 int ret;
239
240 /* get vendor id & device id from the compatible string */
241 ret = fdtdec_get_pci_vendev(blob, node, &dt_vendor, &dt_device);
242 if (ret)
243 return ret;
244
245 /* extract the bdf from fdt_pci_addr */
246 *bdf = addr->phys_hi & 0xffff00;
247
248 /* read vendor id & device id based on bdf */
249 pci_read_config_word(*bdf, PCI_VENDOR_ID, &vendor);
250 pci_read_config_word(*bdf, PCI_DEVICE_ID, &device);
251
252 /*
253 * Note there are two places in the device tree to fully describe
254 * a pci device: one is via compatible string with a format of
255 * "pciVVVV,DDDD" and the other one is the bdf numbers encoded in
256 * the device node's reg address property. We read the vendor id
257 * and device id based on bdf and compare the values with the
258 * "VVVV,DDDD". If they are the same, then we are good to use bdf
259 * to read device's bar. But if they are different, we have to rely
260 * on the vendor id and device id extracted from the compatible
261 * string and locate the real bdf by pci_find_device(). This is
262 * because normally we may only know device's device number and
263 * function number when writing device tree. The bus number is
264 * dynamically assigned during the pci enumeration process.
265 */
266 if ((dt_vendor != vendor) || (dt_device != device)) {
267 *bdf = pci_find_device(dt_vendor, dt_device, 0);
268 if (*bdf == -1)
269 return -ENODEV;
270 }
271
272 return 0;
273 }
274
275 int fdtdec_get_pci_bar32(const void *blob, int node,
276 struct fdt_pci_addr *addr, u32 *bar)
277 {
278 pci_dev_t bdf;
279 int barnum;
280 int ret;
281
282 /* get pci devices's bdf */
283 ret = fdtdec_get_pci_bdf(blob, node, addr, &bdf);
284 if (ret)
285 return ret;
286
287 /* extract the bar number from fdt_pci_addr */
288 barnum = addr->phys_hi & 0xff;
289 if ((barnum < PCI_BASE_ADDRESS_0) || (barnum > PCI_CARDBUS_CIS))
290 return -EINVAL;
291
292 barnum = (barnum - PCI_BASE_ADDRESS_0) / 4;
293 *bar = pci_read_bar32(pci_bus_to_hose(PCI_BUS(bdf)), bdf, barnum);
294
295 return 0;
296 }
297 #endif
298
299 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
300 uint64_t default_val)
301 {
302 const uint64_t *cell64;
303 int length;
304
305 cell64 = fdt_getprop(blob, node, prop_name, &length);
306 if (!cell64 || length < sizeof(*cell64))
307 return default_val;
308
309 return fdt64_to_cpu(*cell64);
310 }
311
312 int fdtdec_get_is_enabled(const void *blob, int node)
313 {
314 const char *cell;
315
316 /*
317 * It should say "okay", so only allow that. Some fdts use "ok" but
318 * this is a bug. Please fix your device tree source file. See here
319 * for discussion:
320 *
321 * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html
322 */
323 cell = fdt_getprop(blob, node, "status", NULL);
324 if (cell)
325 return 0 == strcmp(cell, "okay");
326 return 1;
327 }
328
329 enum fdt_compat_id fdtdec_lookup(const void *blob, int node)
330 {
331 enum fdt_compat_id id;
332
333 /* Search our drivers */
334 for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++)
335 if (0 == fdt_node_check_compatible(blob, node,
336 compat_names[id]))
337 return id;
338 return COMPAT_UNKNOWN;
339 }
340
341 int fdtdec_next_compatible(const void *blob, int node,
342 enum fdt_compat_id id)
343 {
344 return fdt_node_offset_by_compatible(blob, node, compat_names[id]);
345 }
346
347 int fdtdec_next_compatible_subnode(const void *blob, int node,
348 enum fdt_compat_id id, int *depthp)
349 {
350 do {
351 node = fdt_next_node(blob, node, depthp);
352 } while (*depthp > 1);
353
354 /* If this is a direct subnode, and compatible, return it */
355 if (*depthp == 1 && 0 == fdt_node_check_compatible(
356 blob, node, compat_names[id]))
357 return node;
358
359 return -FDT_ERR_NOTFOUND;
360 }
361
362 int fdtdec_next_alias(const void *blob, const char *name,
363 enum fdt_compat_id id, int *upto)
364 {
365 #define MAX_STR_LEN 20
366 char str[MAX_STR_LEN + 20];
367 int node, err;
368
369 /* snprintf() is not available */
370 assert(strlen(name) < MAX_STR_LEN);
371 sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto);
372 node = fdt_path_offset(blob, str);
373 if (node < 0)
374 return node;
375 err = fdt_node_check_compatible(blob, node, compat_names[id]);
376 if (err < 0)
377 return err;
378 if (err)
379 return -FDT_ERR_NOTFOUND;
380 (*upto)++;
381 return node;
382 }
383
384 int fdtdec_find_aliases_for_id(const void *blob, const char *name,
385 enum fdt_compat_id id, int *node_list, int maxcount)
386 {
387 memset(node_list, '\0', sizeof(*node_list) * maxcount);
388
389 return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount);
390 }
391
392 /* TODO: Can we tighten this code up a little? */
393 int fdtdec_add_aliases_for_id(const void *blob, const char *name,
394 enum fdt_compat_id id, int *node_list, int maxcount)
395 {
396 int name_len = strlen(name);
397 int nodes[maxcount];
398 int num_found = 0;
399 int offset, node;
400 int alias_node;
401 int count;
402 int i, j;
403
404 /* find the alias node if present */
405 alias_node = fdt_path_offset(blob, "/aliases");
406
407 /*
408 * start with nothing, and we can assume that the root node can't
409 * match
410 */
411 memset(nodes, '\0', sizeof(nodes));
412
413 /* First find all the compatible nodes */
414 for (node = count = 0; node >= 0 && count < maxcount;) {
415 node = fdtdec_next_compatible(blob, node, id);
416 if (node >= 0)
417 nodes[count++] = node;
418 }
419 if (node >= 0)
420 debug("%s: warning: maxcount exceeded with alias '%s'\n",
421 __func__, name);
422
423 /* Now find all the aliases */
424 for (offset = fdt_first_property_offset(blob, alias_node);
425 offset > 0;
426 offset = fdt_next_property_offset(blob, offset)) {
427 const struct fdt_property *prop;
428 const char *path;
429 int number;
430 int found;
431
432 node = 0;
433 prop = fdt_get_property_by_offset(blob, offset, NULL);
434 path = fdt_string(blob, fdt32_to_cpu(prop->nameoff));
435 if (prop->len && 0 == strncmp(path, name, name_len))
436 node = fdt_path_offset(blob, prop->data);
437 if (node <= 0)
438 continue;
439
440 /* Get the alias number */
441 number = simple_strtoul(path + name_len, NULL, 10);
442 if (number < 0 || number >= maxcount) {
443 debug("%s: warning: alias '%s' is out of range\n",
444 __func__, path);
445 continue;
446 }
447
448 /* Make sure the node we found is actually in our list! */
449 found = -1;
450 for (j = 0; j < count; j++)
451 if (nodes[j] == node) {
452 found = j;
453 break;
454 }
455
456 if (found == -1) {
457 debug("%s: warning: alias '%s' points to a node "
458 "'%s' that is missing or is not compatible "
459 " with '%s'\n", __func__, path,
460 fdt_get_name(blob, node, NULL),
461 compat_names[id]);
462 continue;
463 }
464
465 /*
466 * Add this node to our list in the right place, and mark
467 * it as done.
468 */
469 if (fdtdec_get_is_enabled(blob, node)) {
470 if (node_list[number]) {
471 debug("%s: warning: alias '%s' requires that "
472 "a node be placed in the list in a "
473 "position which is already filled by "
474 "node '%s'\n", __func__, path,
475 fdt_get_name(blob, node, NULL));
476 continue;
477 }
478 node_list[number] = node;
479 if (number >= num_found)
480 num_found = number + 1;
481 }
482 nodes[found] = 0;
483 }
484
485 /* Add any nodes not mentioned by an alias */
486 for (i = j = 0; i < maxcount; i++) {
487 if (!node_list[i]) {
488 for (; j < maxcount; j++)
489 if (nodes[j] &&
490 fdtdec_get_is_enabled(blob, nodes[j]))
491 break;
492
493 /* Have we run out of nodes to add? */
494 if (j == maxcount)
495 break;
496
497 assert(!node_list[i]);
498 node_list[i] = nodes[j++];
499 if (i >= num_found)
500 num_found = i + 1;
501 }
502 }
503
504 return num_found;
505 }
506
507 int fdtdec_get_alias_seq(const void *blob, const char *base, int offset,
508 int *seqp)
509 {
510 int base_len = strlen(base);
511 const char *find_name;
512 int find_namelen;
513 int prop_offset;
514 int aliases;
515
516 find_name = fdt_get_name(blob, offset, &find_namelen);
517 debug("Looking for '%s' at %d, name %s\n", base, offset, find_name);
518
519 aliases = fdt_path_offset(blob, "/aliases");
520 for (prop_offset = fdt_first_property_offset(blob, aliases);
521 prop_offset > 0;
522 prop_offset = fdt_next_property_offset(blob, prop_offset)) {
523 const char *prop;
524 const char *name;
525 const char *slash;
526 int len, val;
527
528 prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len);
529 debug(" - %s, %s\n", name, prop);
530 if (len < find_namelen || *prop != '/' || prop[len - 1] ||
531 strncmp(name, base, base_len))
532 continue;
533
534 slash = strrchr(prop, '/');
535 if (strcmp(slash + 1, find_name))
536 continue;
537 val = trailing_strtol(name);
538 if (val != -1) {
539 *seqp = val;
540 debug("Found seq %d\n", *seqp);
541 return 0;
542 }
543 }
544
545 debug("Not found\n");
546 return -ENOENT;
547 }
548
549 int fdtdec_get_chosen_node(const void *blob, const char *name)
550 {
551 const char *prop;
552 int chosen_node;
553 int len;
554
555 if (!blob)
556 return -FDT_ERR_NOTFOUND;
557 chosen_node = fdt_path_offset(blob, "/chosen");
558 prop = fdt_getprop(blob, chosen_node, name, &len);
559 if (!prop)
560 return -FDT_ERR_NOTFOUND;
561 return fdt_path_offset(blob, prop);
562 }
563
564 int fdtdec_check_fdt(void)
565 {
566 /*
567 * We must have an FDT, but we cannot panic() yet since the console
568 * is not ready. So for now, just assert(). Boards which need an early
569 * FDT (prior to console ready) will need to make their own
570 * arrangements and do their own checks.
571 */
572 assert(!fdtdec_prepare_fdt());
573 return 0;
574 }
575
576 /*
577 * This function is a little odd in that it accesses global data. At some
578 * point if the architecture board.c files merge this will make more sense.
579 * Even now, it is common code.
580 */
581 int fdtdec_prepare_fdt(void)
582 {
583 if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) ||
584 fdt_check_header(gd->fdt_blob)) {
585 #ifdef CONFIG_SPL_BUILD
586 puts("Missing DTB\n");
587 #else
588 puts("No valid device tree binary found - please append one to U-Boot binary, use u-boot-dtb.bin or define CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n");
589 # ifdef DEBUG
590 if (gd->fdt_blob) {
591 printf("fdt_blob=%p\n", gd->fdt_blob);
592 print_buffer((ulong)gd->fdt_blob, gd->fdt_blob, 4,
593 32, 0);
594 }
595 # endif
596 #endif
597 return -1;
598 }
599 return 0;
600 }
601
602 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name)
603 {
604 const u32 *phandle;
605 int lookup;
606
607 debug("%s: %s\n", __func__, prop_name);
608 phandle = fdt_getprop(blob, node, prop_name, NULL);
609 if (!phandle)
610 return -FDT_ERR_NOTFOUND;
611
612 lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle));
613 return lookup;
614 }
615
616 /**
617 * Look up a property in a node and check that it has a minimum length.
618 *
619 * @param blob FDT blob
620 * @param node node to examine
621 * @param prop_name name of property to find
622 * @param min_len minimum property length in bytes
623 * @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not
624 found, or -FDT_ERR_BADLAYOUT if not enough data
625 * @return pointer to cell, which is only valid if err == 0
626 */
627 static const void *get_prop_check_min_len(const void *blob, int node,
628 const char *prop_name, int min_len, int *err)
629 {
630 const void *cell;
631 int len;
632
633 debug("%s: %s\n", __func__, prop_name);
634 cell = fdt_getprop(blob, node, prop_name, &len);
635 if (!cell)
636 *err = -FDT_ERR_NOTFOUND;
637 else if (len < min_len)
638 *err = -FDT_ERR_BADLAYOUT;
639 else
640 *err = 0;
641 return cell;
642 }
643
644 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
645 u32 *array, int count)
646 {
647 const u32 *cell;
648 int i, err = 0;
649
650 debug("%s: %s\n", __func__, prop_name);
651 cell = get_prop_check_min_len(blob, node, prop_name,
652 sizeof(u32) * count, &err);
653 if (!err) {
654 for (i = 0; i < count; i++)
655 array[i] = fdt32_to_cpu(cell[i]);
656 }
657 return err;
658 }
659
660 int fdtdec_get_int_array_count(const void *blob, int node,
661 const char *prop_name, u32 *array, int count)
662 {
663 const u32 *cell;
664 int len, elems;
665 int i;
666
667 debug("%s: %s\n", __func__, prop_name);
668 cell = fdt_getprop(blob, node, prop_name, &len);
669 if (!cell)
670 return -FDT_ERR_NOTFOUND;
671 elems = len / sizeof(u32);
672 if (count > elems)
673 count = elems;
674 for (i = 0; i < count; i++)
675 array[i] = fdt32_to_cpu(cell[i]);
676
677 return count;
678 }
679
680 const u32 *fdtdec_locate_array(const void *blob, int node,
681 const char *prop_name, int count)
682 {
683 const u32 *cell;
684 int err;
685
686 cell = get_prop_check_min_len(blob, node, prop_name,
687 sizeof(u32) * count, &err);
688 return err ? NULL : cell;
689 }
690
691 int fdtdec_get_bool(const void *blob, int node, const char *prop_name)
692 {
693 const s32 *cell;
694 int len;
695
696 debug("%s: %s\n", __func__, prop_name);
697 cell = fdt_getprop(blob, node, prop_name, &len);
698 return cell != NULL;
699 }
700
701 int fdtdec_parse_phandle_with_args(const void *blob, int src_node,
702 const char *list_name,
703 const char *cells_name,
704 int cell_count, int index,
705 struct fdtdec_phandle_args *out_args)
706 {
707 const __be32 *list, *list_end;
708 int rc = 0, size, cur_index = 0;
709 uint32_t count = 0;
710 int node = -1;
711 int phandle;
712
713 /* Retrieve the phandle list property */
714 list = fdt_getprop(blob, src_node, list_name, &size);
715 if (!list)
716 return -ENOENT;
717 list_end = list + size / sizeof(*list);
718
719 /* Loop over the phandles until all the requested entry is found */
720 while (list < list_end) {
721 rc = -EINVAL;
722 count = 0;
723
724 /*
725 * If phandle is 0, then it is an empty entry with no
726 * arguments. Skip forward to the next entry.
727 */
728 phandle = be32_to_cpup(list++);
729 if (phandle) {
730 /*
731 * Find the provider node and parse the #*-cells
732 * property to determine the argument length.
733 *
734 * This is not needed if the cell count is hard-coded
735 * (i.e. cells_name not set, but cell_count is set),
736 * except when we're going to return the found node
737 * below.
738 */
739 if (cells_name || cur_index == index) {
740 node = fdt_node_offset_by_phandle(blob,
741 phandle);
742 if (!node) {
743 debug("%s: could not find phandle\n",
744 fdt_get_name(blob, src_node,
745 NULL));
746 goto err;
747 }
748 }
749
750 if (cells_name) {
751 count = fdtdec_get_int(blob, node, cells_name,
752 -1);
753 if (count == -1) {
754 debug("%s: could not get %s for %s\n",
755 fdt_get_name(blob, src_node,
756 NULL),
757 cells_name,
758 fdt_get_name(blob, node,
759 NULL));
760 goto err;
761 }
762 } else {
763 count = cell_count;
764 }
765
766 /*
767 * Make sure that the arguments actually fit in the
768 * remaining property data length
769 */
770 if (list + count > list_end) {
771 debug("%s: arguments longer than property\n",
772 fdt_get_name(blob, src_node, NULL));
773 goto err;
774 }
775 }
776
777 /*
778 * All of the error cases above bail out of the loop, so at
779 * this point, the parsing is successful. If the requested
780 * index matches, then fill the out_args structure and return,
781 * or return -ENOENT for an empty entry.
782 */
783 rc = -ENOENT;
784 if (cur_index == index) {
785 if (!phandle)
786 goto err;
787
788 if (out_args) {
789 int i;
790
791 if (count > MAX_PHANDLE_ARGS) {
792 debug("%s: too many arguments %d\n",
793 fdt_get_name(blob, src_node,
794 NULL), count);
795 count = MAX_PHANDLE_ARGS;
796 }
797 out_args->node = node;
798 out_args->args_count = count;
799 for (i = 0; i < count; i++) {
800 out_args->args[i] =
801 be32_to_cpup(list++);
802 }
803 }
804
805 /* Found it! return success */
806 return 0;
807 }
808
809 node = -1;
810 list += count;
811 cur_index++;
812 }
813
814 /*
815 * Result will be one of:
816 * -ENOENT : index is for empty phandle
817 * -EINVAL : parsing error on data
818 * [1..n] : Number of phandle (count mode; when index = -1)
819 */
820 rc = index < 0 ? cur_index : -ENOENT;
821 err:
822 return rc;
823 }
824
825 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
826 u8 *array, int count)
827 {
828 const u8 *cell;
829 int err;
830
831 cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
832 if (!err)
833 memcpy(array, cell, count);
834 return err;
835 }
836
837 const u8 *fdtdec_locate_byte_array(const void *blob, int node,
838 const char *prop_name, int count)
839 {
840 const u8 *cell;
841 int err;
842
843 cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
844 if (err)
845 return NULL;
846 return cell;
847 }
848
849 int fdtdec_get_config_int(const void *blob, const char *prop_name,
850 int default_val)
851 {
852 int config_node;
853
854 debug("%s: %s\n", __func__, prop_name);
855 config_node = fdt_path_offset(blob, "/config");
856 if (config_node < 0)
857 return default_val;
858 return fdtdec_get_int(blob, config_node, prop_name, default_val);
859 }
860
861 int fdtdec_get_config_bool(const void *blob, const char *prop_name)
862 {
863 int config_node;
864 const void *prop;
865
866 debug("%s: %s\n", __func__, prop_name);
867 config_node = fdt_path_offset(blob, "/config");
868 if (config_node < 0)
869 return 0;
870 prop = fdt_get_property(blob, config_node, prop_name, NULL);
871
872 return prop != NULL;
873 }
874
875 char *fdtdec_get_config_string(const void *blob, const char *prop_name)
876 {
877 const char *nodep;
878 int nodeoffset;
879 int len;
880
881 debug("%s: %s\n", __func__, prop_name);
882 nodeoffset = fdt_path_offset(blob, "/config");
883 if (nodeoffset < 0)
884 return NULL;
885
886 nodep = fdt_getprop(blob, nodeoffset, prop_name, &len);
887 if (!nodep)
888 return NULL;
889
890 return (char *)nodep;
891 }
892
893 int fdtdec_decode_region(const void *blob, int node, const char *prop_name,
894 fdt_addr_t *basep, fdt_size_t *sizep)
895 {
896 const fdt_addr_t *cell;
897 int len;
898
899 debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL),
900 prop_name);
901 cell = fdt_getprop(blob, node, prop_name, &len);
902 if (!cell || (len < sizeof(fdt_addr_t) * 2)) {
903 debug("cell=%p, len=%d\n", cell, len);
904 return -1;
905 }
906
907 *basep = fdt_addr_to_cpu(*cell);
908 *sizep = fdt_size_to_cpu(cell[1]);
909 debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep,
910 (ulong)*sizep);
911
912 return 0;
913 }
914
915 /**
916 * Read a flash entry from the fdt
917 *
918 * @param blob FDT blob
919 * @param node Offset of node to read
920 * @param name Name of node being read
921 * @param entry Place to put offset and size of this node
922 * @return 0 if ok, -ve on error
923 */
924 int fdtdec_read_fmap_entry(const void *blob, int node, const char *name,
925 struct fmap_entry *entry)
926 {
927 const char *prop;
928 u32 reg[2];
929
930 if (fdtdec_get_int_array(blob, node, "reg", reg, 2)) {
931 debug("Node '%s' has bad/missing 'reg' property\n", name);
932 return -FDT_ERR_NOTFOUND;
933 }
934 entry->offset = reg[0];
935 entry->length = reg[1];
936 entry->used = fdtdec_get_int(blob, node, "used", entry->length);
937 prop = fdt_getprop(blob, node, "compress", NULL);
938 entry->compress_algo = prop && !strcmp(prop, "lzo") ?
939 FMAP_COMPRESS_LZO : FMAP_COMPRESS_NONE;
940 prop = fdt_getprop(blob, node, "hash", &entry->hash_size);
941 entry->hash_algo = prop ? FMAP_HASH_SHA256 : FMAP_HASH_NONE;
942 entry->hash = (uint8_t *)prop;
943
944 return 0;
945 }
946
947 u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells)
948 {
949 u64 number = 0;
950
951 while (cells--)
952 number = (number << 32) | fdt32_to_cpu(*ptr++);
953
954 return number;
955 }
956
957 int fdt_get_resource(const void *fdt, int node, const char *property,
958 unsigned int index, struct fdt_resource *res)
959 {
960 const fdt32_t *ptr, *end;
961 int na, ns, len, parent;
962 unsigned int i = 0;
963
964 parent = fdt_parent_offset(fdt, node);
965 if (parent < 0)
966 return parent;
967
968 na = fdt_address_cells(fdt, parent);
969 ns = fdt_size_cells(fdt, parent);
970
971 ptr = fdt_getprop(fdt, node, property, &len);
972 if (!ptr)
973 return len;
974
975 end = ptr + len / sizeof(*ptr);
976
977 while (ptr + na + ns <= end) {
978 if (i == index) {
979 res->start = res->end = fdtdec_get_number(ptr, na);
980 res->end += fdtdec_get_number(&ptr[na], ns) - 1;
981 return 0;
982 }
983
984 ptr += na + ns;
985 i++;
986 }
987
988 return -FDT_ERR_NOTFOUND;
989 }
990
991 int fdt_get_named_resource(const void *fdt, int node, const char *property,
992 const char *prop_names, const char *name,
993 struct fdt_resource *res)
994 {
995 int index;
996
997 index = fdt_find_string(fdt, node, prop_names, name);
998 if (index < 0)
999 return index;
1000
1001 return fdt_get_resource(fdt, node, property, index, res);
1002 }
1003
1004 int fdtdec_decode_memory_region(const void *blob, int config_node,
1005 const char *mem_type, const char *suffix,
1006 fdt_addr_t *basep, fdt_size_t *sizep)
1007 {
1008 char prop_name[50];
1009 const char *mem;
1010 fdt_size_t size, offset_size;
1011 fdt_addr_t base, offset;
1012 int node;
1013
1014 if (config_node == -1) {
1015 config_node = fdt_path_offset(blob, "/config");
1016 if (config_node < 0) {
1017 debug("%s: Cannot find /config node\n", __func__);
1018 return -ENOENT;
1019 }
1020 }
1021 if (!suffix)
1022 suffix = "";
1023
1024 snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type,
1025 suffix);
1026 mem = fdt_getprop(blob, config_node, prop_name, NULL);
1027 if (!mem) {
1028 debug("%s: No memory type for '%s', using /memory\n", __func__,
1029 prop_name);
1030 mem = "/memory";
1031 }
1032
1033 node = fdt_path_offset(blob, mem);
1034 if (node < 0) {
1035 debug("%s: Failed to find node '%s': %s\n", __func__, mem,
1036 fdt_strerror(node));
1037 return -ENOENT;
1038 }
1039
1040 /*
1041 * Not strictly correct - the memory may have multiple banks. We just
1042 * use the first
1043 */
1044 if (fdtdec_decode_region(blob, node, "reg", &base, &size)) {
1045 debug("%s: Failed to decode memory region %s\n", __func__,
1046 mem);
1047 return -EINVAL;
1048 }
1049
1050 snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type,
1051 suffix);
1052 if (fdtdec_decode_region(blob, config_node, prop_name, &offset,
1053 &offset_size)) {
1054 debug("%s: Failed to decode memory region '%s'\n", __func__,
1055 prop_name);
1056 return -EINVAL;
1057 }
1058
1059 *basep = base + offset;
1060 *sizep = offset_size;
1061
1062 return 0;
1063 }
1064
1065 static int decode_timing_property(const void *blob, int node, const char *name,
1066 struct timing_entry *result)
1067 {
1068 int length, ret = 0;
1069 const u32 *prop;
1070
1071 prop = fdt_getprop(blob, node, name, &length);
1072 if (!prop) {
1073 debug("%s: could not find property %s\n",
1074 fdt_get_name(blob, node, NULL), name);
1075 return length;
1076 }
1077
1078 if (length == sizeof(u32)) {
1079 result->typ = fdtdec_get_int(blob, node, name, 0);
1080 result->min = result->typ;
1081 result->max = result->typ;
1082 } else {
1083 ret = fdtdec_get_int_array(blob, node, name, &result->min, 3);
1084 }
1085
1086 return ret;
1087 }
1088
1089 int fdtdec_decode_display_timing(const void *blob, int parent, int index,
1090 struct display_timing *dt)
1091 {
1092 int i, node, timings_node;
1093 u32 val = 0;
1094 int ret = 0;
1095
1096 timings_node = fdt_subnode_offset(blob, parent, "display-timings");
1097 if (timings_node < 0)
1098 return timings_node;
1099
1100 for (i = 0, node = fdt_first_subnode(blob, timings_node);
1101 node > 0 && i != index;
1102 node = fdt_next_subnode(blob, node))
1103 i++;
1104
1105 if (node < 0)
1106 return node;
1107
1108 memset(dt, 0, sizeof(*dt));
1109
1110 ret |= decode_timing_property(blob, node, "hback-porch",
1111 &dt->hback_porch);
1112 ret |= decode_timing_property(blob, node, "hfront-porch",
1113 &dt->hfront_porch);
1114 ret |= decode_timing_property(blob, node, "hactive", &dt->hactive);
1115 ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len);
1116 ret |= decode_timing_property(blob, node, "vback-porch",
1117 &dt->vback_porch);
1118 ret |= decode_timing_property(blob, node, "vfront-porch",
1119 &dt->vfront_porch);
1120 ret |= decode_timing_property(blob, node, "vactive", &dt->vactive);
1121 ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len);
1122 ret |= decode_timing_property(blob, node, "clock-frequency",
1123 &dt->pixelclock);
1124
1125 dt->flags = 0;
1126 val = fdtdec_get_int(blob, node, "vsync-active", -1);
1127 if (val != -1) {
1128 dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
1129 DISPLAY_FLAGS_VSYNC_LOW;
1130 }
1131 val = fdtdec_get_int(blob, node, "hsync-active", -1);
1132 if (val != -1) {
1133 dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
1134 DISPLAY_FLAGS_HSYNC_LOW;
1135 }
1136 val = fdtdec_get_int(blob, node, "de-active", -1);
1137 if (val != -1) {
1138 dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
1139 DISPLAY_FLAGS_DE_LOW;
1140 }
1141 val = fdtdec_get_int(blob, node, "pixelclk-active", -1);
1142 if (val != -1) {
1143 dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
1144 DISPLAY_FLAGS_PIXDATA_NEGEDGE;
1145 }
1146
1147 if (fdtdec_get_bool(blob, node, "interlaced"))
1148 dt->flags |= DISPLAY_FLAGS_INTERLACED;
1149 if (fdtdec_get_bool(blob, node, "doublescan"))
1150 dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
1151 if (fdtdec_get_bool(blob, node, "doubleclk"))
1152 dt->flags |= DISPLAY_FLAGS_DOUBLECLK;
1153
1154 return 0;
1155 }
1156
1157 int fdtdec_setup(void)
1158 {
1159 #ifdef CONFIG_OF_CONTROL
1160 # ifdef CONFIG_OF_EMBED
1161 /* Get a pointer to the FDT */
1162 gd->fdt_blob = __dtb_dt_begin;
1163 # elif defined CONFIG_OF_SEPARATE
1164 # ifdef CONFIG_SPL_BUILD
1165 /* FDT is at end of BSS */
1166 gd->fdt_blob = (ulong *)&__bss_end;
1167 # else
1168 /* FDT is at end of image */
1169 gd->fdt_blob = (ulong *)&_end;
1170 #endif
1171 # elif defined(CONFIG_OF_HOSTFILE)
1172 if (sandbox_read_fdt_from_file()) {
1173 puts("Failed to read control FDT\n");
1174 return -1;
1175 }
1176 # endif
1177 # ifndef CONFIG_SPL_BUILD
1178 /* Allow the early environment to override the fdt address */
1179 gd->fdt_blob = (void *)getenv_ulong("fdtcontroladdr", 16,
1180 (uintptr_t)gd->fdt_blob);
1181 # endif
1182 #endif
1183 return fdtdec_prepare_fdt();
1184 }
1185
1186 #endif /* !USE_HOSTCC */