]> git.ipfire.org Git - thirdparty/linux.git/blob - lib/iov_iter.c
Merge tag 'leds-next-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/leds
[thirdparty/linux.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 /* covers ubuf and kbuf alike */
18 #define iterate_buf(i, n, base, len, off, __p, STEP) { \
19 size_t __maybe_unused off = 0; \
20 len = n; \
21 base = __p + i->iov_offset; \
22 len -= (STEP); \
23 i->iov_offset += len; \
24 n = len; \
25 }
26
27 /* covers iovec and kvec alike */
28 #define iterate_iovec(i, n, base, len, off, __p, STEP) { \
29 size_t off = 0; \
30 size_t skip = i->iov_offset; \
31 do { \
32 len = min(n, __p->iov_len - skip); \
33 if (likely(len)) { \
34 base = __p->iov_base + skip; \
35 len -= (STEP); \
36 off += len; \
37 skip += len; \
38 n -= len; \
39 if (skip < __p->iov_len) \
40 break; \
41 } \
42 __p++; \
43 skip = 0; \
44 } while (n); \
45 i->iov_offset = skip; \
46 n = off; \
47 }
48
49 #define iterate_bvec(i, n, base, len, off, p, STEP) { \
50 size_t off = 0; \
51 unsigned skip = i->iov_offset; \
52 while (n) { \
53 unsigned offset = p->bv_offset + skip; \
54 unsigned left; \
55 void *kaddr = kmap_local_page(p->bv_page + \
56 offset / PAGE_SIZE); \
57 base = kaddr + offset % PAGE_SIZE; \
58 len = min(min(n, (size_t)(p->bv_len - skip)), \
59 (size_t)(PAGE_SIZE - offset % PAGE_SIZE)); \
60 left = (STEP); \
61 kunmap_local(kaddr); \
62 len -= left; \
63 off += len; \
64 skip += len; \
65 if (skip == p->bv_len) { \
66 skip = 0; \
67 p++; \
68 } \
69 n -= len; \
70 if (left) \
71 break; \
72 } \
73 i->iov_offset = skip; \
74 n = off; \
75 }
76
77 #define iterate_xarray(i, n, base, len, __off, STEP) { \
78 __label__ __out; \
79 size_t __off = 0; \
80 struct folio *folio; \
81 loff_t start = i->xarray_start + i->iov_offset; \
82 pgoff_t index = start / PAGE_SIZE; \
83 XA_STATE(xas, i->xarray, index); \
84 \
85 len = PAGE_SIZE - offset_in_page(start); \
86 rcu_read_lock(); \
87 xas_for_each(&xas, folio, ULONG_MAX) { \
88 unsigned left; \
89 size_t offset; \
90 if (xas_retry(&xas, folio)) \
91 continue; \
92 if (WARN_ON(xa_is_value(folio))) \
93 break; \
94 if (WARN_ON(folio_test_hugetlb(folio))) \
95 break; \
96 offset = offset_in_folio(folio, start + __off); \
97 while (offset < folio_size(folio)) { \
98 base = kmap_local_folio(folio, offset); \
99 len = min(n, len); \
100 left = (STEP); \
101 kunmap_local(base); \
102 len -= left; \
103 __off += len; \
104 n -= len; \
105 if (left || n == 0) \
106 goto __out; \
107 offset += len; \
108 len = PAGE_SIZE; \
109 } \
110 } \
111 __out: \
112 rcu_read_unlock(); \
113 i->iov_offset += __off; \
114 n = __off; \
115 }
116
117 #define __iterate_and_advance(i, n, base, len, off, I, K) { \
118 if (unlikely(i->count < n)) \
119 n = i->count; \
120 if (likely(n)) { \
121 if (likely(iter_is_ubuf(i))) { \
122 void __user *base; \
123 size_t len; \
124 iterate_buf(i, n, base, len, off, \
125 i->ubuf, (I)) \
126 } else if (likely(iter_is_iovec(i))) { \
127 const struct iovec *iov = iter_iov(i); \
128 void __user *base; \
129 size_t len; \
130 iterate_iovec(i, n, base, len, off, \
131 iov, (I)) \
132 i->nr_segs -= iov - iter_iov(i); \
133 i->__iov = iov; \
134 } else if (iov_iter_is_bvec(i)) { \
135 const struct bio_vec *bvec = i->bvec; \
136 void *base; \
137 size_t len; \
138 iterate_bvec(i, n, base, len, off, \
139 bvec, (K)) \
140 i->nr_segs -= bvec - i->bvec; \
141 i->bvec = bvec; \
142 } else if (iov_iter_is_kvec(i)) { \
143 const struct kvec *kvec = i->kvec; \
144 void *base; \
145 size_t len; \
146 iterate_iovec(i, n, base, len, off, \
147 kvec, (K)) \
148 i->nr_segs -= kvec - i->kvec; \
149 i->kvec = kvec; \
150 } else if (iov_iter_is_xarray(i)) { \
151 void *base; \
152 size_t len; \
153 iterate_xarray(i, n, base, len, off, \
154 (K)) \
155 } \
156 i->count -= n; \
157 } \
158 }
159 #define iterate_and_advance(i, n, base, len, off, I, K) \
160 __iterate_and_advance(i, n, base, len, off, I, ((void)(K),0))
161
162 static int copyout(void __user *to, const void *from, size_t n)
163 {
164 if (should_fail_usercopy())
165 return n;
166 if (access_ok(to, n)) {
167 instrument_copy_to_user(to, from, n);
168 n = raw_copy_to_user(to, from, n);
169 }
170 return n;
171 }
172
173 static int copyout_nofault(void __user *to, const void *from, size_t n)
174 {
175 long res;
176
177 if (should_fail_usercopy())
178 return n;
179
180 res = copy_to_user_nofault(to, from, n);
181
182 return res < 0 ? n : res;
183 }
184
185 static int copyin(void *to, const void __user *from, size_t n)
186 {
187 size_t res = n;
188
189 if (should_fail_usercopy())
190 return n;
191 if (access_ok(from, n)) {
192 instrument_copy_from_user_before(to, from, n);
193 res = raw_copy_from_user(to, from, n);
194 instrument_copy_from_user_after(to, from, n, res);
195 }
196 return res;
197 }
198
199 /*
200 * fault_in_iov_iter_readable - fault in iov iterator for reading
201 * @i: iterator
202 * @size: maximum length
203 *
204 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
205 * @size. For each iovec, fault in each page that constitutes the iovec.
206 *
207 * Returns the number of bytes not faulted in (like copy_to_user() and
208 * copy_from_user()).
209 *
210 * Always returns 0 for non-userspace iterators.
211 */
212 size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
213 {
214 if (iter_is_ubuf(i)) {
215 size_t n = min(size, iov_iter_count(i));
216 n -= fault_in_readable(i->ubuf + i->iov_offset, n);
217 return size - n;
218 } else if (iter_is_iovec(i)) {
219 size_t count = min(size, iov_iter_count(i));
220 const struct iovec *p;
221 size_t skip;
222
223 size -= count;
224 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
225 size_t len = min(count, p->iov_len - skip);
226 size_t ret;
227
228 if (unlikely(!len))
229 continue;
230 ret = fault_in_readable(p->iov_base + skip, len);
231 count -= len - ret;
232 if (ret)
233 break;
234 }
235 return count + size;
236 }
237 return 0;
238 }
239 EXPORT_SYMBOL(fault_in_iov_iter_readable);
240
241 /*
242 * fault_in_iov_iter_writeable - fault in iov iterator for writing
243 * @i: iterator
244 * @size: maximum length
245 *
246 * Faults in the iterator using get_user_pages(), i.e., without triggering
247 * hardware page faults. This is primarily useful when we already know that
248 * some or all of the pages in @i aren't in memory.
249 *
250 * Returns the number of bytes not faulted in, like copy_to_user() and
251 * copy_from_user().
252 *
253 * Always returns 0 for non-user-space iterators.
254 */
255 size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
256 {
257 if (iter_is_ubuf(i)) {
258 size_t n = min(size, iov_iter_count(i));
259 n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
260 return size - n;
261 } else if (iter_is_iovec(i)) {
262 size_t count = min(size, iov_iter_count(i));
263 const struct iovec *p;
264 size_t skip;
265
266 size -= count;
267 for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
268 size_t len = min(count, p->iov_len - skip);
269 size_t ret;
270
271 if (unlikely(!len))
272 continue;
273 ret = fault_in_safe_writeable(p->iov_base + skip, len);
274 count -= len - ret;
275 if (ret)
276 break;
277 }
278 return count + size;
279 }
280 return 0;
281 }
282 EXPORT_SYMBOL(fault_in_iov_iter_writeable);
283
284 void iov_iter_init(struct iov_iter *i, unsigned int direction,
285 const struct iovec *iov, unsigned long nr_segs,
286 size_t count)
287 {
288 WARN_ON(direction & ~(READ | WRITE));
289 *i = (struct iov_iter) {
290 .iter_type = ITER_IOVEC,
291 .copy_mc = false,
292 .nofault = false,
293 .user_backed = true,
294 .data_source = direction,
295 .__iov = iov,
296 .nr_segs = nr_segs,
297 .iov_offset = 0,
298 .count = count
299 };
300 }
301 EXPORT_SYMBOL(iov_iter_init);
302
303 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
304 __wsum sum, size_t off)
305 {
306 __wsum next = csum_partial_copy_nocheck(from, to, len);
307 return csum_block_add(sum, next, off);
308 }
309
310 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
311 {
312 if (WARN_ON_ONCE(i->data_source))
313 return 0;
314 if (user_backed_iter(i))
315 might_fault();
316 iterate_and_advance(i, bytes, base, len, off,
317 copyout(base, addr + off, len),
318 memcpy(base, addr + off, len)
319 )
320
321 return bytes;
322 }
323 EXPORT_SYMBOL(_copy_to_iter);
324
325 #ifdef CONFIG_ARCH_HAS_COPY_MC
326 static int copyout_mc(void __user *to, const void *from, size_t n)
327 {
328 if (access_ok(to, n)) {
329 instrument_copy_to_user(to, from, n);
330 n = copy_mc_to_user((__force void *) to, from, n);
331 }
332 return n;
333 }
334
335 /**
336 * _copy_mc_to_iter - copy to iter with source memory error exception handling
337 * @addr: source kernel address
338 * @bytes: total transfer length
339 * @i: destination iterator
340 *
341 * The pmem driver deploys this for the dax operation
342 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
343 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
344 * successfully copied.
345 *
346 * The main differences between this and typical _copy_to_iter().
347 *
348 * * Typical tail/residue handling after a fault retries the copy
349 * byte-by-byte until the fault happens again. Re-triggering machine
350 * checks is potentially fatal so the implementation uses source
351 * alignment and poison alignment assumptions to avoid re-triggering
352 * hardware exceptions.
353 *
354 * * ITER_KVEC and ITER_BVEC can return short copies. Compare to
355 * copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
356 *
357 * Return: number of bytes copied (may be %0)
358 */
359 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
360 {
361 if (WARN_ON_ONCE(i->data_source))
362 return 0;
363 if (user_backed_iter(i))
364 might_fault();
365 __iterate_and_advance(i, bytes, base, len, off,
366 copyout_mc(base, addr + off, len),
367 copy_mc_to_kernel(base, addr + off, len)
368 )
369
370 return bytes;
371 }
372 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
373 #endif /* CONFIG_ARCH_HAS_COPY_MC */
374
375 static void *memcpy_from_iter(struct iov_iter *i, void *to, const void *from,
376 size_t size)
377 {
378 if (iov_iter_is_copy_mc(i))
379 return (void *)copy_mc_to_kernel(to, from, size);
380 return memcpy(to, from, size);
381 }
382
383 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
384 {
385 if (WARN_ON_ONCE(!i->data_source))
386 return 0;
387
388 if (user_backed_iter(i))
389 might_fault();
390 iterate_and_advance(i, bytes, base, len, off,
391 copyin(addr + off, base, len),
392 memcpy_from_iter(i, addr + off, base, len)
393 )
394
395 return bytes;
396 }
397 EXPORT_SYMBOL(_copy_from_iter);
398
399 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
400 {
401 if (WARN_ON_ONCE(!i->data_source))
402 return 0;
403
404 iterate_and_advance(i, bytes, base, len, off,
405 __copy_from_user_inatomic_nocache(addr + off, base, len),
406 memcpy(addr + off, base, len)
407 )
408
409 return bytes;
410 }
411 EXPORT_SYMBOL(_copy_from_iter_nocache);
412
413 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
414 /**
415 * _copy_from_iter_flushcache - write destination through cpu cache
416 * @addr: destination kernel address
417 * @bytes: total transfer length
418 * @i: source iterator
419 *
420 * The pmem driver arranges for filesystem-dax to use this facility via
421 * dax_copy_from_iter() for ensuring that writes to persistent memory
422 * are flushed through the CPU cache. It is differentiated from
423 * _copy_from_iter_nocache() in that guarantees all data is flushed for
424 * all iterator types. The _copy_from_iter_nocache() only attempts to
425 * bypass the cache for the ITER_IOVEC case, and on some archs may use
426 * instructions that strand dirty-data in the cache.
427 *
428 * Return: number of bytes copied (may be %0)
429 */
430 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
431 {
432 if (WARN_ON_ONCE(!i->data_source))
433 return 0;
434
435 iterate_and_advance(i, bytes, base, len, off,
436 __copy_from_user_flushcache(addr + off, base, len),
437 memcpy_flushcache(addr + off, base, len)
438 )
439
440 return bytes;
441 }
442 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
443 #endif
444
445 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
446 {
447 struct page *head;
448 size_t v = n + offset;
449
450 /*
451 * The general case needs to access the page order in order
452 * to compute the page size.
453 * However, we mostly deal with order-0 pages and thus can
454 * avoid a possible cache line miss for requests that fit all
455 * page orders.
456 */
457 if (n <= v && v <= PAGE_SIZE)
458 return true;
459
460 head = compound_head(page);
461 v += (page - head) << PAGE_SHIFT;
462
463 if (WARN_ON(n > v || v > page_size(head)))
464 return false;
465 return true;
466 }
467
468 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
469 struct iov_iter *i)
470 {
471 size_t res = 0;
472 if (!page_copy_sane(page, offset, bytes))
473 return 0;
474 if (WARN_ON_ONCE(i->data_source))
475 return 0;
476 page += offset / PAGE_SIZE; // first subpage
477 offset %= PAGE_SIZE;
478 while (1) {
479 void *kaddr = kmap_local_page(page);
480 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
481 n = _copy_to_iter(kaddr + offset, n, i);
482 kunmap_local(kaddr);
483 res += n;
484 bytes -= n;
485 if (!bytes || !n)
486 break;
487 offset += n;
488 if (offset == PAGE_SIZE) {
489 page++;
490 offset = 0;
491 }
492 }
493 return res;
494 }
495 EXPORT_SYMBOL(copy_page_to_iter);
496
497 size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
498 struct iov_iter *i)
499 {
500 size_t res = 0;
501
502 if (!page_copy_sane(page, offset, bytes))
503 return 0;
504 if (WARN_ON_ONCE(i->data_source))
505 return 0;
506 page += offset / PAGE_SIZE; // first subpage
507 offset %= PAGE_SIZE;
508 while (1) {
509 void *kaddr = kmap_local_page(page);
510 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
511
512 iterate_and_advance(i, n, base, len, off,
513 copyout_nofault(base, kaddr + offset + off, len),
514 memcpy(base, kaddr + offset + off, len)
515 )
516 kunmap_local(kaddr);
517 res += n;
518 bytes -= n;
519 if (!bytes || !n)
520 break;
521 offset += n;
522 if (offset == PAGE_SIZE) {
523 page++;
524 offset = 0;
525 }
526 }
527 return res;
528 }
529 EXPORT_SYMBOL(copy_page_to_iter_nofault);
530
531 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
532 struct iov_iter *i)
533 {
534 size_t res = 0;
535 if (!page_copy_sane(page, offset, bytes))
536 return 0;
537 page += offset / PAGE_SIZE; // first subpage
538 offset %= PAGE_SIZE;
539 while (1) {
540 void *kaddr = kmap_local_page(page);
541 size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
542 n = _copy_from_iter(kaddr + offset, n, i);
543 kunmap_local(kaddr);
544 res += n;
545 bytes -= n;
546 if (!bytes || !n)
547 break;
548 offset += n;
549 if (offset == PAGE_SIZE) {
550 page++;
551 offset = 0;
552 }
553 }
554 return res;
555 }
556 EXPORT_SYMBOL(copy_page_from_iter);
557
558 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
559 {
560 iterate_and_advance(i, bytes, base, len, count,
561 clear_user(base, len),
562 memset(base, 0, len)
563 )
564
565 return bytes;
566 }
567 EXPORT_SYMBOL(iov_iter_zero);
568
569 size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
570 size_t bytes, struct iov_iter *i)
571 {
572 size_t n, copied = 0;
573
574 if (!page_copy_sane(page, offset, bytes))
575 return 0;
576 if (WARN_ON_ONCE(!i->data_source))
577 return 0;
578
579 do {
580 char *p;
581
582 n = bytes - copied;
583 if (PageHighMem(page)) {
584 page += offset / PAGE_SIZE;
585 offset %= PAGE_SIZE;
586 n = min_t(size_t, n, PAGE_SIZE - offset);
587 }
588
589 p = kmap_atomic(page) + offset;
590 iterate_and_advance(i, n, base, len, off,
591 copyin(p + off, base, len),
592 memcpy_from_iter(i, p + off, base, len)
593 )
594 kunmap_atomic(p);
595 copied += n;
596 offset += n;
597 } while (PageHighMem(page) && copied != bytes && n > 0);
598
599 return copied;
600 }
601 EXPORT_SYMBOL(copy_page_from_iter_atomic);
602
603 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
604 {
605 const struct bio_vec *bvec, *end;
606
607 if (!i->count)
608 return;
609 i->count -= size;
610
611 size += i->iov_offset;
612
613 for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
614 if (likely(size < bvec->bv_len))
615 break;
616 size -= bvec->bv_len;
617 }
618 i->iov_offset = size;
619 i->nr_segs -= bvec - i->bvec;
620 i->bvec = bvec;
621 }
622
623 static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
624 {
625 const struct iovec *iov, *end;
626
627 if (!i->count)
628 return;
629 i->count -= size;
630
631 size += i->iov_offset; // from beginning of current segment
632 for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
633 if (likely(size < iov->iov_len))
634 break;
635 size -= iov->iov_len;
636 }
637 i->iov_offset = size;
638 i->nr_segs -= iov - iter_iov(i);
639 i->__iov = iov;
640 }
641
642 void iov_iter_advance(struct iov_iter *i, size_t size)
643 {
644 if (unlikely(i->count < size))
645 size = i->count;
646 if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
647 i->iov_offset += size;
648 i->count -= size;
649 } else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
650 /* iovec and kvec have identical layouts */
651 iov_iter_iovec_advance(i, size);
652 } else if (iov_iter_is_bvec(i)) {
653 iov_iter_bvec_advance(i, size);
654 } else if (iov_iter_is_discard(i)) {
655 i->count -= size;
656 }
657 }
658 EXPORT_SYMBOL(iov_iter_advance);
659
660 void iov_iter_revert(struct iov_iter *i, size_t unroll)
661 {
662 if (!unroll)
663 return;
664 if (WARN_ON(unroll > MAX_RW_COUNT))
665 return;
666 i->count += unroll;
667 if (unlikely(iov_iter_is_discard(i)))
668 return;
669 if (unroll <= i->iov_offset) {
670 i->iov_offset -= unroll;
671 return;
672 }
673 unroll -= i->iov_offset;
674 if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
675 BUG(); /* We should never go beyond the start of the specified
676 * range since we might then be straying into pages that
677 * aren't pinned.
678 */
679 } else if (iov_iter_is_bvec(i)) {
680 const struct bio_vec *bvec = i->bvec;
681 while (1) {
682 size_t n = (--bvec)->bv_len;
683 i->nr_segs++;
684 if (unroll <= n) {
685 i->bvec = bvec;
686 i->iov_offset = n - unroll;
687 return;
688 }
689 unroll -= n;
690 }
691 } else { /* same logics for iovec and kvec */
692 const struct iovec *iov = iter_iov(i);
693 while (1) {
694 size_t n = (--iov)->iov_len;
695 i->nr_segs++;
696 if (unroll <= n) {
697 i->__iov = iov;
698 i->iov_offset = n - unroll;
699 return;
700 }
701 unroll -= n;
702 }
703 }
704 }
705 EXPORT_SYMBOL(iov_iter_revert);
706
707 /*
708 * Return the count of just the current iov_iter segment.
709 */
710 size_t iov_iter_single_seg_count(const struct iov_iter *i)
711 {
712 if (i->nr_segs > 1) {
713 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
714 return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
715 if (iov_iter_is_bvec(i))
716 return min(i->count, i->bvec->bv_len - i->iov_offset);
717 }
718 return i->count;
719 }
720 EXPORT_SYMBOL(iov_iter_single_seg_count);
721
722 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
723 const struct kvec *kvec, unsigned long nr_segs,
724 size_t count)
725 {
726 WARN_ON(direction & ~(READ | WRITE));
727 *i = (struct iov_iter){
728 .iter_type = ITER_KVEC,
729 .copy_mc = false,
730 .data_source = direction,
731 .kvec = kvec,
732 .nr_segs = nr_segs,
733 .iov_offset = 0,
734 .count = count
735 };
736 }
737 EXPORT_SYMBOL(iov_iter_kvec);
738
739 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
740 const struct bio_vec *bvec, unsigned long nr_segs,
741 size_t count)
742 {
743 WARN_ON(direction & ~(READ | WRITE));
744 *i = (struct iov_iter){
745 .iter_type = ITER_BVEC,
746 .copy_mc = false,
747 .data_source = direction,
748 .bvec = bvec,
749 .nr_segs = nr_segs,
750 .iov_offset = 0,
751 .count = count
752 };
753 }
754 EXPORT_SYMBOL(iov_iter_bvec);
755
756 /**
757 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
758 * @i: The iterator to initialise.
759 * @direction: The direction of the transfer.
760 * @xarray: The xarray to access.
761 * @start: The start file position.
762 * @count: The size of the I/O buffer in bytes.
763 *
764 * Set up an I/O iterator to either draw data out of the pages attached to an
765 * inode or to inject data into those pages. The pages *must* be prevented
766 * from evaporation, either by taking a ref on them or locking them by the
767 * caller.
768 */
769 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
770 struct xarray *xarray, loff_t start, size_t count)
771 {
772 BUG_ON(direction & ~1);
773 *i = (struct iov_iter) {
774 .iter_type = ITER_XARRAY,
775 .copy_mc = false,
776 .data_source = direction,
777 .xarray = xarray,
778 .xarray_start = start,
779 .count = count,
780 .iov_offset = 0
781 };
782 }
783 EXPORT_SYMBOL(iov_iter_xarray);
784
785 /**
786 * iov_iter_discard - Initialise an I/O iterator that discards data
787 * @i: The iterator to initialise.
788 * @direction: The direction of the transfer.
789 * @count: The size of the I/O buffer in bytes.
790 *
791 * Set up an I/O iterator that just discards everything that's written to it.
792 * It's only available as a READ iterator.
793 */
794 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
795 {
796 BUG_ON(direction != READ);
797 *i = (struct iov_iter){
798 .iter_type = ITER_DISCARD,
799 .copy_mc = false,
800 .data_source = false,
801 .count = count,
802 .iov_offset = 0
803 };
804 }
805 EXPORT_SYMBOL(iov_iter_discard);
806
807 static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
808 unsigned len_mask)
809 {
810 size_t size = i->count;
811 size_t skip = i->iov_offset;
812 unsigned k;
813
814 for (k = 0; k < i->nr_segs; k++, skip = 0) {
815 const struct iovec *iov = iter_iov(i) + k;
816 size_t len = iov->iov_len - skip;
817
818 if (len > size)
819 len = size;
820 if (len & len_mask)
821 return false;
822 if ((unsigned long)(iov->iov_base + skip) & addr_mask)
823 return false;
824
825 size -= len;
826 if (!size)
827 break;
828 }
829 return true;
830 }
831
832 static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
833 unsigned len_mask)
834 {
835 size_t size = i->count;
836 unsigned skip = i->iov_offset;
837 unsigned k;
838
839 for (k = 0; k < i->nr_segs; k++, skip = 0) {
840 size_t len = i->bvec[k].bv_len - skip;
841
842 if (len > size)
843 len = size;
844 if (len & len_mask)
845 return false;
846 if ((unsigned long)(i->bvec[k].bv_offset + skip) & addr_mask)
847 return false;
848
849 size -= len;
850 if (!size)
851 break;
852 }
853 return true;
854 }
855
856 /**
857 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
858 * are aligned to the parameters.
859 *
860 * @i: &struct iov_iter to restore
861 * @addr_mask: bit mask to check against the iov element's addresses
862 * @len_mask: bit mask to check against the iov element's lengths
863 *
864 * Return: false if any addresses or lengths intersect with the provided masks
865 */
866 bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
867 unsigned len_mask)
868 {
869 if (likely(iter_is_ubuf(i))) {
870 if (i->count & len_mask)
871 return false;
872 if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
873 return false;
874 return true;
875 }
876
877 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
878 return iov_iter_aligned_iovec(i, addr_mask, len_mask);
879
880 if (iov_iter_is_bvec(i))
881 return iov_iter_aligned_bvec(i, addr_mask, len_mask);
882
883 if (iov_iter_is_xarray(i)) {
884 if (i->count & len_mask)
885 return false;
886 if ((i->xarray_start + i->iov_offset) & addr_mask)
887 return false;
888 }
889
890 return true;
891 }
892 EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
893
894 static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
895 {
896 unsigned long res = 0;
897 size_t size = i->count;
898 size_t skip = i->iov_offset;
899 unsigned k;
900
901 for (k = 0; k < i->nr_segs; k++, skip = 0) {
902 const struct iovec *iov = iter_iov(i) + k;
903 size_t len = iov->iov_len - skip;
904 if (len) {
905 res |= (unsigned long)iov->iov_base + skip;
906 if (len > size)
907 len = size;
908 res |= len;
909 size -= len;
910 if (!size)
911 break;
912 }
913 }
914 return res;
915 }
916
917 static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
918 {
919 unsigned res = 0;
920 size_t size = i->count;
921 unsigned skip = i->iov_offset;
922 unsigned k;
923
924 for (k = 0; k < i->nr_segs; k++, skip = 0) {
925 size_t len = i->bvec[k].bv_len - skip;
926 res |= (unsigned long)i->bvec[k].bv_offset + skip;
927 if (len > size)
928 len = size;
929 res |= len;
930 size -= len;
931 if (!size)
932 break;
933 }
934 return res;
935 }
936
937 unsigned long iov_iter_alignment(const struct iov_iter *i)
938 {
939 if (likely(iter_is_ubuf(i))) {
940 size_t size = i->count;
941 if (size)
942 return ((unsigned long)i->ubuf + i->iov_offset) | size;
943 return 0;
944 }
945
946 /* iovec and kvec have identical layouts */
947 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
948 return iov_iter_alignment_iovec(i);
949
950 if (iov_iter_is_bvec(i))
951 return iov_iter_alignment_bvec(i);
952
953 if (iov_iter_is_xarray(i))
954 return (i->xarray_start + i->iov_offset) | i->count;
955
956 return 0;
957 }
958 EXPORT_SYMBOL(iov_iter_alignment);
959
960 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
961 {
962 unsigned long res = 0;
963 unsigned long v = 0;
964 size_t size = i->count;
965 unsigned k;
966
967 if (iter_is_ubuf(i))
968 return 0;
969
970 if (WARN_ON(!iter_is_iovec(i)))
971 return ~0U;
972
973 for (k = 0; k < i->nr_segs; k++) {
974 const struct iovec *iov = iter_iov(i) + k;
975 if (iov->iov_len) {
976 unsigned long base = (unsigned long)iov->iov_base;
977 if (v) // if not the first one
978 res |= base | v; // this start | previous end
979 v = base + iov->iov_len;
980 if (size <= iov->iov_len)
981 break;
982 size -= iov->iov_len;
983 }
984 }
985 return res;
986 }
987 EXPORT_SYMBOL(iov_iter_gap_alignment);
988
989 static int want_pages_array(struct page ***res, size_t size,
990 size_t start, unsigned int maxpages)
991 {
992 unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
993
994 if (count > maxpages)
995 count = maxpages;
996 WARN_ON(!count); // caller should've prevented that
997 if (!*res) {
998 *res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
999 if (!*res)
1000 return 0;
1001 }
1002 return count;
1003 }
1004
1005 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1006 pgoff_t index, unsigned int nr_pages)
1007 {
1008 XA_STATE(xas, xa, index);
1009 struct page *page;
1010 unsigned int ret = 0;
1011
1012 rcu_read_lock();
1013 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1014 if (xas_retry(&xas, page))
1015 continue;
1016
1017 /* Has the page moved or been split? */
1018 if (unlikely(page != xas_reload(&xas))) {
1019 xas_reset(&xas);
1020 continue;
1021 }
1022
1023 pages[ret] = find_subpage(page, xas.xa_index);
1024 get_page(pages[ret]);
1025 if (++ret == nr_pages)
1026 break;
1027 }
1028 rcu_read_unlock();
1029 return ret;
1030 }
1031
1032 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1033 struct page ***pages, size_t maxsize,
1034 unsigned maxpages, size_t *_start_offset)
1035 {
1036 unsigned nr, offset, count;
1037 pgoff_t index;
1038 loff_t pos;
1039
1040 pos = i->xarray_start + i->iov_offset;
1041 index = pos >> PAGE_SHIFT;
1042 offset = pos & ~PAGE_MASK;
1043 *_start_offset = offset;
1044
1045 count = want_pages_array(pages, maxsize, offset, maxpages);
1046 if (!count)
1047 return -ENOMEM;
1048 nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
1049 if (nr == 0)
1050 return 0;
1051
1052 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1053 i->iov_offset += maxsize;
1054 i->count -= maxsize;
1055 return maxsize;
1056 }
1057
1058 /* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
1059 static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
1060 {
1061 size_t skip;
1062 long k;
1063
1064 if (iter_is_ubuf(i))
1065 return (unsigned long)i->ubuf + i->iov_offset;
1066
1067 for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
1068 const struct iovec *iov = iter_iov(i) + k;
1069 size_t len = iov->iov_len - skip;
1070
1071 if (unlikely(!len))
1072 continue;
1073 if (*size > len)
1074 *size = len;
1075 return (unsigned long)iov->iov_base + skip;
1076 }
1077 BUG(); // if it had been empty, we wouldn't get called
1078 }
1079
1080 /* must be done on non-empty ITER_BVEC one */
1081 static struct page *first_bvec_segment(const struct iov_iter *i,
1082 size_t *size, size_t *start)
1083 {
1084 struct page *page;
1085 size_t skip = i->iov_offset, len;
1086
1087 len = i->bvec->bv_len - skip;
1088 if (*size > len)
1089 *size = len;
1090 skip += i->bvec->bv_offset;
1091 page = i->bvec->bv_page + skip / PAGE_SIZE;
1092 *start = skip % PAGE_SIZE;
1093 return page;
1094 }
1095
1096 static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
1097 struct page ***pages, size_t maxsize,
1098 unsigned int maxpages, size_t *start)
1099 {
1100 unsigned int n, gup_flags = 0;
1101
1102 if (maxsize > i->count)
1103 maxsize = i->count;
1104 if (!maxsize)
1105 return 0;
1106 if (maxsize > MAX_RW_COUNT)
1107 maxsize = MAX_RW_COUNT;
1108
1109 if (likely(user_backed_iter(i))) {
1110 unsigned long addr;
1111 int res;
1112
1113 if (iov_iter_rw(i) != WRITE)
1114 gup_flags |= FOLL_WRITE;
1115 if (i->nofault)
1116 gup_flags |= FOLL_NOFAULT;
1117
1118 addr = first_iovec_segment(i, &maxsize);
1119 *start = addr % PAGE_SIZE;
1120 addr &= PAGE_MASK;
1121 n = want_pages_array(pages, maxsize, *start, maxpages);
1122 if (!n)
1123 return -ENOMEM;
1124 res = get_user_pages_fast(addr, n, gup_flags, *pages);
1125 if (unlikely(res <= 0))
1126 return res;
1127 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1128 iov_iter_advance(i, maxsize);
1129 return maxsize;
1130 }
1131 if (iov_iter_is_bvec(i)) {
1132 struct page **p;
1133 struct page *page;
1134
1135 page = first_bvec_segment(i, &maxsize, start);
1136 n = want_pages_array(pages, maxsize, *start, maxpages);
1137 if (!n)
1138 return -ENOMEM;
1139 p = *pages;
1140 for (int k = 0; k < n; k++)
1141 get_page(p[k] = page + k);
1142 maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1143 i->count -= maxsize;
1144 i->iov_offset += maxsize;
1145 if (i->iov_offset == i->bvec->bv_len) {
1146 i->iov_offset = 0;
1147 i->bvec++;
1148 i->nr_segs--;
1149 }
1150 return maxsize;
1151 }
1152 if (iov_iter_is_xarray(i))
1153 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1154 return -EFAULT;
1155 }
1156
1157 ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1158 size_t maxsize, unsigned maxpages, size_t *start)
1159 {
1160 if (!maxpages)
1161 return 0;
1162 BUG_ON(!pages);
1163
1164 return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1165 }
1166 EXPORT_SYMBOL(iov_iter_get_pages2);
1167
1168 ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1169 struct page ***pages, size_t maxsize, size_t *start)
1170 {
1171 ssize_t len;
1172
1173 *pages = NULL;
1174
1175 len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1176 if (len <= 0) {
1177 kvfree(*pages);
1178 *pages = NULL;
1179 }
1180 return len;
1181 }
1182 EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1183
1184 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1185 struct iov_iter *i)
1186 {
1187 __wsum sum, next;
1188 sum = *csum;
1189 if (WARN_ON_ONCE(!i->data_source))
1190 return 0;
1191
1192 iterate_and_advance(i, bytes, base, len, off, ({
1193 next = csum_and_copy_from_user(base, addr + off, len);
1194 sum = csum_block_add(sum, next, off);
1195 next ? 0 : len;
1196 }), ({
1197 sum = csum_and_memcpy(addr + off, base, len, sum, off);
1198 })
1199 )
1200 *csum = sum;
1201 return bytes;
1202 }
1203 EXPORT_SYMBOL(csum_and_copy_from_iter);
1204
1205 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1206 struct iov_iter *i)
1207 {
1208 struct csum_state *csstate = _csstate;
1209 __wsum sum, next;
1210
1211 if (WARN_ON_ONCE(i->data_source))
1212 return 0;
1213 if (unlikely(iov_iter_is_discard(i))) {
1214 // can't use csum_memcpy() for that one - data is not copied
1215 csstate->csum = csum_block_add(csstate->csum,
1216 csum_partial(addr, bytes, 0),
1217 csstate->off);
1218 csstate->off += bytes;
1219 return bytes;
1220 }
1221
1222 sum = csum_shift(csstate->csum, csstate->off);
1223 iterate_and_advance(i, bytes, base, len, off, ({
1224 next = csum_and_copy_to_user(addr + off, base, len);
1225 sum = csum_block_add(sum, next, off);
1226 next ? 0 : len;
1227 }), ({
1228 sum = csum_and_memcpy(base, addr + off, len, sum, off);
1229 })
1230 )
1231 csstate->csum = csum_shift(sum, csstate->off);
1232 csstate->off += bytes;
1233 return bytes;
1234 }
1235 EXPORT_SYMBOL(csum_and_copy_to_iter);
1236
1237 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1238 struct iov_iter *i)
1239 {
1240 #ifdef CONFIG_CRYPTO_HASH
1241 struct ahash_request *hash = hashp;
1242 struct scatterlist sg;
1243 size_t copied;
1244
1245 copied = copy_to_iter(addr, bytes, i);
1246 sg_init_one(&sg, addr, copied);
1247 ahash_request_set_crypt(hash, &sg, NULL, copied);
1248 crypto_ahash_update(hash);
1249 return copied;
1250 #else
1251 return 0;
1252 #endif
1253 }
1254 EXPORT_SYMBOL(hash_and_copy_to_iter);
1255
1256 static int iov_npages(const struct iov_iter *i, int maxpages)
1257 {
1258 size_t skip = i->iov_offset, size = i->count;
1259 const struct iovec *p;
1260 int npages = 0;
1261
1262 for (p = iter_iov(i); size; skip = 0, p++) {
1263 unsigned offs = offset_in_page(p->iov_base + skip);
1264 size_t len = min(p->iov_len - skip, size);
1265
1266 if (len) {
1267 size -= len;
1268 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1269 if (unlikely(npages > maxpages))
1270 return maxpages;
1271 }
1272 }
1273 return npages;
1274 }
1275
1276 static int bvec_npages(const struct iov_iter *i, int maxpages)
1277 {
1278 size_t skip = i->iov_offset, size = i->count;
1279 const struct bio_vec *p;
1280 int npages = 0;
1281
1282 for (p = i->bvec; size; skip = 0, p++) {
1283 unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1284 size_t len = min(p->bv_len - skip, size);
1285
1286 size -= len;
1287 npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1288 if (unlikely(npages > maxpages))
1289 return maxpages;
1290 }
1291 return npages;
1292 }
1293
1294 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1295 {
1296 if (unlikely(!i->count))
1297 return 0;
1298 if (likely(iter_is_ubuf(i))) {
1299 unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1300 int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1301 return min(npages, maxpages);
1302 }
1303 /* iovec and kvec have identical layouts */
1304 if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1305 return iov_npages(i, maxpages);
1306 if (iov_iter_is_bvec(i))
1307 return bvec_npages(i, maxpages);
1308 if (iov_iter_is_xarray(i)) {
1309 unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1310 int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1311 return min(npages, maxpages);
1312 }
1313 return 0;
1314 }
1315 EXPORT_SYMBOL(iov_iter_npages);
1316
1317 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1318 {
1319 *new = *old;
1320 if (iov_iter_is_bvec(new))
1321 return new->bvec = kmemdup(new->bvec,
1322 new->nr_segs * sizeof(struct bio_vec),
1323 flags);
1324 else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1325 /* iovec and kvec have identical layout */
1326 return new->__iov = kmemdup(new->__iov,
1327 new->nr_segs * sizeof(struct iovec),
1328 flags);
1329 return NULL;
1330 }
1331 EXPORT_SYMBOL(dup_iter);
1332
1333 static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1334 const struct iovec __user *uvec, unsigned long nr_segs)
1335 {
1336 const struct compat_iovec __user *uiov =
1337 (const struct compat_iovec __user *)uvec;
1338 int ret = -EFAULT, i;
1339
1340 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1341 return -EFAULT;
1342
1343 for (i = 0; i < nr_segs; i++) {
1344 compat_uptr_t buf;
1345 compat_ssize_t len;
1346
1347 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1348 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1349
1350 /* check for compat_size_t not fitting in compat_ssize_t .. */
1351 if (len < 0) {
1352 ret = -EINVAL;
1353 goto uaccess_end;
1354 }
1355 iov[i].iov_base = compat_ptr(buf);
1356 iov[i].iov_len = len;
1357 }
1358
1359 ret = 0;
1360 uaccess_end:
1361 user_access_end();
1362 return ret;
1363 }
1364
1365 static __noclone int copy_iovec_from_user(struct iovec *iov,
1366 const struct iovec __user *uiov, unsigned long nr_segs)
1367 {
1368 int ret = -EFAULT;
1369
1370 if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1371 return -EFAULT;
1372
1373 do {
1374 void __user *buf;
1375 ssize_t len;
1376
1377 unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1378 unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1379
1380 /* check for size_t not fitting in ssize_t .. */
1381 if (unlikely(len < 0)) {
1382 ret = -EINVAL;
1383 goto uaccess_end;
1384 }
1385 iov->iov_base = buf;
1386 iov->iov_len = len;
1387
1388 uiov++; iov++;
1389 } while (--nr_segs);
1390
1391 ret = 0;
1392 uaccess_end:
1393 user_access_end();
1394 return ret;
1395 }
1396
1397 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1398 unsigned long nr_segs, unsigned long fast_segs,
1399 struct iovec *fast_iov, bool compat)
1400 {
1401 struct iovec *iov = fast_iov;
1402 int ret;
1403
1404 /*
1405 * SuS says "The readv() function *may* fail if the iovcnt argument was
1406 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1407 * traditionally returned zero for zero segments, so...
1408 */
1409 if (nr_segs == 0)
1410 return iov;
1411 if (nr_segs > UIO_MAXIOV)
1412 return ERR_PTR(-EINVAL);
1413 if (nr_segs > fast_segs) {
1414 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1415 if (!iov)
1416 return ERR_PTR(-ENOMEM);
1417 }
1418
1419 if (unlikely(compat))
1420 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1421 else
1422 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1423 if (ret) {
1424 if (iov != fast_iov)
1425 kfree(iov);
1426 return ERR_PTR(ret);
1427 }
1428
1429 return iov;
1430 }
1431
1432 /*
1433 * Single segment iovec supplied by the user, import it as ITER_UBUF.
1434 */
1435 static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1436 struct iovec **iovp, struct iov_iter *i,
1437 bool compat)
1438 {
1439 struct iovec *iov = *iovp;
1440 ssize_t ret;
1441
1442 if (compat)
1443 ret = copy_compat_iovec_from_user(iov, uvec, 1);
1444 else
1445 ret = copy_iovec_from_user(iov, uvec, 1);
1446 if (unlikely(ret))
1447 return ret;
1448
1449 ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1450 if (unlikely(ret))
1451 return ret;
1452 *iovp = NULL;
1453 return i->count;
1454 }
1455
1456 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1457 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1458 struct iov_iter *i, bool compat)
1459 {
1460 ssize_t total_len = 0;
1461 unsigned long seg;
1462 struct iovec *iov;
1463
1464 if (nr_segs == 1)
1465 return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1466
1467 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1468 if (IS_ERR(iov)) {
1469 *iovp = NULL;
1470 return PTR_ERR(iov);
1471 }
1472
1473 /*
1474 * According to the Single Unix Specification we should return EINVAL if
1475 * an element length is < 0 when cast to ssize_t or if the total length
1476 * would overflow the ssize_t return value of the system call.
1477 *
1478 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1479 * overflow case.
1480 */
1481 for (seg = 0; seg < nr_segs; seg++) {
1482 ssize_t len = (ssize_t)iov[seg].iov_len;
1483
1484 if (!access_ok(iov[seg].iov_base, len)) {
1485 if (iov != *iovp)
1486 kfree(iov);
1487 *iovp = NULL;
1488 return -EFAULT;
1489 }
1490
1491 if (len > MAX_RW_COUNT - total_len) {
1492 len = MAX_RW_COUNT - total_len;
1493 iov[seg].iov_len = len;
1494 }
1495 total_len += len;
1496 }
1497
1498 iov_iter_init(i, type, iov, nr_segs, total_len);
1499 if (iov == *iovp)
1500 *iovp = NULL;
1501 else
1502 *iovp = iov;
1503 return total_len;
1504 }
1505
1506 /**
1507 * import_iovec() - Copy an array of &struct iovec from userspace
1508 * into the kernel, check that it is valid, and initialize a new
1509 * &struct iov_iter iterator to access it.
1510 *
1511 * @type: One of %READ or %WRITE.
1512 * @uvec: Pointer to the userspace array.
1513 * @nr_segs: Number of elements in userspace array.
1514 * @fast_segs: Number of elements in @iov.
1515 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1516 * on-stack) kernel array.
1517 * @i: Pointer to iterator that will be initialized on success.
1518 *
1519 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1520 * then this function places %NULL in *@iov on return. Otherwise, a new
1521 * array will be allocated and the result placed in *@iov. This means that
1522 * the caller may call kfree() on *@iov regardless of whether the small
1523 * on-stack array was used or not (and regardless of whether this function
1524 * returns an error or not).
1525 *
1526 * Return: Negative error code on error, bytes imported on success
1527 */
1528 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1529 unsigned nr_segs, unsigned fast_segs,
1530 struct iovec **iovp, struct iov_iter *i)
1531 {
1532 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1533 in_compat_syscall());
1534 }
1535 EXPORT_SYMBOL(import_iovec);
1536
1537 int import_single_range(int rw, void __user *buf, size_t len,
1538 struct iovec *iov, struct iov_iter *i)
1539 {
1540 if (len > MAX_RW_COUNT)
1541 len = MAX_RW_COUNT;
1542 if (unlikely(!access_ok(buf, len)))
1543 return -EFAULT;
1544
1545 iov_iter_ubuf(i, rw, buf, len);
1546 return 0;
1547 }
1548 EXPORT_SYMBOL(import_single_range);
1549
1550 int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1551 {
1552 if (len > MAX_RW_COUNT)
1553 len = MAX_RW_COUNT;
1554 if (unlikely(!access_ok(buf, len)))
1555 return -EFAULT;
1556
1557 iov_iter_ubuf(i, rw, buf, len);
1558 return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(import_ubuf);
1561
1562 /**
1563 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1564 * iov_iter_save_state() was called.
1565 *
1566 * @i: &struct iov_iter to restore
1567 * @state: state to restore from
1568 *
1569 * Used after iov_iter_save_state() to bring restore @i, if operations may
1570 * have advanced it.
1571 *
1572 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1573 */
1574 void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1575 {
1576 if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1577 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1578 return;
1579 i->iov_offset = state->iov_offset;
1580 i->count = state->count;
1581 if (iter_is_ubuf(i))
1582 return;
1583 /*
1584 * For the *vec iters, nr_segs + iov is constant - if we increment
1585 * the vec, then we also decrement the nr_segs count. Hence we don't
1586 * need to track both of these, just one is enough and we can deduct
1587 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1588 * size, so we can just increment the iov pointer as they are unionzed.
1589 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1590 * not. Be safe and handle it separately.
1591 */
1592 BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1593 if (iov_iter_is_bvec(i))
1594 i->bvec -= state->nr_segs - i->nr_segs;
1595 else
1596 i->__iov -= state->nr_segs - i->nr_segs;
1597 i->nr_segs = state->nr_segs;
1598 }
1599
1600 /*
1601 * Extract a list of contiguous pages from an ITER_XARRAY iterator. This does not
1602 * get references on the pages, nor does it get a pin on them.
1603 */
1604 static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1605 struct page ***pages, size_t maxsize,
1606 unsigned int maxpages,
1607 iov_iter_extraction_t extraction_flags,
1608 size_t *offset0)
1609 {
1610 struct page *page, **p;
1611 unsigned int nr = 0, offset;
1612 loff_t pos = i->xarray_start + i->iov_offset;
1613 pgoff_t index = pos >> PAGE_SHIFT;
1614 XA_STATE(xas, i->xarray, index);
1615
1616 offset = pos & ~PAGE_MASK;
1617 *offset0 = offset;
1618
1619 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1620 if (!maxpages)
1621 return -ENOMEM;
1622 p = *pages;
1623
1624 rcu_read_lock();
1625 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1626 if (xas_retry(&xas, page))
1627 continue;
1628
1629 /* Has the page moved or been split? */
1630 if (unlikely(page != xas_reload(&xas))) {
1631 xas_reset(&xas);
1632 continue;
1633 }
1634
1635 p[nr++] = find_subpage(page, xas.xa_index);
1636 if (nr == maxpages)
1637 break;
1638 }
1639 rcu_read_unlock();
1640
1641 maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1642 iov_iter_advance(i, maxsize);
1643 return maxsize;
1644 }
1645
1646 /*
1647 * Extract a list of contiguous pages from an ITER_BVEC iterator. This does
1648 * not get references on the pages, nor does it get a pin on them.
1649 */
1650 static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1651 struct page ***pages, size_t maxsize,
1652 unsigned int maxpages,
1653 iov_iter_extraction_t extraction_flags,
1654 size_t *offset0)
1655 {
1656 struct page **p, *page;
1657 size_t skip = i->iov_offset, offset;
1658 int k;
1659
1660 for (;;) {
1661 if (i->nr_segs == 0)
1662 return 0;
1663 maxsize = min(maxsize, i->bvec->bv_len - skip);
1664 if (maxsize)
1665 break;
1666 i->iov_offset = 0;
1667 i->nr_segs--;
1668 i->bvec++;
1669 skip = 0;
1670 }
1671
1672 skip += i->bvec->bv_offset;
1673 page = i->bvec->bv_page + skip / PAGE_SIZE;
1674 offset = skip % PAGE_SIZE;
1675 *offset0 = offset;
1676
1677 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1678 if (!maxpages)
1679 return -ENOMEM;
1680 p = *pages;
1681 for (k = 0; k < maxpages; k++)
1682 p[k] = page + k;
1683
1684 maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
1685 iov_iter_advance(i, maxsize);
1686 return maxsize;
1687 }
1688
1689 /*
1690 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1691 * This does not get references on the pages, nor does it get a pin on them.
1692 */
1693 static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1694 struct page ***pages, size_t maxsize,
1695 unsigned int maxpages,
1696 iov_iter_extraction_t extraction_flags,
1697 size_t *offset0)
1698 {
1699 struct page **p, *page;
1700 const void *kaddr;
1701 size_t skip = i->iov_offset, offset, len;
1702 int k;
1703
1704 for (;;) {
1705 if (i->nr_segs == 0)
1706 return 0;
1707 maxsize = min(maxsize, i->kvec->iov_len - skip);
1708 if (maxsize)
1709 break;
1710 i->iov_offset = 0;
1711 i->nr_segs--;
1712 i->kvec++;
1713 skip = 0;
1714 }
1715
1716 kaddr = i->kvec->iov_base + skip;
1717 offset = (unsigned long)kaddr & ~PAGE_MASK;
1718 *offset0 = offset;
1719
1720 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1721 if (!maxpages)
1722 return -ENOMEM;
1723 p = *pages;
1724
1725 kaddr -= offset;
1726 len = offset + maxsize;
1727 for (k = 0; k < maxpages; k++) {
1728 size_t seg = min_t(size_t, len, PAGE_SIZE);
1729
1730 if (is_vmalloc_or_module_addr(kaddr))
1731 page = vmalloc_to_page(kaddr);
1732 else
1733 page = virt_to_page(kaddr);
1734
1735 p[k] = page;
1736 len -= seg;
1737 kaddr += PAGE_SIZE;
1738 }
1739
1740 maxsize = min_t(size_t, maxsize, maxpages * PAGE_SIZE - offset);
1741 iov_iter_advance(i, maxsize);
1742 return maxsize;
1743 }
1744
1745 /*
1746 * Extract a list of contiguous pages from a user iterator and get a pin on
1747 * each of them. This should only be used if the iterator is user-backed
1748 * (IOBUF/UBUF).
1749 *
1750 * It does not get refs on the pages, but the pages must be unpinned by the
1751 * caller once the transfer is complete.
1752 *
1753 * This is safe to be used where background IO/DMA *is* going to be modifying
1754 * the buffer; using a pin rather than a ref makes forces fork() to give the
1755 * child a copy of the page.
1756 */
1757 static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1758 struct page ***pages,
1759 size_t maxsize,
1760 unsigned int maxpages,
1761 iov_iter_extraction_t extraction_flags,
1762 size_t *offset0)
1763 {
1764 unsigned long addr;
1765 unsigned int gup_flags = 0;
1766 size_t offset;
1767 int res;
1768
1769 if (i->data_source == ITER_DEST)
1770 gup_flags |= FOLL_WRITE;
1771 if (extraction_flags & ITER_ALLOW_P2PDMA)
1772 gup_flags |= FOLL_PCI_P2PDMA;
1773 if (i->nofault)
1774 gup_flags |= FOLL_NOFAULT;
1775
1776 addr = first_iovec_segment(i, &maxsize);
1777 *offset0 = offset = addr % PAGE_SIZE;
1778 addr &= PAGE_MASK;
1779 maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1780 if (!maxpages)
1781 return -ENOMEM;
1782 res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1783 if (unlikely(res <= 0))
1784 return res;
1785 maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1786 iov_iter_advance(i, maxsize);
1787 return maxsize;
1788 }
1789
1790 /**
1791 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1792 * @i: The iterator to extract from
1793 * @pages: Where to return the list of pages
1794 * @maxsize: The maximum amount of iterator to extract
1795 * @maxpages: The maximum size of the list of pages
1796 * @extraction_flags: Flags to qualify request
1797 * @offset0: Where to return the starting offset into (*@pages)[0]
1798 *
1799 * Extract a list of contiguous pages from the current point of the iterator,
1800 * advancing the iterator. The maximum number of pages and the maximum amount
1801 * of page contents can be set.
1802 *
1803 * If *@pages is NULL, a page list will be allocated to the required size and
1804 * *@pages will be set to its base. If *@pages is not NULL, it will be assumed
1805 * that the caller allocated a page list at least @maxpages in size and this
1806 * will be filled in.
1807 *
1808 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1809 * be allowed on the pages extracted.
1810 *
1811 * The iov_iter_extract_will_pin() function can be used to query how cleanup
1812 * should be performed.
1813 *
1814 * Extra refs or pins on the pages may be obtained as follows:
1815 *
1816 * (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1817 * added to the pages, but refs will not be taken.
1818 * iov_iter_extract_will_pin() will return true.
1819 *
1820 * (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1821 * merely listed; no extra refs or pins are obtained.
1822 * iov_iter_extract_will_pin() will return 0.
1823 *
1824 * Note also:
1825 *
1826 * (*) Use with ITER_DISCARD is not supported as that has no content.
1827 *
1828 * On success, the function sets *@pages to the new pagelist, if allocated, and
1829 * sets *offset0 to the offset into the first page.
1830 *
1831 * It may also return -ENOMEM and -EFAULT.
1832 */
1833 ssize_t iov_iter_extract_pages(struct iov_iter *i,
1834 struct page ***pages,
1835 size_t maxsize,
1836 unsigned int maxpages,
1837 iov_iter_extraction_t extraction_flags,
1838 size_t *offset0)
1839 {
1840 maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1841 if (!maxsize)
1842 return 0;
1843
1844 if (likely(user_backed_iter(i)))
1845 return iov_iter_extract_user_pages(i, pages, maxsize,
1846 maxpages, extraction_flags,
1847 offset0);
1848 if (iov_iter_is_kvec(i))
1849 return iov_iter_extract_kvec_pages(i, pages, maxsize,
1850 maxpages, extraction_flags,
1851 offset0);
1852 if (iov_iter_is_bvec(i))
1853 return iov_iter_extract_bvec_pages(i, pages, maxsize,
1854 maxpages, extraction_flags,
1855 offset0);
1856 if (iov_iter_is_xarray(i))
1857 return iov_iter_extract_xarray_pages(i, pages, maxsize,
1858 maxpages, extraction_flags,
1859 offset0);
1860 return -EFAULT;
1861 }
1862 EXPORT_SYMBOL_GPL(iov_iter_extract_pages);