]> git.ipfire.org Git - thirdparty/u-boot.git/blob - lib/lmb.c
bb6f232f6bc50791ac1249b2938d08d301891190
[thirdparty/u-boot.git] / lib / lmb.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <alist.h>
10 #include <efi_loader.h>
11 #include <event.h>
12 #include <image.h>
13 #include <mapmem.h>
14 #include <lmb.h>
15 #include <log.h>
16 #include <malloc.h>
17 #include <spl.h>
18
19 #include <asm/global_data.h>
20 #include <asm/sections.h>
21 #include <linux/kernel.h>
22 #include <linux/sizes.h>
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 #define LMB_RGN_OVERLAP 1
27 #define LMB_RGN_ADJACENT 2
28
29 /*
30 * The following low level LMB functions must not access the global LMB memory
31 * map since they are also used to manage IOVA memory maps in iommu drivers like
32 * apple_dart.
33 */
34
35 static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
36 phys_addr_t base2, phys_size_t size2)
37 {
38 const phys_addr_t base1_end = base1 + size1 - 1;
39 const phys_addr_t base2_end = base2 + size2 - 1;
40
41 return ((base1 <= base2_end) && (base2 <= base1_end));
42 }
43
44 static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
45 phys_addr_t base2, phys_size_t size2)
46 {
47 if (base2 == base1 + size1)
48 return 1;
49 else if (base1 == base2 + size2)
50 return -1;
51
52 return 0;
53 }
54
55 /**
56 * lmb_regions_check() - Check if the regions overlap, or are adjacent
57 * @lmb_rgn_lst: List of LMB regions
58 * @r1: First region to check
59 * @r2: Second region to check
60 *
61 * Check if the two regions with matching flags, r1 and r2 are
62 * adjacent to each other, or if they overlap.
63 *
64 * Return:
65 * * %LMB_RGN_OVERLAP - Regions overlap
66 * * %LMB_RGN_ADJACENT - Regions adjacent to each other
67 * * 0 - Neither of the above, or flags mismatch
68 */
69 static long lmb_regions_check(struct alist *lmb_rgn_lst, unsigned long r1,
70 unsigned long r2)
71 {
72 struct lmb_region *rgn = lmb_rgn_lst->data;
73 phys_addr_t base1 = rgn[r1].base;
74 phys_size_t size1 = rgn[r1].size;
75 phys_addr_t base2 = rgn[r2].base;
76 phys_size_t size2 = rgn[r2].size;
77
78 if (rgn[r1].flags != rgn[r2].flags)
79 return 0;
80
81 if (lmb_addrs_overlap(base1, size1, base2, size2))
82 return LMB_RGN_OVERLAP;
83 else if (lmb_addrs_adjacent(base1, size1, base2, size2))
84 return LMB_RGN_ADJACENT;
85
86 return 0;
87 }
88
89 static void lmb_remove_region(struct alist *lmb_rgn_lst, unsigned long r)
90 {
91 unsigned long i;
92 struct lmb_region *rgn = lmb_rgn_lst->data;
93
94 for (i = r; i < lmb_rgn_lst->count - 1; i++) {
95 rgn[i].base = rgn[i + 1].base;
96 rgn[i].size = rgn[i + 1].size;
97 rgn[i].flags = rgn[i + 1].flags;
98 }
99 lmb_rgn_lst->count--;
100 }
101
102 /* Assumption: base addr of region 1 < base addr of region 2 */
103 static void lmb_coalesce_regions(struct alist *lmb_rgn_lst, unsigned long r1,
104 unsigned long r2)
105 {
106 struct lmb_region *rgn = lmb_rgn_lst->data;
107
108 rgn[r1].size += rgn[r2].size;
109 lmb_remove_region(lmb_rgn_lst, r2);
110 }
111
112 static long lmb_resize_regions(struct alist *lmb_rgn_lst,
113 unsigned long idx_start,
114 phys_addr_t base, phys_size_t size)
115 {
116 phys_size_t rgnsize;
117 unsigned long rgn_cnt, idx, idx_end;
118 phys_addr_t rgnbase, rgnend;
119 phys_addr_t mergebase, mergeend;
120 struct lmb_region *rgn = lmb_rgn_lst->data;
121
122 rgn_cnt = 0;
123 idx = idx_start;
124 idx_end = idx_start;
125
126 /*
127 * First thing to do is to identify how many regions
128 * the requested region overlaps.
129 * If the flags match, combine all these overlapping
130 * regions into a single region, and remove the merged
131 * regions.
132 */
133 while (idx <= lmb_rgn_lst->count - 1) {
134 rgnbase = rgn[idx].base;
135 rgnsize = rgn[idx].size;
136
137 if (lmb_addrs_overlap(base, size, rgnbase,
138 rgnsize)) {
139 if (rgn[idx].flags != LMB_NONE)
140 return -1;
141 rgn_cnt++;
142 idx_end = idx;
143 }
144 idx++;
145 }
146
147 /* The merged region's base and size */
148 rgnbase = rgn[idx_start].base;
149 mergebase = min(base, rgnbase);
150 rgnend = rgn[idx_end].base + rgn[idx_end].size;
151 mergeend = max(rgnend, (base + size));
152
153 rgn[idx_start].base = mergebase;
154 rgn[idx_start].size = mergeend - mergebase;
155
156 /* Now remove the merged regions */
157 while (--rgn_cnt)
158 lmb_remove_region(lmb_rgn_lst, idx_start + 1);
159
160 return 0;
161 }
162
163 /**
164 * lmb_add_region_flags() - Add an lmb region to the given list
165 * @lmb_rgn_lst: LMB list to which region is to be added(free/used)
166 * @base: Start address of the region
167 * @size: Size of the region to be added
168 * @flags: Attributes of the LMB region
169 *
170 * Add a region of memory to the list. If the region does not exist, add
171 * it to the list. Depending on the attributes of the region to be added,
172 * the function might resize an already existing region or coalesce two
173 * adjacent regions.
174 *
175 * Return:
176 * * %0 - Added successfully, or it's already added (only if LMB_NONE)
177 * * %-EEXIST - The region is already added, and flags != LMB_NONE
178 * * %-1 - Failure
179 */
180 static long lmb_add_region_flags(struct alist *lmb_rgn_lst, phys_addr_t base,
181 phys_size_t size, u32 flags)
182 {
183 unsigned long coalesced = 0;
184 long ret, i;
185 struct lmb_region *rgn = lmb_rgn_lst->data;
186
187 if (alist_err(lmb_rgn_lst))
188 return -1;
189
190 /* First try and coalesce this LMB with another. */
191 for (i = 0; i < lmb_rgn_lst->count; i++) {
192 phys_addr_t rgnbase = rgn[i].base;
193 phys_size_t rgnsize = rgn[i].size;
194 u32 rgnflags = rgn[i].flags;
195
196 ret = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
197 if (ret > 0) {
198 if (flags != rgnflags)
199 break;
200 rgn[i].base -= size;
201 rgn[i].size += size;
202 coalesced++;
203 break;
204 } else if (ret < 0) {
205 if (flags != rgnflags)
206 continue;
207 rgn[i].size += size;
208 coalesced++;
209 break;
210 } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
211 ret = lmb_resize_regions(lmb_rgn_lst, i, base, size);
212 if (ret < 0)
213 return -1;
214
215 coalesced++;
216 break;
217
218 return -1;
219 }
220 }
221
222 if (lmb_rgn_lst->count && i < lmb_rgn_lst->count - 1) {
223 ret = lmb_regions_check(lmb_rgn_lst, i, i + 1);
224 if (ret == LMB_RGN_ADJACENT) {
225 lmb_coalesce_regions(lmb_rgn_lst, i, i + 1);
226 coalesced++;
227 } else if (ret == LMB_RGN_OVERLAP) {
228 /* fix overlapping areas */
229 phys_addr_t rgnbase = rgn[i].base;
230 phys_size_t rgnsize = rgn[i].size;
231
232 ret = lmb_resize_regions(lmb_rgn_lst, i,
233 rgnbase, rgnsize);
234 if (ret < 0)
235 return -1;
236
237 coalesced++;
238 }
239 }
240
241 if (coalesced)
242 return 0;
243
244 if (alist_full(lmb_rgn_lst) &&
245 !alist_expand_by(lmb_rgn_lst, lmb_rgn_lst->alloc))
246 return -1;
247 rgn = lmb_rgn_lst->data;
248
249 /* Couldn't coalesce the LMB, so add it to the sorted table. */
250 for (i = lmb_rgn_lst->count; i >= 0; i--) {
251 if (i && base < rgn[i - 1].base) {
252 rgn[i] = rgn[i - 1];
253 } else {
254 rgn[i].base = base;
255 rgn[i].size = size;
256 rgn[i].flags = flags;
257 break;
258 }
259 }
260
261 lmb_rgn_lst->count++;
262
263 return 0;
264 }
265
266 static long _lmb_free(struct alist *lmb_rgn_lst, phys_addr_t base,
267 phys_size_t size)
268 {
269 struct lmb_region *rgn;
270 phys_addr_t rgnbegin, rgnend;
271 phys_addr_t end = base + size - 1;
272 int i;
273
274 /* Suppress GCC warnings */
275 rgnbegin = 0;
276 rgnend = 0;
277
278 rgn = lmb_rgn_lst->data;
279 /* Find the region where (base, size) belongs to */
280 for (i = 0; i < lmb_rgn_lst->count; i++) {
281 rgnbegin = rgn[i].base;
282 rgnend = rgnbegin + rgn[i].size - 1;
283
284 if (rgnbegin <= base && end <= rgnend)
285 break;
286 }
287
288 /* Didn't find the region */
289 if (i == lmb_rgn_lst->count)
290 return -1;
291
292 /* Check to see if we are removing entire region */
293 if (rgnbegin == base && rgnend == end) {
294 lmb_remove_region(lmb_rgn_lst, i);
295 return 0;
296 }
297
298 /* Check to see if region is matching at the front */
299 if (rgnbegin == base) {
300 rgn[i].base = end + 1;
301 rgn[i].size -= size;
302 return 0;
303 }
304
305 /* Check to see if the region is matching at the end */
306 if (rgnend == end) {
307 rgn[i].size -= size;
308 return 0;
309 }
310
311 /*
312 * We need to split the entry - adjust the current one to the
313 * beginging of the hole and add the region after hole.
314 */
315 rgn[i].size = base - rgn[i].base;
316 return lmb_add_region_flags(lmb_rgn_lst, end + 1, rgnend - end,
317 rgn[i].flags);
318 }
319
320 static long lmb_overlaps_region(struct alist *lmb_rgn_lst, phys_addr_t base,
321 phys_size_t size)
322 {
323 unsigned long i;
324 struct lmb_region *rgn = lmb_rgn_lst->data;
325
326 for (i = 0; i < lmb_rgn_lst->count; i++) {
327 phys_addr_t rgnbase = rgn[i].base;
328 phys_size_t rgnsize = rgn[i].size;
329
330 if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
331 break;
332 }
333
334 return (i < lmb_rgn_lst->count) ? i : -1;
335 }
336
337 /*
338 * IOVA LMB memory maps using lmb pointers instead of the global LMB memory map.
339 */
340
341 int io_lmb_setup(struct lmb *io_lmb)
342 {
343 int ret;
344
345 ret = alist_init(&io_lmb->available_mem, sizeof(struct lmb_region),
346 (uint)LMB_ALIST_INITIAL_SIZE);
347 if (!ret) {
348 log_debug("Unable to initialise the list for LMB free IOVA\n");
349 return -ENOMEM;
350 }
351
352 ret = alist_init(&io_lmb->used_mem, sizeof(struct lmb_region),
353 (uint)LMB_ALIST_INITIAL_SIZE);
354 if (!ret) {
355 log_debug("Unable to initialise the list for LMB used IOVA\n");
356 return -ENOMEM;
357 }
358
359 io_lmb->test = false;
360
361 return 0;
362 }
363
364 void io_lmb_teardown(struct lmb *io_lmb)
365 {
366 alist_uninit(&io_lmb->available_mem);
367 alist_uninit(&io_lmb->used_mem);
368 }
369
370 long io_lmb_add(struct lmb *io_lmb, phys_addr_t base, phys_size_t size)
371 {
372 return lmb_add_region_flags(&io_lmb->available_mem, base, size, LMB_NONE);
373 }
374
375 /* derived and simplified from _lmb_alloc_base() */
376 phys_addr_t io_lmb_alloc(struct lmb *io_lmb, phys_size_t size, ulong align)
377 {
378 long i, rgn;
379 phys_addr_t base = 0;
380 phys_addr_t res_base;
381 struct lmb_region *lmb_used = io_lmb->used_mem.data;
382 struct lmb_region *lmb_memory = io_lmb->available_mem.data;
383
384 for (i = io_lmb->available_mem.count - 1; i >= 0; i--) {
385 phys_addr_t lmbbase = lmb_memory[i].base;
386 phys_size_t lmbsize = lmb_memory[i].size;
387
388 if (lmbsize < size)
389 continue;
390 base = ALIGN_DOWN(lmbbase + lmbsize - size, align);
391
392 while (base && lmbbase <= base) {
393 rgn = lmb_overlaps_region(&io_lmb->used_mem, base, size);
394 if (rgn < 0) {
395 /* This area isn't reserved, take it */
396 if (lmb_add_region_flags(&io_lmb->used_mem, base,
397 size, LMB_NONE) < 0)
398 return 0;
399
400 return base;
401 }
402
403 res_base = lmb_used[rgn].base;
404 if (res_base < size)
405 break;
406 base = ALIGN_DOWN(res_base - size, align);
407 }
408 }
409 return 0;
410 }
411
412 long io_lmb_free(struct lmb *io_lmb, phys_addr_t base, phys_size_t size)
413 {
414 return _lmb_free(&io_lmb->used_mem, base, size);
415 }
416
417 /*
418 * Low level LMB functions are used to manage IOVA memory maps for the Apple
419 * dart iommu. They must not access the global LMB memory map.
420 * So keep the global LMB variable declaration unreachable from them.
421 */
422
423 static struct lmb lmb;
424
425 static int lmb_map_update_notify(phys_addr_t addr, phys_size_t size,
426 enum lmb_map_op op, u32 flags)
427 {
428 if (CONFIG_IS_ENABLED(EFI_LOADER) &&
429 !lmb.test && !(flags & LMB_NONOTIFY))
430 return efi_map_update_notify(addr, size, op);
431
432 return 0;
433 }
434
435 static void lmb_print_region_flags(u32 flags)
436 {
437 const char * const flag_str[] = { "none", "no-map", "no-overwrite",
438 "no-notify" };
439 unsigned int pflags = flags &
440 (LMB_NOMAP | LMB_NOOVERWRITE | LMB_NONOTIFY);
441
442 if (flags != pflags) {
443 printf("invalid %#x\n", flags);
444 return;
445 }
446
447 do {
448 int bitpos = pflags ? fls(pflags) - 1 : 0;
449
450 printf("%s", flag_str[bitpos]);
451 pflags &= ~(1u << bitpos);
452 puts(pflags ? ", " : "\n");
453 } while (pflags);
454 }
455
456 static void lmb_dump_region(struct alist *lmb_rgn_lst, char *name)
457 {
458 struct lmb_region *rgn = lmb_rgn_lst->data;
459 unsigned long long base, size, end;
460 u32 flags;
461 int i;
462
463 printf(" %s.count = %#x\n", name, lmb_rgn_lst->count);
464
465 for (i = 0; i < lmb_rgn_lst->count; i++) {
466 base = rgn[i].base;
467 size = rgn[i].size;
468 end = base + size - 1;
469 flags = rgn[i].flags;
470
471 printf(" %s[%d]\t[%#llx-%#llx], %#llx bytes, flags: ",
472 name, i, base, end, size);
473 lmb_print_region_flags(flags);
474 }
475 }
476
477 void lmb_dump_all_force(void)
478 {
479 printf("lmb_dump_all:\n");
480 lmb_dump_region(&lmb.available_mem, "memory");
481 lmb_dump_region(&lmb.used_mem, "reserved");
482 }
483
484 void lmb_dump_all(void)
485 {
486 #ifdef DEBUG
487 lmb_dump_all_force();
488 #endif
489 }
490
491 static void lmb_reserve_uboot_region(void)
492 {
493 int bank;
494 ulong end, bank_end;
495 phys_addr_t rsv_start;
496
497 rsv_start = gd->start_addr_sp - CONFIG_STACK_SIZE;
498 end = gd->ram_top;
499
500 /*
501 * Reserve memory from aligned address below the bottom of U-Boot stack
502 * until end of RAM area to prevent LMB from overwriting that memory.
503 */
504 debug("## Current stack ends at 0x%08lx ", (ulong)rsv_start);
505
506 for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
507 if (!gd->bd->bi_dram[bank].size ||
508 rsv_start < gd->bd->bi_dram[bank].start)
509 continue;
510 /* Watch out for RAM at end of address space! */
511 bank_end = gd->bd->bi_dram[bank].start +
512 gd->bd->bi_dram[bank].size - 1;
513 if (rsv_start > bank_end)
514 continue;
515 if (bank_end > end)
516 bank_end = end - 1;
517
518 lmb_reserve(rsv_start, bank_end - rsv_start + 1, LMB_NOOVERWRITE);
519
520 if (gd->flags & GD_FLG_SKIP_RELOC)
521 lmb_reserve((phys_addr_t)(uintptr_t)_start,
522 gd->mon_len, LMB_NOOVERWRITE);
523
524 break;
525 }
526 }
527
528 static void lmb_reserve_common(void *fdt_blob)
529 {
530 lmb_reserve_uboot_region();
531
532 if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
533 boot_fdt_add_mem_rsv_regions(fdt_blob);
534 }
535
536 static __maybe_unused void lmb_reserve_common_spl(void)
537 {
538 phys_addr_t rsv_start;
539 phys_size_t rsv_size;
540
541 /*
542 * Assume a SPL stack of 16KB. This must be
543 * more than enough for the SPL stage.
544 */
545 if (IS_ENABLED(CONFIG_SPL_STACK_R_ADDR)) {
546 rsv_start = gd->start_addr_sp - 16384;
547 rsv_size = 16384;
548 lmb_reserve(rsv_start, rsv_size, LMB_NOOVERWRITE);
549 }
550
551 if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) {
552 /* Reserve the bss region */
553 rsv_start = (phys_addr_t)(uintptr_t)__bss_start;
554 rsv_size = (phys_addr_t)(uintptr_t)__bss_end -
555 (phys_addr_t)(uintptr_t)__bss_start;
556 lmb_reserve(rsv_start, rsv_size, LMB_NOOVERWRITE);
557 }
558 }
559
560 /**
561 * lmb_can_reserve_region() - check if the region can be reserved
562 * @base: base address of region to be reserved
563 * @size: size of region to be reserved
564 * @flags: flag of the region to be reserved
565 *
566 * Go through all the reserved regions and ensure that the requested
567 * region does not overlap with any existing regions. An overlap is
568 * allowed only when the flag of the request region and the existing
569 * region is LMB_NONE.
570 *
571 * Return: true if region can be reserved, false otherwise
572 */
573 static bool lmb_can_reserve_region(phys_addr_t base, phys_size_t size,
574 u32 flags)
575 {
576 uint i;
577 struct lmb_region *lmb_reserved = lmb.used_mem.data;
578
579 for (i = 0; i < lmb.used_mem.count; i++) {
580 u32 rgnflags = lmb_reserved[i].flags;
581 phys_addr_t rgnbase = lmb_reserved[i].base;
582 phys_size_t rgnsize = lmb_reserved[i].size;
583
584 if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
585 if (flags != LMB_NONE || flags != rgnflags)
586 return false;
587 }
588 }
589
590 return true;
591 }
592
593 void lmb_add_memory(void)
594 {
595 int i;
596 phys_addr_t bank_end;
597 phys_size_t size;
598 u64 ram_top = gd->ram_top;
599 struct bd_info *bd = gd->bd;
600
601 if (CONFIG_IS_ENABLED(LMB_ARCH_MEM_MAP))
602 return lmb_arch_add_memory();
603
604 /* Assume a 4GB ram_top if not defined */
605 if (!ram_top)
606 ram_top = 0x100000000ULL;
607
608 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
609 size = bd->bi_dram[i].size;
610 bank_end = bd->bi_dram[i].start + size;
611
612 if (size) {
613 lmb_add(bd->bi_dram[i].start, size);
614
615 /*
616 * Reserve memory above ram_top as
617 * no-overwrite so that it cannot be
618 * allocated
619 */
620 if (bd->bi_dram[i].start >= ram_top)
621 lmb_reserve(bd->bi_dram[i].start, size,
622 LMB_NOOVERWRITE);
623 else if (bank_end > ram_top)
624 lmb_reserve(ram_top, bank_end - ram_top,
625 LMB_NOOVERWRITE);
626 }
627 }
628 }
629
630 /* This routine may be called with relocation disabled. */
631 long lmb_add(phys_addr_t base, phys_size_t size)
632 {
633 long ret;
634 struct alist *lmb_rgn_lst = &lmb.available_mem;
635
636 ret = lmb_add_region_flags(lmb_rgn_lst, base, size, LMB_NONE);
637 if (ret)
638 return ret;
639
640 return lmb_map_update_notify(base, size, LMB_MAP_OP_ADD, LMB_NONE);
641 }
642
643 long lmb_free_flags(phys_addr_t base, phys_size_t size,
644 uint flags)
645 {
646 long ret;
647
648 ret = _lmb_free(&lmb.used_mem, base, size);
649 if (ret < 0)
650 return ret;
651
652 return lmb_map_update_notify(base, size, LMB_MAP_OP_FREE, flags);
653 }
654
655 long lmb_free(phys_addr_t base, phys_size_t size)
656 {
657 return lmb_free_flags(base, size, LMB_NONE);
658 }
659
660 long lmb_reserve(phys_addr_t base, phys_size_t size, u32 flags)
661 {
662 long ret = 0;
663 struct alist *lmb_rgn_lst = &lmb.used_mem;
664
665 if (!lmb_can_reserve_region(base, size, flags))
666 return -EEXIST;
667
668 ret = lmb_add_region_flags(lmb_rgn_lst, base, size, flags);
669 if (ret)
670 return ret;
671
672 return lmb_map_update_notify(base, size, LMB_MAP_OP_RESERVE, flags);
673 }
674
675 static phys_addr_t _lmb_alloc_base(phys_size_t size, ulong align,
676 phys_addr_t max_addr, u32 flags)
677 {
678 int ret;
679 long i, rgn;
680 phys_addr_t base = 0;
681 phys_addr_t res_base;
682 struct lmb_region *lmb_used = lmb.used_mem.data;
683 struct lmb_region *lmb_memory = lmb.available_mem.data;
684
685 for (i = lmb.available_mem.count - 1; i >= 0; i--) {
686 phys_addr_t lmbbase = lmb_memory[i].base;
687 phys_size_t lmbsize = lmb_memory[i].size;
688
689 if (lmbsize < size)
690 continue;
691
692 if (max_addr == LMB_ALLOC_ANYWHERE) {
693 base = ALIGN_DOWN(lmbbase + lmbsize - size, align);
694 } else if (lmbbase < max_addr) {
695 base = lmbbase + lmbsize;
696 if (base < lmbbase)
697 base = -1;
698 base = min(base, max_addr);
699 base = ALIGN_DOWN(base - size, align);
700 } else {
701 continue;
702 }
703
704 while (base && lmbbase <= base) {
705 rgn = lmb_overlaps_region(&lmb.used_mem, base, size);
706 if (rgn < 0) {
707 /* This area isn't reserved, take it */
708 if (lmb_add_region_flags(&lmb.used_mem, base,
709 size, flags))
710 return 0;
711
712 ret = lmb_map_update_notify(base, size,
713 LMB_MAP_OP_RESERVE,
714 flags);
715 if (ret)
716 return ret;
717
718 return base;
719 }
720
721 res_base = lmb_used[rgn].base;
722 if (res_base < size)
723 break;
724 base = ALIGN_DOWN(res_base - size, align);
725 }
726 }
727
728 log_debug("%s: Failed to allocate 0x%lx bytes below 0x%lx\n",
729 __func__, (ulong)size, (ulong)max_addr);
730
731 return 0;
732 }
733
734 phys_addr_t lmb_alloc(phys_size_t size, ulong align)
735 {
736 return _lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE, LMB_NONE);
737 }
738
739 phys_addr_t lmb_alloc_base(phys_size_t size, ulong align, phys_addr_t max_addr,
740 uint flags)
741 {
742 return _lmb_alloc_base(size, align, max_addr, flags);
743 }
744
745 int lmb_alloc_addr(phys_addr_t base, phys_size_t size, u32 flags)
746 {
747 long rgn;
748 struct lmb_region *lmb_memory = lmb.available_mem.data;
749
750 /* Check if the requested address is in one of the memory regions */
751 rgn = lmb_overlaps_region(&lmb.available_mem, base, size);
752 if (rgn >= 0) {
753 /*
754 * Check if the requested end address is in the same memory
755 * region we found.
756 */
757 if (lmb_addrs_overlap(lmb_memory[rgn].base,
758 lmb_memory[rgn].size,
759 base + size - 1, 1)) {
760 /* ok, reserve the memory */
761 if (!lmb_reserve(base, size, flags))
762 return 0;
763 }
764 }
765
766 return -1;
767 }
768
769 /* Return number of bytes from a given address that are free */
770 phys_size_t lmb_get_free_size(phys_addr_t addr)
771 {
772 int i;
773 long rgn;
774 struct lmb_region *lmb_used = lmb.used_mem.data;
775 struct lmb_region *lmb_memory = lmb.available_mem.data;
776
777 /* check if the requested address is in the memory regions */
778 rgn = lmb_overlaps_region(&lmb.available_mem, addr, 1);
779 if (rgn >= 0) {
780 for (i = 0; i < lmb.used_mem.count; i++) {
781 if (addr < lmb_used[i].base) {
782 /* first reserved range > requested address */
783 return lmb_used[i].base - addr;
784 }
785 if (lmb_used[i].base +
786 lmb_used[i].size > addr) {
787 /* requested addr is in this reserved range */
788 return 0;
789 }
790 }
791 /* if we come here: no reserved ranges above requested addr */
792 return lmb_memory[lmb.available_mem.count - 1].base +
793 lmb_memory[lmb.available_mem.count - 1].size - addr;
794 }
795 return 0;
796 }
797
798 int lmb_is_reserved_flags(phys_addr_t addr, int flags)
799 {
800 int i;
801 struct lmb_region *lmb_used = lmb.used_mem.data;
802
803 for (i = 0; i < lmb.used_mem.count; i++) {
804 phys_addr_t upper = lmb_used[i].base +
805 lmb_used[i].size - 1;
806 if (addr >= lmb_used[i].base && addr <= upper)
807 return (lmb_used[i].flags & flags) == flags;
808 }
809 return 0;
810 }
811
812 static int lmb_setup(bool test)
813 {
814 bool ret;
815
816 ret = alist_init(&lmb.available_mem, sizeof(struct lmb_region),
817 (uint)LMB_ALIST_INITIAL_SIZE);
818 if (!ret) {
819 log_debug("Unable to initialise the list for LMB free memory\n");
820 return -ENOMEM;
821 }
822
823 ret = alist_init(&lmb.used_mem, sizeof(struct lmb_region),
824 (uint)LMB_ALIST_INITIAL_SIZE);
825 if (!ret) {
826 log_debug("Unable to initialise the list for LMB used memory\n");
827 return -ENOMEM;
828 }
829
830 lmb.test = test;
831
832 return 0;
833 }
834
835 int lmb_init(void)
836 {
837 int ret;
838
839 ret = lmb_setup(false);
840 if (ret) {
841 log_info("Unable to init LMB\n");
842 return ret;
843 }
844
845 lmb_add_memory();
846
847 /* Reserve the U-Boot image region once U-Boot has relocated */
848 if (xpl_phase() == PHASE_SPL)
849 lmb_reserve_common_spl();
850 else if (xpl_phase() == PHASE_BOARD_R)
851 lmb_reserve_common((void *)gd->fdt_blob);
852
853 return 0;
854 }
855
856 struct lmb *lmb_get(void)
857 {
858 return &lmb;
859 }
860
861 #if CONFIG_IS_ENABLED(UNIT_TEST)
862 int lmb_push(struct lmb *store)
863 {
864 int ret;
865
866 *store = lmb;
867 ret = lmb_setup(true);
868 if (ret)
869 return ret;
870
871 return 0;
872 }
873
874 void lmb_pop(struct lmb *store)
875 {
876 alist_uninit(&lmb.available_mem);
877 alist_uninit(&lmb.used_mem);
878 lmb = *store;
879 }
880 #endif /* UNIT_TEST */