]> git.ipfire.org Git - thirdparty/util-linux.git/blob - libfdisk/src/gpt.c
libfdisk: fix printf stuff
[thirdparty/util-linux.git] / libfdisk / src / gpt.c
1 /*
2 * Copyright (C) 2007 Karel Zak <kzak@redhat.com>
3 * Copyright (C) 2012 Davidlohr Bueso <dave@gnu.org>
4 *
5 * GUID Partition Table (GPT) support. Based on UEFI Specs 2.3.1
6 * Chapter 5: GUID Partition Table (GPT) Disk Layout (Jun 27th, 2012).
7 * Some ideas and inspiration from GNU parted and gptfdisk.
8 */
9 #include <stdio.h>
10 #include <string.h>
11 #include <stdlib.h>
12 #include <inttypes.h>
13 #include <sys/stat.h>
14 #include <sys/utsname.h>
15 #include <sys/types.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18 #include <errno.h>
19 #include <ctype.h>
20 #include <uuid.h>
21
22 #include "fdiskP.h"
23
24 #include "nls.h"
25 #include "crc32.h"
26 #include "blkdev.h"
27 #include "bitops.h"
28 #include "strutils.h"
29 #include "all-io.h"
30
31 #define GPT_HEADER_SIGNATURE 0x5452415020494645LL /* EFI PART */
32 #define GPT_HEADER_REVISION_V1_02 0x00010200
33 #define GPT_HEADER_REVISION_V1_00 0x00010000
34 #define GPT_HEADER_REVISION_V0_99 0x00009900
35 #define GPT_HEADER_MINSZ 92 /* bytes */
36
37 #define GPT_PMBR_LBA 0
38 #define GPT_MBR_PROTECTIVE 1
39 #define GPT_MBR_HYBRID 2
40
41 #define GPT_PRIMARY_PARTITION_TABLE_LBA 0x00000001
42
43 #define EFI_PMBR_OSTYPE 0xEE
44 #define MSDOS_MBR_SIGNATURE 0xAA55
45 #define GPT_PART_NAME_LEN (72 / sizeof(uint16_t))
46 #define GPT_NPARTITIONS 128
47
48 /* Globally unique identifier */
49 struct gpt_guid {
50 uint32_t time_low;
51 uint16_t time_mid;
52 uint16_t time_hi_and_version;
53 uint8_t clock_seq_hi;
54 uint8_t clock_seq_low;
55 uint8_t node[6];
56 };
57
58
59 /* only checking that the GUID is 0 is enough to verify an empty partition. */
60 #define GPT_UNUSED_ENTRY_GUID \
61 ((struct gpt_guid) { 0x00000000, 0x0000, 0x0000, 0x00, 0x00, \
62 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }})
63
64 /* Linux native partition type */
65 #define GPT_DEFAULT_ENTRY_TYPE "0FC63DAF-8483-4772-8E79-3D69D8477DE4"
66
67 /*
68 * Attribute bits
69 */
70 struct gpt_attr {
71 uint64_t required_to_function:1;
72 uint64_t no_blockio_protocol:1;
73 uint64_t legacy_bios_bootable:1;
74 uint64_t reserved:45;
75 uint64_t guid_secific:16;
76 } __attribute__ ((packed));
77
78 /* The GPT Partition entry array contains an array of GPT entries. */
79 struct gpt_entry {
80 struct gpt_guid type; /* purpose and type of the partition */
81 struct gpt_guid partition_guid;
82 uint64_t lba_start;
83 uint64_t lba_end;
84 struct gpt_attr attr;
85 uint16_t name[GPT_PART_NAME_LEN];
86 } __attribute__ ((packed));
87
88 /* GPT header */
89 struct gpt_header {
90 uint64_t signature; /* header identification */
91 uint32_t revision; /* header version */
92 uint32_t size; /* in bytes */
93 uint32_t crc32; /* header CRC checksum */
94 uint32_t reserved1; /* must be 0 */
95 uint64_t my_lba; /* LBA that contains this struct (LBA 1) */
96 uint64_t alternative_lba; /* backup GPT header */
97 uint64_t first_usable_lba; /* first usable logical block for partitions */
98 uint64_t last_usable_lba; /* last usable logical block for partitions */
99 struct gpt_guid disk_guid; /* unique disk identifier */
100 uint64_t partition_entry_lba; /* stat LBA of the partition entry array */
101 uint32_t npartition_entries; /* total partition entries - normally 128 */
102 uint32_t sizeof_partition_entry; /* bytes for each GUID pt */
103 uint32_t partition_entry_array_crc32; /* partition CRC checksum */
104 uint8_t reserved2[512 - 92]; /* must be 0 */
105 } __attribute__ ((packed));
106
107 struct gpt_record {
108 uint8_t boot_indicator; /* unused by EFI, set to 0x80 for bootable */
109 uint8_t start_head; /* unused by EFI, pt start in CHS */
110 uint8_t start_sector; /* unused by EFI, pt start in CHS */
111 uint8_t start_track;
112 uint8_t os_type; /* EFI and legacy non-EFI OS types */
113 uint8_t end_head; /* unused by EFI, pt end in CHS */
114 uint8_t end_sector; /* unused by EFI, pt end in CHS */
115 uint8_t end_track; /* unused by EFI, pt end in CHS */
116 uint32_t starting_lba; /* used by EFI - start addr of the on disk pt */
117 uint32_t size_in_lba; /* used by EFI - size of pt in LBA */
118 } __attribute__ ((packed));
119
120 /* Protected MBR and legacy MBR share same structure */
121 struct gpt_legacy_mbr {
122 uint8_t boot_code[440];
123 uint32_t unique_mbr_signature;
124 uint16_t unknown;
125 struct gpt_record partition_record[4];
126 uint16_t signature;
127 } __attribute__ ((packed));
128
129 /*
130 * Here be dragons!
131 * See: http://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
132 */
133 #define DEF_GUID(_u, _n) \
134 { \
135 .typestr = (_u), \
136 .name = (_n), \
137 }
138
139 static struct fdisk_parttype gpt_parttypes[] =
140 {
141 /* Generic OS */
142 DEF_GUID("C12A7328-F81F-11D2-BA4B-00A0C93EC93B", N_("EFI System")),
143
144 DEF_GUID("024DEE41-33E7-11D3-9D69-0008C781F39F", N_("MBR partition scheme")),
145 DEF_GUID("D3BFE2DE-3DAF-11DF-BA40-E3A556D89593", N_("Intel Fast Flash")),
146
147 /* Hah!IdontneedEFI */
148 DEF_GUID("21686148-6449-6E6F-744E-656564454649", N_("BIOS boot partition")),
149
150 /* Windows */
151 DEF_GUID("E3C9E316-0B5C-4DB8-817D-F92DF00215AE", N_("Microsoft reserved")),
152 DEF_GUID("EBD0A0A2-B9E5-4433-87C0-68B6B72699C7", N_("Microsoft basic data")),
153 DEF_GUID("5808C8AA-7E8F-42E0-85D2-E1E90434CFB3", N_("Microsoft LDM metadata")),
154 DEF_GUID("AF9B60A0-1431-4F62-BC68-3311714A69AD", N_("Microsoft LDM data")),
155 DEF_GUID("DE94BBA4-06D1-4D40-A16A-BFD50179D6AC", N_("Windows recovery environment")),
156 DEF_GUID("37AFFC90-EF7D-4E96-91C3-2D7AE055B174", N_("IBM General Parallel Fs")),
157
158 /* HP-UX */
159 DEF_GUID("75894C1E-3AEB-11D3-B7C1-7B03A0000000", N_("HP-UX data partition")),
160 DEF_GUID("E2A1E728-32E3-11D6-A682-7B03A0000000", N_("HP-UX service partition")),
161
162 /* Linux */
163 DEF_GUID("0FC63DAF-8483-4772-8E79-3D69D8477DE4", N_("Linux filesystem")),
164 DEF_GUID("A19D880F-05FC-4D3B-A006-743F0F84911E", N_("Linux RAID")),
165 DEF_GUID("0657FD6D-A4AB-43C4-84E5-0933C84B4F4F", N_("Linux swap")),
166 DEF_GUID("E6D6D379-F507-44C2-A23C-238F2A3DF928", N_("Linux LVM")),
167 DEF_GUID("8DA63339-0007-60C0-C436-083AC8230908", N_("Linux reserved")),
168
169 /* FreeBSD */
170 DEF_GUID("516E7CB4-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD data")),
171 DEF_GUID("83BD6B9D-7F41-11DC-BE0B-001560B84F0F", N_("FreeBSD boot")),
172 DEF_GUID("516E7CB5-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD swap")),
173 DEF_GUID("516E7CB6-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD UFS")),
174 DEF_GUID("516E7CBA-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD ZFS")),
175 DEF_GUID("516E7CB8-6ECF-11D6-8FF8-00022D09712B", N_("FreeBSD Vinum")),
176
177 /* Apple OSX */
178 DEF_GUID("48465300-0000-11AA-AA11-00306543ECAC", N_("Apple HFS/HFS+")),
179 DEF_GUID("55465300-0000-11AA-AA11-00306543ECAC", N_("Apple UFS")),
180 DEF_GUID("52414944-0000-11AA-AA11-00306543ECAC", N_("Apple RAID")),
181 DEF_GUID("52414944-5F4F-11AA-AA11-00306543ECAC", N_("Apple RAID offline")),
182 DEF_GUID("426F6F74-0000-11AA-AA11-00306543ECAC", N_("Apple boot")),
183 DEF_GUID("4C616265-6C00-11AA-AA11-00306543ECAC", N_("Apple label")),
184 DEF_GUID("5265636F-7665-11AA-AA11-00306543ECAC", N_("Apple TV recovery")),
185 DEF_GUID("53746F72-6167-11AA-AA11-00306543ECAC", N_("Apple Core storage")),
186
187 /* Solaris */
188 DEF_GUID("6A82CB45-1DD2-11B2-99A6-080020736631", N_("Solaris boot")),
189 DEF_GUID("6A85CF4D-1DD2-11B2-99A6-080020736631", N_("Solaris root")),
190 /* same as Apple ZFS */
191 DEF_GUID("6A898CC3-1DD2-11B2-99A6-080020736631", N_("Solaris /usr & Apple ZFS")),
192 DEF_GUID("6A87C46F-1DD2-11B2-99A6-080020736631", N_("Solaris swap")),
193 DEF_GUID("6A8B642B-1DD2-11B2-99A6-080020736631", N_("Solaris backup")),
194 DEF_GUID("6A8EF2E9-1DD2-11B2-99A6-080020736631", N_("Solaris /var")),
195 DEF_GUID("6A90BA39-1DD2-11B2-99A6-080020736631", N_("Solaris /home")),
196 DEF_GUID("6A9283A5-1DD2-11B2-99A6-080020736631", N_("Solaris alternate sector")),
197 DEF_GUID("6A945A3B-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 1")),
198 DEF_GUID("6A9630D1-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 2")),
199 DEF_GUID("6A980767-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 3")),
200 DEF_GUID("6A96237F-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 4")),
201 DEF_GUID("6A8D2AC7-1DD2-11B2-99A6-080020736631", N_("Solaris reserved 5")),
202
203 /* NetBSD */
204 DEF_GUID("49F48D32-B10E-11DC-B99B-0019D1879648", N_("NetBSD swap")),
205 DEF_GUID("49F48D5A-B10E-11DC-B99B-0019D1879648", N_("NetBSD FFS")),
206 DEF_GUID("49F48D82-B10E-11DC-B99B-0019D1879648", N_("NetBSD LFS")),
207 DEF_GUID("2DB519C4-B10E-11DC-B99B-0019D1879648", N_("NetBSD concatenated")),
208 DEF_GUID("2DB519EC-B10E-11DC-B99B-0019D1879648", N_("NetBSD encrypted")),
209 DEF_GUID("49F48DAA-B10E-11DC-B99B-0019D1879648", N_("NetBSD RAID")),
210
211 /* ChromeOS */
212 DEF_GUID("FE3A2A5D-4F32-41A7-B725-ACCC3285A309", N_("ChromeOS kernel")),
213 DEF_GUID("3CB8E202-3B7E-47DD-8A3C-7FF2A13CFCEC", N_("ChromeOS root fs")),
214 DEF_GUID("2E0A753D-9E48-43B0-8337-B15192CB1B5E", N_("ChromeOS reserved")),
215
216 /* MidnightBSD */
217 DEF_GUID("85D5E45A-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD data")),
218 DEF_GUID("85D5E45E-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD boot")),
219 DEF_GUID("85D5E45B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD swap")),
220 DEF_GUID("0394Ef8B-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD UFS")),
221 DEF_GUID("85D5E45D-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD ZFS")),
222 DEF_GUID("85D5E45C-237C-11E1-B4B3-E89A8F7FC3A7", N_("MidnightBSD Vinum")),
223 };
224
225 /* gpt_entry macros */
226 #define gpt_partition_start(_e) le64_to_cpu((_e)->lba_start)
227 #define gpt_partition_end(_e) le64_to_cpu((_e)->lba_end)
228
229 /*
230 * in-memory fdisk GPT stuff
231 */
232 struct fdisk_gpt_label {
233 struct fdisk_label head; /* generic part */
234
235 /* gpt specific part */
236 struct gpt_header *pheader; /* primary header */
237 struct gpt_header *bheader; /* backup header */
238 struct gpt_entry *ents; /* entries (partitions) */
239 };
240
241 static void gpt_deinit(struct fdisk_label *lb);
242 static struct fdisk_parttype *gpt_get_partition_type(struct fdisk_context *cxt, size_t i);
243
244 static inline struct fdisk_gpt_label *self_label(struct fdisk_context *cxt)
245 {
246 return (struct fdisk_gpt_label *) cxt->label;
247 }
248
249 /*
250 * Returns the partition length, or 0 if end is before beginning.
251 */
252 static uint64_t gpt_partition_size(const struct gpt_entry *e)
253 {
254 uint64_t start = gpt_partition_start(e);
255 uint64_t end = gpt_partition_end(e);
256
257 return start > end ? 0 : end - start + 1ULL;
258 }
259
260 #ifdef CONFIG_LIBFDISK_DEBUG
261 /* prints UUID in the real byte order! */
262 static void dbgprint_uuid(const char *mesg, struct gpt_guid *guid)
263 {
264 const unsigned char *uuid = (unsigned char *) guid;
265
266 fprintf(stderr, "%s: "
267 "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x\n",
268 mesg,
269 uuid[0], uuid[1], uuid[2], uuid[3],
270 uuid[4], uuid[5],
271 uuid[6], uuid[7],
272 uuid[8], uuid[9],
273 uuid[10], uuid[11], uuid[12], uuid[13], uuid[14],uuid[15]);
274 }
275 #endif
276
277 /*
278 * UUID is traditionally 16 byte big-endian array, except Intel EFI
279 * specification where the UUID is a structure of little-endian fields.
280 */
281 static void swap_efi_guid(struct gpt_guid *uid)
282 {
283 uid->time_low = swab32(uid->time_low);
284 uid->time_mid = swab16(uid->time_mid);
285 uid->time_hi_and_version = swab16(uid->time_hi_and_version);
286 }
287
288 static int string_to_guid(const char *in, struct gpt_guid *guid)
289 {
290 if (uuid_parse(in, (unsigned char *) guid)) /* BE */
291 return -1;
292 swap_efi_guid(guid); /* LE */
293 return 0;
294 }
295
296 static char *guid_to_string(struct gpt_guid *guid, char *out)
297 {
298 struct gpt_guid u = *guid; /* LE */
299
300 swap_efi_guid(&u); /* BE */
301 uuid_unparse_upper((unsigned char *) &u, out);
302
303 return out;
304 }
305
306 static const char *gpt_get_header_revstr(struct gpt_header *header)
307 {
308 if (!header)
309 goto unknown;
310
311 switch (header->revision) {
312 case GPT_HEADER_REVISION_V1_02:
313 return "1.2";
314 case GPT_HEADER_REVISION_V1_00:
315 return "1.0";
316 case GPT_HEADER_REVISION_V0_99:
317 return "0.99";
318 default:
319 goto unknown;
320 }
321
322 unknown:
323 return "unknown";
324 }
325
326 static inline int partition_unused(const struct gpt_entry *e)
327 {
328 return !memcmp(&e->type, &GPT_UNUSED_ENTRY_GUID,
329 sizeof(struct gpt_guid));
330 }
331
332 /*
333 * Builds a clean new valid protective MBR - will wipe out any existing data.
334 * Returns 0 on success, otherwise < 0 on error.
335 */
336 static int gpt_mknew_pmbr(struct fdisk_context *cxt)
337 {
338 struct gpt_legacy_mbr *pmbr = NULL;
339
340 if (!cxt || !cxt->firstsector)
341 return -ENOSYS;
342
343 fdisk_zeroize_firstsector(cxt);
344
345 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
346
347 pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
348 pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE;
349 pmbr->partition_record[0].start_sector = 1;
350 pmbr->partition_record[0].end_head = 0xFE;
351 pmbr->partition_record[0].end_sector = 0xFF;
352 pmbr->partition_record[0].end_track = 0xFF;
353 pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
354 pmbr->partition_record[0].size_in_lba =
355 cpu_to_le32(min((uint32_t) cxt->total_sectors - 1, 0xFFFFFFFF));
356
357 return 0;
358 }
359
360 /* some universal differences between the headers */
361 static void gpt_mknew_header_common(struct fdisk_context *cxt,
362 struct gpt_header *header, uint64_t lba)
363 {
364 if (!cxt || !header)
365 return;
366
367 header->my_lba = cpu_to_le64(lba);
368
369 if (lba == GPT_PRIMARY_PARTITION_TABLE_LBA) { /* primary */
370 header->alternative_lba = cpu_to_le64(cxt->total_sectors - 1);
371 header->partition_entry_lba = cpu_to_le64(2);
372 } else { /* backup */
373 uint64_t esz = le32_to_cpu(header->npartition_entries) * sizeof(struct gpt_entry);
374 uint64_t esects = (esz + cxt->sector_size - 1) / cxt->sector_size;
375
376 header->alternative_lba = cpu_to_le64(GPT_PRIMARY_PARTITION_TABLE_LBA);
377 header->partition_entry_lba = cpu_to_le64(cxt->total_sectors - 1 - esects);
378 }
379 }
380
381 /*
382 * Builds a new GPT header (at sector lba) from a backup header2.
383 * If building a primary header, then backup is the secondary, and vice versa.
384 *
385 * Always pass a new (zeroized) header to build upon as we don't
386 * explicitly zero-set some values such as CRCs and reserved.
387 *
388 * Returns 0 on success, otherwise < 0 on error.
389 */
390 static int gpt_mknew_header_from_bkp(struct fdisk_context *cxt,
391 struct gpt_header *header,
392 uint64_t lba,
393 struct gpt_header *header2)
394 {
395 if (!cxt || !header || !header2)
396 return -ENOSYS;
397
398 header->signature = header2->signature;
399 header->revision = header2->revision;
400 header->size = header2->size;
401 header->npartition_entries = header2->npartition_entries;
402 header->sizeof_partition_entry = header2->sizeof_partition_entry;
403 header->first_usable_lba = header2->first_usable_lba;
404 header->last_usable_lba = header2->last_usable_lba;
405
406 memcpy(&header->disk_guid,
407 &header2->disk_guid, sizeof(header2->disk_guid));
408 gpt_mknew_header_common(cxt, header, lba);
409
410 return 0;
411 }
412
413 /*
414 * Builds a clean new GPT header (currently under revision 1.0).
415 *
416 * Always pass a new (zeroized) header to build upon as we don't
417 * explicitly zero-set some values such as CRCs and reserved.
418 *
419 * Returns 0 on success, otherwise < 0 on error.
420 */
421 static int gpt_mknew_header(struct fdisk_context *cxt,
422 struct gpt_header *header, uint64_t lba)
423 {
424 uint64_t esz = 0, first, last;
425
426 if (!cxt || !header)
427 return -ENOSYS;
428
429 esz = sizeof(struct gpt_entry) * GPT_NPARTITIONS / cxt->sector_size;
430
431 header->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
432 header->revision = cpu_to_le32(GPT_HEADER_REVISION_V1_00);
433 header->size = cpu_to_le32(sizeof(struct gpt_header));
434
435 /*
436 * 128 partitions is the default. It can go behond this, however,
437 * we're creating a de facto header here, so no funny business.
438 */
439 header->npartition_entries = cpu_to_le32(GPT_NPARTITIONS);
440 header->sizeof_partition_entry = cpu_to_le32(sizeof(struct gpt_entry));
441
442 last = cxt->total_sectors - 2 - esz;
443 first = esz + 2;
444
445 if (first < cxt->first_lba && cxt->first_lba < last)
446 /* Align according to topology */
447 first = cxt->first_lba;
448
449 header->first_usable_lba = cpu_to_le64(first);
450 header->last_usable_lba = cpu_to_le64(last);
451
452 gpt_mknew_header_common(cxt, header, lba);
453 uuid_generate_random((unsigned char *) &header->disk_guid);
454 swap_efi_guid(&header->disk_guid);
455
456 return 0;
457 }
458
459 /*
460 * Checks if there is a valid protective MBR partition table.
461 * Returns 0 if it is invalid or failure. Otherwise, return
462 * GPT_MBR_PROTECTIVE or GPT_MBR_HYBRID, depeding on the detection.
463 */
464 static int valid_pmbr(struct fdisk_context *cxt)
465 {
466 int i, part = 0, ret = 0; /* invalid by default */
467 struct gpt_legacy_mbr *pmbr = NULL;
468 uint32_t sz_lba = 0;
469
470 if (!cxt->firstsector)
471 goto done;
472
473 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
474
475 if (le16_to_cpu(pmbr->signature) != MSDOS_MBR_SIGNATURE)
476 goto done;
477
478 /* LBA of the GPT partition header */
479 if (pmbr->partition_record[0].starting_lba !=
480 cpu_to_le32(GPT_PRIMARY_PARTITION_TABLE_LBA))
481 goto done;
482
483 /* seems like a valid MBR was found, check DOS primary partitions */
484 for (i = 0; i < 4; i++) {
485 if (pmbr->partition_record[i].os_type == EFI_PMBR_OSTYPE) {
486 /*
487 * Ok, we at least know that there's a protective MBR,
488 * now check if there are other partition types for
489 * hybrid MBR.
490 */
491 part = i;
492 ret = GPT_MBR_PROTECTIVE;
493 goto check_hybrid;
494 }
495 }
496
497 if (ret != GPT_MBR_PROTECTIVE)
498 goto done;
499 check_hybrid:
500 for (i = 0 ; i < 4; i++) {
501 if ((pmbr->partition_record[i].os_type != EFI_PMBR_OSTYPE) &&
502 (pmbr->partition_record[i].os_type != 0x00))
503 ret = GPT_MBR_HYBRID;
504 }
505
506 /*
507 * Protective MBRs take up the lesser of the whole disk
508 * or 2 TiB (32bit LBA), ignoring the rest of the disk.
509 * Some partitioning programs, nonetheless, choose to set
510 * the size to the maximum 32-bit limitation, disregarding
511 * the disk size.
512 *
513 * Hybrid MBRs do not necessarily comply with this.
514 *
515 * Consider a bad value here to be a warning to support dd-ing
516 * an image from a smaller disk to a bigger disk.
517 */
518 if (ret == GPT_MBR_PROTECTIVE) {
519 sz_lba = le32_to_cpu(pmbr->partition_record[part].size_in_lba);
520 if (sz_lba != (uint32_t) cxt->total_sectors - 1 && sz_lba != 0xFFFFFFFF) {
521 fdisk_warnx(cxt, _("GPT PMBR size mismatch (%u != %u) "
522 "will be corrected by w(rite)."),
523 sz_lba,
524 (uint32_t) cxt->total_sectors - 1);
525 fdisk_label_set_changed(cxt->label, 1);
526 }
527 }
528 done:
529 return ret;
530 }
531
532 static uint64_t last_lba(struct fdisk_context *cxt)
533 {
534 struct stat s;
535
536 memset(&s, 0, sizeof(s));
537 if (fstat(cxt->dev_fd, &s) == -1) {
538 fdisk_warn(cxt, _("gpt: stat() failed"));
539 return 0;
540 }
541
542 if (S_ISBLK(s.st_mode))
543 return cxt->total_sectors - 1;
544 else if (S_ISREG(s.st_mode)) {
545 uint64_t sectors = s.st_size >> cxt->sector_size;
546 return (sectors / cxt->sector_size) - 1ULL;
547 } else
548 fdisk_warnx(cxt, _("gpt: cannot handle files with mode %o"), s.st_mode);
549 return 0;
550 }
551
552 static ssize_t read_lba(struct fdisk_context *cxt, uint64_t lba,
553 void *buffer, const size_t bytes)
554 {
555 off_t offset = lba * cxt->sector_size;
556
557 if (lseek(cxt->dev_fd, offset, SEEK_SET) == (off_t) -1)
558 return -1;
559 return read(cxt->dev_fd, buffer, bytes) != bytes;
560 }
561
562
563 /* Returns the GPT entry array */
564 static struct gpt_entry *gpt_read_entries(struct fdisk_context *cxt,
565 struct gpt_header *header)
566 {
567 ssize_t sz;
568 struct gpt_entry *ret = NULL;
569 off_t offset;
570
571 assert(cxt);
572 assert(header);
573
574 sz = le32_to_cpu(header->npartition_entries) *
575 le32_to_cpu(header->sizeof_partition_entry);
576
577 ret = calloc(1, sz);
578 if (!ret)
579 return NULL;
580 offset = le64_to_cpu(header->partition_entry_lba) *
581 cxt->sector_size;
582
583 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
584 goto fail;
585 if (sz != read(cxt->dev_fd, ret, sz))
586 goto fail;
587
588 return ret;
589
590 fail:
591 free(ret);
592 return NULL;
593 }
594
595 static inline uint32_t count_crc32(const unsigned char *buf, size_t len)
596 {
597 return (crc32(~0L, buf, len) ^ ~0L);
598 }
599
600 /*
601 * Recompute header and partition array 32bit CRC checksums.
602 * This function does not fail - if there's corruption, then it
603 * will be reported when checksuming it again (ie: probing or verify).
604 */
605 static void gpt_recompute_crc(struct gpt_header *header, struct gpt_entry *ents)
606 {
607 uint32_t crc = 0;
608 size_t entry_sz = 0;
609
610 if (!header)
611 return;
612
613 /* header CRC */
614 header->crc32 = 0;
615 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
616 header->crc32 = cpu_to_le32(crc);
617
618 /* partition entry array CRC */
619 header->partition_entry_array_crc32 = 0;
620 entry_sz = le32_to_cpu(header->npartition_entries) *
621 le32_to_cpu(header->sizeof_partition_entry);
622
623 crc = count_crc32((unsigned char *) ents, entry_sz);
624 header->partition_entry_array_crc32 = cpu_to_le32(crc);
625 }
626
627 /*
628 * Compute the 32bit CRC checksum of the partition table header.
629 * Returns 1 if it is valid, otherwise 0.
630 */
631 static int gpt_check_header_crc(struct gpt_header *header, struct gpt_entry *ents)
632 {
633 uint32_t crc, orgcrc = le32_to_cpu(header->crc32);
634
635 header->crc32 = 0;
636 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
637 header->crc32 = cpu_to_le32(orgcrc);
638
639 if (crc == le32_to_cpu(header->crc32))
640 return 1;
641
642 /*
643 * If we have checksum mismatch it may be due to stale data,
644 * like a partition being added or deleted. Recompute the CRC again
645 * and make sure this is not the case.
646 */
647 if (ents) {
648 gpt_recompute_crc(header, ents);
649 orgcrc = le32_to_cpu(header->crc32);
650 header->crc32 = 0;
651 crc = count_crc32((unsigned char *) header, le32_to_cpu(header->size));
652 header->crc32 = cpu_to_le32(orgcrc);
653
654 return crc == le32_to_cpu(header->crc32);
655 }
656
657 return 0;
658 }
659
660 /*
661 * It initializes the partition entry array.
662 * Returns 1 if the checksum is valid, otherwise 0.
663 */
664 static int gpt_check_entryarr_crc(struct gpt_header *header,
665 struct gpt_entry *ents)
666 {
667 int ret = 0;
668 ssize_t entry_sz;
669 uint32_t crc;
670
671 if (!header || !ents)
672 goto done;
673
674 entry_sz = le32_to_cpu(header->npartition_entries) *
675 le32_to_cpu(header->sizeof_partition_entry);
676
677 if (!entry_sz)
678 goto done;
679
680 crc = count_crc32((unsigned char *) ents, entry_sz);
681 ret = (crc == le32_to_cpu(header->partition_entry_array_crc32));
682 done:
683 return ret;
684 }
685
686 static int gpt_check_lba_sanity(struct fdisk_context *cxt, struct gpt_header *header)
687 {
688 int ret = 0;
689 uint64_t lu, fu, lastlba = last_lba(cxt);
690
691 fu = le64_to_cpu(header->first_usable_lba);
692 lu = le64_to_cpu(header->last_usable_lba);
693
694 /* check if first and last usable LBA make sense */
695 if (lu < fu) {
696 DBG(LABEL, dbgprint("error: header last LBA is before first LBA"));
697 goto done;
698 }
699
700 /* check if first and last usable LBAs with the disk's last LBA */
701 if (fu > lastlba || lu > lastlba) {
702 DBG(LABEL, dbgprint("error: header LBAs are after the disk's last LBA"));
703 goto done;
704 }
705
706 /* the header has to be outside usable range */
707 if (fu < GPT_PRIMARY_PARTITION_TABLE_LBA &&
708 GPT_PRIMARY_PARTITION_TABLE_LBA < lu) {
709 DBG(LABEL, dbgprint("error: header outside of usable range"));
710 goto done;
711 }
712
713 ret = 1; /* sane */
714 done:
715 return ret;
716 }
717
718 /* Check if there is a valid header signature */
719 static int gpt_check_signature(struct gpt_header *header)
720 {
721 return header->signature == cpu_to_le64(GPT_HEADER_SIGNATURE);
722 }
723
724 /*
725 * Return the specified GPT Header, or NULL upon failure/invalid.
726 * Note that all tests must pass to ensure a valid header,
727 * we do not rely on only testing the signature for a valid probe.
728 */
729 static struct gpt_header *gpt_read_header(struct fdisk_context *cxt,
730 uint64_t lba,
731 struct gpt_entry **_ents)
732 {
733 struct gpt_header *header = NULL;
734 struct gpt_entry *ents = NULL;
735 uint32_t hsz;
736
737 if (!cxt)
738 return NULL;
739
740 header = calloc(1, sizeof(*header));
741 if (!header)
742 return NULL;
743
744 /* read and verify header */
745 if (read_lba(cxt, lba, header, sizeof(struct gpt_header)) != 0)
746 goto invalid;
747
748 if (!gpt_check_signature(header))
749 goto invalid;
750
751 if (!gpt_check_header_crc(header, NULL))
752 goto invalid;
753
754 /* read and verify entries */
755 ents = gpt_read_entries(cxt, header);
756 if (!ents)
757 goto invalid;
758
759 if (!gpt_check_entryarr_crc(header, ents))
760 goto invalid;
761
762 if (!gpt_check_lba_sanity(cxt, header))
763 goto invalid;
764
765 /* valid header must be at MyLBA */
766 if (le64_to_cpu(header->my_lba) != lba)
767 goto invalid;
768
769 /* make sure header size is between 92 and sector size bytes */
770 hsz = le32_to_cpu(header->size);
771 if (hsz < GPT_HEADER_MINSZ || hsz > cxt->sector_size)
772 goto invalid;
773
774 if (_ents)
775 *_ents = ents;
776 else
777 free(ents);
778
779 return header;
780 invalid:
781 free(header);
782 free(ents);
783 return NULL;
784 }
785
786
787 static int gpt_locate_disklabel(struct fdisk_context *cxt, int n,
788 const char **name, off_t *offset, size_t *size)
789 {
790 struct fdisk_gpt_label *gpt;
791
792 assert(cxt);
793
794 *name = NULL;
795 *offset = 0;
796 *size = 0;
797
798 switch (n) {
799 case 0:
800 *name = "PMBR";
801 *offset = 0;
802 *size = 512;
803 break;
804 case 1:
805 *name = _("GPT Header");
806 *offset = GPT_PRIMARY_PARTITION_TABLE_LBA * cxt->sector_size;
807 *size = sizeof(struct gpt_header);
808 break;
809 case 2:
810 *name = _("GPT Entries");
811 gpt = self_label(cxt);
812 *offset = le64_to_cpu(gpt->pheader->partition_entry_lba) * cxt->sector_size;
813 *size = le32_to_cpu(gpt->pheader->npartition_entries) *
814 le32_to_cpu(gpt->pheader->sizeof_partition_entry);
815 break;
816 default:
817 return 1; /* no more chunks */
818 }
819
820 return 0;
821 }
822
823
824
825 /*
826 * Returns the number of partitions that are in use.
827 */
828 static unsigned partitions_in_use(struct gpt_header *header, struct gpt_entry *e)
829 {
830 uint32_t i, used = 0;
831
832 if (!header || ! e)
833 return 0;
834
835 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
836 if (!partition_unused(&e[i]))
837 used++;
838 return used;
839 }
840
841
842 /*
843 * Check if a partition is too big for the disk (sectors).
844 * Returns the faulting partition number, otherwise 0.
845 */
846 static uint32_t partition_check_too_big(struct gpt_header *header,
847 struct gpt_entry *e, uint64_t sectors)
848 {
849 uint32_t i;
850
851 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
852 if (partition_unused(&e[i]))
853 continue;
854 if (gpt_partition_end(&e[i]) >= sectors)
855 return i + 1;
856 }
857
858 return 0;
859 }
860
861 /*
862 * Check if a partition ends before it begins
863 * Returns the faulting partition number, otherwise 0.
864 */
865 static uint32_t partition_start_after_end(struct gpt_header *header, struct gpt_entry *e)
866 {
867 uint32_t i;
868
869 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
870 if (partition_unused(&e[i]))
871 continue;
872 if (gpt_partition_start(&e[i]) > gpt_partition_end(&e[i]))
873 return i + 1;
874 }
875
876 return 0;
877 }
878
879 /*
880 * Check if partition e1 overlaps with partition e2
881 */
882 static inline int partition_overlap(struct gpt_entry *e1, struct gpt_entry *e2)
883 {
884 uint64_t start1 = gpt_partition_start(e1);
885 uint64_t end1 = gpt_partition_end(e1);
886 uint64_t start2 = gpt_partition_start(e2);
887 uint64_t end2 = gpt_partition_end(e2);
888
889 return (start1 && start2 && (start1 <= end2) != (end1 < start2));
890 }
891
892 /*
893 * Find any paritions that overlap.
894 */
895 static uint32_t partition_check_overlaps(struct gpt_header *header, struct gpt_entry *e)
896 {
897 uint32_t i, j;
898
899 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++)
900 for (j = 0; j < i; j++) {
901 if (partition_unused(&e[i]) ||
902 partition_unused(&e[j]))
903 continue;
904 if (partition_overlap(&e[i], &e[j])) {
905 DBG(LABEL, dbgprint("GPT partitions overlap detected [%u vs. %u]", i, j));
906 return i + 1;
907 }
908 }
909
910 return 0;
911 }
912
913 /*
914 * Find the first available block after the starting point; returns 0 if
915 * there are no available blocks left, or error. From gdisk.
916 */
917 static uint64_t find_first_available(struct gpt_header *header,
918 struct gpt_entry *e, uint64_t start)
919 {
920 uint64_t first;
921 uint32_t i, first_moved = 0;
922
923 uint64_t fu, lu;
924
925 if (!header || !e)
926 return 0;
927
928 fu = le64_to_cpu(header->first_usable_lba);
929 lu = le64_to_cpu(header->last_usable_lba);
930
931 /*
932 * Begin from the specified starting point or from the first usable
933 * LBA, whichever is greater...
934 */
935 first = start < fu ? fu : start;
936
937 /*
938 * Now search through all partitions; if first is within an
939 * existing partition, move it to the next sector after that
940 * partition and repeat. If first was moved, set firstMoved
941 * flag; repeat until firstMoved is not set, so as to catch
942 * cases where partitions are out of sequential order....
943 */
944 do {
945 first_moved = 0;
946 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
947 if (partition_unused(&e[i]))
948 continue;
949 if (first < gpt_partition_start(&e[i]))
950 continue;
951 if (first <= gpt_partition_end(&e[i])) {
952 first = gpt_partition_end(&e[i]) + 1;
953 first_moved = 1;
954 }
955 }
956 } while (first_moved == 1);
957
958 if (first > lu)
959 first = 0;
960
961 return first;
962 }
963
964
965 /* Returns last available sector in the free space pointed to by start. From gdisk. */
966 static uint64_t find_last_free(struct gpt_header *header,
967 struct gpt_entry *e, uint64_t start)
968 {
969 uint32_t i;
970 uint64_t nearest_start;
971
972 if (!header || !e)
973 return 0;
974
975 nearest_start = le64_to_cpu(header->last_usable_lba);
976
977 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
978 uint64_t ps = gpt_partition_start(&e[i]);
979
980 if (nearest_start > ps && ps > start)
981 nearest_start = ps - 1;
982 }
983
984 return nearest_start;
985 }
986
987 /* Returns the last free sector on the disk. From gdisk. */
988 static uint64_t find_last_free_sector(struct gpt_header *header,
989 struct gpt_entry *e)
990 {
991 uint32_t i, last_moved;
992 uint64_t last = 0;
993
994 if (!header || !e)
995 goto done;
996
997 /* start by assuming the last usable LBA is available */
998 last = le64_to_cpu(header->last_usable_lba);
999 do {
1000 last_moved = 0;
1001 for (i = 0; i < le32_to_cpu(header->npartition_entries); i++) {
1002 if ((last >= gpt_partition_start(&e[i])) &&
1003 (last <= gpt_partition_end(&e[i]))) {
1004 last = gpt_partition_start(&e[i]) - 1;
1005 last_moved = 1;
1006 }
1007 }
1008 } while (last_moved == 1);
1009 done:
1010 return last;
1011 }
1012
1013 /*
1014 * Finds the first available sector in the largest block of unallocated
1015 * space on the disk. Returns 0 if there are no available blocks left.
1016 * From gdisk.
1017 */
1018 static uint64_t find_first_in_largest(struct gpt_header *header, struct gpt_entry *e)
1019 {
1020 uint64_t start = 0, first_sect, last_sect;
1021 uint64_t segment_size, selected_size = 0, selected_segment = 0;
1022
1023 if (!header || !e)
1024 goto done;
1025
1026 do {
1027 first_sect = find_first_available(header, e, start);
1028 if (first_sect != 0) {
1029 last_sect = find_last_free(header, e, first_sect);
1030 segment_size = last_sect - first_sect + 1;
1031
1032 if (segment_size > selected_size) {
1033 selected_size = segment_size;
1034 selected_segment = first_sect;
1035 }
1036 start = last_sect + 1;
1037 }
1038 } while (first_sect != 0);
1039
1040 done:
1041 return selected_segment;
1042 }
1043
1044 /*
1045 * Find the total number of free sectors, the number of segments in which
1046 * they reside, and the size of the largest of those segments. From gdisk.
1047 */
1048 static uint64_t get_free_sectors(struct fdisk_context *cxt, struct gpt_header *header,
1049 struct gpt_entry *e, uint32_t *nsegments,
1050 uint64_t *largest_segment)
1051 {
1052 uint32_t num = 0;
1053 uint64_t first_sect, last_sect;
1054 uint64_t largest_seg = 0, segment_sz;
1055 uint64_t totfound = 0, start = 0; /* starting point for each search */
1056
1057 if (!cxt->total_sectors)
1058 goto done;
1059
1060 do {
1061 first_sect = find_first_available(header, e, start);
1062 if (first_sect) {
1063 last_sect = find_last_free(header, e, first_sect);
1064 segment_sz = last_sect - first_sect + 1;
1065
1066 if (segment_sz > largest_seg)
1067 largest_seg = segment_sz;
1068 totfound += segment_sz;
1069 num++;
1070 start = last_sect + 1;
1071 }
1072 } while (first_sect);
1073
1074 done:
1075 if (nsegments)
1076 *nsegments = num;
1077 if (largest_segment)
1078 *largest_segment = largest_seg;
1079
1080 return totfound;
1081 }
1082
1083 static int gpt_probe_label(struct fdisk_context *cxt)
1084 {
1085 int mbr_type;
1086 struct fdisk_gpt_label *gpt;
1087
1088 assert(cxt);
1089 assert(cxt->label);
1090 assert(fdisk_is_disklabel(cxt, GPT));
1091
1092 gpt = self_label(cxt);
1093
1094 mbr_type = valid_pmbr(cxt);
1095 if (!mbr_type)
1096 goto failed;
1097
1098 DBG(LABEL, dbgprint("found a %s MBR", mbr_type == GPT_MBR_PROTECTIVE ?
1099 "protective" : "hybrid"));
1100
1101 /* primary header */
1102 gpt->pheader = gpt_read_header(cxt, GPT_PRIMARY_PARTITION_TABLE_LBA,
1103 &gpt->ents);
1104
1105 /*
1106 * TODO: If the primary GPT is corrupt, we must check the last LBA of the
1107 * device to see if it has a valid GPT Header and point to a valid GPT
1108 * Partition Entry Array.
1109 * If it points to a valid GPT Partition Entry Array, then software should
1110 * restore the primary GPT if allowed by platform policy settings.
1111 *
1112 * For now we just abort GPT probing!
1113 */
1114 if (!gpt->pheader || !gpt->ents)
1115 goto failed;
1116
1117 /* OK, probing passed, now initialize backup header and fdisk variables. */
1118 gpt->bheader = gpt_read_header(cxt, last_lba(cxt), NULL);
1119
1120 cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries);
1121 cxt->label->nparts_cur = partitions_in_use(gpt->pheader, gpt->ents);
1122 return 1;
1123 failed:
1124 DBG(LABEL, dbgprint("GPT probe failed"));
1125 gpt_deinit(cxt->label);
1126 return 0;
1127 }
1128
1129 /*
1130 * Stolen from libblkid - can be removed once partition semantics
1131 * are added to the fdisk API.
1132 */
1133 static char *encode_to_utf8(unsigned char *src, size_t count)
1134 {
1135 uint16_t c;
1136 char *dest;
1137 size_t i, j, len = count;
1138
1139 dest = calloc(1, count);
1140 if (!dest)
1141 return NULL;
1142
1143 for (j = i = 0; i + 2 <= count; i += 2) {
1144 /* always little endian */
1145 c = (src[i+1] << 8) | src[i];
1146 if (c == 0) {
1147 dest[j] = '\0';
1148 break;
1149 } else if (c < 0x80) {
1150 if (j+1 >= len)
1151 break;
1152 dest[j++] = (uint8_t) c;
1153 } else if (c < 0x800) {
1154 if (j+2 >= len)
1155 break;
1156 dest[j++] = (uint8_t) (0xc0 | (c >> 6));
1157 dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
1158 } else {
1159 if (j+3 >= len)
1160 break;
1161 dest[j++] = (uint8_t) (0xe0 | (c >> 12));
1162 dest[j++] = (uint8_t) (0x80 | ((c >> 6) & 0x3f));
1163 dest[j++] = (uint8_t) (0x80 | (c & 0x3f));
1164 }
1165 }
1166 dest[j] = '\0';
1167
1168 return dest;
1169 }
1170
1171 /*
1172 * List label partitions.
1173 * This function must currently exist to comply with standard fdisk
1174 * requirements, but once partition semantics are added to the fdisk
1175 * API it can be removed for custom implementation (see gpt_label struct).
1176 */
1177 static int gpt_list_disklabel(struct fdisk_context *cxt)
1178 {
1179 int rc, trunc = TT_FL_TRUNC;
1180 uint32_t i;
1181 struct fdisk_gpt_label *gpt;
1182 struct gpt_header *h;
1183 uint64_t fu;
1184 uint64_t lu;
1185 struct tt *tb = NULL;
1186
1187 assert(cxt);
1188 assert(cxt->label);
1189 assert(fdisk_is_disklabel(cxt, GPT));
1190
1191 gpt = self_label(cxt);
1192 h = gpt->pheader;
1193 fu = le64_to_cpu(gpt->pheader->first_usable_lba);
1194 lu = le64_to_cpu(gpt->pheader->last_usable_lba);
1195
1196 tb = tt_new_table(TT_FL_FREEDATA);
1197 if (!tb)
1198 return -ENOMEM;
1199
1200 /* don't trunc anything in expert mode */
1201 if (fdisk_context_display_details(cxt)) {
1202 trunc = 0;
1203 fdisk_colon(cxt, _("First LBA: %ju"), h->first_usable_lba);
1204 fdisk_colon(cxt, _("Last LBA: %ju"), h->last_usable_lba);
1205 fdisk_colon(cxt, _("Alternative LBA: %ju"), h->alternative_lba);
1206 fdisk_colon(cxt, _("Partitions entries LBA: %ju"), h->partition_entry_lba);
1207 fdisk_colon(cxt, _("Allocated partition entries: %u"), h->npartition_entries);
1208 }
1209 tt_define_column(tb, _("Device"), 0.1, 0);
1210 tt_define_column(tb, _("Start"), 12, TT_FL_RIGHT);
1211 tt_define_column(tb, _("End"), 12, TT_FL_RIGHT);
1212 tt_define_column(tb, _("Size"), 6, TT_FL_RIGHT);
1213 tt_define_column(tb, _("Type"), 0.1, trunc);
1214
1215 if (fdisk_context_display_details(cxt)) {
1216 tt_define_column(tb, _("UUID"), 36, 0);
1217 tt_define_column(tb, _("Name"), 0.2, trunc);
1218 }
1219
1220 for (i = 0; i < le32_to_cpu(h->npartition_entries); i++) {
1221 struct gpt_entry *e = &gpt->ents[i];
1222 char *sizestr = NULL, *p;
1223 uint64_t start = gpt_partition_start(e);
1224 uint64_t size = gpt_partition_size(e);
1225 struct fdisk_parttype *t;
1226 struct tt_line *ln;
1227 char u_str[37];
1228
1229 if (partition_unused(&gpt->ents[i]) || start == 0)
1230 continue;
1231 /* the partition has to inside usable range */
1232 if (start < fu || start + size - 1 > lu)
1233 continue;
1234 ln = tt_add_line(tb, NULL);
1235 if (!ln)
1236 continue;
1237
1238 if (fdisk_context_display_details(cxt) &&
1239 asprintf(&p, "%ju", size * cxt->sector_size) > 0)
1240 sizestr = p;
1241 else
1242 sizestr = size_to_human_string(SIZE_SUFFIX_1LETTER,
1243 size * cxt->sector_size);
1244 t = fdisk_get_partition_type(cxt, i);
1245
1246 /* basic columns */
1247 p = fdisk_partname(cxt->dev_path, i + 1);
1248 if (p)
1249 tt_line_set_data(ln, 0, p);
1250 if (asprintf(&p, "%ju", start) > 0)
1251 tt_line_set_data(ln, 1, p);
1252 if (asprintf(&p, "%ju", gpt_partition_end(e)) > 0)
1253 tt_line_set_data(ln, 2, p);
1254 if (sizestr)
1255 tt_line_set_data(ln, 3, sizestr);
1256 if (t && t->name)
1257 tt_line_set_data(ln, 4, strdup(t->name));
1258
1259 /* expert menu column(s) */
1260 if (fdisk_context_display_details(cxt)) {
1261 char *name = encode_to_utf8(
1262 (unsigned char *)e->name,
1263 sizeof(e->name));
1264
1265 if (guid_to_string(&e->partition_guid, u_str))
1266 tt_line_set_data(ln, 5, strdup(u_str));
1267 if (name)
1268 tt_line_set_data(ln, 6, name);
1269 }
1270
1271 fdisk_warn_alignment(cxt, start, i);
1272 fdisk_free_parttype(t);
1273 }
1274
1275 rc = fdisk_print_table(cxt, tb);
1276 tt_free_table(tb);
1277
1278 return rc;
1279 }
1280
1281 /*
1282 * Write partitions.
1283 * Returns 0 on success, or corresponding error otherwise.
1284 */
1285 static int gpt_write_partitions(struct fdisk_context *cxt,
1286 struct gpt_header *header, struct gpt_entry *ents)
1287 {
1288 off_t offset = le64_to_cpu(header->partition_entry_lba) * cxt->sector_size;
1289 uint32_t nparts = le32_to_cpu(header->npartition_entries);
1290 uint32_t totwrite = nparts * le32_to_cpu(header->sizeof_partition_entry);
1291 ssize_t rc;
1292
1293 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1294 goto fail;
1295
1296 rc = write(cxt->dev_fd, ents, totwrite);
1297 if (rc > 0 && totwrite == (uint32_t) rc)
1298 return 0;
1299 fail:
1300 return -errno;
1301 }
1302
1303 /*
1304 * Write a GPT header to a specified LBA
1305 * Returns 0 on success, or corresponding error otherwise.
1306 */
1307 static int gpt_write_header(struct fdisk_context *cxt,
1308 struct gpt_header *header, uint64_t lba)
1309 {
1310 off_t offset = lba * cxt->sector_size;
1311
1312 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1313 goto fail;
1314 if (cxt->sector_size ==
1315 (size_t) write(cxt->dev_fd, header, cxt->sector_size))
1316 return 0;
1317 fail:
1318 return -errno;
1319 }
1320
1321 /*
1322 * Write the protective MBR.
1323 * Returns 0 on success, or corresponding error otherwise.
1324 */
1325 static int gpt_write_pmbr(struct fdisk_context *cxt)
1326 {
1327 off_t offset;
1328 struct gpt_legacy_mbr *pmbr = NULL;
1329
1330 assert(cxt);
1331 assert(cxt->firstsector);
1332
1333 pmbr = (struct gpt_legacy_mbr *) cxt->firstsector;
1334
1335 /* zero out the legacy partitions */
1336 memset(pmbr->partition_record, 0, sizeof(pmbr->partition_record));
1337
1338 pmbr->signature = cpu_to_le16(MSDOS_MBR_SIGNATURE);
1339 pmbr->partition_record[0].os_type = EFI_PMBR_OSTYPE;
1340 pmbr->partition_record[0].start_sector = 1;
1341 pmbr->partition_record[0].end_head = 0xFE;
1342 pmbr->partition_record[0].end_sector = 0xFF;
1343 pmbr->partition_record[0].end_track = 0xFF;
1344 pmbr->partition_record[0].starting_lba = cpu_to_le32(1);
1345
1346 /*
1347 * Set size_in_lba to the size of the disk minus one. If the size of the disk
1348 * is too large to be represented by a 32bit LBA (2Tb), set it to 0xFFFFFFFF.
1349 */
1350 if (cxt->total_sectors - 1 > 0xFFFFFFFFULL)
1351 pmbr->partition_record[0].size_in_lba = cpu_to_le32(0xFFFFFFFF);
1352 else
1353 pmbr->partition_record[0].size_in_lba =
1354 cpu_to_le32(cxt->total_sectors - 1UL);
1355
1356 offset = GPT_PMBR_LBA * cxt->sector_size;
1357 if (offset != lseek(cxt->dev_fd, offset, SEEK_SET))
1358 goto fail;
1359
1360 /* pMBR covers the first sector (LBA) of the disk */
1361 if (write_all(cxt->dev_fd, pmbr, cxt->sector_size))
1362 goto fail;
1363 return 0;
1364 fail:
1365 return -errno;
1366 }
1367
1368 /*
1369 * Writes in-memory GPT and pMBR data to disk.
1370 * Returns 0 if successful write, otherwise, a corresponding error.
1371 * Any indication of error will abort the operation.
1372 */
1373 static int gpt_write_disklabel(struct fdisk_context *cxt)
1374 {
1375 struct fdisk_gpt_label *gpt;
1376
1377 assert(cxt);
1378 assert(cxt->label);
1379 assert(fdisk_is_disklabel(cxt, GPT));
1380
1381 gpt = self_label(cxt);
1382
1383 /* we do not want to mess up hybrid MBRs by creating a valid pmbr */
1384 if (valid_pmbr(cxt) == GPT_MBR_HYBRID)
1385 goto err0;
1386
1387 /* check that disk is big enough to handle the backup header */
1388 if (le64_to_cpu(gpt->pheader->alternative_lba) > cxt->total_sectors)
1389 goto err0;
1390
1391 /* check that the backup header is properly placed */
1392 if (le64_to_cpu(gpt->pheader->alternative_lba) < cxt->total_sectors - 1)
1393 /* TODO: correct this (with user authorization) and write */
1394 goto err0;
1395
1396 if (partition_check_overlaps(gpt->pheader, gpt->ents))
1397 goto err0;
1398
1399 /* recompute CRCs for both headers */
1400 gpt_recompute_crc(gpt->pheader, gpt->ents);
1401 gpt_recompute_crc(gpt->bheader, gpt->ents);
1402
1403 /*
1404 * UEFI requires writing in this specific order:
1405 * 1) backup partition tables
1406 * 2) backup GPT header
1407 * 3) primary partition tables
1408 * 4) primary GPT header
1409 * 5) protective MBR
1410 *
1411 * If any write fails, we abort the rest.
1412 */
1413 if (gpt_write_partitions(cxt, gpt->bheader, gpt->ents) != 0)
1414 goto err1;
1415 if (gpt_write_header(cxt, gpt->bheader,
1416 le64_to_cpu(gpt->pheader->alternative_lba)) != 0)
1417 goto err1;
1418 if (gpt_write_partitions(cxt, gpt->pheader, gpt->ents) != 0)
1419 goto err1;
1420 if (gpt_write_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA) != 0)
1421 goto err1;
1422 if (gpt_write_pmbr(cxt) != 0)
1423 goto err1;
1424
1425 DBG(LABEL, dbgprint("GPT write success"));
1426 return 0;
1427 err0:
1428 DBG(LABEL, dbgprint("GPT write failed: incorrect input"));
1429 errno = EINVAL;
1430 return -EINVAL;
1431 err1:
1432 DBG(LABEL, dbgprint("GPT write failed: %m"));
1433 return -errno;
1434 }
1435
1436 /*
1437 * Verify data integrity and report any found problems for:
1438 * - primary and backup header validations
1439 * - paritition validations
1440 */
1441 static int gpt_verify_disklabel(struct fdisk_context *cxt)
1442 {
1443 int nerror = 0;
1444 unsigned int ptnum;
1445 struct fdisk_gpt_label *gpt;
1446
1447 assert(cxt);
1448 assert(cxt->label);
1449 assert(fdisk_is_disklabel(cxt, GPT));
1450
1451 gpt = self_label(cxt);
1452
1453 if (!gpt || !gpt->bheader) {
1454 nerror++;
1455 fdisk_warnx(cxt, _("Disk does not contain a valid backup header."));
1456 }
1457
1458 if (!gpt_check_header_crc(gpt->pheader, gpt->ents)) {
1459 nerror++;
1460 fdisk_warnx(cxt, _("Invalid primary header CRC checksum."));
1461 }
1462 if (gpt->bheader && !gpt_check_header_crc(gpt->bheader, gpt->ents)) {
1463 nerror++;
1464 fdisk_warnx(cxt, _("Invalid backup header CRC checksum."));
1465 }
1466
1467 if (!gpt_check_entryarr_crc(gpt->pheader, gpt->ents)) {
1468 nerror++;
1469 fdisk_warnx(cxt, _("Invalid partition entry checksum."));
1470 }
1471
1472 if (!gpt_check_lba_sanity(cxt, gpt->pheader)) {
1473 nerror++;
1474 fdisk_warnx(cxt, _("Invalid primary header LBA sanity checks."));
1475 }
1476 if (gpt->bheader && !gpt_check_lba_sanity(cxt, gpt->bheader)) {
1477 nerror++;
1478 fdisk_warnx(cxt, _("Invalid backup header LBA sanity checks."));
1479 }
1480
1481 if (le64_to_cpu(gpt->pheader->my_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) {
1482 nerror++;
1483 fdisk_warnx(cxt, _("MyLBA mismatch with real position at primary header."));
1484 }
1485 if (gpt->bheader && le64_to_cpu(gpt->bheader->my_lba) != last_lba(cxt)) {
1486 nerror++;
1487 fdisk_warnx(cxt, _("MyLBA mismatch with real position at backup header."));
1488
1489 }
1490 if (le64_to_cpu(gpt->pheader->alternative_lba) >= cxt->total_sectors) {
1491 nerror++;
1492 fdisk_warnx(cxt, _("Disk is too small to hold all data."));
1493 }
1494
1495 /*
1496 * if the GPT is the primary table, check the alternateLBA
1497 * to see if it is a valid GPT
1498 */
1499 if (gpt->bheader && (le64_to_cpu(gpt->pheader->my_lba) !=
1500 le64_to_cpu(gpt->bheader->alternative_lba))) {
1501 nerror++;
1502 fdisk_warnx(cxt, _("Primary and backup header mismatch."));
1503 }
1504
1505 ptnum = partition_check_overlaps(gpt->pheader, gpt->ents);
1506 if (ptnum) {
1507 nerror++;
1508 fdisk_warnx(cxt, _("Partition %u overlaps with partition %u."),
1509 ptnum, ptnum+1);
1510 }
1511
1512 ptnum = partition_check_too_big(gpt->pheader, gpt->ents, cxt->total_sectors);
1513 if (ptnum) {
1514 nerror++;
1515 fdisk_warnx(cxt, _("Partition %u is too big for the disk."),
1516 ptnum);
1517 }
1518
1519 ptnum = partition_start_after_end(gpt->pheader, gpt->ents);
1520 if (ptnum) {
1521 nerror++;
1522 fdisk_warnx(cxt, _("Partition %u ends before it starts."),
1523 ptnum);
1524 }
1525
1526 if (!nerror) { /* yay :-) */
1527 uint32_t nsegments = 0;
1528 uint64_t free_sectors = 0, largest_segment = 0;
1529
1530 fdisk_info(cxt, _("No errors detected."));
1531 fdisk_info(cxt, _("Header version: %s"), gpt_get_header_revstr(gpt->pheader));
1532 fdisk_info(cxt, _("Using %u out of %d partitions."),
1533 partitions_in_use(gpt->pheader, gpt->ents),
1534 le32_to_cpu(gpt->pheader->npartition_entries));
1535
1536 free_sectors = get_free_sectors(cxt, gpt->pheader, gpt->ents,
1537 &nsegments, &largest_segment);
1538 fdisk_info(cxt,
1539 P_("A total of %ju free sectors is available in %u segment.",
1540 "A total of %ju free sectors is available in %u segments "
1541 "(the largest is %ju).", nsegments),
1542 free_sectors, nsegments, largest_segment);
1543 } else
1544 fdisk_warnx(cxt,
1545 P_("%d error detected.", "%d errors detected.", nerror),
1546 nerror);
1547
1548 return 0;
1549 }
1550
1551 /* Delete a single GPT partition, specified by partnum. */
1552 static int gpt_delete_partition(struct fdisk_context *cxt,
1553 size_t partnum)
1554 {
1555 struct fdisk_gpt_label *gpt;
1556
1557 assert(cxt);
1558 assert(cxt->label);
1559 assert(fdisk_is_disklabel(cxt, GPT));
1560
1561 gpt = self_label(cxt);
1562
1563 if (partnum >= cxt->label->nparts_max
1564 || partition_unused(&gpt->ents[partnum]))
1565 return -EINVAL;
1566
1567 /* hasta la vista, baby! */
1568 memset(&gpt->ents[partnum], 0, sizeof(struct gpt_entry));
1569 if (!partition_unused(&gpt->ents[partnum]))
1570 return -EINVAL;
1571 else {
1572 gpt_recompute_crc(gpt->pheader, gpt->ents);
1573 gpt_recompute_crc(gpt->bheader, gpt->ents);
1574 cxt->label->nparts_cur--;
1575 fdisk_label_set_changed(cxt->label, 1);
1576 }
1577
1578 return 0;
1579 }
1580
1581 static void gpt_entry_set_type(struct gpt_entry *e, struct gpt_guid *uuid)
1582 {
1583 e->type = *uuid;
1584 DBG(LABEL, dbgprint_uuid("new type", &(e->type)));
1585 }
1586
1587 /*
1588 * Create a new GPT partition entry, specified by partnum, and with a range
1589 * of fsect to lsenct sectors, of type t.
1590 * Returns 0 on success, or negative upon failure.
1591 */
1592 static int gpt_create_new_partition(struct fdisk_context *cxt,
1593 size_t partnum, uint64_t fsect, uint64_t lsect,
1594 struct gpt_guid *type,
1595 struct gpt_entry *entries)
1596 {
1597 struct gpt_entry *e = NULL;
1598 struct fdisk_gpt_label *gpt;
1599
1600 assert(cxt);
1601 assert(cxt->label);
1602 assert(fdisk_is_disklabel(cxt, GPT));
1603
1604 gpt = self_label(cxt);
1605
1606 if (fsect > lsect || partnum >= cxt->label->nparts_max)
1607 return -EINVAL;
1608
1609 e = calloc(1, sizeof(*e));
1610 if (!e)
1611 return -ENOMEM;
1612 e->lba_end = cpu_to_le64(lsect);
1613 e->lba_start = cpu_to_le64(fsect);
1614
1615 gpt_entry_set_type(e, type);
1616
1617 /*
1618 * Any time a new partition entry is created a new GUID must be
1619 * generated for that partition, and every partition is guaranteed
1620 * to have a unique GUID.
1621 */
1622 uuid_generate_random((unsigned char *) &e->partition_guid);
1623 swap_efi_guid(&e->partition_guid);
1624
1625 memcpy(&entries[partnum], e, sizeof(*e));
1626
1627 gpt_recompute_crc(gpt->pheader, entries);
1628 gpt_recompute_crc(gpt->bheader, entries);
1629
1630 free(e);
1631 return 0;
1632 }
1633
1634 /* Performs logical checks to add a new partition entry */
1635 static int gpt_add_partition(
1636 struct fdisk_context *cxt,
1637 size_t partnum,
1638 struct fdisk_parttype *t)
1639 {
1640 uint64_t user_f, user_l; /* user input ranges for first and last sectors */
1641 uint64_t disk_f, disk_l; /* first and last available sector ranges on device*/
1642 uint64_t dflt_f, dflt_l; /* largest segment (default) */
1643 struct gpt_guid typeid;
1644 struct fdisk_gpt_label *gpt;
1645 struct gpt_header *pheader;
1646 struct gpt_entry *ents;
1647 struct fdisk_ask *ask = NULL;
1648 int rc;
1649
1650 assert(cxt);
1651 assert(cxt->label);
1652 assert(fdisk_is_disklabel(cxt, GPT));
1653
1654 gpt = self_label(cxt);
1655
1656 if (partnum >= cxt->label->nparts_max)
1657 return -EINVAL;
1658
1659 pheader = gpt->pheader;
1660 ents = gpt->ents;
1661
1662 if (!partition_unused(&ents[partnum])) {
1663 fdisk_warnx(cxt, _("Partition %zu is already defined. "
1664 "Delete it before re-adding it."), partnum +1);
1665 return -EINVAL;
1666 }
1667 if (le32_to_cpu(pheader->npartition_entries) ==
1668 partitions_in_use(pheader, ents)) {
1669 fdisk_warnx(cxt, _("All partitions are already in use."));
1670 return -EINVAL;
1671 }
1672
1673 if (!get_free_sectors(cxt, pheader, ents, NULL, NULL)) {
1674 fdisk_warnx(cxt, _("No free sectors available."));
1675 return -ENOSPC;
1676 }
1677
1678 disk_f = find_first_available(pheader, ents, 0);
1679 disk_l = find_last_free_sector(pheader, ents);
1680
1681 /* the default is the largest free space */
1682 dflt_f = find_first_in_largest(pheader, ents);
1683 dflt_l = find_last_free(pheader, ents, dflt_f);
1684
1685 /* align the default in range <dflt_f,dflt_l>*/
1686 dflt_f = fdisk_align_lba_in_range(cxt, dflt_f, dflt_f, dflt_l);
1687
1688 string_to_guid(t && t->typestr ? t->typestr : GPT_DEFAULT_ENTRY_TYPE, &typeid);
1689
1690 /* get user input for first and last sectors of the new partition */
1691 for (;;) {
1692 if (!ask)
1693 ask = fdisk_new_ask();
1694 else
1695 fdisk_reset_ask(ask);
1696
1697 /* First sector */
1698 fdisk_ask_set_query(ask, _("First sector"));
1699 fdisk_ask_set_type(ask, FDISK_ASKTYPE_NUMBER);
1700 fdisk_ask_number_set_low(ask, disk_f); /* minimal */
1701 fdisk_ask_number_set_default(ask, dflt_f); /* default */
1702 fdisk_ask_number_set_high(ask, disk_l); /* maximal */
1703
1704 rc = fdisk_do_ask(cxt, ask);
1705 if (rc)
1706 goto done;
1707
1708 user_f = fdisk_ask_number_get_result(ask);
1709 if (user_f != find_first_available(pheader, ents, user_f)) {
1710 fdisk_warnx(cxt, _("Sector %ju already used."), user_f);
1711 continue;
1712 }
1713
1714 fdisk_reset_ask(ask);
1715
1716 /* Last sector */
1717 dflt_l = find_last_free(pheader, ents, user_f);
1718
1719 fdisk_ask_set_query(ask, _("Last sector, +sectors or +size{K,M,G,T,P}"));
1720 fdisk_ask_set_type(ask, FDISK_ASKTYPE_OFFSET);
1721 fdisk_ask_number_set_low(ask, user_f); /* minimal */
1722 fdisk_ask_number_set_default(ask, dflt_l); /* default */
1723 fdisk_ask_number_set_high(ask, dflt_l); /* maximal */
1724 fdisk_ask_number_set_base(ask, user_f); /* base for relative input */
1725 fdisk_ask_number_set_unit(ask, cxt->sector_size);
1726
1727 rc = fdisk_do_ask(cxt, ask);
1728 if (rc)
1729 goto done;
1730
1731 user_l = fdisk_ask_number_get_result(ask);
1732 if (fdisk_ask_number_is_relative(ask))
1733 user_l = fdisk_align_lba_in_range(cxt, user_l, user_f, dflt_l) - 1;
1734 if (user_l > user_f && user_l <= disk_l)
1735 break;
1736 }
1737
1738 if (gpt_create_new_partition(cxt, partnum,
1739 user_f, user_l, &typeid, ents) != 0)
1740 fdisk_warnx(cxt, _("Could not create partition %ju"), partnum + 1);
1741 else {
1742 struct fdisk_parttype *t;
1743
1744 cxt->label->nparts_cur++;
1745 fdisk_label_set_changed(cxt->label, 1);
1746
1747 t = gpt_get_partition_type(cxt, partnum);
1748 fdisk_info_new_partition(cxt, partnum + 1, user_f, user_l, t);
1749 fdisk_free_parttype(t);
1750 }
1751
1752 rc = 0;
1753 done:
1754 fdisk_free_ask(ask);
1755 return rc;
1756 }
1757
1758 /*
1759 * Create a new GPT disklabel - destroys any previous data.
1760 */
1761 static int gpt_create_disklabel(struct fdisk_context *cxt)
1762 {
1763 int rc = 0;
1764 ssize_t esz = 0;
1765 char str[37];
1766 struct fdisk_gpt_label *gpt;
1767
1768 assert(cxt);
1769 assert(cxt->label);
1770 assert(fdisk_is_disklabel(cxt, GPT));
1771
1772 gpt = self_label(cxt);
1773
1774 /* label private stuff has to be empty, see gpt_deinit() */
1775 assert(gpt->pheader == NULL);
1776 assert(gpt->bheader == NULL);
1777
1778 /*
1779 * When no header, entries or pmbr is set, we're probably
1780 * dealing with a new, empty disk - so always allocate memory
1781 * to deal with the data structures whatever the case is.
1782 */
1783 rc = gpt_mknew_pmbr(cxt);
1784 if (rc < 0)
1785 goto done;
1786
1787 /* primary */
1788 gpt->pheader = calloc(1, sizeof(*gpt->pheader));
1789 if (!gpt->pheader) {
1790 rc = -ENOMEM;
1791 goto done;
1792 }
1793 rc = gpt_mknew_header(cxt, gpt->pheader, GPT_PRIMARY_PARTITION_TABLE_LBA);
1794 if (rc < 0)
1795 goto done;
1796
1797 /* backup ("copy" primary) */
1798 gpt->bheader = calloc(1, sizeof(*gpt->bheader));
1799 if (!gpt->bheader) {
1800 rc = -ENOMEM;
1801 goto done;
1802 }
1803 rc = gpt_mknew_header_from_bkp(cxt, gpt->bheader,
1804 last_lba(cxt), gpt->pheader);
1805 if (rc < 0)
1806 goto done;
1807
1808 esz = le32_to_cpu(gpt->pheader->npartition_entries) *
1809 le32_to_cpu(gpt->pheader->sizeof_partition_entry);
1810 gpt->ents = calloc(1, esz);
1811 if (!gpt->ents) {
1812 rc = -ENOMEM;
1813 goto done;
1814 }
1815 gpt_recompute_crc(gpt->pheader, gpt->ents);
1816 gpt_recompute_crc(gpt->bheader, gpt->ents);
1817
1818 cxt->label->nparts_max = le32_to_cpu(gpt->pheader->npartition_entries);
1819 cxt->label->nparts_cur = 0;
1820
1821 guid_to_string(&gpt->pheader->disk_guid, str);
1822 fdisk_label_set_changed(cxt->label, 1);
1823 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1824 _("Created a new GPT disklabel (GUID: %s)."), str);
1825 done:
1826 return rc;
1827 }
1828
1829 static int gpt_get_disklabel_id(struct fdisk_context *cxt, char **id)
1830 {
1831 struct fdisk_gpt_label *gpt;
1832 char str[37];
1833
1834 assert(cxt);
1835 assert(id);
1836 assert(cxt->label);
1837 assert(fdisk_is_disklabel(cxt, GPT));
1838
1839 gpt = self_label(cxt);
1840 guid_to_string(&gpt->pheader->disk_guid, str);
1841
1842 *id = strdup(str);
1843 if (!*id)
1844 return -ENOMEM;
1845 return 0;
1846 }
1847
1848 static int gpt_set_disklabel_id(struct fdisk_context *cxt)
1849 {
1850 struct fdisk_gpt_label *gpt;
1851 struct gpt_guid uuid;
1852 char *str, *old, *new;
1853 int rc;
1854
1855 assert(cxt);
1856 assert(cxt->label);
1857 assert(fdisk_is_disklabel(cxt, GPT));
1858
1859 gpt = self_label(cxt);
1860 if (fdisk_ask_string(cxt,
1861 _("Enter new disk UUID (in 8-4-4-4-12 format)"), &str))
1862 return -EINVAL;
1863
1864 rc = string_to_guid(str, &uuid);
1865 free(str);
1866
1867 if (rc) {
1868 fdisk_warnx(cxt, _("Failed to parse your UUID."));
1869 return rc;
1870 }
1871
1872 gpt_get_disklabel_id(cxt, &old);
1873
1874 gpt->pheader->disk_guid = uuid;
1875 gpt->bheader->disk_guid = uuid;
1876
1877 gpt_recompute_crc(gpt->pheader, gpt->ents);
1878 gpt_recompute_crc(gpt->bheader, gpt->ents);
1879
1880 gpt_get_disklabel_id(cxt, &new);
1881
1882 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
1883 _("Disk identifier changed from %s to %s."), old, new);
1884
1885 free(old);
1886 free(new);
1887 fdisk_label_set_changed(cxt->label, 1);
1888 return 0;
1889 }
1890
1891
1892 static struct fdisk_parttype *gpt_get_partition_type(
1893 struct fdisk_context *cxt,
1894 size_t i)
1895 {
1896 struct fdisk_parttype *t;
1897 char str[37];
1898 struct fdisk_gpt_label *gpt;
1899
1900 assert(cxt);
1901 assert(cxt->label);
1902 assert(fdisk_is_disklabel(cxt, GPT));
1903
1904 gpt = self_label(cxt);
1905
1906 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1907 return NULL;
1908
1909 guid_to_string(&gpt->ents[i].type, str);
1910 t = fdisk_get_parttype_from_string(cxt, str);
1911 if (!t)
1912 t = fdisk_new_unknown_parttype(0, str);
1913
1914 return t;
1915 }
1916
1917
1918 static int gpt_set_partition_type(
1919 struct fdisk_context *cxt,
1920 size_t i,
1921 struct fdisk_parttype *t)
1922 {
1923 struct gpt_guid uuid;
1924 struct fdisk_gpt_label *gpt;
1925
1926 assert(cxt);
1927 assert(cxt->label);
1928 assert(fdisk_is_disklabel(cxt, GPT));
1929
1930 gpt = self_label(cxt);
1931 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries)
1932 || !t || !t->typestr || string_to_guid(t->typestr, &uuid) != 0)
1933 return -EINVAL;
1934
1935 gpt_entry_set_type(&gpt->ents[i], &uuid);
1936 gpt_recompute_crc(gpt->pheader, gpt->ents);
1937 gpt_recompute_crc(gpt->bheader, gpt->ents);
1938
1939 fdisk_label_set_changed(cxt->label, 1);
1940 return 0;
1941 }
1942
1943 static int gpt_get_partition_status(
1944 struct fdisk_context *cxt,
1945 size_t i,
1946 int *status)
1947 {
1948 struct fdisk_gpt_label *gpt;
1949 struct gpt_entry *e;
1950
1951 assert(cxt);
1952 assert(cxt->label);
1953 assert(fdisk_is_disklabel(cxt, GPT));
1954
1955 gpt = self_label(cxt);
1956
1957 if (!status || (uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1958 return -EINVAL;
1959
1960 e = &gpt->ents[i];
1961 *status = FDISK_PARTSTAT_NONE;
1962
1963 if (!partition_unused(e) || gpt_partition_start(e))
1964 *status = FDISK_PARTSTAT_USED;
1965
1966 return 0;
1967 }
1968
1969 int fdisk_gpt_partition_set_uuid(struct fdisk_context *cxt, size_t i)
1970 {
1971 struct fdisk_gpt_label *gpt;
1972 struct gpt_entry *e;
1973 struct gpt_guid uuid;
1974 char *str, new_u[37], old_u[37];
1975 int rc;
1976
1977 assert(cxt);
1978 assert(cxt->label);
1979 assert(fdisk_is_disklabel(cxt, GPT));
1980
1981 DBG(LABEL, dbgprint("UUID change requested partno=%zu", i));
1982
1983 gpt = self_label(cxt);
1984
1985 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
1986 return -EINVAL;
1987
1988 if (fdisk_ask_string(cxt,
1989 _("New UUID (in 8-4-4-4-12 format)"), &str))
1990 return -EINVAL;
1991
1992 rc = string_to_guid(str, &uuid);
1993 free(str);
1994
1995 if (rc) {
1996 fdisk_warnx(cxt, _("Failed to parse your UUID."));
1997 return rc;
1998 }
1999
2000 e = &gpt->ents[i];
2001
2002 guid_to_string(&e->partition_guid, old_u);
2003 guid_to_string(&uuid, new_u);
2004
2005 e->partition_guid = uuid;
2006 gpt_recompute_crc(gpt->pheader, gpt->ents);
2007 gpt_recompute_crc(gpt->bheader, gpt->ents);
2008 fdisk_label_set_changed(cxt->label, 1);
2009
2010 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
2011 _("Partition UUID changed from %s to %s."),
2012 old_u, new_u);
2013 return 0;
2014 }
2015
2016 int fdisk_gpt_partition_set_name(struct fdisk_context *cxt, size_t i)
2017 {
2018 struct fdisk_gpt_label *gpt;
2019 struct gpt_entry *e;
2020 char *str, *old, name[GPT_PART_NAME_LEN] = { 0 };
2021 size_t sz;
2022
2023 assert(cxt);
2024 assert(cxt->label);
2025 assert(fdisk_is_disklabel(cxt, GPT));
2026
2027 DBG(LABEL, dbgprint("NAME change requested partno=%zu", i));
2028
2029 gpt = self_label(cxt);
2030
2031 if ((uint32_t) i >= le32_to_cpu(gpt->pheader->npartition_entries))
2032 return -EINVAL;
2033
2034 if (fdisk_ask_string(cxt, _("New name"), &str))
2035 return -EINVAL;
2036
2037 e = &gpt->ents[i];
2038 old = encode_to_utf8((unsigned char *)e->name, sizeof(e->name));
2039
2040 sz = strlen(str);
2041 if (sz) {
2042 if (sz > GPT_PART_NAME_LEN)
2043 sz = GPT_PART_NAME_LEN;
2044 memcpy(name, str, sz);
2045 }
2046
2047 for (i = 0; i < GPT_PART_NAME_LEN; i++)
2048 e->name[i] = cpu_to_le16((uint16_t) name[i]);
2049
2050 gpt_recompute_crc(gpt->pheader, gpt->ents);
2051 gpt_recompute_crc(gpt->bheader, gpt->ents);
2052
2053 fdisk_label_set_changed(cxt->label, 1);
2054
2055 fdisk_sinfo(cxt, FDISK_INFO_SUCCESS,
2056 _("Partition name changed from '%s' to '%.*s'."),
2057 old, (int) GPT_PART_NAME_LEN, str);
2058 free(str);
2059 free(old);
2060
2061 return 0;
2062 }
2063
2064
2065 /*
2066 * Deinitialize fdisk-specific variables
2067 */
2068 static void gpt_deinit(struct fdisk_label *lb)
2069 {
2070 struct fdisk_gpt_label *gpt = (struct fdisk_gpt_label *) lb;
2071
2072 if (!gpt)
2073 return;
2074
2075 free(gpt->ents);
2076 free(gpt->pheader);
2077 free(gpt->bheader);
2078
2079 gpt->ents = NULL;
2080 gpt->pheader = NULL;
2081 gpt->bheader = NULL;
2082 }
2083
2084 static const struct fdisk_label_operations gpt_operations =
2085 {
2086 .probe = gpt_probe_label,
2087 .write = gpt_write_disklabel,
2088 .verify = gpt_verify_disklabel,
2089 .create = gpt_create_disklabel,
2090 .list = gpt_list_disklabel,
2091 .locate = gpt_locate_disklabel,
2092 .get_id = gpt_get_disklabel_id,
2093 .set_id = gpt_set_disklabel_id,
2094
2095 .part_add = gpt_add_partition,
2096 .part_delete = gpt_delete_partition,
2097 .part_get_type = gpt_get_partition_type,
2098 .part_set_type = gpt_set_partition_type,
2099
2100 .part_get_status = gpt_get_partition_status,
2101
2102 .deinit = gpt_deinit
2103 };
2104
2105 /*
2106 * allocates GPT in-memory stuff
2107 */
2108 struct fdisk_label *fdisk_new_gpt_label(struct fdisk_context *cxt)
2109 {
2110 struct fdisk_label *lb;
2111 struct fdisk_gpt_label *gpt;
2112
2113 assert(cxt);
2114
2115 gpt = calloc(1, sizeof(*gpt));
2116 if (!gpt)
2117 return NULL;
2118
2119 /* initialize generic part of the driver */
2120 lb = (struct fdisk_label *) gpt;
2121 lb->name = "gpt";
2122 lb->id = FDISK_DISKLABEL_GPT;
2123 lb->op = &gpt_operations;
2124 lb->parttypes = gpt_parttypes;
2125 lb->nparttypes = ARRAY_SIZE(gpt_parttypes);
2126
2127 return lb;
2128 }