]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/m4/reshape.m4
b589e53a41444842eb16a6f6de0020ec91edda63
[thirdparty/gcc.git] / libgfortran / m4 / reshape.m4
1 `/* Implementation of the RESHAPE intrinsic
2 Copyright 2002, 2006, 2007, 2009, 2012 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>'
29
30 include(iparm.m4)dnl
31
32 `#if defined (HAVE_'rtype_name`)
33
34 typedef GFC_ARRAY_DESCRIPTOR(1, 'index_type`) 'shape_type`;'
35
36 dnl For integer routines, only the kind (ie size) is used to name the
37 dnl function. The same function will be used for integer and logical
38 dnl arrays of the same kind.
39
40 `extern void reshape_'rtype_ccode` ('rtype` * const restrict,
41 'rtype` * const restrict,
42 'shape_type` * const restrict,
43 'rtype` * const restrict,
44 'shape_type` * const restrict);
45 export_proto(reshape_'rtype_ccode`);
46
47 void
48 reshape_'rtype_ccode` ('rtype` * const restrict ret,
49 'rtype` * const restrict source,
50 'shape_type` * const restrict shape,
51 'rtype` * const restrict pad,
52 'shape_type` * const restrict order)
53 {
54 /* r.* indicates the return array. */
55 index_type rcount[GFC_MAX_DIMENSIONS];
56 index_type rextent[GFC_MAX_DIMENSIONS];
57 index_type rstride[GFC_MAX_DIMENSIONS];
58 index_type rstride0;
59 index_type rdim;
60 index_type rsize;
61 index_type rs;
62 index_type rex;
63 'rtype_name` *rptr;
64 /* s.* indicates the source array. */
65 index_type scount[GFC_MAX_DIMENSIONS];
66 index_type sextent[GFC_MAX_DIMENSIONS];
67 index_type sstride[GFC_MAX_DIMENSIONS];
68 index_type sstride0;
69 index_type sdim;
70 index_type ssize;
71 const 'rtype_name` *sptr;
72 /* p.* indicates the pad array. */
73 index_type pcount[GFC_MAX_DIMENSIONS];
74 index_type pextent[GFC_MAX_DIMENSIONS];
75 index_type pstride[GFC_MAX_DIMENSIONS];
76 index_type pdim;
77 index_type psize;
78 const 'rtype_name` *pptr;
79
80 const 'rtype_name` *src;
81 int n;
82 int dim;
83 int sempty, pempty, shape_empty;
84 index_type shape_data[GFC_MAX_DIMENSIONS];
85
86 rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
87 if (rdim != GFC_DESCRIPTOR_RANK(ret))
88 runtime_error("rank of return array incorrect in RESHAPE intrinsic");
89
90 shape_empty = 0;
91
92 for (n = 0; n < rdim; n++)
93 {
94 shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
95 if (shape_data[n] <= 0)
96 {
97 shape_data[n] = 0;
98 shape_empty = 1;
99 }
100 }
101
102 if (ret->base_addr == NULL)
103 {
104 index_type alloc_size;
105
106 rs = 1;
107 for (n = 0; n < rdim; n++)
108 {
109 rex = shape_data[n];
110
111 GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);
112
113 rs *= rex;
114 }
115 ret->offset = 0;
116
117 if (unlikely (rs < 1))
118 alloc_size = 1;
119 else
120 alloc_size = rs * sizeof ('rtype_name`);
121
122 ret->base_addr = xmalloc (alloc_size);
123 ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
124 }
125
126 if (shape_empty)
127 return;
128
129 if (pad)
130 {
131 pdim = GFC_DESCRIPTOR_RANK (pad);
132 psize = 1;
133 pempty = 0;
134 for (n = 0; n < pdim; n++)
135 {
136 pcount[n] = 0;
137 pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
138 pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
139 if (pextent[n] <= 0)
140 {
141 pempty = 1;
142 pextent[n] = 0;
143 }
144
145 if (psize == pstride[n])
146 psize *= pextent[n];
147 else
148 psize = 0;
149 }
150 pptr = pad->base_addr;
151 }
152 else
153 {
154 pdim = 0;
155 psize = 1;
156 pempty = 1;
157 pptr = NULL;
158 }
159
160 if (unlikely (compile_options.bounds_check))
161 {
162 index_type ret_extent, source_extent;
163
164 rs = 1;
165 for (n = 0; n < rdim; n++)
166 {
167 rs *= shape_data[n];
168 ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
169 if (ret_extent != shape_data[n])
170 runtime_error("Incorrect extent in return value of RESHAPE"
171 " intrinsic in dimension %ld: is %ld,"
172 " should be %ld", (long int) n+1,
173 (long int) ret_extent, (long int) shape_data[n]);
174 }
175
176 source_extent = 1;
177 sdim = GFC_DESCRIPTOR_RANK (source);
178 for (n = 0; n < sdim; n++)
179 {
180 index_type se;
181 se = GFC_DESCRIPTOR_EXTENT(source,n);
182 source_extent *= se > 0 ? se : 0;
183 }
184
185 if (rs > source_extent && (!pad || pempty))
186 runtime_error("Incorrect size in SOURCE argument to RESHAPE"
187 " intrinsic: is %ld, should be %ld",
188 (long int) source_extent, (long int) rs);
189
190 if (order)
191 {
192 int seen[GFC_MAX_DIMENSIONS];
193 index_type v;
194
195 for (n = 0; n < rdim; n++)
196 seen[n] = 0;
197
198 for (n = 0; n < rdim; n++)
199 {
200 v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
201
202 if (v < 0 || v >= rdim)
203 runtime_error("Value %ld out of range in ORDER argument"
204 " to RESHAPE intrinsic", (long int) v + 1);
205
206 if (seen[v] != 0)
207 runtime_error("Duplicate value %ld in ORDER argument to"
208 " RESHAPE intrinsic", (long int) v + 1);
209
210 seen[v] = 1;
211 }
212 }
213 }
214
215 rsize = 1;
216 for (n = 0; n < rdim; n++)
217 {
218 if (order)
219 dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
220 else
221 dim = n;
222
223 rcount[n] = 0;
224 rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
225 rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
226 if (rextent[n] < 0)
227 rextent[n] = 0;
228
229 if (rextent[n] != shape_data[dim])
230 runtime_error ("shape and target do not conform");
231
232 if (rsize == rstride[n])
233 rsize *= rextent[n];
234 else
235 rsize = 0;
236 if (rextent[n] <= 0)
237 return;
238 }
239
240 sdim = GFC_DESCRIPTOR_RANK (source);
241 ssize = 1;
242 sempty = 0;
243 for (n = 0; n < sdim; n++)
244 {
245 scount[n] = 0;
246 sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
247 sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
248 if (sextent[n] <= 0)
249 {
250 sempty = 1;
251 sextent[n] = 0;
252 }
253
254 if (ssize == sstride[n])
255 ssize *= sextent[n];
256 else
257 ssize = 0;
258 }
259
260 if (rsize != 0 && ssize != 0 && psize != 0)
261 {
262 rsize *= sizeof ('rtype_name`);
263 ssize *= sizeof ('rtype_name`);
264 psize *= sizeof ('rtype_name`);
265 reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr,
266 ssize, pad ? (char *)pad->base_addr : NULL, psize);
267 return;
268 }
269 rptr = ret->base_addr;
270 src = sptr = source->base_addr;
271 rstride0 = rstride[0];
272 sstride0 = sstride[0];
273
274 if (sempty && pempty)
275 abort ();
276
277 if (sempty)
278 {
279 /* Pretend we are using the pad array the first time around, too. */
280 src = pptr;
281 sptr = pptr;
282 sdim = pdim;
283 for (dim = 0; dim < pdim; dim++)
284 {
285 scount[dim] = pcount[dim];
286 sextent[dim] = pextent[dim];
287 sstride[dim] = pstride[dim];
288 sstride0 = pstride[0];
289 }
290 }
291
292 while (rptr)
293 {
294 /* Select between the source and pad arrays. */
295 *rptr = *src;
296 /* Advance to the next element. */
297 rptr += rstride0;
298 src += sstride0;
299 rcount[0]++;
300 scount[0]++;
301
302 /* Advance to the next destination element. */
303 n = 0;
304 while (rcount[n] == rextent[n])
305 {
306 /* When we get to the end of a dimension, reset it and increment
307 the next dimension. */
308 rcount[n] = 0;
309 /* We could precalculate these products, but this is a less
310 frequently used path so probably not worth it. */
311 rptr -= rstride[n] * rextent[n];
312 n++;
313 if (n == rdim)
314 {
315 /* Break out of the loop. */
316 rptr = NULL;
317 break;
318 }
319 else
320 {
321 rcount[n]++;
322 rptr += rstride[n];
323 }
324 }
325 /* Advance to the next source element. */
326 n = 0;
327 while (scount[n] == sextent[n])
328 {
329 /* When we get to the end of a dimension, reset it and increment
330 the next dimension. */
331 scount[n] = 0;
332 /* We could precalculate these products, but this is a less
333 frequently used path so probably not worth it. */
334 src -= sstride[n] * sextent[n];
335 n++;
336 if (n == sdim)
337 {
338 if (sptr && pad)
339 {
340 /* Switch to the pad array. */
341 sptr = NULL;
342 sdim = pdim;
343 for (dim = 0; dim < pdim; dim++)
344 {
345 scount[dim] = pcount[dim];
346 sextent[dim] = pextent[dim];
347 sstride[dim] = pstride[dim];
348 sstride0 = sstride[0];
349 }
350 }
351 /* We now start again from the beginning of the pad array. */
352 src = pptr;
353 break;
354 }
355 else
356 {
357 scount[n]++;
358 src += sstride[n];
359 }
360 }
361 }
362 }
363
364 #endif'