]> git.ipfire.org Git - thirdparty/freeswitch.git/blob - libs/libzrtp/third_party/bnlib/lbn64.c
[mod_http_cache] Fix leaking curl handle in http_get()
[thirdparty/freeswitch.git] / libs / libzrtp / third_party / bnlib / lbn64.c
1 /*
2 * Copyright (c) 1995 Colin Plumb. All rights reserved.
3 * For licensing and other legal details, see the file legal.c.
4 *
5 * lbn64.c - Low-level bignum routines, 64-bit version.
6 *
7 * NOTE: the magic constants "64" and "128" appear in many places in this
8 * file, including inside identifiers. Because it is not possible to
9 * ask "#ifdef" of a macro expansion, it is not possible to use the
10 * preprocessor to conditionalize these properly. Thus, this file is
11 * intended to be edited with textual search and replace to produce
12 * alternate word size versions. Any reference to the number of bits
13 * in a word must be the string "64", and that string must not appear
14 * otherwise. Any reference to twice this number must appear as "128",
15 * which likewise must not appear otherwise. Is that clear?
16 *
17 * Remember, when doubling the bit size replace the larger number (128)
18 * first, then the smaller (64). When halving the bit size, do the
19 * opposite. Otherwise, things will get wierd. Also, be sure to replace
20 * every instance that appears. (:%s/foo/bar/g in vi)
21 *
22 * These routines work with a pointer to the least-significant end of
23 * an array of WORD64s. The BIG(x), LITTLE(y) and BIGLTTLE(x,y) macros
24 * defined in lbn.h (which expand to x on a big-edian machine and y on a
25 * little-endian machine) are used to conditionalize the code to work
26 * either way. If you have no assembly primitives, it doesn't matter.
27 * Note that on a big-endian machine, the least-significant-end pointer
28 * is ONE PAST THE END. The bytes are ptr[-1] through ptr[-len].
29 * On little-endian, they are ptr[0] through ptr[len-1]. This makes
30 * perfect sense if you consider pointers to point *between* bytes rather
31 * than at them.
32 *
33 * Because the array index values are unsigned integers, ptr[-i]
34 * may not work properly, since the index -i is evaluated as an unsigned,
35 * and if pointers are wider, zero-extension will produce a positive
36 * number rahter than the needed negative. The expression used in this
37 * code, *(ptr-i) will, however, work. (The array syntax is equivalent
38 * to *(ptr+-i), which is a pretty subtle difference.)
39 *
40 * Many of these routines will get very unhappy if fed zero-length inputs.
41 * They use assert() to enforce this. An higher layer of code must make
42 * sure that these aren't called with zero-length inputs.
43 *
44 * Any of these routines can be replaced with more efficient versions
45 * elsewhere, by just #defining their names. If one of the names
46 * is #defined, the C code is not compiled in and no declaration is
47 * made. Use the BNINCLUDE file to do that. Typically, you compile
48 * asm subroutines with the same name and just, e.g.
49 * #define lbnMulAdd1_64 lbnMulAdd1_64
50 *
51 * If you want to write asm routines, start with lbnMulAdd1_64().
52 * This is the workhorse of modular exponentiation. lbnMulN1_64() is
53 * also used a fair bit, although not as much and it's defined in terms
54 * of lbnMulAdd1_64 if that has a custom version. lbnMulSub1_64 and
55 * lbnDiv21_64 are used in the usual division and remainder finding.
56 * (Not the Montgomery reduction used in modular exponentiation, though.)
57 * Once you have lbnMulAdd1_64 defined, writing the other two should
58 * be pretty easy. (Just make sure you get the sign of the subtraction
59 * in lbnMulSub1_64 right - it's dest = dest - source * k.)
60 *
61 * The only definitions that absolutely need a double-word (BNWORD128)
62 * type are lbnMulAdd1_64 and lbnMulSub1_64; if those are provided,
63 * the rest follows. lbnDiv21_64, however, is a lot slower unless you
64 * have them, and lbnModQ_64 takes after it. That one is used quite a
65 * bit for prime sieving.
66 */
67
68 #ifndef HAVE_CONFIG_H
69 #define HAVE_CONFIG_H 0
70 #endif
71 #if HAVE_CONFIG_H
72 #include "bnconfig.h"
73 #endif
74
75 /*
76 * Some compilers complain about #if FOO if FOO isn't defined,
77 * so do the ANSI-mandated thing explicitly...
78 */
79 #ifndef NO_ASSERT_H
80 #define NO_ASSERT_H 0
81 #endif
82 #ifndef NO_STRING_H
83 #define NO_STRING_H 0
84 #endif
85 #ifndef HAVE_STRINGS_H
86 #define HAVE_STRINGS_H 0
87 #endif
88
89 #if !NO_ASSERT_H
90 #include <assert.h>
91 #else
92 #define assert(x) (void)0
93 #endif
94
95 #if !NO_STRING_H
96 #include <string.h> /* For memcpy */
97 #elif HAVE_STRINGS_H
98 #include <strings.h>
99 #endif
100
101 #include "lbn.h"
102 #include "lbn64.h"
103 #include "lbnmem.h"
104
105 #include "kludge.h"
106
107 #ifndef BNWORD64
108 #error 64-bit bignum library requires a 64-bit data type
109 #endif
110
111 /* If this is defined, include bnYield() calls */
112 #if BNYIELD
113 extern int (*bnYield)(void); /* From bn.c */
114 #endif
115
116 /*
117 * Most of the multiply (and Montgomery reduce) routines use an outer
118 * loop that iterates over one of the operands - a so-called operand
119 * scanning approach. One big advantage of this is that the assembly
120 * support routines are simpler. The loops can be rearranged to have
121 * an outer loop that iterates over the product, a so-called product
122 * scanning approach. This has the advantage of writing less data
123 * and doing fewer adds to memory, so is supposedly faster. Some
124 * code has been written using a product-scanning approach, but
125 * it appears to be slower, so it is turned off by default. Some
126 * experimentation would be appreciated.
127 *
128 * (The code is also annoying to get right and not very well commented,
129 * one of my pet peeves about math libraries. I'm sorry.)
130 */
131 #ifndef PRODUCT_SCAN
132 #define PRODUCT_SCAN 0
133 #endif
134
135 /*
136 * Copy an array of words. <Marvin mode on> Thrilling, isn't it? </Marvin>
137 * This is a good example of how the byte offsets and BIGLITTLE() macros work.
138 * Another alternative would have been
139 * memcpy(dest BIG(-len), src BIG(-len), len*sizeof(BNWORD64)), but I find that
140 * putting operators into conditional macros is confusing.
141 */
142 #ifndef lbnCopy_64
143 void
144 lbnCopy_64(BNWORD64 *dest, BNWORD64 const *src, unsigned len)
145 {
146 memcpy(BIGLITTLE(dest-len,dest), BIGLITTLE(src-len,src),
147 len * sizeof(*src));
148 }
149 #endif /* !lbnCopy_64 */
150
151 /*
152 * Fill n words with zero. This does it manually rather than calling
153 * memset because it can assume alignment to make things faster while
154 * memset can't. Note how big-endian numbers are naturally addressed
155 * using predecrement, while little-endian is postincrement.
156 */
157 #ifndef lbnZero_64
158 void
159 lbnZero_64(BNWORD64 *num, unsigned len)
160 {
161 while (len--)
162 BIGLITTLE(*--num,*num++) = 0;
163 }
164 #endif /* !lbnZero_64 */
165
166 /*
167 * Negate an array of words.
168 * Negation is subtraction from zero. Negating low-order words
169 * entails doing nothing until a non-zero word is hit. Once that
170 * is negated, a borrow is generated and never dies until the end
171 * of the number is hit. Negation with borrow, -x-1, is the same as ~x.
172 * Repeat that until the end of the number.
173 *
174 * Doesn't return borrow out because that's pretty useless - it's
175 * always set unless the input is 0, which is easy to notice in
176 * normalized form.
177 */
178 #ifndef lbnNeg_64
179 void
180 lbnNeg_64(BNWORD64 *num, unsigned len)
181 {
182 assert(len);
183
184 /* Skip low-order zero words */
185 while (BIGLITTLE(*--num,*num) == 0) {
186 if (!--len)
187 return;
188 LITTLE(num++;)
189 }
190 /* Negate the lowest-order non-zero word */
191 *num = -*num;
192 /* Complement all the higher-order words */
193 while (--len) {
194 BIGLITTLE(--num,++num);
195 *num = ~*num;
196 }
197 }
198 #endif /* !lbnNeg_64 */
199
200
201 /*
202 * lbnAdd1_64: add the single-word "carry" to the given number.
203 * Used for minor increments and propagating the carry after
204 * adding in a shorter bignum.
205 *
206 * Technique: If we have a double-width word, presumably the compiler
207 * can add using its carry in inline code, so we just use a larger
208 * accumulator to compute the carry from the first addition.
209 * If not, it's more complex. After adding the first carry, which may
210 * be > 1, compare the sum and the carry. If the sum wraps (causing a
211 * carry out from the addition), the result will be less than each of the
212 * inputs, since the wrap subtracts a number (2^64) which is larger than
213 * the other input can possibly be. If the sum is >= the carry input,
214 * return success immediately.
215 * In either case, if there is a carry, enter a loop incrementing words
216 * until one does not wrap. Since we are adding 1 each time, the wrap
217 * will be to 0 and we can test for equality.
218 */
219 #ifndef lbnAdd1_64 /* If defined, it's provided as an asm subroutine */
220 #ifdef BNWORD128
221 BNWORD64
222 lbnAdd1_64(BNWORD64 *num, unsigned len, BNWORD64 carry)
223 {
224 BNWORD128 t;
225 assert(len > 0); /* Alternative: if (!len) return carry */
226
227 t = (BNWORD128)BIGLITTLE(*--num,*num) + carry;
228 BIGLITTLE(*num,*num++) = (BNWORD64)t;
229 if ((t >> 64) == 0)
230 return 0;
231 while (--len) {
232 if (++BIGLITTLE(*--num,*num++) != 0)
233 return 0;
234 }
235 return 1;
236 }
237 #else /* no BNWORD128 */
238 BNWORD64
239 lbnAdd1_64(BNWORD64 *num, unsigned len, BNWORD64 carry)
240 {
241 assert(len > 0); /* Alternative: if (!len) return carry */
242
243 if ((BIGLITTLE(*--num,*num++) += carry) >= carry)
244 return 0;
245 while (--len) {
246 if (++BIGLITTLE(*--num,*num++) != 0)
247 return 0;
248 }
249 return 1;
250 }
251 #endif
252 #endif/* !lbnAdd1_64 */
253
254 /*
255 * lbnSub1_64: subtract the single-word "borrow" from the given number.
256 * Used for minor decrements and propagating the borrow after
257 * subtracting a shorter bignum.
258 *
259 * Technique: Similar to the add, above. If there is a double-length type,
260 * use that to generate the first borrow.
261 * If not, after subtracting the first borrow, which may be > 1, compare
262 * the difference and the *negative* of the carry. If the subtract wraps
263 * (causing a borrow out from the subtraction), the result will be at least
264 * as large as -borrow. If the result < -borrow, then no borrow out has
265 * appeared and we may return immediately, except when borrow == 0. To
266 * deal with that case, use the identity that -x = ~x+1, and instead of
267 * comparing < -borrow, compare for <= ~borrow.
268 * Either way, if there is a borrow out, enter a loop decrementing words
269 * until a non-zero word is reached.
270 *
271 * Note the cast of ~borrow to (BNWORD64). If the size of an int is larger
272 * than BNWORD64, C rules say the number is expanded for the arithmetic, so
273 * the inversion will be done on an int and the value won't be quite what
274 * is expected.
275 */
276 #ifndef lbnSub1_64 /* If defined, it's provided as an asm subroutine */
277 #ifdef BNWORD128
278 BNWORD64
279 lbnSub1_64(BNWORD64 *num, unsigned len, BNWORD64 borrow)
280 {
281 BNWORD128 t;
282 assert(len > 0); /* Alternative: if (!len) return borrow */
283
284 t = (BNWORD128)BIGLITTLE(*--num,*num) - borrow;
285 BIGLITTLE(*num,*num++) = (BNWORD64)t;
286 if ((t >> 64) == 0)
287 return 0;
288 while (--len) {
289 if ((BIGLITTLE(*--num,*num++))-- != 0)
290 return 0;
291 }
292 return 1;
293 }
294 #else /* no BNWORD128 */
295 BNWORD64
296 lbnSub1_64(BNWORD64 *num, unsigned len, BNWORD64 borrow)
297 {
298 assert(len > 0); /* Alternative: if (!len) return borrow */
299
300 if ((BIGLITTLE(*--num,*num++) -= borrow) <= (BNWORD64)~borrow)
301 return 0;
302 while (--len) {
303 if ((BIGLITTLE(*--num,*num++))-- != 0)
304 return 0;
305 }
306 return 1;
307 }
308 #endif
309 #endif /* !lbnSub1_64 */
310
311 /*
312 * lbnAddN_64: add two bignums of the same length, returning the carry (0 or 1).
313 * One of the building blocks, along with lbnAdd1, of adding two bignums of
314 * differing lengths.
315 *
316 * Technique: Maintain a word of carry. If there is no double-width type,
317 * use the same technique as in lbnAdd1, above, to maintain the carry by
318 * comparing the inputs. Adding the carry sources is used as an OR operator;
319 * at most one of the two comparisons can possibly be true. The first can
320 * only be true if carry == 1 and x, the result, is 0. In that case the
321 * second can't possibly be true.
322 */
323 #ifndef lbnAddN_64
324 #ifdef BNWORD128
325 BNWORD64
326 lbnAddN_64(BNWORD64 *num1, BNWORD64 const *num2, unsigned len)
327 {
328 BNWORD128 t;
329
330 assert(len > 0);
331
332 t = (BNWORD128)BIGLITTLE(*--num1,*num1) + BIGLITTLE(*--num2,*num2++);
333 BIGLITTLE(*num1,*num1++) = (BNWORD64)t;
334 while (--len) {
335 t = (BNWORD128)BIGLITTLE(*--num1,*num1) +
336 (BNWORD128)BIGLITTLE(*--num2,*num2++) + (t >> 64);
337 BIGLITTLE(*num1,*num1++) = (BNWORD64)t;
338 }
339
340 return (BNWORD64)(t>>64);
341 }
342 #else /* no BNWORD128 */
343 BNWORD64
344 lbnAddN_64(BNWORD64 *num1, BNWORD64 const *num2, unsigned len)
345 {
346 BNWORD64 x, carry = 0;
347
348 assert(len > 0); /* Alternative: change loop to test at start */
349
350 do {
351 x = BIGLITTLE(*--num2,*num2++);
352 carry = (x += carry) < carry;
353 carry += (BIGLITTLE(*--num1,*num1++) += x) < x;
354 } while (--len);
355
356 return carry;
357 }
358 #endif
359 #endif /* !lbnAddN_64 */
360
361 /*
362 * lbnSubN_64: add two bignums of the same length, returning the carry (0 or 1).
363 * One of the building blocks, along with subn1, of subtracting two bignums of
364 * differing lengths.
365 *
366 * Technique: If no double-width type is availble, maintain a word of borrow.
367 * First, add the borrow to the subtrahend (did you have to learn all those
368 * awful words in elementary school, too?), and if it overflows, set the
369 * borrow again. Then subtract the modified subtrahend from the next word
370 * of input, using the same technique as in subn1, above.
371 * Adding the borrows is used as an OR operator; at most one of the two
372 * comparisons can possibly be true. The first can only be true if
373 * borrow == 1 and x, the result, is 0. In that case the second can't
374 * possibly be true.
375 *
376 * In the double-word case, (BNWORD64)-(t>>64) is subtracted, rather than
377 * adding t>>64, because the shift would need to sign-extend and that's
378 * not guaranteed to happen in ANSI C, even with signed types.
379 */
380 #ifndef lbnSubN_64
381 #ifdef BNWORD128
382 BNWORD64
383 lbnSubN_64(BNWORD64 *num1, BNWORD64 const *num2, unsigned len)
384 {
385 BNWORD128 t;
386
387 assert(len > 0);
388
389 t = (BNWORD128)BIGLITTLE(*--num1,*num1) - BIGLITTLE(*--num2,*num2++);
390 BIGLITTLE(*num1,*num1++) = (BNWORD64)t;
391
392 while (--len) {
393 t = (BNWORD128)BIGLITTLE(*--num1,*num1) -
394 (BNWORD128)BIGLITTLE(*--num2,*num2++) - (BNWORD64)-(t >> 64);
395 BIGLITTLE(*num1,*num1++) = (BNWORD64)t;
396 }
397
398 return -(BNWORD64)(t>>64);
399 }
400 #else
401 BNWORD64
402 lbnSubN_64(BNWORD64 *num1, BNWORD64 const *num2, unsigned len)
403 {
404 BNWORD64 x, borrow = 0;
405
406 assert(len > 0); /* Alternative: change loop to test at start */
407
408 do {
409 x = BIGLITTLE(*--num2,*num2++);
410 borrow = (x += borrow) < borrow;
411 borrow += (BIGLITTLE(*--num1,*num1++) -= x) > (BNWORD64)~x;
412 } while (--len);
413
414 return borrow;
415 }
416 #endif
417 #endif /* !lbnSubN_64 */
418
419 #ifndef lbnCmp_64
420 /*
421 * lbnCmp_64: compare two bignums of equal length, returning the sign of
422 * num1 - num2. (-1, 0 or +1).
423 *
424 * Technique: Change the little-endian pointers to big-endian pointers
425 * and compare from the most-significant end until a difference if found.
426 * When it is, figure out the sign of the difference and return it.
427 */
428 int
429 lbnCmp_64(BNWORD64 const *num1, BNWORD64 const *num2, unsigned len)
430 {
431 BIGLITTLE(num1 -= len, num1 += len);
432 BIGLITTLE(num2 -= len, num2 += len);
433
434 while (len--) {
435 if (BIGLITTLE(*num1++ != *num2++, *--num1 != *--num2)) {
436 if (BIGLITTLE(num1[-1] < num2[-1], *num1 < *num2))
437 return -1;
438 else
439 return 1;
440 }
441 }
442 return 0;
443 }
444 #endif /* !lbnCmp_64 */
445
446 /*
447 * mul64_ppmmaa(ph,pl,x,y,a,b) is an optional routine that
448 * computes (ph,pl) = x * y + a + b. mul64_ppmma and mul64_ppmm
449 * are simpler versions. If you want to be lazy, all of these
450 * can be defined in terms of the others, so here we create any
451 * that have not been defined in terms of the ones that have been.
452 */
453
454 /* Define ones with fewer a's in terms of ones with more a's */
455 #if !defined(mul64_ppmma) && defined(mul64_ppmmaa)
456 #define mul64_ppmma(ph,pl,x,y,a) mul64_ppmmaa(ph,pl,x,y,a,0)
457 #endif
458
459 #if !defined(mul64_ppmm) && defined(mul64_ppmma)
460 #define mul64_ppmm(ph,pl,x,y) mul64_ppmma(ph,pl,x,y,0)
461 #endif
462
463 /*
464 * Use this definition to test the mul64_ppmm-based operations on machines
465 * that do not provide mul64_ppmm. Change the final "0" to a "1" to
466 * enable it.
467 */
468 #if !defined(mul64_ppmm) && defined(BNWORD128) && 0 /* Debugging */
469 #define mul64_ppmm(ph,pl,x,y) \
470 ({BNWORD128 _ = (BNWORD128)(x)*(y); (pl) = _; (ph) = _>>64;})
471 #endif
472
473 #if defined(mul64_ppmm) && !defined(mul64_ppmma)
474 #define mul64_ppmma(ph,pl,x,y,a) \
475 (mul64_ppmm(ph,pl,x,y), (ph) += ((pl) += (a)) < (a))
476 #endif
477
478 #if defined(mul64_ppmma) && !defined(mul64_ppmmaa)
479 #define mul64_ppmmaa(ph,pl,x,y,a,b) \
480 (mul64_ppmma(ph,pl,x,y,a), (ph) += ((pl) += (b)) < (b))
481 #endif
482
483 /*
484 * lbnMulN1_64: Multiply an n-word input by a 1-word input and store the
485 * n+1-word product. This uses either the mul64_ppmm and mul64_ppmma
486 * macros, or C multiplication with the BNWORD128 type. This uses mul64_ppmma
487 * if available, assuming you won't bother defining it unless you can do
488 * better than the normal multiplication.
489 */
490 #ifndef lbnMulN1_64
491 #ifdef lbnMulAdd1_64 /* If we have this asm primitive, use it. */
492 void
493 lbnMulN1_64(BNWORD64 *out, BNWORD64 const *in, unsigned len, BNWORD64 k)
494 {
495 lbnZero_64(out, len);
496 BIGLITTLE(*(out-len-1),*(out+len)) = lbnMulAdd1_64(out, in, len, k);
497 }
498 #elif defined(mul64_ppmm)
499 void
500 lbnMulN1_64(BNWORD64 *out, BNWORD64 const *in, unsigned len, BNWORD64 k)
501 {
502 BNWORD64 carry, carryin;
503
504 assert(len > 0);
505
506 BIG(--out;--in;);
507 mul64_ppmm(carry, *out, *in, k);
508 LITTLE(out++;in++;)
509
510 while (--len) {
511 BIG(--out;--in;)
512 carryin = carry;
513 mul64_ppmma(carry, *out, *in, k, carryin);
514 LITTLE(out++;in++;)
515 }
516 BIGLITTLE(*--out,*out) = carry;
517 }
518 #elif defined(BNWORD128)
519 void
520 lbnMulN1_64(BNWORD64 *out, BNWORD64 const *in, unsigned len, BNWORD64 k)
521 {
522 BNWORD128 p;
523
524 assert(len > 0);
525
526 p = (BNWORD128)BIGLITTLE(*--in,*in++) * k;
527 BIGLITTLE(*--out,*out++) = (BNWORD64)p;
528
529 while (--len) {
530 p = (BNWORD128)BIGLITTLE(*--in,*in++) * k + (BNWORD64)(p >> 64);
531 BIGLITTLE(*--out,*out++) = (BNWORD64)p;
532 }
533 BIGLITTLE(*--out,*out) = (BNWORD64)(p >> 64);
534 }
535 #else
536 #error No 64x64 -> 128 multiply available for 64-bit bignum package
537 #endif
538 #endif /* lbnMulN1_64 */
539
540 /*
541 * lbnMulAdd1_64: Multiply an n-word input by a 1-word input and add the
542 * low n words of the product to the destination. *Returns the n+1st word
543 * of the product.* (That turns out to be more convenient than adding
544 * it into the destination and dealing with a possible unit carry out
545 * of *that*.) This uses either the mul64_ppmma and mul64_ppmmaa macros,
546 * or C multiplication with the BNWORD128 type.
547 *
548 * If you're going to write assembly primitives, this is the one to
549 * start with. It is by far the most commonly called function.
550 */
551 #ifndef lbnMulAdd1_64
552 #if defined(mul64_ppmm)
553 BNWORD64
554 lbnMulAdd1_64(BNWORD64 *out, BNWORD64 const *in, unsigned len, BNWORD64 k)
555 {
556 BNWORD64 prod, carry, carryin;
557
558 assert(len > 0);
559
560 BIG(--out;--in;);
561 carryin = *out;
562 mul64_ppmma(carry, *out, *in, k, carryin);
563 LITTLE(out++;in++;)
564
565 while (--len) {
566 BIG(--out;--in;);
567 carryin = carry;
568 mul64_ppmmaa(carry, prod, *in, k, carryin, *out);
569 *out = prod;
570 LITTLE(out++;in++;)
571 }
572
573 return carry;
574 }
575 #elif defined(BNWORD128)
576 BNWORD64
577 lbnMulAdd1_64(BNWORD64 *out, BNWORD64 const *in, unsigned len, BNWORD64 k)
578 {
579 BNWORD128 p;
580
581 assert(len > 0);
582
583 p = (BNWORD128)BIGLITTLE(*--in,*in++) * k + BIGLITTLE(*--out,*out);
584 BIGLITTLE(*out,*out++) = (BNWORD64)p;
585
586 while (--len) {
587 p = (BNWORD128)BIGLITTLE(*--in,*in++) * k +
588 (BNWORD64)(p >> 64) + BIGLITTLE(*--out,*out);
589 BIGLITTLE(*out,*out++) = (BNWORD64)p;
590 }
591
592 return (BNWORD64)(p >> 64);
593 }
594 #else
595 #error No 64x64 -> 128 multiply available for 64-bit bignum package
596 #endif
597 #endif /* lbnMulAdd1_64 */
598
599 /*
600 * lbnMulSub1_64: Multiply an n-word input by a 1-word input and subtract the
601 * n-word product from the destination. Returns the n+1st word of the product.
602 * This uses either the mul64_ppmm and mul64_ppmma macros, or
603 * C multiplication with the BNWORD128 type.
604 *
605 * This is rather uglier than adding, but fortunately it's only used in
606 * division which is not used too heavily.
607 */
608 #ifndef lbnMulSub1_64
609 #if defined(mul64_ppmm)
610 BNWORD64
611 lbnMulSub1_64(BNWORD64 *out, BNWORD64 const *in, unsigned len, BNWORD64 k)
612 {
613 BNWORD64 prod, carry, carryin;
614
615 assert(len > 0);
616
617 BIG(--in;)
618 mul64_ppmm(carry, prod, *in, k);
619 LITTLE(in++;)
620 carry += (BIGLITTLE(*--out,*out++) -= prod) > (BNWORD64)~prod;
621
622 while (--len) {
623 BIG(--in;);
624 carryin = carry;
625 mul64_ppmma(carry, prod, *in, k, carryin);
626 LITTLE(in++;)
627 carry += (BIGLITTLE(*--out,*out++) -= prod) > (BNWORD64)~prod;
628 }
629
630 return carry;
631 }
632 #elif defined(BNWORD128)
633 BNWORD64
634 lbnMulSub1_64(BNWORD64 *out, BNWORD64 const *in, unsigned len, BNWORD64 k)
635 {
636 BNWORD128 p;
637 BNWORD64 carry, t;
638
639 assert(len > 0);
640
641 p = (BNWORD128)BIGLITTLE(*--in,*in++) * k;
642 t = BIGLITTLE(*--out,*out);
643 carry = (BNWORD64)(p>>64) + ((BIGLITTLE(*out,*out++)=t-(BNWORD64)p) > t);
644
645 while (--len) {
646 p = (BNWORD128)BIGLITTLE(*--in,*in++) * k + carry;
647 t = BIGLITTLE(*--out,*out);
648 carry = (BNWORD64)(p>>64) +
649 ( (BIGLITTLE(*out,*out++)=t-(BNWORD64)p) > t );
650 }
651
652 return carry;
653 }
654 #else
655 #error No 64x64 -> 128 multiply available for 64-bit bignum package
656 #endif
657 #endif /* !lbnMulSub1_64 */
658
659 /*
660 * Shift n words left "shift" bits. 0 < shift < 64. Returns the
661 * carry, any bits shifted off the left-hand side (0 <= carry < 2^shift).
662 */
663 #ifndef lbnLshift_64
664 BNWORD64
665 lbnLshift_64(BNWORD64 *num, unsigned len, unsigned shift)
666 {
667 BNWORD64 x, carry;
668
669 assert(shift > 0);
670 assert(shift < 64);
671
672 carry = 0;
673 while (len--) {
674 BIG(--num;)
675 x = *num;
676 *num = (x<<shift) | carry;
677 LITTLE(num++;)
678 carry = x >> (64-shift);
679 }
680 return carry;
681 }
682 #endif /* !lbnLshift_64 */
683
684 /*
685 * An optimized version of the above, for shifts of 1.
686 * Some machines can use add-with-carry tricks for this.
687 */
688 #ifndef lbnDouble_64
689 BNWORD64
690 lbnDouble_64(BNWORD64 *num, unsigned len)
691 {
692 BNWORD64 x, carry;
693
694 carry = 0;
695 while (len--) {
696 BIG(--num;)
697 x = *num;
698 *num = (x<<1) | carry;
699 LITTLE(num++;)
700 carry = x >> (64-1);
701 }
702 return carry;
703 }
704 #endif /* !lbnDouble_64 */
705
706 /*
707 * Shift n words right "shift" bits. 0 < shift < 64. Returns the
708 * carry, any bits shifted off the right-hand side (0 <= carry < 2^shift).
709 */
710 #ifndef lbnRshift_64
711 BNWORD64
712 lbnRshift_64(BNWORD64 *num, unsigned len, unsigned shift)
713 {
714 BNWORD64 x, carry = 0;
715
716 assert(shift > 0);
717 assert(shift < 64);
718
719 BIGLITTLE(num -= len, num += len);
720
721 while (len--) {
722 LITTLE(--num;)
723 x = *num;
724 *num = (x>>shift) | carry;
725 BIG(num++;)
726 carry = x << (64-shift);
727 }
728 return carry >> (64-shift);
729 }
730 #endif /* !lbnRshift_64 */
731
732 /*
733 * Multiply two numbers of the given lengths. prod and num2 may overlap,
734 * provided that the low len1 bits of prod are free. (This corresponds
735 * nicely to the place the result is returned from lbnMontReduce_64.)
736 *
737 * TODO: Use Karatsuba multiply. The overlap constraints may have
738 * to get rewhacked.
739 */
740 #ifndef lbnMul_64
741 void
742 lbnMul_64(BNWORD64 *prod, BNWORD64 const *num1, unsigned len1,
743 BNWORD64 const *num2, unsigned len2)
744 {
745 /* Special case of zero */
746 if (!len1 || !len2) {
747 lbnZero_64(prod, len1+len2);
748 return;
749 }
750
751 /* Multiply first word */
752 lbnMulN1_64(prod, num1, len1, BIGLITTLE(*--num2,*num2++));
753
754 /*
755 * Add in subsequent words, storing the most significant word,
756 * which is new each time.
757 */
758 while (--len2) {
759 BIGLITTLE(--prod,prod++);
760 BIGLITTLE(*(prod-len1-1),*(prod+len1)) =
761 lbnMulAdd1_64(prod, num1, len1, BIGLITTLE(*--num2,*num2++));
762 }
763 }
764 #endif /* !lbnMul_64 */
765
766 /*
767 * lbnMulX_64 is a square multiply - both inputs are the same length.
768 * It's normally just a macro wrapper around the general multiply,
769 * but might be implementable in assembly more efficiently (such as
770 * when product scanning).
771 */
772 #ifndef lbnMulX_64
773 #if defined(BNWORD128) && PRODUCT_SCAN
774 /*
775 * Test code to see whether product scanning is any faster. It seems
776 * to make the C code slower, so PRODUCT_SCAN is not defined.
777 */
778 static void
779 lbnMulX_64(BNWORD64 *prod, BNWORD64 const *num1, BNWORD64 const *num2,
780 unsigned len)
781 {
782 BNWORD128 x, y;
783 BNWORD64 const *p1, *p2;
784 unsigned carry;
785 unsigned i, j;
786
787 /* Special case of zero */
788 if (!len)
789 return;
790
791 x = (BNWORD128)BIGLITTLE(num1[-1] * num2[-1], num1[0] * num2[0]);
792 BIGLITTLE(*--prod, *prod++) = (BNWORD64)x;
793 x >>= 64;
794
795 for (i = 1; i < len; i++) {
796 carry = 0;
797 p1 = num1;
798 p2 = BIGLITTLE(num2-i-1,num2+i+1);
799 for (j = 0; j <= i; j++) {
800 BIG(y = (BNWORD128)*--p1 * *p2++;)
801 LITTLE(y = (BNWORD128)*p1++ * *--p2;)
802 x += y;
803 carry += (x < y);
804 }
805 BIGLITTLE(*--prod,*prod++) = (BNWORD64)x;
806 x = (x >> 64) | (BNWORD128)carry << 64;
807 }
808 for (i = 1; i < len; i++) {
809 carry = 0;
810 p1 = BIGLITTLE(num1-i,num1+i);
811 p2 = BIGLITTLE(num2-len,num2+len);
812 for (j = i; j < len; j++) {
813 BIG(y = (BNWORD128)*--p1 * *p2++;)
814 LITTLE(y = (BNWORD128)*p1++ * *--p2;)
815 x += y;
816 carry += (x < y);
817 }
818 BIGLITTLE(*--prod,*prod++) = (BNWORD64)x;
819 x = (x >> 64) | (BNWORD128)carry << 64;
820 }
821
822 BIGLITTLE(*--prod,*prod) = (BNWORD64)x;
823 }
824 #else /* !defined(BNWORD128) || !PRODUCT_SCAN */
825 /* Default trivial macro definition */
826 #define lbnMulX_64(prod, num1, num2, len) lbnMul_64(prod, num1, len, num2, len)
827 #endif /* !defined(BNWORD128) || !PRODUCT_SCAN */
828 #endif /* !lbmMulX_64 */
829
830 #if !defined(lbnMontMul_64) && defined(BNWORD128) && PRODUCT_SCAN
831 /*
832 * Test code for product-scanning multiply. This seems to slow the C
833 * code down rather than speed it up.
834 * This does a multiply and Montgomery reduction together, using the
835 * same loops. The outer loop scans across the product, twice.
836 * The first pass computes the low half of the product and the
837 * Montgomery multipliers. These are stored in the product array,
838 * which contains no data as of yet. x and carry add up the columns
839 * and propagate carries forward.
840 *
841 * The second half multiplies the upper half, adding in the modulus
842 * times the Montgomery multipliers. The results of this multiply
843 * are stored.
844 */
845 static void
846 lbnMontMul_64(BNWORD64 *prod, BNWORD64 const *num1, BNWORD64 const *num2,
847 BNWORD64 const *mod, unsigned len, BNWORD64 inv)
848 {
849 BNWORD128 x, y;
850 BNWORD64 const *p1, *p2, *pm;
851 BNWORD64 *pp;
852 BNWORD64 t;
853 unsigned carry;
854 unsigned i, j;
855
856 /* Special case of zero */
857 if (!len)
858 return;
859
860 /*
861 * This computes directly into the high half of prod, so just
862 * shift the pointer and consider prod only "len" elements long
863 * for the rest of the code.
864 */
865 BIGLITTLE(prod -= len, prod += len);
866
867 /* Pass 1 - compute Montgomery multipliers */
868 /* First iteration can have certain simplifications. */
869 x = (BNWORD128)BIGLITTLE(num1[-1] * num2[-1], num1[0] * num2[0]);
870 BIGLITTLE(prod[-1], prod[0]) = t = inv * (BNWORD64)x;
871 y = (BNWORD128)t * BIGLITTLE(mod[-1],mod[0]);
872 x += y;
873 /* Note: GCC 2.6.3 has a bug if you try to eliminate "carry" */
874 carry = (x < y);
875 assert((BNWORD64)x == 0);
876 x = x >> 64 | (BNWORD128)carry << 64;
877
878 for (i = 1; i < len; i++) {
879 carry = 0;
880 p1 = num1;
881 p2 = BIGLITTLE(num2-i-1,num2+i+1);
882 pp = prod;
883 pm = BIGLITTLE(mod-i-1,mod+i+1);
884 for (j = 0; j < i; j++) {
885 y = (BNWORD128)BIGLITTLE(*--p1 * *p2++, *p1++ * *--p2);
886 x += y;
887 carry += (x < y);
888 y = (BNWORD128)BIGLITTLE(*--pp * *pm++, *pp++ * *--pm);
889 x += y;
890 carry += (x < y);
891 }
892 y = (BNWORD128)BIGLITTLE(p1[-1] * p2[0], p1[0] * p2[-1]);
893 x += y;
894 carry += (x < y);
895 assert(BIGLITTLE(pp == prod-i, pp == prod+i));
896 BIGLITTLE(pp[-1], pp[0]) = t = inv * (BNWORD64)x;
897 assert(BIGLITTLE(pm == mod-1, pm == mod+1));
898 y = (BNWORD128)t * BIGLITTLE(pm[0],pm[-1]);
899 x += y;
900 carry += (x < y);
901 assert((BNWORD64)x == 0);
902 x = x >> 64 | (BNWORD128)carry << 64;
903 }
904
905 /* Pass 2 - compute reduced product and store */
906 for (i = 1; i < len; i++) {
907 carry = 0;
908 p1 = BIGLITTLE(num1-i,num1+i);
909 p2 = BIGLITTLE(num2-len,num2+len);
910 pm = BIGLITTLE(mod-i,mod+i);
911 pp = BIGLITTLE(prod-len,prod+len);
912 for (j = i; j < len; j++) {
913 y = (BNWORD128)BIGLITTLE(*--p1 * *p2++, *p1++ * *--p2);
914 x += y;
915 carry += (x < y);
916 y = (BNWORD128)BIGLITTLE(*--pm * *pp++, *pm++ * *--pp);
917 x += y;
918 carry += (x < y);
919 }
920 assert(BIGLITTLE(pm == mod-len, pm == mod+len));
921 assert(BIGLITTLE(pp == prod-i, pp == prod+i));
922 BIGLITTLE(pp[0],pp[-1]) = (BNWORD64)x;
923 x = (x >> 64) | (BNWORD128)carry << 64;
924 }
925
926 /* Last round of second half, simplified. */
927 BIGLITTLE(*(prod-len),*(prod+len-1)) = (BNWORD64)x;
928 carry = (x >> 64);
929
930 while (carry)
931 carry -= lbnSubN_64(prod, mod, len);
932 while (lbnCmp_64(prod, mod, len) >= 0)
933 (void)lbnSubN_64(prod, mod, len);
934 }
935 /* Suppress later definition */
936 #define lbnMontMul_64 lbnMontMul_64
937 #endif
938
939 #if !defined(lbnSquare_64) && defined(BNWORD128) && PRODUCT_SCAN
940 /*
941 * Trial code for product-scanning squaring. This seems to slow the C
942 * code down rather than speed it up.
943 */
944 void
945 lbnSquare_64(BNWORD64 *prod, BNWORD64 const *num, unsigned len)
946 {
947 BNWORD128 x, y, z;
948 BNWORD64 const *p1, *p2;
949 unsigned carry;
950 unsigned i, j;
951
952 /* Special case of zero */
953 if (!len)
954 return;
955
956 /* Word 0 of product */
957 x = (BNWORD128)BIGLITTLE(num[-1] * num[-1], num[0] * num[0]);
958 BIGLITTLE(*--prod, *prod++) = (BNWORD64)x;
959 x >>= 64;
960
961 /* Words 1 through len-1 */
962 for (i = 1; i < len; i++) {
963 carry = 0;
964 y = 0;
965 p1 = num;
966 p2 = BIGLITTLE(num-i-1,num+i+1);
967 for (j = 0; j < (i+1)/2; j++) {
968 BIG(z = (BNWORD128)*--p1 * *p2++;)
969 LITTLE(z = (BNWORD128)*p1++ * *--p2;)
970 y += z;
971 carry += (y < z);
972 }
973 y += z = y;
974 carry += carry + (y < z);
975 if ((i & 1) == 0) {
976 assert(BIGLITTLE(--p1 == p2, p1 == --p2));
977 BIG(z = (BNWORD128)*p2 * *p2;)
978 LITTLE(z = (BNWORD128)*p1 * *p1;)
979 y += z;
980 carry += (y < z);
981 }
982 x += y;
983 carry += (x < y);
984 BIGLITTLE(*--prod,*prod++) = (BNWORD64)x;
985 x = (x >> 64) | (BNWORD128)carry << 64;
986 }
987 /* Words len through 2*len-2 */
988 for (i = 1; i < len; i++) {
989 carry = 0;
990 y = 0;
991 p1 = BIGLITTLE(num-i,num+i);
992 p2 = BIGLITTLE(num-len,num+len);
993 for (j = 0; j < (len-i)/2; j++) {
994 BIG(z = (BNWORD128)*--p1 * *p2++;)
995 LITTLE(z = (BNWORD128)*p1++ * *--p2;)
996 y += z;
997 carry += (y < z);
998 }
999 y += z = y;
1000 carry += carry + (y < z);
1001 if ((len-i) & 1) {
1002 assert(BIGLITTLE(--p1 == p2, p1 == --p2));
1003 BIG(z = (BNWORD128)*p2 * *p2;)
1004 LITTLE(z = (BNWORD128)*p1 * *p1;)
1005 y += z;
1006 carry += (y < z);
1007 }
1008 x += y;
1009 carry += (x < y);
1010 BIGLITTLE(*--prod,*prod++) = (BNWORD64)x;
1011 x = (x >> 64) | (BNWORD128)carry << 64;
1012 }
1013
1014 /* Word 2*len-1 */
1015 BIGLITTLE(*--prod,*prod) = (BNWORD64)x;
1016 }
1017 /* Suppress later definition */
1018 #define lbnSquare_64 lbnSquare_64
1019 #endif
1020
1021 /*
1022 * Square a number, using optimized squaring to reduce the number of
1023 * primitive multiples that are executed. There may not be any
1024 * overlap of the input and output.
1025 *
1026 * Technique: Consider the partial products in the multiplication
1027 * of "abcde" by itself:
1028 *
1029 * a b c d e
1030 * * a b c d e
1031 * ==================
1032 * ae be ce de ee
1033 * ad bd cd dd de
1034 * ac bc cc cd ce
1035 * ab bb bc bd be
1036 * aa ab ac ad ae
1037 *
1038 * Note that everything above the main diagonal:
1039 * ae be ce de = (abcd) * e
1040 * ad bd cd = (abc) * d
1041 * ac bc = (ab) * c
1042 * ab = (a) * b
1043 *
1044 * is a copy of everything below the main diagonal:
1045 * de
1046 * cd ce
1047 * bc bd be
1048 * ab ac ad ae
1049 *
1050 * Thus, the sum is 2 * (off the diagonal) + diagonal.
1051 *
1052 * This is accumulated beginning with the diagonal (which
1053 * consist of the squares of the digits of the input), which is then
1054 * divided by two, the off-diagonal added, and multiplied by two
1055 * again. The low bit is simply a copy of the low bit of the
1056 * input, so it doesn't need special care.
1057 *
1058 * TODO: Merge the shift by 1 with the squaring loop.
1059 * TODO: Use Karatsuba. (a*W+b)^2 = a^2 * (W^2+W) + b^2 * (W+1) - (a-b)^2 * W.
1060 */
1061 #ifndef lbnSquare_64
1062 void
1063 lbnSquare_64(BNWORD64 *prod, BNWORD64 const *num, unsigned len)
1064 {
1065 BNWORD64 t;
1066 BNWORD64 *prodx = prod; /* Working copy of the argument */
1067 BNWORD64 const *numx = num; /* Working copy of the argument */
1068 unsigned lenx = len; /* Working copy of the argument */
1069
1070 if (!len)
1071 return;
1072
1073 /* First, store all the squares */
1074 while (lenx--) {
1075 #ifdef mul64_ppmm
1076 BNWORD64 ph, pl;
1077 t = BIGLITTLE(*--numx,*numx++);
1078 mul64_ppmm(ph,pl,t,t);
1079 BIGLITTLE(*--prodx,*prodx++) = pl;
1080 BIGLITTLE(*--prodx,*prodx++) = ph;
1081 #elif defined(BNWORD128) /* use BNWORD128 */
1082 BNWORD128 p;
1083 t = BIGLITTLE(*--numx,*numx++);
1084 p = (BNWORD128)t * t;
1085 BIGLITTLE(*--prodx,*prodx++) = (BNWORD64)p;
1086 BIGLITTLE(*--prodx,*prodx++) = (BNWORD64)(p>>64);
1087 #else /* Use lbnMulN1_64 */
1088 t = BIGLITTLE(numx[-1],*numx);
1089 lbnMulN1_64(prodx, numx, 1, t);
1090 BIGLITTLE(--numx,numx++);
1091 BIGLITTLE(prodx -= 2, prodx += 2);
1092 #endif
1093 }
1094 /* Then, shift right 1 bit */
1095 (void)lbnRshift_64(prod, 2*len, 1);
1096
1097 /* Then, add in the off-diagonal sums */
1098 lenx = len;
1099 numx = num;
1100 prodx = prod;
1101 while (--lenx) {
1102 t = BIGLITTLE(*--numx,*numx++);
1103 BIGLITTLE(--prodx,prodx++);
1104 t = lbnMulAdd1_64(prodx, numx, lenx, t);
1105 lbnAdd1_64(BIGLITTLE(prodx-lenx,prodx+lenx), lenx+1, t);
1106 BIGLITTLE(--prodx,prodx++);
1107 }
1108
1109 /* Shift it back up */
1110 lbnDouble_64(prod, 2*len);
1111
1112 /* And set the low bit appropriately */
1113 BIGLITTLE(prod[-1],prod[0]) |= BIGLITTLE(num[-1],num[0]) & 1;
1114 }
1115 #endif /* !lbnSquare_64 */
1116
1117 /*
1118 * lbnNorm_64 - given a number, return a modified length such that the
1119 * most significant digit is non-zero. Zero-length input is okay.
1120 */
1121 #ifndef lbnNorm_64
1122 unsigned
1123 lbnNorm_64(BNWORD64 const *num, unsigned len)
1124 {
1125 BIGLITTLE(num -= len,num += len);
1126 while (len && BIGLITTLE(*num++,*--num) == 0)
1127 --len;
1128 return len;
1129 }
1130 #endif /* lbnNorm_64 */
1131
1132 /*
1133 * lbnBits_64 - return the number of significant bits in the array.
1134 * It starts by normalizing the array. Zero-length input is okay.
1135 * Then assuming there's anything to it, it fetches the high word,
1136 * generates a bit length by multiplying the word length by 64, and
1137 * subtracts off 64/2, 64/4, 64/8, ... bits if the high bits are clear.
1138 */
1139 #ifndef lbnBits_64
1140 unsigned
1141 lbnBits_64(BNWORD64 const *num, unsigned len)
1142 {
1143 BNWORD64 t;
1144 unsigned i;
1145
1146 len = lbnNorm_64(num, len);
1147 if (len) {
1148 t = BIGLITTLE(*(num-len),*(num+(len-1)));
1149 assert(t);
1150 len *= 64;
1151 i = 64/2;
1152 do {
1153 if (t >> i)
1154 t >>= i;
1155 else
1156 len -= i;
1157 } while ((i /= 2) != 0);
1158 }
1159 return len;
1160 }
1161 #endif /* lbnBits_64 */
1162
1163 /*
1164 * If defined, use hand-rolled divide rather than compiler's native.
1165 * If the machine doesn't do it in line, the manual code is probably
1166 * faster, since it can assume normalization and the fact that the
1167 * quotient will fit into 64 bits, which a general 128-bit divide
1168 * in a compiler's run-time library can't do.
1169 */
1170 #ifndef BN_SLOW_DIVIDE_128
1171 /* Assume that divisors of more than thirty-two bits are slow */
1172 #define BN_SLOW_DIVIDE_128 (128 > 0x20)
1173 #endif
1174
1175 /*
1176 * Return (nh<<64|nl) % d, and place the quotient digit into *q.
1177 * It is guaranteed that nh < d, and that d is normalized (with its high
1178 * bit set). If we have a double-width type, it's easy. If not, ooh,
1179 * yuk!
1180 */
1181 #ifndef lbnDiv21_64
1182 #if defined(BNWORD128) && !BN_SLOW_DIVIDE_128
1183 BNWORD64
1184 lbnDiv21_64(BNWORD64 *q, BNWORD64 nh, BNWORD64 nl, BNWORD64 d)
1185 {
1186 BNWORD128 n = (BNWORD128)nh << 64 | nl;
1187
1188 /* Divisor must be normalized */
1189 assert(d >> (64-1) == 1);
1190
1191 *q = n / d;
1192 return n % d;
1193 }
1194 #else
1195 /*
1196 * This is where it gets ugly.
1197 *
1198 * Do the division in two halves, using Algorithm D from section 4.3.1
1199 * of Knuth. Note Theorem B from that section, that the quotient estimate
1200 * is never more than the true quotient, and is never more than two
1201 * too low.
1202 *
1203 * The mapping onto conventional long division is (everything a half word):
1204 * _____________qh___ql_
1205 * dh dl ) nh.h nh.l nl.h nl.l
1206 * - (qh * d)
1207 * -----------
1208 * rrrr rrrr nl.l
1209 * - (ql * d)
1210 * -----------
1211 * rrrr rrrr
1212 *
1213 * The implicit 3/2-digit d*qh and d*ql subtractors are computed this way:
1214 * First, estimate a q digit so that nh/dh works. Subtracting qh*dh from
1215 * the (nh.h nh.l) list leaves a 1/2-word remainder r. Then compute the
1216 * low part of the subtractor, qh * dl. This also needs to be subtracted
1217 * from (nh.h nh.l nl.h) to get the final remainder. So we take the
1218 * remainder, which is (nh.h nh.l) - qh*dl, shift it and add in nl.h, and
1219 * try to subtract qh * dl from that. Since the remainder is 1/2-word
1220 * long, shifting and adding nl.h results in a single word r.
1221 * It is possible that the remainder we're working with, r, is less than
1222 * the product qh * dl, if we estimated qh too high. The estimation
1223 * technique can produce a qh that is too large (never too small), leading
1224 * to r which is too small. In that case, decrement the digit qh, add
1225 * shifted dh to r (to correct for that error), and subtract dl from the
1226 * product we're comparing r with. That's the "correct" way to do it, but
1227 * just adding dl to r instead of subtracting it from the product is
1228 * equivalent and a lot simpler. You just have to watch out for overflow.
1229 *
1230 * The process is repeated with (rrrr rrrr nl.l) for the low digit of the
1231 * quotient ql.
1232 *
1233 * The various uses of 64/2 for shifts are because of the note about
1234 * automatic editing of this file at the very top of the file.
1235 */
1236 #define highhalf(x) ( (x) >> 64/2 )
1237 #define lowhalf(x) ( (x) & (((BNWORD64)1 << 64/2)-1) )
1238 BNWORD64
1239 lbnDiv21_64(BNWORD64 *q, BNWORD64 nh, BNWORD64 nl, BNWORD64 d)
1240 {
1241 BNWORD64 dh = highhalf(d), dl = lowhalf(d);
1242 BNWORD64 qh, ql, prod, r;
1243
1244 /* Divisor must be normalized */
1245 assert((d >> (64-1)) == 1);
1246
1247 /* Do first half-word of division */
1248 qh = nh / dh;
1249 r = nh % dh;
1250 prod = qh * dl;
1251
1252 /*
1253 * Add next half-word of numerator to remainder and correct.
1254 * qh may be up to two too large.
1255 */
1256 r = (r << (64/2)) | highhalf(nl);
1257 if (r < prod) {
1258 --qh; r += d;
1259 if (r >= d && r < prod) {
1260 --qh; r += d;
1261 }
1262 }
1263 r -= prod;
1264
1265 /* Do second half-word of division */
1266 ql = r / dh;
1267 r = r % dh;
1268 prod = ql * dl;
1269
1270 r = (r << (64/2)) | lowhalf(nl);
1271 if (r < prod) {
1272 --ql; r += d;
1273 if (r >= d && r < prod) {
1274 --ql; r += d;
1275 }
1276 }
1277 r -= prod;
1278
1279 *q = (qh << (64/2)) | ql;
1280
1281 return r;
1282 }
1283 #endif
1284 #endif /* lbnDiv21_64 */
1285
1286
1287 /*
1288 * In the division functions, the dividend and divisor are referred to
1289 * as "n" and "d", which stand for "numerator" and "denominator".
1290 *
1291 * The quotient is (nlen-dlen+1) digits long. It may be overlapped with
1292 * the high (nlen-dlen) words of the dividend, but one extra word is needed
1293 * on top to hold the top word.
1294 */
1295
1296 /*
1297 * Divide an n-word number by a 1-word number, storing the remainder
1298 * and n-1 words of the n-word quotient. The high word is returned.
1299 * It IS legal for rem to point to the same address as n, and for
1300 * q to point one word higher.
1301 *
1302 * TODO: If BN_SLOW_DIVIDE_128, add a divnhalf_64 which uses 64-bit
1303 * dividends if the divisor is half that long.
1304 * TODO: Shift the dividend on the fly to avoid the last division and
1305 * instead have a remainder that needs shifting.
1306 * TODO: Use reciprocals rather than dividing.
1307 */
1308 #ifndef lbnDiv1_64
1309 BNWORD64
1310 lbnDiv1_64(BNWORD64 *q, BNWORD64 *rem, BNWORD64 const *n, unsigned len,
1311 BNWORD64 d)
1312 {
1313 unsigned shift;
1314 unsigned xlen;
1315 BNWORD64 r;
1316 BNWORD64 qhigh;
1317
1318 assert(len > 0);
1319 assert(d);
1320
1321 if (len == 1) {
1322 r = *n;
1323 *rem = r%d;
1324 return r/d;
1325 }
1326
1327 shift = 0;
1328 r = d;
1329 xlen = 64/2;
1330 do {
1331 if (r >> xlen)
1332 r >>= xlen;
1333 else
1334 shift += xlen;
1335 } while ((xlen /= 2) != 0);
1336 assert((d >> (64-1-shift)) == 1);
1337 d <<= shift;
1338
1339 BIGLITTLE(q -= len-1,q += len-1);
1340 BIGLITTLE(n -= len,n += len);
1341
1342 r = BIGLITTLE(*n++,*--n);
1343 if (r < d) {
1344 qhigh = 0;
1345 } else {
1346 qhigh = r/d;
1347 r %= d;
1348 }
1349
1350 xlen = len;
1351 while (--xlen)
1352 r = lbnDiv21_64(BIGLITTLE(q++,--q), r, BIGLITTLE(*n++,*--n), d);
1353
1354 /*
1355 * Final correction for shift - shift the quotient up "shift"
1356 * bits, and merge in the extra bits of quotient. Then reduce
1357 * the final remainder mod the real d.
1358 */
1359 if (shift) {
1360 d >>= shift;
1361 qhigh = (qhigh << shift) | lbnLshift_64(q, len-1, shift);
1362 BIGLITTLE(q[-1],*q) |= r/d;
1363 r %= d;
1364 }
1365 *rem = r;
1366
1367 return qhigh;
1368 }
1369 #endif
1370
1371 /*
1372 * This function performs a "quick" modulus of a number with a divisor
1373 * d which is guaranteed to be at most sixteen bits, i.e. less than 65536.
1374 * This applies regardless of the word size the library is compiled with.
1375 *
1376 * This function is important to prime generation, for sieving.
1377 */
1378 #ifndef lbnModQ_64
1379 /* If there's a custom lbnMod21_64, no normalization needed */
1380 #ifdef lbnMod21_64
1381 unsigned
1382 lbnModQ_64(BNWORD64 const *n, unsigned len, unsigned d)
1383 {
1384 unsigned i, shift;
1385 BNWORD64 r;
1386
1387 assert(len > 0);
1388
1389 BIGLITTLE(n -= len,n += len);
1390
1391 /* Try using a compare to avoid the first divide */
1392 r = BIGLITTLE(*n++,*--n);
1393 if (r >= d)
1394 r %= d;
1395 while (--len)
1396 r = lbnMod21_64(r, BIGLITTLE(*n++,*--n), d);
1397
1398 return r;
1399 }
1400 #elif defined(BNWORD128) && !BN_SLOW_DIVIDE_128
1401 unsigned
1402 lbnModQ_64(BNWORD64 const *n, unsigned len, unsigned d)
1403 {
1404 BNWORD64 r;
1405
1406 if (!--len)
1407 return BIGLITTLE(n[-1],n[0]) % d;
1408
1409 BIGLITTLE(n -= len,n += len);
1410 r = BIGLITTLE(n[-1],n[0]);
1411
1412 do {
1413 r = (BNWORD64)((((BNWORD128)r<<64) | BIGLITTLE(*n++,*--n)) % d);
1414 } while (--len);
1415
1416 return r;
1417 }
1418 #elif 64 >= 0x20
1419 /*
1420 * If the single word size can hold 65535*65536, then this function
1421 * is avilable.
1422 */
1423 #ifndef highhalf
1424 #define highhalf(x) ( (x) >> 64/2 )
1425 #define lowhalf(x) ( (x) & ((1 << 64/2)-1) )
1426 #endif
1427 unsigned
1428 lbnModQ_64(BNWORD64 const *n, unsigned len, unsigned d)
1429 {
1430 BNWORD64 r, x;
1431
1432 BIGLITTLE(n -= len,n += len);
1433
1434 r = BIGLITTLE(*n++,*--n);
1435 while (--len) {
1436 x = BIGLITTLE(*n++,*--n);
1437 r = (r%d << 64/2) | highhalf(x);
1438 r = (r%d << 64/2) | lowhalf(x);
1439 }
1440
1441 return r%d;
1442 }
1443 #else
1444 /* Default case - use lbnDiv21_64 */
1445 unsigned
1446 lbnModQ_64(BNWORD64 const *n, unsigned len, unsigned d)
1447 {
1448 unsigned i, shift;
1449 BNWORD64 r;
1450 BNWORD64 q;
1451
1452 assert(len > 0);
1453
1454 shift = 0;
1455 r = d;
1456 i = 64;
1457 while (i /= 2) {
1458 if (r >> i)
1459 r >>= i;
1460 else
1461 shift += i;
1462 }
1463 assert(d >> (64-1-shift) == 1);
1464 d <<= shift;
1465
1466 BIGLITTLE(n -= len,n += len);
1467
1468 r = BIGLITTLE(*n++,*--n);
1469 if (r >= d)
1470 r %= d;
1471
1472 while (--len)
1473 r = lbnDiv21_64(&q, r, BIGLITTLE(*n++,*--n), d);
1474
1475 /*
1476 * Final correction for shift - shift the quotient up "shift"
1477 * bits, and merge in the extra bits of quotient. Then reduce
1478 * the final remainder mod the real d.
1479 */
1480 if (shift)
1481 r %= d >> shift;
1482
1483 return r;
1484 }
1485 #endif
1486 #endif /* lbnModQ_64 */
1487
1488 /*
1489 * Reduce n mod d and return the quotient. That is, find:
1490 * q = n / d;
1491 * n = n % d;
1492 * d is altered during the execution of this subroutine by normalizing it.
1493 * It must already have its most significant word non-zero; it is shifted
1494 * so its most significant bit is non-zero.
1495 *
1496 * The quotient q is nlen-dlen+1 words long. To make it possible to
1497 * overlap the quptient with the input (you can store it in the high dlen
1498 * words), the high word of the quotient is *not* stored, but is returned.
1499 * (If all you want is the remainder, you don't care about it, anyway.)
1500 *
1501 * This uses algorithm D from Knuth (4.3.1), except that we do binary
1502 * (shift) normalization of the divisor. WARNING: This is hairy!
1503 *
1504 * This function is used for some modular reduction, but it is not used in
1505 * the modular exponentiation loops; they use Montgomery form and the
1506 * corresponding, more efficient, Montgomery reduction. This code
1507 * is needed for the conversion to Montgomery form, however, so it
1508 * has to be here and it might as well be reasonably efficient.
1509 *
1510 * The overall operation is as follows ("top" and "up" refer to the
1511 * most significant end of the number; "bottom" and "down", the least):
1512 *
1513 * - Shift the divisor up until the most significant bit is set.
1514 * - Shift the dividend up the same amount. This will produce the
1515 * correct quotient, and the remainder can be recovered by shifting
1516 * it back down the same number of bits. This may produce an overflow
1517 * word, but the word is always strictly less than the most significant
1518 * divisor word.
1519 * - Estimate the first quotient digit qhat:
1520 * - First take the top two words (one of which is the overflow) of the
1521 * dividend and divide by the top word of the divisor:
1522 * qhat = (nh,nm)/dh. This qhat is >= the correct quotient digit
1523 * and, since dh is normalized, it is at most two over.
1524 * - Second, correct by comparing the top three words. If
1525 * (dh,dl) * qhat > (nh,nm,ml), decrease qhat and try again.
1526 * The second iteration can be simpler because there can't be a third.
1527 * The computation can be simplified by subtracting dh*qhat from
1528 * both sides, suitably shifted. This reduces the left side to
1529 * dl*qhat. On the right, (nh,nm)-dh*qhat is simply the
1530 * remainder r from (nh,nm)%dh, so the right is (r,nl).
1531 * This produces qhat that is almost always correct and at
1532 * most (prob ~ 2/2^64) one too high.
1533 * - Subtract qhat times the divisor (suitably shifted) from the dividend.
1534 * If there is a borrow, qhat was wrong, so decrement it
1535 * and add the divisor back in (once).
1536 * - Store the final quotient digit qhat in the quotient array q.
1537 *
1538 * Repeat the quotient digit computation for successive digits of the
1539 * quotient until the whole quotient has been computed. Then shift the
1540 * divisor and the remainder down to correct for the normalization.
1541 *
1542 * TODO: Special case 2-word divisors.
1543 * TODO: Use reciprocals rather than dividing.
1544 */
1545 #ifndef divn_64
1546 BNWORD64
1547 lbnDiv_64(BNWORD64 *q, BNWORD64 *n, unsigned nlen, BNWORD64 *d, unsigned dlen)
1548 {
1549 BNWORD64 nh,nm,nl; /* Top three words of the dividend */
1550 BNWORD64 dh,dl; /* Top two words of the divisor */
1551 BNWORD64 qhat; /* Extimate of quotient word */
1552 BNWORD64 r; /* Remainder from quotient estimate division */
1553 BNWORD64 qhigh; /* High word of quotient */
1554 unsigned i; /* Temp */
1555 unsigned shift; /* Bits shifted by normalization */
1556 unsigned qlen = nlen-dlen; /* Size of quotient (less 1) */
1557 #ifdef mul64_ppmm
1558 BNWORD64 t64;
1559 #elif defined(BNWORD128)
1560 BNWORD128 t128;
1561 #else /* use lbnMulN1_64 */
1562 BNWORD64 t2[2];
1563 #define t2high BIGLITTLE(t2[0],t2[1])
1564 #define t2low BIGLITTLE(t2[1],t2[0])
1565 #endif
1566
1567 assert(dlen);
1568 assert(nlen >= dlen);
1569
1570 /*
1571 * Special cases for short divisors. The general case uses the
1572 * top top 2 digits of the divisor (d) to estimate a quotient digit,
1573 * so it breaks if there are fewer digits available. Thus, we need
1574 * special cases for a divisor of length 1. A divisor of length
1575 * 2 can have a *lot* of administrivia overhead removed removed,
1576 * so it's probably worth special-casing that case, too.
1577 */
1578 if (dlen == 1)
1579 return lbnDiv1_64(q, BIGLITTLE(n-1,n), n, nlen,
1580 BIGLITTLE(d[-1],d[0]));
1581
1582 #if 0
1583 /*
1584 * @@@ This is not yet written... The general loop will do,
1585 * albeit less efficiently
1586 */
1587 if (dlen == 2) {
1588 /*
1589 * divisor two digits long:
1590 * use the 3/2 technique from Knuth, but we know
1591 * it's exact.
1592 */
1593 dh = BIGLITTLE(d[-1],d[0]);
1594 dl = BIGLITTLE(d[-2],d[1]);
1595 shift = 0;
1596 if ((sh & ((BNWORD64)1 << 64-1-shift)) == 0) {
1597 do {
1598 shift++;
1599 } while (dh & (BNWORD64)1<<64-1-shift) == 0);
1600 dh = dh << shift | dl >> (64-shift);
1601 dl <<= shift;
1602
1603
1604 }
1605
1606
1607 for (shift = 0; (dh & (BNWORD64)1 << 64-1-shift)) == 0; shift++)
1608 ;
1609 if (shift) {
1610 }
1611 dh = dh << shift | dl >> (64-shift);
1612 shift = 0;
1613 while (dh
1614 }
1615 #endif
1616
1617 dh = BIGLITTLE(*(d-dlen),*(d+(dlen-1)));
1618 assert(dh);
1619
1620 /* Normalize the divisor */
1621 shift = 0;
1622 r = dh;
1623 i = 64/2;
1624 do {
1625 if (r >> i)
1626 r >>= i;
1627 else
1628 shift += i;
1629 } while ((i /= 2) != 0);
1630
1631 nh = 0;
1632 if (shift) {
1633 lbnLshift_64(d, dlen, shift);
1634 dh = BIGLITTLE(*(d-dlen),*(d+(dlen-1)));
1635 nh = lbnLshift_64(n, nlen, shift);
1636 }
1637
1638 /* Assert that dh is now normalized */
1639 assert(dh >> (64-1));
1640
1641 /* Also get the second-most significant word of the divisor */
1642 dl = BIGLITTLE(*(d-(dlen-1)),*(d+(dlen-2)));
1643
1644 /*
1645 * Adjust pointers: n to point to least significant end of first
1646 * first subtract, and q to one the most-significant end of the
1647 * quotient array.
1648 */
1649 BIGLITTLE(n -= qlen,n += qlen);
1650 BIGLITTLE(q -= qlen,q += qlen);
1651
1652 /* Fetch the most significant stored word of the dividend */
1653 nm = BIGLITTLE(*(n-dlen),*(n+(dlen-1)));
1654
1655 /*
1656 * Compute the first digit of the quotient, based on the
1657 * first two words of the dividend (the most significant of which
1658 * is the overflow word h).
1659 */
1660 if (nh) {
1661 assert(nh < dh);
1662 r = lbnDiv21_64(&qhat, nh, nm, dh);
1663 } else if (nm >= dh) {
1664 qhat = nm/dh;
1665 r = nm % dh;
1666 } else { /* Quotient is zero */
1667 qhigh = 0;
1668 goto divloop;
1669 }
1670
1671 /* Now get the third most significant word of the dividend */
1672 nl = BIGLITTLE(*(n-(dlen-1)),*(n+(dlen-2)));
1673
1674 /*
1675 * Correct qhat, the estimate of quotient digit.
1676 * qhat can only be high, and at most two words high,
1677 * so the loop can be unrolled and abbreviated.
1678 */
1679 #ifdef mul64_ppmm
1680 mul64_ppmm(nm, t64, qhat, dl);
1681 if (nm > r || (nm == r && t64 > nl)) {
1682 /* Decrement qhat and adjust comparison parameters */
1683 qhat--;
1684 if ((r += dh) >= dh) {
1685 nm -= (t64 < dl);
1686 t64 -= dl;
1687 if (nm > r || (nm == r && t64 > nl))
1688 qhat--;
1689 }
1690 }
1691 #elif defined(BNWORD128)
1692 t128 = (BNWORD128)qhat * dl;
1693 if (t128 > ((BNWORD128)r << 64) + nl) {
1694 /* Decrement qhat and adjust comparison parameters */
1695 qhat--;
1696 if ((r += dh) > dh) {
1697 t128 -= dl;
1698 if (t128 > ((BNWORD128)r << 64) + nl)
1699 qhat--;
1700 }
1701 }
1702 #else /* Use lbnMulN1_64 */
1703 lbnMulN1_64(BIGLITTLE(t2+2,t2), &dl, 1, qhat);
1704 if (t2high > r || (t2high == r && t2low > nl)) {
1705 /* Decrement qhat and adjust comparison parameters */
1706 qhat--;
1707 if ((r += dh) >= dh) {
1708 t2high -= (t2low < dl);
1709 t2low -= dl;
1710 if (t2high > r || (t2high == r && t2low > nl))
1711 qhat--;
1712 }
1713 }
1714 #endif
1715
1716 /* Do the multiply and subtract */
1717 r = lbnMulSub1_64(n, d, dlen, qhat);
1718 /* If there was a borrow, add back once. */
1719 if (r > nh) { /* Borrow? */
1720 (void)lbnAddN_64(n, d, dlen);
1721 qhat--;
1722 }
1723
1724 /* Remember the first quotient digit. */
1725 qhigh = qhat;
1726
1727 /* Now, the main division loop: */
1728 divloop:
1729 while (qlen--) {
1730
1731 /* Advance n */
1732 nh = BIGLITTLE(*(n-dlen),*(n+(dlen-1)));
1733 BIGLITTLE(++n,--n);
1734 nm = BIGLITTLE(*(n-dlen),*(n+(dlen-1)));
1735
1736 if (nh == dh) {
1737 qhat = ~(BNWORD64)0;
1738 /* Optimized computation of r = (nh,nm) - qhat * dh */
1739 r = nh + nm;
1740 if (r < nh)
1741 goto subtract;
1742 } else {
1743 assert(nh < dh);
1744 r = lbnDiv21_64(&qhat, nh, nm, dh);
1745 }
1746
1747 nl = BIGLITTLE(*(n-(dlen-1)),*(n+(dlen-2)));
1748 #ifdef mul64_ppmm
1749 mul64_ppmm(nm, t64, qhat, dl);
1750 if (nm > r || (nm == r && t64 > nl)) {
1751 /* Decrement qhat and adjust comparison parameters */
1752 qhat--;
1753 if ((r += dh) >= dh) {
1754 nm -= (t64 < dl);
1755 t64 -= dl;
1756 if (nm > r || (nm == r && t64 > nl))
1757 qhat--;
1758 }
1759 }
1760 #elif defined(BNWORD128)
1761 t128 = (BNWORD128)qhat * dl;
1762 if (t128 > ((BNWORD128)r<<64) + nl) {
1763 /* Decrement qhat and adjust comparison parameters */
1764 qhat--;
1765 if ((r += dh) >= dh) {
1766 t128 -= dl;
1767 if (t128 > ((BNWORD128)r << 64) + nl)
1768 qhat--;
1769 }
1770 }
1771 #else /* Use lbnMulN1_64 */
1772 lbnMulN1_64(BIGLITTLE(t2+2,t2), &dl, 1, qhat);
1773 if (t2high > r || (t2high == r && t2low > nl)) {
1774 /* Decrement qhat and adjust comparison parameters */
1775 qhat--;
1776 if ((r += dh) >= dh) {
1777 t2high -= (t2low < dl);
1778 t2low -= dl;
1779 if (t2high > r || (t2high == r && t2low > nl))
1780 qhat--;
1781 }
1782 }
1783 #endif
1784
1785 /*
1786 * As a point of interest, note that it is not worth checking
1787 * for qhat of 0 or 1 and installing special-case code. These
1788 * occur with probability 2^-64, so spending 1 cycle to check
1789 * for them is only worth it if we save more than 2^15 cycles,
1790 * and a multiply-and-subtract for numbers in the 1024-bit
1791 * range just doesn't take that long.
1792 */
1793 subtract:
1794 /*
1795 * n points to the least significant end of the substring
1796 * of n to be subtracted from. qhat is either exact or
1797 * one too large. If the subtract gets a borrow, it was
1798 * one too large and the divisor is added back in. It's
1799 * a dlen+1 word add which is guaranteed to produce a
1800 * carry out, so it can be done very simply.
1801 */
1802 r = lbnMulSub1_64(n, d, dlen, qhat);
1803 if (r > nh) { /* Borrow? */
1804 (void)lbnAddN_64(n, d, dlen);
1805 qhat--;
1806 }
1807 /* Store the quotient digit */
1808 BIGLITTLE(*q++,*--q) = qhat;
1809 }
1810 /* Tah dah! */
1811
1812 if (shift) {
1813 lbnRshift_64(d, dlen, shift);
1814 lbnRshift_64(n, dlen, shift);
1815 }
1816
1817 return qhigh;
1818 }
1819 #endif
1820
1821 /*
1822 * Find the negative multiplicative inverse of x (x must be odd!) modulo 2^64.
1823 *
1824 * This just performs Newton's iteration until it gets the
1825 * inverse. The initial estimate is always correct to 3 bits, and
1826 * sometimes 4. The number of valid bits doubles each iteration.
1827 * (To prove it, assume x * y == 1 (mod 2^n), and introduce a variable
1828 * for the error mod 2^2n. x * y == 1 + k*2^n (mod 2^2n) and follow
1829 * the iteration through.)
1830 */
1831 #ifndef lbnMontInv1_64
1832 BNWORD64
1833 lbnMontInv1_64(BNWORD64 const x)
1834 {
1835 BNWORD64 y = x, z;
1836
1837 assert(x & 1);
1838
1839 while ((z = x*y) != 1)
1840 y *= 2 - z;
1841 return -y;
1842 }
1843 #endif /* !lbnMontInv1_64 */
1844
1845 #if defined(BNWORD128) && PRODUCT_SCAN
1846 /*
1847 * Test code for product-scanning Montgomery reduction.
1848 * This seems to slow the C code down rather than speed it up.
1849 *
1850 * The first loop computes the Montgomery multipliers, storing them over
1851 * the low half of the number n.
1852 *
1853 * The second half multiplies the upper half, adding in the modulus
1854 * times the Montgomery multipliers. The results of this multiply
1855 * are stored.
1856 */
1857 void
1858 lbnMontReduce_64(BNWORD64 *n, BNWORD64 const *mod, unsigned mlen, BNWORD64 inv)
1859 {
1860 BNWORD128 x, y;
1861 BNWORD64 const *pm;
1862 BNWORD64 *pn;
1863 BNWORD64 t;
1864 unsigned carry;
1865 unsigned i, j;
1866
1867 /* Special case of zero */
1868 if (!mlen)
1869 return;
1870
1871 /* Pass 1 - compute Montgomery multipliers */
1872 /* First iteration can have certain simplifications. */
1873 t = BIGLITTLE(n[-1],n[0]);
1874 x = t;
1875 t *= inv;
1876 BIGLITTLE(n[-1], n[0]) = t;
1877 x += (BNWORD128)t * BIGLITTLE(mod[-1],mod[0]); /* Can't overflow */
1878 assert((BNWORD64)x == 0);
1879 x = x >> 64;
1880
1881 for (i = 1; i < mlen; i++) {
1882 carry = 0;
1883 pn = n;
1884 pm = BIGLITTLE(mod-i-1,mod+i+1);
1885 for (j = 0; j < i; j++) {
1886 y = (BNWORD128)BIGLITTLE(*--pn * *pm++, *pn++ * *--pm);
1887 x += y;
1888 carry += (x < y);
1889 }
1890 assert(BIGLITTLE(pn == n-i, pn == n+i));
1891 y = t = BIGLITTLE(pn[-1], pn[0]);
1892 x += y;
1893 carry += (x < y);
1894 BIGLITTLE(pn[-1], pn[0]) = t = inv * (BNWORD64)x;
1895 assert(BIGLITTLE(pm == mod-1, pm == mod+1));
1896 y = (BNWORD128)t * BIGLITTLE(pm[0],pm[-1]);
1897 x += y;
1898 carry += (x < y);
1899 assert((BNWORD64)x == 0);
1900 x = x >> 64 | (BNWORD128)carry << 64;
1901 }
1902
1903 BIGLITTLE(n -= mlen, n += mlen);
1904
1905 /* Pass 2 - compute upper words and add to n */
1906 for (i = 1; i < mlen; i++) {
1907 carry = 0;
1908 pm = BIGLITTLE(mod-i,mod+i);
1909 pn = n;
1910 for (j = i; j < mlen; j++) {
1911 y = (BNWORD128)BIGLITTLE(*--pm * *pn++, *pm++ * *--pn);
1912 x += y;
1913 carry += (x < y);
1914 }
1915 assert(BIGLITTLE(pm == mod-mlen, pm == mod+mlen));
1916 assert(BIGLITTLE(pn == n+mlen-i, pn == n-mlen+i));
1917 y = t = BIGLITTLE(*(n-i),*(n+i-1));
1918 x += y;
1919 carry += (x < y);
1920 BIGLITTLE(*(n-i),*(n+i-1)) = (BNWORD64)x;
1921 x = (x >> 64) | (BNWORD128)carry << 64;
1922 }
1923
1924 /* Last round of second half, simplified. */
1925 t = BIGLITTLE(*(n-mlen),*(n+mlen-1));
1926 x += t;
1927 BIGLITTLE(*(n-mlen),*(n+mlen-1)) = (BNWORD64)x;
1928 carry = (unsigned)(x >> 64);
1929
1930 while (carry)
1931 carry -= lbnSubN_64(n, mod, mlen);
1932 while (lbnCmp_64(n, mod, mlen) >= 0)
1933 (void)lbnSubN_64(n, mod, mlen);
1934 }
1935 #define lbnMontReduce_64 lbnMontReduce_64
1936 #endif
1937
1938 /*
1939 * Montgomery reduce n, modulo mod. This reduces modulo mod and divides by
1940 * 2^(64*mlen). Returns the result in the *top* mlen words of the argument n.
1941 * This is ready for another multiplication using lbnMul_64.
1942 *
1943 * Montgomery representation is a very useful way to encode numbers when
1944 * you're doing lots of modular reduction. What you do is pick a multiplier
1945 * R which is relatively prime to the modulus and very easy to divide by.
1946 * Since the modulus is odd, R is closen as a power of 2, so the division
1947 * is a shift. In fact, it's a shift of an integral number of words,
1948 * so the shift can be implicit - just drop the low-order words.
1949 *
1950 * Now, choose R *larger* than the modulus m, 2^(64*mlen). Then convert
1951 * all numbers a, b, etc. to Montgomery form M(a), M(b), etc using the
1952 * relationship M(a) = a*R mod m, M(b) = b*R mod m, etc. Note that:
1953 * - The Montgomery form of a number depends on the modulus m.
1954 * A fixed modulus m is assumed throughout this discussion.
1955 * - Since R is relaitvely prime to m, multiplication by R is invertible;
1956 * no information about the numbers is lost, they're just scrambled.
1957 * - Adding (and subtracting) numbers in this form works just as usual.
1958 * M(a+b) = (a+b)*R mod m = (a*R + b*R) mod m = (M(a) + M(b)) mod m
1959 * - Multiplying numbers in this form produces a*b*R*R. The problem
1960 * is to divide out the excess factor of R, modulo m as well as to
1961 * reduce to the given length mlen. It turns out that this can be
1962 * done *faster* than a normal divide, which is where the speedup
1963 * in Montgomery division comes from.
1964 *
1965 * Normal reduction chooses a most-significant quotient digit q and then
1966 * subtracts q*m from the number to be reduced. Choosing q is tricky
1967 * and involved (just look at lbnDiv_64 to see!) and is usually
1968 * imperfect, requiring a check for correction after the subtraction.
1969 *
1970 * Montgomery reduction *adds* a multiple of m to the *low-order* part
1971 * of the number to be reduced. This multiple is chosen to make the
1972 * low-order part of the number come out to zero. This can be done
1973 * with no trickery or error using a precomputed inverse of the modulus.
1974 * In this code, the "part" is one word, but any width can be used.
1975 *
1976 * Repeating this step sufficiently often results in a value which
1977 * is a multiple of R (a power of two, remember) but is still (since
1978 * the additions were to the low-order part and thus did not increase
1979 * the value of the number being reduced very much) still not much
1980 * larger than m*R. Then implicitly divide by R and subtract off
1981 * m until the result is in the correct range.
1982 *
1983 * Since the low-order part being cancelled is less than R, the
1984 * multiple of m added must have a multiplier which is at most R-1.
1985 * Assuming that the input is at most m*R-1, the final number is
1986 * at most m*(2*R-1)-1 = 2*m*R - m - 1, so subtracting m once from
1987 * the high-order part, equivalent to subtracting m*R from the
1988 * while number, produces a result which is at most m*R - m - 1,
1989 * which divided by R is at most m-1.
1990 *
1991 * To convert *to* Montgomery form, you need a regular remainder
1992 * routine, although you can just compute R*R (mod m) and do the
1993 * conversion using Montgomery multiplication. To convert *from*
1994 * Montgomery form, just Montgomery reduce the number to
1995 * remove the extra factor of R.
1996 *
1997 * TODO: Change to a full inverse and use Karatsuba's multiplication
1998 * rather than this word-at-a-time.
1999 */
2000 #ifndef lbnMontReduce_64
2001 void
2002 lbnMontReduce_64(BNWORD64 *n, BNWORD64 const *mod, unsigned const mlen,
2003 BNWORD64 inv)
2004 {
2005 BNWORD64 t;
2006 BNWORD64 c = 0;
2007 unsigned len = mlen;
2008
2009 /* inv must be the negative inverse of mod's least significant word */
2010 assert((BNWORD64)(inv * BIGLITTLE(mod[-1],mod[0])) == (BNWORD64)-1);
2011
2012 assert(len);
2013
2014 do {
2015 t = lbnMulAdd1_64(n, mod, mlen, inv * BIGLITTLE(n[-1],n[0]));
2016 c += lbnAdd1_64(BIGLITTLE(n-mlen,n+mlen), len, t);
2017 BIGLITTLE(--n,++n);
2018 } while (--len);
2019
2020 /*
2021 * All that adding can cause an overflow past the modulus size,
2022 * but it's unusual, and never by much, so a subtraction loop
2023 * is the right way to deal with it.
2024 * This subtraction happens infrequently - I've only ever seen it
2025 * invoked once per reduction, and then just under 22.5% of the time.
2026 */
2027 while (c)
2028 c -= lbnSubN_64(n, mod, mlen);
2029 while (lbnCmp_64(n, mod, mlen) >= 0)
2030 (void)lbnSubN_64(n, mod, mlen);
2031 }
2032 #endif /* !lbnMontReduce_64 */
2033
2034 /*
2035 * A couple of helpers that you might want to implement atomically
2036 * in asm sometime.
2037 */
2038 #ifndef lbnMontMul_64
2039 /*
2040 * Multiply "num1" by "num2", modulo "mod", all of length "len", and
2041 * place the result in the high half of "prod". "inv" is the inverse
2042 * of the least-significant word of the modulus, modulo 2^64.
2043 * This uses numbers in Montgomery form. Reduce using "len" and "inv".
2044 *
2045 * This is implemented as a macro to win on compilers that don't do
2046 * inlining, since it's so trivial.
2047 */
2048 #define lbnMontMul_64(prod, n1, n2, mod, len, inv) \
2049 (lbnMulX_64(prod, n1, n2, len), lbnMontReduce_64(prod, mod, len, inv))
2050 #endif /* !lbnMontMul_64 */
2051
2052 #ifndef lbnMontSquare_64
2053 /*
2054 * Square "n", modulo "mod", both of length "len", and place the result
2055 * in the high half of "prod". "inv" is the inverse of the least-significant
2056 * word of the modulus, modulo 2^64.
2057 * This uses numbers in Montgomery form. Reduce using "len" and "inv".
2058 *
2059 * This is implemented as a macro to win on compilers that don't do
2060 * inlining, since it's so trivial.
2061 */
2062 #define lbnMontSquare_64(prod, n, mod, len, inv) \
2063 (lbnSquare_64(prod, n, len), lbnMontReduce_64(prod, mod, len, inv))
2064
2065 #endif /* !lbnMontSquare_64 */
2066
2067 /*
2068 * Convert a number to Montgomery form - requires mlen + nlen words
2069 * of memory in "n".
2070 */
2071 void
2072 lbnToMont_64(BNWORD64 *n, unsigned nlen, BNWORD64 *mod, unsigned mlen)
2073 {
2074 /* Move n up "mlen" words */
2075 lbnCopy_64(BIGLITTLE(n-mlen,n+mlen), n, nlen);
2076 lbnZero_64(n, mlen);
2077 /* Do the division - dump the quotient in the high-order words */
2078 (void)lbnDiv_64(BIGLITTLE(n-mlen,n+mlen), n, mlen+nlen, mod, mlen);
2079 }
2080
2081 /*
2082 * Convert from Montgomery form. Montgomery reduction is all that is
2083 * needed.
2084 */
2085 void
2086 lbnFromMont_64(BNWORD64 *n, BNWORD64 *mod, unsigned len)
2087 {
2088 /* Zero the high words of n */
2089 lbnZero_64(BIGLITTLE(n-len,n+len), len);
2090 lbnMontReduce_64(n, mod, len, lbnMontInv1_64(mod[BIGLITTLE(-1,0)]));
2091 /* Move n down len words */
2092 lbnCopy_64(n, BIGLITTLE(n-len,n+len), len);
2093 }
2094
2095 /*
2096 * The windowed exponentiation algorithm, precomputes a table of odd
2097 * powers of n up to 2^k. See the comment in bnExpMod_64 below for
2098 * an explanation of how it actually works works.
2099 *
2100 * It takes 2^(k-1)-1 multiplies to compute the table, and (e-1)/(k+1)
2101 * multiplies (on average) to perform the exponentiation. To minimize
2102 * the sum, k must vary with e. The optimal window sizes vary with the
2103 * exponent length. Here are some selected values and the boundary cases.
2104 * (An underscore _ has been inserted into some of the numbers to ensure
2105 * that magic strings like 64 do not appear in this table. It should be
2106 * ignored.)
2107 *
2108 * At e = 1 bits, k=1 (0.000000) is best
2109 * At e = 2 bits, k=1 (0.500000) is best
2110 * At e = 4 bits, k=1 (1.500000) is best
2111 * At e = 8 bits, k=2 (3.333333) < k=1 (3.500000)
2112 * At e = 1_6 bits, k=2 (6.000000) is best
2113 * At e = 26 bits, k=3 (9.250000) < k=2 (9.333333)
2114 * At e = 3_2 bits, k=3 (10.750000) is best
2115 * At e = 6_4 bits, k=3 (18.750000) is best
2116 * At e = 82 bits, k=4 (23.200000) < k=3 (23.250000)
2117 * At e = 128 bits, k=4 (3_2.400000) is best
2118 * At e = 242 bits, k=5 (55.1_66667) < k=4 (55.200000)
2119 * At e = 256 bits, k=5 (57.500000) is best
2120 * At e = 512 bits, k=5 (100.1_66667) is best
2121 * At e = 674 bits, k=6 (127.142857) < k=5 (127.1_66667)
2122 * At e = 1024 bits, k=6 (177.142857) is best
2123 * At e = 1794 bits, k=7 (287.125000) < k=6 (287.142857)
2124 * At e = 2048 bits, k=7 (318.875000) is best
2125 * At e = 4096 bits, k=7 (574.875000) is best
2126 *
2127 * The numbers in parentheses are the expected number of multiplications
2128 * needed to do the computation. The normal russian-peasant modular
2129 * exponentiation technique always uses (e-1)/2. For exponents as
2130 * small as 192 bits (below the range of current factoring algorithms),
2131 * half of the multiplies are eliminated, 45.2 as opposed to the naive
2132 * 95.5. Counting the 191 squarings as 3/4 a multiply each (squaring
2133 * proper is just over half of multiplying, but the Montgomery
2134 * reduction in each case is also a multiply), that's 143.25
2135 * multiplies, for totals of 188.45 vs. 238.75 - a 21% savings.
2136 * For larger exponents (like 512 bits), it's 483.92 vs. 639.25, a
2137 * 24.3% savings. It asymptotically approaches 25%.
2138 *
2139 * Um, actually there's a slightly more accurate way to count, which
2140 * really is the average number of multiplies required, averaged
2141 * uniformly over all 2^(e-1) e-bit numbers, from 2^(e-1) to (2^e)-1.
2142 * It's based on the recurrence that for the last b bits, b <= k, at
2143 * most one multiply is needed (and none at all 1/2^b of the time),
2144 * while when b > k, the odds are 1/2 each way that the bit will be
2145 * 0 (meaning no multiplies to reduce it to the b-1-bit case) and
2146 * 1/2 that the bit will be 1, starting a k-bit window and requiring
2147 * 1 multiply beyond the b-k-bit case. Since the most significant
2148 * bit is always 1, a k-bit window always starts there, and that
2149 * multiply is by 1, so it isn't a multiply at all. Thus, the
2150 * number of multiplies is simply that needed for the last e-k bits.
2151 * This recurrence produces:
2152 *
2153 * At e = 1 bits, k=1 (0.000000) is best
2154 * At e = 2 bits, k=1 (0.500000) is best
2155 * At e = 4 bits, k=1 (1.500000) is best
2156 * At e = 6 bits, k=2 (2.437500) < k=1 (2.500000)
2157 * At e = 8 bits, k=2 (3.109375) is best
2158 * At e = 1_6 bits, k=2 (5.777771) is best
2159 * At e = 24 bits, k=3 (8.437629) < k=2 (8.444444)
2160 * At e = 3_2 bits, k=3 (10.437492) is best
2161 * At e = 6_4 bits, k=3 (18.437500) is best
2162 * At e = 81 bits, k=4 (22.6_40000) < k=3 (22.687500)
2163 * At e = 128 bits, k=4 (3_2.040000) is best
2164 * At e = 241 bits, k=5 (54.611111) < k=4 (54.6_40000)
2165 * At e = 256 bits, k=5 (57.111111) is best
2166 * At e = 512 bits, k=5 (99.777778) is best
2167 * At e = 673 bits, k=6 (126.591837) < k=5 (126.611111)
2168 * At e = 1024 bits, k=6 (176.734694) is best
2169 * At e = 1793 bits, k=7 (286.578125) < k=6 (286.591837)
2170 * At e = 2048 bits, k=7 (318.453125) is best
2171 * At e = 4096 bits, k=7 (574.453125) is best
2172 *
2173 * This has the rollover points at 6, 24, 81, 241, 673 and 1793 instead
2174 * of 8, 26, 82, 242, 674, and 1794. Not a very big difference.
2175 * (The numbers past that are k=8 at 4609 and k=9 at 11521,
2176 * vs. one more in each case for the approximation.)
2177 *
2178 * Given that exponents for which k>7 are useful are uncommon,
2179 * a fixed size table for k <= 7 is used for simplicity.
2180 *
2181 * The basic number of squarings needed is e-1, although a k-bit
2182 * window (for k > 1) can save, on average, k-2 of those, too.
2183 * That savings currently isn't counted here. It would drive the
2184 * crossover points slightly lower.
2185 * (Actually, this win is also reduced in the DoubleExpMod case,
2186 * meaning we'd have to split the tables. Except for that, the
2187 * multiplies by powers of the two bases are independent, so
2188 * the same logic applies to each as the single case.)
2189 *
2190 * Table entry i is the largest number of bits in an exponent to
2191 * process with a window size of i+1. Entry 6 is the largest
2192 * possible unsigned number, so the window will never be more
2193 * than 7 bits, requiring 2^6 = 0x40 slots.
2194 */
2195 #define BNEXPMOD_MAX_WINDOW 7
2196 static unsigned const bnExpModThreshTable[BNEXPMOD_MAX_WINDOW] = {
2197 5, 23, 80, 240, 672, 1792, (unsigned)-1
2198 /* 7, 25, 81, 241, 673, 1793, (unsigned)-1 ### The old approximations */
2199 };
2200
2201 /*
2202 * Perform modular exponentiation, as fast as possible! This uses
2203 * Montgomery reduction, optimized squaring, and windowed exponentiation.
2204 * The modulus "mod" MUST be odd!
2205 *
2206 * This returns 0 on success, -1 on out of memory.
2207 *
2208 * The window algorithm:
2209 * The idea is to keep a running product of b1 = n^(high-order bits of exp),
2210 * and then keep appending exponent bits to it. The following patterns
2211 * apply to a 3-bit window (k = 3):
2212 * To append 0: square
2213 * To append 1: square, multiply by n^1
2214 * To append 10: square, multiply by n^1, square
2215 * To append 11: square, square, multiply by n^3
2216 * To append 100: square, multiply by n^1, square, square
2217 * To append 101: square, square, square, multiply by n^5
2218 * To append 110: square, square, multiply by n^3, square
2219 * To append 111: square, square, square, multiply by n^7
2220 *
2221 * Since each pattern involves only one multiply, the longer the pattern
2222 * the better, except that a 0 (no multiplies) can be appended directly.
2223 * We precompute a table of odd powers of n, up to 2^k, and can then
2224 * multiply k bits of exponent at a time. Actually, assuming random
2225 * exponents, there is on average one zero bit between needs to
2226 * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
2227 * 1/8 of the time, there's 2, 1/64 of the time, there's 3, etc.), so
2228 * you have to do one multiply per k+1 bits of exponent.
2229 *
2230 * The loop walks down the exponent, squaring the result buffer as
2231 * it goes. There is a wbits+1 bit lookahead buffer, buf, that is
2232 * filled with the upcoming exponent bits. (What is read after the
2233 * end of the exponent is unimportant, but it is filled with zero here.)
2234 * When the most-significant bit of this buffer becomes set, i.e.
2235 * (buf & tblmask) != 0, we have to decide what pattern to multiply
2236 * by, and when to do it. We decide, remember to do it in future
2237 * after a suitable number of squarings have passed (e.g. a pattern
2238 * of "100" in the buffer requires that we multiply by n^1 immediately;
2239 * a pattern of "110" calls for multiplying by n^3 after one more
2240 * squaring), clear the buffer, and continue.
2241 *
2242 * When we start, there is one more optimization: the result buffer
2243 * is implcitly one, so squaring it or multiplying by it can be
2244 * optimized away. Further, if we start with a pattern like "100"
2245 * in the lookahead window, rather than placing n into the buffer
2246 * and then starting to square it, we have already computed n^2
2247 * to compute the odd-powers table, so we can place that into
2248 * the buffer and save a squaring.
2249 *
2250 * This means that if you have a k-bit window, to compute n^z,
2251 * where z is the high k bits of the exponent, 1/2 of the time
2252 * it requires no squarings. 1/4 of the time, it requires 1
2253 * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
2254 * And the remaining 1/2^(k-1) of the time, the top k bits are a
2255 * 1 followed by k-1 0 bits, so it again only requires k-2
2256 * squarings, not k-1. The average of these is 1. Add that
2257 * to the one squaring we have to do to compute the table,
2258 * and you'll see that a k-bit window saves k-2 squarings
2259 * as well as reducing the multiplies. (It actually doesn't
2260 * hurt in the case k = 1, either.)
2261 *
2262 * n must have mlen words allocated. Although fewer may be in use
2263 * when n is passed in, all are in use on exit.
2264 */
2265 int
2266 lbnExpMod_64(BNWORD64 *result, BNWORD64 const *n, unsigned nlen,
2267 BNWORD64 const *e, unsigned elen, BNWORD64 *mod, unsigned mlen)
2268 {
2269 BNWORD64 *table[1 << (BNEXPMOD_MAX_WINDOW-1)];
2270 /* Table of odd powers of n */
2271 unsigned ebits; /* Exponent bits */
2272 unsigned wbits; /* Window size */
2273 unsigned tblmask; /* Mask of exponentiation window */
2274 BNWORD64 bitpos; /* Mask of current look-ahead bit */
2275 unsigned buf; /* Buffer of exponent bits */
2276 unsigned multpos; /* Where to do pending multiply */
2277 BNWORD64 const *mult; /* What to multiply by */
2278 unsigned i; /* Loop counter */
2279 int isone; /* Flag: accum. is implicitly one */
2280 BNWORD64 *a, *b; /* Working buffers/accumulators */
2281 BNWORD64 *t; /* Pointer into the working buffers */
2282 BNWORD64 inv; /* mod^-1 modulo 2^64 */
2283 int y; /* bnYield() result */
2284
2285 assert(mlen);
2286 assert(nlen <= mlen);
2287
2288 /* First, a couple of trivial cases. */
2289 elen = lbnNorm_64(e, elen);
2290 if (!elen) {
2291 /* x ^ 0 == 1 */
2292 lbnZero_64(result, mlen);
2293 BIGLITTLE(result[-1],result[0]) = 1;
2294 return 0;
2295 }
2296 ebits = lbnBits_64(e, elen);
2297 if (ebits == 1) {
2298 /* x ^ 1 == x */
2299 if (n != result)
2300 lbnCopy_64(result, n, nlen);
2301 if (mlen > nlen)
2302 lbnZero_64(BIGLITTLE(result-nlen,result+nlen),
2303 mlen-nlen);
2304 return 0;
2305 }
2306
2307 /* Okay, now move the exponent pointer to the most-significant word */
2308 e = BIGLITTLE(e-elen, e+elen-1);
2309
2310 /* Look up appropriate k-1 for the exponent - tblmask = 1<<(k-1) */
2311 wbits = 0;
2312 while (ebits > bnExpModThreshTable[wbits])
2313 wbits++;
2314
2315 /* Allocate working storage: two product buffers and the tables. */
2316 LBNALLOC(a, BNWORD64, 2*mlen);
2317 if (!a)
2318 return -1;
2319 LBNALLOC(b, BNWORD64, 2*mlen);
2320 if (!b) {
2321 LBNFREE(a, 2*mlen);
2322 return -1;
2323 }
2324
2325 /* Convert to the appropriate table size: tblmask = 1<<(k-1) */
2326 tblmask = 1u << wbits;
2327
2328 /* We have the result buffer available, so use it. */
2329 table[0] = result;
2330
2331 /*
2332 * Okay, we now have a minimal-sized table - expand it.
2333 * This is allowed to fail! If so, scale back the table size
2334 * and proceed.
2335 */
2336 for (i = 1; i < tblmask; i++) {
2337 LBNALLOC(t, BNWORD64, mlen);
2338 if (!t) /* Out of memory! Quit the loop. */
2339 break;
2340 table[i] = t;
2341 }
2342
2343 /* If we stopped, with i < tblmask, shrink the tables appropriately */
2344 while (tblmask > i) {
2345 wbits--;
2346 tblmask >>= 1;
2347 }
2348 /* Free up our overallocations */
2349 while (--i > tblmask)
2350 LBNFREE(table[i], mlen);
2351
2352 /* Okay, fill in the table */
2353
2354 /* Compute the necessary modular inverse */
2355 inv = lbnMontInv1_64(mod[BIGLITTLE(-1,0)]); /* LSW of modulus */
2356
2357 /* Convert n to Montgomery form */
2358
2359 /* Move n up "mlen" words into a */
2360 t = BIGLITTLE(a-mlen, a+mlen);
2361 lbnCopy_64(t, n, nlen);
2362 lbnZero_64(a, mlen);
2363 /* Do the division - lose the quotient into the high-order words */
2364 (void)lbnDiv_64(t, a, mlen+nlen, mod, mlen);
2365 /* Copy into first table entry */
2366 lbnCopy_64(table[0], a, mlen);
2367
2368 /* Square a into b */
2369 lbnMontSquare_64(b, a, mod, mlen, inv);
2370
2371 /* Use high half of b to initialize the table */
2372 t = BIGLITTLE(b-mlen, b+mlen);
2373 for (i = 1; i < tblmask; i++) {
2374 lbnMontMul_64(a, t, table[i-1], mod, mlen, inv);
2375 lbnCopy_64(table[i], BIGLITTLE(a-mlen, a+mlen), mlen);
2376 #if BNYIELD
2377 if (bnYield && (y = bnYield()) < 0)
2378 goto yield;
2379 #endif
2380 }
2381
2382 /* We might use b = n^2 later... */
2383
2384 /* Initialze the fetch pointer */
2385 bitpos = (BNWORD64)1 << ((ebits-1) & (64-1)); /* Initialize mask */
2386
2387 /* This should point to the msbit of e */
2388 assert((*e & bitpos) != 0);
2389
2390 /*
2391 * Pre-load the window. Becuase the window size is
2392 * never larger than the exponent size, there is no need to
2393 * detect running off the end of e in here.
2394 *
2395 * The read-ahead is controlled by elen and the bitpos mask.
2396 * Note that this is *ahead* of ebits, which tracks the
2397 * most significant end of the window. The purpose of this
2398 * initialization is to get the two wbits+1 bits apart,
2399 * like they should be.
2400 *
2401 * Note that bitpos and e1len together keep track of the
2402 * lookahead read pointer in the exponent that is used here.
2403 */
2404 buf = 0;
2405 for (i = 0; i <= wbits; i++) {
2406 buf = (buf << 1) | ((*e & bitpos) != 0);
2407 bitpos >>= 1;
2408 if (!bitpos) {
2409 BIGLITTLE(e++,e--);
2410 bitpos = (BNWORD64)1 << (64-1);
2411 elen--;
2412 }
2413 }
2414 assert(buf & tblmask);
2415
2416 /*
2417 * Set the pending multiply positions to a location that will
2418 * never be encountered, thus ensuring that nothing will happen
2419 * until the need for a multiply appears and one is scheduled.
2420 */
2421 multpos = ebits; /* A NULL value */
2422 mult = 0; /* Force a crash if we use these */
2423
2424 /*
2425 * Okay, now begins the real work. The first step is
2426 * slightly magic, so it's done outside the main loop,
2427 * but it's very similar to what's inside.
2428 */
2429 ebits--; /* Start processing the first bit... */
2430 isone = 1;
2431
2432 /*
2433 * This is just like the multiply in the loop, except that
2434 * - We know the msbit of buf is set, and
2435 * - We have the extra value n^2 floating around.
2436 * So, do the usual computation, and if the result is that
2437 * the buffer should be multiplied by n^1 immediately
2438 * (which we'd normally then square), we multiply it
2439 * (which reduces to a copy, which reduces to setting a flag)
2440 * by n^2 and skip the squaring. Thus, we do the
2441 * multiply and the squaring in one step.
2442 */
2443 assert(buf & tblmask);
2444 multpos = ebits - wbits;
2445 while ((buf & 1) == 0) {
2446 buf >>= 1;
2447 multpos++;
2448 }
2449 /* Intermediates can wrap, but final must NOT */
2450 assert(multpos <= ebits);
2451 mult = table[buf>>1];
2452 buf = 0;
2453
2454 /* Special case: use already-computed value sitting in buffer */
2455 if (multpos == ebits)
2456 isone = 0;
2457
2458 /*
2459 * At this point, the buffer (which is the high half of b) holds
2460 * either 1 (implicitly, as the "isone" flag is set), or n^2.
2461 */
2462
2463 /*
2464 * The main loop. The procedure is:
2465 * - Advance the window
2466 * - If the most-significant bit of the window is set,
2467 * schedule a multiply for the appropriate time in the
2468 * future (may be immediately)
2469 * - Perform any pending multiples
2470 * - Check for termination
2471 * - Square the buffer
2472 *
2473 * At any given time, the acumulated product is held in
2474 * the high half of b.
2475 */
2476 for (;;) {
2477 ebits--;
2478
2479 /* Advance the window */
2480 assert(buf < tblmask);
2481 buf <<= 1;
2482 /*
2483 * This reads ahead of the current exponent position
2484 * (controlled by ebits), so we have to be able to read
2485 * past the lsb of the exponents without error.
2486 */
2487 if (elen) {
2488 buf |= ((*e & bitpos) != 0);
2489 bitpos >>= 1;
2490 if (!bitpos) {
2491 BIGLITTLE(e++,e--);
2492 bitpos = (BNWORD64)1 << (64-1);
2493 elen--;
2494 }
2495 }
2496
2497 /* Examine the window for pending multiplies */
2498 if (buf & tblmask) {
2499 multpos = ebits - wbits;
2500 while ((buf & 1) == 0) {
2501 buf >>= 1;
2502 multpos++;
2503 }
2504 /* Intermediates can wrap, but final must NOT */
2505 assert(multpos <= ebits);
2506 mult = table[buf>>1];
2507 buf = 0;
2508 }
2509
2510 /* If we have a pending multiply, do it */
2511 if (ebits == multpos) {
2512 /* Multiply by the table entry remembered previously */
2513 t = BIGLITTLE(b-mlen, b+mlen);
2514 if (isone) {
2515 /* Multiply by 1 is a trivial case */
2516 lbnCopy_64(t, mult, mlen);
2517 isone = 0;
2518 } else {
2519 lbnMontMul_64(a, t, mult, mod, mlen, inv);
2520 /* Swap a and b */
2521 t = a; a = b; b = t;
2522 }
2523 }
2524
2525 /* Are we done? */
2526 if (!ebits)
2527 break;
2528
2529 /* Square the input */
2530 if (!isone) {
2531 t = BIGLITTLE(b-mlen, b+mlen);
2532 lbnMontSquare_64(a, t, mod, mlen, inv);
2533 /* Swap a and b */
2534 t = a; a = b; b = t;
2535 }
2536 #if BNYIELD
2537 if (bnYield && (y = bnYield()) < 0)
2538 goto yield;
2539 #endif
2540 } /* for (;;) */
2541
2542 assert(!isone);
2543 assert(!buf);
2544
2545 /* DONE! */
2546
2547 /* Convert result out of Montgomery form */
2548 t = BIGLITTLE(b-mlen, b+mlen);
2549 lbnCopy_64(b, t, mlen);
2550 lbnZero_64(t, mlen);
2551 lbnMontReduce_64(b, mod, mlen, inv);
2552 lbnCopy_64(result, t, mlen);
2553 /*
2554 * Clean up - free intermediate storage.
2555 * Do NOT free table[0], which is the result
2556 * buffer.
2557 */
2558 y = 0;
2559 #if BNYIELD
2560 yield:
2561 #endif
2562 while (--tblmask)
2563 LBNFREE(table[tblmask], mlen);
2564 LBNFREE(b, 2*mlen);
2565 LBNFREE(a, 2*mlen);
2566
2567 return y; /* Success */
2568 }
2569
2570 /*
2571 * Compute and return n1^e1 * n2^e2 mod "mod".
2572 * result may be either input buffer, or something separate.
2573 * It must be "mlen" words long.
2574 *
2575 * There is a current position in the exponents, which is kept in e1bits.
2576 * (The exponents are swapped if necessary so e1 is the longer of the two.)
2577 * At any given time, the value in the accumulator is
2578 * n1^(e1>>e1bits) * n2^(e2>>e1bits) mod "mod".
2579 * As e1bits is counted down, this is updated, by squaring it and doing
2580 * any necessary multiplies.
2581 * To decide on the necessary multiplies, two windows, each w1bits+1 bits
2582 * wide, are maintained in buf1 and buf2, which read *ahead* of the
2583 * e1bits position (with appropriate handling of the case when e1bits
2584 * drops below w1bits+1). When the most-significant bit of either window
2585 * becomes set, indicating that something needs to be multiplied by
2586 * the accumulator or it will get out of sync, the window is examined
2587 * to see which power of n1 or n2 to multiply by, and when (possibly
2588 * later, if the power is greater than 1) the multiply should take
2589 * place. Then the multiply and its location are remembered and the
2590 * window is cleared.
2591 *
2592 * If we had every power of n1 in the table, the multiply would always
2593 * be w1bits steps in the future. But we only keep the odd powers,
2594 * so instead of waiting w1bits squarings and then multiplying
2595 * by n1^k, we wait w1bits-k squarings and multiply by n1.
2596 *
2597 * Actually, w2bits can be less than w1bits, but the window is the same
2598 * size, to make it easier to keep track of where we're reading. The
2599 * appropriate number of low-order bits of the window are just ignored.
2600 */
2601 int
2602 lbnDoubleExpMod_64(BNWORD64 *result,
2603 BNWORD64 const *n1, unsigned n1len,
2604 BNWORD64 const *e1, unsigned e1len,
2605 BNWORD64 const *n2, unsigned n2len,
2606 BNWORD64 const *e2, unsigned e2len,
2607 BNWORD64 *mod, unsigned mlen)
2608 {
2609 BNWORD64 *table1[1 << (BNEXPMOD_MAX_WINDOW-1)];
2610 /* Table of odd powers of n1 */
2611 BNWORD64 *table2[1 << (BNEXPMOD_MAX_WINDOW-1)];
2612 /* Table of odd powers of n2 */
2613 unsigned e1bits, e2bits; /* Exponent bits */
2614 unsigned w1bits, w2bits; /* Window sizes */
2615 unsigned tblmask; /* Mask of exponentiation window */
2616 BNWORD64 bitpos; /* Mask of current look-ahead bit */
2617 unsigned buf1, buf2; /* Buffer of exponent bits */
2618 unsigned mult1pos, mult2pos; /* Where to do pending multiply */
2619 BNWORD64 const *mult1, *mult2; /* What to multiply by */
2620 unsigned i; /* Loop counter */
2621 int isone; /* Flag: accum. is implicitly one */
2622 BNWORD64 *a, *b; /* Working buffers/accumulators */
2623 BNWORD64 *t; /* Pointer into the working buffers */
2624 BNWORD64 inv; /* mod^-1 modulo 2^64 */
2625 int y; /* bnYield() result */
2626
2627 assert(mlen);
2628 assert(n1len <= mlen);
2629 assert(n2len <= mlen);
2630
2631 /* First, a couple of trivial cases. */
2632 e1len = lbnNorm_64(e1, e1len);
2633 e2len = lbnNorm_64(e2, e2len);
2634
2635 /* Ensure that the first exponent is the longer */
2636 e1bits = lbnBits_64(e1, e1len);
2637 e2bits = lbnBits_64(e2, e2len);
2638 if (e1bits < e2bits) {
2639 i = e1len; e1len = e2len; e2len = i;
2640 i = e1bits; e1bits = e2bits; e2bits = i;
2641 t = (BNWORD64 *)n1; n1 = n2; n2 = t;
2642 t = (BNWORD64 *)e1; e1 = e2; e2 = t;
2643 }
2644 assert(e1bits >= e2bits);
2645
2646 /* Handle a trivial case */
2647 if (!e2len)
2648 return lbnExpMod_64(result, n1, n1len, e1, e1len, mod, mlen);
2649 assert(e2bits);
2650
2651 /* The code below fucks up if the exponents aren't at least 2 bits */
2652 if (e1bits == 1) {
2653 assert(e2bits == 1);
2654
2655 LBNALLOC(a, BNWORD64, n1len+n2len);
2656 if (!a)
2657 return -1;
2658
2659 lbnMul_64(a, n1, n1len, n2, n2len);
2660 /* Do a direct modular reduction */
2661 if (n1len + n2len >= mlen)
2662 (void)lbnDiv_64(a+mlen, a, n1len+n2len, mod, mlen);
2663 lbnCopy_64(result, a, mlen);
2664 LBNFREE(a, n1len+n2len);
2665 return 0;
2666 }
2667
2668 /* Okay, now move the exponent pointers to the most-significant word */
2669 e1 = BIGLITTLE(e1-e1len, e1+e1len-1);
2670 e2 = BIGLITTLE(e2-e2len, e2+e2len-1);
2671
2672 /* Look up appropriate k-1 for the exponent - tblmask = 1<<(k-1) */
2673 w1bits = 0;
2674 while (e1bits > bnExpModThreshTable[w1bits])
2675 w1bits++;
2676 w2bits = 0;
2677 while (e2bits > bnExpModThreshTable[w2bits])
2678 w2bits++;
2679
2680 assert(w1bits >= w2bits);
2681
2682 /* Allocate working storage: two product buffers and the tables. */
2683 LBNALLOC(a, BNWORD64, 2*mlen);
2684 if (!a)
2685 return -1;
2686 LBNALLOC(b, BNWORD64, 2*mlen);
2687 if (!b) {
2688 LBNFREE(a, 2*mlen);
2689 return -1;
2690 }
2691
2692 /* Convert to the appropriate table size: tblmask = 1<<(k-1) */
2693 tblmask = 1u << w1bits;
2694 /* Use buf2 for its size, temporarily */
2695 buf2 = 1u << w2bits;
2696
2697 LBNALLOC(t, BNWORD64, mlen);
2698 if (!t) {
2699 LBNFREE(b, 2*mlen);
2700 LBNFREE(a, 2*mlen);
2701 return -1;
2702 }
2703 table1[0] = t;
2704 table2[0] = result;
2705
2706 /*
2707 * Okay, we now have some minimal-sized tables - expand them.
2708 * This is allowed to fail! If so, scale back the table sizes
2709 * and proceed. We allocate both tables at the same time
2710 * so if it fails partway through, they'll both be a reasonable
2711 * size rather than one huge and one tiny.
2712 * When i passes buf2 (the number of entries in the e2 window,
2713 * which may be less than the number of entries in the e1 window),
2714 * stop allocating e2 space.
2715 */
2716 for (i = 1; i < tblmask; i++) {
2717 LBNALLOC(t, BNWORD64, mlen);
2718 if (!t) /* Out of memory! Quit the loop. */
2719 break;
2720 table1[i] = t;
2721 if (i < buf2) {
2722 LBNALLOC(t, BNWORD64, mlen);
2723 if (!t) {
2724 LBNFREE(table1[i], mlen);
2725 break;
2726 }
2727 table2[i] = t;
2728 }
2729 }
2730
2731 /* If we stopped, with i < tblmask, shrink the tables appropriately */
2732 while (tblmask > i) {
2733 w1bits--;
2734 tblmask >>= 1;
2735 }
2736 /* Free up our overallocations */
2737 while (--i > tblmask) {
2738 if (i < buf2)
2739 LBNFREE(table2[i], mlen);
2740 LBNFREE(table1[i], mlen);
2741 }
2742 /* And shrink the second window too, if needed */
2743 if (w2bits > w1bits) {
2744 w2bits = w1bits;
2745 buf2 = tblmask;
2746 }
2747
2748 /*
2749 * From now on, use the w2bits variable for the difference
2750 * between w1bits and w2bits.
2751 */
2752 w2bits = w1bits-w2bits;
2753
2754 /* Okay, fill in the tables */
2755
2756 /* Compute the necessary modular inverse */
2757 inv = lbnMontInv1_64(mod[BIGLITTLE(-1,0)]); /* LSW of modulus */
2758
2759 /* Convert n1 to Montgomery form */
2760
2761 /* Move n1 up "mlen" words into a */
2762 t = BIGLITTLE(a-mlen, a+mlen);
2763 lbnCopy_64(t, n1, n1len);
2764 lbnZero_64(a, mlen);
2765 /* Do the division - lose the quotient into the high-order words */
2766 (void)lbnDiv_64(t, a, mlen+n1len, mod, mlen);
2767 /* Copy into first table entry */
2768 lbnCopy_64(table1[0], a, mlen);
2769
2770 /* Square a into b */
2771 lbnMontSquare_64(b, a, mod, mlen, inv);
2772
2773 /* Use high half of b to initialize the first table */
2774 t = BIGLITTLE(b-mlen, b+mlen);
2775 for (i = 1; i < tblmask; i++) {
2776 lbnMontMul_64(a, t, table1[i-1], mod, mlen, inv);
2777 lbnCopy_64(table1[i], BIGLITTLE(a-mlen, a+mlen), mlen);
2778 #if BNYIELD
2779 if (bnYield && (y = bnYield()) < 0)
2780 goto yield;
2781 #endif
2782 }
2783
2784 /* Convert n2 to Montgomery form */
2785
2786 t = BIGLITTLE(a-mlen, a+mlen);
2787 /* Move n2 up "mlen" words into a */
2788 lbnCopy_64(t, n2, n2len);
2789 lbnZero_64(a, mlen);
2790 /* Do the division - lose the quotient into the high-order words */
2791 (void)lbnDiv_64(t, a, mlen+n2len, mod, mlen);
2792 /* Copy into first table entry */
2793 lbnCopy_64(table2[0], a, mlen);
2794
2795 /* Square it into a */
2796 lbnMontSquare_64(a, table2[0], mod, mlen, inv);
2797 /* Copy to b, low half */
2798 lbnCopy_64(b, t, mlen);
2799
2800 /* Use b to initialize the second table */
2801 for (i = 1; i < buf2; i++) {
2802 lbnMontMul_64(a, b, table2[i-1], mod, mlen, inv);
2803 lbnCopy_64(table2[i], t, mlen);
2804 #if BNYIELD
2805 if (bnYield && (y = bnYield()) < 0)
2806 goto yield;
2807 #endif
2808 }
2809
2810 /*
2811 * Okay, a recap: at this point, the low part of b holds
2812 * n2^2, the high part holds n1^2, and the tables are
2813 * initialized with the odd powers of n1 and n2 from 1
2814 * through 2*tblmask-1 and 2*buf2-1.
2815 *
2816 * We might use those squares in b later, or we might not.
2817 */
2818
2819 /* Initialze the fetch pointer */
2820 bitpos = (BNWORD64)1 << ((e1bits-1) & (64-1)); /* Initialize mask */
2821
2822 /* This should point to the msbit of e1 */
2823 assert((*e1 & bitpos) != 0);
2824
2825 /*
2826 * Pre-load the windows. Becuase the window size is
2827 * never larger than the exponent size, there is no need to
2828 * detect running off the end of e1 in here.
2829 *
2830 * The read-ahead is controlled by e1len and the bitpos mask.
2831 * Note that this is *ahead* of e1bits, which tracks the
2832 * most significant end of the window. The purpose of this
2833 * initialization is to get the two w1bits+1 bits apart,
2834 * like they should be.
2835 *
2836 * Note that bitpos and e1len together keep track of the
2837 * lookahead read pointer in the exponent that is used here.
2838 * e2len is not decremented, it is only ever compared with
2839 * e1len as *that* is decremented.
2840 */
2841 buf1 = buf2 = 0;
2842 for (i = 0; i <= w1bits; i++) {
2843 buf1 = (buf1 << 1) | ((*e1 & bitpos) != 0);
2844 if (e1len <= e2len)
2845 buf2 = (buf2 << 1) | ((*e2 & bitpos) != 0);
2846 bitpos >>= 1;
2847 if (!bitpos) {
2848 BIGLITTLE(e1++,e1--);
2849 if (e1len <= e2len)
2850 BIGLITTLE(e2++,e2--);
2851 bitpos = (BNWORD64)1 << (64-1);
2852 e1len--;
2853 }
2854 }
2855 assert(buf1 & tblmask);
2856
2857 /*
2858 * Set the pending multiply positions to a location that will
2859 * never be encountered, thus ensuring that nothing will happen
2860 * until the need for a multiply appears and one is scheduled.
2861 */
2862 mult1pos = mult2pos = e1bits; /* A NULL value */
2863 mult1 = mult2 = 0; /* Force a crash if we use these */
2864
2865 /*
2866 * Okay, now begins the real work. The first step is
2867 * slightly magic, so it's done outside the main loop,
2868 * but it's very similar to what's inside.
2869 */
2870 isone = 1; /* Buffer is implicitly 1, so replace * by copy */
2871 e1bits--; /* Start processing the first bit... */
2872
2873 /*
2874 * This is just like the multiply in the loop, except that
2875 * - We know the msbit of buf1 is set, and
2876 * - We have the extra value n1^2 floating around.
2877 * So, do the usual computation, and if the result is that
2878 * the buffer should be multiplied by n1^1 immediately
2879 * (which we'd normally then square), we multiply it
2880 * (which reduces to a copy, which reduces to setting a flag)
2881 * by n1^2 and skip the squaring. Thus, we do the
2882 * multiply and the squaring in one step.
2883 */
2884 assert(buf1 & tblmask);
2885 mult1pos = e1bits - w1bits;
2886 while ((buf1 & 1) == 0) {
2887 buf1 >>= 1;
2888 mult1pos++;
2889 }
2890 /* Intermediates can wrap, but final must NOT */
2891 assert(mult1pos <= e1bits);
2892 mult1 = table1[buf1>>1];
2893 buf1 = 0;
2894
2895 /* Special case: use already-computed value sitting in buffer */
2896 if (mult1pos == e1bits)
2897 isone = 0;
2898
2899 /*
2900 * The first multiply by a power of n2. Similar, but
2901 * we might not even want to schedule a multiply if e2 is
2902 * shorter than e1, and the window might be shorter so
2903 * we have to leave the low w2bits bits alone.
2904 */
2905 if (buf2 & tblmask) {
2906 /* Remember low-order bits for later */
2907 i = buf2 & ((1u << w2bits) - 1);
2908 buf2 >>= w2bits;
2909 mult2pos = e1bits - w1bits + w2bits;
2910 while ((buf2 & 1) == 0) {
2911 buf2 >>= 1;
2912 mult2pos++;
2913 }
2914 assert(mult2pos <= e1bits);
2915 mult2 = table2[buf2>>1];
2916 buf2 = i;
2917
2918 if (mult2pos == e1bits) {
2919 t = BIGLITTLE(b-mlen, b+mlen);
2920 if (isone) {
2921 lbnCopy_64(t, b, mlen); /* Copy low to high */
2922 isone = 0;
2923 } else {
2924 lbnMontMul_64(a, t, b, mod, mlen, inv);
2925 t = a; a = b; b = t;
2926 }
2927 }
2928 }
2929
2930 /*
2931 * At this point, the buffer (which is the high half of b)
2932 * holds either 1 (implicitly, as the "isone" flag is set),
2933 * n1^2, n2^2 or n1^2 * n2^2.
2934 */
2935
2936 /*
2937 * The main loop. The procedure is:
2938 * - Advance the windows
2939 * - If the most-significant bit of a window is set,
2940 * schedule a multiply for the appropriate time in the
2941 * future (may be immediately)
2942 * - Perform any pending multiples
2943 * - Check for termination
2944 * - Square the buffers
2945 *
2946 * At any given time, the acumulated product is held in
2947 * the high half of b.
2948 */
2949 for (;;) {
2950 e1bits--;
2951
2952 /* Advance the windows */
2953 assert(buf1 < tblmask);
2954 buf1 <<= 1;
2955 assert(buf2 < tblmask);
2956 buf2 <<= 1;
2957 /*
2958 * This reads ahead of the current exponent position
2959 * (controlled by e1bits), so we have to be able to read
2960 * past the lsb of the exponents without error.
2961 */
2962 if (e1len) {
2963 buf1 |= ((*e1 & bitpos) != 0);
2964 if (e1len <= e2len)
2965 buf2 |= ((*e2 & bitpos) != 0);
2966 bitpos >>= 1;
2967 if (!bitpos) {
2968 BIGLITTLE(e1++,e1--);
2969 if (e1len <= e2len)
2970 BIGLITTLE(e2++,e2--);
2971 bitpos = (BNWORD64)1 << (64-1);
2972 e1len--;
2973 }
2974 }
2975
2976 /* Examine the first window for pending multiplies */
2977 if (buf1 & tblmask) {
2978 mult1pos = e1bits - w1bits;
2979 while ((buf1 & 1) == 0) {
2980 buf1 >>= 1;
2981 mult1pos++;
2982 }
2983 /* Intermediates can wrap, but final must NOT */
2984 assert(mult1pos <= e1bits);
2985 mult1 = table1[buf1>>1];
2986 buf1 = 0;
2987 }
2988
2989 /*
2990 * Examine the second window for pending multiplies.
2991 * Window 2 can be smaller than window 1, but we
2992 * keep the same number of bits in buf2, so we need
2993 * to ignore any low-order bits in the buffer when
2994 * computing what to multiply by, and recompute them
2995 * later.
2996 */
2997 if (buf2 & tblmask) {
2998 /* Remember low-order bits for later */
2999 i = buf2 & ((1u << w2bits) - 1);
3000 buf2 >>= w2bits;
3001 mult2pos = e1bits - w1bits + w2bits;
3002 while ((buf2 & 1) == 0) {
3003 buf2 >>= 1;
3004 mult2pos++;
3005 }
3006 assert(mult2pos <= e1bits);
3007 mult2 = table2[buf2>>1];
3008 buf2 = i;
3009 }
3010
3011
3012 /* If we have a pending multiply for e1, do it */
3013 if (e1bits == mult1pos) {
3014 /* Multiply by the table entry remembered previously */
3015 t = BIGLITTLE(b-mlen, b+mlen);
3016 if (isone) {
3017 /* Multiply by 1 is a trivial case */
3018 lbnCopy_64(t, mult1, mlen);
3019 isone = 0;
3020 } else {
3021 lbnMontMul_64(a, t, mult1, mod, mlen, inv);
3022 /* Swap a and b */
3023 t = a; a = b; b = t;
3024 }
3025 }
3026
3027 /* If we have a pending multiply for e2, do it */
3028 if (e1bits == mult2pos) {
3029 /* Multiply by the table entry remembered previously */
3030 t = BIGLITTLE(b-mlen, b+mlen);
3031 if (isone) {
3032 /* Multiply by 1 is a trivial case */
3033 lbnCopy_64(t, mult2, mlen);
3034 isone = 0;
3035 } else {
3036 lbnMontMul_64(a, t, mult2, mod, mlen, inv);
3037 /* Swap a and b */
3038 t = a; a = b; b = t;
3039 }
3040 }
3041
3042 /* Are we done? */
3043 if (!e1bits)
3044 break;
3045
3046 /* Square the buffer */
3047 if (!isone) {
3048 t = BIGLITTLE(b-mlen, b+mlen);
3049 lbnMontSquare_64(a, t, mod, mlen, inv);
3050 /* Swap a and b */
3051 t = a; a = b; b = t;
3052 }
3053 #if BNYIELD
3054 if (bnYield && (y = bnYield()) < 0)
3055 goto yield;
3056 #endif
3057 } /* for (;;) */
3058
3059 assert(!isone);
3060 assert(!buf1);
3061 assert(!buf2);
3062
3063 /* DONE! */
3064
3065 /* Convert result out of Montgomery form */
3066 t = BIGLITTLE(b-mlen, b+mlen);
3067 lbnCopy_64(b, t, mlen);
3068 lbnZero_64(t, mlen);
3069 lbnMontReduce_64(b, mod, mlen, inv);
3070 lbnCopy_64(result, t, mlen);
3071
3072 /* Clean up - free intermediate storage */
3073 y = 0;
3074 #if BNYIELD
3075 yield:
3076 #endif
3077 buf2 = tblmask >> w2bits;
3078 while (--tblmask) {
3079 if (tblmask < buf2)
3080 LBNFREE(table2[tblmask], mlen);
3081 LBNFREE(table1[tblmask], mlen);
3082 }
3083 t = table1[0];
3084 LBNFREE(t, mlen);
3085 LBNFREE(b, 2*mlen);
3086 LBNFREE(a, 2*mlen);
3087
3088 return y; /* Success */
3089 }
3090
3091 /*
3092 * 2^exp (mod mod). This is an optimized version for use in Fermat
3093 * tests. The input value of n is ignored; it is returned with
3094 * "mlen" words valid.
3095 */
3096 int
3097 lbnTwoExpMod_64(BNWORD64 *n, BNWORD64 const *exp, unsigned elen,
3098 BNWORD64 *mod, unsigned mlen)
3099 {
3100 unsigned e; /* Copy of high words of the exponent */
3101 unsigned bits; /* Assorted counter of bits */
3102 BNWORD64 const *bitptr;
3103 BNWORD64 bitword, bitpos;
3104 BNWORD64 *a, *b, *a1;
3105 BNWORD64 inv;
3106 int y; /* Result of bnYield() */
3107
3108 assert(mlen);
3109
3110 bitptr = BIGLITTLE(exp-elen, exp+elen-1);
3111 bitword = *bitptr;
3112 assert(bitword);
3113
3114 /* Clear n for future use. */
3115 lbnZero_64(n, mlen);
3116
3117 bits = lbnBits_64(exp, elen);
3118
3119 /* First, a couple of trivial cases. */
3120 if (bits <= 1) {
3121 /* 2 ^ 0 == 1, 2 ^ 1 == 2 */
3122 BIGLITTLE(n[-1],n[0]) = (BNWORD64)1<<elen;
3123 return 0;
3124 }
3125
3126 /* Set bitpos to the most significant bit */
3127 bitpos = (BNWORD64)1 << ((bits-1) & (64-1));
3128
3129 /* Now, count the bits in the modulus. */
3130 bits = lbnBits_64(mod, mlen);
3131 assert(bits > 1); /* a 1-bit modulus is just stupid... */
3132
3133 /*
3134 * We start with 1<<e, where "e" is as many high bits of the
3135 * exponent as we can manage without going over the modulus.
3136 * This first loop finds "e".
3137 */
3138 e = 1;
3139 while (elen) {
3140 /* Consume the first bit */
3141 bitpos >>= 1;
3142 if (!bitpos) {
3143 if (!--elen)
3144 break;
3145 bitword = BIGLITTLE(*++bitptr,*--bitptr);
3146 bitpos = (BNWORD64)1<<(64-1);
3147 }
3148 e = (e << 1) | ((bitpos & bitword) != 0);
3149 if (e >= bits) { /* Overflow! Back out. */
3150 e >>= 1;
3151 break;
3152 }
3153 }
3154 /*
3155 * The bit in "bitpos" being examined by the bit buffer has NOT
3156 * been consumed yet. This may be past the end of the exponent,
3157 * in which case elen == 1.
3158 */
3159
3160 /* Okay, now, set bit "e" in n. n is already zero. */
3161 inv = (BNWORD64)1 << (e & (64-1));
3162 e /= 64;
3163 BIGLITTLE(n[-e-1],n[e]) = inv;
3164 /*
3165 * The effective length of n in words is now "e+1".
3166 * This is used a little bit later.
3167 */
3168
3169 if (!elen)
3170 return 0; /* That was easy! */
3171
3172 /*
3173 * We have now processed the first few bits. The next step
3174 * is to convert this to Montgomery form for further squaring.
3175 */
3176
3177 /* Allocate working storage: two product buffers */
3178 LBNALLOC(a, BNWORD64, 2*mlen);
3179 if (!a)
3180 return -1;
3181 LBNALLOC(b, BNWORD64, 2*mlen);
3182 if (!b) {
3183 LBNFREE(a, 2*mlen);
3184 return -1;
3185 }
3186
3187 /* Convert n to Montgomery form */
3188 inv = BIGLITTLE(mod[-1],mod[0]); /* LSW of modulus */
3189 assert(inv & 1); /* Modulus must be odd */
3190 inv = lbnMontInv1_64(inv);
3191 /* Move n (length e+1, remember?) up "mlen" words into b */
3192 /* Note that we lie about a1 for a bit - it's pointing to b */
3193 a1 = BIGLITTLE(b-mlen,b+mlen);
3194 lbnCopy_64(a1, n, e+1);
3195 lbnZero_64(b, mlen);
3196 /* Do the division - dump the quotient into the high-order words */
3197 (void)lbnDiv_64(a1, b, mlen+e+1, mod, mlen);
3198 /*
3199 * Now do the first squaring and modular reduction to put
3200 * the number up in a1 where it belongs.
3201 */
3202 lbnMontSquare_64(a, b, mod, mlen, inv);
3203 /* Fix up a1 to point to where it should go. */
3204 a1 = BIGLITTLE(a-mlen,a+mlen);
3205
3206 /*
3207 * Okay, now, a1 holds the number being accumulated, and
3208 * b is a scratch register. Start working:
3209 */
3210 for (;;) {
3211 /*
3212 * Is the bit set? If so, double a1 as well.
3213 * A modular doubling like this is very cheap.
3214 */
3215 if (bitpos & bitword) {
3216 /*
3217 * Double the number. If there was a carry out OR
3218 * the result is greater than the modulus, subract
3219 * the modulus.
3220 */
3221 if (lbnDouble_64(a1, mlen) ||
3222 lbnCmp_64(a1, mod, mlen) > 0)
3223 (void)lbnSubN_64(a1, mod, mlen);
3224 }
3225
3226 /* Advance to the next exponent bit */
3227 bitpos >>= 1;
3228 if (!bitpos) {
3229 if (!--elen)
3230 break; /* Done! */
3231 bitword = BIGLITTLE(*++bitptr,*--bitptr);
3232 bitpos = (BNWORD64)1<<(64-1);
3233 }
3234
3235 /*
3236 * The elen/bitword/bitpos bit buffer is known to be
3237 * non-empty, i.e. there is at least one more unconsumed bit.
3238 * Thus, it's safe to square the number.
3239 */
3240 lbnMontSquare_64(b, a1, mod, mlen, inv);
3241 /* Rename result (in b) back to a (a1, really). */
3242 a1 = b; b = a; a = a1;
3243 a1 = BIGLITTLE(a-mlen,a+mlen);
3244 #if BNYIELD
3245 if (bnYield && (y = bnYield()) < 0)
3246 goto yield;
3247 #endif
3248 }
3249
3250 /* DONE! Just a little bit of cleanup... */
3251
3252 /*
3253 * Convert result out of Montgomery form... this is
3254 * just a Montgomery reduction.
3255 */
3256 lbnCopy_64(a, a1, mlen);
3257 lbnZero_64(a1, mlen);
3258 lbnMontReduce_64(a, mod, mlen, inv);
3259 lbnCopy_64(n, a1, mlen);
3260
3261 /* Clean up - free intermediate storage */
3262 y = 0;
3263 #if BNYIELD
3264 yield:
3265 #endif
3266 LBNFREE(b, 2*mlen);
3267 LBNFREE(a, 2*mlen);
3268
3269 return y; /* Success */
3270 }
3271
3272
3273 /*
3274 * Returns a substring of the big-endian array of bytes representation
3275 * of the bignum array based on two parameters, the least significant
3276 * byte number (0 to start with the least significant byte) and the
3277 * length. I.e. the number returned is a representation of
3278 * (bn / 2^(8*lsbyte)) % 2 ^ (8*buflen).
3279 *
3280 * It is an error if the bignum is not at least buflen + lsbyte bytes
3281 * long.
3282 *
3283 * This code assumes that the compiler has the minimal intelligence
3284 * neded to optimize divides and modulo operations on an unsigned data
3285 * type with a power of two.
3286 */
3287 void
3288 lbnExtractBigBytes_64(BNWORD64 const *n, unsigned char *buf,
3289 unsigned lsbyte, unsigned buflen)
3290 {
3291 BNWORD64 t = 0; /* Needed to shut up uninitialized var warnings */
3292 unsigned shift;
3293
3294 lsbyte += buflen;
3295
3296 shift = (8 * lsbyte) % 64;
3297 lsbyte /= (64/8); /* Convert to word offset */
3298 BIGLITTLE(n -= lsbyte, n += lsbyte);
3299
3300 if (shift)
3301 t = BIGLITTLE(n[-1],n[0]);
3302
3303 while (buflen--) {
3304 if (!shift) {
3305 t = BIGLITTLE(*n++,*--n);
3306 shift = 64;
3307 }
3308 shift -= 8;
3309 *buf++ = (unsigned char)(t>>shift);
3310 }
3311 }
3312
3313 /*
3314 * Merge a big-endian array of bytes into a bignum array.
3315 * The array had better be big enough. This is
3316 * equivalent to extracting the entire bignum into a
3317 * large byte array, copying the input buffer into the
3318 * middle of it, and converting back to a bignum.
3319 *
3320 * The buf is "len" bytes long, and its *last* byte is at
3321 * position "lsbyte" from the end of the bignum.
3322 *
3323 * Note that this is a pain to get right. Fortunately, it's hardly
3324 * critical for efficiency.
3325 */
3326 void
3327 lbnInsertBigBytes_64(BNWORD64 *n, unsigned char const *buf,
3328 unsigned lsbyte, unsigned buflen)
3329 {
3330 BNWORD64 t = 0; /* Shut up uninitialized varibale warnings */
3331
3332 lsbyte += buflen;
3333
3334 BIGLITTLE(n -= lsbyte/(64/8), n += lsbyte/(64/8));
3335
3336 /* Load up leading odd bytes */
3337 if (lsbyte % (64/8)) {
3338 t = BIGLITTLE(*--n,*n++);
3339 t >>= (lsbyte * 8) % 64;
3340 }
3341
3342 /* The main loop - merge into t, storing at each word boundary. */
3343 while (buflen--) {
3344 t = (t << 8) | *buf++;
3345 if ((--lsbyte % (64/8)) == 0)
3346 BIGLITTLE(*n++,*--n) = t;
3347 }
3348
3349 /* Merge odd bytes in t into last word */
3350 lsbyte = (lsbyte * 8) % 64;
3351 if (lsbyte) {
3352 t <<= lsbyte;
3353 t |= (((BNWORD64)1 << lsbyte) - 1) & BIGLITTLE(n[0],n[-1]);
3354 BIGLITTLE(n[0],n[-1]) = t;
3355 }
3356
3357 return;
3358 }
3359
3360 /*
3361 * Returns a substring of the little-endian array of bytes representation
3362 * of the bignum array based on two parameters, the least significant
3363 * byte number (0 to start with the least significant byte) and the
3364 * length. I.e. the number returned is a representation of
3365 * (bn / 2^(8*lsbyte)) % 2 ^ (8*buflen).
3366 *
3367 * It is an error if the bignum is not at least buflen + lsbyte bytes
3368 * long.
3369 *
3370 * This code assumes that the compiler has the minimal intelligence
3371 * neded to optimize divides and modulo operations on an unsigned data
3372 * type with a power of two.
3373 */
3374 void
3375 lbnExtractLittleBytes_64(BNWORD64 const *n, unsigned char *buf,
3376 unsigned lsbyte, unsigned buflen)
3377 {
3378 BNWORD64 t = 0; /* Needed to shut up uninitialized var warnings */
3379
3380 BIGLITTLE(n -= lsbyte/(64/8), n += lsbyte/(64/8));
3381
3382 if (lsbyte % (64/8)) {
3383 t = BIGLITTLE(*--n,*n++);
3384 t >>= (lsbyte % (64/8)) * 8 ;
3385 }
3386
3387 while (buflen--) {
3388 if ((lsbyte++ % (64/8)) == 0)
3389 t = BIGLITTLE(*--n,*n++);
3390 *buf++ = (unsigned char)t;
3391 t >>= 8;
3392 }
3393 }
3394
3395 /*
3396 * Merge a little-endian array of bytes into a bignum array.
3397 * The array had better be big enough. This is
3398 * equivalent to extracting the entire bignum into a
3399 * large byte array, copying the input buffer into the
3400 * middle of it, and converting back to a bignum.
3401 *
3402 * The buf is "len" bytes long, and its first byte is at
3403 * position "lsbyte" from the end of the bignum.
3404 *
3405 * Note that this is a pain to get right. Fortunately, it's hardly
3406 * critical for efficiency.
3407 */
3408 void
3409 lbnInsertLittleBytes_64(BNWORD64 *n, unsigned char const *buf,
3410 unsigned lsbyte, unsigned buflen)
3411 {
3412 BNWORD64 t = 0; /* Shut up uninitialized varibale warnings */
3413
3414 /* Move to most-significant end */
3415 lsbyte += buflen;
3416 buf += buflen;
3417
3418 BIGLITTLE(n -= lsbyte/(64/8), n += lsbyte/(64/8));
3419
3420 /* Load up leading odd bytes */
3421 if (lsbyte % (64/8)) {
3422 t = BIGLITTLE(*--n,*n++);
3423 t >>= (lsbyte * 8) % 64;
3424 }
3425
3426 /* The main loop - merge into t, storing at each word boundary. */
3427 while (buflen--) {
3428 t = (t << 8) | *--buf;
3429 if ((--lsbyte % (64/8)) == 0)
3430 BIGLITTLE(*n++,*--n) = t;
3431 }
3432
3433 /* Merge odd bytes in t into last word */
3434 lsbyte = (lsbyte * 8) % 64;
3435 if (lsbyte) {
3436 t <<= lsbyte;
3437 t |= (((BNWORD64)1 << lsbyte) - 1) & BIGLITTLE(n[0],n[-1]);
3438 BIGLITTLE(n[0],n[-1]) = t;
3439 }
3440
3441 return;
3442 }
3443
3444 #ifdef DEADCODE /* This was a precursor to the more flexible lbnExtractBytes */
3445 /*
3446 * Convert a big-endian array of bytes to a bignum.
3447 * Returns the number of words in the bignum.
3448 * Note the expression "64/8" for the number of bytes per word.
3449 * This is so the word-size adjustment will work.
3450 */
3451 unsigned
3452 lbnFromBytes_64(BNWORD64 *a, unsigned char const *b, unsigned blen)
3453 {
3454 BNWORD64 t;
3455 unsigned alen = (blen + (64/8-1))/(64/8);
3456 BIGLITTLE(a -= alen, a += alen);
3457
3458 while (blen) {
3459 t = 0;
3460 do {
3461 t = t << 8 | *b++;
3462 } while (--blen & (64/8-1));
3463 BIGLITTLE(*a++,*--a) = t;
3464 }
3465 return alen;
3466 }
3467 #endif
3468
3469 /*
3470 * Computes the GCD of a and b. Modifies both arguments; when it returns,
3471 * one of them is the GCD and the other is trash. The return value
3472 * indicates which: 0 for a, and 1 for b. The length of the retult is
3473 * returned in rlen. Both inputs must have one extra word of precision.
3474 * alen must be >= blen.
3475 *
3476 * TODO: use the binary algorithm (Knuth section 4.5.2, algorithm B).
3477 * This is based on taking out common powers of 2, then repeatedly:
3478 * gcd(2*u,v) = gcd(u,2*v) = gcd(u,v) - isolated powers of 2 can be deleted.
3479 * gcd(u,v) = gcd(u-v,v) - the numbers can be easily reduced.
3480 * It gets less reduction per step, but the steps are much faster than
3481 * the division case.
3482 */
3483 int
3484 lbnGcd_64(BNWORD64 *a, unsigned alen, BNWORD64 *b, unsigned blen,
3485 unsigned *rlen)
3486 {
3487 #if BNYIELD
3488 int y;
3489 #endif
3490 assert(alen >= blen);
3491
3492 while (blen != 0) {
3493 (void)lbnDiv_64(BIGLITTLE(a-blen,a+blen), a, alen, b, blen);
3494 alen = lbnNorm_64(a, blen);
3495 if (alen == 0) {
3496 *rlen = blen;
3497 return 1;
3498 }
3499 (void)lbnDiv_64(BIGLITTLE(b-alen,b+alen), b, blen, a, alen);
3500 blen = lbnNorm_64(b, alen);
3501 #if BNYIELD
3502 if (bnYield && (y = bnYield()) < 0)
3503 return y;
3504 #endif
3505 }
3506 *rlen = alen;
3507 return 0;
3508 }
3509
3510 /*
3511 * Invert "a" modulo "mod" using the extended Euclidean algorithm.
3512 * Note that this only computes one of the cosequences, and uses the
3513 * theorem that the signs flip every step and the absolute value of
3514 * the cosequence values are always bounded by the modulus to avoid
3515 * having to work with negative numbers.
3516 * gcd(a,mod) had better equal 1. Returns 1 if the GCD is NOT 1.
3517 * a must be one word longer than "mod". It is overwritten with the
3518 * result.
3519 * TODO: Use Richard Schroeppel's *much* faster algorithm.
3520 */
3521 int
3522 lbnInv_64(BNWORD64 *a, unsigned alen, BNWORD64 const *mod, unsigned mlen)
3523 {
3524 BNWORD64 *b; /* Hold a copy of mod during GCD reduction */
3525 BNWORD64 *p; /* Temporary for products added to t0 and t1 */
3526 BNWORD64 *t0, *t1; /* Inverse accumulators */
3527 BNWORD64 cy;
3528 unsigned blen, t0len, t1len, plen;
3529 int y;
3530
3531 alen = lbnNorm_64(a, alen);
3532 if (!alen)
3533 return 1; /* No inverse */
3534
3535 mlen = lbnNorm_64(mod, mlen);
3536
3537 assert (alen <= mlen);
3538
3539 /* Inverse of 1 is 1 */
3540 if (alen == 1 && BIGLITTLE(a[-1],a[0]) == 1) {
3541 lbnZero_64(BIGLITTLE(a-alen,a+alen), mlen-alen);
3542 return 0;
3543 }
3544
3545 /* Allocate a pile of space */
3546 LBNALLOC(b, BNWORD64, mlen+1);
3547 if (b) {
3548 /*
3549 * Although products are guaranteed to always be less than the
3550 * modulus, it can involve multiplying two 3-word numbers to
3551 * get a 5-word result, requiring a 6th word to store a 0
3552 * temporarily. Thus, mlen + 1.
3553 */
3554 LBNALLOC(p, BNWORD64, mlen+1);
3555 if (p) {
3556 LBNALLOC(t0, BNWORD64, mlen);
3557 if (t0) {
3558 LBNALLOC(t1, BNWORD64, mlen);
3559 if (t1)
3560 goto allocated;
3561 LBNFREE(t0, mlen);
3562 }
3563 LBNFREE(p, mlen+1);
3564 }
3565 LBNFREE(b, mlen+1);
3566 }
3567 return -1;
3568
3569 allocated:
3570
3571 /* Set t0 to 1 */
3572 t0len = 1;
3573 BIGLITTLE(t0[-1],t0[0]) = 1;
3574
3575 /* b = mod */
3576 lbnCopy_64(b, mod, mlen);
3577 /* blen = mlen (implicitly) */
3578
3579 /* t1 = b / a; b = b % a */
3580 cy = lbnDiv_64(t1, b, mlen, a, alen);
3581 *(BIGLITTLE(t1-(mlen-alen)-1,t1+(mlen-alen))) = cy;
3582 t1len = lbnNorm_64(t1, mlen-alen+1);
3583 blen = lbnNorm_64(b, alen);
3584
3585 /* while (b > 1) */
3586 while (blen > 1 || BIGLITTLE(b[-1],b[0]) != (BNWORD64)1) {
3587 /* q = a / b; a = a % b; */
3588 if (alen < blen || (alen == blen && lbnCmp_64(a, a, alen) < 0))
3589 assert(0);
3590 cy = lbnDiv_64(BIGLITTLE(a-blen,a+blen), a, alen, b, blen);
3591 *(BIGLITTLE(a-alen-1,a+alen)) = cy;
3592 plen = lbnNorm_64(BIGLITTLE(a-blen,a+blen), alen-blen+1);
3593 assert(plen);
3594 alen = lbnNorm_64(a, blen);
3595 if (!alen)
3596 goto failure; /* GCD not 1 */
3597
3598 /* t0 += q * t1; */
3599 assert(plen+t1len <= mlen+1);
3600 lbnMul_64(p, BIGLITTLE(a-blen,a+blen), plen, t1, t1len);
3601 plen = lbnNorm_64(p, plen + t1len);
3602 assert(plen <= mlen);
3603 if (plen > t0len) {
3604 lbnZero_64(BIGLITTLE(t0-t0len,t0+t0len), plen-t0len);
3605 t0len = plen;
3606 }
3607 cy = lbnAddN_64(t0, p, plen);
3608 if (cy) {
3609 if (t0len > plen) {
3610 cy = lbnAdd1_64(BIGLITTLE(t0-plen,t0+plen),
3611 t0len-plen, cy);
3612 }
3613 if (cy) {
3614 BIGLITTLE(t0[-t0len-1],t0[t0len]) = cy;
3615 t0len++;
3616 }
3617 }
3618
3619 /* if (a <= 1) return a ? t0 : FAIL; */
3620 if (alen <= 1 && BIGLITTLE(a[-1],a[0]) == (BNWORD64)1) {
3621 if (alen == 0)
3622 goto failure; /* FAIL */
3623 assert(t0len <= mlen);
3624 lbnCopy_64(a, t0, t0len);
3625 lbnZero_64(BIGLITTLE(a-t0len, a+t0len), mlen-t0len);
3626 goto success;
3627 }
3628
3629 /* q = b / a; b = b % a; */
3630 if (blen < alen || (blen == alen && lbnCmp_64(b, a, alen) < 0))
3631 assert(0);
3632 cy = lbnDiv_64(BIGLITTLE(b-alen,b+alen), b, blen, a, alen);
3633 *(BIGLITTLE(b-blen-1,b+blen)) = cy;
3634 plen = lbnNorm_64(BIGLITTLE(b-alen,b+alen), blen-alen+1);
3635 assert(plen);
3636 blen = lbnNorm_64(b, alen);
3637 if (!blen)
3638 goto failure; /* GCD not 1 */
3639
3640 /* t1 += q * t0; */
3641 assert(plen+t0len <= mlen+1);
3642 lbnMul_64(p, BIGLITTLE(b-alen,b+alen), plen, t0, t0len);
3643 plen = lbnNorm_64(p, plen + t0len);
3644 assert(plen <= mlen);
3645 if (plen > t1len) {
3646 lbnZero_64(BIGLITTLE(t1-t1len,t1+t1len), plen-t1len);
3647 t1len = plen;
3648 }
3649 cy = lbnAddN_64(t1, p, plen);
3650 if (cy) {
3651 if (t1len > plen) {
3652 cy = lbnAdd1_64(BIGLITTLE(t1-plen,t0+plen),
3653 t1len-plen, cy);
3654 }
3655 if (cy) {
3656 BIGLITTLE(t1[-t1len-1],t1[t1len]) = cy;
3657 t1len++;
3658 }
3659 }
3660 #if BNYIELD
3661 if (bnYield && (y = bnYield() < 0))
3662 goto yield;
3663 #endif
3664 }
3665
3666 if (!blen)
3667 goto failure; /* gcd(a, mod) != 1 -- FAIL */
3668
3669 /* return mod-t1 */
3670 lbnCopy_64(a, mod, mlen);
3671 assert(t1len <= mlen);
3672 cy = lbnSubN_64(a, t1, t1len);
3673 if (cy) {
3674 assert(mlen > t1len);
3675 cy = lbnSub1_64(BIGLITTLE(a-t1len, a+t1len), mlen-t1len, cy);
3676 assert(!cy);
3677 }
3678
3679 success:
3680 LBNFREE(t1, mlen);
3681 LBNFREE(t0, mlen);
3682 LBNFREE(p, mlen+1);
3683 LBNFREE(b, mlen+1);
3684
3685 return 0;
3686
3687 failure: /* GCD is not 1 - no inverse exists! */
3688 y = 1;
3689 #if BNYIELD
3690 yield:
3691 #endif
3692 LBNFREE(t1, mlen);
3693 LBNFREE(t0, mlen);
3694 LBNFREE(p, mlen+1);
3695 LBNFREE(b, mlen+1);
3696
3697 return y;
3698 }
3699
3700 /*
3701 * Precompute powers of "a" mod "mod". Compute them every "bits"
3702 * for "n" steps. This is sufficient to compute powers of g with
3703 * exponents up to n*bits bits long, i.e. less than 2^(n*bits).
3704 *
3705 * This assumes that the caller has already initialized "array" to point
3706 * to "n" buffers of size "mlen".
3707 */
3708 int
3709 lbnBasePrecompBegin_64(BNWORD64 **array, unsigned n, unsigned bits,
3710 BNWORD64 const *g, unsigned glen, BNWORD64 *mod, unsigned mlen)
3711 {
3712 BNWORD64 *a, *b; /* Temporary double-width accumulators */
3713 BNWORD64 *a1; /* Pointer to high half of a*/
3714 BNWORD64 inv; /* Montgomery inverse of LSW of mod */
3715 BNWORD64 *t;
3716 unsigned i;
3717
3718 glen = lbnNorm_64(g, glen);
3719 assert(glen);
3720
3721 assert (mlen == lbnNorm_64(mod, mlen));
3722 assert (glen <= mlen);
3723
3724 /* Allocate two temporary buffers, and the array slots */
3725 LBNALLOC(a, BNWORD64, mlen*2);
3726 if (!a)
3727 return -1;
3728 LBNALLOC(b, BNWORD64, mlen*2);
3729 if (!b) {
3730 LBNFREE(a, 2*mlen);
3731 return -1;
3732 }
3733
3734 /* Okay, all ready */
3735
3736 /* Convert n to Montgomery form */
3737 inv = BIGLITTLE(mod[-1],mod[0]); /* LSW of modulus */
3738 assert(inv & 1); /* Modulus must be odd */
3739 inv = lbnMontInv1_64(inv);
3740 /* Move g up "mlen" words into a (clearing the low mlen words) */
3741 a1 = BIGLITTLE(a-mlen,a+mlen);
3742 lbnCopy_64(a1, g, glen);
3743 lbnZero_64(a, mlen);
3744
3745 /* Do the division - dump the quotient into the high-order words */
3746 (void)lbnDiv_64(a1, a, mlen+glen, mod, mlen);
3747
3748 /* Copy the first value into the array */
3749 t = *array;
3750 lbnCopy_64(t, a, mlen);
3751 a1 = a; /* This first value is *not* shifted up */
3752
3753 /* Now compute the remaining n-1 array entries */
3754 assert(bits);
3755 assert(n);
3756 while (--n) {
3757 i = bits;
3758 do {
3759 /* Square a1 into b1 */
3760 lbnMontSquare_64(b, a1, mod, mlen, inv);
3761 t = b; b = a; a = t;
3762 a1 = BIGLITTLE(a-mlen, a+mlen);
3763 } while (--i);
3764 t = *++array;
3765 lbnCopy_64(t, a1, mlen);
3766 }
3767
3768 /* Hooray, we're done. */
3769 LBNFREE(b, 2*mlen);
3770 LBNFREE(a, 2*mlen);
3771 return 0;
3772 }
3773
3774 /*
3775 * result = base^exp (mod mod). "array" is a an array of pointers
3776 * to procomputed powers of base, each 2^bits apart. (I.e. array[i]
3777 * is base^(2^(i*bits))).
3778 *
3779 * The algorithm consists of:
3780 * a = b = (powers of g to be raised to the power 2^bits-1)
3781 * a *= b *= (powers of g to be raised to the power 2^bits-2)
3782 * ...
3783 * a *= b *= (powers of g to be raised to the power 1)
3784 *
3785 * All we do is walk the exponent 2^bits-1 times in groups of "bits" bits,
3786 */
3787 int
3788 lbnBasePrecompExp_64(BNWORD64 *result, BNWORD64 const * const *array,
3789 unsigned bits, BNWORD64 const *exp, unsigned elen,
3790 BNWORD64 const *mod, unsigned mlen)
3791 {
3792 BNWORD64 *a, *b, *c, *t;
3793 BNWORD64 *a1, *b1;
3794 int anull, bnull; /* Null flags: values are implicitly 1 */
3795 unsigned i, j; /* Loop counters */
3796 unsigned mask; /* Exponent bits to examime */
3797 BNWORD64 const *eptr; /* Pointer into exp */
3798 BNWORD64 buf, curbits, nextword; /* Bit-buffer varaibles */
3799 BNWORD64 inv; /* Inverse of LSW of modulus */
3800 unsigned ewords; /* Words of exponent left */
3801 int bufbits; /* Number of valid bits */
3802 int y = 0;
3803
3804 mlen = lbnNorm_64(mod, mlen);
3805 assert (mlen);
3806
3807 elen = lbnNorm_64(exp, elen);
3808 if (!elen) {
3809 lbnZero_64(result, mlen);
3810 BIGLITTLE(result[-1],result[0]) = 1;
3811 return 0;
3812 }
3813 /*
3814 * This could be precomputed, but it's so cheap, and it would require
3815 * making the precomputation structure word-size dependent.
3816 */
3817 inv = lbnMontInv1_64(mod[BIGLITTLE(-1,0)]); /* LSW of modulus */
3818
3819 assert(elen);
3820
3821 /*
3822 * Allocate three temporary buffers. The current numbers generally
3823 * live in the upper halves of these buffers.
3824 */
3825 LBNALLOC(a, BNWORD64, mlen*2);
3826 if (a) {
3827 LBNALLOC(b, BNWORD64, mlen*2);
3828 if (b) {
3829 LBNALLOC(c, BNWORD64, mlen*2);
3830 if (c)
3831 goto allocated;
3832 LBNFREE(b, 2*mlen);
3833 }
3834 LBNFREE(a, 2*mlen);
3835 }
3836 return -1;
3837
3838 allocated:
3839
3840 anull = bnull = 1;
3841
3842 mask = (1u<<bits) - 1;
3843 for (i = mask; i; --i) {
3844 /* Set up bit buffer for walking the exponent */
3845 eptr = exp;
3846 buf = BIGLITTLE(*--eptr, *eptr++);
3847 ewords = elen-1;
3848 bufbits = 64;
3849 for (j = 0; ewords || buf; j++) {
3850 /* Shift down current buffer */
3851 curbits = buf;
3852 buf >>= bits;
3853 /* If necessary, add next word */
3854 bufbits -= bits;
3855 if (bufbits < 0 && ewords > 0) {
3856 nextword = BIGLITTLE(*--eptr, *eptr++);
3857 ewords--;
3858 curbits |= nextword << (bufbits+bits);
3859 buf = nextword >> -bufbits;
3860 bufbits += 64;
3861 }
3862 /* If appropriate, multiply b *= array[j] */
3863 if ((curbits & mask) == i) {
3864 BNWORD64 const *d = array[j];
3865
3866 b1 = BIGLITTLE(b-mlen-1,b+mlen);
3867 if (bnull) {
3868 lbnCopy_64(b1, d, mlen);
3869 bnull = 0;
3870 } else {
3871 lbnMontMul_64(c, b1, d, mod, mlen, inv);
3872 t = c; c = b; b = t;
3873 }
3874 #if BNYIELD
3875 if (bnYield && (y = bnYield() < 0))
3876 goto yield;
3877 #endif
3878 }
3879 }
3880
3881 /* Multiply a *= b */
3882 if (!bnull) {
3883 a1 = BIGLITTLE(a-mlen-1,a+mlen);
3884 b1 = BIGLITTLE(b-mlen-1,b+mlen);
3885 if (anull) {
3886 lbnCopy_64(a1, b1, mlen);
3887 anull = 0;
3888 } else {
3889 lbnMontMul_64(c, a1, b1, mod, mlen, inv);
3890 t = c; c = a; a = t;
3891 }
3892 }
3893 }
3894
3895 assert(!anull); /* If it were, elen would have been 0 */
3896
3897 /* Convert out of Montgomery form and return */
3898 a1 = BIGLITTLE(a-mlen-1,a+mlen);
3899 lbnCopy_64(a, a1, mlen);
3900 lbnZero_64(a1, mlen);
3901 lbnMontReduce_64(a, mod, mlen, inv);
3902 lbnCopy_64(result, a1, mlen);
3903
3904 #if BNYIELD
3905 yield:
3906 #endif
3907 LBNFREE(c, 2*mlen);
3908 LBNFREE(b, 2*mlen);
3909 LBNFREE(a, 2*mlen);
3910
3911 return y;
3912 }
3913
3914 /*
3915 * result = base1^exp1 *base2^exp2 (mod mod). "array1" and "array2" are
3916 * arrays of pointers to procomputed powers of the corresponding bases,
3917 * each 2^bits apart. (I.e. array1[i] is base1^(2^(i*bits))).
3918 *
3919 * Bits must be the same in both. (It could be made adjustable, but it's
3920 * a bit of a pain. Just make them both equal to the larger one.)
3921 *
3922 * The algorithm consists of:
3923 * a = b = (powers of base1 and base2 to be raised to the power 2^bits-1)
3924 * a *= b *= (powers of base1 and base2 to be raised to the power 2^bits-2)
3925 * ...
3926 * a *= b *= (powers of base1 and base2 to be raised to the power 1)
3927 *
3928 * All we do is walk the exponent 2^bits-1 times in groups of "bits" bits,
3929 */
3930 int
3931 lbnDoubleBasePrecompExp_64(BNWORD64 *result, unsigned bits,
3932 BNWORD64 const * const *array1, BNWORD64 const *exp1, unsigned elen1,
3933 BNWORD64 const * const *array2, BNWORD64 const *exp2,
3934 unsigned elen2, BNWORD64 const *mod, unsigned mlen)
3935 {
3936 BNWORD64 *a, *b, *c, *t;
3937 BNWORD64 *a1, *b1;
3938 int anull, bnull; /* Null flags: values are implicitly 1 */
3939 unsigned i, j, k; /* Loop counters */
3940 unsigned mask; /* Exponent bits to examime */
3941 BNWORD64 const *eptr; /* Pointer into exp */
3942 BNWORD64 buf, curbits, nextword; /* Bit-buffer varaibles */
3943 BNWORD64 inv; /* Inverse of LSW of modulus */
3944 unsigned ewords; /* Words of exponent left */
3945 int bufbits; /* Number of valid bits */
3946 int y = 0;
3947 BNWORD64 const * const *array;
3948
3949 mlen = lbnNorm_64(mod, mlen);
3950 assert (mlen);
3951
3952 elen1 = lbnNorm_64(exp1, elen1);
3953 if (!elen1) {
3954 return lbnBasePrecompExp_64(result, array2, bits, exp2, elen2,
3955 mod, mlen);
3956 }
3957 elen2 = lbnNorm_64(exp2, elen2);
3958 if (!elen2) {
3959 return lbnBasePrecompExp_64(result, array1, bits, exp1, elen1,
3960 mod, mlen);
3961 }
3962 /*
3963 * This could be precomputed, but it's so cheap, and it would require
3964 * making the precomputation structure word-size dependent.
3965 */
3966 inv = lbnMontInv1_64(mod[BIGLITTLE(-1,0)]); /* LSW of modulus */
3967
3968 assert(elen1);
3969 assert(elen2);
3970
3971 /*
3972 * Allocate three temporary buffers. The current numbers generally
3973 * live in the upper halves of these buffers.
3974 */
3975 LBNALLOC(a, BNWORD64, mlen*2);
3976 if (a) {
3977 LBNALLOC(b, BNWORD64, mlen*2);
3978 if (b) {
3979 LBNALLOC(c, BNWORD64, mlen*2);
3980 if (c)
3981 goto allocated;
3982 LBNFREE(b, 2*mlen);
3983 }
3984 LBNFREE(a, 2*mlen);
3985 }
3986 return -1;
3987
3988 allocated:
3989
3990 anull = bnull = 1;
3991
3992 mask = (1u<<bits) - 1;
3993 for (i = mask; i; --i) {
3994 /* Walk each exponent in turn */
3995 for (k = 0; k < 2; k++) {
3996 /* Set up the exponent for walking */
3997 array = k ? array2 : array1;
3998 eptr = k ? exp2 : exp1;
3999 ewords = (k ? elen2 : elen1) - 1;
4000 /* Set up bit buffer for walking the exponent */
4001 buf = BIGLITTLE(*--eptr, *eptr++);
4002 bufbits = 64;
4003 for (j = 0; ewords || buf; j++) {
4004 /* Shift down current buffer */
4005 curbits = buf;
4006 buf >>= bits;
4007 /* If necessary, add next word */
4008 bufbits -= bits;
4009 if (bufbits < 0 && ewords > 0) {
4010 nextword = BIGLITTLE(*--eptr, *eptr++);
4011 ewords--;
4012 curbits |= nextword << (bufbits+bits);
4013 buf = nextword >> -bufbits;
4014 bufbits += 64;
4015 }
4016 /* If appropriate, multiply b *= array[j] */
4017 if ((curbits & mask) == i) {
4018 BNWORD64 const *d = array[j];
4019
4020 b1 = BIGLITTLE(b-mlen-1,b+mlen);
4021 if (bnull) {
4022 lbnCopy_64(b1, d, mlen);
4023 bnull = 0;
4024 } else {
4025 lbnMontMul_64(c, b1, d, mod, mlen, inv);
4026 t = c; c = b; b = t;
4027 }
4028 #if BNYIELD
4029 if (bnYield && (y = bnYield() < 0))
4030 goto yield;
4031 #endif
4032 }
4033 }
4034 }
4035
4036 /* Multiply a *= b */
4037 if (!bnull) {
4038 a1 = BIGLITTLE(a-mlen-1,a+mlen);
4039 b1 = BIGLITTLE(b-mlen-1,b+mlen);
4040 if (anull) {
4041 lbnCopy_64(a1, b1, mlen);
4042 anull = 0;
4043 } else {
4044 lbnMontMul_64(c, a1, b1, mod, mlen, inv);
4045 t = c; c = a; a = t;
4046 }
4047 }
4048 }
4049
4050 assert(!anull); /* If it were, elen would have been 0 */
4051
4052 /* Convert out of Montgomery form and return */
4053 a1 = BIGLITTLE(a-mlen-1,a+mlen);
4054 lbnCopy_64(a, a1, mlen);
4055 lbnZero_64(a1, mlen);
4056 lbnMontReduce_64(a, mod, mlen, inv);
4057 lbnCopy_64(result, a1, mlen);
4058
4059 #if BNYIELD
4060 yield:
4061 #endif
4062 LBNFREE(c, 2*mlen);
4063 LBNFREE(b, 2*mlen);
4064 LBNFREE(a, 2*mlen);
4065
4066 return y;
4067 }