]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/bits/hashtable.h
246e9bb3bcfd2cd424c325a8e321789d8941fa9c
[thirdparty/gcc.git] / libstdc++-v3 / include / bits / hashtable.h
1 // hashtable.h header -*- C++ -*-
2
3 // Copyright (C) 2007-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file bits/hashtable.h
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28 */
29
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32
33 #pragma GCC system_header
34
35 #include <bits/hashtable_policy.h>
36
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40
41 template<typename _Tp, typename _Hash>
42 using __cache_default
43 = __not_<__and_<// Do not cache for fast hasher.
44 __is_fast_hash<_Hash>,
45 // Mandatory to make local_iterator default
46 // constructible and assignable.
47 is_default_constructible<_Hash>,
48 is_copy_assignable<_Hash>,
49 // Mandatory to have erase not throwing.
50 __detail::__is_noexcept_hash<_Tp, _Hash>>>;
51
52 /**
53 * Primary class template _Hashtable.
54 *
55 * @ingroup hashtable-detail
56 *
57 * @tparam _Value CopyConstructible type.
58 *
59 * @tparam _Key CopyConstructible type.
60 *
61 * @tparam _Alloc An allocator type
62 * ([lib.allocator.requirements]) whose _Alloc::value_type is
63 * _Value. As a conforming extension, we allow for
64 * _Alloc::value_type != _Value.
65 *
66 * @tparam _ExtractKey Function object that takes an object of type
67 * _Value and returns a value of type _Key.
68 *
69 * @tparam _Equal Function object that takes two objects of type k
70 * and returns a bool-like value that is true if the two objects
71 * are considered equal.
72 *
73 * @tparam _H1 The hash function. A unary function object with
74 * argument type _Key and result type size_t. Return values should
75 * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
76 *
77 * @tparam _H2 The range-hashing function (in the terminology of
78 * Tavori and Dreizin). A binary function object whose argument
79 * types and result type are all size_t. Given arguments r and N,
80 * the return value is in the range [0, N).
81 *
82 * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
83 * binary function whose argument types are _Key and size_t and
84 * whose result type is size_t. Given arguments k and N, the
85 * return value is in the range [0, N). Default: hash(k, N) =
86 * h2(h1(k), N). If _Hash is anything other than the default, _H1
87 * and _H2 are ignored.
88 *
89 * @tparam _RehashPolicy Policy class with three members, all of
90 * which govern the bucket count. _M_next_bkt(n) returns a bucket
91 * count no smaller than n. _M_bkt_for_elements(n) returns a
92 * bucket count appropriate for an element count of n.
93 * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
94 * current bucket count is n_bkt and the current element count is
95 * n_elt, we need to increase the bucket count. If so, returns
96 * make_pair(true, n), where n is the new bucket count. If not,
97 * returns make_pair(false, <anything>)
98 *
99 * @tparam _Traits Compile-time class with three boolean
100 * std::integral_constant members: __cache_hash_code, __constant_iterators,
101 * __unique_keys.
102 *
103 * Each _Hashtable data structure has:
104 *
105 * - _Bucket[] _M_buckets
106 * - _Hash_node_base _M_bbegin
107 * - size_type _M_bucket_count
108 * - size_type _M_element_count
109 *
110 * with _Bucket being _Hash_node* and _Hash_node containing:
111 *
112 * - _Hash_node* _M_next
113 * - Tp _M_value
114 * - size_t _M_hash_code if cache_hash_code is true
115 *
116 * In terms of Standard containers the hashtable is like the aggregation of:
117 *
118 * - std::forward_list<_Node> containing the elements
119 * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
120 *
121 * The non-empty buckets contain the node before the first node in the
122 * bucket. This design makes it possible to implement something like a
123 * std::forward_list::insert_after on container insertion and
124 * std::forward_list::erase_after on container erase
125 * calls. _M_before_begin is equivalent to
126 * std::forward_list::before_begin. Empty buckets contain
127 * nullptr. Note that one of the non-empty buckets contains
128 * &_M_before_begin which is not a dereferenceable node so the
129 * node pointer in a bucket shall never be dereferenced, only its
130 * next node can be.
131 *
132 * Walking through a bucket's nodes requires a check on the hash code to
133 * see if each node is still in the bucket. Such a design assumes a
134 * quite efficient hash functor and is one of the reasons it is
135 * highly advisable to set __cache_hash_code to true.
136 *
137 * The container iterators are simply built from nodes. This way
138 * incrementing the iterator is perfectly efficient independent of
139 * how many empty buckets there are in the container.
140 *
141 * On insert we compute the element's hash code and use it to find the
142 * bucket index. If the element must be inserted in an empty bucket
143 * we add it at the beginning of the singly linked list and make the
144 * bucket point to _M_before_begin. The bucket that used to point to
145 * _M_before_begin, if any, is updated to point to its new before
146 * begin node.
147 *
148 * On erase, the simple iterator design requires using the hash
149 * functor to get the index of the bucket to update. For this
150 * reason, when __cache_hash_code is set to false the hash functor must
151 * not throw and this is enforced by a static assertion.
152 *
153 * Functionality is implemented by decomposition into base classes,
154 * where the derived _Hashtable class is used in _Map_base,
155 * _Insert, _Rehash_base, and _Equality base classes to access the
156 * "this" pointer. _Hashtable_base is used in the base classes as a
157 * non-recursive, fully-completed-type so that detailed nested type
158 * information, such as iterator type and node type, can be
159 * used. This is similar to the "Curiously Recurring Template
160 * Pattern" (CRTP) technique, but uses a reconstructed, not
161 * explicitly passed, template pattern.
162 *
163 * Base class templates are:
164 * - __detail::_Hashtable_base
165 * - __detail::_Map_base
166 * - __detail::_Insert
167 * - __detail::_Rehash_base
168 * - __detail::_Equality
169 */
170 template<typename _Key, typename _Value, typename _Alloc,
171 typename _ExtractKey, typename _Equal,
172 typename _H1, typename _H2, typename _Hash,
173 typename _RehashPolicy, typename _Traits>
174 class _Hashtable
175 : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
176 _H1, _H2, _Hash, _Traits>,
177 public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179 public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181 public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
182 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
183 public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
184 _H1, _H2, _Hash, _RehashPolicy, _Traits>
185 {
186 public:
187 typedef _Key key_type;
188 typedef _Value value_type;
189 typedef _Alloc allocator_type;
190 typedef _Equal key_equal;
191
192 // mapped_type, if present, comes from _Map_base.
193 // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
194 typedef typename _Alloc::pointer pointer;
195 typedef typename _Alloc::const_pointer const_pointer;
196 typedef typename _Alloc::reference reference;
197 typedef typename _Alloc::const_reference const_reference;
198
199 private:
200 using __rehash_type = _RehashPolicy;
201 using __rehash_state = typename __rehash_type::_State;
202
203 using __traits_type = _Traits;
204 using __hash_cached = typename __traits_type::__hash_cached;
205 using __constant_iterators = typename __traits_type::__constant_iterators;
206 using __unique_keys = typename __traits_type::__unique_keys;
207
208 using __key_extract = typename std::conditional<
209 __constant_iterators::value,
210 __detail::_Identity,
211 __detail::_Select1st>::type;
212
213 using __hashtable_base = __detail::
214 _Hashtable_base<_Key, _Value, _ExtractKey,
215 _Equal, _H1, _H2, _Hash, _Traits>;
216
217 using __hash_code_base = typename __hashtable_base::__hash_code_base;
218 using __hash_code = typename __hashtable_base::__hash_code;
219 using __node_type = typename __hashtable_base::__node_type;
220 using __node_base = typename __hashtable_base::__node_base;
221 using __bucket_type = typename __hashtable_base::__bucket_type;
222 using __ireturn_type = typename __hashtable_base::__ireturn_type;
223 using __iconv_type = typename __hashtable_base::__iconv_type;
224
225 using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
226 _Equal, _H1, _H2, _Hash,
227 _RehashPolicy, _Traits>;
228
229 using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
230 _ExtractKey, _Equal,
231 _H1, _H2, _Hash,
232 _RehashPolicy, _Traits>;
233
234 using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
235 _Equal, _H1, _H2, _Hash,
236 _RehashPolicy, _Traits>;
237
238 // Metaprogramming for picking apart hash caching.
239 using __hash_noexcept = __detail::__is_noexcept_hash<_Key, _H1>;
240
241 template<typename _Cond>
242 using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
243
244 template<typename _Cond>
245 using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
246
247 // Compile-time diagnostics.
248
249 // When hash codes are not cached the hash functor shall not
250 // throw because it is used in methods (erase, swap...) that
251 // shall not throw.
252 static_assert(__if_hash_not_cached<__hash_noexcept>::value,
253 "Cache the hash code"
254 " or qualify your hash functor with noexcept");
255
256 // Following two static assertions are necessary to guarantee
257 // that local_iterator will be default constructible.
258
259 // When hash codes are cached local iterator inherits from H2 functor
260 // which must then be default constructible.
261 static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
262 "Functor used to map hash code to bucket index"
263 " must be default constructible");
264
265 // When hash codes are not cached local iterator inherits from
266 // __hash_code_base above to compute node bucket index so it has to be
267 // default constructible.
268 static_assert(__if_hash_not_cached<
269 is_default_constructible<
270 // We use _Hashtable_ebo_helper to access the protected
271 // default constructor.
272 __detail::_Hashtable_ebo_helper<0, __hash_code_base>>>::value,
273 "Cache the hash code or make functors involved in hash code"
274 " and bucket index computation default constructible");
275
276 // When hash codes are not cached local iterator inherits from
277 // __hash_code_base above to compute node bucket index so it has to be
278 // assignable.
279 static_assert(__if_hash_not_cached<
280 is_copy_assignable<__hash_code_base>>::value,
281 "Cache the hash code or make functors involved in hash code"
282 " and bucket index computation copy assignable");
283
284 public:
285 template<typename _Keya, typename _Valuea, typename _Alloca,
286 typename _ExtractKeya, typename _Equala,
287 typename _H1a, typename _H2a, typename _Hasha,
288 typename _RehashPolicya, typename _Traitsa,
289 bool _Unique_keysa>
290 friend struct __detail::_Map_base;
291
292 template<typename _Keya, typename _Valuea, typename _Alloca,
293 typename _ExtractKeya, typename _Equala,
294 typename _H1a, typename _H2a, typename _Hasha,
295 typename _RehashPolicya, typename _Traitsa>
296 friend struct __detail::_Insert_base;
297
298 template<typename _Keya, typename _Valuea, typename _Alloca,
299 typename _ExtractKeya, typename _Equala,
300 typename _H1a, typename _H2a, typename _Hasha,
301 typename _RehashPolicya, typename _Traitsa,
302 bool _Constant_iteratorsa, bool _Unique_keysa>
303 friend struct __detail::_Insert;
304
305 using size_type = typename __hashtable_base::size_type;
306 using difference_type = typename __hashtable_base::difference_type;
307
308 using iterator = typename __hashtable_base::iterator;
309 using const_iterator = typename __hashtable_base::const_iterator;
310
311 using local_iterator = typename __hashtable_base::local_iterator;
312 using const_local_iterator = typename __hashtable_base::
313 const_local_iterator;
314
315 private:
316 typedef typename _Alloc::template rebind<__node_type>::other
317 _Node_allocator_type;
318 typedef typename _Alloc::template rebind<__bucket_type>::other
319 _Bucket_allocator_type;
320
321 using __before_begin = __detail::_Before_begin<_Node_allocator_type>;
322
323 __bucket_type* _M_buckets;
324 size_type _M_bucket_count;
325 __before_begin _M_bbegin;
326 size_type _M_element_count;
327 _RehashPolicy _M_rehash_policy;
328
329 _Node_allocator_type&
330 _M_node_allocator()
331 { return _M_bbegin; }
332
333 const _Node_allocator_type&
334 _M_node_allocator() const
335 { return _M_bbegin; }
336
337 __node_base&
338 _M_before_begin()
339 { return _M_bbegin._M_node; }
340
341 const __node_base&
342 _M_before_begin() const
343 { return _M_bbegin._M_node; }
344
345 template<typename... _Args>
346 __node_type*
347 _M_allocate_node(_Args&&... __args);
348
349 void
350 _M_deallocate_node(__node_type* __n);
351
352 // Deallocate the linked list of nodes pointed to by __n
353 void
354 _M_deallocate_nodes(__node_type* __n);
355
356 __bucket_type*
357 _M_allocate_buckets(size_type __n);
358
359 void
360 _M_deallocate_buckets(__bucket_type*, size_type __n);
361
362 // Gets bucket begin, deals with the fact that non-empty buckets contain
363 // their before begin node.
364 __node_type*
365 _M_bucket_begin(size_type __bkt) const;
366
367 __node_type*
368 _M_begin() const
369 { return static_cast<__node_type*>(_M_before_begin()._M_nxt); }
370
371 public:
372 // Constructor, destructor, assignment, swap
373 _Hashtable(size_type __bucket_hint,
374 const _H1&, const _H2&, const _Hash&,
375 const _Equal&, const _ExtractKey&,
376 const allocator_type&);
377
378 template<typename _InputIterator>
379 _Hashtable(_InputIterator __first, _InputIterator __last,
380 size_type __bucket_hint,
381 const _H1&, const _H2&, const _Hash&,
382 const _Equal&, const _ExtractKey&,
383 const allocator_type&);
384
385 _Hashtable(const _Hashtable&);
386
387 _Hashtable(_Hashtable&&);
388
389 // Use delegating constructors.
390 explicit
391 _Hashtable(size_type __n = 10,
392 const _H1& __hf = _H1(),
393 const key_equal& __eql = key_equal(),
394 const allocator_type& __a = allocator_type())
395 : _Hashtable(__n, __hf, __detail::_Mod_range_hashing(),
396 __detail::_Default_ranged_hash(), __eql,
397 __key_extract(), __a)
398 { }
399
400 template<typename _InputIterator>
401 _Hashtable(_InputIterator __f, _InputIterator __l,
402 size_type __n = 0,
403 const _H1& __hf = _H1(),
404 const key_equal& __eql = key_equal(),
405 const allocator_type& __a = allocator_type())
406 : _Hashtable(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
407 __detail::_Default_ranged_hash(), __eql,
408 __key_extract(), __a)
409 { }
410
411 _Hashtable(initializer_list<value_type> __l,
412 size_type __n = 0,
413 const _H1& __hf = _H1(),
414 const key_equal& __eql = key_equal(),
415 const allocator_type& __a = allocator_type())
416 : _Hashtable(__l.begin(), __l.end(), __n, __hf,
417 __detail::_Mod_range_hashing(),
418 __detail::_Default_ranged_hash(), __eql,
419 __key_extract(), __a)
420 { }
421
422 _Hashtable&
423 operator=(const _Hashtable& __ht)
424 {
425 _Hashtable __tmp(__ht);
426 this->swap(__tmp);
427 return *this;
428 }
429
430 _Hashtable&
431 operator=(_Hashtable&& __ht)
432 {
433 // NB: DR 1204.
434 // NB: DR 675.
435 this->clear();
436 this->swap(__ht);
437 return *this;
438 }
439
440 _Hashtable&
441 operator=(initializer_list<value_type> __l)
442 {
443 this->clear();
444 this->insert(__l.begin(), __l.end());
445 return *this;
446 }
447
448 ~_Hashtable() noexcept;
449
450 void swap(_Hashtable&);
451
452 // Basic container operations
453 iterator
454 begin() noexcept
455 { return iterator(_M_begin()); }
456
457 const_iterator
458 begin() const noexcept
459 { return const_iterator(_M_begin()); }
460
461 iterator
462 end() noexcept
463 { return iterator(nullptr); }
464
465 const_iterator
466 end() const noexcept
467 { return const_iterator(nullptr); }
468
469 const_iterator
470 cbegin() const noexcept
471 { return const_iterator(_M_begin()); }
472
473 const_iterator
474 cend() const noexcept
475 { return const_iterator(nullptr); }
476
477 size_type
478 size() const noexcept
479 { return _M_element_count; }
480
481 bool
482 empty() const noexcept
483 { return size() == 0; }
484
485 allocator_type
486 get_allocator() const noexcept
487 { return allocator_type(_M_node_allocator()); }
488
489 size_type
490 max_size() const noexcept
491 { return _M_node_allocator().max_size(); }
492
493 // Observers
494 key_equal
495 key_eq() const
496 { return this->_M_eq(); }
497
498 // hash_function, if present, comes from _Hash_code_base.
499
500 // Bucket operations
501 size_type
502 bucket_count() const noexcept
503 { return _M_bucket_count; }
504
505 size_type
506 max_bucket_count() const noexcept
507 { return max_size(); }
508
509 size_type
510 bucket_size(size_type __n) const
511 { return std::distance(begin(__n), end(__n)); }
512
513 size_type
514 bucket(const key_type& __k) const
515 { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
516
517 local_iterator
518 begin(size_type __n)
519 {
520 return local_iterator(*this, _M_bucket_begin(__n),
521 __n, _M_bucket_count);
522 }
523
524 local_iterator
525 end(size_type __n)
526 { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
527
528 const_local_iterator
529 begin(size_type __n) const
530 {
531 return const_local_iterator(*this, _M_bucket_begin(__n),
532 __n, _M_bucket_count);
533 }
534
535 const_local_iterator
536 end(size_type __n) const
537 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
538
539 // DR 691.
540 const_local_iterator
541 cbegin(size_type __n) const
542 {
543 return const_local_iterator(*this, _M_bucket_begin(__n),
544 __n, _M_bucket_count);
545 }
546
547 const_local_iterator
548 cend(size_type __n) const
549 { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
550
551 float
552 load_factor() const noexcept
553 {
554 return static_cast<float>(size()) / static_cast<float>(bucket_count());
555 }
556
557 // max_load_factor, if present, comes from _Rehash_base.
558
559 // Generalization of max_load_factor. Extension, not found in
560 // TR1. Only useful if _RehashPolicy is something other than
561 // the default.
562 const _RehashPolicy&
563 __rehash_policy() const
564 { return _M_rehash_policy; }
565
566 void
567 __rehash_policy(const _RehashPolicy&);
568
569 // Lookup.
570 iterator
571 find(const key_type& __k);
572
573 const_iterator
574 find(const key_type& __k) const;
575
576 size_type
577 count(const key_type& __k) const;
578
579 std::pair<iterator, iterator>
580 equal_range(const key_type& __k);
581
582 std::pair<const_iterator, const_iterator>
583 equal_range(const key_type& __k) const;
584
585 protected:
586 // Bucket index computation helpers.
587 size_type
588 _M_bucket_index(__node_type* __n) const
589 { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
590
591 size_type
592 _M_bucket_index(const key_type& __k, __hash_code __c) const
593 { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
594
595 // Find and insert helper functions and types
596 // Find the node before the one matching the criteria.
597 __node_base*
598 _M_find_before_node(size_type, const key_type&, __hash_code) const;
599
600 __node_type*
601 _M_find_node(size_type __bkt, const key_type& __key,
602 __hash_code __c) const
603 {
604 __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
605 if (__before_n)
606 return static_cast<__node_type*>(__before_n->_M_nxt);
607 return nullptr;
608 }
609
610 // Insert a node at the beginning of a bucket.
611 void
612 _M_insert_bucket_begin(size_type, __node_type*);
613
614 // Remove the bucket first node
615 void
616 _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
617 size_type __next_bkt);
618
619 // Get the node before __n in the bucket __bkt
620 __node_base*
621 _M_get_previous_node(size_type __bkt, __node_base* __n);
622
623 // Insert node with hash code __code, in bucket bkt if no rehash (assumes
624 // no element with its key already present). Take ownership of the node,
625 // deallocate it on exception.
626 iterator
627 _M_insert_unique_node(size_type __bkt, __hash_code __code,
628 __node_type* __n);
629
630 // Insert node with hash code __code. Take ownership of the node,
631 // deallocate it on exception.
632 iterator
633 _M_insert_multi_node(__hash_code __code, __node_type* __n);
634
635 template<typename... _Args>
636 std::pair<iterator, bool>
637 _M_emplace(std::true_type, _Args&&... __args);
638
639 template<typename... _Args>
640 iterator
641 _M_emplace(std::false_type, _Args&&... __args);
642
643 template<typename _Arg>
644 std::pair<iterator, bool>
645 _M_insert(_Arg&&, std::true_type);
646
647 template<typename _Arg>
648 iterator
649 _M_insert(_Arg&&, std::false_type);
650
651 size_type
652 _M_erase(std::true_type, const key_type&);
653
654 size_type
655 _M_erase(std::false_type, const key_type&);
656
657 iterator
658 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
659
660 public:
661 // Emplace
662 template<typename... _Args>
663 __ireturn_type
664 emplace(_Args&&... __args)
665 { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
666
667 template<typename... _Args>
668 iterator
669 emplace_hint(const_iterator, _Args&&... __args)
670 { return __iconv_type()(emplace(std::forward<_Args>(__args)...)); }
671
672 // Insert member functions via inheritance.
673
674 // Erase
675 iterator
676 erase(const_iterator);
677
678 // LWG 2059.
679 iterator
680 erase(iterator __it)
681 { return erase(const_iterator(__it)); }
682
683 size_type
684 erase(const key_type& __k)
685 { return _M_erase(__unique_keys(), __k); }
686
687 iterator
688 erase(const_iterator, const_iterator);
689
690 void
691 clear() noexcept;
692
693 // Set number of buckets to be appropriate for container of n element.
694 void rehash(size_type __n);
695
696 // DR 1189.
697 // reserve, if present, comes from _Rehash_base.
698
699 private:
700 // Helper rehash method used when keys are unique.
701 void _M_rehash_aux(size_type __n, std::true_type);
702
703 // Helper rehash method used when keys can be non-unique.
704 void _M_rehash_aux(size_type __n, std::false_type);
705
706 // Unconditionally change size of bucket array to n, restore
707 // hash policy state to __state on exception.
708 void _M_rehash(size_type __n, const __rehash_state& __state);
709 };
710
711
712 // Definitions of class template _Hashtable's out-of-line member functions.
713 template<typename _Key, typename _Value,
714 typename _Alloc, typename _ExtractKey, typename _Equal,
715 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
716 typename _Traits>
717 template<typename... _Args>
718 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
719 _H1, _H2, _Hash, _RehashPolicy, _Traits>::__node_type*
720 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
721 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
722 _M_allocate_node(_Args&&... __args)
723 {
724 __node_type* __n = _M_node_allocator().allocate(1);
725 __try
726 {
727 _M_node_allocator().construct(__n, std::forward<_Args>(__args)...);
728 return __n;
729 }
730 __catch(...)
731 {
732 _M_node_allocator().deallocate(__n, 1);
733 __throw_exception_again;
734 }
735 }
736
737 template<typename _Key, typename _Value,
738 typename _Alloc, typename _ExtractKey, typename _Equal,
739 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
740 typename _Traits>
741 void
742 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
743 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
744 _M_deallocate_node(__node_type* __n)
745 {
746 _M_node_allocator().destroy(__n);
747 _M_node_allocator().deallocate(__n, 1);
748 }
749
750 template<typename _Key, typename _Value,
751 typename _Alloc, typename _ExtractKey, typename _Equal,
752 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
753 typename _Traits>
754 void
755 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
756 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
757 _M_deallocate_nodes(__node_type* __n)
758 {
759 while (__n)
760 {
761 __node_type* __tmp = __n;
762 __n = __n->_M_next();
763 _M_deallocate_node(__tmp);
764 }
765 }
766
767 template<typename _Key, typename _Value,
768 typename _Alloc, typename _ExtractKey, typename _Equal,
769 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
770 typename _Traits>
771 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
772 _H1, _H2, _Hash, _RehashPolicy, _Traits>::__bucket_type*
773 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
774 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
775 _M_allocate_buckets(size_type __n)
776 {
777 _Bucket_allocator_type __alloc(_M_node_allocator());
778
779 __bucket_type* __p = __alloc.allocate(__n);
780 __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
781 return __p;
782 }
783
784 template<typename _Key, typename _Value,
785 typename _Alloc, typename _ExtractKey, typename _Equal,
786 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
787 typename _Traits>
788 void
789 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
790 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
791 _M_deallocate_buckets(__bucket_type* __p, size_type __n)
792 {
793 _Bucket_allocator_type __alloc(_M_node_allocator());
794 __alloc.deallocate(__p, __n);
795 }
796
797 template<typename _Key, typename _Value,
798 typename _Alloc, typename _ExtractKey, typename _Equal,
799 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
800 typename _Traits>
801 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
802 _Equal, _H1, _H2, _Hash, _RehashPolicy,
803 _Traits>::__node_type*
804 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
805 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
806 _M_bucket_begin(size_type __bkt) const
807 {
808 __node_base* __n = _M_buckets[__bkt];
809 return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
810 }
811
812 template<typename _Key, typename _Value,
813 typename _Alloc, typename _ExtractKey, typename _Equal,
814 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
815 typename _Traits>
816 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
817 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
818 _Hashtable(size_type __bucket_hint,
819 const _H1& __h1, const _H2& __h2, const _Hash& __h,
820 const _Equal& __eq, const _ExtractKey& __exk,
821 const allocator_type& __a)
822 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
823 __map_base(),
824 __rehash_base(),
825 _M_bucket_count(0),
826 _M_bbegin(__a),
827 _M_element_count(0),
828 _M_rehash_policy()
829 {
830 _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
831 _M_buckets = _M_allocate_buckets(_M_bucket_count);
832 }
833
834 template<typename _Key, typename _Value,
835 typename _Alloc, typename _ExtractKey, typename _Equal,
836 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
837 typename _Traits>
838 template<typename _InputIterator>
839 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
840 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
841 _Hashtable(_InputIterator __f, _InputIterator __l,
842 size_type __bucket_hint,
843 const _H1& __h1, const _H2& __h2, const _Hash& __h,
844 const _Equal& __eq, const _ExtractKey& __exk,
845 const allocator_type& __a)
846 : __hashtable_base(__exk, __h1, __h2, __h, __eq),
847 __map_base(),
848 __rehash_base(),
849 _M_bucket_count(0),
850 _M_bbegin(__a),
851 _M_element_count(0),
852 _M_rehash_policy()
853 {
854 auto __nb_elems = __detail::__distance_fw(__f, __l);
855 _M_bucket_count =
856 _M_rehash_policy._M_next_bkt(
857 std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
858 __bucket_hint));
859
860 _M_buckets = _M_allocate_buckets(_M_bucket_count);
861 __try
862 {
863 for (; __f != __l; ++__f)
864 this->insert(*__f);
865 }
866 __catch(...)
867 {
868 clear();
869 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
870 __throw_exception_again;
871 }
872 }
873
874 template<typename _Key, typename _Value,
875 typename _Alloc, typename _ExtractKey, typename _Equal,
876 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
877 typename _Traits>
878 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
879 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
880 _Hashtable(const _Hashtable& __ht)
881 : __hashtable_base(__ht),
882 __map_base(__ht),
883 __rehash_base(__ht),
884 _M_bucket_count(__ht._M_bucket_count),
885 _M_bbegin(__ht._M_bbegin),
886 _M_element_count(__ht._M_element_count),
887 _M_rehash_policy(__ht._M_rehash_policy)
888 {
889 _M_buckets = _M_allocate_buckets(_M_bucket_count);
890 __try
891 {
892 if (!__ht._M_before_begin()._M_nxt)
893 return;
894
895 // First deal with the special first node pointed to by
896 // _M_before_begin.
897 const __node_type* __ht_n = __ht._M_begin();
898 __node_type* __this_n = _M_allocate_node(__ht_n->_M_v);
899 this->_M_copy_code(__this_n, __ht_n);
900 _M_before_begin()._M_nxt = __this_n;
901 _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin();
902
903 // Then deal with other nodes.
904 __node_base* __prev_n = __this_n;
905 for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
906 {
907 __this_n = _M_allocate_node(__ht_n->_M_v);
908 __prev_n->_M_nxt = __this_n;
909 this->_M_copy_code(__this_n, __ht_n);
910 size_type __bkt = _M_bucket_index(__this_n);
911 if (!_M_buckets[__bkt])
912 _M_buckets[__bkt] = __prev_n;
913 __prev_n = __this_n;
914 }
915 }
916 __catch(...)
917 {
918 clear();
919 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
920 __throw_exception_again;
921 }
922 }
923
924 template<typename _Key, typename _Value,
925 typename _Alloc, typename _ExtractKey, typename _Equal,
926 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
927 typename _Traits>
928 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
929 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
930 _Hashtable(_Hashtable&& __ht)
931 : __hashtable_base(__ht),
932 __map_base(__ht),
933 __rehash_base(__ht),
934 _M_buckets(__ht._M_buckets),
935 _M_bucket_count(__ht._M_bucket_count),
936 _M_bbegin(std::move(__ht._M_bbegin)),
937 _M_element_count(__ht._M_element_count),
938 _M_rehash_policy(__ht._M_rehash_policy)
939 {
940 // Update, if necessary, bucket pointing to before begin that hasn't moved.
941 if (_M_begin())
942 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin();
943 __ht._M_rehash_policy = _RehashPolicy();
944 __ht._M_bucket_count = __ht._M_rehash_policy._M_next_bkt(0);
945 __ht._M_buckets = __ht._M_allocate_buckets(__ht._M_bucket_count);
946 __ht._M_before_begin()._M_nxt = nullptr;
947 __ht._M_element_count = 0;
948 }
949
950 template<typename _Key, typename _Value,
951 typename _Alloc, typename _ExtractKey, typename _Equal,
952 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
953 typename _Traits>
954 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
955 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
956 ~_Hashtable() noexcept
957 {
958 clear();
959 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
960 }
961
962 template<typename _Key, typename _Value,
963 typename _Alloc, typename _ExtractKey, typename _Equal,
964 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
965 typename _Traits>
966 void
967 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
968 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
969 swap(_Hashtable& __x)
970 {
971 // The only base class with member variables is hash_code_base.
972 // We define _Hash_code_base::_M_swap because different
973 // specializations have different members.
974 this->_M_swap(__x);
975
976 // _GLIBCXX_RESOLVE_LIB_DEFECTS
977 // 431. Swapping containers with unequal allocators.
978 std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator(),
979 __x._M_node_allocator());
980
981 std::swap(_M_rehash_policy, __x._M_rehash_policy);
982 std::swap(_M_buckets, __x._M_buckets);
983 std::swap(_M_bucket_count, __x._M_bucket_count);
984 std::swap(_M_before_begin()._M_nxt, __x._M_before_begin()._M_nxt);
985 std::swap(_M_element_count, __x._M_element_count);
986
987 // Fix buckets containing the _M_before_begin pointers that
988 // can't be swapped.
989 if (_M_begin())
990 _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin();
991 if (__x._M_begin())
992 __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
993 = &(__x._M_before_begin());
994 }
995
996 template<typename _Key, typename _Value,
997 typename _Alloc, typename _ExtractKey, typename _Equal,
998 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
999 typename _Traits>
1000 void
1001 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1002 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1003 __rehash_policy(const _RehashPolicy& __pol)
1004 {
1005 size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
1006 __n_bkt = __pol._M_next_bkt(__n_bkt);
1007 if (__n_bkt != _M_bucket_count)
1008 _M_rehash(__n_bkt, _M_rehash_policy._M_state());
1009 _M_rehash_policy = __pol;
1010 }
1011
1012 template<typename _Key, typename _Value,
1013 typename _Alloc, typename _ExtractKey, typename _Equal,
1014 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1015 typename _Traits>
1016 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1017 _H1, _H2, _Hash, _RehashPolicy,
1018 _Traits>::iterator
1019 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1020 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1021 find(const key_type& __k)
1022 {
1023 __hash_code __code = this->_M_hash_code(__k);
1024 std::size_t __n = _M_bucket_index(__k, __code);
1025 __node_type* __p = _M_find_node(__n, __k, __code);
1026 return __p ? iterator(__p) : this->end();
1027 }
1028
1029 template<typename _Key, typename _Value,
1030 typename _Alloc, typename _ExtractKey, typename _Equal,
1031 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1032 typename _Traits>
1033 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1034 _H1, _H2, _Hash, _RehashPolicy,
1035 _Traits>::const_iterator
1036 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1037 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1038 find(const key_type& __k) const
1039 {
1040 __hash_code __code = this->_M_hash_code(__k);
1041 std::size_t __n = _M_bucket_index(__k, __code);
1042 __node_type* __p = _M_find_node(__n, __k, __code);
1043 return __p ? const_iterator(__p) : this->end();
1044 }
1045
1046 template<typename _Key, typename _Value,
1047 typename _Alloc, typename _ExtractKey, typename _Equal,
1048 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1049 typename _Traits>
1050 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1051 _H1, _H2, _Hash, _RehashPolicy,
1052 _Traits>::size_type
1053 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1054 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1055 count(const key_type& __k) const
1056 {
1057 __hash_code __code = this->_M_hash_code(__k);
1058 std::size_t __n = _M_bucket_index(__k, __code);
1059 __node_type* __p = _M_bucket_begin(__n);
1060 if (!__p)
1061 return 0;
1062
1063 std::size_t __result = 0;
1064 for (;; __p = __p->_M_next())
1065 {
1066 if (this->_M_equals(__k, __code, __p))
1067 ++__result;
1068 else if (__result)
1069 // All equivalent values are next to each other, if we
1070 // found a non-equivalent value after an equivalent one it
1071 // means that we won't find any more equivalent values.
1072 break;
1073 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1074 break;
1075 }
1076 return __result;
1077 }
1078
1079 template<typename _Key, typename _Value,
1080 typename _Alloc, typename _ExtractKey, typename _Equal,
1081 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1082 typename _Traits>
1083 std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1084 _ExtractKey, _Equal, _H1,
1085 _H2, _Hash, _RehashPolicy,
1086 _Traits>::iterator,
1087 typename _Hashtable<_Key, _Value, _Alloc,
1088 _ExtractKey, _Equal, _H1,
1089 _H2, _Hash, _RehashPolicy,
1090 _Traits>::iterator>
1091 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1092 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1093 equal_range(const key_type& __k)
1094 {
1095 __hash_code __code = this->_M_hash_code(__k);
1096 std::size_t __n = _M_bucket_index(__k, __code);
1097 __node_type* __p = _M_find_node(__n, __k, __code);
1098
1099 if (__p)
1100 {
1101 __node_type* __p1 = __p->_M_next();
1102 while (__p1 && _M_bucket_index(__p1) == __n
1103 && this->_M_equals(__k, __code, __p1))
1104 __p1 = __p1->_M_next();
1105
1106 return std::make_pair(iterator(__p), iterator(__p1));
1107 }
1108 else
1109 return std::make_pair(this->end(), this->end());
1110 }
1111
1112 template<typename _Key, typename _Value,
1113 typename _Alloc, typename _ExtractKey, typename _Equal,
1114 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1115 typename _Traits>
1116 std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1117 _ExtractKey, _Equal, _H1,
1118 _H2, _Hash, _RehashPolicy,
1119 _Traits>::const_iterator,
1120 typename _Hashtable<_Key, _Value, _Alloc,
1121 _ExtractKey, _Equal, _H1,
1122 _H2, _Hash, _RehashPolicy,
1123 _Traits>::const_iterator>
1124 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1125 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1126 equal_range(const key_type& __k) const
1127 {
1128 __hash_code __code = this->_M_hash_code(__k);
1129 std::size_t __n = _M_bucket_index(__k, __code);
1130 __node_type* __p = _M_find_node(__n, __k, __code);
1131
1132 if (__p)
1133 {
1134 __node_type* __p1 = __p->_M_next();
1135 while (__p1 && _M_bucket_index(__p1) == __n
1136 && this->_M_equals(__k, __code, __p1))
1137 __p1 = __p1->_M_next();
1138
1139 return std::make_pair(const_iterator(__p), const_iterator(__p1));
1140 }
1141 else
1142 return std::make_pair(this->end(), this->end());
1143 }
1144
1145 // Find the node whose key compares equal to k in the bucket n.
1146 // Return nullptr if no node is found.
1147 template<typename _Key, typename _Value,
1148 typename _Alloc, typename _ExtractKey, typename _Equal,
1149 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1150 typename _Traits>
1151 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1152 _Equal, _H1, _H2, _Hash, _RehashPolicy,
1153 _Traits>::__node_base*
1154 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1155 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1156 _M_find_before_node(size_type __n, const key_type& __k,
1157 __hash_code __code) const
1158 {
1159 __node_base* __prev_p = _M_buckets[__n];
1160 if (!__prev_p)
1161 return nullptr;
1162 __node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);
1163 for (;; __p = __p->_M_next())
1164 {
1165 if (this->_M_equals(__k, __code, __p))
1166 return __prev_p;
1167 if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1168 break;
1169 __prev_p = __p;
1170 }
1171 return nullptr;
1172 }
1173
1174 template<typename _Key, typename _Value,
1175 typename _Alloc, typename _ExtractKey, typename _Equal,
1176 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1177 typename _Traits>
1178 void
1179 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1180 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1181 _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1182 {
1183 if (_M_buckets[__bkt])
1184 {
1185 // Bucket is not empty, we just need to insert the new node
1186 // after the bucket before begin.
1187 __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1188 _M_buckets[__bkt]->_M_nxt = __node;
1189 }
1190 else
1191 {
1192 // The bucket is empty, the new node is inserted at the
1193 // beginning of the singly-linked list and the bucket will
1194 // contain _M_before_begin pointer.
1195 __node->_M_nxt = _M_before_begin()._M_nxt;
1196 _M_before_begin()._M_nxt = __node;
1197 if (__node->_M_nxt)
1198 // We must update former begin bucket that is pointing to
1199 // _M_before_begin.
1200 _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1201 _M_buckets[__bkt] = &_M_before_begin();
1202 }
1203 }
1204
1205 template<typename _Key, typename _Value,
1206 typename _Alloc, typename _ExtractKey, typename _Equal,
1207 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1208 typename _Traits>
1209 void
1210 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1211 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1212 _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1213 size_type __next_bkt)
1214 {
1215 if (!__next || __next_bkt != __bkt)
1216 {
1217 // Bucket is now empty
1218 // First update next bucket if any
1219 if (__next)
1220 _M_buckets[__next_bkt] = _M_buckets[__bkt];
1221
1222 // Second update before begin node if necessary
1223 if (&_M_before_begin() == _M_buckets[__bkt])
1224 _M_before_begin()._M_nxt = __next;
1225 _M_buckets[__bkt] = nullptr;
1226 }
1227 }
1228
1229 template<typename _Key, typename _Value,
1230 typename _Alloc, typename _ExtractKey, typename _Equal,
1231 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1232 typename _Traits>
1233 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1234 _Equal, _H1, _H2, _Hash, _RehashPolicy,
1235 _Traits>::__node_base*
1236 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1237 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1238 _M_get_previous_node(size_type __bkt, __node_base* __n)
1239 {
1240 __node_base* __prev_n = _M_buckets[__bkt];
1241 while (__prev_n->_M_nxt != __n)
1242 __prev_n = __prev_n->_M_nxt;
1243 return __prev_n;
1244 }
1245
1246 template<typename _Key, typename _Value,
1247 typename _Alloc, typename _ExtractKey, typename _Equal,
1248 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1249 typename _Traits>
1250 template<typename... _Args>
1251 std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1252 _ExtractKey, _Equal, _H1,
1253 _H2, _Hash, _RehashPolicy,
1254 _Traits>::iterator, bool>
1255 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1256 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1257 _M_emplace(std::true_type, _Args&&... __args)
1258 {
1259 // First build the node to get access to the hash code
1260 __node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...);
1261 const key_type& __k = this->_M_extract()(__node->_M_v);
1262 __hash_code __code;
1263 __try
1264 {
1265 __code = this->_M_hash_code(__k);
1266 }
1267 __catch(...)
1268 {
1269 _M_deallocate_node(__node);
1270 __throw_exception_again;
1271 }
1272
1273 size_type __bkt = _M_bucket_index(__k, __code);
1274 if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1275 {
1276 // There is already an equivalent node, no insertion
1277 _M_deallocate_node(__node);
1278 return std::make_pair(iterator(__p), false);
1279 }
1280
1281 // Insert the node
1282 return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1283 true);
1284 }
1285
1286 template<typename _Key, typename _Value,
1287 typename _Alloc, typename _ExtractKey, typename _Equal,
1288 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1289 typename _Traits>
1290 template<typename... _Args>
1291 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1292 _H1, _H2, _Hash, _RehashPolicy,
1293 _Traits>::iterator
1294 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1295 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1296 _M_emplace(std::false_type, _Args&&... __args)
1297 {
1298 // First build the node to get its hash code.
1299 __node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...);
1300
1301 __hash_code __code;
1302 __try
1303 {
1304 __code = this->_M_hash_code(this->_M_extract()(__node->_M_v));
1305 }
1306 __catch(...)
1307 {
1308 _M_deallocate_node(__node);
1309 __throw_exception_again;
1310 }
1311
1312 return _M_insert_multi_node(__code, __node);
1313 }
1314
1315 template<typename _Key, typename _Value,
1316 typename _Alloc, typename _ExtractKey, typename _Equal,
1317 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1318 typename _Traits>
1319 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1320 _H1, _H2, _Hash, _RehashPolicy,
1321 _Traits>::iterator
1322 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1323 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1324 _M_insert_unique_node(size_type __bkt, __hash_code __code,
1325 __node_type* __node)
1326 {
1327 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1328 std::pair<bool, std::size_t> __do_rehash
1329 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1330
1331 __try
1332 {
1333 if (__do_rehash.first)
1334 {
1335 _M_rehash(__do_rehash.second, __saved_state);
1336 __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v), __code);
1337 }
1338
1339 this->_M_store_code(__node, __code);
1340
1341 // Always insert at the begining of the bucket.
1342 _M_insert_bucket_begin(__bkt, __node);
1343 ++_M_element_count;
1344 return iterator(__node);
1345 }
1346 __catch(...)
1347 {
1348 _M_deallocate_node(__node);
1349 __throw_exception_again;
1350 }
1351 }
1352
1353 // Insert node, in bucket bkt if no rehash (assumes no element with its key
1354 // already present). Take ownership of the node, deallocate it on exception.
1355 template<typename _Key, typename _Value,
1356 typename _Alloc, typename _ExtractKey, typename _Equal,
1357 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1358 typename _Traits>
1359 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1360 _H1, _H2, _Hash, _RehashPolicy,
1361 _Traits>::iterator
1362 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1363 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1364 _M_insert_multi_node(__hash_code __code, __node_type* __node)
1365 {
1366 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1367 std::pair<bool, std::size_t> __do_rehash
1368 = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1369
1370 __try
1371 {
1372 if (__do_rehash.first)
1373 _M_rehash(__do_rehash.second, __saved_state);
1374
1375 this->_M_store_code(__node, __code);
1376 const key_type& __k = this->_M_extract()(__node->_M_v);
1377 size_type __bkt = _M_bucket_index(__k, __code);
1378
1379 // Find the node before an equivalent one.
1380 __node_base* __prev = _M_find_before_node(__bkt, __k, __code);
1381 if (__prev)
1382 {
1383 // Insert after the node before the equivalent one.
1384 __node->_M_nxt = __prev->_M_nxt;
1385 __prev->_M_nxt = __node;
1386 }
1387 else
1388 // The inserted node has no equivalent in the
1389 // hashtable. We must insert the new node at the
1390 // beginning of the bucket to preserve equivalent
1391 // elements' relative positions.
1392 _M_insert_bucket_begin(__bkt, __node);
1393 ++_M_element_count;
1394 return iterator(__node);
1395 }
1396 __catch(...)
1397 {
1398 _M_deallocate_node(__node);
1399 __throw_exception_again;
1400 }
1401 }
1402
1403 // Insert v if no element with its key is already present.
1404 template<typename _Key, typename _Value,
1405 typename _Alloc, typename _ExtractKey, typename _Equal,
1406 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1407 typename _Traits>
1408 template<typename _Arg>
1409 std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1410 _ExtractKey, _Equal, _H1,
1411 _H2, _Hash, _RehashPolicy,
1412 _Traits>::iterator, bool>
1413 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1414 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1415 _M_insert(_Arg&& __v, std::true_type)
1416 {
1417 const key_type& __k = this->_M_extract()(__v);
1418 __hash_code __code = this->_M_hash_code(__k);
1419 size_type __bkt = _M_bucket_index(__k, __code);
1420
1421 __node_type* __n = _M_find_node(__bkt, __k, __code);
1422 if (__n)
1423 return std::make_pair(iterator(__n), false);
1424
1425 __n = _M_allocate_node(std::forward<_Arg>(__v));
1426 return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1427 }
1428
1429 // Insert v unconditionally.
1430 template<typename _Key, typename _Value,
1431 typename _Alloc, typename _ExtractKey, typename _Equal,
1432 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1433 typename _Traits>
1434 template<typename _Arg>
1435 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1436 _H1, _H2, _Hash, _RehashPolicy,
1437 _Traits>::iterator
1438 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1439 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1440 _M_insert(_Arg&& __v, std::false_type)
1441 {
1442 // First compute the hash code so that we don't do anything if it
1443 // throws.
1444 __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1445
1446 // Second allocate new node so that we don't rehash if it throws.
1447 __node_type* __node = _M_allocate_node(std::forward<_Arg>(__v));
1448
1449 return _M_insert_multi_node(__code, __node);
1450 }
1451
1452 template<typename _Key, typename _Value,
1453 typename _Alloc, typename _ExtractKey, typename _Equal,
1454 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1455 typename _Traits>
1456 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1457 _H1, _H2, _Hash, _RehashPolicy,
1458 _Traits>::iterator
1459 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1460 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1461 erase(const_iterator __it)
1462 {
1463 __node_type* __n = __it._M_cur;
1464 std::size_t __bkt = _M_bucket_index(__n);
1465
1466 // Look for previous node to unlink it from the erased one, this
1467 // is why we need buckets to contain the before begin to make
1468 // this search fast.
1469 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1470 return _M_erase(__bkt, __prev_n, __n);
1471 }
1472
1473 template<typename _Key, typename _Value,
1474 typename _Alloc, typename _ExtractKey, typename _Equal,
1475 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1476 typename _Traits>
1477 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1478 _H1, _H2, _Hash, _RehashPolicy,
1479 _Traits>::iterator
1480 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1481 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1482 _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1483 {
1484 if (__prev_n == _M_buckets[__bkt])
1485 _M_remove_bucket_begin(__bkt, __n->_M_next(),
1486 __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1487 else if (__n->_M_nxt)
1488 {
1489 size_type __next_bkt = _M_bucket_index(__n->_M_next());
1490 if (__next_bkt != __bkt)
1491 _M_buckets[__next_bkt] = __prev_n;
1492 }
1493
1494 __prev_n->_M_nxt = __n->_M_nxt;
1495 iterator __result(__n->_M_next());
1496 _M_deallocate_node(__n);
1497 --_M_element_count;
1498
1499 return __result;
1500 }
1501
1502 template<typename _Key, typename _Value,
1503 typename _Alloc, typename _ExtractKey, typename _Equal,
1504 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1505 typename _Traits>
1506 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1507 _H1, _H2, _Hash, _RehashPolicy,
1508 _Traits>::size_type
1509 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1510 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1511 _M_erase(std::true_type, const key_type& __k)
1512 {
1513 __hash_code __code = this->_M_hash_code(__k);
1514 std::size_t __bkt = _M_bucket_index(__k, __code);
1515
1516 // Look for the node before the first matching node.
1517 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1518 if (!__prev_n)
1519 return 0;
1520
1521 // We found a matching node, erase it.
1522 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1523 _M_erase(__bkt, __prev_n, __n);
1524 return 1;
1525 }
1526
1527 template<typename _Key, typename _Value,
1528 typename _Alloc, typename _ExtractKey, typename _Equal,
1529 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1530 typename _Traits>
1531 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1532 _H1, _H2, _Hash, _RehashPolicy,
1533 _Traits>::size_type
1534 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1535 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1536 _M_erase(std::false_type, const key_type& __k)
1537 {
1538 __hash_code __code = this->_M_hash_code(__k);
1539 std::size_t __bkt = _M_bucket_index(__k, __code);
1540
1541 // Look for the node before the first matching node.
1542 __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1543 if (!__prev_n)
1544 return 0;
1545
1546 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1547 // 526. Is it undefined if a function in the standard changes
1548 // in parameters?
1549 // We use one loop to find all matching nodes and another to deallocate
1550 // them so that the key stays valid during the first loop. It might be
1551 // invalidated indirectly when destroying nodes.
1552 __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1553 __node_type* __n_last = __n;
1554 std::size_t __n_last_bkt = __bkt;
1555 do
1556 {
1557 __n_last = __n_last->_M_next();
1558 if (!__n_last)
1559 break;
1560 __n_last_bkt = _M_bucket_index(__n_last);
1561 }
1562 while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1563
1564 // Deallocate nodes.
1565 size_type __result = 0;
1566 do
1567 {
1568 __node_type* __p = __n->_M_next();
1569 _M_deallocate_node(__n);
1570 __n = __p;
1571 ++__result;
1572 --_M_element_count;
1573 }
1574 while (__n != __n_last);
1575
1576 if (__prev_n == _M_buckets[__bkt])
1577 _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1578 else if (__n_last && __n_last_bkt != __bkt)
1579 _M_buckets[__n_last_bkt] = __prev_n;
1580 __prev_n->_M_nxt = __n_last;
1581 return __result;
1582 }
1583
1584 template<typename _Key, typename _Value,
1585 typename _Alloc, typename _ExtractKey, typename _Equal,
1586 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1587 typename _Traits>
1588 typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1589 _H1, _H2, _Hash, _RehashPolicy,
1590 _Traits>::iterator
1591 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1592 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1593 erase(const_iterator __first, const_iterator __last)
1594 {
1595 __node_type* __n = __first._M_cur;
1596 __node_type* __last_n = __last._M_cur;
1597 if (__n == __last_n)
1598 return iterator(__n);
1599
1600 std::size_t __bkt = _M_bucket_index(__n);
1601
1602 __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1603 bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1604 std::size_t __n_bkt = __bkt;
1605 for (;;)
1606 {
1607 do
1608 {
1609 __node_type* __tmp = __n;
1610 __n = __n->_M_next();
1611 _M_deallocate_node(__tmp);
1612 --_M_element_count;
1613 if (!__n)
1614 break;
1615 __n_bkt = _M_bucket_index(__n);
1616 }
1617 while (__n != __last_n && __n_bkt == __bkt);
1618 if (__is_bucket_begin)
1619 _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1620 if (__n == __last_n)
1621 break;
1622 __is_bucket_begin = true;
1623 __bkt = __n_bkt;
1624 }
1625
1626 if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1627 _M_buckets[__n_bkt] = __prev_n;
1628 __prev_n->_M_nxt = __n;
1629 return iterator(__n);
1630 }
1631
1632 template<typename _Key, typename _Value,
1633 typename _Alloc, typename _ExtractKey, typename _Equal,
1634 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1635 typename _Traits>
1636 void
1637 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1638 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1639 clear() noexcept
1640 {
1641 _M_deallocate_nodes(_M_begin());
1642 __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1643 _M_element_count = 0;
1644 _M_before_begin()._M_nxt = nullptr;
1645 }
1646
1647 template<typename _Key, typename _Value,
1648 typename _Alloc, typename _ExtractKey, typename _Equal,
1649 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1650 typename _Traits>
1651 void
1652 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1653 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1654 rehash(size_type __n)
1655 {
1656 const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1657 std::size_t __buckets
1658 = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1659 __n);
1660 __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1661
1662 if (__buckets != _M_bucket_count)
1663 _M_rehash(__buckets, __saved_state);
1664 else
1665 // No rehash, restore previous state to keep a consistent state.
1666 _M_rehash_policy._M_reset(__saved_state);
1667 }
1668
1669 template<typename _Key, typename _Value,
1670 typename _Alloc, typename _ExtractKey, typename _Equal,
1671 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1672 typename _Traits>
1673 void
1674 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1675 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1676 _M_rehash(size_type __n, const __rehash_state& __state)
1677 {
1678 __try
1679 {
1680 _M_rehash_aux(__n, __unique_keys());
1681 }
1682 __catch(...)
1683 {
1684 // A failure here means that buckets allocation failed. We only
1685 // have to restore hash policy previous state.
1686 _M_rehash_policy._M_reset(__state);
1687 __throw_exception_again;
1688 }
1689 }
1690
1691 // Rehash when there is no equivalent elements.
1692 template<typename _Key, typename _Value,
1693 typename _Alloc, typename _ExtractKey, typename _Equal,
1694 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1695 typename _Traits>
1696 void
1697 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1698 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1699 _M_rehash_aux(size_type __n, std::true_type)
1700 {
1701 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1702 __node_type* __p = _M_begin();
1703 _M_before_begin()._M_nxt = nullptr;
1704 std::size_t __bbegin_bkt = 0;
1705 while (__p)
1706 {
1707 __node_type* __next = __p->_M_next();
1708 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1709 if (!__new_buckets[__bkt])
1710 {
1711 __p->_M_nxt = _M_before_begin()._M_nxt;
1712 _M_before_begin()._M_nxt = __p;
1713 __new_buckets[__bkt] = &_M_before_begin();
1714 if (__p->_M_nxt)
1715 __new_buckets[__bbegin_bkt] = __p;
1716 __bbegin_bkt = __bkt;
1717 }
1718 else
1719 {
1720 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1721 __new_buckets[__bkt]->_M_nxt = __p;
1722 }
1723 __p = __next;
1724 }
1725 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
1726 _M_bucket_count = __n;
1727 _M_buckets = __new_buckets;
1728 }
1729
1730 // Rehash when there can be equivalent elements, preserve their relative
1731 // order.
1732 template<typename _Key, typename _Value,
1733 typename _Alloc, typename _ExtractKey, typename _Equal,
1734 typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1735 typename _Traits>
1736 void
1737 _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1738 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1739 _M_rehash_aux(size_type __n, std::false_type)
1740 {
1741 __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1742
1743 __node_type* __p = _M_begin();
1744 _M_before_begin()._M_nxt = nullptr;
1745 std::size_t __bbegin_bkt = 0;
1746 std::size_t __prev_bkt = 0;
1747 __node_type* __prev_p = nullptr;
1748 bool __check_bucket = false;
1749
1750 while (__p)
1751 {
1752 __node_type* __next = __p->_M_next();
1753 std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1754
1755 if (__prev_p && __prev_bkt == __bkt)
1756 {
1757 // Previous insert was already in this bucket, we insert after
1758 // the previously inserted one to preserve equivalent elements
1759 // relative order.
1760 __p->_M_nxt = __prev_p->_M_nxt;
1761 __prev_p->_M_nxt = __p;
1762
1763 // Inserting after a node in a bucket require to check that we
1764 // haven't change the bucket last node, in this case next
1765 // bucket containing its before begin node must be updated. We
1766 // schedule a check as soon as we move out of the sequence of
1767 // equivalent nodes to limit the number of checks.
1768 __check_bucket = true;
1769 }
1770 else
1771 {
1772 if (__check_bucket)
1773 {
1774 // Check if we shall update the next bucket because of
1775 // insertions into __prev_bkt bucket.
1776 if (__prev_p->_M_nxt)
1777 {
1778 std::size_t __next_bkt
1779 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
1780 __n);
1781 if (__next_bkt != __prev_bkt)
1782 __new_buckets[__next_bkt] = __prev_p;
1783 }
1784 __check_bucket = false;
1785 }
1786
1787 if (!__new_buckets[__bkt])
1788 {
1789 __p->_M_nxt = _M_before_begin()._M_nxt;
1790 _M_before_begin()._M_nxt = __p;
1791 __new_buckets[__bkt] = &_M_before_begin();
1792 if (__p->_M_nxt)
1793 __new_buckets[__bbegin_bkt] = __p;
1794 __bbegin_bkt = __bkt;
1795 }
1796 else
1797 {
1798 __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1799 __new_buckets[__bkt]->_M_nxt = __p;
1800 }
1801 }
1802 __prev_p = __p;
1803 __prev_bkt = __bkt;
1804 __p = __next;
1805 }
1806
1807 if (__check_bucket && __prev_p->_M_nxt)
1808 {
1809 std::size_t __next_bkt
1810 = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
1811 if (__next_bkt != __prev_bkt)
1812 __new_buckets[__next_bkt] = __prev_p;
1813 }
1814
1815 _M_deallocate_buckets(_M_buckets, _M_bucket_count);
1816 _M_bucket_count = __n;
1817 _M_buckets = __new_buckets;
1818 }
1819
1820 _GLIBCXX_END_NAMESPACE_VERSION
1821 } // namespace std
1822
1823 #endif // _HASHTABLE_H