]> git.ipfire.org Git - thirdparty/gcc.git/blob - libstdc++-v3/include/std/future
080690064a9108ca0d2c307b29c5509b7c939f5c
[thirdparty/gcc.git] / libstdc++-v3 / include / std / future
1 // <future> -*- C++ -*-
2
3 // Copyright (C) 2009-2025 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file include/future
26 * This is a Standard C++ Library header.
27 */
28
29 #ifndef _GLIBCXX_FUTURE
30 #define _GLIBCXX_FUTURE 1
31
32 #ifdef _GLIBCXX_SYSHDR
33 #pragma GCC system_header
34 #endif
35
36 #include <bits/requires_hosted.h> // concurrency
37
38 #if __cplusplus < 201103L
39 # include <bits/c++0x_warning.h>
40 #else
41
42 #include <mutex> // call_once
43 #include <condition_variable> // __at_thread_exit_elt
44 #include <system_error>
45 #include <bits/atomic_base.h> // atomic_flag
46 #include <bits/allocated_ptr.h>
47 #include <bits/atomic_futex.h>
48 #include <bits/exception_defines.h>
49 #include <bits/invoke.h>
50 #include <bits/unique_ptr.h>
51 #include <bits/shared_ptr.h>
52 #include <bits/std_function.h>
53 #include <bits/std_thread.h>
54 #include <bits/uses_allocator.h>
55 #include <ext/aligned_buffer.h>
56
57 namespace std _GLIBCXX_VISIBILITY(default)
58 {
59 _GLIBCXX_BEGIN_NAMESPACE_VERSION
60
61 /**
62 * @defgroup futures Futures
63 * @ingroup concurrency
64 *
65 * Futures and promises provide support for retrieving the result from
66 * an asynchronous function, e.g. one that is running in another thread.
67 * A `std::future` represents an asynchronous result that will become
68 * ready at some later time. A consumer can wait on a future until the
69 * result is ready to be accessed.
70 *
71 * @since C++11
72 * @{
73 */
74
75 /// Error code for futures
76 enum class future_errc
77 {
78 future_already_retrieved = 1,
79 promise_already_satisfied,
80 no_state,
81 broken_promise
82 };
83
84 /// Specialization that allows `future_errc` to convert to `error_code`.
85 template<>
86 struct is_error_code_enum<future_errc> : public true_type { };
87
88 /// Points to a statically-allocated object derived from error_category.
89 [[__nodiscard__, __gnu__::__const__]]
90 const error_category&
91 future_category() noexcept;
92
93 /// Overload of make_error_code for `future_errc`.
94 [[__nodiscard__]]
95 inline error_code
96 make_error_code(future_errc __errc) noexcept
97 { return error_code(static_cast<int>(__errc), future_category()); }
98
99 /// Overload of make_error_condition for `future_errc`.
100 [[__nodiscard__]]
101 inline error_condition
102 make_error_condition(future_errc __errc) noexcept
103 { return error_condition(static_cast<int>(__errc), future_category()); }
104
105 /**
106 * @brief Exception type thrown by futures.
107 * @ingroup exceptions
108 * @since C++11
109 */
110 class future_error : public logic_error
111 {
112 public:
113 explicit
114 future_error(future_errc __errc)
115 : future_error(std::make_error_code(__errc))
116 { }
117
118 virtual ~future_error() noexcept;
119
120 virtual const char*
121 what() const noexcept;
122
123 const error_code&
124 code() const noexcept { return _M_code; }
125
126 private:
127 explicit
128 future_error(error_code __ec)
129 : logic_error("std::future_error: " + __ec.message()), _M_code(__ec)
130 { }
131
132 friend void __throw_future_error(int);
133
134 error_code _M_code;
135 };
136
137 // Forward declarations.
138 template<typename _Res>
139 class future;
140
141 template<typename _Res>
142 class shared_future;
143
144 template<typename _Signature>
145 class packaged_task;
146
147 template<typename _Res>
148 class promise;
149
150 /// Launch code for futures
151 enum class launch
152 {
153 async = 1,
154 deferred = 2
155 };
156
157 [[__nodiscard__]]
158 constexpr launch operator&(launch __x, launch __y) noexcept
159 {
160 return static_cast<launch>(
161 static_cast<int>(__x) & static_cast<int>(__y));
162 }
163
164 [[__nodiscard__]]
165 constexpr launch operator|(launch __x, launch __y) noexcept
166 {
167 return static_cast<launch>(
168 static_cast<int>(__x) | static_cast<int>(__y));
169 }
170
171 [[__nodiscard__]]
172 constexpr launch operator^(launch __x, launch __y) noexcept
173 {
174 return static_cast<launch>(
175 static_cast<int>(__x) ^ static_cast<int>(__y));
176 }
177
178 [[__nodiscard__]]
179 constexpr launch operator~(launch __x) noexcept
180 { return static_cast<launch>(~static_cast<int>(__x)); }
181
182 _GLIBCXX14_CONSTEXPR
183 inline launch& operator&=(launch& __x, launch __y) noexcept
184 { return __x = __x & __y; }
185
186 _GLIBCXX14_CONSTEXPR
187 inline launch& operator|=(launch& __x, launch __y) noexcept
188 { return __x = __x | __y; }
189
190 _GLIBCXX14_CONSTEXPR
191 inline launch& operator^=(launch& __x, launch __y) noexcept
192 { return __x = __x ^ __y; }
193
194 /// Status code for futures
195 enum class future_status
196 {
197 ready,
198 timeout,
199 deferred
200 };
201
202 /// @cond undocumented
203 // _GLIBCXX_RESOLVE_LIB_DEFECTS
204 // 2021. Further incorrect usages of result_of
205 template<typename _Fn, typename... _Args>
206 using __async_result_of = typename __invoke_result<
207 typename decay<_Fn>::type, typename decay<_Args>::type...>::type;
208 /// @endcond
209
210 template<typename _Fn, typename... _Args>
211 future<__async_result_of<_Fn, _Args...>>
212 async(launch __policy, _Fn&& __fn, _Args&&... __args);
213
214 template<typename _Fn, typename... _Args>
215 future<__async_result_of<_Fn, _Args...>>
216 async(_Fn&& __fn, _Args&&... __args);
217
218 #if defined(_GLIBCXX_HAS_GTHREADS)
219
220 /// @cond undocumented
221
222 /// Base class and enclosing scope.
223 struct __future_base
224 {
225 /// Base class for results.
226 struct _Result_base
227 {
228 exception_ptr _M_error;
229
230 _Result_base(const _Result_base&) = delete;
231 _Result_base& operator=(const _Result_base&) = delete;
232
233 // _M_destroy() allows derived classes to control deallocation
234 virtual void _M_destroy() = 0;
235
236 struct _Deleter
237 {
238 void operator()(_Result_base* __fr) const { __fr->_M_destroy(); }
239 };
240
241 protected:
242 _Result_base();
243 virtual ~_Result_base();
244 };
245
246 /// A unique_ptr for result objects.
247 template<typename _Res>
248 using _Ptr = unique_ptr<_Res, _Result_base::_Deleter>;
249
250 /// A result object that has storage for an object of type _Res.
251 template<typename _Res>
252 struct _Result : _Result_base
253 {
254 private:
255 __gnu_cxx::__aligned_buffer<_Res> _M_storage;
256 bool _M_initialized;
257
258 public:
259 typedef _Res result_type;
260
261 _Result() noexcept : _M_initialized() { }
262
263 ~_Result()
264 {
265 if (_M_initialized)
266 _M_value().~_Res();
267 }
268
269 // Return lvalue, future will add const or rvalue-reference
270 _Res&
271 _M_value() noexcept { return *_M_storage._M_ptr(); }
272
273 void
274 _M_set(const _Res& __res)
275 {
276 ::new (_M_storage._M_addr()) _Res(__res);
277 _M_initialized = true;
278 }
279
280 void
281 _M_set(_Res&& __res)
282 {
283 ::new (_M_storage._M_addr()) _Res(std::move(__res));
284 _M_initialized = true;
285 }
286
287 private:
288 void _M_destroy() { delete this; }
289 };
290
291 /// A result object that uses an allocator.
292 template<typename _Res, typename _Alloc>
293 struct _Result_alloc final : _Result<_Res>, _Alloc
294 {
295 using __allocator_type = __alloc_rebind<_Alloc, _Result_alloc>;
296
297 explicit
298 _Result_alloc(const _Alloc& __a) : _Result<_Res>(), _Alloc(__a)
299 { }
300
301 private:
302 void _M_destroy()
303 {
304 __allocator_type __a(*this);
305 __allocated_ptr<__allocator_type> __guard_ptr{ __a, this };
306 this->~_Result_alloc();
307 }
308 };
309
310 // Create a result object that uses an allocator.
311 template<typename _Res, typename _Allocator>
312 static _Ptr<_Result_alloc<_Res, _Allocator>>
313 _S_allocate_result(const _Allocator& __a)
314 {
315 using __result_type = _Result_alloc<_Res, _Allocator>;
316 typename __result_type::__allocator_type __a2(__a);
317 auto __guard = std::__allocate_guarded(__a2);
318 __result_type* __p = ::new((void*)__guard.get()) __result_type{__a};
319 __guard = nullptr;
320 return _Ptr<__result_type>(__p);
321 }
322
323 // Keep it simple for std::allocator.
324 template<typename _Res, typename _Tp>
325 static _Ptr<_Result<_Res>>
326 _S_allocate_result(const std::allocator<_Tp>&)
327 {
328 return _Ptr<_Result<_Res>>(new _Result<_Res>);
329 }
330
331 // Base class for various types of shared state created by an
332 // asynchronous provider (such as a std::promise) and shared with one
333 // or more associated futures.
334 class _State_baseV2
335 {
336 typedef _Ptr<_Result_base> _Ptr_type;
337
338 enum _Status : unsigned {
339 __not_ready,
340 __ready
341 };
342
343 _Ptr_type _M_result;
344 __atomic_futex_unsigned<> _M_status;
345 atomic_flag _M_retrieved = ATOMIC_FLAG_INIT;
346 once_flag _M_once;
347
348 public:
349 _State_baseV2() noexcept : _M_result(), _M_status(_Status::__not_ready)
350 { }
351 _State_baseV2(const _State_baseV2&) = delete;
352 _State_baseV2& operator=(const _State_baseV2&) = delete;
353 virtual ~_State_baseV2() = default;
354
355 _Result_base&
356 wait()
357 {
358 // Run any deferred function or join any asynchronous thread:
359 _M_complete_async();
360 // Acquire MO makes sure this synchronizes with the thread that made
361 // the future ready.
362 _M_status._M_load_when_equal(_Status::__ready, memory_order_acquire);
363 return *_M_result;
364 }
365
366 template<typename _Rep, typename _Period>
367 future_status
368 wait_for(const chrono::duration<_Rep, _Period>& __rel)
369 {
370 // First, check if the future has been made ready. Use acquire MO
371 // to synchronize with the thread that made it ready.
372 if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
373 return future_status::ready;
374
375 if (_M_is_deferred_future())
376 return future_status::deferred;
377
378 // Don't wait unless the relative time is greater than zero.
379 if (__rel > __rel.zero()
380 && _M_status._M_load_when_equal_for(_Status::__ready,
381 memory_order_acquire,
382 __rel))
383 {
384 // _GLIBCXX_RESOLVE_LIB_DEFECTS
385 // 2100. timed waiting functions must also join
386 // This call is a no-op by default except on an async future,
387 // in which case the async thread is joined. It's also not a
388 // no-op for a deferred future, but such a future will never
389 // reach this point because it returns future_status::deferred
390 // instead of waiting for the future to become ready (see
391 // above). Async futures synchronize in this call, so we need
392 // no further synchronization here.
393 _M_complete_async();
394
395 return future_status::ready;
396 }
397 return future_status::timeout;
398 }
399
400 template<typename _Clock, typename _Duration>
401 future_status
402 wait_until(const chrono::time_point<_Clock, _Duration>& __abs)
403 {
404 #if __cplusplus > 201703L
405 static_assert(chrono::is_clock_v<_Clock>);
406 #endif
407 // First, check if the future has been made ready. Use acquire MO
408 // to synchronize with the thread that made it ready.
409 if (_M_status._M_load(memory_order_acquire) == _Status::__ready)
410 return future_status::ready;
411
412 if (_M_is_deferred_future())
413 return future_status::deferred;
414
415 if (_M_status._M_load_when_equal_until(_Status::__ready,
416 memory_order_acquire,
417 __abs))
418 {
419 // _GLIBCXX_RESOLVE_LIB_DEFECTS
420 // 2100. timed waiting functions must also join
421 // See wait_for(...) above.
422 _M_complete_async();
423
424 return future_status::ready;
425 }
426 return future_status::timeout;
427 }
428
429 // Provide a result to the shared state and make it ready.
430 // Calls at most once: _M_result = __res();
431 void
432 _M_set_result(function<_Ptr_type()> __res, bool __ignore_failure = false)
433 {
434 bool __did_set = false;
435 // all calls to this function are serialized,
436 // side-effects of invoking __res only happen once
437 call_once(_M_once, &_State_baseV2::_M_do_set, this,
438 std::__addressof(__res), std::__addressof(__did_set));
439 if (__did_set)
440 // Use release MO to synchronize with observers of the ready state.
441 _M_status._M_store_notify_all(_Status::__ready,
442 memory_order_release);
443 else if (!__ignore_failure)
444 __throw_future_error(int(future_errc::promise_already_satisfied));
445 }
446
447 // Provide a result to the shared state but delay making it ready
448 // until the calling thread exits.
449 // Calls at most once: _M_result = __res();
450 void
451 _M_set_delayed_result(function<_Ptr_type()> __res,
452 weak_ptr<_State_baseV2> __self)
453 {
454 bool __did_set = false;
455 unique_ptr<_Make_ready> __mr{new _Make_ready};
456 // all calls to this function are serialized,
457 // side-effects of invoking __res only happen once
458 call_once(_M_once, &_State_baseV2::_M_do_set, this,
459 std::__addressof(__res), std::__addressof(__did_set));
460 if (!__did_set)
461 __throw_future_error(int(future_errc::promise_already_satisfied));
462 __mr->_M_shared_state = std::move(__self);
463 __mr->_M_set();
464 __mr.release();
465 }
466
467 // Abandon this shared state.
468 void
469 _M_break_promise(_Ptr_type __res)
470 {
471 if (static_cast<bool>(__res))
472 {
473 __res->_M_error =
474 make_exception_ptr(future_error(future_errc::broken_promise));
475 // This function is only called when the last asynchronous result
476 // provider is abandoning this shared state, so noone can be
477 // trying to make the shared state ready at the same time, and
478 // we can access _M_result directly instead of through call_once.
479 _M_result.swap(__res);
480 // Use release MO to synchronize with observers of the ready state.
481 _M_status._M_store_notify_all(_Status::__ready,
482 memory_order_release);
483 }
484 }
485
486 // Called when this object is first passed to a future.
487 void
488 _M_set_retrieved_flag()
489 {
490 if (_M_retrieved.test_and_set())
491 __throw_future_error(int(future_errc::future_already_retrieved));
492 }
493
494 template<typename _Res, typename _Arg>
495 struct _Setter;
496
497 // set lvalues
498 template<typename _Res, typename _Arg>
499 struct _Setter<_Res, _Arg&>
500 {
501 // check this is only used by promise<R>::set_value(const R&)
502 // or promise<R&>::set_value(R&)
503 static_assert(is_same<_Res, _Arg&>::value // promise<R&>
504 || is_same<const _Res, _Arg>::value, // promise<R>
505 "Invalid specialisation");
506
507 // Used by std::promise to copy construct the result.
508 typename promise<_Res>::_Ptr_type operator()() const
509 {
510 _M_promise->_M_storage->_M_set(*_M_arg);
511 return std::move(_M_promise->_M_storage);
512 }
513 promise<_Res>* _M_promise;
514 _Arg* _M_arg;
515 };
516
517 // set rvalues
518 template<typename _Res>
519 struct _Setter<_Res, _Res&&>
520 {
521 // Used by std::promise to move construct the result.
522 typename promise<_Res>::_Ptr_type operator()() const
523 {
524 _M_promise->_M_storage->_M_set(std::move(*_M_arg));
525 return std::move(_M_promise->_M_storage);
526 }
527 promise<_Res>* _M_promise;
528 _Res* _M_arg;
529 };
530
531 // set void
532 template<typename _Res>
533 struct _Setter<_Res, void>
534 {
535 static_assert(is_void<_Res>::value, "Only used for promise<void>");
536
537 typename promise<_Res>::_Ptr_type operator()() const noexcept
538 { return std::move(_M_promise->_M_storage); }
539
540 promise<_Res>* _M_promise;
541 };
542
543 struct __exception_ptr_tag { };
544
545 // set exceptions
546 template<typename _Res>
547 struct _Setter<_Res, __exception_ptr_tag>
548 {
549 // Used by std::promise to store an exception as the result.
550 typename promise<_Res>::_Ptr_type operator()() const noexcept
551 {
552 _M_promise->_M_storage->_M_error = *_M_ex;
553 return std::move(_M_promise->_M_storage);
554 }
555
556 promise<_Res>* _M_promise;
557 exception_ptr* _M_ex;
558 };
559
560 template<typename _Res, typename _Arg>
561 __attribute__((__always_inline__))
562 static _Setter<_Res, _Arg&&>
563 __setter(promise<_Res>* __prom, _Arg&& __arg) noexcept
564 {
565 return _Setter<_Res, _Arg&&>{ __prom, std::__addressof(__arg) };
566 }
567
568 template<typename _Res>
569 __attribute__((__always_inline__))
570 static _Setter<_Res, __exception_ptr_tag>
571 __setter(exception_ptr& __ex, promise<_Res>* __prom) noexcept
572 {
573 __glibcxx_assert(__ex != nullptr); // LWG 2276
574 return _Setter<_Res, __exception_ptr_tag>{ __prom, &__ex };
575 }
576
577 template<typename _Res>
578 __attribute__((__always_inline__))
579 static _Setter<_Res, void>
580 __setter(promise<_Res>* __prom) noexcept
581 {
582 return _Setter<_Res, void>{ __prom };
583 }
584
585 template<typename _Tp>
586 static void
587 _S_check(const shared_ptr<_Tp>& __p)
588 {
589 if (!static_cast<bool>(__p))
590 __throw_future_error((int)future_errc::no_state);
591 }
592
593 private:
594 // The function invoked with std::call_once(_M_once, ...).
595 void
596 _M_do_set(function<_Ptr_type()>* __f, bool* __did_set)
597 {
598 _Ptr_type __res = (*__f)();
599 // Notify the caller that we did try to set; if we do not throw an
600 // exception, the caller will be aware that it did set (e.g., see
601 // _M_set_result).
602 *__did_set = true;
603 _M_result.swap(__res); // nothrow
604 }
605
606 // Wait for completion of async function.
607 virtual void _M_complete_async() { }
608
609 // Return true if state corresponds to a deferred function.
610 virtual bool _M_is_deferred_future() const { return false; }
611
612 struct _Make_ready final : __at_thread_exit_elt
613 {
614 weak_ptr<_State_baseV2> _M_shared_state;
615 static void _S_run(void*);
616 void _M_set();
617 };
618 };
619
620 #ifdef _GLIBCXX_ASYNC_ABI_COMPAT
621 class _State_base;
622 class _Async_state_common;
623 #else
624 using _State_base = _State_baseV2;
625 class _Async_state_commonV2;
626 #endif
627
628 template<typename _BoundFn,
629 typename _Res = decltype(std::declval<_BoundFn&>()())>
630 class _Deferred_state;
631
632 template<typename _BoundFn,
633 typename _Res = decltype(std::declval<_BoundFn&>()())>
634 class _Async_state_impl;
635
636 template<typename _Signature>
637 struct _Task_state_base;
638
639 template<typename _Fn, typename _Alloc, typename _Signature>
640 struct _Task_state;
641
642 template<typename _Res_ptr, typename _Fn,
643 typename _Res = typename _Res_ptr::element_type::result_type>
644 struct _Task_setter;
645
646 template<typename _Res_ptr, typename _BoundFn>
647 static _Task_setter<_Res_ptr, _BoundFn>
648 _S_task_setter(_Res_ptr& __ptr, _BoundFn& __call)
649 {
650 return { std::__addressof(__ptr), std::__addressof(__call) };
651 }
652 };
653
654 /// Partial specialization for reference types.
655 template<typename _Res>
656 struct __future_base::_Result<_Res&> : __future_base::_Result_base
657 {
658 typedef _Res& result_type;
659
660 _Result() noexcept : _M_value_ptr() { }
661
662 void
663 _M_set(_Res& __res) noexcept
664 { _M_value_ptr = std::addressof(__res); }
665
666 _Res& _M_get() noexcept { return *_M_value_ptr; }
667
668 private:
669 _Res* _M_value_ptr;
670
671 void _M_destroy() { delete this; }
672 };
673
674 /// Explicit specialization for void.
675 template<>
676 struct __future_base::_Result<void> : __future_base::_Result_base
677 {
678 typedef void result_type;
679
680 private:
681 void _M_destroy() { delete this; }
682 };
683
684 /// @endcond
685
686 #ifndef _GLIBCXX_ASYNC_ABI_COMPAT
687
688 /// @cond undocumented
689 // Allow _Setter objects to be stored locally in std::function
690 template<typename _Res, typename _Arg>
691 struct __is_location_invariant
692 <__future_base::_State_base::_Setter<_Res, _Arg>>
693 : true_type { };
694
695 // Allow _Task_setter objects to be stored locally in std::function
696 template<typename _Res_ptr, typename _Fn, typename _Res>
697 struct __is_location_invariant
698 <__future_base::_Task_setter<_Res_ptr, _Fn, _Res>>
699 : true_type { };
700 /// @endcond
701
702 /// Common implementation for future and shared_future.
703 template<typename _Res>
704 class __basic_future : public __future_base
705 {
706 protected:
707 typedef shared_ptr<_State_base> __state_type;
708 typedef __future_base::_Result<_Res>& __result_type;
709
710 private:
711 __state_type _M_state;
712
713 public:
714 // Disable copying.
715 __basic_future(const __basic_future&) = delete;
716 __basic_future& operator=(const __basic_future&) = delete;
717
718 bool
719 valid() const noexcept { return static_cast<bool>(_M_state); }
720
721 void
722 wait() const
723 {
724 _State_base::_S_check(_M_state);
725 _M_state->wait();
726 }
727
728 template<typename _Rep, typename _Period>
729 future_status
730 wait_for(const chrono::duration<_Rep, _Period>& __rel) const
731 {
732 _State_base::_S_check(_M_state);
733 return _M_state->wait_for(__rel);
734 }
735
736 template<typename _Clock, typename _Duration>
737 future_status
738 wait_until(const chrono::time_point<_Clock, _Duration>& __abs) const
739 {
740 _State_base::_S_check(_M_state);
741 return _M_state->wait_until(__abs);
742 }
743
744 protected:
745 /// Wait for the state to be ready and rethrow any stored exception
746 __result_type
747 _M_get_result() const
748 {
749 _State_base::_S_check(_M_state);
750 _Result_base& __res = _M_state->wait();
751 if (!(__res._M_error == nullptr))
752 rethrow_exception(__res._M_error);
753 return static_cast<__result_type>(__res);
754 }
755
756 void _M_swap(__basic_future& __that) noexcept
757 {
758 _M_state.swap(__that._M_state);
759 }
760
761 // Construction of a future by promise::get_future()
762 explicit
763 __basic_future(const __state_type& __state) : _M_state(__state)
764 {
765 _State_base::_S_check(_M_state);
766 _M_state->_M_set_retrieved_flag();
767 }
768
769 // Copy construction from a shared_future
770 explicit
771 __basic_future(const shared_future<_Res>&) noexcept;
772
773 // Move construction from a shared_future
774 explicit
775 __basic_future(shared_future<_Res>&&) noexcept;
776
777 // Move construction from a future
778 explicit
779 __basic_future(future<_Res>&&) noexcept;
780
781 constexpr __basic_future() noexcept : _M_state() { }
782
783 struct _Reset
784 {
785 explicit _Reset(__basic_future& __fut) noexcept : _M_fut(__fut) { }
786 ~_Reset() { _M_fut._M_state.reset(); }
787 __basic_future& _M_fut;
788 };
789 };
790
791
792 /// Primary template for future.
793 template<typename _Res>
794 class future : public __basic_future<_Res>
795 {
796 // _GLIBCXX_RESOLVE_LIB_DEFECTS
797 // 3458. Is shared_future intended to work with arrays or function types?
798 static_assert(!is_array<_Res>{}, "result type must not be an array");
799 static_assert(!is_function<_Res>{}, "result type must not be a function");
800 static_assert(is_destructible<_Res>{},
801 "result type must be destructible");
802
803 friend class promise<_Res>;
804 template<typename> friend class packaged_task;
805 template<typename _Fn, typename... _Args>
806 friend future<__async_result_of<_Fn, _Args...>>
807 async(launch, _Fn&&, _Args&&...);
808
809 typedef __basic_future<_Res> _Base_type;
810 typedef typename _Base_type::__state_type __state_type;
811
812 explicit
813 future(const __state_type& __state) : _Base_type(__state) { }
814
815 public:
816 constexpr future() noexcept : _Base_type() { }
817
818 /// Move constructor
819 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
820
821 // Disable copying
822 future(const future&) = delete;
823 future& operator=(const future&) = delete;
824
825 future& operator=(future&& __fut) noexcept
826 {
827 future(std::move(__fut))._M_swap(*this);
828 return *this;
829 }
830
831 /// Retrieving the value
832 _Res
833 get()
834 {
835 typename _Base_type::_Reset __reset(*this);
836 return std::move(this->_M_get_result()._M_value());
837 }
838
839 shared_future<_Res> share() noexcept;
840 };
841
842 /// Partial specialization for future<R&>
843 template<typename _Res>
844 class future<_Res&> : public __basic_future<_Res&>
845 {
846 friend class promise<_Res&>;
847 template<typename> friend class packaged_task;
848 template<typename _Fn, typename... _Args>
849 friend future<__async_result_of<_Fn, _Args...>>
850 async(launch, _Fn&&, _Args&&...);
851
852 typedef __basic_future<_Res&> _Base_type;
853 typedef typename _Base_type::__state_type __state_type;
854
855 explicit
856 future(const __state_type& __state) : _Base_type(__state) { }
857
858 public:
859 constexpr future() noexcept : _Base_type() { }
860
861 /// Move constructor
862 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
863
864 // Disable copying
865 future(const future&) = delete;
866 future& operator=(const future&) = delete;
867
868 future& operator=(future&& __fut) noexcept
869 {
870 future(std::move(__fut))._M_swap(*this);
871 return *this;
872 }
873
874 /// Retrieving the value
875 _Res&
876 get()
877 {
878 typename _Base_type::_Reset __reset(*this);
879 return this->_M_get_result()._M_get();
880 }
881
882 shared_future<_Res&> share() noexcept;
883 };
884
885 /// Explicit specialization for future<void>
886 template<>
887 class future<void> : public __basic_future<void>
888 {
889 friend class promise<void>;
890 template<typename> friend class packaged_task;
891 template<typename _Fn, typename... _Args>
892 friend future<__async_result_of<_Fn, _Args...>>
893 async(launch, _Fn&&, _Args&&...);
894
895 typedef __basic_future<void> _Base_type;
896 typedef typename _Base_type::__state_type __state_type;
897
898 explicit
899 future(const __state_type& __state) : _Base_type(__state) { }
900
901 public:
902 constexpr future() noexcept : _Base_type() { }
903
904 /// Move constructor
905 future(future&& __uf) noexcept : _Base_type(std::move(__uf)) { }
906
907 // Disable copying
908 future(const future&) = delete;
909 future& operator=(const future&) = delete;
910
911 future& operator=(future&& __fut) noexcept
912 {
913 future(std::move(__fut))._M_swap(*this);
914 return *this;
915 }
916
917 /// Retrieving the value
918 void
919 get()
920 {
921 typename _Base_type::_Reset __reset(*this);
922 this->_M_get_result();
923 }
924
925 shared_future<void> share() noexcept;
926 };
927
928
929 /// Primary template for shared_future.
930 template<typename _Res>
931 class shared_future : public __basic_future<_Res>
932 {
933 // _GLIBCXX_RESOLVE_LIB_DEFECTS
934 // 3458. Is shared_future intended to work with arrays or function types?
935 static_assert(!is_array<_Res>{}, "result type must not be an array");
936 static_assert(!is_function<_Res>{}, "result type must not be a function");
937 static_assert(is_destructible<_Res>{},
938 "result type must be destructible");
939
940 typedef __basic_future<_Res> _Base_type;
941
942 public:
943 constexpr shared_future() noexcept : _Base_type() { }
944
945 /// Copy constructor
946 shared_future(const shared_future& __sf) noexcept : _Base_type(__sf) { }
947
948 /// Construct from a future rvalue
949 shared_future(future<_Res>&& __uf) noexcept
950 : _Base_type(std::move(__uf))
951 { }
952
953 /// Construct from a shared_future rvalue
954 shared_future(shared_future&& __sf) noexcept
955 : _Base_type(std::move(__sf))
956 { }
957
958 shared_future& operator=(const shared_future& __sf) noexcept
959 {
960 shared_future(__sf)._M_swap(*this);
961 return *this;
962 }
963
964 shared_future& operator=(shared_future&& __sf) noexcept
965 {
966 shared_future(std::move(__sf))._M_swap(*this);
967 return *this;
968 }
969
970 /// Retrieving the value
971 const _Res&
972 get() const { return this->_M_get_result()._M_value(); }
973 };
974
975 /// Partial specialization for shared_future<R&>
976 template<typename _Res>
977 class shared_future<_Res&> : public __basic_future<_Res&>
978 {
979 typedef __basic_future<_Res&> _Base_type;
980
981 public:
982 constexpr shared_future() noexcept : _Base_type() { }
983
984 /// Copy constructor
985 shared_future(const shared_future& __sf) : _Base_type(__sf) { }
986
987 /// Construct from a future rvalue
988 shared_future(future<_Res&>&& __uf) noexcept
989 : _Base_type(std::move(__uf))
990 { }
991
992 /// Construct from a shared_future rvalue
993 shared_future(shared_future&& __sf) noexcept
994 : _Base_type(std::move(__sf))
995 { }
996
997 shared_future& operator=(const shared_future& __sf)
998 {
999 shared_future(__sf)._M_swap(*this);
1000 return *this;
1001 }
1002
1003 shared_future& operator=(shared_future&& __sf) noexcept
1004 {
1005 shared_future(std::move(__sf))._M_swap(*this);
1006 return *this;
1007 }
1008
1009 /// Retrieving the value
1010 _Res&
1011 get() const { return this->_M_get_result()._M_get(); }
1012 };
1013
1014 /// Explicit specialization for shared_future<void>
1015 template<>
1016 class shared_future<void> : public __basic_future<void>
1017 {
1018 typedef __basic_future<void> _Base_type;
1019
1020 public:
1021 constexpr shared_future() noexcept : _Base_type() { }
1022
1023 /// Copy constructor
1024 shared_future(const shared_future& __sf) : _Base_type(__sf) { }
1025
1026 /// Construct from a future rvalue
1027 shared_future(future<void>&& __uf) noexcept
1028 : _Base_type(std::move(__uf))
1029 { }
1030
1031 /// Construct from a shared_future rvalue
1032 shared_future(shared_future&& __sf) noexcept
1033 : _Base_type(std::move(__sf))
1034 { }
1035
1036 shared_future& operator=(const shared_future& __sf)
1037 {
1038 shared_future(__sf)._M_swap(*this);
1039 return *this;
1040 }
1041
1042 shared_future& operator=(shared_future&& __sf) noexcept
1043 {
1044 shared_future(std::move(__sf))._M_swap(*this);
1045 return *this;
1046 }
1047
1048 // Retrieving the value
1049 void
1050 get() const { this->_M_get_result(); }
1051 };
1052
1053 // Now we can define the protected __basic_future constructors.
1054 template<typename _Res>
1055 inline __basic_future<_Res>::
1056 __basic_future(const shared_future<_Res>& __sf) noexcept
1057 : _M_state(__sf._M_state)
1058 { }
1059
1060 template<typename _Res>
1061 inline __basic_future<_Res>::
1062 __basic_future(shared_future<_Res>&& __sf) noexcept
1063 : _M_state(std::move(__sf._M_state))
1064 { }
1065
1066 template<typename _Res>
1067 inline __basic_future<_Res>::
1068 __basic_future(future<_Res>&& __uf) noexcept
1069 : _M_state(std::move(__uf._M_state))
1070 { }
1071
1072 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1073 // 2556. Wide contract for future::share()
1074 template<typename _Res>
1075 inline shared_future<_Res>
1076 future<_Res>::share() noexcept
1077 { return shared_future<_Res>(std::move(*this)); }
1078
1079 template<typename _Res>
1080 inline shared_future<_Res&>
1081 future<_Res&>::share() noexcept
1082 { return shared_future<_Res&>(std::move(*this)); }
1083
1084 inline shared_future<void>
1085 future<void>::share() noexcept
1086 { return shared_future<void>(std::move(*this)); }
1087
1088 /// Primary template for promise
1089 template<typename _Res>
1090 class promise
1091 {
1092 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1093 // 3466: Specify the requirements for promise/future/[...] consistently
1094 static_assert(!is_array<_Res>{}, "result type must not be an array");
1095 static_assert(!is_function<_Res>{}, "result type must not be a function");
1096 static_assert(is_destructible<_Res>{},
1097 "result type must be destructible");
1098
1099 typedef __future_base::_State_base _State;
1100 typedef __future_base::_Result<_Res> _Res_type;
1101 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1102 template<typename, typename> friend struct _State::_Setter;
1103 friend _State;
1104
1105 shared_ptr<_State> _M_future;
1106 _Ptr_type _M_storage;
1107
1108 public:
1109 promise()
1110 : _M_future(std::make_shared<_State>()),
1111 _M_storage(new _Res_type())
1112 { }
1113
1114 promise(promise&& __rhs) noexcept
1115 : _M_future(std::move(__rhs._M_future)),
1116 _M_storage(std::move(__rhs._M_storage))
1117 { }
1118
1119 template<typename _Allocator>
1120 promise(allocator_arg_t, const _Allocator& __a)
1121 : _M_future(std::allocate_shared<_State>(__a)),
1122 _M_storage(__future_base::_S_allocate_result<_Res>(__a))
1123 { }
1124
1125 template<typename _Allocator>
1126 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1127 : _M_future(std::move(__rhs._M_future)),
1128 _M_storage(std::move(__rhs._M_storage))
1129 { }
1130
1131 promise(const promise&) = delete;
1132
1133 ~promise()
1134 {
1135 if (static_cast<bool>(_M_future) && !_M_future.unique())
1136 _M_future->_M_break_promise(std::move(_M_storage));
1137 }
1138
1139 // Assignment
1140 promise&
1141 operator=(promise&& __rhs) noexcept
1142 {
1143 promise(std::move(__rhs)).swap(*this);
1144 return *this;
1145 }
1146
1147 promise& operator=(const promise&) = delete;
1148
1149 void
1150 swap(promise& __rhs) noexcept
1151 {
1152 _M_future.swap(__rhs._M_future);
1153 _M_storage.swap(__rhs._M_storage);
1154 }
1155
1156 // Retrieving the result
1157 future<_Res>
1158 get_future()
1159 { return future<_Res>(_M_future); }
1160
1161 // Setting the result
1162 void
1163 set_value(const _Res& __r)
1164 { _M_state()._M_set_result(_State::__setter(this, __r)); }
1165
1166 void
1167 set_value(_Res&& __r)
1168 { _M_state()._M_set_result(_State::__setter(this, std::move(__r))); }
1169
1170 void
1171 set_exception(exception_ptr __p)
1172 { _M_state()._M_set_result(_State::__setter(__p, this)); }
1173
1174 void
1175 set_value_at_thread_exit(const _Res& __r)
1176 {
1177 _M_state()._M_set_delayed_result(_State::__setter(this, __r),
1178 _M_future);
1179 }
1180
1181 void
1182 set_value_at_thread_exit(_Res&& __r)
1183 {
1184 _M_state()._M_set_delayed_result(
1185 _State::__setter(this, std::move(__r)), _M_future);
1186 }
1187
1188 void
1189 set_exception_at_thread_exit(exception_ptr __p)
1190 {
1191 _M_state()._M_set_delayed_result(_State::__setter(__p, this),
1192 _M_future);
1193 }
1194
1195 private:
1196 _State&
1197 _M_state()
1198 {
1199 __future_base::_State_base::_S_check(_M_future);
1200 return *_M_future;
1201 }
1202 };
1203
1204 template<typename _Res>
1205 inline void
1206 swap(promise<_Res>& __x, promise<_Res>& __y) noexcept
1207 { __x.swap(__y); }
1208
1209 template<typename _Res, typename _Alloc>
1210 struct uses_allocator<promise<_Res>, _Alloc>
1211 : public true_type { };
1212
1213
1214 /// Partial specialization for promise<R&>
1215 template<typename _Res>
1216 class promise<_Res&>
1217 {
1218 typedef __future_base::_State_base _State;
1219 typedef __future_base::_Result<_Res&> _Res_type;
1220 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1221 template<typename, typename> friend struct _State::_Setter;
1222 friend _State;
1223
1224 shared_ptr<_State> _M_future;
1225 _Ptr_type _M_storage;
1226
1227 public:
1228 promise()
1229 : _M_future(std::make_shared<_State>()),
1230 _M_storage(new _Res_type())
1231 { }
1232
1233 promise(promise&& __rhs) noexcept
1234 : _M_future(std::move(__rhs._M_future)),
1235 _M_storage(std::move(__rhs._M_storage))
1236 { }
1237
1238 template<typename _Allocator>
1239 promise(allocator_arg_t, const _Allocator& __a)
1240 : _M_future(std::allocate_shared<_State>(__a)),
1241 _M_storage(__future_base::_S_allocate_result<_Res&>(__a))
1242 { }
1243
1244 template<typename _Allocator>
1245 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1246 : _M_future(std::move(__rhs._M_future)),
1247 _M_storage(std::move(__rhs._M_storage))
1248 { }
1249
1250 promise(const promise&) = delete;
1251
1252 ~promise()
1253 {
1254 if (static_cast<bool>(_M_future) && !_M_future.unique())
1255 _M_future->_M_break_promise(std::move(_M_storage));
1256 }
1257
1258 // Assignment
1259 promise&
1260 operator=(promise&& __rhs) noexcept
1261 {
1262 promise(std::move(__rhs)).swap(*this);
1263 return *this;
1264 }
1265
1266 promise& operator=(const promise&) = delete;
1267
1268 void
1269 swap(promise& __rhs) noexcept
1270 {
1271 _M_future.swap(__rhs._M_future);
1272 _M_storage.swap(__rhs._M_storage);
1273 }
1274
1275 // Retrieving the result
1276 future<_Res&>
1277 get_future()
1278 { return future<_Res&>(_M_future); }
1279
1280 // Setting the result
1281 void
1282 set_value(_Res& __r)
1283 { _M_state()._M_set_result(_State::__setter(this, __r)); }
1284
1285 void
1286 set_exception(exception_ptr __p)
1287 { _M_state()._M_set_result(_State::__setter(__p, this)); }
1288
1289 void
1290 set_value_at_thread_exit(_Res& __r)
1291 {
1292 _M_state()._M_set_delayed_result(_State::__setter(this, __r),
1293 _M_future);
1294 }
1295
1296 void
1297 set_exception_at_thread_exit(exception_ptr __p)
1298 {
1299 _M_state()._M_set_delayed_result(_State::__setter(__p, this),
1300 _M_future);
1301 }
1302
1303 private:
1304 _State&
1305 _M_state()
1306 {
1307 __future_base::_State_base::_S_check(_M_future);
1308 return *_M_future;
1309 }
1310 };
1311
1312 /// Explicit specialization for promise<void>
1313 template<>
1314 class promise<void>
1315 {
1316 typedef __future_base::_State_base _State;
1317 typedef __future_base::_Result<void> _Res_type;
1318 typedef __future_base::_Ptr<_Res_type> _Ptr_type;
1319 template<typename, typename> friend struct _State::_Setter;
1320 friend _State;
1321
1322 shared_ptr<_State> _M_future;
1323 _Ptr_type _M_storage;
1324
1325 public:
1326 promise()
1327 : _M_future(std::make_shared<_State>()),
1328 _M_storage(new _Res_type())
1329 { }
1330
1331 promise(promise&& __rhs) noexcept
1332 : _M_future(std::move(__rhs._M_future)),
1333 _M_storage(std::move(__rhs._M_storage))
1334 { }
1335
1336 template<typename _Allocator>
1337 promise(allocator_arg_t, const _Allocator& __a)
1338 : _M_future(std::allocate_shared<_State>(__a)),
1339 _M_storage(__future_base::_S_allocate_result<void>(__a))
1340 { }
1341
1342 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1343 // 2095. missing constructors needed for uses-allocator construction
1344 template<typename _Allocator>
1345 promise(allocator_arg_t, const _Allocator&, promise&& __rhs)
1346 : _M_future(std::move(__rhs._M_future)),
1347 _M_storage(std::move(__rhs._M_storage))
1348 { }
1349
1350 promise(const promise&) = delete;
1351
1352 ~promise()
1353 {
1354 if (static_cast<bool>(_M_future) && !_M_future.unique())
1355 _M_future->_M_break_promise(std::move(_M_storage));
1356 }
1357
1358 // Assignment
1359 promise&
1360 operator=(promise&& __rhs) noexcept
1361 {
1362 promise(std::move(__rhs)).swap(*this);
1363 return *this;
1364 }
1365
1366 promise& operator=(const promise&) = delete;
1367
1368 void
1369 swap(promise& __rhs) noexcept
1370 {
1371 _M_future.swap(__rhs._M_future);
1372 _M_storage.swap(__rhs._M_storage);
1373 }
1374
1375 // Retrieving the result
1376 future<void>
1377 get_future()
1378 { return future<void>(_M_future); }
1379
1380 // Setting the result
1381 void
1382 set_value()
1383 { _M_state()._M_set_result(_State::__setter(this)); }
1384
1385 void
1386 set_exception(exception_ptr __p)
1387 { _M_state()._M_set_result(_State::__setter(__p, this)); }
1388
1389 void
1390 set_value_at_thread_exit()
1391 { _M_state()._M_set_delayed_result(_State::__setter(this), _M_future); }
1392
1393 void
1394 set_exception_at_thread_exit(exception_ptr __p)
1395 {
1396 _M_state()._M_set_delayed_result(_State::__setter(__p, this),
1397 _M_future);
1398 }
1399
1400 private:
1401 _State&
1402 _M_state()
1403 {
1404 __future_base::_State_base::_S_check(_M_future);
1405 return *_M_future;
1406 }
1407 };
1408
1409 /// @cond undocumented
1410 template<typename _Ptr_type, typename _Fn, typename _Res>
1411 struct __future_base::_Task_setter
1412 {
1413 // Invoke the function and provide the result to the caller.
1414 _Ptr_type operator()() const
1415 {
1416 __try
1417 {
1418 (*_M_result)->_M_set((*_M_fn)());
1419 }
1420 __catch(const __cxxabiv1::__forced_unwind&)
1421 {
1422 __throw_exception_again; // will cause broken_promise
1423 }
1424 __catch(...)
1425 {
1426 (*_M_result)->_M_error = current_exception();
1427 }
1428 return std::move(*_M_result);
1429 }
1430 _Ptr_type* _M_result;
1431 _Fn* _M_fn;
1432 };
1433
1434 template<typename _Ptr_type, typename _Fn>
1435 struct __future_base::_Task_setter<_Ptr_type, _Fn, void>
1436 {
1437 _Ptr_type operator()() const
1438 {
1439 __try
1440 {
1441 (*_M_fn)();
1442 }
1443 __catch(const __cxxabiv1::__forced_unwind&)
1444 {
1445 __throw_exception_again; // will cause broken_promise
1446 }
1447 __catch(...)
1448 {
1449 (*_M_result)->_M_error = current_exception();
1450 }
1451 return std::move(*_M_result);
1452 }
1453 _Ptr_type* _M_result;
1454 _Fn* _M_fn;
1455 };
1456
1457 // Holds storage for a packaged_task's result.
1458 template<typename _Res, typename... _Args>
1459 struct __future_base::_Task_state_base<_Res(_Args...)>
1460 : __future_base::_State_base
1461 {
1462 typedef _Res _Res_type;
1463
1464 template<typename _Alloc>
1465 _Task_state_base(const _Alloc& __a)
1466 : _M_result(_S_allocate_result<_Res>(__a))
1467 { }
1468
1469 // Invoke the stored task and make the state ready.
1470 virtual void
1471 _M_run(_Args&&... __args) = 0;
1472
1473 // Invoke the stored task and make the state ready at thread exit.
1474 virtual void
1475 _M_run_delayed(_Args&&... __args, weak_ptr<_State_base>) = 0;
1476
1477 virtual shared_ptr<_Task_state_base>
1478 _M_reset() = 0;
1479
1480 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1481 _Ptr_type _M_result;
1482 };
1483
1484 // Holds a packaged_task's stored task.
1485 template<typename _Fn, typename _Alloc, typename _Res, typename... _Args>
1486 struct __future_base::_Task_state<_Fn, _Alloc, _Res(_Args...)> final
1487 : __future_base::_Task_state_base<_Res(_Args...)>
1488 {
1489 #ifdef __cpp_lib_is_invocable // C++ >= 17
1490 static_assert(is_invocable_r_v<_Res, _Fn&, _Args...>);
1491 #else
1492 static_assert(__is_invocable<_Fn&, _Args...>::value,
1493 "_Fn& is invocable with _Args...");
1494 #endif
1495
1496 template<typename _Fn2>
1497 _Task_state(_Fn2&& __fn, const _Alloc& __a)
1498 : _Task_state_base<_Res(_Args...)>(__a),
1499 _M_impl(std::forward<_Fn2>(__fn), __a)
1500 { }
1501
1502 template<typename _Fn2>
1503 static shared_ptr<_Task_state_base<_Res(_Args...)>>
1504 _S_create(_Fn2&& __fn, const _Alloc& __a)
1505 {
1506 return std::allocate_shared<_Task_state>(__a,
1507 std::forward<_Fn2>(__fn),
1508 __a);
1509 }
1510
1511 private:
1512 virtual void
1513 _M_run(_Args&&... __args)
1514 {
1515 auto __boundfn = [&] () -> _Res {
1516 return std::__invoke_r<_Res>(_M_impl._M_fn,
1517 std::forward<_Args>(__args)...);
1518 };
1519 this->_M_set_result(_S_task_setter(this->_M_result, __boundfn));
1520 }
1521
1522 virtual void
1523 _M_run_delayed(_Args&&... __args, weak_ptr<_State_base> __self)
1524 {
1525 auto __boundfn = [&] () -> _Res {
1526 return std::__invoke_r<_Res>(_M_impl._M_fn,
1527 std::forward<_Args>(__args)...);
1528 };
1529 this->_M_set_delayed_result(_S_task_setter(this->_M_result, __boundfn),
1530 std::move(__self));
1531 }
1532
1533 virtual shared_ptr<_Task_state_base<_Res(_Args...)>>
1534 _M_reset()
1535 { return _S_create(std::move(_M_impl._M_fn), _M_impl); }
1536
1537 struct _Impl : _Alloc
1538 {
1539 template<typename _Fn2>
1540 _Impl(_Fn2&& __fn, const _Alloc& __a)
1541 : _Alloc(__a), _M_fn(std::forward<_Fn2>(__fn)) { }
1542 _Fn _M_fn;
1543 } _M_impl;
1544 };
1545 /// @endcond
1546
1547 /// packaged_task
1548 template<typename _Res, typename... _ArgTypes>
1549 class packaged_task<_Res(_ArgTypes...)>
1550 {
1551 using _State_type = __future_base::_Task_state_base<_Res(_ArgTypes...)>;
1552 shared_ptr<_State_type> _M_state;
1553
1554 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1555 // 3039. Unnecessary decay in thread and packaged_task
1556 template<typename _Fn, typename _Fn2 = __remove_cvref_t<_Fn>>
1557 using __not_same = __enable_if_t<!is_same<packaged_task, _Fn2>::value>;
1558
1559 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1560 // 4154. The Mandates for std::packaged_task's constructor
1561 // from a callable entity should consider decaying.
1562 template<typename _Fn, typename _Alloc = std::allocator<int>>
1563 using _Task_state
1564 = __future_base::_Task_state<__decay_t<_Fn>, _Alloc,
1565 _Res(_ArgTypes...)>;
1566
1567 public:
1568 // Construction and destruction
1569 packaged_task() noexcept { }
1570
1571 template<typename _Fn, typename = __not_same<_Fn>>
1572 explicit
1573 packaged_task(_Fn&& __fn)
1574 : _M_state(_Task_state<_Fn>::_S_create(std::forward<_Fn>(__fn), {}))
1575 { }
1576
1577 #if __cplusplus < 201703L
1578 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1579 // 2097. packaged_task constructors should be constrained
1580 // 2407. [this constructor should not be] explicit
1581 // 2921. packaged_task and type-erased allocators
1582 template<typename _Fn, typename _Alloc, typename = __not_same<_Fn>>
1583 packaged_task(allocator_arg_t, const _Alloc& __a, _Fn&& __fn)
1584 : _M_state(_Task_state<_Fn, _Alloc>::_S_create(std::forward<_Fn>(__fn),
1585 __a))
1586 { }
1587
1588 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1589 // 2095. missing constructors needed for uses-allocator construction
1590 template<typename _Allocator>
1591 packaged_task(allocator_arg_t, const _Allocator&) noexcept
1592 { }
1593
1594 template<typename _Allocator>
1595 packaged_task(allocator_arg_t, const _Allocator&,
1596 const packaged_task&) = delete;
1597
1598 template<typename _Allocator>
1599 packaged_task(allocator_arg_t, const _Allocator&,
1600 packaged_task&& __other) noexcept
1601 { this->swap(__other); }
1602 #endif
1603
1604 ~packaged_task()
1605 {
1606 if (static_cast<bool>(_M_state) && !_M_state.unique())
1607 _M_state->_M_break_promise(std::move(_M_state->_M_result));
1608 }
1609
1610 // No copy
1611 packaged_task(const packaged_task&) = delete;
1612 packaged_task& operator=(const packaged_task&) = delete;
1613
1614 // Move support
1615 packaged_task(packaged_task&& __other) noexcept
1616 { this->swap(__other); }
1617
1618 packaged_task& operator=(packaged_task&& __other) noexcept
1619 {
1620 packaged_task(std::move(__other)).swap(*this);
1621 return *this;
1622 }
1623
1624 void
1625 swap(packaged_task& __other) noexcept
1626 { _M_state.swap(__other._M_state); }
1627
1628 bool
1629 valid() const noexcept
1630 { return static_cast<bool>(_M_state); }
1631
1632 // Result retrieval
1633 future<_Res>
1634 get_future()
1635 { return future<_Res>(_M_state); }
1636
1637 // Execution
1638 void
1639 operator()(_ArgTypes... __args)
1640 {
1641 __future_base::_State_base::_S_check(_M_state);
1642 _M_state->_M_run(std::forward<_ArgTypes>(__args)...);
1643 }
1644
1645 void
1646 make_ready_at_thread_exit(_ArgTypes... __args)
1647 {
1648 __future_base::_State_base::_S_check(_M_state);
1649 _M_state->_M_run_delayed(std::forward<_ArgTypes>(__args)..., _M_state);
1650 }
1651
1652 void
1653 reset()
1654 {
1655 __future_base::_State_base::_S_check(_M_state);
1656 packaged_task __tmp;
1657 __tmp._M_state = _M_state;
1658 _M_state = _M_state->_M_reset();
1659 }
1660 };
1661
1662 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1663 // 3117. Missing packaged_task deduction guides
1664 #if __cpp_deduction_guides >= 201606
1665 template<typename _Res, typename... _ArgTypes>
1666 packaged_task(_Res(*)(_ArgTypes...)) -> packaged_task<_Res(_ArgTypes...)>;
1667
1668 template<typename _Fun, typename _Signature
1669 = __function_guide_t<_Fun, decltype(&_Fun::operator())>>
1670 packaged_task(_Fun) -> packaged_task<_Signature>;
1671 #endif
1672
1673 /// swap
1674 template<typename _Res, typename... _ArgTypes>
1675 inline void
1676 swap(packaged_task<_Res(_ArgTypes...)>& __x,
1677 packaged_task<_Res(_ArgTypes...)>& __y) noexcept
1678 { __x.swap(__y); }
1679
1680 #if __cplusplus < 201703L
1681 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1682 // 2976. Dangling uses_allocator specialization for packaged_task
1683 template<typename _Res, typename _Alloc>
1684 struct uses_allocator<packaged_task<_Res>, _Alloc>
1685 : public true_type { };
1686 #endif
1687
1688 /// @cond undocumented
1689
1690 // Shared state created by std::async().
1691 // Holds a deferred function and storage for its result.
1692 template<typename _BoundFn, typename _Res>
1693 class __future_base::_Deferred_state final
1694 : public __future_base::_State_base
1695 {
1696 public:
1697 template<typename... _Args>
1698 explicit
1699 _Deferred_state(_Args&&... __args)
1700 : _M_result(new _Result<_Res>()),
1701 _M_fn(std::forward<_Args>(__args)...)
1702 { }
1703
1704 private:
1705 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1706 _Ptr_type _M_result;
1707 _BoundFn _M_fn;
1708
1709 // Run the deferred function.
1710 virtual void
1711 _M_complete_async()
1712 {
1713 // Multiple threads can call a waiting function on the future and
1714 // reach this point at the same time. The call_once in _M_set_result
1715 // ensures only the first one run the deferred function, stores the
1716 // result in _M_result, swaps that with the base _M_result and makes
1717 // the state ready. Tell _M_set_result to ignore failure so all later
1718 // calls do nothing.
1719 _M_set_result(_S_task_setter(_M_result, _M_fn), true);
1720 }
1721
1722 // Caller should check whether the state is ready first, because this
1723 // function will return true even after the deferred function has run.
1724 virtual bool _M_is_deferred_future() const { return true; }
1725 };
1726
1727 // Common functionality hoisted out of the _Async_state_impl template.
1728 class __future_base::_Async_state_commonV2
1729 : public __future_base::_State_base
1730 {
1731 protected:
1732 ~_Async_state_commonV2() = default;
1733
1734 // Make waiting functions block until the thread completes, as if joined.
1735 //
1736 // This function is used by wait() to satisfy the first requirement below
1737 // and by wait_for() / wait_until() to satisfy the second.
1738 //
1739 // [futures.async]:
1740 //
1741 // - a call to a waiting function on an asynchronous return object that
1742 // shares the shared state created by this async call shall block until
1743 // the associated thread has completed, as if joined, or else time out.
1744 //
1745 // - the associated thread completion synchronizes with the return from
1746 // the first function that successfully detects the ready status of the
1747 // shared state or with the return from the last function that releases
1748 // the shared state, whichever happens first.
1749 virtual void _M_complete_async() { _M_join(); }
1750
1751 void _M_join() { std::call_once(_M_once, &thread::join, &_M_thread); }
1752
1753 thread _M_thread;
1754 once_flag _M_once;
1755 };
1756
1757 // Shared state created by std::async().
1758 // Starts a new thread that runs a function and makes the shared state ready.
1759 template<typename _BoundFn, typename _Res>
1760 class __future_base::_Async_state_impl final
1761 : public __future_base::_Async_state_commonV2
1762 {
1763 public:
1764 template<typename... _Args>
1765 explicit
1766 _Async_state_impl(_Args&&... __args)
1767 : _M_result(new _Result<_Res>()),
1768 _M_fn(std::forward<_Args>(__args)...)
1769 {
1770 _M_thread = std::thread{&_Async_state_impl::_M_run, this};
1771 }
1772
1773 // Must not destroy _M_result and _M_fn until the thread finishes.
1774 // Call join() directly rather than through _M_join() because no other
1775 // thread can be referring to this state if it is being destroyed.
1776 ~_Async_state_impl()
1777 {
1778 if (_M_thread.joinable())
1779 _M_thread.join();
1780 }
1781
1782 private:
1783 void
1784 _M_run()
1785 {
1786 __try
1787 {
1788 _M_set_result(_S_task_setter(_M_result, _M_fn));
1789 }
1790 __catch (const __cxxabiv1::__forced_unwind&)
1791 {
1792 // make the shared state ready on thread cancellation
1793 if (static_cast<bool>(_M_result))
1794 this->_M_break_promise(std::move(_M_result));
1795 __throw_exception_again;
1796 }
1797 }
1798
1799 typedef __future_base::_Ptr<_Result<_Res>> _Ptr_type;
1800 _Ptr_type _M_result;
1801 _BoundFn _M_fn;
1802 };
1803 /// @endcond
1804
1805 /// async
1806 template<typename _Fn, typename... _Args>
1807 _GLIBCXX_NODISCARD future<__async_result_of<_Fn, _Args...>>
1808 async(launch __policy, _Fn&& __fn, _Args&&... __args)
1809 {
1810 using _Wr = std::thread::_Call_wrapper<_Fn, _Args...>;
1811 using _As = __future_base::_Async_state_impl<_Wr>;
1812 using _Ds = __future_base::_Deferred_state<_Wr>;
1813
1814 std::shared_ptr<__future_base::_State_base> __state;
1815 if ((__policy & launch::async) == launch::async)
1816 {
1817 __try
1818 {
1819 __state = std::make_shared<_As>(std::forward<_Fn>(__fn),
1820 std::forward<_Args>(__args)...);
1821 }
1822 #if __cpp_exceptions
1823 catch(const system_error& __e)
1824 {
1825 if (__e.code() != errc::resource_unavailable_try_again
1826 || (__policy & launch::deferred) != launch::deferred)
1827 throw;
1828 }
1829 #endif
1830 }
1831 if (!__state)
1832 {
1833 __state = std::make_shared<_Ds>(std::forward<_Fn>(__fn),
1834 std::forward<_Args>(__args)...);
1835 }
1836 return future<__async_result_of<_Fn, _Args...>>(std::move(__state));
1837 }
1838
1839 /// async, potential overload
1840 template<typename _Fn, typename... _Args>
1841 _GLIBCXX_NODISCARD inline future<__async_result_of<_Fn, _Args...>>
1842 async(_Fn&& __fn, _Args&&... __args)
1843 {
1844 return std::async(launch::async|launch::deferred,
1845 std::forward<_Fn>(__fn),
1846 std::forward<_Args>(__args)...);
1847 }
1848
1849 #endif // _GLIBCXX_ASYNC_ABI_COMPAT
1850 #endif // _GLIBCXX_HAS_GTHREADS
1851
1852 /// @} group futures
1853 _GLIBCXX_END_NAMESPACE_VERSION
1854 } // namespace
1855
1856 #endif // C++11
1857
1858 #endif // _GLIBCXX_FUTURE