]> git.ipfire.org Git - thirdparty/qemu.git/blob - linux-user/elfload.c
Merge remote-tracking branch 'remotes/xtensa/tags/20190228-xtensa' into staging
[thirdparty/qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20
21 #define ELF_OSABI ELFOSABI_SYSV
22
23 /* from personality.h */
24
25 /*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
42 };
43
44 /*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
74 };
75
76 /*
77 * Return the base personality without flags.
78 */
79 #define personality(pers) (pers & PER_MASK)
80
81 int info_is_fdpic(struct image_info *info)
82 {
83 return info->personality == PER_LINUX_FDPIC;
84 }
85
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
98 #else
99 #define ELF_DATA ELFDATA2LSB
100 #endif
101
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t;
104 #define tswapreg(ptr) tswap64(ptr)
105 #else
106 typedef abi_ulong target_elf_greg_t;
107 #define tswapreg(ptr) tswapal(ptr)
108 #endif
109
110 #ifdef USE_UID16
111 typedef abi_ushort target_uid_t;
112 typedef abi_ushort target_gid_t;
113 #else
114 typedef abi_uint target_uid_t;
115 typedef abi_uint target_gid_t;
116 #endif
117 typedef abi_int target_pid_t;
118
119 #ifdef TARGET_I386
120
121 #define ELF_PLATFORM get_elf_platform()
122
123 static const char *get_elf_platform(void)
124 {
125 static char elf_platform[] = "i386";
126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132 }
133
134 #define ELF_HWCAP get_elf_hwcap()
135
136 static uint32_t get_elf_hwcap(void)
137 {
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
141 }
142
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
148
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154 }
155
156 #define ELF_NREG 27
157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
158
159 /*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196
197 #else
198
199 #define ELF_START_MMAP 0x80000000
200
201 /*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206 /*
207 * These are used to set parameters in the core dumps.
208 */
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
211
212 static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
214 {
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
226 }
227
228 #define ELF_NREG 17
229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
230
231 /*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
262
263 #endif
264
265 #ifdef TARGET_ARM
266
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269
270 #define ELF_START_MMAP 0x80000000
271
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
274
275 static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
277 {
278 abi_long stack = infop->start_stack;
279 memset(regs, 0, sizeof(*regs));
280
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
291 regs->uregs[0] = 0;
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs->uregs[10] = infop->start_data;
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
314 }
315
316 #define ELF_NREG 18
317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
318
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
344
345 enum
346 {
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
369 };
370
371 enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377 };
378
379 /* The commpage only exists for 32 bit kernels */
380
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
389 static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
391 {
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
406 */
407 if (test_page_addr >= guest_base
408 && test_page_addr < (guest_base + guest_size)) {
409 return -1;
410 }
411
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443 }
444
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447
448 static uint32_t get_elf_hwcap(void)
449 {
450 ARMCPU *cpu = ARM_CPU(thread_cpu);
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461
462 #define GET_FEATURE_ID(feat, hwcap) \
463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464
465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479 * to our VFP_FP16 feature bit.
480 */
481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483
484 return hwcaps;
485 }
486
487 static uint32_t get_elf_hwcap2(void)
488 {
489 ARMCPU *cpu = ARM_CPU(thread_cpu);
490 uint32_t hwcaps = 0;
491
492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497 return hwcaps;
498 }
499
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506
507 #define ELF_ARCH EM_AARCH64
508 #define ELF_CLASS ELFCLASS64
509 #define ELF_PLATFORM "aarch64"
510
511 static inline void init_thread(struct target_pt_regs *regs,
512 struct image_info *infop)
513 {
514 abi_long stack = infop->start_stack;
515 memset(regs, 0, sizeof(*regs));
516
517 regs->pc = infop->entry & ~0x3ULL;
518 regs->sp = stack;
519 }
520
521 #define ELF_NREG 34
522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
523
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525 const CPUARMState *env)
526 {
527 int i;
528
529 for (i = 0; i < 32; i++) {
530 (*regs)[i] = tswapreg(env->xregs[i]);
531 }
532 (*regs)[32] = tswapreg(env->pc);
533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE 4096
538
539 enum {
540 ARM_HWCAP_A64_FP = 1 << 0,
541 ARM_HWCAP_A64_ASIMD = 1 << 1,
542 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
543 ARM_HWCAP_A64_AES = 1 << 3,
544 ARM_HWCAP_A64_PMULL = 1 << 4,
545 ARM_HWCAP_A64_SHA1 = 1 << 5,
546 ARM_HWCAP_A64_SHA2 = 1 << 6,
547 ARM_HWCAP_A64_CRC32 = 1 << 7,
548 ARM_HWCAP_A64_ATOMICS = 1 << 8,
549 ARM_HWCAP_A64_FPHP = 1 << 9,
550 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
551 ARM_HWCAP_A64_CPUID = 1 << 11,
552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
553 ARM_HWCAP_A64_JSCVT = 1 << 13,
554 ARM_HWCAP_A64_FCMA = 1 << 14,
555 ARM_HWCAP_A64_LRCPC = 1 << 15,
556 ARM_HWCAP_A64_DCPOP = 1 << 16,
557 ARM_HWCAP_A64_SHA3 = 1 << 17,
558 ARM_HWCAP_A64_SM3 = 1 << 18,
559 ARM_HWCAP_A64_SM4 = 1 << 19,
560 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
561 ARM_HWCAP_A64_SHA512 = 1 << 21,
562 ARM_HWCAP_A64_SVE = 1 << 22,
563 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
564 ARM_HWCAP_A64_DIT = 1 << 24,
565 ARM_HWCAP_A64_USCAT = 1 << 25,
566 ARM_HWCAP_A64_ILRCPC = 1 << 26,
567 ARM_HWCAP_A64_FLAGM = 1 << 27,
568 ARM_HWCAP_A64_SSBS = 1 << 28,
569 ARM_HWCAP_A64_SB = 1 << 29,
570 ARM_HWCAP_A64_PACA = 1 << 30,
571 ARM_HWCAP_A64_PACG = 1UL << 31,
572 };
573
574 #define ELF_HWCAP get_elf_hwcap()
575
576 static uint32_t get_elf_hwcap(void)
577 {
578 ARMCPU *cpu = ARM_CPU(thread_cpu);
579 uint32_t hwcaps = 0;
580
581 hwcaps |= ARM_HWCAP_A64_FP;
582 hwcaps |= ARM_HWCAP_A64_ASIMD;
583 hwcaps |= ARM_HWCAP_A64_CPUID;
584
585 /* probe for the extra features */
586 #define GET_FEATURE_ID(feat, hwcap) \
587 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
588
589 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
590 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
591 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
592 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
593 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
594 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
595 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
596 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
597 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
598 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
599 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
600 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
601 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
602 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
603 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
604 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
605 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
606 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
607
608 #undef GET_FEATURE_ID
609
610 return hwcaps;
611 }
612
613 #endif /* not TARGET_AARCH64 */
614 #endif /* TARGET_ARM */
615
616 #ifdef TARGET_SPARC
617 #ifdef TARGET_SPARC64
618
619 #define ELF_START_MMAP 0x80000000
620 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
621 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
622 #ifndef TARGET_ABI32
623 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
624 #else
625 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
626 #endif
627
628 #define ELF_CLASS ELFCLASS64
629 #define ELF_ARCH EM_SPARCV9
630
631 #define STACK_BIAS 2047
632
633 static inline void init_thread(struct target_pt_regs *regs,
634 struct image_info *infop)
635 {
636 #ifndef TARGET_ABI32
637 regs->tstate = 0;
638 #endif
639 regs->pc = infop->entry;
640 regs->npc = regs->pc + 4;
641 regs->y = 0;
642 #ifdef TARGET_ABI32
643 regs->u_regs[14] = infop->start_stack - 16 * 4;
644 #else
645 if (personality(infop->personality) == PER_LINUX32)
646 regs->u_regs[14] = infop->start_stack - 16 * 4;
647 else
648 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
649 #endif
650 }
651
652 #else
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655 | HWCAP_SPARC_MULDIV)
656
657 #define ELF_CLASS ELFCLASS32
658 #define ELF_ARCH EM_SPARC
659
660 static inline void init_thread(struct target_pt_regs *regs,
661 struct image_info *infop)
662 {
663 regs->psr = 0;
664 regs->pc = infop->entry;
665 regs->npc = regs->pc + 4;
666 regs->y = 0;
667 regs->u_regs[14] = infop->start_stack - 16 * 4;
668 }
669
670 #endif
671 #endif
672
673 #ifdef TARGET_PPC
674
675 #define ELF_MACHINE PPC_ELF_MACHINE
676 #define ELF_START_MMAP 0x80000000
677
678 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
679
680 #define elf_check_arch(x) ( (x) == EM_PPC64 )
681
682 #define ELF_CLASS ELFCLASS64
683
684 #else
685
686 #define ELF_CLASS ELFCLASS32
687
688 #endif
689
690 #define ELF_ARCH EM_PPC
691
692 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
693 See arch/powerpc/include/asm/cputable.h. */
694 enum {
695 QEMU_PPC_FEATURE_32 = 0x80000000,
696 QEMU_PPC_FEATURE_64 = 0x40000000,
697 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
698 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
699 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
700 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
701 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
702 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
703 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
704 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
705 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
706 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
707 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
708 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
709 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
710 QEMU_PPC_FEATURE_CELL = 0x00010000,
711 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
712 QEMU_PPC_FEATURE_SMT = 0x00004000,
713 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
714 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
715 QEMU_PPC_FEATURE_PA6T = 0x00000800,
716 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
717 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
718 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
719 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
720 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
721
722 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
723 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
724
725 /* Feature definitions in AT_HWCAP2. */
726 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
727 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
728 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
729 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
730 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
731 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
732 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
733 };
734
735 #define ELF_HWCAP get_elf_hwcap()
736
737 static uint32_t get_elf_hwcap(void)
738 {
739 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
740 uint32_t features = 0;
741
742 /* We don't have to be terribly complete here; the high points are
743 Altivec/FP/SPE support. Anything else is just a bonus. */
744 #define GET_FEATURE(flag, feature) \
745 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
746 #define GET_FEATURE2(flags, feature) \
747 do { \
748 if ((cpu->env.insns_flags2 & flags) == flags) { \
749 features |= feature; \
750 } \
751 } while (0)
752 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
753 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
754 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
755 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
756 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
757 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
758 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
759 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
760 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
761 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
762 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
763 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
764 QEMU_PPC_FEATURE_ARCH_2_06);
765 #undef GET_FEATURE
766 #undef GET_FEATURE2
767
768 return features;
769 }
770
771 #define ELF_HWCAP2 get_elf_hwcap2()
772
773 static uint32_t get_elf_hwcap2(void)
774 {
775 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
776 uint32_t features = 0;
777
778 #define GET_FEATURE(flag, feature) \
779 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
780 #define GET_FEATURE2(flag, feature) \
781 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
782
783 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
784 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
785 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
786 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
787 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
788
789 #undef GET_FEATURE
790 #undef GET_FEATURE2
791
792 return features;
793 }
794
795 /*
796 * The requirements here are:
797 * - keep the final alignment of sp (sp & 0xf)
798 * - make sure the 32-bit value at the first 16 byte aligned position of
799 * AUXV is greater than 16 for glibc compatibility.
800 * AT_IGNOREPPC is used for that.
801 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
802 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
803 */
804 #define DLINFO_ARCH_ITEMS 5
805 #define ARCH_DLINFO \
806 do { \
807 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
808 /* \
809 * Handle glibc compatibility: these magic entries must \
810 * be at the lowest addresses in the final auxv. \
811 */ \
812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
813 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
814 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
815 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
816 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
817 } while (0)
818
819 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
820 {
821 _regs->gpr[1] = infop->start_stack;
822 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
823 if (get_ppc64_abi(infop) < 2) {
824 uint64_t val;
825 get_user_u64(val, infop->entry + 8);
826 _regs->gpr[2] = val + infop->load_bias;
827 get_user_u64(val, infop->entry);
828 infop->entry = val + infop->load_bias;
829 } else {
830 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
831 }
832 #endif
833 _regs->nip = infop->entry;
834 }
835
836 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
837 #define ELF_NREG 48
838 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
839
840 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
841 {
842 int i;
843 target_ulong ccr = 0;
844
845 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
846 (*regs)[i] = tswapreg(env->gpr[i]);
847 }
848
849 (*regs)[32] = tswapreg(env->nip);
850 (*regs)[33] = tswapreg(env->msr);
851 (*regs)[35] = tswapreg(env->ctr);
852 (*regs)[36] = tswapreg(env->lr);
853 (*regs)[37] = tswapreg(env->xer);
854
855 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
856 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
857 }
858 (*regs)[38] = tswapreg(ccr);
859 }
860
861 #define USE_ELF_CORE_DUMP
862 #define ELF_EXEC_PAGESIZE 4096
863
864 #endif
865
866 #ifdef TARGET_MIPS
867
868 #define ELF_START_MMAP 0x80000000
869
870 #ifdef TARGET_MIPS64
871 #define ELF_CLASS ELFCLASS64
872 #else
873 #define ELF_CLASS ELFCLASS32
874 #endif
875 #define ELF_ARCH EM_MIPS
876
877 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
878
879 static inline void init_thread(struct target_pt_regs *regs,
880 struct image_info *infop)
881 {
882 regs->cp0_status = 2 << CP0St_KSU;
883 regs->cp0_epc = infop->entry;
884 regs->regs[29] = infop->start_stack;
885 }
886
887 /* See linux kernel: arch/mips/include/asm/elf.h. */
888 #define ELF_NREG 45
889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
890
891 /* See linux kernel: arch/mips/include/asm/reg.h. */
892 enum {
893 #ifdef TARGET_MIPS64
894 TARGET_EF_R0 = 0,
895 #else
896 TARGET_EF_R0 = 6,
897 #endif
898 TARGET_EF_R26 = TARGET_EF_R0 + 26,
899 TARGET_EF_R27 = TARGET_EF_R0 + 27,
900 TARGET_EF_LO = TARGET_EF_R0 + 32,
901 TARGET_EF_HI = TARGET_EF_R0 + 33,
902 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
903 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
904 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
905 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
906 };
907
908 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
909 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
910 {
911 int i;
912
913 for (i = 0; i < TARGET_EF_R0; i++) {
914 (*regs)[i] = 0;
915 }
916 (*regs)[TARGET_EF_R0] = 0;
917
918 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
919 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
920 }
921
922 (*regs)[TARGET_EF_R26] = 0;
923 (*regs)[TARGET_EF_R27] = 0;
924 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
925 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
926 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
927 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
928 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
929 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
930 }
931
932 #define USE_ELF_CORE_DUMP
933 #define ELF_EXEC_PAGESIZE 4096
934
935 /* See arch/mips/include/uapi/asm/hwcap.h. */
936 enum {
937 HWCAP_MIPS_R6 = (1 << 0),
938 HWCAP_MIPS_MSA = (1 << 1),
939 };
940
941 #define ELF_HWCAP get_elf_hwcap()
942
943 static uint32_t get_elf_hwcap(void)
944 {
945 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
946 uint32_t hwcaps = 0;
947
948 #define GET_FEATURE(flag, hwcap) \
949 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
950
951 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
952 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
953
954 #undef GET_FEATURE
955
956 return hwcaps;
957 }
958
959 #endif /* TARGET_MIPS */
960
961 #ifdef TARGET_MICROBLAZE
962
963 #define ELF_START_MMAP 0x80000000
964
965 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
966
967 #define ELF_CLASS ELFCLASS32
968 #define ELF_ARCH EM_MICROBLAZE
969
970 static inline void init_thread(struct target_pt_regs *regs,
971 struct image_info *infop)
972 {
973 regs->pc = infop->entry;
974 regs->r1 = infop->start_stack;
975
976 }
977
978 #define ELF_EXEC_PAGESIZE 4096
979
980 #define USE_ELF_CORE_DUMP
981 #define ELF_NREG 38
982 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
983
984 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
985 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
986 {
987 int i, pos = 0;
988
989 for (i = 0; i < 32; i++) {
990 (*regs)[pos++] = tswapreg(env->regs[i]);
991 }
992
993 for (i = 0; i < 6; i++) {
994 (*regs)[pos++] = tswapreg(env->sregs[i]);
995 }
996 }
997
998 #endif /* TARGET_MICROBLAZE */
999
1000 #ifdef TARGET_NIOS2
1001
1002 #define ELF_START_MMAP 0x80000000
1003
1004 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1005
1006 #define ELF_CLASS ELFCLASS32
1007 #define ELF_ARCH EM_ALTERA_NIOS2
1008
1009 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1010 {
1011 regs->ea = infop->entry;
1012 regs->sp = infop->start_stack;
1013 regs->estatus = 0x3;
1014 }
1015
1016 #define ELF_EXEC_PAGESIZE 4096
1017
1018 #define USE_ELF_CORE_DUMP
1019 #define ELF_NREG 49
1020 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1021
1022 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1023 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1024 const CPUNios2State *env)
1025 {
1026 int i;
1027
1028 (*regs)[0] = -1;
1029 for (i = 1; i < 8; i++) /* r0-r7 */
1030 (*regs)[i] = tswapreg(env->regs[i + 7]);
1031
1032 for (i = 8; i < 16; i++) /* r8-r15 */
1033 (*regs)[i] = tswapreg(env->regs[i - 8]);
1034
1035 for (i = 16; i < 24; i++) /* r16-r23 */
1036 (*regs)[i] = tswapreg(env->regs[i + 7]);
1037 (*regs)[24] = -1; /* R_ET */
1038 (*regs)[25] = -1; /* R_BT */
1039 (*regs)[26] = tswapreg(env->regs[R_GP]);
1040 (*regs)[27] = tswapreg(env->regs[R_SP]);
1041 (*regs)[28] = tswapreg(env->regs[R_FP]);
1042 (*regs)[29] = tswapreg(env->regs[R_EA]);
1043 (*regs)[30] = -1; /* R_SSTATUS */
1044 (*regs)[31] = tswapreg(env->regs[R_RA]);
1045
1046 (*regs)[32] = tswapreg(env->regs[R_PC]);
1047
1048 (*regs)[33] = -1; /* R_STATUS */
1049 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1050
1051 for (i = 35; i < 49; i++) /* ... */
1052 (*regs)[i] = -1;
1053 }
1054
1055 #endif /* TARGET_NIOS2 */
1056
1057 #ifdef TARGET_OPENRISC
1058
1059 #define ELF_START_MMAP 0x08000000
1060
1061 #define ELF_ARCH EM_OPENRISC
1062 #define ELF_CLASS ELFCLASS32
1063 #define ELF_DATA ELFDATA2MSB
1064
1065 static inline void init_thread(struct target_pt_regs *regs,
1066 struct image_info *infop)
1067 {
1068 regs->pc = infop->entry;
1069 regs->gpr[1] = infop->start_stack;
1070 }
1071
1072 #define USE_ELF_CORE_DUMP
1073 #define ELF_EXEC_PAGESIZE 8192
1074
1075 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1076 #define ELF_NREG 34 /* gprs and pc, sr */
1077 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1078
1079 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1080 const CPUOpenRISCState *env)
1081 {
1082 int i;
1083
1084 for (i = 0; i < 32; i++) {
1085 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1086 }
1087 (*regs)[32] = tswapreg(env->pc);
1088 (*regs)[33] = tswapreg(cpu_get_sr(env));
1089 }
1090 #define ELF_HWCAP 0
1091 #define ELF_PLATFORM NULL
1092
1093 #endif /* TARGET_OPENRISC */
1094
1095 #ifdef TARGET_SH4
1096
1097 #define ELF_START_MMAP 0x80000000
1098
1099 #define ELF_CLASS ELFCLASS32
1100 #define ELF_ARCH EM_SH
1101
1102 static inline void init_thread(struct target_pt_regs *regs,
1103 struct image_info *infop)
1104 {
1105 /* Check other registers XXXXX */
1106 regs->pc = infop->entry;
1107 regs->regs[15] = infop->start_stack;
1108 }
1109
1110 /* See linux kernel: arch/sh/include/asm/elf.h. */
1111 #define ELF_NREG 23
1112 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1113
1114 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1115 enum {
1116 TARGET_REG_PC = 16,
1117 TARGET_REG_PR = 17,
1118 TARGET_REG_SR = 18,
1119 TARGET_REG_GBR = 19,
1120 TARGET_REG_MACH = 20,
1121 TARGET_REG_MACL = 21,
1122 TARGET_REG_SYSCALL = 22
1123 };
1124
1125 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1126 const CPUSH4State *env)
1127 {
1128 int i;
1129
1130 for (i = 0; i < 16; i++) {
1131 (*regs)[i] = tswapreg(env->gregs[i]);
1132 }
1133
1134 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1135 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1136 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1137 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1138 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1139 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1140 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1141 }
1142
1143 #define USE_ELF_CORE_DUMP
1144 #define ELF_EXEC_PAGESIZE 4096
1145
1146 enum {
1147 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1148 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1149 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1150 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1151 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1152 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1153 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1154 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1155 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1156 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1157 };
1158
1159 #define ELF_HWCAP get_elf_hwcap()
1160
1161 static uint32_t get_elf_hwcap(void)
1162 {
1163 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1164 uint32_t hwcap = 0;
1165
1166 hwcap |= SH_CPU_HAS_FPU;
1167
1168 if (cpu->env.features & SH_FEATURE_SH4A) {
1169 hwcap |= SH_CPU_HAS_LLSC;
1170 }
1171
1172 return hwcap;
1173 }
1174
1175 #endif
1176
1177 #ifdef TARGET_CRIS
1178
1179 #define ELF_START_MMAP 0x80000000
1180
1181 #define ELF_CLASS ELFCLASS32
1182 #define ELF_ARCH EM_CRIS
1183
1184 static inline void init_thread(struct target_pt_regs *regs,
1185 struct image_info *infop)
1186 {
1187 regs->erp = infop->entry;
1188 }
1189
1190 #define ELF_EXEC_PAGESIZE 8192
1191
1192 #endif
1193
1194 #ifdef TARGET_M68K
1195
1196 #define ELF_START_MMAP 0x80000000
1197
1198 #define ELF_CLASS ELFCLASS32
1199 #define ELF_ARCH EM_68K
1200
1201 /* ??? Does this need to do anything?
1202 #define ELF_PLAT_INIT(_r) */
1203
1204 static inline void init_thread(struct target_pt_regs *regs,
1205 struct image_info *infop)
1206 {
1207 regs->usp = infop->start_stack;
1208 regs->sr = 0;
1209 regs->pc = infop->entry;
1210 }
1211
1212 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1213 #define ELF_NREG 20
1214 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1215
1216 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1217 {
1218 (*regs)[0] = tswapreg(env->dregs[1]);
1219 (*regs)[1] = tswapreg(env->dregs[2]);
1220 (*regs)[2] = tswapreg(env->dregs[3]);
1221 (*regs)[3] = tswapreg(env->dregs[4]);
1222 (*regs)[4] = tswapreg(env->dregs[5]);
1223 (*regs)[5] = tswapreg(env->dregs[6]);
1224 (*regs)[6] = tswapreg(env->dregs[7]);
1225 (*regs)[7] = tswapreg(env->aregs[0]);
1226 (*regs)[8] = tswapreg(env->aregs[1]);
1227 (*regs)[9] = tswapreg(env->aregs[2]);
1228 (*regs)[10] = tswapreg(env->aregs[3]);
1229 (*regs)[11] = tswapreg(env->aregs[4]);
1230 (*regs)[12] = tswapreg(env->aregs[5]);
1231 (*regs)[13] = tswapreg(env->aregs[6]);
1232 (*regs)[14] = tswapreg(env->dregs[0]);
1233 (*regs)[15] = tswapreg(env->aregs[7]);
1234 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1235 (*regs)[17] = tswapreg(env->sr);
1236 (*regs)[18] = tswapreg(env->pc);
1237 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1238 }
1239
1240 #define USE_ELF_CORE_DUMP
1241 #define ELF_EXEC_PAGESIZE 8192
1242
1243 #endif
1244
1245 #ifdef TARGET_ALPHA
1246
1247 #define ELF_START_MMAP (0x30000000000ULL)
1248
1249 #define ELF_CLASS ELFCLASS64
1250 #define ELF_ARCH EM_ALPHA
1251
1252 static inline void init_thread(struct target_pt_regs *regs,
1253 struct image_info *infop)
1254 {
1255 regs->pc = infop->entry;
1256 regs->ps = 8;
1257 regs->usp = infop->start_stack;
1258 }
1259
1260 #define ELF_EXEC_PAGESIZE 8192
1261
1262 #endif /* TARGET_ALPHA */
1263
1264 #ifdef TARGET_S390X
1265
1266 #define ELF_START_MMAP (0x20000000000ULL)
1267
1268 #define ELF_CLASS ELFCLASS64
1269 #define ELF_DATA ELFDATA2MSB
1270 #define ELF_ARCH EM_S390
1271
1272 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1273 {
1274 regs->psw.addr = infop->entry;
1275 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1276 regs->gprs[15] = infop->start_stack;
1277 }
1278
1279 #endif /* TARGET_S390X */
1280
1281 #ifdef TARGET_TILEGX
1282
1283 /* 42 bits real used address, a half for user mode */
1284 #define ELF_START_MMAP (0x00000020000000000ULL)
1285
1286 #define elf_check_arch(x) ((x) == EM_TILEGX)
1287
1288 #define ELF_CLASS ELFCLASS64
1289 #define ELF_DATA ELFDATA2LSB
1290 #define ELF_ARCH EM_TILEGX
1291
1292 static inline void init_thread(struct target_pt_regs *regs,
1293 struct image_info *infop)
1294 {
1295 regs->pc = infop->entry;
1296 regs->sp = infop->start_stack;
1297
1298 }
1299
1300 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1301
1302 #endif /* TARGET_TILEGX */
1303
1304 #ifdef TARGET_RISCV
1305
1306 #define ELF_START_MMAP 0x80000000
1307 #define ELF_ARCH EM_RISCV
1308
1309 #ifdef TARGET_RISCV32
1310 #define ELF_CLASS ELFCLASS32
1311 #else
1312 #define ELF_CLASS ELFCLASS64
1313 #endif
1314
1315 static inline void init_thread(struct target_pt_regs *regs,
1316 struct image_info *infop)
1317 {
1318 regs->sepc = infop->entry;
1319 regs->sp = infop->start_stack;
1320 }
1321
1322 #define ELF_EXEC_PAGESIZE 4096
1323
1324 #endif /* TARGET_RISCV */
1325
1326 #ifdef TARGET_HPPA
1327
1328 #define ELF_START_MMAP 0x80000000
1329 #define ELF_CLASS ELFCLASS32
1330 #define ELF_ARCH EM_PARISC
1331 #define ELF_PLATFORM "PARISC"
1332 #define STACK_GROWS_DOWN 0
1333 #define STACK_ALIGNMENT 64
1334
1335 static inline void init_thread(struct target_pt_regs *regs,
1336 struct image_info *infop)
1337 {
1338 regs->iaoq[0] = infop->entry;
1339 regs->iaoq[1] = infop->entry + 4;
1340 regs->gr[23] = 0;
1341 regs->gr[24] = infop->arg_start;
1342 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1343 /* The top-of-stack contains a linkage buffer. */
1344 regs->gr[30] = infop->start_stack + 64;
1345 regs->gr[31] = infop->entry;
1346 }
1347
1348 #endif /* TARGET_HPPA */
1349
1350 #ifdef TARGET_XTENSA
1351
1352 #define ELF_START_MMAP 0x20000000
1353
1354 #define ELF_CLASS ELFCLASS32
1355 #define ELF_ARCH EM_XTENSA
1356
1357 static inline void init_thread(struct target_pt_regs *regs,
1358 struct image_info *infop)
1359 {
1360 regs->windowbase = 0;
1361 regs->windowstart = 1;
1362 regs->areg[1] = infop->start_stack;
1363 regs->pc = infop->entry;
1364 }
1365
1366 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1367 #define ELF_NREG 128
1368 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1369
1370 enum {
1371 TARGET_REG_PC,
1372 TARGET_REG_PS,
1373 TARGET_REG_LBEG,
1374 TARGET_REG_LEND,
1375 TARGET_REG_LCOUNT,
1376 TARGET_REG_SAR,
1377 TARGET_REG_WINDOWSTART,
1378 TARGET_REG_WINDOWBASE,
1379 TARGET_REG_THREADPTR,
1380 TARGET_REG_AR0 = 64,
1381 };
1382
1383 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1384 const CPUXtensaState *env)
1385 {
1386 unsigned i;
1387
1388 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1389 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1390 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1391 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1392 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1393 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1394 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1395 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1396 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1397 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1398 for (i = 0; i < env->config->nareg; ++i) {
1399 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1400 }
1401 }
1402
1403 #define USE_ELF_CORE_DUMP
1404 #define ELF_EXEC_PAGESIZE 4096
1405
1406 #endif /* TARGET_XTENSA */
1407
1408 #ifndef ELF_PLATFORM
1409 #define ELF_PLATFORM (NULL)
1410 #endif
1411
1412 #ifndef ELF_MACHINE
1413 #define ELF_MACHINE ELF_ARCH
1414 #endif
1415
1416 #ifndef elf_check_arch
1417 #define elf_check_arch(x) ((x) == ELF_ARCH)
1418 #endif
1419
1420 #ifndef ELF_HWCAP
1421 #define ELF_HWCAP 0
1422 #endif
1423
1424 #ifndef STACK_GROWS_DOWN
1425 #define STACK_GROWS_DOWN 1
1426 #endif
1427
1428 #ifndef STACK_ALIGNMENT
1429 #define STACK_ALIGNMENT 16
1430 #endif
1431
1432 #ifdef TARGET_ABI32
1433 #undef ELF_CLASS
1434 #define ELF_CLASS ELFCLASS32
1435 #undef bswaptls
1436 #define bswaptls(ptr) bswap32s(ptr)
1437 #endif
1438
1439 #include "elf.h"
1440
1441 struct exec
1442 {
1443 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1444 unsigned int a_text; /* length of text, in bytes */
1445 unsigned int a_data; /* length of data, in bytes */
1446 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1447 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1448 unsigned int a_entry; /* start address */
1449 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1450 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1451 };
1452
1453
1454 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1455 #define OMAGIC 0407
1456 #define NMAGIC 0410
1457 #define ZMAGIC 0413
1458 #define QMAGIC 0314
1459
1460 /* Necessary parameters */
1461 #define TARGET_ELF_EXEC_PAGESIZE \
1462 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1463 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1464 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1465 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1466 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1467 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1468
1469 #define DLINFO_ITEMS 15
1470
1471 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1472 {
1473 memcpy(to, from, n);
1474 }
1475
1476 #ifdef BSWAP_NEEDED
1477 static void bswap_ehdr(struct elfhdr *ehdr)
1478 {
1479 bswap16s(&ehdr->e_type); /* Object file type */
1480 bswap16s(&ehdr->e_machine); /* Architecture */
1481 bswap32s(&ehdr->e_version); /* Object file version */
1482 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1483 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1484 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1485 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1486 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1487 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1488 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1489 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1490 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1491 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1492 }
1493
1494 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1495 {
1496 int i;
1497 for (i = 0; i < phnum; ++i, ++phdr) {
1498 bswap32s(&phdr->p_type); /* Segment type */
1499 bswap32s(&phdr->p_flags); /* Segment flags */
1500 bswaptls(&phdr->p_offset); /* Segment file offset */
1501 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1502 bswaptls(&phdr->p_paddr); /* Segment physical address */
1503 bswaptls(&phdr->p_filesz); /* Segment size in file */
1504 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1505 bswaptls(&phdr->p_align); /* Segment alignment */
1506 }
1507 }
1508
1509 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1510 {
1511 int i;
1512 for (i = 0; i < shnum; ++i, ++shdr) {
1513 bswap32s(&shdr->sh_name);
1514 bswap32s(&shdr->sh_type);
1515 bswaptls(&shdr->sh_flags);
1516 bswaptls(&shdr->sh_addr);
1517 bswaptls(&shdr->sh_offset);
1518 bswaptls(&shdr->sh_size);
1519 bswap32s(&shdr->sh_link);
1520 bswap32s(&shdr->sh_info);
1521 bswaptls(&shdr->sh_addralign);
1522 bswaptls(&shdr->sh_entsize);
1523 }
1524 }
1525
1526 static void bswap_sym(struct elf_sym *sym)
1527 {
1528 bswap32s(&sym->st_name);
1529 bswaptls(&sym->st_value);
1530 bswaptls(&sym->st_size);
1531 bswap16s(&sym->st_shndx);
1532 }
1533
1534 #ifdef TARGET_MIPS
1535 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1536 {
1537 bswap16s(&abiflags->version);
1538 bswap32s(&abiflags->ases);
1539 bswap32s(&abiflags->isa_ext);
1540 bswap32s(&abiflags->flags1);
1541 bswap32s(&abiflags->flags2);
1542 }
1543 #endif
1544 #else
1545 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1546 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1547 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1548 static inline void bswap_sym(struct elf_sym *sym) { }
1549 #ifdef TARGET_MIPS
1550 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1551 #endif
1552 #endif
1553
1554 #ifdef USE_ELF_CORE_DUMP
1555 static int elf_core_dump(int, const CPUArchState *);
1556 #endif /* USE_ELF_CORE_DUMP */
1557 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1558
1559 /* Verify the portions of EHDR within E_IDENT for the target.
1560 This can be performed before bswapping the entire header. */
1561 static bool elf_check_ident(struct elfhdr *ehdr)
1562 {
1563 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1564 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1565 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1566 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1567 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1568 && ehdr->e_ident[EI_DATA] == ELF_DATA
1569 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1570 }
1571
1572 /* Verify the portions of EHDR outside of E_IDENT for the target.
1573 This has to wait until after bswapping the header. */
1574 static bool elf_check_ehdr(struct elfhdr *ehdr)
1575 {
1576 return (elf_check_arch(ehdr->e_machine)
1577 && ehdr->e_ehsize == sizeof(struct elfhdr)
1578 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1579 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1580 }
1581
1582 /*
1583 * 'copy_elf_strings()' copies argument/envelope strings from user
1584 * memory to free pages in kernel mem. These are in a format ready
1585 * to be put directly into the top of new user memory.
1586 *
1587 */
1588 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1589 abi_ulong p, abi_ulong stack_limit)
1590 {
1591 char *tmp;
1592 int len, i;
1593 abi_ulong top = p;
1594
1595 if (!p) {
1596 return 0; /* bullet-proofing */
1597 }
1598
1599 if (STACK_GROWS_DOWN) {
1600 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1601 for (i = argc - 1; i >= 0; --i) {
1602 tmp = argv[i];
1603 if (!tmp) {
1604 fprintf(stderr, "VFS: argc is wrong");
1605 exit(-1);
1606 }
1607 len = strlen(tmp) + 1;
1608 tmp += len;
1609
1610 if (len > (p - stack_limit)) {
1611 return 0;
1612 }
1613 while (len) {
1614 int bytes_to_copy = (len > offset) ? offset : len;
1615 tmp -= bytes_to_copy;
1616 p -= bytes_to_copy;
1617 offset -= bytes_to_copy;
1618 len -= bytes_to_copy;
1619
1620 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1621
1622 if (offset == 0) {
1623 memcpy_to_target(p, scratch, top - p);
1624 top = p;
1625 offset = TARGET_PAGE_SIZE;
1626 }
1627 }
1628 }
1629 if (p != top) {
1630 memcpy_to_target(p, scratch + offset, top - p);
1631 }
1632 } else {
1633 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1634 for (i = 0; i < argc; ++i) {
1635 tmp = argv[i];
1636 if (!tmp) {
1637 fprintf(stderr, "VFS: argc is wrong");
1638 exit(-1);
1639 }
1640 len = strlen(tmp) + 1;
1641 if (len > (stack_limit - p)) {
1642 return 0;
1643 }
1644 while (len) {
1645 int bytes_to_copy = (len > remaining) ? remaining : len;
1646
1647 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1648
1649 tmp += bytes_to_copy;
1650 remaining -= bytes_to_copy;
1651 p += bytes_to_copy;
1652 len -= bytes_to_copy;
1653
1654 if (remaining == 0) {
1655 memcpy_to_target(top, scratch, p - top);
1656 top = p;
1657 remaining = TARGET_PAGE_SIZE;
1658 }
1659 }
1660 }
1661 if (p != top) {
1662 memcpy_to_target(top, scratch, p - top);
1663 }
1664 }
1665
1666 return p;
1667 }
1668
1669 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1670 * argument/environment space. Newer kernels (>2.6.33) allow more,
1671 * dependent on stack size, but guarantee at least 32 pages for
1672 * backwards compatibility.
1673 */
1674 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1675
1676 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1677 struct image_info *info)
1678 {
1679 abi_ulong size, error, guard;
1680
1681 size = guest_stack_size;
1682 if (size < STACK_LOWER_LIMIT) {
1683 size = STACK_LOWER_LIMIT;
1684 }
1685 guard = TARGET_PAGE_SIZE;
1686 if (guard < qemu_real_host_page_size) {
1687 guard = qemu_real_host_page_size;
1688 }
1689
1690 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1691 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1692 if (error == -1) {
1693 perror("mmap stack");
1694 exit(-1);
1695 }
1696
1697 /* We reserve one extra page at the top of the stack as guard. */
1698 if (STACK_GROWS_DOWN) {
1699 target_mprotect(error, guard, PROT_NONE);
1700 info->stack_limit = error + guard;
1701 return info->stack_limit + size - sizeof(void *);
1702 } else {
1703 target_mprotect(error + size, guard, PROT_NONE);
1704 info->stack_limit = error + size;
1705 return error;
1706 }
1707 }
1708
1709 /* Map and zero the bss. We need to explicitly zero any fractional pages
1710 after the data section (i.e. bss). */
1711 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1712 {
1713 uintptr_t host_start, host_map_start, host_end;
1714
1715 last_bss = TARGET_PAGE_ALIGN(last_bss);
1716
1717 /* ??? There is confusion between qemu_real_host_page_size and
1718 qemu_host_page_size here and elsewhere in target_mmap, which
1719 may lead to the end of the data section mapping from the file
1720 not being mapped. At least there was an explicit test and
1721 comment for that here, suggesting that "the file size must
1722 be known". The comment probably pre-dates the introduction
1723 of the fstat system call in target_mmap which does in fact
1724 find out the size. What isn't clear is if the workaround
1725 here is still actually needed. For now, continue with it,
1726 but merge it with the "normal" mmap that would allocate the bss. */
1727
1728 host_start = (uintptr_t) g2h(elf_bss);
1729 host_end = (uintptr_t) g2h(last_bss);
1730 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1731
1732 if (host_map_start < host_end) {
1733 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1734 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1735 if (p == MAP_FAILED) {
1736 perror("cannot mmap brk");
1737 exit(-1);
1738 }
1739 }
1740
1741 /* Ensure that the bss page(s) are valid */
1742 if ((page_get_flags(last_bss-1) & prot) != prot) {
1743 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1744 }
1745
1746 if (host_start < host_map_start) {
1747 memset((void *)host_start, 0, host_map_start - host_start);
1748 }
1749 }
1750
1751 #ifdef TARGET_ARM
1752 static int elf_is_fdpic(struct elfhdr *exec)
1753 {
1754 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1755 }
1756 #else
1757 /* Default implementation, always false. */
1758 static int elf_is_fdpic(struct elfhdr *exec)
1759 {
1760 return 0;
1761 }
1762 #endif
1763
1764 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1765 {
1766 uint16_t n;
1767 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1768
1769 /* elf32_fdpic_loadseg */
1770 n = info->nsegs;
1771 while (n--) {
1772 sp -= 12;
1773 put_user_u32(loadsegs[n].addr, sp+0);
1774 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1775 put_user_u32(loadsegs[n].p_memsz, sp+8);
1776 }
1777
1778 /* elf32_fdpic_loadmap */
1779 sp -= 4;
1780 put_user_u16(0, sp+0); /* version */
1781 put_user_u16(info->nsegs, sp+2); /* nsegs */
1782
1783 info->personality = PER_LINUX_FDPIC;
1784 info->loadmap_addr = sp;
1785
1786 return sp;
1787 }
1788
1789 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1790 struct elfhdr *exec,
1791 struct image_info *info,
1792 struct image_info *interp_info)
1793 {
1794 abi_ulong sp;
1795 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1796 int size;
1797 int i;
1798 abi_ulong u_rand_bytes;
1799 uint8_t k_rand_bytes[16];
1800 abi_ulong u_platform;
1801 const char *k_platform;
1802 const int n = sizeof(elf_addr_t);
1803
1804 sp = p;
1805
1806 /* Needs to be before we load the env/argc/... */
1807 if (elf_is_fdpic(exec)) {
1808 /* Need 4 byte alignment for these structs */
1809 sp &= ~3;
1810 sp = loader_build_fdpic_loadmap(info, sp);
1811 info->other_info = interp_info;
1812 if (interp_info) {
1813 interp_info->other_info = info;
1814 sp = loader_build_fdpic_loadmap(interp_info, sp);
1815 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1816 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1817 } else {
1818 info->interpreter_loadmap_addr = 0;
1819 info->interpreter_pt_dynamic_addr = 0;
1820 }
1821 }
1822
1823 u_platform = 0;
1824 k_platform = ELF_PLATFORM;
1825 if (k_platform) {
1826 size_t len = strlen(k_platform) + 1;
1827 if (STACK_GROWS_DOWN) {
1828 sp -= (len + n - 1) & ~(n - 1);
1829 u_platform = sp;
1830 /* FIXME - check return value of memcpy_to_target() for failure */
1831 memcpy_to_target(sp, k_platform, len);
1832 } else {
1833 memcpy_to_target(sp, k_platform, len);
1834 u_platform = sp;
1835 sp += len + 1;
1836 }
1837 }
1838
1839 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1840 * the argv and envp pointers.
1841 */
1842 if (STACK_GROWS_DOWN) {
1843 sp = QEMU_ALIGN_DOWN(sp, 16);
1844 } else {
1845 sp = QEMU_ALIGN_UP(sp, 16);
1846 }
1847
1848 /*
1849 * Generate 16 random bytes for userspace PRNG seeding (not
1850 * cryptically secure but it's not the aim of QEMU).
1851 */
1852 for (i = 0; i < 16; i++) {
1853 k_rand_bytes[i] = rand();
1854 }
1855 if (STACK_GROWS_DOWN) {
1856 sp -= 16;
1857 u_rand_bytes = sp;
1858 /* FIXME - check return value of memcpy_to_target() for failure */
1859 memcpy_to_target(sp, k_rand_bytes, 16);
1860 } else {
1861 memcpy_to_target(sp, k_rand_bytes, 16);
1862 u_rand_bytes = sp;
1863 sp += 16;
1864 }
1865
1866 size = (DLINFO_ITEMS + 1) * 2;
1867 if (k_platform)
1868 size += 2;
1869 #ifdef DLINFO_ARCH_ITEMS
1870 size += DLINFO_ARCH_ITEMS * 2;
1871 #endif
1872 #ifdef ELF_HWCAP2
1873 size += 2;
1874 #endif
1875 info->auxv_len = size * n;
1876
1877 size += envc + argc + 2;
1878 size += 1; /* argc itself */
1879 size *= n;
1880
1881 /* Allocate space and finalize stack alignment for entry now. */
1882 if (STACK_GROWS_DOWN) {
1883 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1884 sp = u_argc;
1885 } else {
1886 u_argc = sp;
1887 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1888 }
1889
1890 u_argv = u_argc + n;
1891 u_envp = u_argv + (argc + 1) * n;
1892 u_auxv = u_envp + (envc + 1) * n;
1893 info->saved_auxv = u_auxv;
1894 info->arg_start = u_argv;
1895 info->arg_end = u_argv + argc * n;
1896
1897 /* This is correct because Linux defines
1898 * elf_addr_t as Elf32_Off / Elf64_Off
1899 */
1900 #define NEW_AUX_ENT(id, val) do { \
1901 put_user_ual(id, u_auxv); u_auxv += n; \
1902 put_user_ual(val, u_auxv); u_auxv += n; \
1903 } while(0)
1904
1905 #ifdef ARCH_DLINFO
1906 /*
1907 * ARCH_DLINFO must come first so platform specific code can enforce
1908 * special alignment requirements on the AUXV if necessary (eg. PPC).
1909 */
1910 ARCH_DLINFO;
1911 #endif
1912 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1913 * on info->auxv_len will trigger.
1914 */
1915 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1916 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1917 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1918 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1919 /* Target doesn't support host page size alignment */
1920 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1921 } else {
1922 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1923 qemu_host_page_size)));
1924 }
1925 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1926 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1927 NEW_AUX_ENT(AT_ENTRY, info->entry);
1928 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1929 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1930 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1931 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1932 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1933 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1934 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1935 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1936
1937 #ifdef ELF_HWCAP2
1938 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1939 #endif
1940
1941 if (u_platform) {
1942 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1943 }
1944 NEW_AUX_ENT (AT_NULL, 0);
1945 #undef NEW_AUX_ENT
1946
1947 /* Check that our initial calculation of the auxv length matches how much
1948 * we actually put into it.
1949 */
1950 assert(info->auxv_len == u_auxv - info->saved_auxv);
1951
1952 put_user_ual(argc, u_argc);
1953
1954 p = info->arg_strings;
1955 for (i = 0; i < argc; ++i) {
1956 put_user_ual(p, u_argv);
1957 u_argv += n;
1958 p += target_strlen(p) + 1;
1959 }
1960 put_user_ual(0, u_argv);
1961
1962 p = info->env_strings;
1963 for (i = 0; i < envc; ++i) {
1964 put_user_ual(p, u_envp);
1965 u_envp += n;
1966 p += target_strlen(p) + 1;
1967 }
1968 put_user_ual(0, u_envp);
1969
1970 return sp;
1971 }
1972
1973 unsigned long init_guest_space(unsigned long host_start,
1974 unsigned long host_size,
1975 unsigned long guest_start,
1976 bool fixed)
1977 {
1978 unsigned long current_start, aligned_start;
1979 int flags;
1980
1981 assert(host_start || host_size);
1982
1983 /* If just a starting address is given, then just verify that
1984 * address. */
1985 if (host_start && !host_size) {
1986 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1987 if (init_guest_commpage(host_start, host_size) != 1) {
1988 return (unsigned long)-1;
1989 }
1990 #endif
1991 return host_start;
1992 }
1993
1994 /* Setup the initial flags and start address. */
1995 current_start = host_start & qemu_host_page_mask;
1996 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1997 if (fixed) {
1998 flags |= MAP_FIXED;
1999 }
2000
2001 /* Otherwise, a non-zero size region of memory needs to be mapped
2002 * and validated. */
2003
2004 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2005 /* On 32-bit ARM, we need to map not just the usable memory, but
2006 * also the commpage. Try to find a suitable place by allocating
2007 * a big chunk for all of it. If host_start, then the naive
2008 * strategy probably does good enough.
2009 */
2010 if (!host_start) {
2011 unsigned long guest_full_size, host_full_size, real_start;
2012
2013 guest_full_size =
2014 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2015 host_full_size = guest_full_size - guest_start;
2016 real_start = (unsigned long)
2017 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2018 if (real_start == (unsigned long)-1) {
2019 if (host_size < host_full_size - qemu_host_page_size) {
2020 /* We failed to map a continous segment, but we're
2021 * allowed to have a gap between the usable memory and
2022 * the commpage where other things can be mapped.
2023 * This sparseness gives us more flexibility to find
2024 * an address range.
2025 */
2026 goto naive;
2027 }
2028 return (unsigned long)-1;
2029 }
2030 munmap((void *)real_start, host_full_size);
2031 if (real_start & ~qemu_host_page_mask) {
2032 /* The same thing again, but with an extra qemu_host_page_size
2033 * so that we can shift around alignment.
2034 */
2035 unsigned long real_size = host_full_size + qemu_host_page_size;
2036 real_start = (unsigned long)
2037 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2038 if (real_start == (unsigned long)-1) {
2039 if (host_size < host_full_size - qemu_host_page_size) {
2040 goto naive;
2041 }
2042 return (unsigned long)-1;
2043 }
2044 munmap((void *)real_start, real_size);
2045 real_start = HOST_PAGE_ALIGN(real_start);
2046 }
2047 current_start = real_start;
2048 }
2049 naive:
2050 #endif
2051
2052 while (1) {
2053 unsigned long real_start, real_size, aligned_size;
2054 aligned_size = real_size = host_size;
2055
2056 /* Do not use mmap_find_vma here because that is limited to the
2057 * guest address space. We are going to make the
2058 * guest address space fit whatever we're given.
2059 */
2060 real_start = (unsigned long)
2061 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2062 if (real_start == (unsigned long)-1) {
2063 return (unsigned long)-1;
2064 }
2065
2066 /* Check to see if the address is valid. */
2067 if (host_start && real_start != current_start) {
2068 goto try_again;
2069 }
2070
2071 /* Ensure the address is properly aligned. */
2072 if (real_start & ~qemu_host_page_mask) {
2073 /* Ideally, we adjust like
2074 *
2075 * pages: [ ][ ][ ][ ][ ]
2076 * old: [ real ]
2077 * [ aligned ]
2078 * new: [ real ]
2079 * [ aligned ]
2080 *
2081 * But if there is something else mapped right after it,
2082 * then obviously it won't have room to grow, and the
2083 * kernel will put the new larger real someplace else with
2084 * unknown alignment (if we made it to here, then
2085 * fixed=false). Which is why we grow real by a full page
2086 * size, instead of by part of one; so that even if we get
2087 * moved, we can still guarantee alignment. But this does
2088 * mean that there is a padding of < 1 page both before
2089 * and after the aligned range; the "after" could could
2090 * cause problems for ARM emulation where it could butt in
2091 * to where we need to put the commpage.
2092 */
2093 munmap((void *)real_start, host_size);
2094 real_size = aligned_size + qemu_host_page_size;
2095 real_start = (unsigned long)
2096 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2097 if (real_start == (unsigned long)-1) {
2098 return (unsigned long)-1;
2099 }
2100 aligned_start = HOST_PAGE_ALIGN(real_start);
2101 } else {
2102 aligned_start = real_start;
2103 }
2104
2105 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2106 /* On 32-bit ARM, we need to also be able to map the commpage. */
2107 int valid = init_guest_commpage(aligned_start - guest_start,
2108 aligned_size + guest_start);
2109 if (valid == -1) {
2110 munmap((void *)real_start, real_size);
2111 return (unsigned long)-1;
2112 } else if (valid == 0) {
2113 goto try_again;
2114 }
2115 #endif
2116
2117 /* If nothing has said `return -1` or `goto try_again` yet,
2118 * then the address we have is good.
2119 */
2120 break;
2121
2122 try_again:
2123 /* That address didn't work. Unmap and try a different one.
2124 * The address the host picked because is typically right at
2125 * the top of the host address space and leaves the guest with
2126 * no usable address space. Resort to a linear search. We
2127 * already compensated for mmap_min_addr, so this should not
2128 * happen often. Probably means we got unlucky and host
2129 * address space randomization put a shared library somewhere
2130 * inconvenient.
2131 *
2132 * This is probably a good strategy if host_start, but is
2133 * probably a bad strategy if not, which means we got here
2134 * because of trouble with ARM commpage setup.
2135 */
2136 munmap((void *)real_start, real_size);
2137 current_start += qemu_host_page_size;
2138 if (host_start == current_start) {
2139 /* Theoretically possible if host doesn't have any suitably
2140 * aligned areas. Normally the first mmap will fail.
2141 */
2142 return (unsigned long)-1;
2143 }
2144 }
2145
2146 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2147
2148 return aligned_start;
2149 }
2150
2151 static void probe_guest_base(const char *image_name,
2152 abi_ulong loaddr, abi_ulong hiaddr)
2153 {
2154 /* Probe for a suitable guest base address, if the user has not set
2155 * it explicitly, and set guest_base appropriately.
2156 * In case of error we will print a suitable message and exit.
2157 */
2158 const char *errmsg;
2159 if (!have_guest_base && !reserved_va) {
2160 unsigned long host_start, real_start, host_size;
2161
2162 /* Round addresses to page boundaries. */
2163 loaddr &= qemu_host_page_mask;
2164 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2165
2166 if (loaddr < mmap_min_addr) {
2167 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2168 } else {
2169 host_start = loaddr;
2170 if (host_start != loaddr) {
2171 errmsg = "Address overflow loading ELF binary";
2172 goto exit_errmsg;
2173 }
2174 }
2175 host_size = hiaddr - loaddr;
2176
2177 /* Setup the initial guest memory space with ranges gleaned from
2178 * the ELF image that is being loaded.
2179 */
2180 real_start = init_guest_space(host_start, host_size, loaddr, false);
2181 if (real_start == (unsigned long)-1) {
2182 errmsg = "Unable to find space for application";
2183 goto exit_errmsg;
2184 }
2185 guest_base = real_start - loaddr;
2186
2187 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2188 TARGET_ABI_FMT_lx " to 0x%lx\n",
2189 loaddr, real_start);
2190 }
2191 return;
2192
2193 exit_errmsg:
2194 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2195 exit(-1);
2196 }
2197
2198
2199 /* Load an ELF image into the address space.
2200
2201 IMAGE_NAME is the filename of the image, to use in error messages.
2202 IMAGE_FD is the open file descriptor for the image.
2203
2204 BPRM_BUF is a copy of the beginning of the file; this of course
2205 contains the elf file header at offset 0. It is assumed that this
2206 buffer is sufficiently aligned to present no problems to the host
2207 in accessing data at aligned offsets within the buffer.
2208
2209 On return: INFO values will be filled in, as necessary or available. */
2210
2211 static void load_elf_image(const char *image_name, int image_fd,
2212 struct image_info *info, char **pinterp_name,
2213 char bprm_buf[BPRM_BUF_SIZE])
2214 {
2215 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2216 struct elf_phdr *phdr;
2217 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2218 int i, retval;
2219 const char *errmsg;
2220
2221 /* First of all, some simple consistency checks */
2222 errmsg = "Invalid ELF image for this architecture";
2223 if (!elf_check_ident(ehdr)) {
2224 goto exit_errmsg;
2225 }
2226 bswap_ehdr(ehdr);
2227 if (!elf_check_ehdr(ehdr)) {
2228 goto exit_errmsg;
2229 }
2230
2231 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2232 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2233 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2234 } else {
2235 phdr = (struct elf_phdr *) alloca(i);
2236 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2237 if (retval != i) {
2238 goto exit_read;
2239 }
2240 }
2241 bswap_phdr(phdr, ehdr->e_phnum);
2242
2243 info->nsegs = 0;
2244 info->pt_dynamic_addr = 0;
2245
2246 mmap_lock();
2247
2248 /* Find the maximum size of the image and allocate an appropriate
2249 amount of memory to handle that. */
2250 loaddr = -1, hiaddr = 0;
2251 info->alignment = 0;
2252 for (i = 0; i < ehdr->e_phnum; ++i) {
2253 if (phdr[i].p_type == PT_LOAD) {
2254 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2255 if (a < loaddr) {
2256 loaddr = a;
2257 }
2258 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2259 if (a > hiaddr) {
2260 hiaddr = a;
2261 }
2262 ++info->nsegs;
2263 info->alignment |= phdr[i].p_align;
2264 }
2265 }
2266
2267 load_addr = loaddr;
2268 if (ehdr->e_type == ET_DYN) {
2269 /* The image indicates that it can be loaded anywhere. Find a
2270 location that can hold the memory space required. If the
2271 image is pre-linked, LOADDR will be non-zero. Since we do
2272 not supply MAP_FIXED here we'll use that address if and
2273 only if it remains available. */
2274 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2275 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2276 -1, 0);
2277 if (load_addr == -1) {
2278 goto exit_perror;
2279 }
2280 } else if (pinterp_name != NULL) {
2281 /* This is the main executable. Make sure that the low
2282 address does not conflict with MMAP_MIN_ADDR or the
2283 QEMU application itself. */
2284 probe_guest_base(image_name, loaddr, hiaddr);
2285 }
2286 load_bias = load_addr - loaddr;
2287
2288 if (elf_is_fdpic(ehdr)) {
2289 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2290 g_malloc(sizeof(*loadsegs) * info->nsegs);
2291
2292 for (i = 0; i < ehdr->e_phnum; ++i) {
2293 switch (phdr[i].p_type) {
2294 case PT_DYNAMIC:
2295 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2296 break;
2297 case PT_LOAD:
2298 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2299 loadsegs->p_vaddr = phdr[i].p_vaddr;
2300 loadsegs->p_memsz = phdr[i].p_memsz;
2301 ++loadsegs;
2302 break;
2303 }
2304 }
2305 }
2306
2307 info->load_bias = load_bias;
2308 info->load_addr = load_addr;
2309 info->entry = ehdr->e_entry + load_bias;
2310 info->start_code = -1;
2311 info->end_code = 0;
2312 info->start_data = -1;
2313 info->end_data = 0;
2314 info->brk = 0;
2315 info->elf_flags = ehdr->e_flags;
2316
2317 for (i = 0; i < ehdr->e_phnum; i++) {
2318 struct elf_phdr *eppnt = phdr + i;
2319 if (eppnt->p_type == PT_LOAD) {
2320 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2321 int elf_prot = 0;
2322
2323 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2324 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2325 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2326
2327 vaddr = load_bias + eppnt->p_vaddr;
2328 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2329 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2330 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2331
2332 error = target_mmap(vaddr_ps, vaddr_len,
2333 elf_prot, MAP_PRIVATE | MAP_FIXED,
2334 image_fd, eppnt->p_offset - vaddr_po);
2335 if (error == -1) {
2336 goto exit_perror;
2337 }
2338
2339 vaddr_ef = vaddr + eppnt->p_filesz;
2340 vaddr_em = vaddr + eppnt->p_memsz;
2341
2342 /* If the load segment requests extra zeros (e.g. bss), map it. */
2343 if (vaddr_ef < vaddr_em) {
2344 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2345 }
2346
2347 /* Find the full program boundaries. */
2348 if (elf_prot & PROT_EXEC) {
2349 if (vaddr < info->start_code) {
2350 info->start_code = vaddr;
2351 }
2352 if (vaddr_ef > info->end_code) {
2353 info->end_code = vaddr_ef;
2354 }
2355 }
2356 if (elf_prot & PROT_WRITE) {
2357 if (vaddr < info->start_data) {
2358 info->start_data = vaddr;
2359 }
2360 if (vaddr_ef > info->end_data) {
2361 info->end_data = vaddr_ef;
2362 }
2363 if (vaddr_em > info->brk) {
2364 info->brk = vaddr_em;
2365 }
2366 }
2367 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2368 char *interp_name;
2369
2370 if (*pinterp_name) {
2371 errmsg = "Multiple PT_INTERP entries";
2372 goto exit_errmsg;
2373 }
2374 interp_name = malloc(eppnt->p_filesz);
2375 if (!interp_name) {
2376 goto exit_perror;
2377 }
2378
2379 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2380 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2381 eppnt->p_filesz);
2382 } else {
2383 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2384 eppnt->p_offset);
2385 if (retval != eppnt->p_filesz) {
2386 goto exit_perror;
2387 }
2388 }
2389 if (interp_name[eppnt->p_filesz - 1] != 0) {
2390 errmsg = "Invalid PT_INTERP entry";
2391 goto exit_errmsg;
2392 }
2393 *pinterp_name = interp_name;
2394 #ifdef TARGET_MIPS
2395 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2396 Mips_elf_abiflags_v0 abiflags;
2397 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2398 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2399 goto exit_errmsg;
2400 }
2401 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2402 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2403 sizeof(Mips_elf_abiflags_v0));
2404 } else {
2405 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2406 eppnt->p_offset);
2407 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2408 goto exit_perror;
2409 }
2410 }
2411 bswap_mips_abiflags(&abiflags);
2412 info->fp_abi = abiflags.fp_abi;
2413 #endif
2414 }
2415 }
2416
2417 if (info->end_data == 0) {
2418 info->start_data = info->end_code;
2419 info->end_data = info->end_code;
2420 info->brk = info->end_code;
2421 }
2422
2423 if (qemu_log_enabled()) {
2424 load_symbols(ehdr, image_fd, load_bias);
2425 }
2426
2427 mmap_unlock();
2428
2429 close(image_fd);
2430 return;
2431
2432 exit_read:
2433 if (retval >= 0) {
2434 errmsg = "Incomplete read of file header";
2435 goto exit_errmsg;
2436 }
2437 exit_perror:
2438 errmsg = strerror(errno);
2439 exit_errmsg:
2440 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2441 exit(-1);
2442 }
2443
2444 static void load_elf_interp(const char *filename, struct image_info *info,
2445 char bprm_buf[BPRM_BUF_SIZE])
2446 {
2447 int fd, retval;
2448
2449 fd = open(path(filename), O_RDONLY);
2450 if (fd < 0) {
2451 goto exit_perror;
2452 }
2453
2454 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2455 if (retval < 0) {
2456 goto exit_perror;
2457 }
2458 if (retval < BPRM_BUF_SIZE) {
2459 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2460 }
2461
2462 load_elf_image(filename, fd, info, NULL, bprm_buf);
2463 return;
2464
2465 exit_perror:
2466 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2467 exit(-1);
2468 }
2469
2470 static int symfind(const void *s0, const void *s1)
2471 {
2472 target_ulong addr = *(target_ulong *)s0;
2473 struct elf_sym *sym = (struct elf_sym *)s1;
2474 int result = 0;
2475 if (addr < sym->st_value) {
2476 result = -1;
2477 } else if (addr >= sym->st_value + sym->st_size) {
2478 result = 1;
2479 }
2480 return result;
2481 }
2482
2483 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2484 {
2485 #if ELF_CLASS == ELFCLASS32
2486 struct elf_sym *syms = s->disas_symtab.elf32;
2487 #else
2488 struct elf_sym *syms = s->disas_symtab.elf64;
2489 #endif
2490
2491 // binary search
2492 struct elf_sym *sym;
2493
2494 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2495 if (sym != NULL) {
2496 return s->disas_strtab + sym->st_name;
2497 }
2498
2499 return "";
2500 }
2501
2502 /* FIXME: This should use elf_ops.h */
2503 static int symcmp(const void *s0, const void *s1)
2504 {
2505 struct elf_sym *sym0 = (struct elf_sym *)s0;
2506 struct elf_sym *sym1 = (struct elf_sym *)s1;
2507 return (sym0->st_value < sym1->st_value)
2508 ? -1
2509 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2510 }
2511
2512 /* Best attempt to load symbols from this ELF object. */
2513 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2514 {
2515 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2516 uint64_t segsz;
2517 struct elf_shdr *shdr;
2518 char *strings = NULL;
2519 struct syminfo *s = NULL;
2520 struct elf_sym *new_syms, *syms = NULL;
2521
2522 shnum = hdr->e_shnum;
2523 i = shnum * sizeof(struct elf_shdr);
2524 shdr = (struct elf_shdr *)alloca(i);
2525 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2526 return;
2527 }
2528
2529 bswap_shdr(shdr, shnum);
2530 for (i = 0; i < shnum; ++i) {
2531 if (shdr[i].sh_type == SHT_SYMTAB) {
2532 sym_idx = i;
2533 str_idx = shdr[i].sh_link;
2534 goto found;
2535 }
2536 }
2537
2538 /* There will be no symbol table if the file was stripped. */
2539 return;
2540
2541 found:
2542 /* Now know where the strtab and symtab are. Snarf them. */
2543 s = g_try_new(struct syminfo, 1);
2544 if (!s) {
2545 goto give_up;
2546 }
2547
2548 segsz = shdr[str_idx].sh_size;
2549 s->disas_strtab = strings = g_try_malloc(segsz);
2550 if (!strings ||
2551 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2552 goto give_up;
2553 }
2554
2555 segsz = shdr[sym_idx].sh_size;
2556 syms = g_try_malloc(segsz);
2557 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2558 goto give_up;
2559 }
2560
2561 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2562 /* Implausibly large symbol table: give up rather than ploughing
2563 * on with the number of symbols calculation overflowing
2564 */
2565 goto give_up;
2566 }
2567 nsyms = segsz / sizeof(struct elf_sym);
2568 for (i = 0; i < nsyms; ) {
2569 bswap_sym(syms + i);
2570 /* Throw away entries which we do not need. */
2571 if (syms[i].st_shndx == SHN_UNDEF
2572 || syms[i].st_shndx >= SHN_LORESERVE
2573 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2574 if (i < --nsyms) {
2575 syms[i] = syms[nsyms];
2576 }
2577 } else {
2578 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2579 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2580 syms[i].st_value &= ~(target_ulong)1;
2581 #endif
2582 syms[i].st_value += load_bias;
2583 i++;
2584 }
2585 }
2586
2587 /* No "useful" symbol. */
2588 if (nsyms == 0) {
2589 goto give_up;
2590 }
2591
2592 /* Attempt to free the storage associated with the local symbols
2593 that we threw away. Whether or not this has any effect on the
2594 memory allocation depends on the malloc implementation and how
2595 many symbols we managed to discard. */
2596 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2597 if (new_syms == NULL) {
2598 goto give_up;
2599 }
2600 syms = new_syms;
2601
2602 qsort(syms, nsyms, sizeof(*syms), symcmp);
2603
2604 s->disas_num_syms = nsyms;
2605 #if ELF_CLASS == ELFCLASS32
2606 s->disas_symtab.elf32 = syms;
2607 #else
2608 s->disas_symtab.elf64 = syms;
2609 #endif
2610 s->lookup_symbol = lookup_symbolxx;
2611 s->next = syminfos;
2612 syminfos = s;
2613
2614 return;
2615
2616 give_up:
2617 g_free(s);
2618 g_free(strings);
2619 g_free(syms);
2620 }
2621
2622 uint32_t get_elf_eflags(int fd)
2623 {
2624 struct elfhdr ehdr;
2625 off_t offset;
2626 int ret;
2627
2628 /* Read ELF header */
2629 offset = lseek(fd, 0, SEEK_SET);
2630 if (offset == (off_t) -1) {
2631 return 0;
2632 }
2633 ret = read(fd, &ehdr, sizeof(ehdr));
2634 if (ret < sizeof(ehdr)) {
2635 return 0;
2636 }
2637 offset = lseek(fd, offset, SEEK_SET);
2638 if (offset == (off_t) -1) {
2639 return 0;
2640 }
2641
2642 /* Check ELF signature */
2643 if (!elf_check_ident(&ehdr)) {
2644 return 0;
2645 }
2646
2647 /* check header */
2648 bswap_ehdr(&ehdr);
2649 if (!elf_check_ehdr(&ehdr)) {
2650 return 0;
2651 }
2652
2653 /* return architecture id */
2654 return ehdr.e_flags;
2655 }
2656
2657 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2658 {
2659 struct image_info interp_info;
2660 struct elfhdr elf_ex;
2661 char *elf_interpreter = NULL;
2662 char *scratch;
2663
2664 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2665
2666 load_elf_image(bprm->filename, bprm->fd, info,
2667 &elf_interpreter, bprm->buf);
2668
2669 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2670 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2671 when we load the interpreter. */
2672 elf_ex = *(struct elfhdr *)bprm->buf;
2673
2674 /* Do this so that we can load the interpreter, if need be. We will
2675 change some of these later */
2676 bprm->p = setup_arg_pages(bprm, info);
2677
2678 scratch = g_new0(char, TARGET_PAGE_SIZE);
2679 if (STACK_GROWS_DOWN) {
2680 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2681 bprm->p, info->stack_limit);
2682 info->file_string = bprm->p;
2683 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2684 bprm->p, info->stack_limit);
2685 info->env_strings = bprm->p;
2686 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2687 bprm->p, info->stack_limit);
2688 info->arg_strings = bprm->p;
2689 } else {
2690 info->arg_strings = bprm->p;
2691 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2692 bprm->p, info->stack_limit);
2693 info->env_strings = bprm->p;
2694 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2695 bprm->p, info->stack_limit);
2696 info->file_string = bprm->p;
2697 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2698 bprm->p, info->stack_limit);
2699 }
2700
2701 g_free(scratch);
2702
2703 if (!bprm->p) {
2704 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2705 exit(-1);
2706 }
2707
2708 if (elf_interpreter) {
2709 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2710
2711 /* If the program interpreter is one of these two, then assume
2712 an iBCS2 image. Otherwise assume a native linux image. */
2713
2714 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2715 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2716 info->personality = PER_SVR4;
2717
2718 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2719 and some applications "depend" upon this behavior. Since
2720 we do not have the power to recompile these, we emulate
2721 the SVr4 behavior. Sigh. */
2722 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2723 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2724 }
2725 #ifdef TARGET_MIPS
2726 info->interp_fp_abi = interp_info.fp_abi;
2727 #endif
2728 }
2729
2730 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2731 info, (elf_interpreter ? &interp_info : NULL));
2732 info->start_stack = bprm->p;
2733
2734 /* If we have an interpreter, set that as the program's entry point.
2735 Copy the load_bias as well, to help PPC64 interpret the entry
2736 point as a function descriptor. Do this after creating elf tables
2737 so that we copy the original program entry point into the AUXV. */
2738 if (elf_interpreter) {
2739 info->load_bias = interp_info.load_bias;
2740 info->entry = interp_info.entry;
2741 free(elf_interpreter);
2742 }
2743
2744 #ifdef USE_ELF_CORE_DUMP
2745 bprm->core_dump = &elf_core_dump;
2746 #endif
2747
2748 return 0;
2749 }
2750
2751 #ifdef USE_ELF_CORE_DUMP
2752 /*
2753 * Definitions to generate Intel SVR4-like core files.
2754 * These mostly have the same names as the SVR4 types with "target_elf_"
2755 * tacked on the front to prevent clashes with linux definitions,
2756 * and the typedef forms have been avoided. This is mostly like
2757 * the SVR4 structure, but more Linuxy, with things that Linux does
2758 * not support and which gdb doesn't really use excluded.
2759 *
2760 * Fields we don't dump (their contents is zero) in linux-user qemu
2761 * are marked with XXX.
2762 *
2763 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2764 *
2765 * Porting ELF coredump for target is (quite) simple process. First you
2766 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2767 * the target resides):
2768 *
2769 * #define USE_ELF_CORE_DUMP
2770 *
2771 * Next you define type of register set used for dumping. ELF specification
2772 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2773 *
2774 * typedef <target_regtype> target_elf_greg_t;
2775 * #define ELF_NREG <number of registers>
2776 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2777 *
2778 * Last step is to implement target specific function that copies registers
2779 * from given cpu into just specified register set. Prototype is:
2780 *
2781 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2782 * const CPUArchState *env);
2783 *
2784 * Parameters:
2785 * regs - copy register values into here (allocated and zeroed by caller)
2786 * env - copy registers from here
2787 *
2788 * Example for ARM target is provided in this file.
2789 */
2790
2791 /* An ELF note in memory */
2792 struct memelfnote {
2793 const char *name;
2794 size_t namesz;
2795 size_t namesz_rounded;
2796 int type;
2797 size_t datasz;
2798 size_t datasz_rounded;
2799 void *data;
2800 size_t notesz;
2801 };
2802
2803 struct target_elf_siginfo {
2804 abi_int si_signo; /* signal number */
2805 abi_int si_code; /* extra code */
2806 abi_int si_errno; /* errno */
2807 };
2808
2809 struct target_elf_prstatus {
2810 struct target_elf_siginfo pr_info; /* Info associated with signal */
2811 abi_short pr_cursig; /* Current signal */
2812 abi_ulong pr_sigpend; /* XXX */
2813 abi_ulong pr_sighold; /* XXX */
2814 target_pid_t pr_pid;
2815 target_pid_t pr_ppid;
2816 target_pid_t pr_pgrp;
2817 target_pid_t pr_sid;
2818 struct target_timeval pr_utime; /* XXX User time */
2819 struct target_timeval pr_stime; /* XXX System time */
2820 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2821 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2822 target_elf_gregset_t pr_reg; /* GP registers */
2823 abi_int pr_fpvalid; /* XXX */
2824 };
2825
2826 #define ELF_PRARGSZ (80) /* Number of chars for args */
2827
2828 struct target_elf_prpsinfo {
2829 char pr_state; /* numeric process state */
2830 char pr_sname; /* char for pr_state */
2831 char pr_zomb; /* zombie */
2832 char pr_nice; /* nice val */
2833 abi_ulong pr_flag; /* flags */
2834 target_uid_t pr_uid;
2835 target_gid_t pr_gid;
2836 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2837 /* Lots missing */
2838 char pr_fname[16]; /* filename of executable */
2839 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2840 };
2841
2842 /* Here is the structure in which status of each thread is captured. */
2843 struct elf_thread_status {
2844 QTAILQ_ENTRY(elf_thread_status) ets_link;
2845 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2846 #if 0
2847 elf_fpregset_t fpu; /* NT_PRFPREG */
2848 struct task_struct *thread;
2849 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2850 #endif
2851 struct memelfnote notes[1];
2852 int num_notes;
2853 };
2854
2855 struct elf_note_info {
2856 struct memelfnote *notes;
2857 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2858 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2859
2860 QTAILQ_HEAD(, elf_thread_status) thread_list;
2861 #if 0
2862 /*
2863 * Current version of ELF coredump doesn't support
2864 * dumping fp regs etc.
2865 */
2866 elf_fpregset_t *fpu;
2867 elf_fpxregset_t *xfpu;
2868 int thread_status_size;
2869 #endif
2870 int notes_size;
2871 int numnote;
2872 };
2873
2874 struct vm_area_struct {
2875 target_ulong vma_start; /* start vaddr of memory region */
2876 target_ulong vma_end; /* end vaddr of memory region */
2877 abi_ulong vma_flags; /* protection etc. flags for the region */
2878 QTAILQ_ENTRY(vm_area_struct) vma_link;
2879 };
2880
2881 struct mm_struct {
2882 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2883 int mm_count; /* number of mappings */
2884 };
2885
2886 static struct mm_struct *vma_init(void);
2887 static void vma_delete(struct mm_struct *);
2888 static int vma_add_mapping(struct mm_struct *, target_ulong,
2889 target_ulong, abi_ulong);
2890 static int vma_get_mapping_count(const struct mm_struct *);
2891 static struct vm_area_struct *vma_first(const struct mm_struct *);
2892 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2893 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2894 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2895 unsigned long flags);
2896
2897 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2898 static void fill_note(struct memelfnote *, const char *, int,
2899 unsigned int, void *);
2900 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2901 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2902 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2903 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2904 static size_t note_size(const struct memelfnote *);
2905 static void free_note_info(struct elf_note_info *);
2906 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2907 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2908 static int core_dump_filename(const TaskState *, char *, size_t);
2909
2910 static int dump_write(int, const void *, size_t);
2911 static int write_note(struct memelfnote *, int);
2912 static int write_note_info(struct elf_note_info *, int);
2913
2914 #ifdef BSWAP_NEEDED
2915 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2916 {
2917 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2918 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2919 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2920 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2921 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2922 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2923 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2924 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2925 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2926 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2927 /* cpu times are not filled, so we skip them */
2928 /* regs should be in correct format already */
2929 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2930 }
2931
2932 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2933 {
2934 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2935 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2936 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2937 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2938 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2939 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2940 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2941 }
2942
2943 static void bswap_note(struct elf_note *en)
2944 {
2945 bswap32s(&en->n_namesz);
2946 bswap32s(&en->n_descsz);
2947 bswap32s(&en->n_type);
2948 }
2949 #else
2950 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2951 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2952 static inline void bswap_note(struct elf_note *en) { }
2953 #endif /* BSWAP_NEEDED */
2954
2955 /*
2956 * Minimal support for linux memory regions. These are needed
2957 * when we are finding out what memory exactly belongs to
2958 * emulated process. No locks needed here, as long as
2959 * thread that received the signal is stopped.
2960 */
2961
2962 static struct mm_struct *vma_init(void)
2963 {
2964 struct mm_struct *mm;
2965
2966 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2967 return (NULL);
2968
2969 mm->mm_count = 0;
2970 QTAILQ_INIT(&mm->mm_mmap);
2971
2972 return (mm);
2973 }
2974
2975 static void vma_delete(struct mm_struct *mm)
2976 {
2977 struct vm_area_struct *vma;
2978
2979 while ((vma = vma_first(mm)) != NULL) {
2980 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2981 g_free(vma);
2982 }
2983 g_free(mm);
2984 }
2985
2986 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2987 target_ulong end, abi_ulong flags)
2988 {
2989 struct vm_area_struct *vma;
2990
2991 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2992 return (-1);
2993
2994 vma->vma_start = start;
2995 vma->vma_end = end;
2996 vma->vma_flags = flags;
2997
2998 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2999 mm->mm_count++;
3000
3001 return (0);
3002 }
3003
3004 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3005 {
3006 return (QTAILQ_FIRST(&mm->mm_mmap));
3007 }
3008
3009 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3010 {
3011 return (QTAILQ_NEXT(vma, vma_link));
3012 }
3013
3014 static int vma_get_mapping_count(const struct mm_struct *mm)
3015 {
3016 return (mm->mm_count);
3017 }
3018
3019 /*
3020 * Calculate file (dump) size of given memory region.
3021 */
3022 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3023 {
3024 /* if we cannot even read the first page, skip it */
3025 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3026 return (0);
3027
3028 /*
3029 * Usually we don't dump executable pages as they contain
3030 * non-writable code that debugger can read directly from
3031 * target library etc. However, thread stacks are marked
3032 * also executable so we read in first page of given region
3033 * and check whether it contains elf header. If there is
3034 * no elf header, we dump it.
3035 */
3036 if (vma->vma_flags & PROT_EXEC) {
3037 char page[TARGET_PAGE_SIZE];
3038
3039 copy_from_user(page, vma->vma_start, sizeof (page));
3040 if ((page[EI_MAG0] == ELFMAG0) &&
3041 (page[EI_MAG1] == ELFMAG1) &&
3042 (page[EI_MAG2] == ELFMAG2) &&
3043 (page[EI_MAG3] == ELFMAG3)) {
3044 /*
3045 * Mappings are possibly from ELF binary. Don't dump
3046 * them.
3047 */
3048 return (0);
3049 }
3050 }
3051
3052 return (vma->vma_end - vma->vma_start);
3053 }
3054
3055 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3056 unsigned long flags)
3057 {
3058 struct mm_struct *mm = (struct mm_struct *)priv;
3059
3060 vma_add_mapping(mm, start, end, flags);
3061 return (0);
3062 }
3063
3064 static void fill_note(struct memelfnote *note, const char *name, int type,
3065 unsigned int sz, void *data)
3066 {
3067 unsigned int namesz;
3068
3069 namesz = strlen(name) + 1;
3070 note->name = name;
3071 note->namesz = namesz;
3072 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3073 note->type = type;
3074 note->datasz = sz;
3075 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3076
3077 note->data = data;
3078
3079 /*
3080 * We calculate rounded up note size here as specified by
3081 * ELF document.
3082 */
3083 note->notesz = sizeof (struct elf_note) +
3084 note->namesz_rounded + note->datasz_rounded;
3085 }
3086
3087 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3088 uint32_t flags)
3089 {
3090 (void) memset(elf, 0, sizeof(*elf));
3091
3092 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3093 elf->e_ident[EI_CLASS] = ELF_CLASS;
3094 elf->e_ident[EI_DATA] = ELF_DATA;
3095 elf->e_ident[EI_VERSION] = EV_CURRENT;
3096 elf->e_ident[EI_OSABI] = ELF_OSABI;
3097
3098 elf->e_type = ET_CORE;
3099 elf->e_machine = machine;
3100 elf->e_version = EV_CURRENT;
3101 elf->e_phoff = sizeof(struct elfhdr);
3102 elf->e_flags = flags;
3103 elf->e_ehsize = sizeof(struct elfhdr);
3104 elf->e_phentsize = sizeof(struct elf_phdr);
3105 elf->e_phnum = segs;
3106
3107 bswap_ehdr(elf);
3108 }
3109
3110 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3111 {
3112 phdr->p_type = PT_NOTE;
3113 phdr->p_offset = offset;
3114 phdr->p_vaddr = 0;
3115 phdr->p_paddr = 0;
3116 phdr->p_filesz = sz;
3117 phdr->p_memsz = 0;
3118 phdr->p_flags = 0;
3119 phdr->p_align = 0;
3120
3121 bswap_phdr(phdr, 1);
3122 }
3123
3124 static size_t note_size(const struct memelfnote *note)
3125 {
3126 return (note->notesz);
3127 }
3128
3129 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3130 const TaskState *ts, int signr)
3131 {
3132 (void) memset(prstatus, 0, sizeof (*prstatus));
3133 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3134 prstatus->pr_pid = ts->ts_tid;
3135 prstatus->pr_ppid = getppid();
3136 prstatus->pr_pgrp = getpgrp();
3137 prstatus->pr_sid = getsid(0);
3138
3139 bswap_prstatus(prstatus);
3140 }
3141
3142 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3143 {
3144 char *base_filename;
3145 unsigned int i, len;
3146
3147 (void) memset(psinfo, 0, sizeof (*psinfo));
3148
3149 len = ts->info->arg_end - ts->info->arg_start;
3150 if (len >= ELF_PRARGSZ)
3151 len = ELF_PRARGSZ - 1;
3152 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3153 return -EFAULT;
3154 for (i = 0; i < len; i++)
3155 if (psinfo->pr_psargs[i] == 0)
3156 psinfo->pr_psargs[i] = ' ';
3157 psinfo->pr_psargs[len] = 0;
3158
3159 psinfo->pr_pid = getpid();
3160 psinfo->pr_ppid = getppid();
3161 psinfo->pr_pgrp = getpgrp();
3162 psinfo->pr_sid = getsid(0);
3163 psinfo->pr_uid = getuid();
3164 psinfo->pr_gid = getgid();
3165
3166 base_filename = g_path_get_basename(ts->bprm->filename);
3167 /*
3168 * Using strncpy here is fine: at max-length,
3169 * this field is not NUL-terminated.
3170 */
3171 (void) strncpy(psinfo->pr_fname, base_filename,
3172 sizeof(psinfo->pr_fname));
3173
3174 g_free(base_filename);
3175 bswap_psinfo(psinfo);
3176 return (0);
3177 }
3178
3179 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3180 {
3181 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3182 elf_addr_t orig_auxv = auxv;
3183 void *ptr;
3184 int len = ts->info->auxv_len;
3185
3186 /*
3187 * Auxiliary vector is stored in target process stack. It contains
3188 * {type, value} pairs that we need to dump into note. This is not
3189 * strictly necessary but we do it here for sake of completeness.
3190 */
3191
3192 /* read in whole auxv vector and copy it to memelfnote */
3193 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3194 if (ptr != NULL) {
3195 fill_note(note, "CORE", NT_AUXV, len, ptr);
3196 unlock_user(ptr, auxv, len);
3197 }
3198 }
3199
3200 /*
3201 * Constructs name of coredump file. We have following convention
3202 * for the name:
3203 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3204 *
3205 * Returns 0 in case of success, -1 otherwise (errno is set).
3206 */
3207 static int core_dump_filename(const TaskState *ts, char *buf,
3208 size_t bufsize)
3209 {
3210 char timestamp[64];
3211 char *base_filename = NULL;
3212 struct timeval tv;
3213 struct tm tm;
3214
3215 assert(bufsize >= PATH_MAX);
3216
3217 if (gettimeofday(&tv, NULL) < 0) {
3218 (void) fprintf(stderr, "unable to get current timestamp: %s",
3219 strerror(errno));
3220 return (-1);
3221 }
3222
3223 base_filename = g_path_get_basename(ts->bprm->filename);
3224 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3225 localtime_r(&tv.tv_sec, &tm));
3226 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3227 base_filename, timestamp, (int)getpid());
3228 g_free(base_filename);
3229
3230 return (0);
3231 }
3232
3233 static int dump_write(int fd, const void *ptr, size_t size)
3234 {
3235 const char *bufp = (const char *)ptr;
3236 ssize_t bytes_written, bytes_left;
3237 struct rlimit dumpsize;
3238 off_t pos;
3239
3240 bytes_written = 0;
3241 getrlimit(RLIMIT_CORE, &dumpsize);
3242 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3243 if (errno == ESPIPE) { /* not a seekable stream */
3244 bytes_left = size;
3245 } else {
3246 return pos;
3247 }
3248 } else {
3249 if (dumpsize.rlim_cur <= pos) {
3250 return -1;
3251 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3252 bytes_left = size;
3253 } else {
3254 size_t limit_left=dumpsize.rlim_cur - pos;
3255 bytes_left = limit_left >= size ? size : limit_left ;
3256 }
3257 }
3258
3259 /*
3260 * In normal conditions, single write(2) should do but
3261 * in case of socket etc. this mechanism is more portable.
3262 */
3263 do {
3264 bytes_written = write(fd, bufp, bytes_left);
3265 if (bytes_written < 0) {
3266 if (errno == EINTR)
3267 continue;
3268 return (-1);
3269 } else if (bytes_written == 0) { /* eof */
3270 return (-1);
3271 }
3272 bufp += bytes_written;
3273 bytes_left -= bytes_written;
3274 } while (bytes_left > 0);
3275
3276 return (0);
3277 }
3278
3279 static int write_note(struct memelfnote *men, int fd)
3280 {
3281 struct elf_note en;
3282
3283 en.n_namesz = men->namesz;
3284 en.n_type = men->type;
3285 en.n_descsz = men->datasz;
3286
3287 bswap_note(&en);
3288
3289 if (dump_write(fd, &en, sizeof(en)) != 0)
3290 return (-1);
3291 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3292 return (-1);
3293 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3294 return (-1);
3295
3296 return (0);
3297 }
3298
3299 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3300 {
3301 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3302 TaskState *ts = (TaskState *)cpu->opaque;
3303 struct elf_thread_status *ets;
3304
3305 ets = g_malloc0(sizeof (*ets));
3306 ets->num_notes = 1; /* only prstatus is dumped */
3307 fill_prstatus(&ets->prstatus, ts, 0);
3308 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3309 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3310 &ets->prstatus);
3311
3312 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3313
3314 info->notes_size += note_size(&ets->notes[0]);
3315 }
3316
3317 static void init_note_info(struct elf_note_info *info)
3318 {
3319 /* Initialize the elf_note_info structure so that it is at
3320 * least safe to call free_note_info() on it. Must be
3321 * called before calling fill_note_info().
3322 */
3323 memset(info, 0, sizeof (*info));
3324 QTAILQ_INIT(&info->thread_list);
3325 }
3326
3327 static int fill_note_info(struct elf_note_info *info,
3328 long signr, const CPUArchState *env)
3329 {
3330 #define NUMNOTES 3
3331 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3332 TaskState *ts = (TaskState *)cpu->opaque;
3333 int i;
3334
3335 info->notes = g_new0(struct memelfnote, NUMNOTES);
3336 if (info->notes == NULL)
3337 return (-ENOMEM);
3338 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3339 if (info->prstatus == NULL)
3340 return (-ENOMEM);
3341 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3342 if (info->prstatus == NULL)
3343 return (-ENOMEM);
3344
3345 /*
3346 * First fill in status (and registers) of current thread
3347 * including process info & aux vector.
3348 */
3349 fill_prstatus(info->prstatus, ts, signr);
3350 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3351 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3352 sizeof (*info->prstatus), info->prstatus);
3353 fill_psinfo(info->psinfo, ts);
3354 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3355 sizeof (*info->psinfo), info->psinfo);
3356 fill_auxv_note(&info->notes[2], ts);
3357 info->numnote = 3;
3358
3359 info->notes_size = 0;
3360 for (i = 0; i < info->numnote; i++)
3361 info->notes_size += note_size(&info->notes[i]);
3362
3363 /* read and fill status of all threads */
3364 cpu_list_lock();
3365 CPU_FOREACH(cpu) {
3366 if (cpu == thread_cpu) {
3367 continue;
3368 }
3369 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3370 }
3371 cpu_list_unlock();
3372
3373 return (0);
3374 }
3375
3376 static void free_note_info(struct elf_note_info *info)
3377 {
3378 struct elf_thread_status *ets;
3379
3380 while (!QTAILQ_EMPTY(&info->thread_list)) {
3381 ets = QTAILQ_FIRST(&info->thread_list);
3382 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3383 g_free(ets);
3384 }
3385
3386 g_free(info->prstatus);
3387 g_free(info->psinfo);
3388 g_free(info->notes);
3389 }
3390
3391 static int write_note_info(struct elf_note_info *info, int fd)
3392 {
3393 struct elf_thread_status *ets;
3394 int i, error = 0;
3395
3396 /* write prstatus, psinfo and auxv for current thread */
3397 for (i = 0; i < info->numnote; i++)
3398 if ((error = write_note(&info->notes[i], fd)) != 0)
3399 return (error);
3400
3401 /* write prstatus for each thread */
3402 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3403 if ((error = write_note(&ets->notes[0], fd)) != 0)
3404 return (error);
3405 }
3406
3407 return (0);
3408 }
3409
3410 /*
3411 * Write out ELF coredump.
3412 *
3413 * See documentation of ELF object file format in:
3414 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3415 *
3416 * Coredump format in linux is following:
3417 *
3418 * 0 +----------------------+ \
3419 * | ELF header | ET_CORE |
3420 * +----------------------+ |
3421 * | ELF program headers | |--- headers
3422 * | - NOTE section | |
3423 * | - PT_LOAD sections | |
3424 * +----------------------+ /
3425 * | NOTEs: |
3426 * | - NT_PRSTATUS |
3427 * | - NT_PRSINFO |
3428 * | - NT_AUXV |
3429 * +----------------------+ <-- aligned to target page
3430 * | Process memory dump |
3431 * : :
3432 * . .
3433 * : :
3434 * | |
3435 * +----------------------+
3436 *
3437 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3438 * NT_PRSINFO -> struct elf_prpsinfo
3439 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3440 *
3441 * Format follows System V format as close as possible. Current
3442 * version limitations are as follows:
3443 * - no floating point registers are dumped
3444 *
3445 * Function returns 0 in case of success, negative errno otherwise.
3446 *
3447 * TODO: make this work also during runtime: it should be
3448 * possible to force coredump from running process and then
3449 * continue processing. For example qemu could set up SIGUSR2
3450 * handler (provided that target process haven't registered
3451 * handler for that) that does the dump when signal is received.
3452 */
3453 static int elf_core_dump(int signr, const CPUArchState *env)
3454 {
3455 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3456 const TaskState *ts = (const TaskState *)cpu->opaque;
3457 struct vm_area_struct *vma = NULL;
3458 char corefile[PATH_MAX];
3459 struct elf_note_info info;
3460 struct elfhdr elf;
3461 struct elf_phdr phdr;
3462 struct rlimit dumpsize;
3463 struct mm_struct *mm = NULL;
3464 off_t offset = 0, data_offset = 0;
3465 int segs = 0;
3466 int fd = -1;
3467
3468 init_note_info(&info);
3469
3470 errno = 0;
3471 getrlimit(RLIMIT_CORE, &dumpsize);
3472 if (dumpsize.rlim_cur == 0)
3473 return 0;
3474
3475 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3476 return (-errno);
3477
3478 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3479 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3480 return (-errno);
3481
3482 /*
3483 * Walk through target process memory mappings and
3484 * set up structure containing this information. After
3485 * this point vma_xxx functions can be used.
3486 */
3487 if ((mm = vma_init()) == NULL)
3488 goto out;
3489
3490 walk_memory_regions(mm, vma_walker);
3491 segs = vma_get_mapping_count(mm);
3492
3493 /*
3494 * Construct valid coredump ELF header. We also
3495 * add one more segment for notes.
3496 */
3497 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3498 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3499 goto out;
3500
3501 /* fill in the in-memory version of notes */
3502 if (fill_note_info(&info, signr, env) < 0)
3503 goto out;
3504
3505 offset += sizeof (elf); /* elf header */
3506 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3507
3508 /* write out notes program header */
3509 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3510
3511 offset += info.notes_size;
3512 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3513 goto out;
3514
3515 /*
3516 * ELF specification wants data to start at page boundary so
3517 * we align it here.
3518 */
3519 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3520
3521 /*
3522 * Write program headers for memory regions mapped in
3523 * the target process.
3524 */
3525 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3526 (void) memset(&phdr, 0, sizeof (phdr));
3527
3528 phdr.p_type = PT_LOAD;
3529 phdr.p_offset = offset;
3530 phdr.p_vaddr = vma->vma_start;
3531 phdr.p_paddr = 0;
3532 phdr.p_filesz = vma_dump_size(vma);
3533 offset += phdr.p_filesz;
3534 phdr.p_memsz = vma->vma_end - vma->vma_start;
3535 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3536 if (vma->vma_flags & PROT_WRITE)
3537 phdr.p_flags |= PF_W;
3538 if (vma->vma_flags & PROT_EXEC)
3539 phdr.p_flags |= PF_X;
3540 phdr.p_align = ELF_EXEC_PAGESIZE;
3541
3542 bswap_phdr(&phdr, 1);
3543 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3544 goto out;
3545 }
3546 }
3547
3548 /*
3549 * Next we write notes just after program headers. No
3550 * alignment needed here.
3551 */
3552 if (write_note_info(&info, fd) < 0)
3553 goto out;
3554
3555 /* align data to page boundary */
3556 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3557 goto out;
3558
3559 /*
3560 * Finally we can dump process memory into corefile as well.
3561 */
3562 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3563 abi_ulong addr;
3564 abi_ulong end;
3565
3566 end = vma->vma_start + vma_dump_size(vma);
3567
3568 for (addr = vma->vma_start; addr < end;
3569 addr += TARGET_PAGE_SIZE) {
3570 char page[TARGET_PAGE_SIZE];
3571 int error;
3572
3573 /*
3574 * Read in page from target process memory and
3575 * write it to coredump file.
3576 */
3577 error = copy_from_user(page, addr, sizeof (page));
3578 if (error != 0) {
3579 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3580 addr);
3581 errno = -error;
3582 goto out;
3583 }
3584 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3585 goto out;
3586 }
3587 }
3588
3589 out:
3590 free_note_info(&info);
3591 if (mm != NULL)
3592 vma_delete(mm);
3593 (void) close(fd);
3594
3595 if (errno != 0)
3596 return (-errno);
3597 return (0);
3598 }
3599 #endif /* USE_ELF_CORE_DUMP */
3600
3601 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3602 {
3603 init_thread(regs, infop);
3604 }