]> git.ipfire.org Git - thirdparty/glibc.git/blob - math/test-tgmath.c
c1cd3fc4576509213f0a16bb40f79f91df15a1ab
[thirdparty/glibc.git] / math / test-tgmath.c
1 /* Test compilation of tgmath macros.
2 Copyright (C) 2001-2025 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
18
19 #ifndef HAVE_MAIN
20 #include <float.h>
21 #include <math.h>
22 #include <stdint.h>
23 #include <stdio.h>
24 #include <tgmath.h>
25
26 //#define DEBUG
27
28 static void compile_test (void);
29 static void compile_testf (void);
30 #if LDBL_MANT_DIG > DBL_MANT_DIG
31 static void compile_testl (void);
32 #endif
33
34 float fx;
35 double dx;
36 long double lx;
37 const float fy = 1.25;
38 const double dy = 1.25;
39 const long double ly = 1.25;
40 complex float fz;
41 complex double dz;
42 complex long double lz;
43
44 volatile int count_double;
45 volatile int count_float;
46 volatile int count_ldouble;
47 volatile int count_cdouble;
48 volatile int count_cfloat;
49 volatile int count_cldouble;
50
51 #define NCALLS 194
52 #define NCALLS_INT 4
53 #define NCCALLS 47
54
55 static int
56 do_test (void)
57 {
58 int result = 0;
59
60 count_float = count_double = count_ldouble = 0;
61 count_cfloat = count_cdouble = count_cldouble = 0;
62 compile_test ();
63 if (count_float != 0 || count_cfloat != 0)
64 {
65 puts ("float function called for double test");
66 result = 1;
67 }
68 if (count_ldouble != 0 || count_cldouble != 0)
69 {
70 puts ("long double function called for double test");
71 result = 1;
72 }
73 if (count_double < NCALLS + NCALLS_INT)
74 {
75 printf ("double functions not called often enough (%d)\n",
76 count_double);
77 result = 1;
78 }
79 else if (count_double > NCALLS + NCALLS_INT)
80 {
81 printf ("double functions called too often (%d)\n",
82 count_double);
83 result = 1;
84 }
85 if (count_cdouble < NCCALLS)
86 {
87 printf ("double complex functions not called often enough (%d)\n",
88 count_cdouble);
89 result = 1;
90 }
91 else if (count_cdouble > NCCALLS)
92 {
93 printf ("double complex functions called too often (%d)\n",
94 count_cdouble);
95 result = 1;
96 }
97
98 count_float = count_double = count_ldouble = 0;
99 count_cfloat = count_cdouble = count_cldouble = 0;
100 compile_testf ();
101 if (count_double != 0 || count_cdouble != 0)
102 {
103 puts ("double function called for float test");
104 result = 1;
105 }
106 if (count_ldouble != 0 || count_cldouble != 0)
107 {
108 puts ("long double function called for float test");
109 result = 1;
110 }
111 if (count_float < NCALLS)
112 {
113 printf ("float functions not called often enough (%d)\n", count_float);
114 result = 1;
115 }
116 else if (count_float > NCALLS)
117 {
118 printf ("float functions called too often (%d)\n",
119 count_double);
120 result = 1;
121 }
122 if (count_cfloat < NCCALLS)
123 {
124 printf ("float complex functions not called often enough (%d)\n",
125 count_cfloat);
126 result = 1;
127 }
128 else if (count_cfloat > NCCALLS)
129 {
130 printf ("float complex functions called too often (%d)\n",
131 count_cfloat);
132 result = 1;
133 }
134
135 #if LDBL_MANT_DIG > DBL_MANT_DIG
136 count_float = count_double = count_ldouble = 0;
137 count_cfloat = count_cdouble = count_cldouble = 0;
138 compile_testl ();
139 if (count_float != 0 || count_cfloat != 0)
140 {
141 puts ("float function called for long double test");
142 result = 1;
143 }
144 if (count_double != 0 || count_cdouble != 0)
145 {
146 puts ("double function called for long double test");
147 result = 1;
148 }
149 if (count_ldouble < NCALLS)
150 {
151 printf ("long double functions not called often enough (%d)\n",
152 count_ldouble);
153 result = 1;
154 }
155 else if (count_ldouble > NCALLS)
156 {
157 printf ("long double functions called too often (%d)\n",
158 count_double);
159 result = 1;
160 }
161 if (count_cldouble < NCCALLS)
162 {
163 printf ("long double complex functions not called often enough (%d)\n",
164 count_cldouble);
165 result = 1;
166 }
167 else if (count_cldouble > NCCALLS)
168 {
169 printf ("long double complex functions called too often (%d)\n",
170 count_cldouble);
171 result = 1;
172 }
173 #endif
174
175 return result;
176 }
177
178 /* Now generate the three functions. */
179 #define HAVE_MAIN
180
181 #define F(name) name
182 #define TYPE double
183 #define TEST_INT 1
184 #define x dx
185 #define y dy
186 #define z dz
187 #define count count_double
188 #define ccount count_cdouble
189 #include "test-tgmath.c"
190
191 #define F(name) name##f
192 #define TYPE float
193 #define x fx
194 #define y fy
195 #define z fz
196 #define count count_float
197 #define ccount count_cfloat
198 #include "test-tgmath.c"
199
200 #if LDBL_MANT_DIG > DBL_MANT_DIG
201 #define F(name) name##l
202 #define TYPE long double
203 #define x lx
204 #define y ly
205 #define z lz
206 #define count count_ldouble
207 #define ccount count_cldouble
208 #include "test-tgmath.c"
209 #endif
210
211 #define TEST_FUNCTION do_test ()
212 #include "../test-skeleton.c"
213
214 #else
215
216 #ifdef DEBUG
217 #define P() puts (__FUNCTION__)
218 #else
219 #define P()
220 #endif
221
222 static void
223 F(compile_test) (void)
224 {
225 TYPE a, b, c = 1.0;
226 complex TYPE d;
227 int i = 2;
228 int saved_count;
229 long int j;
230 long long int k = 2;
231 intmax_t m;
232 uintmax_t um;
233
234 a = cos (cos (x));
235 a = cospi (cospi (x));
236 b = acospi (acospi (a));
237 b = acos (acos (a));
238 a = sin (sin (x));
239 b = sinpi (sinpi (x));
240 b = asinpi (asinpi (a));
241 b = asin (asin (a));
242 a = tan (tan (x));
243 b = tanpi (tanpi (x));
244 b = atanpi (atanpi (a));
245 b = atan (atan (a));
246 c = atan2 (atan2 (a, c), atan2 (b, x));
247 b = atan2pi (atan2pi (a, c), atan2pi (b, x));
248 a = cosh (cosh (x));
249 b = acosh (acosh (a));
250 a = sinh (sinh (x));
251 b = asinh (asinh (a));
252 a = tanh (tanh (x));
253 b = atanh (atanh (a));
254 a = exp (exp (x));
255 b = log (log (a));
256 a = log10 (log10 (x));
257 b = ldexp (ldexp (a, 1), 5);
258 a = frexp (frexp (x, &i), &i);
259 b = expm1 (expm1 (a));
260 a = exp2m1 (exp2m1 (b));
261 b = exp10m1 (exp10m1 (a));
262 a = log1p (log1p (x));
263 b = logb (logb (a));
264 a = exp2 (exp2 (x));
265 a = exp10 (exp10 (x));
266 b = log2 (log2 (a));
267 a = log2p1 (log2p1 (x));
268 a = log10p1 (log10p1 (x));
269 a = logp1 (logp1 (x));
270 a = pow (pow (x, a), pow (c, b));
271 b = pown (pown (x, k), k);
272 b = compoundn (compoundn (x, k), k);
273 b = rootn (rootn (x, k), k);
274 a = powr (powr (x, a), powr (c, b));
275 b = sqrt (sqrt (a));
276 a = rsqrt (rsqrt (b));
277 a = hypot (hypot (x, b), hypot (c, a));
278 b = cbrt (cbrt (a));
279 a = ceil (ceil (x));
280 b = fabs (fabs (a));
281 a = floor (floor (x));
282 b = fmod (fmod (a, b), fmod (c, x));
283 a = nearbyint (nearbyint (x));
284 b = round (round (a));
285 c = roundeven (roundeven (a));
286 a = trunc (trunc (x));
287 b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
288 j = lrint (x) + lround (a);
289 k = llrint (b) + llround (c);
290 m = fromfp (a, FP_INT_UPWARD, 2) + fromfpx (b, FP_INT_DOWNWARD, 3);
291 um = ufromfp (c, FP_INT_TONEAREST, 4) + ufromfpx (a, FP_INT_TOWARDZERO, 5);
292 a = erf (erf (x));
293 b = erfc (erfc (a));
294 a = tgamma (tgamma (x));
295 b = lgamma (lgamma (a));
296 a = rint (rint (x));
297 b = nextafter (nextafter (a, b), nextafter (c, x));
298 a = nextdown (nextdown (a));
299 b = nexttoward (nexttoward (x, a), c);
300 a = nextup (nextup (a));
301 b = remainder (remainder (a, b), remainder (c, x));
302 a = scalb (scalb (x, a), (TYPE) (6));
303 k = scalbn (a, 7) + scalbln (c, 10l);
304 i = ilogb (x);
305 j = llogb (x);
306 a = fdim (fdim (x, a), fdim (c, b));
307 b = fmax (fmax (a, x), fmax (c, b));
308 a = fmin (fmin (x, a), fmin (c, b));
309 b = fmaxmag (fmaxmag (a, x), fmaxmag (c, b));
310 a = fminmag (fminmag (x, a), fminmag (c, b));
311 b = fmaximum (fmaximum (a, x), fmaximum (c, b));
312 a = fminimum (fminimum (x, a), fminimum (c, b));
313 b = fmaximum_num (fmaximum_num (a, x), fmaximum_num (c, b));
314 a = fminimum_num (fminimum_num (x, a), fminimum_num (c, b));
315 b = fmaximum_mag (fmaximum_mag (a, x), fmaximum_mag (c, b));
316 a = fminimum_mag (fminimum_mag (x, a), fminimum_mag (c, b));
317 b = fmaximum_mag_num (fmaximum_mag_num (a, x), fmaximum_mag_num (c, b));
318 a = fminimum_mag_num (fminimum_mag_num (x, a), fminimum_mag_num (c, b));
319 b = fma (sin (a), sin (x), sin (c));
320
321 #ifdef TEST_INT
322 a = atan2 (i, b);
323 b = remquo (i, a, &i);
324 c = fma (i, b, i);
325 a = pow (i, c);
326 #endif
327 x = a + b + c + i + j + k + m + um;
328
329 saved_count = count;
330 if (ccount != 0)
331 ccount = -10000;
332
333 d = cos (cos (z));
334 z = acos (acos (d));
335 d = sin (sin (z));
336 z = asin (asin (d));
337 d = tan (tan (z));
338 z = atan (atan (d));
339 d = cosh (cosh (z));
340 z = acosh (acosh (d));
341 d = sinh (sinh (z));
342 z = asinh (asinh (d));
343 d = tanh (tanh (z));
344 z = atanh (atanh (d));
345 d = exp (exp (z));
346 z = log (log (d));
347 d = sqrt (sqrt (z));
348 z = conj (conj (d));
349 d = fabs (conj (a));
350 z = pow (pow (a, d), pow (b, z));
351 d = cproj (cproj (z));
352 z += fabs (cproj (a));
353 a = carg (carg (z));
354 b = creal (creal (d));
355 c = cimag (cimag (z));
356 x += a + b + c + i + j + k;
357 z += d;
358
359 if (saved_count != count)
360 count = -10000;
361
362 if (0)
363 {
364 a = cos (y);
365 a = cospi (y);
366 a = acos (y);
367 a = acospi (y);
368 a = sin (y);
369 a = sinpi (y);
370 a = asin (y);
371 a = asinpi (y);
372 a = tan (y);
373 a = tanpi (y);
374 a = atan (y);
375 a = atanpi (y);
376 a = atan2 (y, y);
377 a = atan2pi (y, y);
378 a = cosh (y);
379 a = acosh (y);
380 a = sinh (y);
381 a = asinh (y);
382 a = tanh (y);
383 a = atanh (y);
384 a = exp (y);
385 a = log (y);
386 a = log10 (y);
387 a = ldexp (y, 5);
388 a = frexp (y, &i);
389 a = expm1 (y);
390 a = exp2m1 (y);
391 a = exp10m1 (y);
392 a = log1p (y);
393 a = logb (y);
394 a = exp2 (y);
395 a = exp10 (y);
396 a = log2 (y);
397 a = log2p1 (y);
398 a = log10p1 (y);
399 a = logp1 (y);
400 a = pow (y, y);
401 a = pown (y, 12345);
402 a = compoundn (y, 12345);
403 a = rootn (y, 12345);
404 a = powr (y, y);
405 a = sqrt (y);
406 a = rsqrt (y);
407 a = hypot (y, y);
408 a = cbrt (y);
409 a = ceil (y);
410 a = fabs (y);
411 a = floor (y);
412 a = fmod (y, y);
413 a = nearbyint (y);
414 a = round (y);
415 a = roundeven (y);
416 a = trunc (y);
417 a = remquo (y, y, &i);
418 j = lrint (y) + lround (y);
419 k = llrint (y) + llround (y);
420 m = fromfp (y, FP_INT_UPWARD, 6) + fromfpx (y, FP_INT_DOWNWARD, 7);
421 um = (ufromfp (y, FP_INT_TONEAREST, 8)
422 + ufromfpx (y, FP_INT_TOWARDZERO, 9));
423 a = erf (y);
424 a = erfc (y);
425 a = tgamma (y);
426 a = lgamma (y);
427 a = rint (y);
428 a = nextafter (y, y);
429 a = nexttoward (y, y);
430 a = remainder (y, y);
431 a = scalb (y, (const TYPE) (6));
432 k = scalbn (y, 7) + scalbln (y, 10l);
433 i = ilogb (y);
434 j = llogb (y);
435 a = fdim (y, y);
436 a = fmax (y, y);
437 a = fmin (y, y);
438 a = fmaxmag (y, y);
439 a = fminmag (y, y);
440 a = fmaximum (y, y);
441 a = fminimum (y, y);
442 a = fmaximum_num (y, y);
443 a = fminimum_num (y, y);
444 a = fmaximum_mag (y, y);
445 a = fminimum_mag (y, y);
446 a = fmaximum_mag_num (y, y);
447 a = fminimum_mag_num (y, y);
448 a = fma (y, y, y);
449
450 #ifdef TEST_INT
451 a = atan2 (i, y);
452 a = remquo (i, y, &i);
453 a = fma (i, y, i);
454 a = pow (i, y);
455 #endif
456
457 d = cos ((const complex TYPE) z);
458 d = acos ((const complex TYPE) z);
459 d = sin ((const complex TYPE) z);
460 d = asin ((const complex TYPE) z);
461 d = tan ((const complex TYPE) z);
462 d = atan ((const complex TYPE) z);
463 d = cosh ((const complex TYPE) z);
464 d = acosh ((const complex TYPE) z);
465 d = sinh ((const complex TYPE) z);
466 d = asinh ((const complex TYPE) z);
467 d = tanh ((const complex TYPE) z);
468 d = atanh ((const complex TYPE) z);
469 d = exp ((const complex TYPE) z);
470 d = log ((const complex TYPE) z);
471 d = sqrt ((const complex TYPE) z);
472 d = pow ((const complex TYPE) z, (const complex TYPE) z);
473 d = fabs ((const complex TYPE) z);
474 d = carg ((const complex TYPE) z);
475 d = creal ((const complex TYPE) z);
476 d = cimag ((const complex TYPE) z);
477 d = conj ((const complex TYPE) z);
478 d = cproj ((const complex TYPE) z);
479 }
480 }
481 #undef x
482 #undef y
483 #undef z
484
485
486 TYPE
487 (F(cos)) (TYPE x)
488 {
489 ++count;
490 P ();
491 return x;
492 }
493
494 TYPE
495 (F(cospi)) (TYPE x)
496 {
497 ++count;
498 P ();
499 return x;
500 }
501
502 TYPE
503 (F(acos)) (TYPE x)
504 {
505 ++count;
506 P ();
507 return x;
508 }
509
510 TYPE
511 (F(acospi)) (TYPE x)
512 {
513 ++count;
514 P ();
515 return x;
516 }
517
518 TYPE
519 (F(sin)) (TYPE x)
520 {
521 ++count;
522 P ();
523 return x;
524 }
525
526 TYPE
527 (F(sinpi)) (TYPE x)
528 {
529 ++count;
530 P ();
531 return x;
532 }
533
534 TYPE
535 (F(asin)) (TYPE x)
536 {
537 ++count;
538 P ();
539 return x;
540 }
541
542 TYPE
543 (F(asinpi)) (TYPE x)
544 {
545 ++count;
546 P ();
547 return x;
548 }
549
550 TYPE
551 (F(tan)) (TYPE x)
552 {
553 ++count;
554 P ();
555 return x;
556 }
557
558 TYPE
559 (F(tanpi)) (TYPE x)
560 {
561 ++count;
562 P ();
563 return x;
564 }
565
566 TYPE
567 (F(atan)) (TYPE x)
568 {
569 ++count;
570 P ();
571 return x;
572 }
573
574 TYPE
575 (F(atan2)) (TYPE x, TYPE y)
576 {
577 ++count;
578 P ();
579 return x + y;
580 }
581
582 TYPE
583 (F(atanpi)) (TYPE x)
584 {
585 ++count;
586 P ();
587 return x;
588 }
589
590 TYPE
591 (F(atan2pi)) (TYPE x, TYPE y)
592 {
593 ++count;
594 P ();
595 return x + y;
596 }
597
598 TYPE
599 (F(cosh)) (TYPE x)
600 {
601 ++count;
602 P ();
603 return x;
604 }
605
606 TYPE
607 (F(acosh)) (TYPE x)
608 {
609 ++count;
610 P ();
611 return x;
612 }
613
614 TYPE
615 (F(sinh)) (TYPE x)
616 {
617 ++count;
618 P ();
619 return x;
620 }
621
622 TYPE
623 (F(asinh)) (TYPE x)
624 {
625 ++count;
626 P ();
627 return x;
628 }
629
630 TYPE
631 (F(tanh)) (TYPE x)
632 {
633 ++count;
634 P ();
635 return x;
636 }
637
638 TYPE
639 (F(atanh)) (TYPE x)
640 {
641 ++count;
642 P ();
643 return x;
644 }
645
646 TYPE
647 (F(exp)) (TYPE x)
648 {
649 ++count;
650 P ();
651 return x;
652 }
653
654 TYPE
655 (F(log)) (TYPE x)
656 {
657 ++count;
658 P ();
659 return x;
660 }
661
662 TYPE
663 (F(log10)) (TYPE x)
664 {
665 ++count;
666 P ();
667 return x;
668 }
669
670 TYPE
671 (F(ldexp)) (TYPE x, int y)
672 {
673 ++count;
674 P ();
675 return x + y;
676 }
677
678 TYPE
679 (F(frexp)) (TYPE x, int *y)
680 {
681 ++count;
682 P ();
683 return x + *y;
684 }
685
686 TYPE
687 (F(expm1)) (TYPE x)
688 {
689 ++count;
690 P ();
691 return x;
692 }
693
694 TYPE
695 (F(exp2m1)) (TYPE x)
696 {
697 ++count;
698 P ();
699 return x;
700 }
701
702 TYPE
703 (F(exp10m1)) (TYPE x)
704 {
705 ++count;
706 P ();
707 return x;
708 }
709
710 TYPE
711 (F(log1p)) (TYPE x)
712 {
713 ++count;
714 P ();
715 return x;
716 }
717
718 TYPE
719 (F(logb)) (TYPE x)
720 {
721 ++count;
722 P ();
723 return x;
724 }
725
726 TYPE
727 (F(exp10)) (TYPE x)
728 {
729 ++count;
730 P ();
731 return x;
732 }
733
734 TYPE
735 (F(exp2)) (TYPE x)
736 {
737 ++count;
738 P ();
739 return x;
740 }
741
742 TYPE
743 (F(log2)) (TYPE x)
744 {
745 ++count;
746 P ();
747 return x;
748 }
749
750 TYPE
751 (F(log2p1)) (TYPE x)
752 {
753 ++count;
754 P ();
755 return x;
756 }
757
758 TYPE
759 (F(log10p1)) (TYPE x)
760 {
761 ++count;
762 P ();
763 return x;
764 }
765
766 TYPE
767 (F(logp1)) (TYPE x)
768 {
769 ++count;
770 P ();
771 return x;
772 }
773
774 TYPE
775 (F(pow)) (TYPE x, TYPE y)
776 {
777 ++count;
778 P ();
779 return x + y;
780 }
781
782 TYPE
783 (F(pown)) (TYPE x, long long int y)
784 {
785 ++count;
786 P ();
787 return x + y;
788 }
789
790 TYPE
791 (F(powr)) (TYPE x, TYPE y)
792 {
793 ++count;
794 P ();
795 return x + y;
796 }
797
798 TYPE
799 (F(compoundn)) (TYPE x, long long int y)
800 {
801 ++count;
802 P ();
803 return x + y;
804 }
805
806 TYPE
807 (F(rootn)) (TYPE x, long long int y)
808 {
809 ++count;
810 P ();
811 return x + y;
812 }
813
814 TYPE
815 (F(sqrt)) (TYPE x)
816 {
817 ++count;
818 P ();
819 return x;
820 }
821
822 TYPE
823 (F(rsqrt)) (TYPE x)
824 {
825 ++count;
826 P ();
827 return x;
828 }
829
830 TYPE
831 (F(hypot)) (TYPE x, TYPE y)
832 {
833 ++count;
834 P ();
835 return x + y;
836 }
837
838 TYPE
839 (F(cbrt)) (TYPE x)
840 {
841 ++count;
842 P ();
843 return x;
844 }
845
846 TYPE
847 (F(ceil)) (TYPE x)
848 {
849 ++count;
850 P ();
851 return x;
852 }
853
854 TYPE
855 (F(fabs)) (TYPE x)
856 {
857 ++count;
858 P ();
859 return x;
860 }
861
862 TYPE
863 (F(floor)) (TYPE x)
864 {
865 ++count;
866 P ();
867 return x;
868 }
869
870 TYPE
871 (F(fmod)) (TYPE x, TYPE y)
872 {
873 ++count;
874 P ();
875 return x + y;
876 }
877
878 TYPE
879 (F(nearbyint)) (TYPE x)
880 {
881 ++count;
882 P ();
883 return x;
884 }
885
886 TYPE
887 (F(round)) (TYPE x)
888 {
889 ++count;
890 P ();
891 return x;
892 }
893
894 TYPE
895 (F(roundeven)) (TYPE x)
896 {
897 ++count;
898 P ();
899 return x;
900 }
901
902 TYPE
903 (F(trunc)) (TYPE x)
904 {
905 ++count;
906 P ();
907 return x;
908 }
909
910 TYPE
911 (F(remquo)) (TYPE x, TYPE y, int *i)
912 {
913 ++count;
914 P ();
915 return x + y + *i;
916 }
917
918 long int
919 (F(lrint)) (TYPE x)
920 {
921 ++count;
922 P ();
923 return x;
924 }
925
926 long int
927 (F(lround)) (TYPE x)
928 {
929 ++count;
930 P ();
931 return x;
932 }
933
934 long long int
935 (F(llrint)) (TYPE x)
936 {
937 ++count;
938 P ();
939 return x;
940 }
941
942 long long int
943 (F(llround)) (TYPE x)
944 {
945 ++count;
946 P ();
947 return x;
948 }
949
950 intmax_t
951 (F(fromfp)) (TYPE x, int round, unsigned int width)
952 {
953 ++count;
954 P ();
955 return x;
956 }
957
958 intmax_t
959 (F(fromfpx)) (TYPE x, int round, unsigned int width)
960 {
961 ++count;
962 P ();
963 return x;
964 }
965
966 uintmax_t
967 (F(ufromfp)) (TYPE x, int round, unsigned int width)
968 {
969 ++count;
970 P ();
971 return x;
972 }
973
974 uintmax_t
975 (F(ufromfpx)) (TYPE x, int round, unsigned int width)
976 {
977 ++count;
978 P ();
979 return x;
980 }
981
982 TYPE
983 (F(erf)) (TYPE x)
984 {
985 ++count;
986 P ();
987 return x;
988 }
989
990 TYPE
991 (F(erfc)) (TYPE x)
992 {
993 ++count;
994 P ();
995 return x;
996 }
997
998 TYPE
999 (F(tgamma)) (TYPE x)
1000 {
1001 ++count;
1002 P ();
1003 return x;
1004 }
1005
1006 TYPE
1007 (F(lgamma)) (TYPE x)
1008 {
1009 ++count;
1010 P ();
1011 return x;
1012 }
1013
1014 TYPE
1015 (F(rint)) (TYPE x)
1016 {
1017 ++count;
1018 P ();
1019 return x;
1020 }
1021
1022 TYPE
1023 (F(nextafter)) (TYPE x, TYPE y)
1024 {
1025 ++count;
1026 P ();
1027 return x + y;
1028 }
1029
1030 TYPE
1031 (F(nextdown)) (TYPE x)
1032 {
1033 ++count;
1034 P ();
1035 return x;
1036 }
1037
1038 TYPE
1039 (F(nexttoward)) (TYPE x, long double y)
1040 {
1041 ++count;
1042 P ();
1043 return x + y;
1044 }
1045
1046 TYPE
1047 (F(nextup)) (TYPE x)
1048 {
1049 ++count;
1050 P ();
1051 return x;
1052 }
1053
1054 TYPE
1055 (F(remainder)) (TYPE x, TYPE y)
1056 {
1057 ++count;
1058 P ();
1059 return x + y;
1060 }
1061
1062 TYPE
1063 (F(scalb)) (TYPE x, TYPE y)
1064 {
1065 ++count;
1066 P ();
1067 return x + y;
1068 }
1069
1070 TYPE
1071 (F(scalbn)) (TYPE x, int y)
1072 {
1073 ++count;
1074 P ();
1075 return x + y;
1076 }
1077
1078 TYPE
1079 (F(scalbln)) (TYPE x, long int y)
1080 {
1081 ++count;
1082 P ();
1083 return x + y;
1084 }
1085
1086 int
1087 (F(ilogb)) (TYPE x)
1088 {
1089 ++count;
1090 P ();
1091 return x;
1092 }
1093
1094 long int
1095 (F(llogb)) (TYPE x)
1096 {
1097 ++count;
1098 P ();
1099 return x;
1100 }
1101
1102 TYPE
1103 (F(fdim)) (TYPE x, TYPE y)
1104 {
1105 ++count;
1106 P ();
1107 return x + y;
1108 }
1109
1110 TYPE
1111 (F(fmin)) (TYPE x, TYPE y)
1112 {
1113 ++count;
1114 P ();
1115 return x + y;
1116 }
1117
1118 TYPE
1119 (F(fmax)) (TYPE x, TYPE y)
1120 {
1121 ++count;
1122 P ();
1123 return x + y;
1124 }
1125
1126 TYPE
1127 (F(fminmag)) (TYPE x, TYPE y)
1128 {
1129 ++count;
1130 P ();
1131 return x + y;
1132 }
1133
1134 TYPE
1135 (F(fmaxmag)) (TYPE x, TYPE y)
1136 {
1137 ++count;
1138 P ();
1139 return x + y;
1140 }
1141
1142 TYPE
1143 (F(fminimum)) (TYPE x, TYPE y)
1144 {
1145 ++count;
1146 P ();
1147 return x + y;
1148 }
1149
1150 TYPE
1151 (F(fmaximum)) (TYPE x, TYPE y)
1152 {
1153 ++count;
1154 P ();
1155 return x + y;
1156 }
1157
1158 TYPE
1159 (F(fminimum_num)) (TYPE x, TYPE y)
1160 {
1161 ++count;
1162 P ();
1163 return x + y;
1164 }
1165
1166 TYPE
1167 (F(fmaximum_num)) (TYPE x, TYPE y)
1168 {
1169 ++count;
1170 P ();
1171 return x + y;
1172 }
1173
1174 TYPE
1175 (F(fminimum_mag)) (TYPE x, TYPE y)
1176 {
1177 ++count;
1178 P ();
1179 return x + y;
1180 }
1181
1182 TYPE
1183 (F(fmaximum_mag)) (TYPE x, TYPE y)
1184 {
1185 ++count;
1186 P ();
1187 return x + y;
1188 }
1189
1190 TYPE
1191 (F(fminimum_mag_num)) (TYPE x, TYPE y)
1192 {
1193 ++count;
1194 P ();
1195 return x + y;
1196 }
1197
1198 TYPE
1199 (F(fmaximum_mag_num)) (TYPE x, TYPE y)
1200 {
1201 ++count;
1202 P ();
1203 return x + y;
1204 }
1205
1206 TYPE
1207 (F(fma)) (TYPE x, TYPE y, TYPE z)
1208 {
1209 ++count;
1210 P ();
1211 return x + y + z;
1212 }
1213
1214 complex TYPE
1215 (F(cacos)) (complex TYPE x)
1216 {
1217 ++ccount;
1218 P ();
1219 return x;
1220 }
1221
1222 complex TYPE
1223 (F(casin)) (complex TYPE x)
1224 {
1225 ++ccount;
1226 P ();
1227 return x;
1228 }
1229
1230 complex TYPE
1231 (F(catan)) (complex TYPE x)
1232 {
1233 ++ccount;
1234 P ();
1235 return x;
1236 }
1237
1238 complex TYPE
1239 (F(ccos)) (complex TYPE x)
1240 {
1241 ++ccount;
1242 P ();
1243 return x;
1244 }
1245
1246 complex TYPE
1247 (F(csin)) (complex TYPE x)
1248 {
1249 ++ccount;
1250 P ();
1251 return x;
1252 }
1253
1254 complex TYPE
1255 (F(ctan)) (complex TYPE x)
1256 {
1257 ++ccount;
1258 P ();
1259 return x;
1260 }
1261
1262 complex TYPE
1263 (F(cacosh)) (complex TYPE x)
1264 {
1265 ++ccount;
1266 P ();
1267 return x;
1268 }
1269
1270 complex TYPE
1271 (F(casinh)) (complex TYPE x)
1272 {
1273 ++ccount;
1274 P ();
1275 return x;
1276 }
1277
1278 complex TYPE
1279 (F(catanh)) (complex TYPE x)
1280 {
1281 ++ccount;
1282 P ();
1283 return x;
1284 }
1285
1286 complex TYPE
1287 (F(ccosh)) (complex TYPE x)
1288 {
1289 ++ccount;
1290 P ();
1291 return x;
1292 }
1293
1294 complex TYPE
1295 (F(csinh)) (complex TYPE x)
1296 {
1297 ++ccount;
1298 P ();
1299 return x;
1300 }
1301
1302 complex TYPE
1303 (F(ctanh)) (complex TYPE x)
1304 {
1305 ++ccount;
1306 P ();
1307 return x;
1308 }
1309
1310 complex TYPE
1311 (F(cexp)) (complex TYPE x)
1312 {
1313 ++ccount;
1314 P ();
1315 return x;
1316 }
1317
1318 complex TYPE
1319 (F(clog)) (complex TYPE x)
1320 {
1321 ++ccount;
1322 P ();
1323 return x;
1324 }
1325
1326 complex TYPE
1327 (F(csqrt)) (complex TYPE x)
1328 {
1329 ++ccount;
1330 P ();
1331 return x;
1332 }
1333
1334 complex TYPE
1335 (F(cpow)) (complex TYPE x, complex TYPE y)
1336 {
1337 ++ccount;
1338 P ();
1339 return x + y;
1340 }
1341
1342 TYPE
1343 (F(cabs)) (complex TYPE x)
1344 {
1345 ++ccount;
1346 P ();
1347 return x;
1348 }
1349
1350 TYPE
1351 (F(carg)) (complex TYPE x)
1352 {
1353 ++ccount;
1354 P ();
1355 return x;
1356 }
1357
1358 TYPE
1359 (F(creal)) (complex TYPE x)
1360 {
1361 ++ccount;
1362 P ();
1363 return __real__ x;
1364 }
1365
1366 TYPE
1367 (F(cimag)) (complex TYPE x)
1368 {
1369 ++ccount;
1370 P ();
1371 return __imag__ x;
1372 }
1373
1374 complex TYPE
1375 (F(conj)) (complex TYPE x)
1376 {
1377 ++ccount;
1378 P ();
1379 return x;
1380 }
1381
1382 complex TYPE
1383 (F(cproj)) (complex TYPE x)
1384 {
1385 ++ccount;
1386 P ();
1387 return x;
1388 }
1389
1390 #undef F
1391 #undef TYPE
1392 #undef count
1393 #undef ccount
1394 #undef TEST_INT
1395 #endif