2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
38 //#define DEBUG_UNASSIGNED
40 static unsigned memory_region_transaction_depth
;
41 static bool memory_region_update_pending
;
42 static bool ioeventfd_update_pending
;
43 bool global_dirty_log
;
45 static QTAILQ_HEAD(, MemoryListener
) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
48 static QTAILQ_HEAD(, AddressSpace
) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
51 static GHashTable
*flat_views
;
53 typedef struct AddrRange AddrRange
;
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
64 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
66 return (AddrRange
) { start
, size
};
69 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
71 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
74 static Int128
addrrange_end(AddrRange r
)
76 return int128_add(r
.start
, r
.size
);
79 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
81 int128_addto(&range
.start
, delta
);
85 static bool addrrange_contains(AddrRange range
, Int128 addr
)
87 return int128_ge(addr
, range
.start
)
88 && int128_lt(addr
, addrrange_end(range
));
91 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
93 return addrrange_contains(r1
, r2
.start
)
94 || addrrange_contains(r2
, r1
.start
);
97 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
99 Int128 start
= int128_max(r1
.start
, r2
.start
);
100 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
101 return addrrange_make(start
, int128_sub(end
, start
));
104 enum ListenerDirection
{ Forward
, Reverse
};
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 MemoryListener *_listener; \
110 switch (_direction) { \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
132 MemoryListener *_listener; \
134 switch (_direction) { \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
162 struct CoalescedMemoryRange
{
164 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
167 struct MemoryRegionIoeventfd
{
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
175 MemoryRegionIoeventfd
*b
)
177 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
179 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
181 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
183 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
185 } else if (a
->match_data
< b
->match_data
) {
187 } else if (a
->match_data
> b
->match_data
) {
189 } else if (a
->match_data
) {
190 if (a
->data
< b
->data
) {
192 } else if (a
->data
> b
->data
) {
198 } else if (a
->e
> b
->e
) {
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
205 MemoryRegionIoeventfd
*b
)
207 return !memory_region_ioeventfd_before(a
, b
)
208 && !memory_region_ioeventfd_before(b
, a
);
211 /* Range of memory in the global map. Addresses are absolute. */
214 hwaddr offset_in_region
;
216 uint8_t dirty_log_mask
;
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
228 return (MemoryRegionSection
) {
231 .offset_within_region
= fr
->offset_in_region
,
232 .size
= fr
->addr
.size
,
233 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
234 .readonly
= fr
->readonly
,
235 .nonvolatile
= fr
->nonvolatile
,
239 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
241 return a
->mr
== b
->mr
242 && addrrange_equal(a
->addr
, b
->addr
)
243 && a
->offset_in_region
== b
->offset_in_region
244 && a
->romd_mode
== b
->romd_mode
245 && a
->readonly
== b
->readonly
246 && a
->nonvolatile
== b
->nonvolatile
;
249 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
253 view
= g_new0(FlatView
, 1);
255 view
->root
= mr_root
;
256 memory_region_ref(mr_root
);
257 trace_flatview_new(view
, mr_root
);
262 /* Insert a range into a given position. Caller is responsible for maintaining
265 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
267 if (view
->nr
== view
->nr_allocated
) {
268 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
269 view
->ranges
= g_realloc(view
->ranges
,
270 view
->nr_allocated
* sizeof(*view
->ranges
));
272 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
273 (view
->nr
- pos
) * sizeof(FlatRange
));
274 view
->ranges
[pos
] = *range
;
275 memory_region_ref(range
->mr
);
279 static void flatview_destroy(FlatView
*view
)
283 trace_flatview_destroy(view
, view
->root
);
284 if (view
->dispatch
) {
285 address_space_dispatch_free(view
->dispatch
);
287 for (i
= 0; i
< view
->nr
; i
++) {
288 memory_region_unref(view
->ranges
[i
].mr
);
290 g_free(view
->ranges
);
291 memory_region_unref(view
->root
);
295 static bool flatview_ref(FlatView
*view
)
297 return atomic_fetch_inc_nonzero(&view
->ref
) > 0;
300 void flatview_unref(FlatView
*view
)
302 if (atomic_fetch_dec(&view
->ref
) == 1) {
303 trace_flatview_destroy_rcu(view
, view
->root
);
305 call_rcu(view
, flatview_destroy
, rcu
);
309 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
311 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
313 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
315 int128_make64(r2
->offset_in_region
))
316 && r1
->dirty_log_mask
== r2
->dirty_log_mask
317 && r1
->romd_mode
== r2
->romd_mode
318 && r1
->readonly
== r2
->readonly
319 && r1
->nonvolatile
== r2
->nonvolatile
;
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView
*view
)
328 while (i
< view
->nr
) {
331 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
332 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
336 for (k
= i
; k
< j
; k
++) {
337 memory_region_unref(view
->ranges
[k
].mr
);
339 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
340 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
345 static bool memory_region_big_endian(MemoryRegion
*mr
)
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
350 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
354 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, MemOp op
)
356 if ((op
& MO_BSWAP
) != devend_memop(mr
->ops
->endianness
)) {
357 switch (op
& MO_SIZE
) {
361 *data
= bswap16(*data
);
364 *data
= bswap32(*data
);
367 *data
= bswap64(*data
);
370 g_assert_not_reached();
375 static inline void memory_region_shift_read_access(uint64_t *value
,
381 *value
|= (tmp
& mask
) << shift
;
383 *value
|= (tmp
& mask
) >> -shift
;
387 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
394 tmp
= (*value
>> shift
) & mask
;
396 tmp
= (*value
<< -shift
) & mask
;
402 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
405 hwaddr abs_addr
= offset
;
407 abs_addr
+= mr
->addr
;
408 for (root
= mr
; root
->container
; ) {
409 root
= root
->container
;
410 abs_addr
+= root
->addr
;
416 static int get_cpu_index(void)
419 return current_cpu
->cpu_index
;
424 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
434 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
436 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
437 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ
)) {
438 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
439 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
441 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
445 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
456 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
458 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
459 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ
)) {
460 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
461 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
463 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
467 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
475 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
478 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
479 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE
)) {
480 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
481 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
483 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
487 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
495 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
498 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
499 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE
)) {
500 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
501 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
503 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
506 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
509 unsigned access_size_min
,
510 unsigned access_size_max
,
511 MemTxResult (*access_fn
)
522 uint64_t access_mask
;
523 unsigned access_size
;
525 MemTxResult r
= MEMTX_OK
;
527 if (!access_size_min
) {
530 if (!access_size_max
) {
534 /* FIXME: support unaligned access? */
535 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
536 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
537 if (memory_region_big_endian(mr
)) {
538 for (i
= 0; i
< size
; i
+= access_size
) {
539 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
540 (size
- access_size
- i
) * 8, access_mask
, attrs
);
543 for (i
= 0; i
< size
; i
+= access_size
) {
544 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
551 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
555 while (mr
->container
) {
558 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
559 if (mr
== as
->root
) {
566 /* Render a memory region into the global view. Ranges in @view obscure
569 static void render_memory_region(FlatView
*view
,
576 MemoryRegion
*subregion
;
578 hwaddr offset_in_region
;
588 int128_addto(&base
, int128_make64(mr
->addr
));
589 readonly
|= mr
->readonly
;
590 nonvolatile
|= mr
->nonvolatile
;
592 tmp
= addrrange_make(base
, mr
->size
);
594 if (!addrrange_intersects(tmp
, clip
)) {
598 clip
= addrrange_intersection(tmp
, clip
);
601 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
602 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
603 render_memory_region(view
, mr
->alias
, base
, clip
,
604 readonly
, nonvolatile
);
608 /* Render subregions in priority order. */
609 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
610 render_memory_region(view
, subregion
, base
, clip
,
611 readonly
, nonvolatile
);
614 if (!mr
->terminates
) {
618 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
623 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
624 fr
.romd_mode
= mr
->romd_mode
;
625 fr
.readonly
= readonly
;
626 fr
.nonvolatile
= nonvolatile
;
628 /* Render the region itself into any gaps left by the current view. */
629 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
630 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
633 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
634 now
= int128_min(remain
,
635 int128_sub(view
->ranges
[i
].addr
.start
, base
));
636 fr
.offset_in_region
= offset_in_region
;
637 fr
.addr
= addrrange_make(base
, now
);
638 flatview_insert(view
, i
, &fr
);
640 int128_addto(&base
, now
);
641 offset_in_region
+= int128_get64(now
);
642 int128_subfrom(&remain
, now
);
644 now
= int128_sub(int128_min(int128_add(base
, remain
),
645 addrrange_end(view
->ranges
[i
].addr
)),
647 int128_addto(&base
, now
);
648 offset_in_region
+= int128_get64(now
);
649 int128_subfrom(&remain
, now
);
651 if (int128_nz(remain
)) {
652 fr
.offset_in_region
= offset_in_region
;
653 fr
.addr
= addrrange_make(base
, remain
);
654 flatview_insert(view
, i
, &fr
);
658 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
660 while (mr
->enabled
) {
662 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
663 /* The alias is included in its entirety. Use it as
664 * the "real" root, so that we can share more FlatViews.
669 } else if (!mr
->terminates
) {
670 unsigned int found
= 0;
671 MemoryRegion
*child
, *next
= NULL
;
672 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
673 if (child
->enabled
) {
678 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
679 /* A child is included in its entirety. If it's the only
680 * enabled one, use it in the hope of finding an alias down the
681 * way. This will also let us share FlatViews.
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
708 view
= flatview_new(mr
);
711 render_memory_region(view
, mr
, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()),
715 flatview_simplify(view
);
717 view
->dispatch
= address_space_dispatch_new(view
);
718 for (i
= 0; i
< view
->nr
; i
++) {
719 MemoryRegionSection mrs
=
720 section_from_flat_range(&view
->ranges
[i
], view
);
721 flatview_add_to_dispatch(view
, &mrs
);
723 address_space_dispatch_compact(view
->dispatch
);
724 g_hash_table_replace(flat_views
, mr
, view
);
729 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
730 MemoryRegionIoeventfd
*fds_new
,
732 MemoryRegionIoeventfd
*fds_old
,
736 MemoryRegionIoeventfd
*fd
;
737 MemoryRegionSection section
;
739 /* Generate a symmetric difference of the old and new fd sets, adding
740 * and deleting as necessary.
744 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
745 if (iold
< fds_old_nb
746 && (inew
== fds_new_nb
747 || memory_region_ioeventfd_before(&fds_old
[iold
],
750 section
= (MemoryRegionSection
) {
751 .fv
= address_space_to_flatview(as
),
752 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
753 .size
= fd
->addr
.size
,
755 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
756 fd
->match_data
, fd
->data
, fd
->e
);
758 } else if (inew
< fds_new_nb
759 && (iold
== fds_old_nb
760 || memory_region_ioeventfd_before(&fds_new
[inew
],
763 section
= (MemoryRegionSection
) {
764 .fv
= address_space_to_flatview(as
),
765 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
766 .size
= fd
->addr
.size
,
768 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
769 fd
->match_data
, fd
->data
, fd
->e
);
778 FlatView
*address_space_get_flatview(AddressSpace
*as
)
782 RCU_READ_LOCK_GUARD();
784 view
= address_space_to_flatview(as
);
785 /* If somebody has replaced as->current_map concurrently,
786 * flatview_ref returns false.
788 } while (!flatview_ref(view
));
792 static void address_space_update_ioeventfds(AddressSpace
*as
)
796 unsigned ioeventfd_nb
= 0;
797 unsigned ioeventfd_max
;
798 MemoryRegionIoeventfd
*ioeventfds
;
803 * It is likely that the number of ioeventfds hasn't changed much, so use
804 * the previous size as the starting value, with some headroom to avoid
805 * gratuitous reallocations.
807 ioeventfd_max
= QEMU_ALIGN_UP(as
->ioeventfd_nb
, 4);
808 ioeventfds
= g_new(MemoryRegionIoeventfd
, ioeventfd_max
);
810 view
= address_space_get_flatview(as
);
811 FOR_EACH_FLAT_RANGE(fr
, view
) {
812 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
813 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
814 int128_sub(fr
->addr
.start
,
815 int128_make64(fr
->offset_in_region
)));
816 if (addrrange_intersects(fr
->addr
, tmp
)) {
818 if (ioeventfd_nb
> ioeventfd_max
) {
819 ioeventfd_max
= MAX(ioeventfd_max
* 2, 4);
820 ioeventfds
= g_realloc(ioeventfds
,
821 ioeventfd_max
* sizeof(*ioeventfds
));
823 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
824 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
829 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
830 as
->ioeventfds
, as
->ioeventfd_nb
);
832 g_free(as
->ioeventfds
);
833 as
->ioeventfds
= ioeventfds
;
834 as
->ioeventfd_nb
= ioeventfd_nb
;
835 flatview_unref(view
);
839 * Notify the memory listeners about the coalesced IO change events of
840 * range `cmr'. Only the part that has intersection of the specified
841 * FlatRange will be sent.
843 static void flat_range_coalesced_io_notify(FlatRange
*fr
, AddressSpace
*as
,
844 CoalescedMemoryRange
*cmr
, bool add
)
848 tmp
= addrrange_shift(cmr
->addr
,
849 int128_sub(fr
->addr
.start
,
850 int128_make64(fr
->offset_in_region
)));
851 if (!addrrange_intersects(tmp
, fr
->addr
)) {
854 tmp
= addrrange_intersection(tmp
, fr
->addr
);
857 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, coalesced_io_add
,
858 int128_get64(tmp
.start
),
859 int128_get64(tmp
.size
));
861 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Reverse
, coalesced_io_del
,
862 int128_get64(tmp
.start
),
863 int128_get64(tmp
.size
));
867 static void flat_range_coalesced_io_del(FlatRange
*fr
, AddressSpace
*as
)
869 CoalescedMemoryRange
*cmr
;
871 QTAILQ_FOREACH(cmr
, &fr
->mr
->coalesced
, link
) {
872 flat_range_coalesced_io_notify(fr
, as
, cmr
, false);
876 static void flat_range_coalesced_io_add(FlatRange
*fr
, AddressSpace
*as
)
878 MemoryRegion
*mr
= fr
->mr
;
879 CoalescedMemoryRange
*cmr
;
881 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
885 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
886 flat_range_coalesced_io_notify(fr
, as
, cmr
, true);
890 static void address_space_update_topology_pass(AddressSpace
*as
,
891 const FlatView
*old_view
,
892 const FlatView
*new_view
,
896 FlatRange
*frold
, *frnew
;
898 /* Generate a symmetric difference of the old and new memory maps.
899 * Kill ranges in the old map, and instantiate ranges in the new map.
902 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
903 if (iold
< old_view
->nr
) {
904 frold
= &old_view
->ranges
[iold
];
908 if (inew
< new_view
->nr
) {
909 frnew
= &new_view
->ranges
[inew
];
916 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
917 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
918 && !flatrange_equal(frold
, frnew
)))) {
919 /* In old but not in new, or in both but attributes changed. */
922 flat_range_coalesced_io_del(frold
, as
);
923 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
927 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
928 /* In both and unchanged (except logging may have changed) */
931 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
932 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
933 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
934 frold
->dirty_log_mask
,
935 frnew
->dirty_log_mask
);
937 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
938 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
939 frold
->dirty_log_mask
,
940 frnew
->dirty_log_mask
);
950 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
951 flat_range_coalesced_io_add(frnew
, as
);
959 static void flatviews_init(void)
961 static FlatView
*empty_view
;
967 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
968 (GDestroyNotify
) flatview_unref
);
970 empty_view
= generate_memory_topology(NULL
);
971 /* We keep it alive forever in the global variable. */
972 flatview_ref(empty_view
);
974 g_hash_table_replace(flat_views
, NULL
, empty_view
);
975 flatview_ref(empty_view
);
979 static void flatviews_reset(void)
984 g_hash_table_unref(flat_views
);
989 /* Render unique FVs */
990 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
991 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
993 if (g_hash_table_lookup(flat_views
, physmr
)) {
997 generate_memory_topology(physmr
);
1001 static void address_space_set_flatview(AddressSpace
*as
)
1003 FlatView
*old_view
= address_space_to_flatview(as
);
1004 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1005 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
1009 if (old_view
== new_view
) {
1014 flatview_ref(old_view
);
1017 flatview_ref(new_view
);
1019 if (!QTAILQ_EMPTY(&as
->listeners
)) {
1020 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
1023 old_view2
= &tmpview
;
1025 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
1026 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
1029 /* Writes are protected by the BQL. */
1030 atomic_rcu_set(&as
->current_map
, new_view
);
1032 flatview_unref(old_view
);
1035 /* Note that all the old MemoryRegions are still alive up to this
1036 * point. This relieves most MemoryListeners from the need to
1037 * ref/unref the MemoryRegions they get---unless they use them
1038 * outside the iothread mutex, in which case precise reference
1039 * counting is necessary.
1042 flatview_unref(old_view
);
1046 static void address_space_update_topology(AddressSpace
*as
)
1048 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1051 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1052 generate_memory_topology(physmr
);
1054 address_space_set_flatview(as
);
1057 void memory_region_transaction_begin(void)
1059 qemu_flush_coalesced_mmio_buffer();
1060 ++memory_region_transaction_depth
;
1063 void memory_region_transaction_commit(void)
1067 assert(memory_region_transaction_depth
);
1068 assert(qemu_mutex_iothread_locked());
1070 --memory_region_transaction_depth
;
1071 if (!memory_region_transaction_depth
) {
1072 if (memory_region_update_pending
) {
1075 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1077 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1078 address_space_set_flatview(as
);
1079 address_space_update_ioeventfds(as
);
1081 memory_region_update_pending
= false;
1082 ioeventfd_update_pending
= false;
1083 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1084 } else if (ioeventfd_update_pending
) {
1085 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1086 address_space_update_ioeventfds(as
);
1088 ioeventfd_update_pending
= false;
1093 static void memory_region_destructor_none(MemoryRegion
*mr
)
1097 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1099 qemu_ram_free(mr
->ram_block
);
1102 static bool memory_region_need_escape(char c
)
1104 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1107 static char *memory_region_escape_name(const char *name
)
1114 for (p
= name
; *p
; p
++) {
1115 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1117 if (bytes
== p
- name
) {
1118 return g_memdup(name
, bytes
+ 1);
1121 escaped
= g_malloc(bytes
+ 1);
1122 for (p
= name
, q
= escaped
; *p
; p
++) {
1124 if (unlikely(memory_region_need_escape(c
))) {
1127 *q
++ = "0123456789abcdef"[c
>> 4];
1128 c
= "0123456789abcdef"[c
& 15];
1136 static void memory_region_do_init(MemoryRegion
*mr
,
1141 mr
->size
= int128_make64(size
);
1142 if (size
== UINT64_MAX
) {
1143 mr
->size
= int128_2_64();
1145 mr
->name
= g_strdup(name
);
1147 mr
->ram_block
= NULL
;
1150 char *escaped_name
= memory_region_escape_name(name
);
1151 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1154 owner
= container_get(qdev_get_machine(), "/unattached");
1157 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1158 object_unref(OBJECT(mr
));
1160 g_free(escaped_name
);
1164 void memory_region_init(MemoryRegion
*mr
,
1169 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1170 memory_region_do_init(mr
, owner
, name
, size
);
1173 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1174 const char *name
, void *opaque
,
1177 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1178 gchar
*path
= (gchar
*)"";
1180 if (mr
->container
) {
1181 path
= object_get_canonical_path(OBJECT(mr
->container
));
1183 visit_type_str(v
, name
, &path
, errp
);
1184 if (mr
->container
) {
1189 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1192 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1194 return OBJECT(mr
->container
);
1197 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1198 const char *name
, void *opaque
,
1201 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1202 int32_t value
= mr
->priority
;
1204 visit_type_int32(v
, name
, &value
, errp
);
1207 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1208 void *opaque
, Error
**errp
)
1210 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1211 uint64_t value
= memory_region_size(mr
);
1213 visit_type_uint64(v
, name
, &value
, errp
);
1216 static void memory_region_initfn(Object
*obj
)
1218 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1221 mr
->ops
= &unassigned_mem_ops
;
1223 mr
->romd_mode
= true;
1224 mr
->global_locking
= true;
1225 mr
->destructor
= memory_region_destructor_none
;
1226 QTAILQ_INIT(&mr
->subregions
);
1227 QTAILQ_INIT(&mr
->coalesced
);
1229 op
= object_property_add(OBJECT(mr
), "container",
1230 "link<" TYPE_MEMORY_REGION
">",
1231 memory_region_get_container
,
1232 NULL
, /* memory_region_set_container */
1233 NULL
, NULL
, &error_abort
);
1234 op
->resolve
= memory_region_resolve_container
;
1236 object_property_add_uint64_ptr(OBJECT(mr
), "addr",
1237 &mr
->addr
, OBJ_PROP_FLAG_READ
, &error_abort
);
1238 object_property_add(OBJECT(mr
), "priority", "uint32",
1239 memory_region_get_priority
,
1240 NULL
, /* memory_region_set_priority */
1241 NULL
, NULL
, &error_abort
);
1242 object_property_add(OBJECT(mr
), "size", "uint64",
1243 memory_region_get_size
,
1244 NULL
, /* memory_region_set_size, */
1245 NULL
, NULL
, &error_abort
);
1248 static void iommu_memory_region_initfn(Object
*obj
)
1250 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1252 mr
->is_iommu
= true;
1255 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1258 #ifdef DEBUG_UNASSIGNED
1259 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1264 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1265 uint64_t val
, unsigned size
)
1267 #ifdef DEBUG_UNASSIGNED
1268 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1272 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1273 unsigned size
, bool is_write
,
1279 const MemoryRegionOps unassigned_mem_ops
= {
1280 .valid
.accepts
= unassigned_mem_accepts
,
1281 .endianness
= DEVICE_NATIVE_ENDIAN
,
1284 static uint64_t memory_region_ram_device_read(void *opaque
,
1285 hwaddr addr
, unsigned size
)
1287 MemoryRegion
*mr
= opaque
;
1288 uint64_t data
= (uint64_t)~0;
1292 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1295 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1298 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1301 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1305 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1310 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1311 uint64_t data
, unsigned size
)
1313 MemoryRegion
*mr
= opaque
;
1315 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1319 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1322 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1325 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1328 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1333 static const MemoryRegionOps ram_device_mem_ops
= {
1334 .read
= memory_region_ram_device_read
,
1335 .write
= memory_region_ram_device_write
,
1336 .endianness
= DEVICE_HOST_ENDIAN
,
1338 .min_access_size
= 1,
1339 .max_access_size
= 8,
1343 .min_access_size
= 1,
1344 .max_access_size
= 8,
1349 bool memory_region_access_valid(MemoryRegion
*mr
,
1355 int access_size_min
, access_size_max
;
1358 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1362 if (!mr
->ops
->valid
.accepts
) {
1366 access_size_min
= mr
->ops
->valid
.min_access_size
;
1367 if (!mr
->ops
->valid
.min_access_size
) {
1368 access_size_min
= 1;
1371 access_size_max
= mr
->ops
->valid
.max_access_size
;
1372 if (!mr
->ops
->valid
.max_access_size
) {
1373 access_size_max
= 4;
1376 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1377 for (i
= 0; i
< size
; i
+= access_size
) {
1378 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1387 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1395 if (mr
->ops
->read
) {
1396 return access_with_adjusted_size(addr
, pval
, size
,
1397 mr
->ops
->impl
.min_access_size
,
1398 mr
->ops
->impl
.max_access_size
,
1399 memory_region_read_accessor
,
1402 return access_with_adjusted_size(addr
, pval
, size
,
1403 mr
->ops
->impl
.min_access_size
,
1404 mr
->ops
->impl
.max_access_size
,
1405 memory_region_read_with_attrs_accessor
,
1410 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1416 unsigned size
= memop_size(op
);
1419 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1420 *pval
= unassigned_mem_read(mr
, addr
, size
);
1421 return MEMTX_DECODE_ERROR
;
1424 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1425 adjust_endianness(mr
, pval
, op
);
1429 /* Return true if an eventfd was signalled */
1430 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1436 MemoryRegionIoeventfd ioeventfd
= {
1437 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1442 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1443 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1444 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1446 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1447 event_notifier_set(ioeventfd
.e
);
1455 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1461 unsigned size
= memop_size(op
);
1463 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1464 unassigned_mem_write(mr
, addr
, data
, size
);
1465 return MEMTX_DECODE_ERROR
;
1468 adjust_endianness(mr
, &data
, op
);
1470 if ((!kvm_eventfds_enabled()) &&
1471 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1475 if (mr
->ops
->write
) {
1476 return access_with_adjusted_size(addr
, &data
, size
,
1477 mr
->ops
->impl
.min_access_size
,
1478 mr
->ops
->impl
.max_access_size
,
1479 memory_region_write_accessor
, mr
,
1483 access_with_adjusted_size(addr
, &data
, size
,
1484 mr
->ops
->impl
.min_access_size
,
1485 mr
->ops
->impl
.max_access_size
,
1486 memory_region_write_with_attrs_accessor
,
1491 void memory_region_init_io(MemoryRegion
*mr
,
1493 const MemoryRegionOps
*ops
,
1498 memory_region_init(mr
, owner
, name
, size
);
1499 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1500 mr
->opaque
= opaque
;
1501 mr
->terminates
= true;
1504 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1510 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1513 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1521 memory_region_init(mr
, owner
, name
, size
);
1523 mr
->terminates
= true;
1524 mr
->destructor
= memory_region_destructor_ram
;
1525 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, &err
);
1526 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1528 mr
->size
= int128_zero();
1529 object_unparent(OBJECT(mr
));
1530 error_propagate(errp
, err
);
1534 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1539 void (*resized
)(const char*,
1545 memory_region_init(mr
, owner
, name
, size
);
1547 mr
->terminates
= true;
1548 mr
->destructor
= memory_region_destructor_ram
;
1549 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1551 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1553 mr
->size
= int128_zero();
1554 object_unparent(OBJECT(mr
));
1555 error_propagate(errp
, err
);
1560 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1561 struct Object
*owner
,
1570 memory_region_init(mr
, owner
, name
, size
);
1572 mr
->terminates
= true;
1573 mr
->destructor
= memory_region_destructor_ram
;
1575 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
, &err
);
1576 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1578 mr
->size
= int128_zero();
1579 object_unparent(OBJECT(mr
));
1580 error_propagate(errp
, err
);
1584 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1585 struct Object
*owner
,
1593 memory_region_init(mr
, owner
, name
, size
);
1595 mr
->terminates
= true;
1596 mr
->destructor
= memory_region_destructor_ram
;
1597 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
,
1598 share
? RAM_SHARED
: 0,
1600 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1602 mr
->size
= int128_zero();
1603 object_unparent(OBJECT(mr
));
1604 error_propagate(errp
, err
);
1609 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1615 memory_region_init(mr
, owner
, name
, size
);
1617 mr
->terminates
= true;
1618 mr
->destructor
= memory_region_destructor_ram
;
1619 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1621 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1622 assert(ptr
!= NULL
);
1623 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1626 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1632 memory_region_init(mr
, owner
, name
, size
);
1634 mr
->terminates
= true;
1635 mr
->ram_device
= true;
1636 mr
->ops
= &ram_device_mem_ops
;
1638 mr
->destructor
= memory_region_destructor_ram
;
1639 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1640 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1641 assert(ptr
!= NULL
);
1642 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1645 void memory_region_init_alias(MemoryRegion
*mr
,
1652 memory_region_init(mr
, owner
, name
, size
);
1654 mr
->alias_offset
= offset
;
1657 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1658 struct Object
*owner
,
1663 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1664 mr
->readonly
= true;
1667 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1669 const MemoryRegionOps
*ops
,
1677 memory_region_init(mr
, owner
, name
, size
);
1679 mr
->opaque
= opaque
;
1680 mr
->terminates
= true;
1681 mr
->rom_device
= true;
1682 mr
->destructor
= memory_region_destructor_ram
;
1683 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1685 mr
->size
= int128_zero();
1686 object_unparent(OBJECT(mr
));
1687 error_propagate(errp
, err
);
1691 void memory_region_init_iommu(void *_iommu_mr
,
1692 size_t instance_size
,
1693 const char *mrtypename
,
1698 struct IOMMUMemoryRegion
*iommu_mr
;
1699 struct MemoryRegion
*mr
;
1701 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1702 mr
= MEMORY_REGION(_iommu_mr
);
1703 memory_region_do_init(mr
, owner
, name
, size
);
1704 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1705 mr
->terminates
= true; /* then re-forwards */
1706 QLIST_INIT(&iommu_mr
->iommu_notify
);
1707 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1710 static void memory_region_finalize(Object
*obj
)
1712 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1714 assert(!mr
->container
);
1716 /* We know the region is not visible in any address space (it
1717 * does not have a container and cannot be a root either because
1718 * it has no references, so we can blindly clear mr->enabled.
1719 * memory_region_set_enabled instead could trigger a transaction
1720 * and cause an infinite loop.
1722 mr
->enabled
= false;
1723 memory_region_transaction_begin();
1724 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1725 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1726 memory_region_del_subregion(mr
, subregion
);
1728 memory_region_transaction_commit();
1731 memory_region_clear_coalescing(mr
);
1732 g_free((char *)mr
->name
);
1733 g_free(mr
->ioeventfds
);
1736 Object
*memory_region_owner(MemoryRegion
*mr
)
1738 Object
*obj
= OBJECT(mr
);
1742 void memory_region_ref(MemoryRegion
*mr
)
1744 /* MMIO callbacks most likely will access data that belongs
1745 * to the owner, hence the need to ref/unref the owner whenever
1746 * the memory region is in use.
1748 * The memory region is a child of its owner. As long as the
1749 * owner doesn't call unparent itself on the memory region,
1750 * ref-ing the owner will also keep the memory region alive.
1751 * Memory regions without an owner are supposed to never go away;
1752 * we do not ref/unref them because it slows down DMA sensibly.
1754 if (mr
&& mr
->owner
) {
1755 object_ref(mr
->owner
);
1759 void memory_region_unref(MemoryRegion
*mr
)
1761 if (mr
&& mr
->owner
) {
1762 object_unref(mr
->owner
);
1766 uint64_t memory_region_size(MemoryRegion
*mr
)
1768 if (int128_eq(mr
->size
, int128_2_64())) {
1771 return int128_get64(mr
->size
);
1774 const char *memory_region_name(const MemoryRegion
*mr
)
1777 ((MemoryRegion
*)mr
)->name
=
1778 object_get_canonical_path_component(OBJECT(mr
));
1783 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1785 return mr
->ram_device
;
1788 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1790 uint8_t mask
= mr
->dirty_log_mask
;
1791 if (global_dirty_log
&& mr
->ram_block
) {
1792 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1797 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1799 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1802 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
,
1805 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1806 IOMMUNotifier
*iommu_notifier
;
1807 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1810 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1811 flags
|= iommu_notifier
->notifier_flags
;
1814 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1815 ret
= imrc
->notify_flag_changed(iommu_mr
,
1816 iommu_mr
->iommu_notify_flags
,
1821 iommu_mr
->iommu_notify_flags
= flags
;
1826 int memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1827 IOMMUNotifier
*n
, Error
**errp
)
1829 IOMMUMemoryRegion
*iommu_mr
;
1833 return memory_region_register_iommu_notifier(mr
->alias
, n
, errp
);
1836 /* We need to register for at least one bitfield */
1837 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1838 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1839 assert(n
->start
<= n
->end
);
1840 assert(n
->iommu_idx
>= 0 &&
1841 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1843 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1844 ret
= memory_region_update_iommu_notify_flags(iommu_mr
, errp
);
1846 QLIST_REMOVE(n
, node
);
1851 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1853 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1855 if (imrc
->get_min_page_size
) {
1856 return imrc
->get_min_page_size(iommu_mr
);
1858 return TARGET_PAGE_SIZE
;
1861 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1863 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1864 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1865 hwaddr addr
, granularity
;
1866 IOMMUTLBEntry iotlb
;
1868 /* If the IOMMU has its own replay callback, override */
1870 imrc
->replay(iommu_mr
, n
);
1874 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1876 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1877 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1878 if (iotlb
.perm
!= IOMMU_NONE
) {
1879 n
->notify(n
, &iotlb
);
1882 /* if (2^64 - MR size) < granularity, it's possible to get an
1883 * infinite loop here. This should catch such a wraparound */
1884 if ((addr
+ granularity
) < addr
) {
1890 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1893 IOMMUMemoryRegion
*iommu_mr
;
1896 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1899 QLIST_REMOVE(n
, node
);
1900 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1901 memory_region_update_iommu_notify_flags(iommu_mr
, NULL
);
1904 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1905 IOMMUTLBEntry
*entry
)
1907 IOMMUNotifierFlag request_flags
;
1908 hwaddr entry_end
= entry
->iova
+ entry
->addr_mask
;
1911 * Skip the notification if the notification does not overlap
1912 * with registered range.
1914 if (notifier
->start
> entry_end
|| notifier
->end
< entry
->iova
) {
1918 assert(entry
->iova
>= notifier
->start
&& entry_end
<= notifier
->end
);
1920 if (entry
->perm
& IOMMU_RW
) {
1921 request_flags
= IOMMU_NOTIFIER_MAP
;
1923 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1926 if (notifier
->notifier_flags
& request_flags
) {
1927 notifier
->notify(notifier
, entry
);
1931 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
1933 IOMMUTLBEntry entry
)
1935 IOMMUNotifier
*iommu_notifier
;
1937 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
1939 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1940 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
1941 memory_region_notify_one(iommu_notifier
, &entry
);
1946 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
1947 enum IOMMUMemoryRegionAttr attr
,
1950 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1952 if (!imrc
->get_attr
) {
1956 return imrc
->get_attr(iommu_mr
, attr
, data
);
1959 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
1962 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1964 if (!imrc
->attrs_to_index
) {
1968 return imrc
->attrs_to_index(iommu_mr
, attrs
);
1971 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
1973 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1975 if (!imrc
->num_indexes
) {
1979 return imrc
->num_indexes(iommu_mr
);
1982 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1984 uint8_t mask
= 1 << client
;
1985 uint8_t old_logging
;
1987 assert(client
== DIRTY_MEMORY_VGA
);
1988 old_logging
= mr
->vga_logging_count
;
1989 mr
->vga_logging_count
+= log
? 1 : -1;
1990 if (!!old_logging
== !!mr
->vga_logging_count
) {
1994 memory_region_transaction_begin();
1995 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
1996 memory_region_update_pending
|= mr
->enabled
;
1997 memory_region_transaction_commit();
2000 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2003 assert(mr
->ram_block
);
2004 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
2006 memory_region_get_dirty_log_mask(mr
));
2009 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
2011 MemoryListener
*listener
;
2016 /* If the same address space has multiple log_sync listeners, we
2017 * visit that address space's FlatView multiple times. But because
2018 * log_sync listeners are rare, it's still cheaper than walking each
2019 * address space once.
2021 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2022 if (!listener
->log_sync
) {
2025 as
= listener
->address_space
;
2026 view
= address_space_get_flatview(as
);
2027 FOR_EACH_FLAT_RANGE(fr
, view
) {
2028 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2029 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2030 listener
->log_sync(listener
, &mrs
);
2033 flatview_unref(view
);
2037 void memory_region_clear_dirty_bitmap(MemoryRegion
*mr
, hwaddr start
,
2040 MemoryRegionSection mrs
;
2041 MemoryListener
*listener
;
2045 hwaddr sec_start
, sec_end
, sec_size
;
2047 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2048 if (!listener
->log_clear
) {
2051 as
= listener
->address_space
;
2052 view
= address_space_get_flatview(as
);
2053 FOR_EACH_FLAT_RANGE(fr
, view
) {
2054 if (!fr
->dirty_log_mask
|| fr
->mr
!= mr
) {
2056 * Clear dirty bitmap operation only applies to those
2057 * regions whose dirty logging is at least enabled
2062 mrs
= section_from_flat_range(fr
, view
);
2064 sec_start
= MAX(mrs
.offset_within_region
, start
);
2065 sec_end
= mrs
.offset_within_region
+ int128_get64(mrs
.size
);
2066 sec_end
= MIN(sec_end
, start
+ len
);
2068 if (sec_start
>= sec_end
) {
2070 * If this memory region section has no intersection
2071 * with the requested range, skip.
2076 /* Valid case; shrink the section if needed */
2077 mrs
.offset_within_address_space
+=
2078 sec_start
- mrs
.offset_within_region
;
2079 mrs
.offset_within_region
= sec_start
;
2080 sec_size
= sec_end
- sec_start
;
2081 mrs
.size
= int128_make64(sec_size
);
2082 listener
->log_clear(listener
, &mrs
);
2084 flatview_unref(view
);
2088 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2093 DirtyBitmapSnapshot
*snapshot
;
2094 assert(mr
->ram_block
);
2095 memory_region_sync_dirty_bitmap(mr
);
2096 snapshot
= cpu_physical_memory_snapshot_and_clear_dirty(mr
, addr
, size
, client
);
2097 memory_global_after_dirty_log_sync();
2101 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2102 hwaddr addr
, hwaddr size
)
2104 assert(mr
->ram_block
);
2105 return cpu_physical_memory_snapshot_get_dirty(snap
,
2106 memory_region_get_ram_addr(mr
) + addr
, size
);
2109 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2111 if (mr
->readonly
!= readonly
) {
2112 memory_region_transaction_begin();
2113 mr
->readonly
= readonly
;
2114 memory_region_update_pending
|= mr
->enabled
;
2115 memory_region_transaction_commit();
2119 void memory_region_set_nonvolatile(MemoryRegion
*mr
, bool nonvolatile
)
2121 if (mr
->nonvolatile
!= nonvolatile
) {
2122 memory_region_transaction_begin();
2123 mr
->nonvolatile
= nonvolatile
;
2124 memory_region_update_pending
|= mr
->enabled
;
2125 memory_region_transaction_commit();
2129 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2131 if (mr
->romd_mode
!= romd_mode
) {
2132 memory_region_transaction_begin();
2133 mr
->romd_mode
= romd_mode
;
2134 memory_region_update_pending
|= mr
->enabled
;
2135 memory_region_transaction_commit();
2139 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2140 hwaddr size
, unsigned client
)
2142 assert(mr
->ram_block
);
2143 cpu_physical_memory_test_and_clear_dirty(
2144 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2147 int memory_region_get_fd(MemoryRegion
*mr
)
2151 RCU_READ_LOCK_GUARD();
2155 fd
= mr
->ram_block
->fd
;
2160 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2163 uint64_t offset
= 0;
2165 RCU_READ_LOCK_GUARD();
2167 offset
+= mr
->alias_offset
;
2170 assert(mr
->ram_block
);
2171 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2176 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2180 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2188 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2190 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2193 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2195 assert(mr
->ram_block
);
2197 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2201 void memory_region_do_writeback(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
2204 * Might be extended case needed to cover
2205 * different types of memory regions
2207 if (mr
->ram_block
&& mr
->dirty_log_mask
) {
2208 qemu_ram_writeback(mr
->ram_block
, addr
, size
);
2213 * Call proper memory listeners about the change on the newly
2214 * added/removed CoalescedMemoryRange.
2216 static void memory_region_update_coalesced_range(MemoryRegion
*mr
,
2217 CoalescedMemoryRange
*cmr
,
2224 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2225 view
= address_space_get_flatview(as
);
2226 FOR_EACH_FLAT_RANGE(fr
, view
) {
2228 flat_range_coalesced_io_notify(fr
, as
, cmr
, add
);
2231 flatview_unref(view
);
2235 void memory_region_set_coalescing(MemoryRegion
*mr
)
2237 memory_region_clear_coalescing(mr
);
2238 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2241 void memory_region_add_coalescing(MemoryRegion
*mr
,
2245 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2247 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2248 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2249 memory_region_update_coalesced_range(mr
, cmr
, true);
2250 memory_region_set_flush_coalesced(mr
);
2253 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2255 CoalescedMemoryRange
*cmr
;
2257 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2261 qemu_flush_coalesced_mmio_buffer();
2262 mr
->flush_coalesced_mmio
= false;
2264 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2265 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2266 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2267 memory_region_update_coalesced_range(mr
, cmr
, false);
2272 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2274 mr
->flush_coalesced_mmio
= true;
2277 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2279 qemu_flush_coalesced_mmio_buffer();
2280 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2281 mr
->flush_coalesced_mmio
= false;
2285 void memory_region_clear_global_locking(MemoryRegion
*mr
)
2287 mr
->global_locking
= false;
2290 static bool userspace_eventfd_warning
;
2292 void memory_region_add_eventfd(MemoryRegion
*mr
,
2299 MemoryRegionIoeventfd mrfd
= {
2300 .addr
.start
= int128_make64(addr
),
2301 .addr
.size
= int128_make64(size
),
2302 .match_data
= match_data
,
2308 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2309 userspace_eventfd_warning
))) {
2310 userspace_eventfd_warning
= true;
2311 error_report("Using eventfd without MMIO binding in KVM. "
2312 "Suboptimal performance expected");
2316 adjust_endianness(mr
, &mrfd
.data
, size_memop(size
) | MO_TE
);
2318 memory_region_transaction_begin();
2319 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2320 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2325 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2326 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2327 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2328 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2329 mr
->ioeventfds
[i
] = mrfd
;
2330 ioeventfd_update_pending
|= mr
->enabled
;
2331 memory_region_transaction_commit();
2334 void memory_region_del_eventfd(MemoryRegion
*mr
,
2341 MemoryRegionIoeventfd mrfd
= {
2342 .addr
.start
= int128_make64(addr
),
2343 .addr
.size
= int128_make64(size
),
2344 .match_data
= match_data
,
2351 adjust_endianness(mr
, &mrfd
.data
, size_memop(size
) | MO_TE
);
2353 memory_region_transaction_begin();
2354 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2355 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2359 assert(i
!= mr
->ioeventfd_nb
);
2360 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2361 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2363 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2364 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2365 ioeventfd_update_pending
|= mr
->enabled
;
2366 memory_region_transaction_commit();
2369 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2371 MemoryRegion
*mr
= subregion
->container
;
2372 MemoryRegion
*other
;
2374 memory_region_transaction_begin();
2376 memory_region_ref(subregion
);
2377 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2378 if (subregion
->priority
>= other
->priority
) {
2379 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2383 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2385 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2386 memory_region_transaction_commit();
2389 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2391 MemoryRegion
*subregion
)
2393 assert(!subregion
->container
);
2394 subregion
->container
= mr
;
2395 subregion
->addr
= offset
;
2396 memory_region_update_container_subregions(subregion
);
2399 void memory_region_add_subregion(MemoryRegion
*mr
,
2401 MemoryRegion
*subregion
)
2403 subregion
->priority
= 0;
2404 memory_region_add_subregion_common(mr
, offset
, subregion
);
2407 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2409 MemoryRegion
*subregion
,
2412 subregion
->priority
= priority
;
2413 memory_region_add_subregion_common(mr
, offset
, subregion
);
2416 void memory_region_del_subregion(MemoryRegion
*mr
,
2417 MemoryRegion
*subregion
)
2419 memory_region_transaction_begin();
2420 assert(subregion
->container
== mr
);
2421 subregion
->container
= NULL
;
2422 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2423 memory_region_unref(subregion
);
2424 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2425 memory_region_transaction_commit();
2428 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2430 if (enabled
== mr
->enabled
) {
2433 memory_region_transaction_begin();
2434 mr
->enabled
= enabled
;
2435 memory_region_update_pending
= true;
2436 memory_region_transaction_commit();
2439 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2441 Int128 s
= int128_make64(size
);
2443 if (size
== UINT64_MAX
) {
2446 if (int128_eq(s
, mr
->size
)) {
2449 memory_region_transaction_begin();
2451 memory_region_update_pending
= true;
2452 memory_region_transaction_commit();
2455 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2457 MemoryRegion
*container
= mr
->container
;
2460 memory_region_transaction_begin();
2461 memory_region_ref(mr
);
2462 memory_region_del_subregion(container
, mr
);
2463 mr
->container
= container
;
2464 memory_region_update_container_subregions(mr
);
2465 memory_region_unref(mr
);
2466 memory_region_transaction_commit();
2470 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2472 if (addr
!= mr
->addr
) {
2474 memory_region_readd_subregion(mr
);
2478 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2482 if (offset
== mr
->alias_offset
) {
2486 memory_region_transaction_begin();
2487 mr
->alias_offset
= offset
;
2488 memory_region_update_pending
|= mr
->enabled
;
2489 memory_region_transaction_commit();
2492 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2497 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2499 const AddrRange
*addr
= addr_
;
2500 const FlatRange
*fr
= fr_
;
2502 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2504 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2510 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2512 return bsearch(&addr
, view
->ranges
, view
->nr
,
2513 sizeof(FlatRange
), cmp_flatrange_addr
);
2516 bool memory_region_is_mapped(MemoryRegion
*mr
)
2518 return mr
->container
? true : false;
2521 /* Same as memory_region_find, but it does not add a reference to the
2522 * returned region. It must be called from an RCU critical section.
2524 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2525 hwaddr addr
, uint64_t size
)
2527 MemoryRegionSection ret
= { .mr
= NULL
};
2535 for (root
= mr
; root
->container
; ) {
2536 root
= root
->container
;
2540 as
= memory_region_to_address_space(root
);
2544 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2546 view
= address_space_to_flatview(as
);
2547 fr
= flatview_lookup(view
, range
);
2552 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2558 range
= addrrange_intersection(range
, fr
->addr
);
2559 ret
.offset_within_region
= fr
->offset_in_region
;
2560 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2562 ret
.size
= range
.size
;
2563 ret
.offset_within_address_space
= int128_get64(range
.start
);
2564 ret
.readonly
= fr
->readonly
;
2565 ret
.nonvolatile
= fr
->nonvolatile
;
2569 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2570 hwaddr addr
, uint64_t size
)
2572 MemoryRegionSection ret
;
2573 RCU_READ_LOCK_GUARD();
2574 ret
= memory_region_find_rcu(mr
, addr
, size
);
2576 memory_region_ref(ret
.mr
);
2581 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2585 RCU_READ_LOCK_GUARD();
2586 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2587 return mr
&& mr
!= container
;
2590 void memory_global_dirty_log_sync(void)
2592 memory_region_sync_dirty_bitmap(NULL
);
2595 void memory_global_after_dirty_log_sync(void)
2597 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync
, Forward
);
2600 static VMChangeStateEntry
*vmstate_change
;
2602 void memory_global_dirty_log_start(void)
2604 if (vmstate_change
) {
2605 qemu_del_vm_change_state_handler(vmstate_change
);
2606 vmstate_change
= NULL
;
2609 global_dirty_log
= true;
2611 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2613 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2614 memory_region_transaction_begin();
2615 memory_region_update_pending
= true;
2616 memory_region_transaction_commit();
2619 static void memory_global_dirty_log_do_stop(void)
2621 global_dirty_log
= false;
2623 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2624 memory_region_transaction_begin();
2625 memory_region_update_pending
= true;
2626 memory_region_transaction_commit();
2628 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2631 static void memory_vm_change_state_handler(void *opaque
, int running
,
2635 memory_global_dirty_log_do_stop();
2637 if (vmstate_change
) {
2638 qemu_del_vm_change_state_handler(vmstate_change
);
2639 vmstate_change
= NULL
;
2644 void memory_global_dirty_log_stop(void)
2646 if (!runstate_is_running()) {
2647 if (vmstate_change
) {
2650 vmstate_change
= qemu_add_vm_change_state_handler(
2651 memory_vm_change_state_handler
, NULL
);
2655 memory_global_dirty_log_do_stop();
2658 static void listener_add_address_space(MemoryListener
*listener
,
2664 if (listener
->begin
) {
2665 listener
->begin(listener
);
2667 if (global_dirty_log
) {
2668 if (listener
->log_global_start
) {
2669 listener
->log_global_start(listener
);
2673 view
= address_space_get_flatview(as
);
2674 FOR_EACH_FLAT_RANGE(fr
, view
) {
2675 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2677 if (listener
->region_add
) {
2678 listener
->region_add(listener
, §ion
);
2680 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2681 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2684 if (listener
->commit
) {
2685 listener
->commit(listener
);
2687 flatview_unref(view
);
2690 static void listener_del_address_space(MemoryListener
*listener
,
2696 if (listener
->begin
) {
2697 listener
->begin(listener
);
2699 view
= address_space_get_flatview(as
);
2700 FOR_EACH_FLAT_RANGE(fr
, view
) {
2701 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2703 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2704 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2706 if (listener
->region_del
) {
2707 listener
->region_del(listener
, §ion
);
2710 if (listener
->commit
) {
2711 listener
->commit(listener
);
2713 flatview_unref(view
);
2716 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2718 MemoryListener
*other
= NULL
;
2720 listener
->address_space
= as
;
2721 if (QTAILQ_EMPTY(&memory_listeners
)
2722 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
)->priority
) {
2723 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2725 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2726 if (listener
->priority
< other
->priority
) {
2730 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2733 if (QTAILQ_EMPTY(&as
->listeners
)
2734 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
)->priority
) {
2735 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2737 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2738 if (listener
->priority
< other
->priority
) {
2742 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2745 listener_add_address_space(listener
, as
);
2748 void memory_listener_unregister(MemoryListener
*listener
)
2750 if (!listener
->address_space
) {
2754 listener_del_address_space(listener
, listener
->address_space
);
2755 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2756 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2757 listener
->address_space
= NULL
;
2760 void address_space_remove_listeners(AddressSpace
*as
)
2762 while (!QTAILQ_EMPTY(&as
->listeners
)) {
2763 memory_listener_unregister(QTAILQ_FIRST(&as
->listeners
));
2767 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2769 memory_region_ref(root
);
2771 as
->current_map
= NULL
;
2772 as
->ioeventfd_nb
= 0;
2773 as
->ioeventfds
= NULL
;
2774 QTAILQ_INIT(&as
->listeners
);
2775 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2776 as
->name
= g_strdup(name
? name
: "anonymous");
2777 address_space_update_topology(as
);
2778 address_space_update_ioeventfds(as
);
2781 static void do_address_space_destroy(AddressSpace
*as
)
2783 assert(QTAILQ_EMPTY(&as
->listeners
));
2785 flatview_unref(as
->current_map
);
2787 g_free(as
->ioeventfds
);
2788 memory_region_unref(as
->root
);
2791 void address_space_destroy(AddressSpace
*as
)
2793 MemoryRegion
*root
= as
->root
;
2795 /* Flush out anything from MemoryListeners listening in on this */
2796 memory_region_transaction_begin();
2798 memory_region_transaction_commit();
2799 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2801 /* At this point, as->dispatch and as->current_map are dummy
2802 * entries that the guest should never use. Wait for the old
2803 * values to expire before freeing the data.
2806 call_rcu(as
, do_address_space_destroy
, rcu
);
2809 static const char *memory_region_type(MemoryRegion
*mr
)
2812 return memory_region_type(mr
->alias
);
2814 if (memory_region_is_ram_device(mr
)) {
2816 } else if (memory_region_is_romd(mr
)) {
2818 } else if (memory_region_is_rom(mr
)) {
2820 } else if (memory_region_is_ram(mr
)) {
2827 typedef struct MemoryRegionList MemoryRegionList
;
2829 struct MemoryRegionList
{
2830 const MemoryRegion
*mr
;
2831 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2834 typedef QTAILQ_HEAD(, MemoryRegionList
) MemoryRegionListHead
;
2836 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2837 int128_sub((size), int128_one())) : 0)
2838 #define MTREE_INDENT " "
2840 static void mtree_expand_owner(const char *label
, Object
*obj
)
2842 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
2844 qemu_printf(" %s:{%s", label
, dev
? "dev" : "obj");
2845 if (dev
&& dev
->id
) {
2846 qemu_printf(" id=%s", dev
->id
);
2848 gchar
*canonical_path
= object_get_canonical_path(obj
);
2849 if (canonical_path
) {
2850 qemu_printf(" path=%s", canonical_path
);
2851 g_free(canonical_path
);
2853 qemu_printf(" type=%s", object_get_typename(obj
));
2859 static void mtree_print_mr_owner(const MemoryRegion
*mr
)
2861 Object
*owner
= mr
->owner
;
2862 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
2864 if (!owner
&& !parent
) {
2865 qemu_printf(" orphan");
2869 mtree_expand_owner("owner", owner
);
2871 if (parent
&& parent
!= owner
) {
2872 mtree_expand_owner("parent", parent
);
2876 static void mtree_print_mr(const MemoryRegion
*mr
, unsigned int level
,
2878 MemoryRegionListHead
*alias_print_queue
,
2881 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2882 MemoryRegionListHead submr_print_queue
;
2883 const MemoryRegion
*submr
;
2885 hwaddr cur_start
, cur_end
;
2891 for (i
= 0; i
< level
; i
++) {
2892 qemu_printf(MTREE_INDENT
);
2895 cur_start
= base
+ mr
->addr
;
2896 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2899 * Try to detect overflow of memory region. This should never
2900 * happen normally. When it happens, we dump something to warn the
2901 * user who is observing this.
2903 if (cur_start
< base
|| cur_end
< cur_start
) {
2904 qemu_printf("[DETECTED OVERFLOW!] ");
2908 MemoryRegionList
*ml
;
2911 /* check if the alias is already in the queue */
2912 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2913 if (ml
->mr
== mr
->alias
) {
2919 ml
= g_new(MemoryRegionList
, 1);
2921 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2923 qemu_printf(TARGET_FMT_plx
"-" TARGET_FMT_plx
2924 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2925 "-" TARGET_FMT_plx
"%s",
2928 mr
->nonvolatile
? "nv-" : "",
2929 memory_region_type((MemoryRegion
*)mr
),
2930 memory_region_name(mr
),
2931 memory_region_name(mr
->alias
),
2933 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2934 mr
->enabled
? "" : " [disabled]");
2936 mtree_print_mr_owner(mr
);
2939 qemu_printf(TARGET_FMT_plx
"-" TARGET_FMT_plx
2940 " (prio %d, %s%s): %s%s",
2943 mr
->nonvolatile
? "nv-" : "",
2944 memory_region_type((MemoryRegion
*)mr
),
2945 memory_region_name(mr
),
2946 mr
->enabled
? "" : " [disabled]");
2948 mtree_print_mr_owner(mr
);
2953 QTAILQ_INIT(&submr_print_queue
);
2955 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2956 new_ml
= g_new(MemoryRegionList
, 1);
2958 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2959 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2960 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2961 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2962 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2968 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2972 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2973 mtree_print_mr(ml
->mr
, level
+ 1, cur_start
,
2974 alias_print_queue
, owner
);
2977 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2982 struct FlatViewInfo
{
2989 static void mtree_print_flatview(gpointer key
, gpointer value
,
2992 FlatView
*view
= key
;
2993 GArray
*fv_address_spaces
= value
;
2994 struct FlatViewInfo
*fvi
= user_data
;
2995 FlatRange
*range
= &view
->ranges
[0];
3001 qemu_printf("FlatView #%d\n", fvi
->counter
);
3004 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3005 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3006 qemu_printf(" AS \"%s\", root: %s",
3007 as
->name
, memory_region_name(as
->root
));
3008 if (as
->root
->alias
) {
3009 qemu_printf(", alias %s", memory_region_name(as
->root
->alias
));
3014 qemu_printf(" Root memory region: %s\n",
3015 view
->root
? memory_region_name(view
->root
) : "(none)");
3018 qemu_printf(MTREE_INDENT
"No rendered FlatView\n\n");
3024 if (range
->offset_in_region
) {
3025 qemu_printf(MTREE_INDENT TARGET_FMT_plx
"-" TARGET_FMT_plx
3026 " (prio %d, %s%s): %s @" TARGET_FMT_plx
,
3027 int128_get64(range
->addr
.start
),
3028 int128_get64(range
->addr
.start
)
3029 + MR_SIZE(range
->addr
.size
),
3031 range
->nonvolatile
? "nv-" : "",
3032 range
->readonly
? "rom" : memory_region_type(mr
),
3033 memory_region_name(mr
),
3034 range
->offset_in_region
);
3036 qemu_printf(MTREE_INDENT TARGET_FMT_plx
"-" TARGET_FMT_plx
3037 " (prio %d, %s%s): %s",
3038 int128_get64(range
->addr
.start
),
3039 int128_get64(range
->addr
.start
)
3040 + MR_SIZE(range
->addr
.size
),
3042 range
->nonvolatile
? "nv-" : "",
3043 range
->readonly
? "rom" : memory_region_type(mr
),
3044 memory_region_name(mr
));
3047 mtree_print_mr_owner(mr
);
3051 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3052 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3053 if (fvi
->ac
->has_memory(current_machine
, as
,
3054 int128_get64(range
->addr
.start
),
3055 MR_SIZE(range
->addr
.size
) + 1)) {
3056 qemu_printf(" %s", fvi
->ac
->name
);
3064 #if !defined(CONFIG_USER_ONLY)
3065 if (fvi
->dispatch_tree
&& view
->root
) {
3066 mtree_print_dispatch(view
->dispatch
, view
->root
);
3073 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3076 FlatView
*view
= key
;
3077 GArray
*fv_address_spaces
= value
;
3079 g_array_unref(fv_address_spaces
);
3080 flatview_unref(view
);
3085 void mtree_info(bool flatview
, bool dispatch_tree
, bool owner
)
3087 MemoryRegionListHead ml_head
;
3088 MemoryRegionList
*ml
, *ml2
;
3093 struct FlatViewInfo fvi
= {
3095 .dispatch_tree
= dispatch_tree
,
3098 GArray
*fv_address_spaces
;
3099 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3100 AccelClass
*ac
= ACCEL_GET_CLASS(current_accel());
3102 if (ac
->has_memory
) {
3106 /* Gather all FVs in one table */
3107 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3108 view
= address_space_get_flatview(as
);
3110 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3111 if (!fv_address_spaces
) {
3112 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3113 g_hash_table_insert(views
, view
, fv_address_spaces
);
3116 g_array_append_val(fv_address_spaces
, as
);
3120 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3123 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3124 g_hash_table_unref(views
);
3129 QTAILQ_INIT(&ml_head
);
3131 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3132 qemu_printf("address-space: %s\n", as
->name
);
3133 mtree_print_mr(as
->root
, 1, 0, &ml_head
, owner
);
3137 /* print aliased regions */
3138 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3139 qemu_printf("memory-region: %s\n", memory_region_name(ml
->mr
));
3140 mtree_print_mr(ml
->mr
, 1, 0, &ml_head
, owner
);
3144 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3149 void memory_region_init_ram(MemoryRegion
*mr
,
3150 struct Object
*owner
,
3155 DeviceState
*owner_dev
;
3158 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3160 error_propagate(errp
, err
);
3163 /* This will assert if owner is neither NULL nor a DeviceState.
3164 * We only want the owner here for the purposes of defining a
3165 * unique name for migration. TODO: Ideally we should implement
3166 * a naming scheme for Objects which are not DeviceStates, in
3167 * which case we can relax this restriction.
3169 owner_dev
= DEVICE(owner
);
3170 vmstate_register_ram(mr
, owner_dev
);
3173 void memory_region_init_rom(MemoryRegion
*mr
,
3174 struct Object
*owner
,
3179 DeviceState
*owner_dev
;
3182 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3184 error_propagate(errp
, err
);
3187 /* This will assert if owner is neither NULL nor a DeviceState.
3188 * We only want the owner here for the purposes of defining a
3189 * unique name for migration. TODO: Ideally we should implement
3190 * a naming scheme for Objects which are not DeviceStates, in
3191 * which case we can relax this restriction.
3193 owner_dev
= DEVICE(owner
);
3194 vmstate_register_ram(mr
, owner_dev
);
3197 void memory_region_init_rom_device(MemoryRegion
*mr
,
3198 struct Object
*owner
,
3199 const MemoryRegionOps
*ops
,
3205 DeviceState
*owner_dev
;
3208 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3211 error_propagate(errp
, err
);
3214 /* This will assert if owner is neither NULL nor a DeviceState.
3215 * We only want the owner here for the purposes of defining a
3216 * unique name for migration. TODO: Ideally we should implement
3217 * a naming scheme for Objects which are not DeviceStates, in
3218 * which case we can relax this restriction.
3220 owner_dev
= DEVICE(owner
);
3221 vmstate_register_ram(mr
, owner_dev
);
3224 static const TypeInfo memory_region_info
= {
3225 .parent
= TYPE_OBJECT
,
3226 .name
= TYPE_MEMORY_REGION
,
3227 .class_size
= sizeof(MemoryRegionClass
),
3228 .instance_size
= sizeof(MemoryRegion
),
3229 .instance_init
= memory_region_initfn
,
3230 .instance_finalize
= memory_region_finalize
,
3233 static const TypeInfo iommu_memory_region_info
= {
3234 .parent
= TYPE_MEMORY_REGION
,
3235 .name
= TYPE_IOMMU_MEMORY_REGION
,
3236 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3237 .instance_size
= sizeof(IOMMUMemoryRegion
),
3238 .instance_init
= iommu_memory_region_initfn
,
3242 static void memory_register_types(void)
3244 type_register_static(&memory_region_info
);
3245 type_register_static(&iommu_memory_region_info
);
3248 type_init(memory_register_types
)