]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
ll-merge: make callers responsible for showing warnings
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "cache.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "attr.h"
22 #include "blob.h"
23 #include "cache-tree.h"
24 #include "commit.h"
25 #include "commit-reach.h"
26 #include "diff.h"
27 #include "diffcore.h"
28 #include "dir.h"
29 #include "entry.h"
30 #include "ll-merge.h"
31 #include "object-store.h"
32 #include "promisor-remote.h"
33 #include "revision.h"
34 #include "strmap.h"
35 #include "submodule-config.h"
36 #include "submodule.h"
37 #include "tree.h"
38 #include "unpack-trees.h"
39 #include "xdiff-interface.h"
40
41 /*
42 * We have many arrays of size 3. Whenever we have such an array, the
43 * indices refer to one of the sides of the three-way merge. This is so
44 * pervasive that the constants 0, 1, and 2 are used in many places in the
45 * code (especially in arithmetic operations to find the other side's index
46 * or to compute a relevant mask), but sometimes these enum names are used
47 * to aid code clarity.
48 *
49 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
50 * referred to there is one of these three sides.
51 */
52 enum merge_side {
53 MERGE_BASE = 0,
54 MERGE_SIDE1 = 1,
55 MERGE_SIDE2 = 2
56 };
57
58 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
59
60 struct traversal_callback_data {
61 unsigned long mask;
62 unsigned long dirmask;
63 struct name_entry names[3];
64 };
65
66 struct deferred_traversal_data {
67 /*
68 * possible_trivial_merges: directories to be explored only when needed
69 *
70 * possible_trivial_merges is a map of directory names to
71 * dir_rename_mask. When we detect that a directory is unchanged on
72 * one side, we can sometimes resolve the directory without recursing
73 * into it. Renames are the only things that can prevent such an
74 * optimization. However, for rename sources:
75 * - If no parent directory needed directory rename detection, then
76 * no path under such a directory can be a relevant_source.
77 * and for rename destinations:
78 * - If no cached rename has a target path under the directory AND
79 * - If there are no unpaired relevant_sources elsewhere in the
80 * repository
81 * then we don't need any path under this directory for a rename
82 * destination. The only way to know the last item above is to defer
83 * handling such directories until the end of collect_merge_info(),
84 * in handle_deferred_entries().
85 *
86 * For each we store dir_rename_mask, since that's the only bit of
87 * information we need, other than the path, to resume the recursive
88 * traversal.
89 */
90 struct strintmap possible_trivial_merges;
91
92 /*
93 * trivial_merges_okay: if trivial directory merges are okay
94 *
95 * See possible_trivial_merges above. The "no unpaired
96 * relevant_sources elsewhere in the repository" is a single boolean
97 * per merge side, which we store here. Note that while 0 means no,
98 * 1 only means "maybe" rather than "yes"; we optimistically set it
99 * to 1 initially and only clear when we determine it is unsafe to
100 * do trivial directory merges.
101 */
102 unsigned trivial_merges_okay;
103
104 /*
105 * target_dirs: ancestor directories of rename targets
106 *
107 * target_dirs contains all directory names that are an ancestor of
108 * any rename destination.
109 */
110 struct strset target_dirs;
111 };
112
113 struct rename_info {
114 /*
115 * All variables that are arrays of size 3 correspond to data tracked
116 * for the sides in enum merge_side. Index 0 is almost always unused
117 * because we often only need to track information for MERGE_SIDE1 and
118 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
119 * are determined relative to what changed since the MERGE_BASE).
120 */
121
122 /*
123 * pairs: pairing of filenames from diffcore_rename()
124 */
125 struct diff_queue_struct pairs[3];
126
127 /*
128 * dirs_removed: directories removed on a given side of history.
129 *
130 * The keys of dirs_removed[side] are the directories that were removed
131 * on the given side of history. The value of the strintmap for each
132 * directory is a value from enum dir_rename_relevance.
133 */
134 struct strintmap dirs_removed[3];
135
136 /*
137 * dir_rename_count: tracking where parts of a directory were renamed to
138 *
139 * When files in a directory are renamed, they may not all go to the
140 * same location. Each strmap here tracks:
141 * old_dir => {new_dir => int}
142 * That is, dir_rename_count[side] is a strmap to a strintmap.
143 */
144 struct strmap dir_rename_count[3];
145
146 /*
147 * dir_renames: computed directory renames
148 *
149 * This is a map of old_dir => new_dir and is derived in part from
150 * dir_rename_count.
151 */
152 struct strmap dir_renames[3];
153
154 /*
155 * relevant_sources: deleted paths wanted in rename detection, and why
156 *
157 * relevant_sources is a set of deleted paths on each side of
158 * history for which we need rename detection. If a path is deleted
159 * on one side of history, we need to detect if it is part of a
160 * rename if either
161 * * the file is modified/deleted on the other side of history
162 * * we need to detect renames for an ancestor directory
163 * If neither of those are true, we can skip rename detection for
164 * that path. The reason is stored as a value from enum
165 * file_rename_relevance, as the reason can inform the algorithm in
166 * diffcore_rename_extended().
167 */
168 struct strintmap relevant_sources[3];
169
170 struct deferred_traversal_data deferred[3];
171
172 /*
173 * dir_rename_mask:
174 * 0: optimization removing unmodified potential rename source okay
175 * 2 or 4: optimization okay, but must check for files added to dir
176 * 7: optimization forbidden; need rename source in case of dir rename
177 */
178 unsigned dir_rename_mask:3;
179
180 /*
181 * callback_data_*: supporting data structures for alternate traversal
182 *
183 * We sometimes need to be able to traverse through all the files
184 * in a given tree before all immediate subdirectories within that
185 * tree. Since traverse_trees() doesn't do that naturally, we have
186 * a traverse_trees_wrapper() that stores any immediate
187 * subdirectories while traversing files, then traverses the
188 * immediate subdirectories later. These callback_data* variables
189 * store the information for the subdirectories so that we can do
190 * that traversal order.
191 */
192 struct traversal_callback_data *callback_data;
193 int callback_data_nr, callback_data_alloc;
194 char *callback_data_traverse_path;
195
196 /*
197 * merge_trees: trees passed to the merge algorithm for the merge
198 *
199 * merge_trees records the trees passed to the merge algorithm. But,
200 * this data also is stored in merge_result->priv. If a sequence of
201 * merges are being done (such as when cherry-picking or rebasing),
202 * the next merge can look at this and re-use information from
203 * previous merges under certain circumstances.
204 *
205 * See also all the cached_* variables.
206 */
207 struct tree *merge_trees[3];
208
209 /*
210 * cached_pairs_valid_side: which side's cached info can be reused
211 *
212 * See the description for merge_trees. For repeated merges, at most
213 * only one side's cached information can be used. Valid values:
214 * MERGE_SIDE2: cached data from side2 can be reused
215 * MERGE_SIDE1: cached data from side1 can be reused
216 * 0: no cached data can be reused
217 * -1: See redo_after_renames; both sides can be reused.
218 */
219 int cached_pairs_valid_side;
220
221 /*
222 * cached_pairs: Caching of renames and deletions.
223 *
224 * These are mappings recording renames and deletions of individual
225 * files (not directories). They are thus a map from an old
226 * filename to either NULL (for deletions) or a new filename (for
227 * renames).
228 */
229 struct strmap cached_pairs[3];
230
231 /*
232 * cached_target_names: just the destinations from cached_pairs
233 *
234 * We sometimes want a fast lookup to determine if a given filename
235 * is one of the destinations in cached_pairs. cached_target_names
236 * is thus duplicative information, but it provides a fast lookup.
237 */
238 struct strset cached_target_names[3];
239
240 /*
241 * cached_irrelevant: Caching of rename_sources that aren't relevant.
242 *
243 * If we try to detect a rename for a source path and succeed, it's
244 * part of a rename. If we try to detect a rename for a source path
245 * and fail, then it's a delete. If we do not try to detect a rename
246 * for a path, then we don't know if it's a rename or a delete. If
247 * merge-ort doesn't think the path is relevant, then we just won't
248 * cache anything for that path. But there's a slight problem in
249 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
250 * commit 9bd342137e ("diffcore-rename: determine which
251 * relevant_sources are no longer relevant", 2021-03-13),
252 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
253 * avoid excessive calls to diffcore_rename_extended() we still need
254 * to cache such paths, though we cannot record them as either
255 * renames or deletes. So we cache them here as a "turned out to be
256 * irrelevant *for this commit*" as they are often also irrelevant
257 * for subsequent commits, though we will have to do some extra
258 * checking to see whether such paths become relevant for rename
259 * detection when cherry-picking/rebasing subsequent commits.
260 */
261 struct strset cached_irrelevant[3];
262
263 /*
264 * redo_after_renames: optimization flag for "restarting" the merge
265 *
266 * Sometimes it pays to detect renames, cache them, and then
267 * restart the merge operation from the beginning. The reason for
268 * this is that when we know where all the renames are, we know
269 * whether a certain directory has any paths under it affected --
270 * and if a directory is not affected then it permits us to do
271 * trivial tree merging in more cases. Doing trivial tree merging
272 * prevents the need to run process_entry() on every path
273 * underneath trees that can be trivially merged, and
274 * process_entry() is more expensive than collect_merge_info() --
275 * plus, the second collect_merge_info() will be much faster since
276 * it doesn't have to recurse into the relevant trees.
277 *
278 * Values for this flag:
279 * 0 = don't bother, not worth it (or conditions not yet checked)
280 * 1 = conditions for optimization met, optimization worthwhile
281 * 2 = we already did it (don't restart merge yet again)
282 */
283 unsigned redo_after_renames;
284
285 /*
286 * needed_limit: value needed for inexact rename detection to run
287 *
288 * If the current rename limit wasn't high enough for inexact
289 * rename detection to run, this records the limit needed. Otherwise,
290 * this value remains 0.
291 */
292 int needed_limit;
293 };
294
295 struct merge_options_internal {
296 /*
297 * paths: primary data structure in all of merge ort.
298 *
299 * The keys of paths:
300 * * are full relative paths from the toplevel of the repository
301 * (e.g. "drivers/firmware/raspberrypi.c").
302 * * store all relevant paths in the repo, both directories and
303 * files (e.g. drivers, drivers/firmware would also be included)
304 * * these keys serve to intern all the path strings, which allows
305 * us to do pointer comparison on directory names instead of
306 * strcmp; we just have to be careful to use the interned strings.
307 *
308 * The values of paths:
309 * * either a pointer to a merged_info, or a conflict_info struct
310 * * merged_info contains all relevant information for a
311 * non-conflicted entry.
312 * * conflict_info contains a merged_info, plus any additional
313 * information about a conflict such as the higher orders stages
314 * involved and the names of the paths those came from (handy
315 * once renames get involved).
316 * * a path may start "conflicted" (i.e. point to a conflict_info)
317 * and then a later step (e.g. three-way content merge) determines
318 * it can be cleanly merged, at which point it'll be marked clean
319 * and the algorithm will ignore any data outside the contained
320 * merged_info for that entry
321 * * If an entry remains conflicted, the merged_info portion of a
322 * conflict_info will later be filled with whatever version of
323 * the file should be placed in the working directory (e.g. an
324 * as-merged-as-possible variation that contains conflict markers).
325 */
326 struct strmap paths;
327
328 /*
329 * conflicted: a subset of keys->values from "paths"
330 *
331 * conflicted is basically an optimization between process_entries()
332 * and record_conflicted_index_entries(); the latter could loop over
333 * ALL the entries in paths AGAIN and look for the ones that are
334 * still conflicted, but since process_entries() has to loop over
335 * all of them, it saves the ones it couldn't resolve in this strmap
336 * so that record_conflicted_index_entries() can iterate just the
337 * relevant entries.
338 */
339 struct strmap conflicted;
340
341 /*
342 * pool: memory pool for fast allocation/deallocation
343 *
344 * We allocate room for lots of filenames and auxiliary data
345 * structures in merge_options_internal, and it tends to all be
346 * freed together too. Using a memory pool for these provides a
347 * nice speedup.
348 */
349 struct mem_pool pool;
350
351 /*
352 * output: special messages and conflict notices for various paths
353 *
354 * This is a map of pathnames (a subset of the keys in "paths" above)
355 * to strbufs. It gathers various warning/conflict/notice messages
356 * for later processing.
357 */
358 struct strmap output;
359
360 /*
361 * renames: various data relating to rename detection
362 */
363 struct rename_info renames;
364
365 /*
366 * attr_index: hacky minimal index used for renormalization
367 *
368 * renormalization code _requires_ an index, though it only needs to
369 * find a .gitattributes file within the index. So, when
370 * renormalization is important, we create a special index with just
371 * that one file.
372 */
373 struct index_state attr_index;
374
375 /*
376 * current_dir_name, toplevel_dir: temporary vars
377 *
378 * These are used in collect_merge_info_callback(), and will set the
379 * various merged_info.directory_name for the various paths we get;
380 * see documentation for that variable and the requirements placed on
381 * that field.
382 */
383 const char *current_dir_name;
384 const char *toplevel_dir;
385
386 /* call_depth: recursion level counter for merging merge bases */
387 int call_depth;
388 };
389
390 struct version_info {
391 struct object_id oid;
392 unsigned short mode;
393 };
394
395 struct merged_info {
396 /* if is_null, ignore result. otherwise result has oid & mode */
397 struct version_info result;
398 unsigned is_null:1;
399
400 /*
401 * clean: whether the path in question is cleanly merged.
402 *
403 * see conflict_info.merged for more details.
404 */
405 unsigned clean:1;
406
407 /*
408 * basename_offset: offset of basename of path.
409 *
410 * perf optimization to avoid recomputing offset of final '/'
411 * character in pathname (0 if no '/' in pathname).
412 */
413 size_t basename_offset;
414
415 /*
416 * directory_name: containing directory name.
417 *
418 * Note that we assume directory_name is constructed such that
419 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
420 * i.e. string equality is equivalent to pointer equality. For this
421 * to hold, we have to be careful setting directory_name.
422 */
423 const char *directory_name;
424 };
425
426 struct conflict_info {
427 /*
428 * merged: the version of the path that will be written to working tree
429 *
430 * WARNING: It is critical to check merged.clean and ensure it is 0
431 * before reading any conflict_info fields outside of merged.
432 * Allocated merge_info structs will always have clean set to 1.
433 * Allocated conflict_info structs will have merged.clean set to 0
434 * initially. The merged.clean field is how we know if it is safe
435 * to access other parts of conflict_info besides merged; if a
436 * conflict_info's merged.clean is changed to 1, the rest of the
437 * algorithm is not allowed to look at anything outside of the
438 * merged member anymore.
439 */
440 struct merged_info merged;
441
442 /* oids & modes from each of the three trees for this path */
443 struct version_info stages[3];
444
445 /* pathnames for each stage; may differ due to rename detection */
446 const char *pathnames[3];
447
448 /* Whether this path is/was involved in a directory/file conflict */
449 unsigned df_conflict:1;
450
451 /*
452 * Whether this path is/was involved in a non-content conflict other
453 * than a directory/file conflict (e.g. rename/rename, rename/delete,
454 * file location based on possible directory rename).
455 */
456 unsigned path_conflict:1;
457
458 /*
459 * For filemask and dirmask, the ith bit corresponds to whether the
460 * ith entry is a file (filemask) or a directory (dirmask). Thus,
461 * filemask & dirmask is always zero, and filemask | dirmask is at
462 * most 7 but can be less when a path does not appear as either a
463 * file or a directory on at least one side of history.
464 *
465 * Note that these masks are related to enum merge_side, as the ith
466 * entry corresponds to side i.
467 *
468 * These values come from a traverse_trees() call; more info may be
469 * found looking at tree-walk.h's struct traverse_info,
470 * particularly the documentation above the "fn" member (note that
471 * filemask = mask & ~dirmask from that documentation).
472 */
473 unsigned filemask:3;
474 unsigned dirmask:3;
475
476 /*
477 * Optimization to track which stages match, to avoid the need to
478 * recompute it in multiple steps. Either 0 or at least 2 bits are
479 * set; if at least 2 bits are set, their corresponding stages match.
480 */
481 unsigned match_mask:3;
482 };
483
484 /*** Function Grouping: various utility functions ***/
485
486 /*
487 * For the next three macros, see warning for conflict_info.merged.
488 *
489 * In each of the below, mi is a struct merged_info*, and ci was defined
490 * as a struct conflict_info* (but we need to verify ci isn't actually
491 * pointed at a struct merged_info*).
492 *
493 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
494 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
495 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
496 */
497 #define INITIALIZE_CI(ci, mi) do { \
498 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
499 } while (0)
500 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
501 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
502 (ci) = (struct conflict_info *)(mi); \
503 assert((ci) && !(mi)->clean); \
504 } while (0)
505
506 static void free_strmap_strings(struct strmap *map)
507 {
508 struct hashmap_iter iter;
509 struct strmap_entry *entry;
510
511 strmap_for_each_entry(map, &iter, entry) {
512 free((char*)entry->key);
513 }
514 }
515
516 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
517 int reinitialize)
518 {
519 struct rename_info *renames = &opti->renames;
520 int i;
521 void (*strmap_clear_func)(struct strmap *, int) =
522 reinitialize ? strmap_partial_clear : strmap_clear;
523 void (*strintmap_clear_func)(struct strintmap *) =
524 reinitialize ? strintmap_partial_clear : strintmap_clear;
525 void (*strset_clear_func)(struct strset *) =
526 reinitialize ? strset_partial_clear : strset_clear;
527
528 strmap_clear_func(&opti->paths, 0);
529
530 /*
531 * All keys and values in opti->conflicted are a subset of those in
532 * opti->paths. We don't want to deallocate anything twice, so we
533 * don't free the keys and we pass 0 for free_values.
534 */
535 strmap_clear_func(&opti->conflicted, 0);
536
537 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
538 discard_index(&opti->attr_index);
539
540 /* Free memory used by various renames maps */
541 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
542 strintmap_clear_func(&renames->dirs_removed[i]);
543 strmap_clear_func(&renames->dir_renames[i], 0);
544 strintmap_clear_func(&renames->relevant_sources[i]);
545 if (!reinitialize)
546 assert(renames->cached_pairs_valid_side == 0);
547 if (i != renames->cached_pairs_valid_side &&
548 -1 != renames->cached_pairs_valid_side) {
549 strset_clear_func(&renames->cached_target_names[i]);
550 strmap_clear_func(&renames->cached_pairs[i], 1);
551 strset_clear_func(&renames->cached_irrelevant[i]);
552 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
553 if (!reinitialize)
554 strmap_clear(&renames->dir_rename_count[i], 1);
555 }
556 }
557 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
558 strintmap_clear_func(&renames->deferred[i].possible_trivial_merges);
559 strset_clear_func(&renames->deferred[i].target_dirs);
560 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
561 }
562 renames->cached_pairs_valid_side = 0;
563 renames->dir_rename_mask = 0;
564
565 if (!reinitialize) {
566 struct hashmap_iter iter;
567 struct strmap_entry *e;
568
569 /* Release and free each strbuf found in output */
570 strmap_for_each_entry(&opti->output, &iter, e) {
571 struct strbuf *sb = e->value;
572 strbuf_release(sb);
573 /*
574 * While strictly speaking we don't need to free(sb)
575 * here because we could pass free_values=1 when
576 * calling strmap_clear() on opti->output, that would
577 * require strmap_clear to do another
578 * strmap_for_each_entry() loop, so we just free it
579 * while we're iterating anyway.
580 */
581 free(sb);
582 }
583 strmap_clear(&opti->output, 0);
584 }
585
586 mem_pool_discard(&opti->pool, 0);
587
588 /* Clean out callback_data as well. */
589 FREE_AND_NULL(renames->callback_data);
590 renames->callback_data_nr = renames->callback_data_alloc = 0;
591 }
592
593 __attribute__((format (printf, 2, 3)))
594 static int err(struct merge_options *opt, const char *err, ...)
595 {
596 va_list params;
597 struct strbuf sb = STRBUF_INIT;
598
599 strbuf_addstr(&sb, "error: ");
600 va_start(params, err);
601 strbuf_vaddf(&sb, err, params);
602 va_end(params);
603
604 error("%s", sb.buf);
605 strbuf_release(&sb);
606
607 return -1;
608 }
609
610 static void format_commit(struct strbuf *sb,
611 int indent,
612 struct repository *repo,
613 struct commit *commit)
614 {
615 struct merge_remote_desc *desc;
616 struct pretty_print_context ctx = {0};
617 ctx.abbrev = DEFAULT_ABBREV;
618
619 strbuf_addchars(sb, ' ', indent);
620 desc = merge_remote_util(commit);
621 if (desc) {
622 strbuf_addf(sb, "virtual %s\n", desc->name);
623 return;
624 }
625
626 repo_format_commit_message(repo, commit, "%h %s", sb, &ctx);
627 strbuf_addch(sb, '\n');
628 }
629
630 __attribute__((format (printf, 4, 5)))
631 static void path_msg(struct merge_options *opt,
632 const char *path,
633 int omittable_hint, /* skippable under --remerge-diff */
634 const char *fmt, ...)
635 {
636 va_list ap;
637 struct strbuf *sb = strmap_get(&opt->priv->output, path);
638 if (!sb) {
639 sb = xmalloc(sizeof(*sb));
640 strbuf_init(sb, 0);
641 strmap_put(&opt->priv->output, path, sb);
642 }
643
644 va_start(ap, fmt);
645 strbuf_vaddf(sb, fmt, ap);
646 va_end(ap);
647
648 strbuf_addch(sb, '\n');
649 }
650
651 static struct diff_filespec *pool_alloc_filespec(struct mem_pool *pool,
652 const char *path)
653 {
654 /* Similar to alloc_filespec(), but allocate from pool and reuse path */
655 struct diff_filespec *spec;
656
657 spec = mem_pool_calloc(pool, 1, sizeof(*spec));
658 spec->path = (char*)path; /* spec won't modify it */
659
660 spec->count = 1;
661 spec->is_binary = -1;
662 return spec;
663 }
664
665 static struct diff_filepair *pool_diff_queue(struct mem_pool *pool,
666 struct diff_queue_struct *queue,
667 struct diff_filespec *one,
668 struct diff_filespec *two)
669 {
670 /* Same code as diff_queue(), except allocate from pool */
671 struct diff_filepair *dp;
672
673 dp = mem_pool_calloc(pool, 1, sizeof(*dp));
674 dp->one = one;
675 dp->two = two;
676 if (queue)
677 diff_q(queue, dp);
678 return dp;
679 }
680
681 /* add a string to a strbuf, but converting "/" to "_" */
682 static void add_flattened_path(struct strbuf *out, const char *s)
683 {
684 size_t i = out->len;
685 strbuf_addstr(out, s);
686 for (; i < out->len; i++)
687 if (out->buf[i] == '/')
688 out->buf[i] = '_';
689 }
690
691 static char *unique_path(struct strmap *existing_paths,
692 const char *path,
693 const char *branch)
694 {
695 struct strbuf newpath = STRBUF_INIT;
696 int suffix = 0;
697 size_t base_len;
698
699 strbuf_addf(&newpath, "%s~", path);
700 add_flattened_path(&newpath, branch);
701
702 base_len = newpath.len;
703 while (strmap_contains(existing_paths, newpath.buf)) {
704 strbuf_setlen(&newpath, base_len);
705 strbuf_addf(&newpath, "_%d", suffix++);
706 }
707
708 return strbuf_detach(&newpath, NULL);
709 }
710
711 /*** Function Grouping: functions related to collect_merge_info() ***/
712
713 static int traverse_trees_wrapper_callback(int n,
714 unsigned long mask,
715 unsigned long dirmask,
716 struct name_entry *names,
717 struct traverse_info *info)
718 {
719 struct merge_options *opt = info->data;
720 struct rename_info *renames = &opt->priv->renames;
721 unsigned filemask = mask & ~dirmask;
722
723 assert(n==3);
724
725 if (!renames->callback_data_traverse_path)
726 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
727
728 if (filemask && filemask == renames->dir_rename_mask)
729 renames->dir_rename_mask = 0x07;
730
731 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
732 renames->callback_data_alloc);
733 renames->callback_data[renames->callback_data_nr].mask = mask;
734 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
735 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
736 names, 3);
737 renames->callback_data_nr++;
738
739 return mask;
740 }
741
742 /*
743 * Much like traverse_trees(), BUT:
744 * - read all the tree entries FIRST, saving them
745 * - note that the above step provides an opportunity to compute necessary
746 * additional details before the "real" traversal
747 * - loop through the saved entries and call the original callback on them
748 */
749 static int traverse_trees_wrapper(struct index_state *istate,
750 int n,
751 struct tree_desc *t,
752 struct traverse_info *info)
753 {
754 int ret, i, old_offset;
755 traverse_callback_t old_fn;
756 char *old_callback_data_traverse_path;
757 struct merge_options *opt = info->data;
758 struct rename_info *renames = &opt->priv->renames;
759
760 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
761
762 old_callback_data_traverse_path = renames->callback_data_traverse_path;
763 old_fn = info->fn;
764 old_offset = renames->callback_data_nr;
765
766 renames->callback_data_traverse_path = NULL;
767 info->fn = traverse_trees_wrapper_callback;
768 ret = traverse_trees(istate, n, t, info);
769 if (ret < 0)
770 return ret;
771
772 info->traverse_path = renames->callback_data_traverse_path;
773 info->fn = old_fn;
774 for (i = old_offset; i < renames->callback_data_nr; ++i) {
775 info->fn(n,
776 renames->callback_data[i].mask,
777 renames->callback_data[i].dirmask,
778 renames->callback_data[i].names,
779 info);
780 }
781
782 renames->callback_data_nr = old_offset;
783 free(renames->callback_data_traverse_path);
784 renames->callback_data_traverse_path = old_callback_data_traverse_path;
785 info->traverse_path = NULL;
786 return 0;
787 }
788
789 static void setup_path_info(struct merge_options *opt,
790 struct string_list_item *result,
791 const char *current_dir_name,
792 int current_dir_name_len,
793 char *fullpath, /* we'll take over ownership */
794 struct name_entry *names,
795 struct name_entry *merged_version,
796 unsigned is_null, /* boolean */
797 unsigned df_conflict, /* boolean */
798 unsigned filemask,
799 unsigned dirmask,
800 int resolved /* boolean */)
801 {
802 /* result->util is void*, so mi is a convenience typed variable */
803 struct merged_info *mi;
804
805 assert(!is_null || resolved);
806 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
807 assert(resolved == (merged_version != NULL));
808
809 mi = mem_pool_calloc(&opt->priv->pool, 1,
810 resolved ? sizeof(struct merged_info) :
811 sizeof(struct conflict_info));
812 mi->directory_name = current_dir_name;
813 mi->basename_offset = current_dir_name_len;
814 mi->clean = !!resolved;
815 if (resolved) {
816 mi->result.mode = merged_version->mode;
817 oidcpy(&mi->result.oid, &merged_version->oid);
818 mi->is_null = !!is_null;
819 } else {
820 int i;
821 struct conflict_info *ci;
822
823 ASSIGN_AND_VERIFY_CI(ci, mi);
824 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
825 ci->pathnames[i] = fullpath;
826 ci->stages[i].mode = names[i].mode;
827 oidcpy(&ci->stages[i].oid, &names[i].oid);
828 }
829 ci->filemask = filemask;
830 ci->dirmask = dirmask;
831 ci->df_conflict = !!df_conflict;
832 if (dirmask)
833 /*
834 * Assume is_null for now, but if we have entries
835 * under the directory then when it is complete in
836 * write_completed_directory() it'll update this.
837 * Also, for D/F conflicts, we have to handle the
838 * directory first, then clear this bit and process
839 * the file to see how it is handled -- that occurs
840 * near the top of process_entry().
841 */
842 mi->is_null = 1;
843 }
844 strmap_put(&opt->priv->paths, fullpath, mi);
845 result->string = fullpath;
846 result->util = mi;
847 }
848
849 static void add_pair(struct merge_options *opt,
850 struct name_entry *names,
851 const char *pathname,
852 unsigned side,
853 unsigned is_add /* if false, is_delete */,
854 unsigned match_mask,
855 unsigned dir_rename_mask)
856 {
857 struct diff_filespec *one, *two;
858 struct rename_info *renames = &opt->priv->renames;
859 int names_idx = is_add ? side : 0;
860
861 if (is_add) {
862 assert(match_mask == 0 || match_mask == 6);
863 if (strset_contains(&renames->cached_target_names[side],
864 pathname))
865 return;
866 } else {
867 unsigned content_relevant = (match_mask == 0);
868 unsigned location_relevant = (dir_rename_mask == 0x07);
869
870 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
871
872 /*
873 * If pathname is found in cached_irrelevant[side] due to
874 * previous pick but for this commit content is relevant,
875 * then we need to remove it from cached_irrelevant.
876 */
877 if (content_relevant)
878 /* strset_remove is no-op if strset doesn't have key */
879 strset_remove(&renames->cached_irrelevant[side],
880 pathname);
881
882 /*
883 * We do not need to re-detect renames for paths that we already
884 * know the pairing, i.e. for cached_pairs (or
885 * cached_irrelevant). However, handle_deferred_entries() needs
886 * to loop over the union of keys from relevant_sources[side] and
887 * cached_pairs[side], so for simplicity we set relevant_sources
888 * for all the cached_pairs too and then strip them back out in
889 * prune_cached_from_relevant() at the beginning of
890 * detect_regular_renames().
891 */
892 if (content_relevant || location_relevant) {
893 /* content_relevant trumps location_relevant */
894 strintmap_set(&renames->relevant_sources[side], pathname,
895 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
896 }
897
898 /*
899 * Avoid creating pair if we've already cached rename results.
900 * Note that we do this after setting relevant_sources[side]
901 * as noted in the comment above.
902 */
903 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
904 strset_contains(&renames->cached_irrelevant[side], pathname))
905 return;
906 }
907
908 one = pool_alloc_filespec(&opt->priv->pool, pathname);
909 two = pool_alloc_filespec(&opt->priv->pool, pathname);
910 fill_filespec(is_add ? two : one,
911 &names[names_idx].oid, 1, names[names_idx].mode);
912 pool_diff_queue(&opt->priv->pool, &renames->pairs[side], one, two);
913 }
914
915 static void collect_rename_info(struct merge_options *opt,
916 struct name_entry *names,
917 const char *dirname,
918 const char *fullname,
919 unsigned filemask,
920 unsigned dirmask,
921 unsigned match_mask)
922 {
923 struct rename_info *renames = &opt->priv->renames;
924 unsigned side;
925
926 /*
927 * Update dir_rename_mask (determines ignore-rename-source validity)
928 *
929 * dir_rename_mask helps us keep track of when directory rename
930 * detection may be relevant. Basically, whenver a directory is
931 * removed on one side of history, and a file is added to that
932 * directory on the other side of history, directory rename
933 * detection is relevant (meaning we have to detect renames for all
934 * files within that directory to deduce where the directory
935 * moved). Also, whenever a directory needs directory rename
936 * detection, due to the "majority rules" choice for where to move
937 * it (see t6423 testcase 1f), we also need to detect renames for
938 * all files within subdirectories of that directory as well.
939 *
940 * Here we haven't looked at files within the directory yet, we are
941 * just looking at the directory itself. So, if we aren't yet in
942 * a case where a parent directory needed directory rename detection
943 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
944 * on one side of history, record the mask of the other side of
945 * history in dir_rename_mask.
946 */
947 if (renames->dir_rename_mask != 0x07 &&
948 (dirmask == 3 || dirmask == 5)) {
949 /* simple sanity check */
950 assert(renames->dir_rename_mask == 0 ||
951 renames->dir_rename_mask == (dirmask & ~1));
952 /* update dir_rename_mask; have it record mask of new side */
953 renames->dir_rename_mask = (dirmask & ~1);
954 }
955
956 /* Update dirs_removed, as needed */
957 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
958 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
959 unsigned sides = (0x07 - dirmask)/2;
960 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
961 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
962 /*
963 * Record relevance of this directory. However, note that
964 * when collect_merge_info_callback() recurses into this
965 * directory and calls collect_rename_info() on paths
966 * within that directory, if we find a path that was added
967 * to this directory on the other side of history, we will
968 * upgrade this value to RELEVANT_FOR_SELF; see below.
969 */
970 if (sides & 1)
971 strintmap_set(&renames->dirs_removed[1], fullname,
972 relevance);
973 if (sides & 2)
974 strintmap_set(&renames->dirs_removed[2], fullname,
975 relevance);
976 }
977
978 /*
979 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
980 * When we run across a file added to a directory. In such a case,
981 * find the directory of the file and upgrade its relevance.
982 */
983 if (renames->dir_rename_mask == 0x07 &&
984 (filemask == 2 || filemask == 4)) {
985 /*
986 * Need directory rename for parent directory on other side
987 * of history from added file. Thus
988 * side = (~filemask & 0x06) >> 1
989 * or
990 * side = 3 - (filemask/2).
991 */
992 unsigned side = 3 - (filemask >> 1);
993 strintmap_set(&renames->dirs_removed[side], dirname,
994 RELEVANT_FOR_SELF);
995 }
996
997 if (filemask == 0 || filemask == 7)
998 return;
999
1000 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
1001 unsigned side_mask = (1 << side);
1002
1003 /* Check for deletion on side */
1004 if ((filemask & 1) && !(filemask & side_mask))
1005 add_pair(opt, names, fullname, side, 0 /* delete */,
1006 match_mask & filemask,
1007 renames->dir_rename_mask);
1008
1009 /* Check for addition on side */
1010 if (!(filemask & 1) && (filemask & side_mask))
1011 add_pair(opt, names, fullname, side, 1 /* add */,
1012 match_mask & filemask,
1013 renames->dir_rename_mask);
1014 }
1015 }
1016
1017 static int collect_merge_info_callback(int n,
1018 unsigned long mask,
1019 unsigned long dirmask,
1020 struct name_entry *names,
1021 struct traverse_info *info)
1022 {
1023 /*
1024 * n is 3. Always.
1025 * common ancestor (mbase) has mask 1, and stored in index 0 of names
1026 * head of side 1 (side1) has mask 2, and stored in index 1 of names
1027 * head of side 2 (side2) has mask 4, and stored in index 2 of names
1028 */
1029 struct merge_options *opt = info->data;
1030 struct merge_options_internal *opti = opt->priv;
1031 struct rename_info *renames = &opt->priv->renames;
1032 struct string_list_item pi; /* Path Info */
1033 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
1034 struct name_entry *p;
1035 size_t len;
1036 char *fullpath;
1037 const char *dirname = opti->current_dir_name;
1038 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
1039 unsigned filemask = mask & ~dirmask;
1040 unsigned match_mask = 0; /* will be updated below */
1041 unsigned mbase_null = !(mask & 1);
1042 unsigned side1_null = !(mask & 2);
1043 unsigned side2_null = !(mask & 4);
1044 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
1045 names[0].mode == names[1].mode &&
1046 oideq(&names[0].oid, &names[1].oid));
1047 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
1048 names[0].mode == names[2].mode &&
1049 oideq(&names[0].oid, &names[2].oid));
1050 unsigned sides_match = (!side1_null && !side2_null &&
1051 names[1].mode == names[2].mode &&
1052 oideq(&names[1].oid, &names[2].oid));
1053
1054 /*
1055 * Note: When a path is a file on one side of history and a directory
1056 * in another, we have a directory/file conflict. In such cases, if
1057 * the conflict doesn't resolve from renames and deletions, then we
1058 * always leave directories where they are and move files out of the
1059 * way. Thus, while struct conflict_info has a df_conflict field to
1060 * track such conflicts, we ignore that field for any directories at
1061 * a path and only pay attention to it for files at the given path.
1062 * The fact that we leave directories were they are also means that
1063 * we do not need to worry about getting additional df_conflict
1064 * information propagated from parent directories down to children
1065 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
1066 * sets a newinfo.df_conflicts field specifically to propagate it).
1067 */
1068 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
1069
1070 /* n = 3 is a fundamental assumption. */
1071 if (n != 3)
1072 BUG("Called collect_merge_info_callback wrong");
1073
1074 /*
1075 * A bunch of sanity checks verifying that traverse_trees() calls
1076 * us the way I expect. Could just remove these at some point,
1077 * though maybe they are helpful to future code readers.
1078 */
1079 assert(mbase_null == is_null_oid(&names[0].oid));
1080 assert(side1_null == is_null_oid(&names[1].oid));
1081 assert(side2_null == is_null_oid(&names[2].oid));
1082 assert(!mbase_null || !side1_null || !side2_null);
1083 assert(mask > 0 && mask < 8);
1084
1085 /* Determine match_mask */
1086 if (side1_matches_mbase)
1087 match_mask = (side2_matches_mbase ? 7 : 3);
1088 else if (side2_matches_mbase)
1089 match_mask = 5;
1090 else if (sides_match)
1091 match_mask = 6;
1092
1093 /*
1094 * Get the name of the relevant filepath, which we'll pass to
1095 * setup_path_info() for tracking.
1096 */
1097 p = names;
1098 while (!p->mode)
1099 p++;
1100 len = traverse_path_len(info, p->pathlen);
1101
1102 /* +1 in both of the following lines to include the NUL byte */
1103 fullpath = mem_pool_alloc(&opt->priv->pool, len + 1);
1104 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1105
1106 /*
1107 * If mbase, side1, and side2 all match, we can resolve early. Even
1108 * if these are trees, there will be no renames or anything
1109 * underneath.
1110 */
1111 if (side1_matches_mbase && side2_matches_mbase) {
1112 /* mbase, side1, & side2 all match; use mbase as resolution */
1113 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1114 names, names+0, mbase_null, 0 /* df_conflict */,
1115 filemask, dirmask, 1 /* resolved */);
1116 return mask;
1117 }
1118
1119 /*
1120 * If the sides match, and all three paths are present and are
1121 * files, then we can take either as the resolution. We can't do
1122 * this with trees, because there may be rename sources from the
1123 * merge_base.
1124 */
1125 if (sides_match && filemask == 0x07) {
1126 /* use side1 (== side2) version as resolution */
1127 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1128 names, names+1, side1_null, 0,
1129 filemask, dirmask, 1);
1130 return mask;
1131 }
1132
1133 /*
1134 * If side1 matches mbase and all three paths are present and are
1135 * files, then we can use side2 as the resolution. We cannot
1136 * necessarily do so this for trees, because there may be rename
1137 * destinations within side2.
1138 */
1139 if (side1_matches_mbase && filemask == 0x07) {
1140 /* use side2 version as resolution */
1141 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1142 names, names+2, side2_null, 0,
1143 filemask, dirmask, 1);
1144 return mask;
1145 }
1146
1147 /* Similar to above but swapping sides 1 and 2 */
1148 if (side2_matches_mbase && filemask == 0x07) {
1149 /* use side1 version as resolution */
1150 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1151 names, names+1, side1_null, 0,
1152 filemask, dirmask, 1);
1153 return mask;
1154 }
1155
1156 /*
1157 * Sometimes we can tell that a source path need not be included in
1158 * rename detection -- namely, whenever either
1159 * side1_matches_mbase && side2_null
1160 * or
1161 * side2_matches_mbase && side1_null
1162 * However, we call collect_rename_info() even in those cases,
1163 * because exact renames are cheap and would let us remove both a
1164 * source and destination path. We'll cull the unneeded sources
1165 * later.
1166 */
1167 collect_rename_info(opt, names, dirname, fullpath,
1168 filemask, dirmask, match_mask);
1169
1170 /*
1171 * None of the special cases above matched, so we have a
1172 * provisional conflict. (Rename detection might allow us to
1173 * unconflict some more cases, but that comes later so all we can
1174 * do now is record the different non-null file hashes.)
1175 */
1176 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1177 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1178
1179 ci = pi.util;
1180 VERIFY_CI(ci);
1181 ci->match_mask = match_mask;
1182
1183 /* If dirmask, recurse into subdirectories */
1184 if (dirmask) {
1185 struct traverse_info newinfo;
1186 struct tree_desc t[3];
1187 void *buf[3] = {NULL, NULL, NULL};
1188 const char *original_dir_name;
1189 int i, ret, side;
1190
1191 /*
1192 * Check for whether we can avoid recursing due to one side
1193 * matching the merge base. The side that does NOT match is
1194 * the one that might have a rename destination we need.
1195 */
1196 assert(!side1_matches_mbase || !side2_matches_mbase);
1197 side = side1_matches_mbase ? MERGE_SIDE2 :
1198 side2_matches_mbase ? MERGE_SIDE1 : MERGE_BASE;
1199 if (filemask == 0 && (dirmask == 2 || dirmask == 4)) {
1200 /*
1201 * Also defer recursing into new directories; set up a
1202 * few variables to let us do so.
1203 */
1204 ci->match_mask = (7 - dirmask);
1205 side = dirmask / 2;
1206 }
1207 if (renames->dir_rename_mask != 0x07 &&
1208 side != MERGE_BASE &&
1209 renames->deferred[side].trivial_merges_okay &&
1210 !strset_contains(&renames->deferred[side].target_dirs,
1211 pi.string)) {
1212 strintmap_set(&renames->deferred[side].possible_trivial_merges,
1213 pi.string, renames->dir_rename_mask);
1214 renames->dir_rename_mask = prev_dir_rename_mask;
1215 return mask;
1216 }
1217
1218 /* We need to recurse */
1219 ci->match_mask &= filemask;
1220 newinfo = *info;
1221 newinfo.prev = info;
1222 newinfo.name = p->path;
1223 newinfo.namelen = p->pathlen;
1224 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1225 /*
1226 * If this directory we are about to recurse into cared about
1227 * its parent directory (the current directory) having a D/F
1228 * conflict, then we'd propagate the masks in this way:
1229 * newinfo.df_conflicts |= (mask & ~dirmask);
1230 * But we don't worry about propagating D/F conflicts. (See
1231 * comment near setting of local df_conflict variable near
1232 * the beginning of this function).
1233 */
1234
1235 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1236 if (i == 1 && side1_matches_mbase)
1237 t[1] = t[0];
1238 else if (i == 2 && side2_matches_mbase)
1239 t[2] = t[0];
1240 else if (i == 2 && sides_match)
1241 t[2] = t[1];
1242 else {
1243 const struct object_id *oid = NULL;
1244 if (dirmask & 1)
1245 oid = &names[i].oid;
1246 buf[i] = fill_tree_descriptor(opt->repo,
1247 t + i, oid);
1248 }
1249 dirmask >>= 1;
1250 }
1251
1252 original_dir_name = opti->current_dir_name;
1253 opti->current_dir_name = pi.string;
1254 if (renames->dir_rename_mask == 0 ||
1255 renames->dir_rename_mask == 0x07)
1256 ret = traverse_trees(NULL, 3, t, &newinfo);
1257 else
1258 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1259 opti->current_dir_name = original_dir_name;
1260 renames->dir_rename_mask = prev_dir_rename_mask;
1261
1262 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1263 free(buf[i]);
1264
1265 if (ret < 0)
1266 return -1;
1267 }
1268
1269 return mask;
1270 }
1271
1272 static void resolve_trivial_directory_merge(struct conflict_info *ci, int side)
1273 {
1274 VERIFY_CI(ci);
1275 assert((side == 1 && ci->match_mask == 5) ||
1276 (side == 2 && ci->match_mask == 3));
1277 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1278 ci->merged.result.mode = ci->stages[side].mode;
1279 ci->merged.is_null = is_null_oid(&ci->stages[side].oid);
1280 ci->match_mask = 0;
1281 ci->merged.clean = 1; /* (ci->filemask == 0); */
1282 }
1283
1284 static int handle_deferred_entries(struct merge_options *opt,
1285 struct traverse_info *info)
1286 {
1287 struct rename_info *renames = &opt->priv->renames;
1288 struct hashmap_iter iter;
1289 struct strmap_entry *entry;
1290 int side, ret = 0;
1291 int path_count_before, path_count_after = 0;
1292
1293 path_count_before = strmap_get_size(&opt->priv->paths);
1294 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
1295 unsigned optimization_okay = 1;
1296 struct strintmap copy;
1297
1298 /* Loop over the set of paths we need to know rename info for */
1299 strset_for_each_entry(&renames->relevant_sources[side],
1300 &iter, entry) {
1301 char *rename_target, *dir, *dir_marker;
1302 struct strmap_entry *e;
1303
1304 /*
1305 * If we don't know delete/rename info for this path,
1306 * then we need to recurse into all trees to get all
1307 * adds to make sure we have it.
1308 */
1309 if (strset_contains(&renames->cached_irrelevant[side],
1310 entry->key))
1311 continue;
1312 e = strmap_get_entry(&renames->cached_pairs[side],
1313 entry->key);
1314 if (!e) {
1315 optimization_okay = 0;
1316 break;
1317 }
1318
1319 /* If this is a delete, we have enough info already */
1320 rename_target = e->value;
1321 if (!rename_target)
1322 continue;
1323
1324 /* If we already walked the rename target, we're good */
1325 if (strmap_contains(&opt->priv->paths, rename_target))
1326 continue;
1327
1328 /*
1329 * Otherwise, we need to get a list of directories that
1330 * will need to be recursed into to get this
1331 * rename_target.
1332 */
1333 dir = xstrdup(rename_target);
1334 while ((dir_marker = strrchr(dir, '/'))) {
1335 *dir_marker = '\0';
1336 if (strset_contains(&renames->deferred[side].target_dirs,
1337 dir))
1338 break;
1339 strset_add(&renames->deferred[side].target_dirs,
1340 dir);
1341 }
1342 free(dir);
1343 }
1344 renames->deferred[side].trivial_merges_okay = optimization_okay;
1345 /*
1346 * We need to recurse into any directories in
1347 * possible_trivial_merges[side] found in target_dirs[side].
1348 * But when we recurse, we may need to queue up some of the
1349 * subdirectories for possible_trivial_merges[side]. Since
1350 * we can't safely iterate through a hashmap while also adding
1351 * entries, move the entries into 'copy', iterate over 'copy',
1352 * and then we'll also iterate anything added into
1353 * possible_trivial_merges[side] once this loop is done.
1354 */
1355 copy = renames->deferred[side].possible_trivial_merges;
1356 strintmap_init_with_options(&renames->deferred[side].possible_trivial_merges,
1357 0,
1358 &opt->priv->pool,
1359 0);
1360 strintmap_for_each_entry(&copy, &iter, entry) {
1361 const char *path = entry->key;
1362 unsigned dir_rename_mask = (intptr_t)entry->value;
1363 struct conflict_info *ci;
1364 unsigned dirmask;
1365 struct tree_desc t[3];
1366 void *buf[3] = {NULL,};
1367 int i;
1368
1369 ci = strmap_get(&opt->priv->paths, path);
1370 VERIFY_CI(ci);
1371 dirmask = ci->dirmask;
1372
1373 if (optimization_okay &&
1374 !strset_contains(&renames->deferred[side].target_dirs,
1375 path)) {
1376 resolve_trivial_directory_merge(ci, side);
1377 continue;
1378 }
1379
1380 info->name = path;
1381 info->namelen = strlen(path);
1382 info->pathlen = info->namelen + 1;
1383
1384 for (i = 0; i < 3; i++, dirmask >>= 1) {
1385 if (i == 1 && ci->match_mask == 3)
1386 t[1] = t[0];
1387 else if (i == 2 && ci->match_mask == 5)
1388 t[2] = t[0];
1389 else if (i == 2 && ci->match_mask == 6)
1390 t[2] = t[1];
1391 else {
1392 const struct object_id *oid = NULL;
1393 if (dirmask & 1)
1394 oid = &ci->stages[i].oid;
1395 buf[i] = fill_tree_descriptor(opt->repo,
1396 t+i, oid);
1397 }
1398 }
1399
1400 ci->match_mask &= ci->filemask;
1401 opt->priv->current_dir_name = path;
1402 renames->dir_rename_mask = dir_rename_mask;
1403 if (renames->dir_rename_mask == 0 ||
1404 renames->dir_rename_mask == 0x07)
1405 ret = traverse_trees(NULL, 3, t, info);
1406 else
1407 ret = traverse_trees_wrapper(NULL, 3, t, info);
1408
1409 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1410 free(buf[i]);
1411
1412 if (ret < 0)
1413 return ret;
1414 }
1415 strintmap_clear(&copy);
1416 strintmap_for_each_entry(&renames->deferred[side].possible_trivial_merges,
1417 &iter, entry) {
1418 const char *path = entry->key;
1419 struct conflict_info *ci;
1420
1421 ci = strmap_get(&opt->priv->paths, path);
1422 VERIFY_CI(ci);
1423
1424 assert(renames->deferred[side].trivial_merges_okay &&
1425 !strset_contains(&renames->deferred[side].target_dirs,
1426 path));
1427 resolve_trivial_directory_merge(ci, side);
1428 }
1429 if (!optimization_okay || path_count_after)
1430 path_count_after = strmap_get_size(&opt->priv->paths);
1431 }
1432 if (path_count_after) {
1433 /*
1434 * The choice of wanted_factor here does not affect
1435 * correctness, only performance. When the
1436 * path_count_after / path_count_before
1437 * ratio is high, redoing after renames is a big
1438 * performance boost. I suspect that redoing is a wash
1439 * somewhere near a value of 2, and below that redoing will
1440 * slow things down. I applied a fudge factor and picked
1441 * 3; see the commit message when this was introduced for
1442 * back of the envelope calculations for this ratio.
1443 */
1444 const int wanted_factor = 3;
1445
1446 /* We should only redo collect_merge_info one time */
1447 assert(renames->redo_after_renames == 0);
1448
1449 if (path_count_after / path_count_before >= wanted_factor) {
1450 renames->redo_after_renames = 1;
1451 renames->cached_pairs_valid_side = -1;
1452 }
1453 } else if (renames->redo_after_renames == 2)
1454 renames->redo_after_renames = 0;
1455 return ret;
1456 }
1457
1458 static int collect_merge_info(struct merge_options *opt,
1459 struct tree *merge_base,
1460 struct tree *side1,
1461 struct tree *side2)
1462 {
1463 int ret;
1464 struct tree_desc t[3];
1465 struct traverse_info info;
1466
1467 opt->priv->toplevel_dir = "";
1468 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1469 setup_traverse_info(&info, opt->priv->toplevel_dir);
1470 info.fn = collect_merge_info_callback;
1471 info.data = opt;
1472 info.show_all_errors = 1;
1473
1474 parse_tree(merge_base);
1475 parse_tree(side1);
1476 parse_tree(side2);
1477 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1478 init_tree_desc(t + 1, side1->buffer, side1->size);
1479 init_tree_desc(t + 2, side2->buffer, side2->size);
1480
1481 trace2_region_enter("merge", "traverse_trees", opt->repo);
1482 ret = traverse_trees(NULL, 3, t, &info);
1483 if (ret == 0)
1484 ret = handle_deferred_entries(opt, &info);
1485 trace2_region_leave("merge", "traverse_trees", opt->repo);
1486
1487 return ret;
1488 }
1489
1490 /*** Function Grouping: functions related to threeway content merges ***/
1491
1492 static int find_first_merges(struct repository *repo,
1493 const char *path,
1494 struct commit *a,
1495 struct commit *b,
1496 struct object_array *result)
1497 {
1498 int i, j;
1499 struct object_array merges = OBJECT_ARRAY_INIT;
1500 struct commit *commit;
1501 int contains_another;
1502
1503 char merged_revision[GIT_MAX_HEXSZ + 2];
1504 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1505 "--all", merged_revision, NULL };
1506 struct rev_info revs;
1507 struct setup_revision_opt rev_opts;
1508
1509 memset(result, 0, sizeof(struct object_array));
1510 memset(&rev_opts, 0, sizeof(rev_opts));
1511
1512 /* get all revisions that merge commit a */
1513 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1514 oid_to_hex(&a->object.oid));
1515 repo_init_revisions(repo, &revs, NULL);
1516 /* FIXME: can't handle linked worktrees in submodules yet */
1517 revs.single_worktree = path != NULL;
1518 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1519
1520 /* save all revisions from the above list that contain b */
1521 if (prepare_revision_walk(&revs))
1522 die("revision walk setup failed");
1523 while ((commit = get_revision(&revs)) != NULL) {
1524 struct object *o = &(commit->object);
1525 if (repo_in_merge_bases(repo, b, commit))
1526 add_object_array(o, NULL, &merges);
1527 }
1528 reset_revision_walk();
1529
1530 /* Now we've got all merges that contain a and b. Prune all
1531 * merges that contain another found merge and save them in
1532 * result.
1533 */
1534 for (i = 0; i < merges.nr; i++) {
1535 struct commit *m1 = (struct commit *) merges.objects[i].item;
1536
1537 contains_another = 0;
1538 for (j = 0; j < merges.nr; j++) {
1539 struct commit *m2 = (struct commit *) merges.objects[j].item;
1540 if (i != j && repo_in_merge_bases(repo, m2, m1)) {
1541 contains_another = 1;
1542 break;
1543 }
1544 }
1545
1546 if (!contains_another)
1547 add_object_array(merges.objects[i].item, NULL, result);
1548 }
1549
1550 object_array_clear(&merges);
1551 return result->nr;
1552 }
1553
1554 static int merge_submodule(struct merge_options *opt,
1555 const char *path,
1556 const struct object_id *o,
1557 const struct object_id *a,
1558 const struct object_id *b,
1559 struct object_id *result)
1560 {
1561 struct repository subrepo;
1562 struct strbuf sb = STRBUF_INIT;
1563 int ret = 0;
1564 struct commit *commit_o, *commit_a, *commit_b;
1565 int parent_count;
1566 struct object_array merges;
1567
1568 int i;
1569 int search = !opt->priv->call_depth;
1570
1571 /* store fallback answer in result in case we fail */
1572 oidcpy(result, opt->priv->call_depth ? o : a);
1573
1574 /* we can not handle deletion conflicts */
1575 if (is_null_oid(o))
1576 return 0;
1577 if (is_null_oid(a))
1578 return 0;
1579 if (is_null_oid(b))
1580 return 0;
1581
1582 if (repo_submodule_init(&subrepo, opt->repo, path, null_oid())) {
1583 path_msg(opt, path, 0,
1584 _("Failed to merge submodule %s (not checked out)"),
1585 path);
1586 return 0;
1587 }
1588
1589 if (!(commit_o = lookup_commit_reference(&subrepo, o)) ||
1590 !(commit_a = lookup_commit_reference(&subrepo, a)) ||
1591 !(commit_b = lookup_commit_reference(&subrepo, b))) {
1592 path_msg(opt, path, 0,
1593 _("Failed to merge submodule %s (commits not present)"),
1594 path);
1595 goto cleanup;
1596 }
1597
1598 /* check whether both changes are forward */
1599 if (!repo_in_merge_bases(&subrepo, commit_o, commit_a) ||
1600 !repo_in_merge_bases(&subrepo, commit_o, commit_b)) {
1601 path_msg(opt, path, 0,
1602 _("Failed to merge submodule %s "
1603 "(commits don't follow merge-base)"),
1604 path);
1605 goto cleanup;
1606 }
1607
1608 /* Case #1: a is contained in b or vice versa */
1609 if (repo_in_merge_bases(&subrepo, commit_a, commit_b)) {
1610 oidcpy(result, b);
1611 path_msg(opt, path, 1,
1612 _("Note: Fast-forwarding submodule %s to %s"),
1613 path, oid_to_hex(b));
1614 ret = 1;
1615 goto cleanup;
1616 }
1617 if (repo_in_merge_bases(&subrepo, commit_b, commit_a)) {
1618 oidcpy(result, a);
1619 path_msg(opt, path, 1,
1620 _("Note: Fast-forwarding submodule %s to %s"),
1621 path, oid_to_hex(a));
1622 ret = 1;
1623 goto cleanup;
1624 }
1625
1626 /*
1627 * Case #2: There are one or more merges that contain a and b in
1628 * the submodule. If there is only one, then present it as a
1629 * suggestion to the user, but leave it marked unmerged so the
1630 * user needs to confirm the resolution.
1631 */
1632
1633 /* Skip the search if makes no sense to the calling context. */
1634 if (!search)
1635 goto cleanup;
1636
1637 /* find commit which merges them */
1638 parent_count = find_first_merges(&subrepo, path, commit_a, commit_b,
1639 &merges);
1640 switch (parent_count) {
1641 case 0:
1642 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
1643 break;
1644
1645 case 1:
1646 format_commit(&sb, 4, &subrepo,
1647 (struct commit *)merges.objects[0].item);
1648 path_msg(opt, path, 0,
1649 _("Failed to merge submodule %s, but a possible merge "
1650 "resolution exists:\n%s\n"),
1651 path, sb.buf);
1652 path_msg(opt, path, 1,
1653 _("If this is correct simply add it to the index "
1654 "for example\n"
1655 "by using:\n\n"
1656 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
1657 "which will accept this suggestion.\n"),
1658 oid_to_hex(&merges.objects[0].item->oid), path);
1659 strbuf_release(&sb);
1660 break;
1661 default:
1662 for (i = 0; i < merges.nr; i++)
1663 format_commit(&sb, 4, &subrepo,
1664 (struct commit *)merges.objects[i].item);
1665 path_msg(opt, path, 0,
1666 _("Failed to merge submodule %s, but multiple "
1667 "possible merges exist:\n%s"), path, sb.buf);
1668 strbuf_release(&sb);
1669 }
1670
1671 object_array_clear(&merges);
1672 cleanup:
1673 repo_clear(&subrepo);
1674 return ret;
1675 }
1676
1677 static void initialize_attr_index(struct merge_options *opt)
1678 {
1679 /*
1680 * The renormalize_buffer() functions require attributes, and
1681 * annoyingly those can only be read from the working tree or from
1682 * an index_state. merge-ort doesn't have an index_state, so we
1683 * generate a fake one containing only attribute information.
1684 */
1685 struct merged_info *mi;
1686 struct index_state *attr_index = &opt->priv->attr_index;
1687 struct cache_entry *ce;
1688
1689 attr_index->initialized = 1;
1690
1691 if (!opt->renormalize)
1692 return;
1693
1694 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1695 if (!mi)
1696 return;
1697
1698 if (mi->clean) {
1699 int len = strlen(GITATTRIBUTES_FILE);
1700 ce = make_empty_cache_entry(attr_index, len);
1701 ce->ce_mode = create_ce_mode(mi->result.mode);
1702 ce->ce_flags = create_ce_flags(0);
1703 ce->ce_namelen = len;
1704 oidcpy(&ce->oid, &mi->result.oid);
1705 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1706 add_index_entry(attr_index, ce,
1707 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1708 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1709 } else {
1710 int stage, len;
1711 struct conflict_info *ci;
1712
1713 ASSIGN_AND_VERIFY_CI(ci, mi);
1714 for (stage = 0; stage < 3; stage++) {
1715 unsigned stage_mask = (1 << stage);
1716
1717 if (!(ci->filemask & stage_mask))
1718 continue;
1719 len = strlen(GITATTRIBUTES_FILE);
1720 ce = make_empty_cache_entry(attr_index, len);
1721 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
1722 ce->ce_flags = create_ce_flags(stage);
1723 ce->ce_namelen = len;
1724 oidcpy(&ce->oid, &ci->stages[stage].oid);
1725 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1726 add_index_entry(attr_index, ce,
1727 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1728 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
1729 &ce->oid);
1730 }
1731 }
1732 }
1733
1734 static int merge_3way(struct merge_options *opt,
1735 const char *path,
1736 const struct object_id *o,
1737 const struct object_id *a,
1738 const struct object_id *b,
1739 const char *pathnames[3],
1740 const int extra_marker_size,
1741 mmbuffer_t *result_buf)
1742 {
1743 mmfile_t orig, src1, src2;
1744 struct ll_merge_options ll_opts = {0};
1745 char *base, *name1, *name2;
1746 enum ll_merge_result merge_status;
1747
1748 if (!opt->priv->attr_index.initialized)
1749 initialize_attr_index(opt);
1750
1751 ll_opts.renormalize = opt->renormalize;
1752 ll_opts.extra_marker_size = extra_marker_size;
1753 ll_opts.xdl_opts = opt->xdl_opts;
1754
1755 if (opt->priv->call_depth) {
1756 ll_opts.virtual_ancestor = 1;
1757 ll_opts.variant = 0;
1758 } else {
1759 switch (opt->recursive_variant) {
1760 case MERGE_VARIANT_OURS:
1761 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1762 break;
1763 case MERGE_VARIANT_THEIRS:
1764 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1765 break;
1766 default:
1767 ll_opts.variant = 0;
1768 break;
1769 }
1770 }
1771
1772 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1773 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1774 base = mkpathdup("%s", opt->ancestor);
1775 name1 = mkpathdup("%s", opt->branch1);
1776 name2 = mkpathdup("%s", opt->branch2);
1777 } else {
1778 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1779 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1780 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1781 }
1782
1783 read_mmblob(&orig, o);
1784 read_mmblob(&src1, a);
1785 read_mmblob(&src2, b);
1786
1787 merge_status = ll_merge(result_buf, path, &orig, base,
1788 &src1, name1, &src2, name2,
1789 &opt->priv->attr_index, &ll_opts);
1790 if (merge_status == LL_MERGE_BINARY_CONFLICT)
1791 warning("Cannot merge binary files: %s (%s vs. %s)",
1792 path, name1, name2);
1793
1794 free(base);
1795 free(name1);
1796 free(name2);
1797 free(orig.ptr);
1798 free(src1.ptr);
1799 free(src2.ptr);
1800 return merge_status;
1801 }
1802
1803 static int handle_content_merge(struct merge_options *opt,
1804 const char *path,
1805 const struct version_info *o,
1806 const struct version_info *a,
1807 const struct version_info *b,
1808 const char *pathnames[3],
1809 const int extra_marker_size,
1810 struct version_info *result)
1811 {
1812 /*
1813 * path is the target location where we want to put the file, and
1814 * is used to determine any normalization rules in ll_merge.
1815 *
1816 * The normal case is that path and all entries in pathnames are
1817 * identical, though renames can affect which path we got one of
1818 * the three blobs to merge on various sides of history.
1819 *
1820 * extra_marker_size is the amount to extend conflict markers in
1821 * ll_merge; this is neeed if we have content merges of content
1822 * merges, which happens for example with rename/rename(2to1) and
1823 * rename/add conflicts.
1824 */
1825 unsigned clean = 1;
1826
1827 /*
1828 * handle_content_merge() needs both files to be of the same type, i.e.
1829 * both files OR both submodules OR both symlinks. Conflicting types
1830 * needs to be handled elsewhere.
1831 */
1832 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
1833
1834 /* Merge modes */
1835 if (a->mode == b->mode || a->mode == o->mode)
1836 result->mode = b->mode;
1837 else {
1838 /* must be the 100644/100755 case */
1839 assert(S_ISREG(a->mode));
1840 result->mode = a->mode;
1841 clean = (b->mode == o->mode);
1842 /*
1843 * FIXME: If opt->priv->call_depth && !clean, then we really
1844 * should not make result->mode match either a->mode or
1845 * b->mode; that causes t6036 "check conflicting mode for
1846 * regular file" to fail. It would be best to use some other
1847 * mode, but we'll confuse all kinds of stuff if we use one
1848 * where S_ISREG(result->mode) isn't true, and if we use
1849 * something like 0100666, then tree-walk.c's calls to
1850 * canon_mode() will just normalize that to 100644 for us and
1851 * thus not solve anything.
1852 *
1853 * Figure out if there's some kind of way we can work around
1854 * this...
1855 */
1856 }
1857
1858 /*
1859 * Trivial oid merge.
1860 *
1861 * Note: While one might assume that the next four lines would
1862 * be unnecessary due to the fact that match_mask is often
1863 * setup and already handled, renames don't always take care
1864 * of that.
1865 */
1866 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
1867 oidcpy(&result->oid, &b->oid);
1868 else if (oideq(&b->oid, &o->oid))
1869 oidcpy(&result->oid, &a->oid);
1870
1871 /* Remaining rules depend on file vs. submodule vs. symlink. */
1872 else if (S_ISREG(a->mode)) {
1873 mmbuffer_t result_buf;
1874 int ret = 0, merge_status;
1875 int two_way;
1876
1877 /*
1878 * If 'o' is different type, treat it as null so we do a
1879 * two-way merge.
1880 */
1881 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1882
1883 merge_status = merge_3way(opt, path,
1884 two_way ? null_oid() : &o->oid,
1885 &a->oid, &b->oid,
1886 pathnames, extra_marker_size,
1887 &result_buf);
1888
1889 if ((merge_status < 0) || !result_buf.ptr)
1890 ret = err(opt, _("Failed to execute internal merge"));
1891
1892 if (!ret &&
1893 write_object_file(result_buf.ptr, result_buf.size,
1894 blob_type, &result->oid))
1895 ret = err(opt, _("Unable to add %s to database"),
1896 path);
1897
1898 free(result_buf.ptr);
1899 if (ret)
1900 return -1;
1901 clean &= (merge_status == 0);
1902 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1903 } else if (S_ISGITLINK(a->mode)) {
1904 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1905 clean = merge_submodule(opt, pathnames[0],
1906 two_way ? null_oid() : &o->oid,
1907 &a->oid, &b->oid, &result->oid);
1908 if (opt->priv->call_depth && two_way && !clean) {
1909 result->mode = o->mode;
1910 oidcpy(&result->oid, &o->oid);
1911 }
1912 } else if (S_ISLNK(a->mode)) {
1913 if (opt->priv->call_depth) {
1914 clean = 0;
1915 result->mode = o->mode;
1916 oidcpy(&result->oid, &o->oid);
1917 } else {
1918 switch (opt->recursive_variant) {
1919 case MERGE_VARIANT_NORMAL:
1920 clean = 0;
1921 oidcpy(&result->oid, &a->oid);
1922 break;
1923 case MERGE_VARIANT_OURS:
1924 oidcpy(&result->oid, &a->oid);
1925 break;
1926 case MERGE_VARIANT_THEIRS:
1927 oidcpy(&result->oid, &b->oid);
1928 break;
1929 }
1930 }
1931 } else
1932 BUG("unsupported object type in the tree: %06o for %s",
1933 a->mode, path);
1934
1935 return clean;
1936 }
1937
1938 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1939 *** which are split into directory and regular rename detection sections. ***/
1940
1941 /*** Function Grouping: functions related to directory rename detection ***/
1942
1943 struct collision_info {
1944 struct string_list source_files;
1945 unsigned reported_already:1;
1946 };
1947
1948 /*
1949 * Return a new string that replaces the beginning portion (which matches
1950 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
1951 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
1952 * NOTE:
1953 * Caller must ensure that old_path starts with rename_info->key + '/'.
1954 */
1955 static char *apply_dir_rename(struct strmap_entry *rename_info,
1956 const char *old_path)
1957 {
1958 struct strbuf new_path = STRBUF_INIT;
1959 const char *old_dir = rename_info->key;
1960 const char *new_dir = rename_info->value;
1961 int oldlen, newlen, new_dir_len;
1962
1963 oldlen = strlen(old_dir);
1964 if (*new_dir == '\0')
1965 /*
1966 * If someone renamed/merged a subdirectory into the root
1967 * directory (e.g. 'some/subdir' -> ''), then we want to
1968 * avoid returning
1969 * '' + '/filename'
1970 * as the rename; we need to make old_path + oldlen advance
1971 * past the '/' character.
1972 */
1973 oldlen++;
1974 new_dir_len = strlen(new_dir);
1975 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
1976 strbuf_grow(&new_path, newlen);
1977 strbuf_add(&new_path, new_dir, new_dir_len);
1978 strbuf_addstr(&new_path, &old_path[oldlen]);
1979
1980 return strbuf_detach(&new_path, NULL);
1981 }
1982
1983 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
1984 {
1985 struct merged_info *mi = strmap_get(paths, path);
1986 struct conflict_info *ci;
1987 if (!mi)
1988 return 0;
1989 INITIALIZE_CI(ci, mi);
1990 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
1991 }
1992
1993 /*
1994 * See if there is a directory rename for path, and if there are any file
1995 * level conflicts on the given side for the renamed location. If there is
1996 * a rename and there are no conflicts, return the new name. Otherwise,
1997 * return NULL.
1998 */
1999 static char *handle_path_level_conflicts(struct merge_options *opt,
2000 const char *path,
2001 unsigned side_index,
2002 struct strmap_entry *rename_info,
2003 struct strmap *collisions)
2004 {
2005 char *new_path = NULL;
2006 struct collision_info *c_info;
2007 int clean = 1;
2008 struct strbuf collision_paths = STRBUF_INIT;
2009
2010 /*
2011 * entry has the mapping of old directory name to new directory name
2012 * that we want to apply to path.
2013 */
2014 new_path = apply_dir_rename(rename_info, path);
2015 if (!new_path)
2016 BUG("Failed to apply directory rename!");
2017
2018 /*
2019 * The caller needs to have ensured that it has pre-populated
2020 * collisions with all paths that map to new_path. Do a quick check
2021 * to ensure that's the case.
2022 */
2023 c_info = strmap_get(collisions, new_path);
2024 if (c_info == NULL)
2025 BUG("c_info is NULL");
2026
2027 /*
2028 * Check for one-sided add/add/.../add conflicts, i.e.
2029 * where implicit renames from the other side doing
2030 * directory rename(s) can affect this side of history
2031 * to put multiple paths into the same location. Warn
2032 * and bail on directory renames for such paths.
2033 */
2034 if (c_info->reported_already) {
2035 clean = 0;
2036 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
2037 c_info->reported_already = 1;
2038 strbuf_add_separated_string_list(&collision_paths, ", ",
2039 &c_info->source_files);
2040 path_msg(opt, new_path, 0,
2041 _("CONFLICT (implicit dir rename): Existing file/dir "
2042 "at %s in the way of implicit directory rename(s) "
2043 "putting the following path(s) there: %s."),
2044 new_path, collision_paths.buf);
2045 clean = 0;
2046 } else if (c_info->source_files.nr > 1) {
2047 c_info->reported_already = 1;
2048 strbuf_add_separated_string_list(&collision_paths, ", ",
2049 &c_info->source_files);
2050 path_msg(opt, new_path, 0,
2051 _("CONFLICT (implicit dir rename): Cannot map more "
2052 "than one path to %s; implicit directory renames "
2053 "tried to put these paths there: %s"),
2054 new_path, collision_paths.buf);
2055 clean = 0;
2056 }
2057
2058 /* Free memory we no longer need */
2059 strbuf_release(&collision_paths);
2060 if (!clean && new_path) {
2061 free(new_path);
2062 return NULL;
2063 }
2064
2065 return new_path;
2066 }
2067
2068 static void get_provisional_directory_renames(struct merge_options *opt,
2069 unsigned side,
2070 int *clean)
2071 {
2072 struct hashmap_iter iter;
2073 struct strmap_entry *entry;
2074 struct rename_info *renames = &opt->priv->renames;
2075
2076 /*
2077 * Collapse
2078 * dir_rename_count: old_directory -> {new_directory -> count}
2079 * down to
2080 * dir_renames: old_directory -> best_new_directory
2081 * where best_new_directory is the one with the unique highest count.
2082 */
2083 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
2084 const char *source_dir = entry->key;
2085 struct strintmap *counts = entry->value;
2086 struct hashmap_iter count_iter;
2087 struct strmap_entry *count_entry;
2088 int max = 0;
2089 int bad_max = 0;
2090 const char *best = NULL;
2091
2092 strintmap_for_each_entry(counts, &count_iter, count_entry) {
2093 const char *target_dir = count_entry->key;
2094 intptr_t count = (intptr_t)count_entry->value;
2095
2096 if (count == max)
2097 bad_max = max;
2098 else if (count > max) {
2099 max = count;
2100 best = target_dir;
2101 }
2102 }
2103
2104 if (max == 0)
2105 continue;
2106
2107 if (bad_max == max) {
2108 path_msg(opt, source_dir, 0,
2109 _("CONFLICT (directory rename split): "
2110 "Unclear where to rename %s to; it was "
2111 "renamed to multiple other directories, with "
2112 "no destination getting a majority of the "
2113 "files."),
2114 source_dir);
2115 *clean = 0;
2116 } else {
2117 strmap_put(&renames->dir_renames[side],
2118 source_dir, (void*)best);
2119 }
2120 }
2121 }
2122
2123 static void handle_directory_level_conflicts(struct merge_options *opt)
2124 {
2125 struct hashmap_iter iter;
2126 struct strmap_entry *entry;
2127 struct string_list duplicated = STRING_LIST_INIT_NODUP;
2128 struct rename_info *renames = &opt->priv->renames;
2129 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
2130 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
2131 int i;
2132
2133 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
2134 if (strmap_contains(side2_dir_renames, entry->key))
2135 string_list_append(&duplicated, entry->key);
2136 }
2137
2138 for (i = 0; i < duplicated.nr; i++) {
2139 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
2140 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
2141 }
2142 string_list_clear(&duplicated, 0);
2143 }
2144
2145 static struct strmap_entry *check_dir_renamed(const char *path,
2146 struct strmap *dir_renames)
2147 {
2148 char *temp = xstrdup(path);
2149 char *end;
2150 struct strmap_entry *e = NULL;
2151
2152 while ((end = strrchr(temp, '/'))) {
2153 *end = '\0';
2154 e = strmap_get_entry(dir_renames, temp);
2155 if (e)
2156 break;
2157 }
2158 free(temp);
2159 return e;
2160 }
2161
2162 static void compute_collisions(struct strmap *collisions,
2163 struct strmap *dir_renames,
2164 struct diff_queue_struct *pairs)
2165 {
2166 int i;
2167
2168 strmap_init_with_options(collisions, NULL, 0);
2169 if (strmap_empty(dir_renames))
2170 return;
2171
2172 /*
2173 * Multiple files can be mapped to the same path due to directory
2174 * renames done by the other side of history. Since that other
2175 * side of history could have merged multiple directories into one,
2176 * if our side of history added the same file basename to each of
2177 * those directories, then all N of them would get implicitly
2178 * renamed by the directory rename detection into the same path,
2179 * and we'd get an add/add/.../add conflict, and all those adds
2180 * from *this* side of history. This is not representable in the
2181 * index, and users aren't going to easily be able to make sense of
2182 * it. So we need to provide a good warning about what's
2183 * happening, and fall back to no-directory-rename detection
2184 * behavior for those paths.
2185 *
2186 * See testcases 9e and all of section 5 from t6043 for examples.
2187 */
2188 for (i = 0; i < pairs->nr; ++i) {
2189 struct strmap_entry *rename_info;
2190 struct collision_info *collision_info;
2191 char *new_path;
2192 struct diff_filepair *pair = pairs->queue[i];
2193
2194 if (pair->status != 'A' && pair->status != 'R')
2195 continue;
2196 rename_info = check_dir_renamed(pair->two->path, dir_renames);
2197 if (!rename_info)
2198 continue;
2199
2200 new_path = apply_dir_rename(rename_info, pair->two->path);
2201 assert(new_path);
2202 collision_info = strmap_get(collisions, new_path);
2203 if (collision_info) {
2204 free(new_path);
2205 } else {
2206 CALLOC_ARRAY(collision_info, 1);
2207 string_list_init_nodup(&collision_info->source_files);
2208 strmap_put(collisions, new_path, collision_info);
2209 }
2210 string_list_insert(&collision_info->source_files,
2211 pair->two->path);
2212 }
2213 }
2214
2215 static char *check_for_directory_rename(struct merge_options *opt,
2216 const char *path,
2217 unsigned side_index,
2218 struct strmap *dir_renames,
2219 struct strmap *dir_rename_exclusions,
2220 struct strmap *collisions,
2221 int *clean_merge)
2222 {
2223 char *new_path = NULL;
2224 struct strmap_entry *rename_info;
2225 struct strmap_entry *otherinfo = NULL;
2226 const char *new_dir;
2227
2228 if (strmap_empty(dir_renames))
2229 return new_path;
2230 rename_info = check_dir_renamed(path, dir_renames);
2231 if (!rename_info)
2232 return new_path;
2233 /* old_dir = rename_info->key; */
2234 new_dir = rename_info->value;
2235
2236 /*
2237 * This next part is a little weird. We do not want to do an
2238 * implicit rename into a directory we renamed on our side, because
2239 * that will result in a spurious rename/rename(1to2) conflict. An
2240 * example:
2241 * Base commit: dumbdir/afile, otherdir/bfile
2242 * Side 1: smrtdir/afile, otherdir/bfile
2243 * Side 2: dumbdir/afile, dumbdir/bfile
2244 * Here, while working on Side 1, we could notice that otherdir was
2245 * renamed/merged to dumbdir, and change the diff_filepair for
2246 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
2247 * 2 will notice the rename from dumbdir to smrtdir, and do the
2248 * transitive rename to move it from dumbdir/bfile to
2249 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
2250 * smrtdir, a rename/rename(1to2) conflict. We really just want
2251 * the file to end up in smrtdir. And the way to achieve that is
2252 * to not let Side1 do the rename to dumbdir, since we know that is
2253 * the source of one of our directory renames.
2254 *
2255 * That's why otherinfo and dir_rename_exclusions is here.
2256 *
2257 * As it turns out, this also prevents N-way transient rename
2258 * confusion; See testcases 9c and 9d of t6043.
2259 */
2260 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
2261 if (otherinfo) {
2262 path_msg(opt, rename_info->key, 1,
2263 _("WARNING: Avoiding applying %s -> %s rename "
2264 "to %s, because %s itself was renamed."),
2265 rename_info->key, new_dir, path, new_dir);
2266 return NULL;
2267 }
2268
2269 new_path = handle_path_level_conflicts(opt, path, side_index,
2270 rename_info, collisions);
2271 *clean_merge &= (new_path != NULL);
2272
2273 return new_path;
2274 }
2275
2276 static void apply_directory_rename_modifications(struct merge_options *opt,
2277 struct diff_filepair *pair,
2278 char *new_path)
2279 {
2280 /*
2281 * The basic idea is to get the conflict_info from opt->priv->paths
2282 * at old path, and insert it into new_path; basically just this:
2283 * ci = strmap_get(&opt->priv->paths, old_path);
2284 * strmap_remove(&opt->priv->paths, old_path, 0);
2285 * strmap_put(&opt->priv->paths, new_path, ci);
2286 * However, there are some factors complicating this:
2287 * - opt->priv->paths may already have an entry at new_path
2288 * - Each ci tracks its containing directory, so we need to
2289 * update that
2290 * - If another ci has the same containing directory, then
2291 * the two char*'s MUST point to the same location. See the
2292 * comment in struct merged_info. strcmp equality is not
2293 * enough; we need pointer equality.
2294 * - opt->priv->paths must hold the parent directories of any
2295 * entries that are added. So, if this directory rename
2296 * causes entirely new directories, we must recursively add
2297 * parent directories.
2298 * - For each parent directory added to opt->priv->paths, we
2299 * also need to get its parent directory stored in its
2300 * conflict_info->merged.directory_name with all the same
2301 * requirements about pointer equality.
2302 */
2303 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
2304 struct conflict_info *ci, *new_ci;
2305 struct strmap_entry *entry;
2306 const char *branch_with_new_path, *branch_with_dir_rename;
2307 const char *old_path = pair->two->path;
2308 const char *parent_name;
2309 const char *cur_path;
2310 int i, len;
2311
2312 entry = strmap_get_entry(&opt->priv->paths, old_path);
2313 old_path = entry->key;
2314 ci = entry->value;
2315 VERIFY_CI(ci);
2316
2317 /* Find parent directories missing from opt->priv->paths */
2318 cur_path = mem_pool_strdup(&opt->priv->pool, new_path);
2319 free((char*)new_path);
2320 new_path = (char *)cur_path;
2321
2322 while (1) {
2323 /* Find the parent directory of cur_path */
2324 char *last_slash = strrchr(cur_path, '/');
2325 if (last_slash) {
2326 parent_name = mem_pool_strndup(&opt->priv->pool,
2327 cur_path,
2328 last_slash - cur_path);
2329 } else {
2330 parent_name = opt->priv->toplevel_dir;
2331 break;
2332 }
2333
2334 /* Look it up in opt->priv->paths */
2335 entry = strmap_get_entry(&opt->priv->paths, parent_name);
2336 if (entry) {
2337 parent_name = entry->key; /* reuse known pointer */
2338 break;
2339 }
2340
2341 /* Record this is one of the directories we need to insert */
2342 string_list_append(&dirs_to_insert, parent_name);
2343 cur_path = parent_name;
2344 }
2345
2346 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
2347 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
2348 struct conflict_info *dir_ci;
2349 char *cur_dir = dirs_to_insert.items[i].string;
2350
2351 CALLOC_ARRAY(dir_ci, 1);
2352
2353 dir_ci->merged.directory_name = parent_name;
2354 len = strlen(parent_name);
2355 /* len+1 because of trailing '/' character */
2356 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
2357 dir_ci->dirmask = ci->filemask;
2358 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
2359
2360 parent_name = cur_dir;
2361 }
2362
2363 assert(ci->filemask == 2 || ci->filemask == 4);
2364 assert(ci->dirmask == 0);
2365 strmap_remove(&opt->priv->paths, old_path, 0);
2366
2367 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2368 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2369
2370 /* Now, finally update ci and stick it into opt->priv->paths */
2371 ci->merged.directory_name = parent_name;
2372 len = strlen(parent_name);
2373 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2374 new_ci = strmap_get(&opt->priv->paths, new_path);
2375 if (!new_ci) {
2376 /* Place ci back into opt->priv->paths, but at new_path */
2377 strmap_put(&opt->priv->paths, new_path, ci);
2378 } else {
2379 int index;
2380
2381 /* A few sanity checks */
2382 VERIFY_CI(new_ci);
2383 assert(ci->filemask == 2 || ci->filemask == 4);
2384 assert((new_ci->filemask & ci->filemask) == 0);
2385 assert(!new_ci->merged.clean);
2386
2387 /* Copy stuff from ci into new_ci */
2388 new_ci->filemask |= ci->filemask;
2389 if (new_ci->dirmask)
2390 new_ci->df_conflict = 1;
2391 index = (ci->filemask >> 1);
2392 new_ci->pathnames[index] = ci->pathnames[index];
2393 new_ci->stages[index].mode = ci->stages[index].mode;
2394 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2395
2396 ci = new_ci;
2397 }
2398
2399 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2400 /* Notify user of updated path */
2401 if (pair->status == 'A')
2402 path_msg(opt, new_path, 1,
2403 _("Path updated: %s added in %s inside a "
2404 "directory that was renamed in %s; moving "
2405 "it to %s."),
2406 old_path, branch_with_new_path,
2407 branch_with_dir_rename, new_path);
2408 else
2409 path_msg(opt, new_path, 1,
2410 _("Path updated: %s renamed to %s in %s, "
2411 "inside a directory that was renamed in %s; "
2412 "moving it to %s."),
2413 pair->one->path, old_path, branch_with_new_path,
2414 branch_with_dir_rename, new_path);
2415 } else {
2416 /*
2417 * opt->detect_directory_renames has the value
2418 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2419 */
2420 ci->path_conflict = 1;
2421 if (pair->status == 'A')
2422 path_msg(opt, new_path, 0,
2423 _("CONFLICT (file location): %s added in %s "
2424 "inside a directory that was renamed in %s, "
2425 "suggesting it should perhaps be moved to "
2426 "%s."),
2427 old_path, branch_with_new_path,
2428 branch_with_dir_rename, new_path);
2429 else
2430 path_msg(opt, new_path, 0,
2431 _("CONFLICT (file location): %s renamed to %s "
2432 "in %s, inside a directory that was renamed "
2433 "in %s, suggesting it should perhaps be "
2434 "moved to %s."),
2435 pair->one->path, old_path, branch_with_new_path,
2436 branch_with_dir_rename, new_path);
2437 }
2438
2439 /*
2440 * Finally, record the new location.
2441 */
2442 pair->two->path = new_path;
2443 }
2444
2445 /*** Function Grouping: functions related to regular rename detection ***/
2446
2447 static int process_renames(struct merge_options *opt,
2448 struct diff_queue_struct *renames)
2449 {
2450 int clean_merge = 1, i;
2451
2452 for (i = 0; i < renames->nr; ++i) {
2453 const char *oldpath = NULL, *newpath;
2454 struct diff_filepair *pair = renames->queue[i];
2455 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2456 struct strmap_entry *old_ent, *new_ent;
2457 unsigned int old_sidemask;
2458 int target_index, other_source_index;
2459 int source_deleted, collision, type_changed;
2460 const char *rename_branch = NULL, *delete_branch = NULL;
2461
2462 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2463 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2464 if (old_ent) {
2465 oldpath = old_ent->key;
2466 oldinfo = old_ent->value;
2467 }
2468 newpath = pair->two->path;
2469 if (new_ent) {
2470 newpath = new_ent->key;
2471 newinfo = new_ent->value;
2472 }
2473
2474 /*
2475 * If pair->one->path isn't in opt->priv->paths, that means
2476 * that either directory rename detection removed that
2477 * path, or a parent directory of oldpath was resolved and
2478 * we don't even need the rename; in either case, we can
2479 * skip it. If oldinfo->merged.clean, then the other side
2480 * of history had no changes to oldpath and we don't need
2481 * the rename and can skip it.
2482 */
2483 if (!oldinfo || oldinfo->merged.clean)
2484 continue;
2485
2486 /*
2487 * diff_filepairs have copies of pathnames, thus we have to
2488 * use standard 'strcmp()' (negated) instead of '=='.
2489 */
2490 if (i + 1 < renames->nr &&
2491 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2492 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2493 const char *pathnames[3];
2494 struct version_info merged;
2495 struct conflict_info *base, *side1, *side2;
2496 unsigned was_binary_blob = 0;
2497
2498 pathnames[0] = oldpath;
2499 pathnames[1] = newpath;
2500 pathnames[2] = renames->queue[i+1]->two->path;
2501
2502 base = strmap_get(&opt->priv->paths, pathnames[0]);
2503 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2504 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2505
2506 VERIFY_CI(base);
2507 VERIFY_CI(side1);
2508 VERIFY_CI(side2);
2509
2510 if (!strcmp(pathnames[1], pathnames[2])) {
2511 struct rename_info *ri = &opt->priv->renames;
2512 int j;
2513
2514 /* Both sides renamed the same way */
2515 assert(side1 == side2);
2516 memcpy(&side1->stages[0], &base->stages[0],
2517 sizeof(merged));
2518 side1->filemask |= (1 << MERGE_BASE);
2519 /* Mark base as resolved by removal */
2520 base->merged.is_null = 1;
2521 base->merged.clean = 1;
2522
2523 /*
2524 * Disable remembering renames optimization;
2525 * rename/rename(1to1) is incredibly rare, and
2526 * just disabling the optimization is easier
2527 * than purging cached_pairs,
2528 * cached_target_names, and dir_rename_counts.
2529 */
2530 for (j = 0; j < 3; j++)
2531 ri->merge_trees[j] = NULL;
2532
2533 /* We handled both renames, i.e. i+1 handled */
2534 i++;
2535 /* Move to next rename */
2536 continue;
2537 }
2538
2539 /* This is a rename/rename(1to2) */
2540 clean_merge = handle_content_merge(opt,
2541 pair->one->path,
2542 &base->stages[0],
2543 &side1->stages[1],
2544 &side2->stages[2],
2545 pathnames,
2546 1 + 2 * opt->priv->call_depth,
2547 &merged);
2548 if (!clean_merge &&
2549 merged.mode == side1->stages[1].mode &&
2550 oideq(&merged.oid, &side1->stages[1].oid))
2551 was_binary_blob = 1;
2552 memcpy(&side1->stages[1], &merged, sizeof(merged));
2553 if (was_binary_blob) {
2554 /*
2555 * Getting here means we were attempting to
2556 * merge a binary blob.
2557 *
2558 * Since we can't merge binaries,
2559 * handle_content_merge() just takes one
2560 * side. But we don't want to copy the
2561 * contents of one side to both paths. We
2562 * used the contents of side1 above for
2563 * side1->stages, let's use the contents of
2564 * side2 for side2->stages below.
2565 */
2566 oidcpy(&merged.oid, &side2->stages[2].oid);
2567 merged.mode = side2->stages[2].mode;
2568 }
2569 memcpy(&side2->stages[2], &merged, sizeof(merged));
2570
2571 side1->path_conflict = 1;
2572 side2->path_conflict = 1;
2573 /*
2574 * TODO: For renames we normally remove the path at the
2575 * old name. It would thus seem consistent to do the
2576 * same for rename/rename(1to2) cases, but we haven't
2577 * done so traditionally and a number of the regression
2578 * tests now encode an expectation that the file is
2579 * left there at stage 1. If we ever decide to change
2580 * this, add the following two lines here:
2581 * base->merged.is_null = 1;
2582 * base->merged.clean = 1;
2583 * and remove the setting of base->path_conflict to 1.
2584 */
2585 base->path_conflict = 1;
2586 path_msg(opt, oldpath, 0,
2587 _("CONFLICT (rename/rename): %s renamed to "
2588 "%s in %s and to %s in %s."),
2589 pathnames[0],
2590 pathnames[1], opt->branch1,
2591 pathnames[2], opt->branch2);
2592
2593 i++; /* We handled both renames, i.e. i+1 handled */
2594 continue;
2595 }
2596
2597 VERIFY_CI(oldinfo);
2598 VERIFY_CI(newinfo);
2599 target_index = pair->score; /* from collect_renames() */
2600 assert(target_index == 1 || target_index == 2);
2601 other_source_index = 3 - target_index;
2602 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2603 source_deleted = (oldinfo->filemask == 1);
2604 collision = ((newinfo->filemask & old_sidemask) != 0);
2605 type_changed = !source_deleted &&
2606 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2607 S_ISREG(newinfo->stages[target_index].mode));
2608 if (type_changed && collision) {
2609 /*
2610 * special handling so later blocks can handle this...
2611 *
2612 * if type_changed && collision are both true, then this
2613 * was really a double rename, but one side wasn't
2614 * detected due to lack of break detection. I.e.
2615 * something like
2616 * orig: has normal file 'foo'
2617 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2618 * side2: renames 'foo' to 'bar'
2619 * In this case, the foo->bar rename on side1 won't be
2620 * detected because the new symlink named 'foo' is
2621 * there and we don't do break detection. But we detect
2622 * this here because we don't want to merge the content
2623 * of the foo symlink with the foo->bar file, so we
2624 * have some logic to handle this special case. The
2625 * easiest way to do that is make 'bar' on side1 not
2626 * be considered a colliding file but the other part
2627 * of a normal rename. If the file is very different,
2628 * well we're going to get content merge conflicts
2629 * anyway so it doesn't hurt. And if the colliding
2630 * file also has a different type, that'll be handled
2631 * by the content merge logic in process_entry() too.
2632 *
2633 * See also t6430, 'rename vs. rename/symlink'
2634 */
2635 collision = 0;
2636 }
2637 if (source_deleted) {
2638 if (target_index == 1) {
2639 rename_branch = opt->branch1;
2640 delete_branch = opt->branch2;
2641 } else {
2642 rename_branch = opt->branch2;
2643 delete_branch = opt->branch1;
2644 }
2645 }
2646
2647 assert(source_deleted || oldinfo->filemask & old_sidemask);
2648
2649 /* Need to check for special types of rename conflicts... */
2650 if (collision && !source_deleted) {
2651 /* collision: rename/add or rename/rename(2to1) */
2652 const char *pathnames[3];
2653 struct version_info merged;
2654
2655 struct conflict_info *base, *side1, *side2;
2656 unsigned clean;
2657
2658 pathnames[0] = oldpath;
2659 pathnames[other_source_index] = oldpath;
2660 pathnames[target_index] = newpath;
2661
2662 base = strmap_get(&opt->priv->paths, pathnames[0]);
2663 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2664 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2665
2666 VERIFY_CI(base);
2667 VERIFY_CI(side1);
2668 VERIFY_CI(side2);
2669
2670 clean = handle_content_merge(opt, pair->one->path,
2671 &base->stages[0],
2672 &side1->stages[1],
2673 &side2->stages[2],
2674 pathnames,
2675 1 + 2 * opt->priv->call_depth,
2676 &merged);
2677
2678 memcpy(&newinfo->stages[target_index], &merged,
2679 sizeof(merged));
2680 if (!clean) {
2681 path_msg(opt, newpath, 0,
2682 _("CONFLICT (rename involved in "
2683 "collision): rename of %s -> %s has "
2684 "content conflicts AND collides "
2685 "with another path; this may result "
2686 "in nested conflict markers."),
2687 oldpath, newpath);
2688 }
2689 } else if (collision && source_deleted) {
2690 /*
2691 * rename/add/delete or rename/rename(2to1)/delete:
2692 * since oldpath was deleted on the side that didn't
2693 * do the rename, there's not much of a content merge
2694 * we can do for the rename. oldinfo->merged.is_null
2695 * was already set, so we just leave things as-is so
2696 * they look like an add/add conflict.
2697 */
2698
2699 newinfo->path_conflict = 1;
2700 path_msg(opt, newpath, 0,
2701 _("CONFLICT (rename/delete): %s renamed "
2702 "to %s in %s, but deleted in %s."),
2703 oldpath, newpath, rename_branch, delete_branch);
2704 } else {
2705 /*
2706 * a few different cases...start by copying the
2707 * existing stage(s) from oldinfo over the newinfo
2708 * and update the pathname(s).
2709 */
2710 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
2711 sizeof(newinfo->stages[0]));
2712 newinfo->filemask |= (1 << MERGE_BASE);
2713 newinfo->pathnames[0] = oldpath;
2714 if (type_changed) {
2715 /* rename vs. typechange */
2716 /* Mark the original as resolved by removal */
2717 memcpy(&oldinfo->stages[0].oid, null_oid(),
2718 sizeof(oldinfo->stages[0].oid));
2719 oldinfo->stages[0].mode = 0;
2720 oldinfo->filemask &= 0x06;
2721 } else if (source_deleted) {
2722 /* rename/delete */
2723 newinfo->path_conflict = 1;
2724 path_msg(opt, newpath, 0,
2725 _("CONFLICT (rename/delete): %s renamed"
2726 " to %s in %s, but deleted in %s."),
2727 oldpath, newpath,
2728 rename_branch, delete_branch);
2729 } else {
2730 /* normal rename */
2731 memcpy(&newinfo->stages[other_source_index],
2732 &oldinfo->stages[other_source_index],
2733 sizeof(newinfo->stages[0]));
2734 newinfo->filemask |= (1 << other_source_index);
2735 newinfo->pathnames[other_source_index] = oldpath;
2736 }
2737 }
2738
2739 if (!type_changed) {
2740 /* Mark the original as resolved by removal */
2741 oldinfo->merged.is_null = 1;
2742 oldinfo->merged.clean = 1;
2743 }
2744
2745 }
2746
2747 return clean_merge;
2748 }
2749
2750 static inline int possible_side_renames(struct rename_info *renames,
2751 unsigned side_index)
2752 {
2753 return renames->pairs[side_index].nr > 0 &&
2754 !strintmap_empty(&renames->relevant_sources[side_index]);
2755 }
2756
2757 static inline int possible_renames(struct rename_info *renames)
2758 {
2759 return possible_side_renames(renames, 1) ||
2760 possible_side_renames(renames, 2) ||
2761 !strmap_empty(&renames->cached_pairs[1]) ||
2762 !strmap_empty(&renames->cached_pairs[2]);
2763 }
2764
2765 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
2766 {
2767 /*
2768 * A simplified version of diff_resolve_rename_copy(); would probably
2769 * just use that function but it's static...
2770 */
2771 int i;
2772 struct diff_filepair *p;
2773
2774 for (i = 0; i < q->nr; ++i) {
2775 p = q->queue[i];
2776 p->status = 0; /* undecided */
2777 if (!DIFF_FILE_VALID(p->one))
2778 p->status = DIFF_STATUS_ADDED;
2779 else if (!DIFF_FILE_VALID(p->two))
2780 p->status = DIFF_STATUS_DELETED;
2781 else if (DIFF_PAIR_RENAME(p))
2782 p->status = DIFF_STATUS_RENAMED;
2783 }
2784 }
2785
2786 static void prune_cached_from_relevant(struct rename_info *renames,
2787 unsigned side)
2788 {
2789 /* Reason for this function described in add_pair() */
2790 struct hashmap_iter iter;
2791 struct strmap_entry *entry;
2792
2793 /* Remove from relevant_sources all entries in cached_pairs[side] */
2794 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
2795 strintmap_remove(&renames->relevant_sources[side],
2796 entry->key);
2797 }
2798 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
2799 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
2800 strintmap_remove(&renames->relevant_sources[side],
2801 entry->key);
2802 }
2803 }
2804
2805 static void use_cached_pairs(struct merge_options *opt,
2806 struct strmap *cached_pairs,
2807 struct diff_queue_struct *pairs)
2808 {
2809 struct hashmap_iter iter;
2810 struct strmap_entry *entry;
2811
2812 /*
2813 * Add to side_pairs all entries from renames->cached_pairs[side_index].
2814 * (Info in cached_irrelevant[side_index] is not relevant here.)
2815 */
2816 strmap_for_each_entry(cached_pairs, &iter, entry) {
2817 struct diff_filespec *one, *two;
2818 const char *old_name = entry->key;
2819 const char *new_name = entry->value;
2820 if (!new_name)
2821 new_name = old_name;
2822
2823 /*
2824 * cached_pairs has *copies* of old_name and new_name,
2825 * because it has to persist across merges. Since
2826 * pool_alloc_filespec() will just re-use the existing
2827 * filenames, which will also get re-used by
2828 * opt->priv->paths if they become renames, and then
2829 * get freed at the end of the merge, that would leave
2830 * the copy in cached_pairs dangling. Avoid this by
2831 * making a copy here.
2832 */
2833 old_name = mem_pool_strdup(&opt->priv->pool, old_name);
2834 new_name = mem_pool_strdup(&opt->priv->pool, new_name);
2835
2836 /* We don't care about oid/mode, only filenames and status */
2837 one = pool_alloc_filespec(&opt->priv->pool, old_name);
2838 two = pool_alloc_filespec(&opt->priv->pool, new_name);
2839 pool_diff_queue(&opt->priv->pool, pairs, one, two);
2840 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
2841 }
2842 }
2843
2844 static void cache_new_pair(struct rename_info *renames,
2845 int side,
2846 char *old_path,
2847 char *new_path,
2848 int free_old_value)
2849 {
2850 char *old_value;
2851 new_path = xstrdup(new_path);
2852 old_value = strmap_put(&renames->cached_pairs[side],
2853 old_path, new_path);
2854 strset_add(&renames->cached_target_names[side], new_path);
2855 if (free_old_value)
2856 free(old_value);
2857 else
2858 assert(!old_value);
2859 }
2860
2861 static void possibly_cache_new_pair(struct rename_info *renames,
2862 struct diff_filepair *p,
2863 unsigned side,
2864 char *new_path)
2865 {
2866 int dir_renamed_side = 0;
2867
2868 if (new_path) {
2869 /*
2870 * Directory renames happen on the other side of history from
2871 * the side that adds new files to the old directory.
2872 */
2873 dir_renamed_side = 3 - side;
2874 } else {
2875 int val = strintmap_get(&renames->relevant_sources[side],
2876 p->one->path);
2877 if (val == RELEVANT_NO_MORE) {
2878 assert(p->status == 'D');
2879 strset_add(&renames->cached_irrelevant[side],
2880 p->one->path);
2881 }
2882 if (val <= 0)
2883 return;
2884 }
2885
2886 if (p->status == 'D') {
2887 /*
2888 * If we already had this delete, we'll just set it's value
2889 * to NULL again, so no harm.
2890 */
2891 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
2892 } else if (p->status == 'R') {
2893 if (!new_path)
2894 new_path = p->two->path;
2895 else
2896 cache_new_pair(renames, dir_renamed_side,
2897 p->two->path, new_path, 0);
2898 cache_new_pair(renames, side, p->one->path, new_path, 1);
2899 } else if (p->status == 'A' && new_path) {
2900 cache_new_pair(renames, dir_renamed_side,
2901 p->two->path, new_path, 0);
2902 }
2903 }
2904
2905 static int compare_pairs(const void *a_, const void *b_)
2906 {
2907 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
2908 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
2909
2910 return strcmp(a->one->path, b->one->path);
2911 }
2912
2913 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
2914 static int detect_regular_renames(struct merge_options *opt,
2915 unsigned side_index)
2916 {
2917 struct diff_options diff_opts;
2918 struct rename_info *renames = &opt->priv->renames;
2919
2920 prune_cached_from_relevant(renames, side_index);
2921 if (!possible_side_renames(renames, side_index)) {
2922 /*
2923 * No rename detection needed for this side, but we still need
2924 * to make sure 'adds' are marked correctly in case the other
2925 * side had directory renames.
2926 */
2927 resolve_diffpair_statuses(&renames->pairs[side_index]);
2928 return 0;
2929 }
2930
2931 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
2932 repo_diff_setup(opt->repo, &diff_opts);
2933 diff_opts.flags.recursive = 1;
2934 diff_opts.flags.rename_empty = 0;
2935 diff_opts.detect_rename = DIFF_DETECT_RENAME;
2936 diff_opts.rename_limit = opt->rename_limit;
2937 if (opt->rename_limit <= 0)
2938 diff_opts.rename_limit = 7000;
2939 diff_opts.rename_score = opt->rename_score;
2940 diff_opts.show_rename_progress = opt->show_rename_progress;
2941 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2942 diff_setup_done(&diff_opts);
2943
2944 diff_queued_diff = renames->pairs[side_index];
2945 trace2_region_enter("diff", "diffcore_rename", opt->repo);
2946 diffcore_rename_extended(&diff_opts,
2947 &opt->priv->pool,
2948 &renames->relevant_sources[side_index],
2949 &renames->dirs_removed[side_index],
2950 &renames->dir_rename_count[side_index],
2951 &renames->cached_pairs[side_index]);
2952 trace2_region_leave("diff", "diffcore_rename", opt->repo);
2953 resolve_diffpair_statuses(&diff_queued_diff);
2954
2955 if (diff_opts.needed_rename_limit > 0)
2956 renames->redo_after_renames = 0;
2957 if (diff_opts.needed_rename_limit > renames->needed_limit)
2958 renames->needed_limit = diff_opts.needed_rename_limit;
2959
2960 renames->pairs[side_index] = diff_queued_diff;
2961
2962 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2963 diff_queued_diff.nr = 0;
2964 diff_queued_diff.queue = NULL;
2965 diff_flush(&diff_opts);
2966
2967 return 1;
2968 }
2969
2970 /*
2971 * Get information of all renames which occurred in 'side_pairs', making use
2972 * of any implicit directory renames in side_dir_renames (also making use of
2973 * implicit directory renames rename_exclusions as needed by
2974 * check_for_directory_rename()). Add all (updated) renames into result.
2975 */
2976 static int collect_renames(struct merge_options *opt,
2977 struct diff_queue_struct *result,
2978 unsigned side_index,
2979 struct strmap *dir_renames_for_side,
2980 struct strmap *rename_exclusions)
2981 {
2982 int i, clean = 1;
2983 struct strmap collisions;
2984 struct diff_queue_struct *side_pairs;
2985 struct hashmap_iter iter;
2986 struct strmap_entry *entry;
2987 struct rename_info *renames = &opt->priv->renames;
2988
2989 side_pairs = &renames->pairs[side_index];
2990 compute_collisions(&collisions, dir_renames_for_side, side_pairs);
2991
2992 for (i = 0; i < side_pairs->nr; ++i) {
2993 struct diff_filepair *p = side_pairs->queue[i];
2994 char *new_path; /* non-NULL only with directory renames */
2995
2996 if (p->status != 'A' && p->status != 'R') {
2997 possibly_cache_new_pair(renames, p, side_index, NULL);
2998 pool_diff_free_filepair(&opt->priv->pool, p);
2999 continue;
3000 }
3001
3002 new_path = check_for_directory_rename(opt, p->two->path,
3003 side_index,
3004 dir_renames_for_side,
3005 rename_exclusions,
3006 &collisions,
3007 &clean);
3008
3009 possibly_cache_new_pair(renames, p, side_index, new_path);
3010 if (p->status != 'R' && !new_path) {
3011 pool_diff_free_filepair(&opt->priv->pool, p);
3012 continue;
3013 }
3014
3015 if (new_path)
3016 apply_directory_rename_modifications(opt, p, new_path);
3017
3018 /*
3019 * p->score comes back from diffcore_rename_extended() with
3020 * the similarity of the renamed file. The similarity is
3021 * was used to determine that the two files were related
3022 * and are a rename, which we have already used, but beyond
3023 * that we have no use for the similarity. So p->score is
3024 * now irrelevant. However, process_renames() will need to
3025 * know which side of the merge this rename was associated
3026 * with, so overwrite p->score with that value.
3027 */
3028 p->score = side_index;
3029 result->queue[result->nr++] = p;
3030 }
3031
3032 /* Free each value in the collisions map */
3033 strmap_for_each_entry(&collisions, &iter, entry) {
3034 struct collision_info *info = entry->value;
3035 string_list_clear(&info->source_files, 0);
3036 }
3037 /*
3038 * In compute_collisions(), we set collisions.strdup_strings to 0
3039 * so that we wouldn't have to make another copy of the new_path
3040 * allocated by apply_dir_rename(). But now that we've used them
3041 * and have no other references to these strings, it is time to
3042 * deallocate them.
3043 */
3044 free_strmap_strings(&collisions);
3045 strmap_clear(&collisions, 1);
3046 return clean;
3047 }
3048
3049 static int detect_and_process_renames(struct merge_options *opt,
3050 struct tree *merge_base,
3051 struct tree *side1,
3052 struct tree *side2)
3053 {
3054 struct diff_queue_struct combined;
3055 struct rename_info *renames = &opt->priv->renames;
3056 int need_dir_renames, s, clean = 1;
3057 unsigned detection_run = 0;
3058
3059 memset(&combined, 0, sizeof(combined));
3060 if (!possible_renames(renames))
3061 goto cleanup;
3062
3063 trace2_region_enter("merge", "regular renames", opt->repo);
3064 detection_run |= detect_regular_renames(opt, MERGE_SIDE1);
3065 detection_run |= detect_regular_renames(opt, MERGE_SIDE2);
3066 if (renames->redo_after_renames && detection_run) {
3067 int i, side;
3068 struct diff_filepair *p;
3069
3070 /* Cache the renames, we found */
3071 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
3072 for (i = 0; i < renames->pairs[side].nr; ++i) {
3073 p = renames->pairs[side].queue[i];
3074 possibly_cache_new_pair(renames, p, side, NULL);
3075 }
3076 }
3077
3078 /* Restart the merge with the cached renames */
3079 renames->redo_after_renames = 2;
3080 trace2_region_leave("merge", "regular renames", opt->repo);
3081 goto cleanup;
3082 }
3083 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
3084 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
3085 trace2_region_leave("merge", "regular renames", opt->repo);
3086
3087 trace2_region_enter("merge", "directory renames", opt->repo);
3088 need_dir_renames =
3089 !opt->priv->call_depth &&
3090 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
3091 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
3092
3093 if (need_dir_renames) {
3094 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
3095 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
3096 handle_directory_level_conflicts(opt);
3097 }
3098
3099 ALLOC_GROW(combined.queue,
3100 renames->pairs[1].nr + renames->pairs[2].nr,
3101 combined.alloc);
3102 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
3103 &renames->dir_renames[2],
3104 &renames->dir_renames[1]);
3105 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
3106 &renames->dir_renames[1],
3107 &renames->dir_renames[2]);
3108 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
3109 trace2_region_leave("merge", "directory renames", opt->repo);
3110
3111 trace2_region_enter("merge", "process renames", opt->repo);
3112 clean &= process_renames(opt, &combined);
3113 trace2_region_leave("merge", "process renames", opt->repo);
3114
3115 goto simple_cleanup; /* collect_renames() handles some of cleanup */
3116
3117 cleanup:
3118 /*
3119 * Free now unneeded filepairs, which would have been handled
3120 * in collect_renames() normally but we skipped that code.
3121 */
3122 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3123 struct diff_queue_struct *side_pairs;
3124 int i;
3125
3126 side_pairs = &renames->pairs[s];
3127 for (i = 0; i < side_pairs->nr; ++i) {
3128 struct diff_filepair *p = side_pairs->queue[i];
3129 pool_diff_free_filepair(&opt->priv->pool, p);
3130 }
3131 }
3132
3133 simple_cleanup:
3134 /* Free memory for renames->pairs[] and combined */
3135 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3136 free(renames->pairs[s].queue);
3137 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
3138 }
3139 if (combined.nr) {
3140 int i;
3141 for (i = 0; i < combined.nr; i++)
3142 pool_diff_free_filepair(&opt->priv->pool,
3143 combined.queue[i]);
3144 free(combined.queue);
3145 }
3146
3147 return clean;
3148 }
3149
3150 /*** Function Grouping: functions related to process_entries() ***/
3151
3152 static int sort_dirs_next_to_their_children(const char *one, const char *two)
3153 {
3154 unsigned char c1, c2;
3155
3156 /*
3157 * Here we only care that entries for directories appear adjacent
3158 * to and before files underneath the directory. We can achieve
3159 * that by pretending to add a trailing slash to every file and
3160 * then sorting. In other words, we do not want the natural
3161 * sorting of
3162 * foo
3163 * foo.txt
3164 * foo/bar
3165 * Instead, we want "foo" to sort as though it were "foo/", so that
3166 * we instead get
3167 * foo.txt
3168 * foo
3169 * foo/bar
3170 * To achieve this, we basically implement our own strcmp, except that
3171 * if we get to the end of either string instead of comparing NUL to
3172 * another character, we compare '/' to it.
3173 *
3174 * If this unusual "sort as though '/' were appended" perplexes
3175 * you, perhaps it will help to note that this is not the final
3176 * sort. write_tree() will sort again without the trailing slash
3177 * magic, but just on paths immediately under a given tree.
3178 *
3179 * The reason to not use df_name_compare directly was that it was
3180 * just too expensive (we don't have the string lengths handy), so
3181 * it was reimplemented.
3182 */
3183
3184 /*
3185 * NOTE: This function will never be called with two equal strings,
3186 * because it is used to sort the keys of a strmap, and strmaps have
3187 * unique keys by construction. That simplifies our c1==c2 handling
3188 * below.
3189 */
3190
3191 while (*one && (*one == *two)) {
3192 one++;
3193 two++;
3194 }
3195
3196 c1 = *one ? *one : '/';
3197 c2 = *two ? *two : '/';
3198
3199 if (c1 == c2) {
3200 /* Getting here means one is a leading directory of the other */
3201 return (*one) ? 1 : -1;
3202 } else
3203 return c1 - c2;
3204 }
3205
3206 static int read_oid_strbuf(struct merge_options *opt,
3207 const struct object_id *oid,
3208 struct strbuf *dst)
3209 {
3210 void *buf;
3211 enum object_type type;
3212 unsigned long size;
3213 buf = read_object_file(oid, &type, &size);
3214 if (!buf)
3215 return err(opt, _("cannot read object %s"), oid_to_hex(oid));
3216 if (type != OBJ_BLOB) {
3217 free(buf);
3218 return err(opt, _("object %s is not a blob"), oid_to_hex(oid));
3219 }
3220 strbuf_attach(dst, buf, size, size + 1);
3221 return 0;
3222 }
3223
3224 static int blob_unchanged(struct merge_options *opt,
3225 const struct version_info *base,
3226 const struct version_info *side,
3227 const char *path)
3228 {
3229 struct strbuf basebuf = STRBUF_INIT;
3230 struct strbuf sidebuf = STRBUF_INIT;
3231 int ret = 0; /* assume changed for safety */
3232 struct index_state *idx = &opt->priv->attr_index;
3233
3234 if (!idx->initialized)
3235 initialize_attr_index(opt);
3236
3237 if (base->mode != side->mode)
3238 return 0;
3239 if (oideq(&base->oid, &side->oid))
3240 return 1;
3241
3242 if (read_oid_strbuf(opt, &base->oid, &basebuf) ||
3243 read_oid_strbuf(opt, &side->oid, &sidebuf))
3244 goto error_return;
3245 /*
3246 * Note: binary | is used so that both renormalizations are
3247 * performed. Comparison can be skipped if both files are
3248 * unchanged since their sha1s have already been compared.
3249 */
3250 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
3251 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
3252 ret = (basebuf.len == sidebuf.len &&
3253 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
3254
3255 error_return:
3256 strbuf_release(&basebuf);
3257 strbuf_release(&sidebuf);
3258 return ret;
3259 }
3260
3261 struct directory_versions {
3262 /*
3263 * versions: list of (basename -> version_info)
3264 *
3265 * The basenames are in reverse lexicographic order of full pathnames,
3266 * as processed in process_entries(). This puts all entries within
3267 * a directory together, and covers the directory itself after
3268 * everything within it, allowing us to write subtrees before needing
3269 * to record information for the tree itself.
3270 */
3271 struct string_list versions;
3272
3273 /*
3274 * offsets: list of (full relative path directories -> integer offsets)
3275 *
3276 * Since versions contains basenames from files in multiple different
3277 * directories, we need to know which entries in versions correspond
3278 * to which directories. Values of e.g.
3279 * "" 0
3280 * src 2
3281 * src/moduleA 5
3282 * Would mean that entries 0-1 of versions are files in the toplevel
3283 * directory, entries 2-4 are files under src/, and the remaining
3284 * entries starting at index 5 are files under src/moduleA/.
3285 */
3286 struct string_list offsets;
3287
3288 /*
3289 * last_directory: directory that previously processed file found in
3290 *
3291 * last_directory starts NULL, but records the directory in which the
3292 * previous file was found within. As soon as
3293 * directory(current_file) != last_directory
3294 * then we need to start updating accounting in versions & offsets.
3295 * Note that last_directory is always the last path in "offsets" (or
3296 * NULL if "offsets" is empty) so this exists just for quick access.
3297 */
3298 const char *last_directory;
3299
3300 /* last_directory_len: cached computation of strlen(last_directory) */
3301 unsigned last_directory_len;
3302 };
3303
3304 static int tree_entry_order(const void *a_, const void *b_)
3305 {
3306 const struct string_list_item *a = a_;
3307 const struct string_list_item *b = b_;
3308
3309 const struct merged_info *ami = a->util;
3310 const struct merged_info *bmi = b->util;
3311 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
3312 b->string, strlen(b->string), bmi->result.mode);
3313 }
3314
3315 static void write_tree(struct object_id *result_oid,
3316 struct string_list *versions,
3317 unsigned int offset,
3318 size_t hash_size)
3319 {
3320 size_t maxlen = 0, extra;
3321 unsigned int nr;
3322 struct strbuf buf = STRBUF_INIT;
3323 int i;
3324
3325 assert(offset <= versions->nr);
3326 nr = versions->nr - offset;
3327 if (versions->nr)
3328 /* No need for STABLE_QSORT -- filenames must be unique */
3329 QSORT(versions->items + offset, nr, tree_entry_order);
3330
3331 /* Pre-allocate some space in buf */
3332 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
3333 for (i = 0; i < nr; i++) {
3334 maxlen += strlen(versions->items[offset+i].string) + extra;
3335 }
3336 strbuf_grow(&buf, maxlen);
3337
3338 /* Write each entry out to buf */
3339 for (i = 0; i < nr; i++) {
3340 struct merged_info *mi = versions->items[offset+i].util;
3341 struct version_info *ri = &mi->result;
3342 strbuf_addf(&buf, "%o %s%c",
3343 ri->mode,
3344 versions->items[offset+i].string, '\0');
3345 strbuf_add(&buf, ri->oid.hash, hash_size);
3346 }
3347
3348 /* Write this object file out, and record in result_oid */
3349 write_object_file(buf.buf, buf.len, tree_type, result_oid);
3350 strbuf_release(&buf);
3351 }
3352
3353 static void record_entry_for_tree(struct directory_versions *dir_metadata,
3354 const char *path,
3355 struct merged_info *mi)
3356 {
3357 const char *basename;
3358
3359 if (mi->is_null)
3360 /* nothing to record */
3361 return;
3362
3363 basename = path + mi->basename_offset;
3364 assert(strchr(basename, '/') == NULL);
3365 string_list_append(&dir_metadata->versions,
3366 basename)->util = &mi->result;
3367 }
3368
3369 static void write_completed_directory(struct merge_options *opt,
3370 const char *new_directory_name,
3371 struct directory_versions *info)
3372 {
3373 const char *prev_dir;
3374 struct merged_info *dir_info = NULL;
3375 unsigned int offset;
3376
3377 /*
3378 * Some explanation of info->versions and info->offsets...
3379 *
3380 * process_entries() iterates over all relevant files AND
3381 * directories in reverse lexicographic order, and calls this
3382 * function. Thus, an example of the paths that process_entries()
3383 * could operate on (along with the directories for those paths
3384 * being shown) is:
3385 *
3386 * xtract.c ""
3387 * tokens.txt ""
3388 * src/moduleB/umm.c src/moduleB
3389 * src/moduleB/stuff.h src/moduleB
3390 * src/moduleB/baz.c src/moduleB
3391 * src/moduleB src
3392 * src/moduleA/foo.c src/moduleA
3393 * src/moduleA/bar.c src/moduleA
3394 * src/moduleA src
3395 * src ""
3396 * Makefile ""
3397 *
3398 * info->versions:
3399 *
3400 * always contains the unprocessed entries and their
3401 * version_info information. For example, after the first five
3402 * entries above, info->versions would be:
3403 *
3404 * xtract.c <xtract.c's version_info>
3405 * token.txt <token.txt's version_info>
3406 * umm.c <src/moduleB/umm.c's version_info>
3407 * stuff.h <src/moduleB/stuff.h's version_info>
3408 * baz.c <src/moduleB/baz.c's version_info>
3409 *
3410 * Once a subdirectory is completed we remove the entries in
3411 * that subdirectory from info->versions, writing it as a tree
3412 * (write_tree()). Thus, as soon as we get to src/moduleB,
3413 * info->versions would be updated to
3414 *
3415 * xtract.c <xtract.c's version_info>
3416 * token.txt <token.txt's version_info>
3417 * moduleB <src/moduleB's version_info>
3418 *
3419 * info->offsets:
3420 *
3421 * helps us track which entries in info->versions correspond to
3422 * which directories. When we are N directories deep (e.g. 4
3423 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3424 * directories (+1 because of toplevel dir). Corresponding to
3425 * the info->versions example above, after processing five entries
3426 * info->offsets will be:
3427 *
3428 * "" 0
3429 * src/moduleB 2
3430 *
3431 * which is used to know that xtract.c & token.txt are from the
3432 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3433 * src/moduleB directory. Again, following the example above,
3434 * once we need to process src/moduleB, then info->offsets is
3435 * updated to
3436 *
3437 * "" 0
3438 * src 2
3439 *
3440 * which says that moduleB (and only moduleB so far) is in the
3441 * src directory.
3442 *
3443 * One unique thing to note about info->offsets here is that
3444 * "src" was not added to info->offsets until there was a path
3445 * (a file OR directory) immediately below src/ that got
3446 * processed.
3447 *
3448 * Since process_entry() just appends new entries to info->versions,
3449 * write_completed_directory() only needs to do work if the next path
3450 * is in a directory that is different than the last directory found
3451 * in info->offsets.
3452 */
3453
3454 /*
3455 * If we are working with the same directory as the last entry, there
3456 * is no work to do. (See comments above the directory_name member of
3457 * struct merged_info for why we can use pointer comparison instead of
3458 * strcmp here.)
3459 */
3460 if (new_directory_name == info->last_directory)
3461 return;
3462
3463 /*
3464 * If we are just starting (last_directory is NULL), or last_directory
3465 * is a prefix of the current directory, then we can just update
3466 * info->offsets to record the offset where we started this directory
3467 * and update last_directory to have quick access to it.
3468 */
3469 if (info->last_directory == NULL ||
3470 !strncmp(new_directory_name, info->last_directory,
3471 info->last_directory_len)) {
3472 uintptr_t offset = info->versions.nr;
3473
3474 info->last_directory = new_directory_name;
3475 info->last_directory_len = strlen(info->last_directory);
3476 /*
3477 * Record the offset into info->versions where we will
3478 * start recording basenames of paths found within
3479 * new_directory_name.
3480 */
3481 string_list_append(&info->offsets,
3482 info->last_directory)->util = (void*)offset;
3483 return;
3484 }
3485
3486 /*
3487 * The next entry that will be processed will be within
3488 * new_directory_name. Since at this point we know that
3489 * new_directory_name is within a different directory than
3490 * info->last_directory, we have all entries for info->last_directory
3491 * in info->versions and we need to create a tree object for them.
3492 */
3493 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3494 assert(dir_info);
3495 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3496 if (offset == info->versions.nr) {
3497 /*
3498 * Actually, we don't need to create a tree object in this
3499 * case. Whenever all files within a directory disappear
3500 * during the merge (e.g. unmodified on one side and
3501 * deleted on the other, or files were renamed elsewhere),
3502 * then we get here and the directory itself needs to be
3503 * omitted from its parent tree as well.
3504 */
3505 dir_info->is_null = 1;
3506 } else {
3507 /*
3508 * Write out the tree to the git object directory, and also
3509 * record the mode and oid in dir_info->result.
3510 */
3511 dir_info->is_null = 0;
3512 dir_info->result.mode = S_IFDIR;
3513 write_tree(&dir_info->result.oid, &info->versions, offset,
3514 opt->repo->hash_algo->rawsz);
3515 }
3516
3517 /*
3518 * We've now used several entries from info->versions and one entry
3519 * from info->offsets, so we get rid of those values.
3520 */
3521 info->offsets.nr--;
3522 info->versions.nr = offset;
3523
3524 /*
3525 * Now we've taken care of the completed directory, but we need to
3526 * prepare things since future entries will be in
3527 * new_directory_name. (In particular, process_entry() will be
3528 * appending new entries to info->versions.) So, we need to make
3529 * sure new_directory_name is the last entry in info->offsets.
3530 */
3531 prev_dir = info->offsets.nr == 0 ? NULL :
3532 info->offsets.items[info->offsets.nr-1].string;
3533 if (new_directory_name != prev_dir) {
3534 uintptr_t c = info->versions.nr;
3535 string_list_append(&info->offsets,
3536 new_directory_name)->util = (void*)c;
3537 }
3538
3539 /* And, of course, we need to update last_directory to match. */
3540 info->last_directory = new_directory_name;
3541 info->last_directory_len = strlen(info->last_directory);
3542 }
3543
3544 /* Per entry merge function */
3545 static void process_entry(struct merge_options *opt,
3546 const char *path,
3547 struct conflict_info *ci,
3548 struct directory_versions *dir_metadata)
3549 {
3550 int df_file_index = 0;
3551
3552 VERIFY_CI(ci);
3553 assert(ci->filemask >= 0 && ci->filemask <= 7);
3554 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3555 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3556 ci->match_mask == 5 || ci->match_mask == 6);
3557
3558 if (ci->dirmask) {
3559 record_entry_for_tree(dir_metadata, path, &ci->merged);
3560 if (ci->filemask == 0)
3561 /* nothing else to handle */
3562 return;
3563 assert(ci->df_conflict);
3564 }
3565
3566 if (ci->df_conflict && ci->merged.result.mode == 0) {
3567 int i;
3568
3569 /*
3570 * directory no longer in the way, but we do have a file we
3571 * need to place here so we need to clean away the "directory
3572 * merges to nothing" result.
3573 */
3574 ci->df_conflict = 0;
3575 assert(ci->filemask != 0);
3576 ci->merged.clean = 0;
3577 ci->merged.is_null = 0;
3578 /* and we want to zero out any directory-related entries */
3579 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3580 ci->dirmask = 0;
3581 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3582 if (ci->filemask & (1 << i))
3583 continue;
3584 ci->stages[i].mode = 0;
3585 oidcpy(&ci->stages[i].oid, null_oid());
3586 }
3587 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3588 /*
3589 * This started out as a D/F conflict, and the entries in
3590 * the competing directory were not removed by the merge as
3591 * evidenced by write_completed_directory() writing a value
3592 * to ci->merged.result.mode.
3593 */
3594 struct conflict_info *new_ci;
3595 const char *branch;
3596 const char *old_path = path;
3597 int i;
3598
3599 assert(ci->merged.result.mode == S_IFDIR);
3600
3601 /*
3602 * If filemask is 1, we can just ignore the file as having
3603 * been deleted on both sides. We do not want to overwrite
3604 * ci->merged.result, since it stores the tree for all the
3605 * files under it.
3606 */
3607 if (ci->filemask == 1) {
3608 ci->filemask = 0;
3609 return;
3610 }
3611
3612 /*
3613 * This file still exists on at least one side, and we want
3614 * the directory to remain here, so we need to move this
3615 * path to some new location.
3616 */
3617 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
3618
3619 /* We don't really want new_ci->merged.result copied, but it'll
3620 * be overwritten below so it doesn't matter. We also don't
3621 * want any directory mode/oid values copied, but we'll zero
3622 * those out immediately. We do want the rest of ci copied.
3623 */
3624 memcpy(new_ci, ci, sizeof(*ci));
3625 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3626 new_ci->dirmask = 0;
3627 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3628 if (new_ci->filemask & (1 << i))
3629 continue;
3630 /* zero out any entries related to directories */
3631 new_ci->stages[i].mode = 0;
3632 oidcpy(&new_ci->stages[i].oid, null_oid());
3633 }
3634
3635 /*
3636 * Find out which side this file came from; note that we
3637 * cannot just use ci->filemask, because renames could cause
3638 * the filemask to go back to 7. So we use dirmask, then
3639 * pick the opposite side's index.
3640 */
3641 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3642 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3643 path = unique_path(&opt->priv->paths, path, branch);
3644 strmap_put(&opt->priv->paths, path, new_ci);
3645
3646 path_msg(opt, path, 0,
3647 _("CONFLICT (file/directory): directory in the way "
3648 "of %s from %s; moving it to %s instead."),
3649 old_path, branch, path);
3650
3651 /*
3652 * Zero out the filemask for the old ci. At this point, ci
3653 * was just an entry for a directory, so we don't need to
3654 * do anything more with it.
3655 */
3656 ci->filemask = 0;
3657
3658 /*
3659 * Now note that we're working on the new entry (path was
3660 * updated above.
3661 */
3662 ci = new_ci;
3663 }
3664
3665 /*
3666 * NOTE: Below there is a long switch-like if-elseif-elseif... block
3667 * which the code goes through even for the df_conflict cases
3668 * above.
3669 */
3670 if (ci->match_mask) {
3671 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3672 if (ci->match_mask == 6) {
3673 /* stages[1] == stages[2] */
3674 ci->merged.result.mode = ci->stages[1].mode;
3675 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3676 } else {
3677 /* determine the mask of the side that didn't match */
3678 unsigned int othermask = 7 & ~ci->match_mask;
3679 int side = (othermask == 4) ? 2 : 1;
3680
3681 ci->merged.result.mode = ci->stages[side].mode;
3682 ci->merged.is_null = !ci->merged.result.mode;
3683 if (ci->merged.is_null)
3684 ci->merged.clean = 1;
3685 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3686
3687 assert(othermask == 2 || othermask == 4);
3688 assert(ci->merged.is_null ==
3689 (ci->filemask == ci->match_mask));
3690 }
3691 } else if (ci->filemask >= 6 &&
3692 (S_IFMT & ci->stages[1].mode) !=
3693 (S_IFMT & ci->stages[2].mode)) {
3694 /* Two different items from (file/submodule/symlink) */
3695 if (opt->priv->call_depth) {
3696 /* Just use the version from the merge base */
3697 ci->merged.clean = 0;
3698 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
3699 ci->merged.result.mode = ci->stages[0].mode;
3700 ci->merged.is_null = (ci->merged.result.mode == 0);
3701 } else {
3702 /* Handle by renaming one or both to separate paths. */
3703 unsigned o_mode = ci->stages[0].mode;
3704 unsigned a_mode = ci->stages[1].mode;
3705 unsigned b_mode = ci->stages[2].mode;
3706 struct conflict_info *new_ci;
3707 const char *a_path = NULL, *b_path = NULL;
3708 int rename_a = 0, rename_b = 0;
3709
3710 new_ci = mem_pool_alloc(&opt->priv->pool,
3711 sizeof(*new_ci));
3712
3713 if (S_ISREG(a_mode))
3714 rename_a = 1;
3715 else if (S_ISREG(b_mode))
3716 rename_b = 1;
3717 else {
3718 rename_a = 1;
3719 rename_b = 1;
3720 }
3721
3722 if (rename_a && rename_b) {
3723 path_msg(opt, path, 0,
3724 _("CONFLICT (distinct types): %s had "
3725 "different types on each side; "
3726 "renamed both of them so each can "
3727 "be recorded somewhere."),
3728 path);
3729 } else {
3730 path_msg(opt, path, 0,
3731 _("CONFLICT (distinct types): %s had "
3732 "different types on each side; "
3733 "renamed one of them so each can be "
3734 "recorded somewhere."),
3735 path);
3736 }
3737
3738 ci->merged.clean = 0;
3739 memcpy(new_ci, ci, sizeof(*new_ci));
3740
3741 /* Put b into new_ci, removing a from stages */
3742 new_ci->merged.result.mode = ci->stages[2].mode;
3743 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
3744 new_ci->stages[1].mode = 0;
3745 oidcpy(&new_ci->stages[1].oid, null_oid());
3746 new_ci->filemask = 5;
3747 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
3748 new_ci->stages[0].mode = 0;
3749 oidcpy(&new_ci->stages[0].oid, null_oid());
3750 new_ci->filemask = 4;
3751 }
3752
3753 /* Leave only a in ci, fixing stages. */
3754 ci->merged.result.mode = ci->stages[1].mode;
3755 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3756 ci->stages[2].mode = 0;
3757 oidcpy(&ci->stages[2].oid, null_oid());
3758 ci->filemask = 3;
3759 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
3760 ci->stages[0].mode = 0;
3761 oidcpy(&ci->stages[0].oid, null_oid());
3762 ci->filemask = 2;
3763 }
3764
3765 /* Insert entries into opt->priv_paths */
3766 assert(rename_a || rename_b);
3767 if (rename_a) {
3768 a_path = unique_path(&opt->priv->paths,
3769 path, opt->branch1);
3770 strmap_put(&opt->priv->paths, a_path, ci);
3771 }
3772
3773 if (rename_b)
3774 b_path = unique_path(&opt->priv->paths,
3775 path, opt->branch2);
3776 else
3777 b_path = path;
3778 strmap_put(&opt->priv->paths, b_path, new_ci);
3779
3780 if (rename_a && rename_b)
3781 strmap_remove(&opt->priv->paths, path, 0);
3782
3783 /*
3784 * Do special handling for b_path since process_entry()
3785 * won't be called on it specially.
3786 */
3787 strmap_put(&opt->priv->conflicted, b_path, new_ci);
3788 record_entry_for_tree(dir_metadata, b_path,
3789 &new_ci->merged);
3790
3791 /*
3792 * Remaining code for processing this entry should
3793 * think in terms of processing a_path.
3794 */
3795 if (a_path)
3796 path = a_path;
3797 }
3798 } else if (ci->filemask >= 6) {
3799 /* Need a two-way or three-way content merge */
3800 struct version_info merged_file;
3801 unsigned clean_merge;
3802 struct version_info *o = &ci->stages[0];
3803 struct version_info *a = &ci->stages[1];
3804 struct version_info *b = &ci->stages[2];
3805
3806 clean_merge = handle_content_merge(opt, path, o, a, b,
3807 ci->pathnames,
3808 opt->priv->call_depth * 2,
3809 &merged_file);
3810 ci->merged.clean = clean_merge &&
3811 !ci->df_conflict && !ci->path_conflict;
3812 ci->merged.result.mode = merged_file.mode;
3813 ci->merged.is_null = (merged_file.mode == 0);
3814 oidcpy(&ci->merged.result.oid, &merged_file.oid);
3815 if (clean_merge && ci->df_conflict) {
3816 assert(df_file_index == 1 || df_file_index == 2);
3817 ci->filemask = 1 << df_file_index;
3818 ci->stages[df_file_index].mode = merged_file.mode;
3819 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
3820 }
3821 if (!clean_merge) {
3822 const char *reason = _("content");
3823 if (ci->filemask == 6)
3824 reason = _("add/add");
3825 if (S_ISGITLINK(merged_file.mode))
3826 reason = _("submodule");
3827 path_msg(opt, path, 0,
3828 _("CONFLICT (%s): Merge conflict in %s"),
3829 reason, path);
3830 }
3831 } else if (ci->filemask == 3 || ci->filemask == 5) {
3832 /* Modify/delete */
3833 const char *modify_branch, *delete_branch;
3834 int side = (ci->filemask == 5) ? 2 : 1;
3835 int index = opt->priv->call_depth ? 0 : side;
3836
3837 ci->merged.result.mode = ci->stages[index].mode;
3838 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
3839 ci->merged.clean = 0;
3840
3841 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
3842 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
3843
3844 if (opt->renormalize &&
3845 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
3846 path)) {
3847 ci->merged.is_null = 1;
3848 ci->merged.clean = 1;
3849 assert(!ci->df_conflict && !ci->path_conflict);
3850 } else if (ci->path_conflict &&
3851 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
3852 /*
3853 * This came from a rename/delete; no action to take,
3854 * but avoid printing "modify/delete" conflict notice
3855 * since the contents were not modified.
3856 */
3857 } else {
3858 path_msg(opt, path, 0,
3859 _("CONFLICT (modify/delete): %s deleted in %s "
3860 "and modified in %s. Version %s of %s left "
3861 "in tree."),
3862 path, delete_branch, modify_branch,
3863 modify_branch, path);
3864 }
3865 } else if (ci->filemask == 2 || ci->filemask == 4) {
3866 /* Added on one side */
3867 int side = (ci->filemask == 4) ? 2 : 1;
3868 ci->merged.result.mode = ci->stages[side].mode;
3869 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3870 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3871 } else if (ci->filemask == 1) {
3872 /* Deleted on both sides */
3873 ci->merged.is_null = 1;
3874 ci->merged.result.mode = 0;
3875 oidcpy(&ci->merged.result.oid, null_oid());
3876 assert(!ci->df_conflict);
3877 ci->merged.clean = !ci->path_conflict;
3878 }
3879
3880 /*
3881 * If still conflicted, record it separately. This allows us to later
3882 * iterate over just conflicted entries when updating the index instead
3883 * of iterating over all entries.
3884 */
3885 if (!ci->merged.clean)
3886 strmap_put(&opt->priv->conflicted, path, ci);
3887
3888 /* Record metadata for ci->merged in dir_metadata */
3889 record_entry_for_tree(dir_metadata, path, &ci->merged);
3890 }
3891
3892 static void prefetch_for_content_merges(struct merge_options *opt,
3893 struct string_list *plist)
3894 {
3895 struct string_list_item *e;
3896 struct oid_array to_fetch = OID_ARRAY_INIT;
3897
3898 if (opt->repo != the_repository || !has_promisor_remote())
3899 return;
3900
3901 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
3902 /* char *path = e->string; */
3903 struct conflict_info *ci = e->util;
3904 int i;
3905
3906 /* Ignore clean entries */
3907 if (ci->merged.clean)
3908 continue;
3909
3910 /* Ignore entries that don't need a content merge */
3911 if (ci->match_mask || ci->filemask < 6 ||
3912 !S_ISREG(ci->stages[1].mode) ||
3913 !S_ISREG(ci->stages[2].mode) ||
3914 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
3915 continue;
3916
3917 /* Also don't need content merge if base matches either side */
3918 if (ci->filemask == 7 &&
3919 S_ISREG(ci->stages[0].mode) &&
3920 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
3921 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
3922 continue;
3923
3924 for (i = 0; i < 3; i++) {
3925 unsigned side_mask = (1 << i);
3926 struct version_info *vi = &ci->stages[i];
3927
3928 if ((ci->filemask & side_mask) &&
3929 S_ISREG(vi->mode) &&
3930 oid_object_info_extended(opt->repo, &vi->oid, NULL,
3931 OBJECT_INFO_FOR_PREFETCH))
3932 oid_array_append(&to_fetch, &vi->oid);
3933 }
3934 }
3935
3936 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
3937 oid_array_clear(&to_fetch);
3938 }
3939
3940 static void process_entries(struct merge_options *opt,
3941 struct object_id *result_oid)
3942 {
3943 struct hashmap_iter iter;
3944 struct strmap_entry *e;
3945 struct string_list plist = STRING_LIST_INIT_NODUP;
3946 struct string_list_item *entry;
3947 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
3948 STRING_LIST_INIT_NODUP,
3949 NULL, 0 };
3950
3951 trace2_region_enter("merge", "process_entries setup", opt->repo);
3952 if (strmap_empty(&opt->priv->paths)) {
3953 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
3954 return;
3955 }
3956
3957 /* Hack to pre-allocate plist to the desired size */
3958 trace2_region_enter("merge", "plist grow", opt->repo);
3959 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
3960 trace2_region_leave("merge", "plist grow", opt->repo);
3961
3962 /* Put every entry from paths into plist, then sort */
3963 trace2_region_enter("merge", "plist copy", opt->repo);
3964 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
3965 string_list_append(&plist, e->key)->util = e->value;
3966 }
3967 trace2_region_leave("merge", "plist copy", opt->repo);
3968
3969 trace2_region_enter("merge", "plist special sort", opt->repo);
3970 plist.cmp = sort_dirs_next_to_their_children;
3971 string_list_sort(&plist);
3972 trace2_region_leave("merge", "plist special sort", opt->repo);
3973
3974 trace2_region_leave("merge", "process_entries setup", opt->repo);
3975
3976 /*
3977 * Iterate over the items in reverse order, so we can handle paths
3978 * below a directory before needing to handle the directory itself.
3979 *
3980 * This allows us to write subtrees before we need to write trees,
3981 * and it also enables sane handling of directory/file conflicts
3982 * (because it allows us to know whether the directory is still in
3983 * the way when it is time to process the file at the same path).
3984 */
3985 trace2_region_enter("merge", "processing", opt->repo);
3986 prefetch_for_content_merges(opt, &plist);
3987 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
3988 char *path = entry->string;
3989 /*
3990 * NOTE: mi may actually be a pointer to a conflict_info, but
3991 * we have to check mi->clean first to see if it's safe to
3992 * reassign to such a pointer type.
3993 */
3994 struct merged_info *mi = entry->util;
3995
3996 write_completed_directory(opt, mi->directory_name,
3997 &dir_metadata);
3998 if (mi->clean)
3999 record_entry_for_tree(&dir_metadata, path, mi);
4000 else {
4001 struct conflict_info *ci = (struct conflict_info *)mi;
4002 process_entry(opt, path, ci, &dir_metadata);
4003 }
4004 }
4005 trace2_region_leave("merge", "processing", opt->repo);
4006
4007 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
4008 if (dir_metadata.offsets.nr != 1 ||
4009 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
4010 printf("dir_metadata.offsets.nr = %d (should be 1)\n",
4011 dir_metadata.offsets.nr);
4012 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
4013 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
4014 fflush(stdout);
4015 BUG("dir_metadata accounting completely off; shouldn't happen");
4016 }
4017 write_tree(result_oid, &dir_metadata.versions, 0,
4018 opt->repo->hash_algo->rawsz);
4019 string_list_clear(&plist, 0);
4020 string_list_clear(&dir_metadata.versions, 0);
4021 string_list_clear(&dir_metadata.offsets, 0);
4022 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
4023 }
4024
4025 /*** Function Grouping: functions related to merge_switch_to_result() ***/
4026
4027 static int checkout(struct merge_options *opt,
4028 struct tree *prev,
4029 struct tree *next)
4030 {
4031 /* Switch the index/working copy from old to new */
4032 int ret;
4033 struct tree_desc trees[2];
4034 struct unpack_trees_options unpack_opts;
4035
4036 memset(&unpack_opts, 0, sizeof(unpack_opts));
4037 unpack_opts.head_idx = -1;
4038 unpack_opts.src_index = opt->repo->index;
4039 unpack_opts.dst_index = opt->repo->index;
4040
4041 setup_unpack_trees_porcelain(&unpack_opts, "merge");
4042
4043 /*
4044 * NOTE: if this were just "git checkout" code, we would probably
4045 * read or refresh the cache and check for a conflicted index, but
4046 * builtin/merge.c or sequencer.c really needs to read the index
4047 * and check for conflicted entries before starting merging for a
4048 * good user experience (no sense waiting for merges/rebases before
4049 * erroring out), so there's no reason to duplicate that work here.
4050 */
4051
4052 /* 2-way merge to the new branch */
4053 unpack_opts.update = 1;
4054 unpack_opts.merge = 1;
4055 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
4056 unpack_opts.verbose_update = (opt->verbosity > 2);
4057 unpack_opts.fn = twoway_merge;
4058 unpack_opts.preserve_ignored = 0; /* FIXME: !opts->overwrite_ignore */
4059 parse_tree(prev);
4060 init_tree_desc(&trees[0], prev->buffer, prev->size);
4061 parse_tree(next);
4062 init_tree_desc(&trees[1], next->buffer, next->size);
4063
4064 ret = unpack_trees(2, trees, &unpack_opts);
4065 clear_unpack_trees_porcelain(&unpack_opts);
4066 return ret;
4067 }
4068
4069 static int record_conflicted_index_entries(struct merge_options *opt)
4070 {
4071 struct hashmap_iter iter;
4072 struct strmap_entry *e;
4073 struct index_state *index = opt->repo->index;
4074 struct checkout state = CHECKOUT_INIT;
4075 int errs = 0;
4076 int original_cache_nr;
4077
4078 if (strmap_empty(&opt->priv->conflicted))
4079 return 0;
4080
4081 /*
4082 * We are in a conflicted state. These conflicts might be inside
4083 * sparse-directory entries, so check if any entries are outside
4084 * of the sparse-checkout cone preemptively.
4085 *
4086 * We set original_cache_nr below, but that might change if
4087 * index_name_pos() calls ask for paths within sparse directories.
4088 */
4089 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4090 if (!path_in_sparse_checkout(e->key, index)) {
4091 ensure_full_index(index);
4092 break;
4093 }
4094 }
4095
4096 /* If any entries have skip_worktree set, we'll have to check 'em out */
4097 state.force = 1;
4098 state.quiet = 1;
4099 state.refresh_cache = 1;
4100 state.istate = index;
4101 original_cache_nr = index->cache_nr;
4102
4103 /* Append every entry from conflicted into index, then sort */
4104 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4105 const char *path = e->key;
4106 struct conflict_info *ci = e->value;
4107 int pos;
4108 struct cache_entry *ce;
4109 int i;
4110
4111 VERIFY_CI(ci);
4112
4113 /*
4114 * The index will already have a stage=0 entry for this path,
4115 * because we created an as-merged-as-possible version of the
4116 * file and checkout() moved the working copy and index over
4117 * to that version.
4118 *
4119 * However, previous iterations through this loop will have
4120 * added unstaged entries to the end of the cache which
4121 * ignore the standard alphabetical ordering of cache
4122 * entries and break invariants needed for index_name_pos()
4123 * to work. However, we know the entry we want is before
4124 * those appended cache entries, so do a temporary swap on
4125 * cache_nr to only look through entries of interest.
4126 */
4127 SWAP(index->cache_nr, original_cache_nr);
4128 pos = index_name_pos(index, path, strlen(path));
4129 SWAP(index->cache_nr, original_cache_nr);
4130 if (pos < 0) {
4131 if (ci->filemask != 1)
4132 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
4133 cache_tree_invalidate_path(index, path);
4134 } else {
4135 ce = index->cache[pos];
4136
4137 /*
4138 * Clean paths with CE_SKIP_WORKTREE set will not be
4139 * written to the working tree by the unpack_trees()
4140 * call in checkout(). Our conflicted entries would
4141 * have appeared clean to that code since we ignored
4142 * the higher order stages. Thus, we need override
4143 * the CE_SKIP_WORKTREE bit and manually write those
4144 * files to the working disk here.
4145 */
4146 if (ce_skip_worktree(ce)) {
4147 struct stat st;
4148
4149 if (!lstat(path, &st)) {
4150 char *new_name = unique_path(&opt->priv->paths,
4151 path,
4152 "cruft");
4153
4154 path_msg(opt, path, 1,
4155 _("Note: %s not up to date and in way of checking out conflicted version; old copy renamed to %s"),
4156 path, new_name);
4157 errs |= rename(path, new_name);
4158 free(new_name);
4159 }
4160 errs |= checkout_entry(ce, &state, NULL, NULL);
4161 }
4162
4163 /*
4164 * Mark this cache entry for removal and instead add
4165 * new stage>0 entries corresponding to the
4166 * conflicts. If there are many conflicted entries, we
4167 * want to avoid memmove'ing O(NM) entries by
4168 * inserting the new entries one at a time. So,
4169 * instead, we just add the new cache entries to the
4170 * end (ignoring normal index requirements on sort
4171 * order) and sort the index once we're all done.
4172 */
4173 ce->ce_flags |= CE_REMOVE;
4174 }
4175
4176 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4177 struct version_info *vi;
4178 if (!(ci->filemask & (1ul << i)))
4179 continue;
4180 vi = &ci->stages[i];
4181 ce = make_cache_entry(index, vi->mode, &vi->oid,
4182 path, i+1, 0);
4183 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
4184 }
4185 }
4186
4187 /*
4188 * Remove the unused cache entries (and invalidate the relevant
4189 * cache-trees), then sort the index entries to get the conflicted
4190 * entries we added to the end into their right locations.
4191 */
4192 remove_marked_cache_entries(index, 1);
4193 /*
4194 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
4195 * on filename and secondarily on stage, and (name, stage #) are a
4196 * unique tuple.
4197 */
4198 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
4199
4200 return errs;
4201 }
4202
4203 void merge_switch_to_result(struct merge_options *opt,
4204 struct tree *head,
4205 struct merge_result *result,
4206 int update_worktree_and_index,
4207 int display_update_msgs)
4208 {
4209 assert(opt->priv == NULL);
4210 if (result->clean >= 0 && update_worktree_and_index) {
4211 const char *filename;
4212 FILE *fp;
4213
4214 trace2_region_enter("merge", "checkout", opt->repo);
4215 if (checkout(opt, head, result->tree)) {
4216 /* failure to function */
4217 result->clean = -1;
4218 return;
4219 }
4220 trace2_region_leave("merge", "checkout", opt->repo);
4221
4222 trace2_region_enter("merge", "record_conflicted", opt->repo);
4223 opt->priv = result->priv;
4224 if (record_conflicted_index_entries(opt)) {
4225 /* failure to function */
4226 opt->priv = NULL;
4227 result->clean = -1;
4228 return;
4229 }
4230 opt->priv = NULL;
4231 trace2_region_leave("merge", "record_conflicted", opt->repo);
4232
4233 trace2_region_enter("merge", "write_auto_merge", opt->repo);
4234 filename = git_path_auto_merge(opt->repo);
4235 fp = xfopen(filename, "w");
4236 fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid));
4237 fclose(fp);
4238 trace2_region_leave("merge", "write_auto_merge", opt->repo);
4239 }
4240
4241 if (display_update_msgs) {
4242 struct merge_options_internal *opti = result->priv;
4243 struct hashmap_iter iter;
4244 struct strmap_entry *e;
4245 struct string_list olist = STRING_LIST_INIT_NODUP;
4246 int i;
4247
4248 trace2_region_enter("merge", "display messages", opt->repo);
4249
4250 /* Hack to pre-allocate olist to the desired size */
4251 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
4252 olist.alloc);
4253
4254 /* Put every entry from output into olist, then sort */
4255 strmap_for_each_entry(&opti->output, &iter, e) {
4256 string_list_append(&olist, e->key)->util = e->value;
4257 }
4258 string_list_sort(&olist);
4259
4260 /* Iterate over the items, printing them */
4261 for (i = 0; i < olist.nr; ++i) {
4262 struct strbuf *sb = olist.items[i].util;
4263
4264 printf("%s", sb->buf);
4265 }
4266 string_list_clear(&olist, 0);
4267
4268 /* Also include needed rename limit adjustment now */
4269 diff_warn_rename_limit("merge.renamelimit",
4270 opti->renames.needed_limit, 0);
4271
4272 trace2_region_leave("merge", "display messages", opt->repo);
4273 }
4274
4275 merge_finalize(opt, result);
4276 }
4277
4278 void merge_finalize(struct merge_options *opt,
4279 struct merge_result *result)
4280 {
4281 struct merge_options_internal *opti = result->priv;
4282
4283 if (opt->renormalize)
4284 git_attr_set_direction(GIT_ATTR_CHECKIN);
4285 assert(opt->priv == NULL);
4286
4287 clear_or_reinit_internal_opts(opti, 0);
4288 FREE_AND_NULL(opti);
4289 }
4290
4291 /*** Function Grouping: helper functions for merge_incore_*() ***/
4292
4293 static struct tree *shift_tree_object(struct repository *repo,
4294 struct tree *one, struct tree *two,
4295 const char *subtree_shift)
4296 {
4297 struct object_id shifted;
4298
4299 if (!*subtree_shift) {
4300 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
4301 } else {
4302 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
4303 subtree_shift);
4304 }
4305 if (oideq(&two->object.oid, &shifted))
4306 return two;
4307 return lookup_tree(repo, &shifted);
4308 }
4309
4310 static inline void set_commit_tree(struct commit *c, struct tree *t)
4311 {
4312 c->maybe_tree = t;
4313 }
4314
4315 static struct commit *make_virtual_commit(struct repository *repo,
4316 struct tree *tree,
4317 const char *comment)
4318 {
4319 struct commit *commit = alloc_commit_node(repo);
4320
4321 set_merge_remote_desc(commit, comment, (struct object *)commit);
4322 set_commit_tree(commit, tree);
4323 commit->object.parsed = 1;
4324 return commit;
4325 }
4326
4327 static void merge_start(struct merge_options *opt, struct merge_result *result)
4328 {
4329 struct rename_info *renames;
4330 int i;
4331 struct mem_pool *pool = NULL;
4332
4333 /* Sanity checks on opt */
4334 trace2_region_enter("merge", "sanity checks", opt->repo);
4335 assert(opt->repo);
4336
4337 assert(opt->branch1 && opt->branch2);
4338
4339 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
4340 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
4341 assert(opt->rename_limit >= -1);
4342 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
4343 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
4344
4345 assert(opt->xdl_opts >= 0);
4346 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
4347 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
4348
4349 /*
4350 * detect_renames, verbosity, buffer_output, and obuf are ignored
4351 * fields that were used by "recursive" rather than "ort" -- but
4352 * sanity check them anyway.
4353 */
4354 assert(opt->detect_renames >= -1 &&
4355 opt->detect_renames <= DIFF_DETECT_COPY);
4356 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
4357 assert(opt->buffer_output <= 2);
4358 assert(opt->obuf.len == 0);
4359
4360 assert(opt->priv == NULL);
4361 if (result->_properly_initialized != 0 &&
4362 result->_properly_initialized != RESULT_INITIALIZED)
4363 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
4364 assert(!!result->priv == !!result->_properly_initialized);
4365 if (result->priv) {
4366 opt->priv = result->priv;
4367 result->priv = NULL;
4368 /*
4369 * opt->priv non-NULL means we had results from a previous
4370 * run; do a few sanity checks that user didn't mess with
4371 * it in an obvious fashion.
4372 */
4373 assert(opt->priv->call_depth == 0);
4374 assert(!opt->priv->toplevel_dir ||
4375 0 == strlen(opt->priv->toplevel_dir));
4376 }
4377 trace2_region_leave("merge", "sanity checks", opt->repo);
4378
4379 /* Default to histogram diff. Actually, just hardcode it...for now. */
4380 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
4381
4382 /* Handle attr direction stuff for renormalization */
4383 if (opt->renormalize)
4384 git_attr_set_direction(GIT_ATTR_CHECKOUT);
4385
4386 /* Initialization of opt->priv, our internal merge data */
4387 trace2_region_enter("merge", "allocate/init", opt->repo);
4388 if (opt->priv) {
4389 clear_or_reinit_internal_opts(opt->priv, 1);
4390 trace2_region_leave("merge", "allocate/init", opt->repo);
4391 return;
4392 }
4393 opt->priv = xcalloc(1, sizeof(*opt->priv));
4394
4395 /* Initialization of various renames fields */
4396 renames = &opt->priv->renames;
4397 mem_pool_init(&opt->priv->pool, 0);
4398 pool = &opt->priv->pool;
4399 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4400 strintmap_init_with_options(&renames->dirs_removed[i],
4401 NOT_RELEVANT, pool, 0);
4402 strmap_init_with_options(&renames->dir_rename_count[i],
4403 NULL, 1);
4404 strmap_init_with_options(&renames->dir_renames[i],
4405 NULL, 0);
4406 /*
4407 * relevant_sources uses -1 for the default, because we need
4408 * to be able to distinguish not-in-strintmap from valid
4409 * relevant_source values from enum file_rename_relevance.
4410 * In particular, possibly_cache_new_pair() expects a negative
4411 * value for not-found entries.
4412 */
4413 strintmap_init_with_options(&renames->relevant_sources[i],
4414 -1 /* explicitly invalid */,
4415 pool, 0);
4416 strmap_init_with_options(&renames->cached_pairs[i],
4417 NULL, 1);
4418 strset_init_with_options(&renames->cached_irrelevant[i],
4419 NULL, 1);
4420 strset_init_with_options(&renames->cached_target_names[i],
4421 NULL, 0);
4422 }
4423 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4424 strintmap_init_with_options(&renames->deferred[i].possible_trivial_merges,
4425 0, pool, 0);
4426 strset_init_with_options(&renames->deferred[i].target_dirs,
4427 pool, 1);
4428 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
4429 }
4430
4431 /*
4432 * Although we initialize opt->priv->paths with strdup_strings=0,
4433 * that's just to avoid making yet another copy of an allocated
4434 * string. Putting the entry into paths means we are taking
4435 * ownership, so we will later free it.
4436 *
4437 * In contrast, conflicted just has a subset of keys from paths, so
4438 * we don't want to free those (it'd be a duplicate free).
4439 */
4440 strmap_init_with_options(&opt->priv->paths, pool, 0);
4441 strmap_init_with_options(&opt->priv->conflicted, pool, 0);
4442
4443 /*
4444 * keys & strbufs in output will sometimes need to outlive "paths",
4445 * so it will have a copy of relevant keys. It's probably a small
4446 * subset of the overall paths that have special output.
4447 */
4448 strmap_init(&opt->priv->output);
4449
4450 trace2_region_leave("merge", "allocate/init", opt->repo);
4451 }
4452
4453 static void merge_check_renames_reusable(struct merge_options *opt,
4454 struct merge_result *result,
4455 struct tree *merge_base,
4456 struct tree *side1,
4457 struct tree *side2)
4458 {
4459 struct rename_info *renames;
4460 struct tree **merge_trees;
4461 struct merge_options_internal *opti = result->priv;
4462
4463 if (!opti)
4464 return;
4465
4466 renames = &opti->renames;
4467 merge_trees = renames->merge_trees;
4468
4469 /*
4470 * Handle case where previous merge operation did not want cache to
4471 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4472 */
4473 if (!merge_trees[0]) {
4474 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4475 renames->cached_pairs_valid_side = 0; /* neither side valid */
4476 return;
4477 }
4478
4479 /*
4480 * Handle other cases; note that merge_trees[0..2] will only
4481 * be NULL if opti is, or if all three were manually set to
4482 * NULL by e.g. rename/rename(1to1) handling.
4483 */
4484 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4485
4486 /* Check if we meet a condition for re-using cached_pairs */
4487 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4488 oideq(&side1->object.oid, &result->tree->object.oid))
4489 renames->cached_pairs_valid_side = MERGE_SIDE1;
4490 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4491 oideq(&side2->object.oid, &result->tree->object.oid))
4492 renames->cached_pairs_valid_side = MERGE_SIDE2;
4493 else
4494 renames->cached_pairs_valid_side = 0; /* neither side valid */
4495 }
4496
4497 /*** Function Grouping: merge_incore_*() and their internal variants ***/
4498
4499 /*
4500 * Originally from merge_trees_internal(); heavily adapted, though.
4501 */
4502 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
4503 struct tree *merge_base,
4504 struct tree *side1,
4505 struct tree *side2,
4506 struct merge_result *result)
4507 {
4508 struct object_id working_tree_oid;
4509
4510 if (opt->subtree_shift) {
4511 side2 = shift_tree_object(opt->repo, side1, side2,
4512 opt->subtree_shift);
4513 merge_base = shift_tree_object(opt->repo, side1, merge_base,
4514 opt->subtree_shift);
4515 }
4516
4517 redo:
4518 trace2_region_enter("merge", "collect_merge_info", opt->repo);
4519 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
4520 /*
4521 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
4522 * base, and 2-3) the trees for the two trees we're merging.
4523 */
4524 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
4525 oid_to_hex(&merge_base->object.oid),
4526 oid_to_hex(&side1->object.oid),
4527 oid_to_hex(&side2->object.oid));
4528 result->clean = -1;
4529 return;
4530 }
4531 trace2_region_leave("merge", "collect_merge_info", opt->repo);
4532
4533 trace2_region_enter("merge", "renames", opt->repo);
4534 result->clean = detect_and_process_renames(opt, merge_base,
4535 side1, side2);
4536 trace2_region_leave("merge", "renames", opt->repo);
4537 if (opt->priv->renames.redo_after_renames == 2) {
4538 trace2_region_enter("merge", "reset_maps", opt->repo);
4539 clear_or_reinit_internal_opts(opt->priv, 1);
4540 trace2_region_leave("merge", "reset_maps", opt->repo);
4541 goto redo;
4542 }
4543
4544 trace2_region_enter("merge", "process_entries", opt->repo);
4545 process_entries(opt, &working_tree_oid);
4546 trace2_region_leave("merge", "process_entries", opt->repo);
4547
4548 /* Set return values */
4549 result->tree = parse_tree_indirect(&working_tree_oid);
4550 /* existence of conflicted entries implies unclean */
4551 result->clean &= strmap_empty(&opt->priv->conflicted);
4552 if (!opt->priv->call_depth) {
4553 result->priv = opt->priv;
4554 result->_properly_initialized = RESULT_INITIALIZED;
4555 opt->priv = NULL;
4556 }
4557 }
4558
4559 /*
4560 * Originally from merge_recursive_internal(); somewhat adapted, though.
4561 */
4562 static void merge_ort_internal(struct merge_options *opt,
4563 struct commit_list *merge_bases,
4564 struct commit *h1,
4565 struct commit *h2,
4566 struct merge_result *result)
4567 {
4568 struct commit_list *iter;
4569 struct commit *merged_merge_bases;
4570 const char *ancestor_name;
4571 struct strbuf merge_base_abbrev = STRBUF_INIT;
4572
4573 if (!merge_bases) {
4574 merge_bases = get_merge_bases(h1, h2);
4575 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
4576 merge_bases = reverse_commit_list(merge_bases);
4577 }
4578
4579 merged_merge_bases = pop_commit(&merge_bases);
4580 if (merged_merge_bases == NULL) {
4581 /* if there is no common ancestor, use an empty tree */
4582 struct tree *tree;
4583
4584 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
4585 merged_merge_bases = make_virtual_commit(opt->repo, tree,
4586 "ancestor");
4587 ancestor_name = "empty tree";
4588 } else if (merge_bases) {
4589 ancestor_name = "merged common ancestors";
4590 } else {
4591 strbuf_add_unique_abbrev(&merge_base_abbrev,
4592 &merged_merge_bases->object.oid,
4593 DEFAULT_ABBREV);
4594 ancestor_name = merge_base_abbrev.buf;
4595 }
4596
4597 for (iter = merge_bases; iter; iter = iter->next) {
4598 const char *saved_b1, *saved_b2;
4599 struct commit *prev = merged_merge_bases;
4600
4601 opt->priv->call_depth++;
4602 /*
4603 * When the merge fails, the result contains files
4604 * with conflict markers. The cleanness flag is
4605 * ignored (unless indicating an error), it was never
4606 * actually used, as result of merge_trees has always
4607 * overwritten it: the committed "conflicts" were
4608 * already resolved.
4609 */
4610 saved_b1 = opt->branch1;
4611 saved_b2 = opt->branch2;
4612 opt->branch1 = "Temporary merge branch 1";
4613 opt->branch2 = "Temporary merge branch 2";
4614 merge_ort_internal(opt, NULL, prev, iter->item, result);
4615 if (result->clean < 0)
4616 return;
4617 opt->branch1 = saved_b1;
4618 opt->branch2 = saved_b2;
4619 opt->priv->call_depth--;
4620
4621 merged_merge_bases = make_virtual_commit(opt->repo,
4622 result->tree,
4623 "merged tree");
4624 commit_list_insert(prev, &merged_merge_bases->parents);
4625 commit_list_insert(iter->item,
4626 &merged_merge_bases->parents->next);
4627
4628 clear_or_reinit_internal_opts(opt->priv, 1);
4629 }
4630
4631 opt->ancestor = ancestor_name;
4632 merge_ort_nonrecursive_internal(opt,
4633 repo_get_commit_tree(opt->repo,
4634 merged_merge_bases),
4635 repo_get_commit_tree(opt->repo, h1),
4636 repo_get_commit_tree(opt->repo, h2),
4637 result);
4638 strbuf_release(&merge_base_abbrev);
4639 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
4640 }
4641
4642 void merge_incore_nonrecursive(struct merge_options *opt,
4643 struct tree *merge_base,
4644 struct tree *side1,
4645 struct tree *side2,
4646 struct merge_result *result)
4647 {
4648 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
4649
4650 trace2_region_enter("merge", "merge_start", opt->repo);
4651 assert(opt->ancestor != NULL);
4652 merge_check_renames_reusable(opt, result, merge_base, side1, side2);
4653 merge_start(opt, result);
4654 /*
4655 * Record the trees used in this merge, so if there's a next merge in
4656 * a cherry-pick or rebase sequence it might be able to take advantage
4657 * of the cached_pairs in that next merge.
4658 */
4659 opt->priv->renames.merge_trees[0] = merge_base;
4660 opt->priv->renames.merge_trees[1] = side1;
4661 opt->priv->renames.merge_trees[2] = side2;
4662 trace2_region_leave("merge", "merge_start", opt->repo);
4663
4664 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
4665 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
4666 }
4667
4668 void merge_incore_recursive(struct merge_options *opt,
4669 struct commit_list *merge_bases,
4670 struct commit *side1,
4671 struct commit *side2,
4672 struct merge_result *result)
4673 {
4674 trace2_region_enter("merge", "incore_recursive", opt->repo);
4675
4676 /* We set the ancestor label based on the merge_bases */
4677 assert(opt->ancestor == NULL);
4678
4679 trace2_region_enter("merge", "merge_start", opt->repo);
4680 merge_start(opt, result);
4681 trace2_region_leave("merge", "merge_start", opt->repo);
4682
4683 merge_ort_internal(opt, merge_bases, side1, side2, result);
4684 trace2_region_leave("merge", "incore_recursive", opt->repo);
4685 }