]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
clone: allow "--bare" with "-o"
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "cache.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "attr.h"
22 #include "blob.h"
23 #include "cache-tree.h"
24 #include "commit.h"
25 #include "commit-reach.h"
26 #include "diff.h"
27 #include "diffcore.h"
28 #include "dir.h"
29 #include "entry.h"
30 #include "ll-merge.h"
31 #include "object-store.h"
32 #include "promisor-remote.h"
33 #include "revision.h"
34 #include "strmap.h"
35 #include "submodule-config.h"
36 #include "submodule.h"
37 #include "tree.h"
38 #include "unpack-trees.h"
39 #include "xdiff-interface.h"
40
41 /*
42 * We have many arrays of size 3. Whenever we have such an array, the
43 * indices refer to one of the sides of the three-way merge. This is so
44 * pervasive that the constants 0, 1, and 2 are used in many places in the
45 * code (especially in arithmetic operations to find the other side's index
46 * or to compute a relevant mask), but sometimes these enum names are used
47 * to aid code clarity.
48 *
49 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
50 * referred to there is one of these three sides.
51 */
52 enum merge_side {
53 MERGE_BASE = 0,
54 MERGE_SIDE1 = 1,
55 MERGE_SIDE2 = 2
56 };
57
58 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
59
60 struct traversal_callback_data {
61 unsigned long mask;
62 unsigned long dirmask;
63 struct name_entry names[3];
64 };
65
66 struct deferred_traversal_data {
67 /*
68 * possible_trivial_merges: directories to be explored only when needed
69 *
70 * possible_trivial_merges is a map of directory names to
71 * dir_rename_mask. When we detect that a directory is unchanged on
72 * one side, we can sometimes resolve the directory without recursing
73 * into it. Renames are the only things that can prevent such an
74 * optimization. However, for rename sources:
75 * - If no parent directory needed directory rename detection, then
76 * no path under such a directory can be a relevant_source.
77 * and for rename destinations:
78 * - If no cached rename has a target path under the directory AND
79 * - If there are no unpaired relevant_sources elsewhere in the
80 * repository
81 * then we don't need any path under this directory for a rename
82 * destination. The only way to know the last item above is to defer
83 * handling such directories until the end of collect_merge_info(),
84 * in handle_deferred_entries().
85 *
86 * For each we store dir_rename_mask, since that's the only bit of
87 * information we need, other than the path, to resume the recursive
88 * traversal.
89 */
90 struct strintmap possible_trivial_merges;
91
92 /*
93 * trivial_merges_okay: if trivial directory merges are okay
94 *
95 * See possible_trivial_merges above. The "no unpaired
96 * relevant_sources elsewhere in the repository" is a single boolean
97 * per merge side, which we store here. Note that while 0 means no,
98 * 1 only means "maybe" rather than "yes"; we optimistically set it
99 * to 1 initially and only clear when we determine it is unsafe to
100 * do trivial directory merges.
101 */
102 unsigned trivial_merges_okay;
103
104 /*
105 * target_dirs: ancestor directories of rename targets
106 *
107 * target_dirs contains all directory names that are an ancestor of
108 * any rename destination.
109 */
110 struct strset target_dirs;
111 };
112
113 struct rename_info {
114 /*
115 * All variables that are arrays of size 3 correspond to data tracked
116 * for the sides in enum merge_side. Index 0 is almost always unused
117 * because we often only need to track information for MERGE_SIDE1 and
118 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
119 * are determined relative to what changed since the MERGE_BASE).
120 */
121
122 /*
123 * pairs: pairing of filenames from diffcore_rename()
124 */
125 struct diff_queue_struct pairs[3];
126
127 /*
128 * dirs_removed: directories removed on a given side of history.
129 *
130 * The keys of dirs_removed[side] are the directories that were removed
131 * on the given side of history. The value of the strintmap for each
132 * directory is a value from enum dir_rename_relevance.
133 */
134 struct strintmap dirs_removed[3];
135
136 /*
137 * dir_rename_count: tracking where parts of a directory were renamed to
138 *
139 * When files in a directory are renamed, they may not all go to the
140 * same location. Each strmap here tracks:
141 * old_dir => {new_dir => int}
142 * That is, dir_rename_count[side] is a strmap to a strintmap.
143 */
144 struct strmap dir_rename_count[3];
145
146 /*
147 * dir_renames: computed directory renames
148 *
149 * This is a map of old_dir => new_dir and is derived in part from
150 * dir_rename_count.
151 */
152 struct strmap dir_renames[3];
153
154 /*
155 * relevant_sources: deleted paths wanted in rename detection, and why
156 *
157 * relevant_sources is a set of deleted paths on each side of
158 * history for which we need rename detection. If a path is deleted
159 * on one side of history, we need to detect if it is part of a
160 * rename if either
161 * * the file is modified/deleted on the other side of history
162 * * we need to detect renames for an ancestor directory
163 * If neither of those are true, we can skip rename detection for
164 * that path. The reason is stored as a value from enum
165 * file_rename_relevance, as the reason can inform the algorithm in
166 * diffcore_rename_extended().
167 */
168 struct strintmap relevant_sources[3];
169
170 struct deferred_traversal_data deferred[3];
171
172 /*
173 * dir_rename_mask:
174 * 0: optimization removing unmodified potential rename source okay
175 * 2 or 4: optimization okay, but must check for files added to dir
176 * 7: optimization forbidden; need rename source in case of dir rename
177 */
178 unsigned dir_rename_mask:3;
179
180 /*
181 * callback_data_*: supporting data structures for alternate traversal
182 *
183 * We sometimes need to be able to traverse through all the files
184 * in a given tree before all immediate subdirectories within that
185 * tree. Since traverse_trees() doesn't do that naturally, we have
186 * a traverse_trees_wrapper() that stores any immediate
187 * subdirectories while traversing files, then traverses the
188 * immediate subdirectories later. These callback_data* variables
189 * store the information for the subdirectories so that we can do
190 * that traversal order.
191 */
192 struct traversal_callback_data *callback_data;
193 int callback_data_nr, callback_data_alloc;
194 char *callback_data_traverse_path;
195
196 /*
197 * merge_trees: trees passed to the merge algorithm for the merge
198 *
199 * merge_trees records the trees passed to the merge algorithm. But,
200 * this data also is stored in merge_result->priv. If a sequence of
201 * merges are being done (such as when cherry-picking or rebasing),
202 * the next merge can look at this and re-use information from
203 * previous merges under certain circumstances.
204 *
205 * See also all the cached_* variables.
206 */
207 struct tree *merge_trees[3];
208
209 /*
210 * cached_pairs_valid_side: which side's cached info can be reused
211 *
212 * See the description for merge_trees. For repeated merges, at most
213 * only one side's cached information can be used. Valid values:
214 * MERGE_SIDE2: cached data from side2 can be reused
215 * MERGE_SIDE1: cached data from side1 can be reused
216 * 0: no cached data can be reused
217 * -1: See redo_after_renames; both sides can be reused.
218 */
219 int cached_pairs_valid_side;
220
221 /*
222 * cached_pairs: Caching of renames and deletions.
223 *
224 * These are mappings recording renames and deletions of individual
225 * files (not directories). They are thus a map from an old
226 * filename to either NULL (for deletions) or a new filename (for
227 * renames).
228 */
229 struct strmap cached_pairs[3];
230
231 /*
232 * cached_target_names: just the destinations from cached_pairs
233 *
234 * We sometimes want a fast lookup to determine if a given filename
235 * is one of the destinations in cached_pairs. cached_target_names
236 * is thus duplicative information, but it provides a fast lookup.
237 */
238 struct strset cached_target_names[3];
239
240 /*
241 * cached_irrelevant: Caching of rename_sources that aren't relevant.
242 *
243 * If we try to detect a rename for a source path and succeed, it's
244 * part of a rename. If we try to detect a rename for a source path
245 * and fail, then it's a delete. If we do not try to detect a rename
246 * for a path, then we don't know if it's a rename or a delete. If
247 * merge-ort doesn't think the path is relevant, then we just won't
248 * cache anything for that path. But there's a slight problem in
249 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
250 * commit 9bd342137e ("diffcore-rename: determine which
251 * relevant_sources are no longer relevant", 2021-03-13),
252 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
253 * avoid excessive calls to diffcore_rename_extended() we still need
254 * to cache such paths, though we cannot record them as either
255 * renames or deletes. So we cache them here as a "turned out to be
256 * irrelevant *for this commit*" as they are often also irrelevant
257 * for subsequent commits, though we will have to do some extra
258 * checking to see whether such paths become relevant for rename
259 * detection when cherry-picking/rebasing subsequent commits.
260 */
261 struct strset cached_irrelevant[3];
262
263 /*
264 * redo_after_renames: optimization flag for "restarting" the merge
265 *
266 * Sometimes it pays to detect renames, cache them, and then
267 * restart the merge operation from the beginning. The reason for
268 * this is that when we know where all the renames are, we know
269 * whether a certain directory has any paths under it affected --
270 * and if a directory is not affected then it permits us to do
271 * trivial tree merging in more cases. Doing trivial tree merging
272 * prevents the need to run process_entry() on every path
273 * underneath trees that can be trivially merged, and
274 * process_entry() is more expensive than collect_merge_info() --
275 * plus, the second collect_merge_info() will be much faster since
276 * it doesn't have to recurse into the relevant trees.
277 *
278 * Values for this flag:
279 * 0 = don't bother, not worth it (or conditions not yet checked)
280 * 1 = conditions for optimization met, optimization worthwhile
281 * 2 = we already did it (don't restart merge yet again)
282 */
283 unsigned redo_after_renames;
284
285 /*
286 * needed_limit: value needed for inexact rename detection to run
287 *
288 * If the current rename limit wasn't high enough for inexact
289 * rename detection to run, this records the limit needed. Otherwise,
290 * this value remains 0.
291 */
292 int needed_limit;
293 };
294
295 struct merge_options_internal {
296 /*
297 * paths: primary data structure in all of merge ort.
298 *
299 * The keys of paths:
300 * * are full relative paths from the toplevel of the repository
301 * (e.g. "drivers/firmware/raspberrypi.c").
302 * * store all relevant paths in the repo, both directories and
303 * files (e.g. drivers, drivers/firmware would also be included)
304 * * these keys serve to intern all the path strings, which allows
305 * us to do pointer comparison on directory names instead of
306 * strcmp; we just have to be careful to use the interned strings.
307 *
308 * The values of paths:
309 * * either a pointer to a merged_info, or a conflict_info struct
310 * * merged_info contains all relevant information for a
311 * non-conflicted entry.
312 * * conflict_info contains a merged_info, plus any additional
313 * information about a conflict such as the higher orders stages
314 * involved and the names of the paths those came from (handy
315 * once renames get involved).
316 * * a path may start "conflicted" (i.e. point to a conflict_info)
317 * and then a later step (e.g. three-way content merge) determines
318 * it can be cleanly merged, at which point it'll be marked clean
319 * and the algorithm will ignore any data outside the contained
320 * merged_info for that entry
321 * * If an entry remains conflicted, the merged_info portion of a
322 * conflict_info will later be filled with whatever version of
323 * the file should be placed in the working directory (e.g. an
324 * as-merged-as-possible variation that contains conflict markers).
325 */
326 struct strmap paths;
327
328 /*
329 * conflicted: a subset of keys->values from "paths"
330 *
331 * conflicted is basically an optimization between process_entries()
332 * and record_conflicted_index_entries(); the latter could loop over
333 * ALL the entries in paths AGAIN and look for the ones that are
334 * still conflicted, but since process_entries() has to loop over
335 * all of them, it saves the ones it couldn't resolve in this strmap
336 * so that record_conflicted_index_entries() can iterate just the
337 * relevant entries.
338 */
339 struct strmap conflicted;
340
341 /*
342 * pool: memory pool for fast allocation/deallocation
343 *
344 * We allocate room for lots of filenames and auxiliary data
345 * structures in merge_options_internal, and it tends to all be
346 * freed together too. Using a memory pool for these provides a
347 * nice speedup.
348 */
349 struct mem_pool pool;
350
351 /*
352 * output: special messages and conflict notices for various paths
353 *
354 * This is a map of pathnames (a subset of the keys in "paths" above)
355 * to strbufs. It gathers various warning/conflict/notice messages
356 * for later processing.
357 */
358 struct strmap output;
359
360 /*
361 * renames: various data relating to rename detection
362 */
363 struct rename_info renames;
364
365 /*
366 * attr_index: hacky minimal index used for renormalization
367 *
368 * renormalization code _requires_ an index, though it only needs to
369 * find a .gitattributes file within the index. So, when
370 * renormalization is important, we create a special index with just
371 * that one file.
372 */
373 struct index_state attr_index;
374
375 /*
376 * current_dir_name, toplevel_dir: temporary vars
377 *
378 * These are used in collect_merge_info_callback(), and will set the
379 * various merged_info.directory_name for the various paths we get;
380 * see documentation for that variable and the requirements placed on
381 * that field.
382 */
383 const char *current_dir_name;
384 const char *toplevel_dir;
385
386 /* call_depth: recursion level counter for merging merge bases */
387 int call_depth;
388 };
389
390 struct version_info {
391 struct object_id oid;
392 unsigned short mode;
393 };
394
395 struct merged_info {
396 /* if is_null, ignore result. otherwise result has oid & mode */
397 struct version_info result;
398 unsigned is_null:1;
399
400 /*
401 * clean: whether the path in question is cleanly merged.
402 *
403 * see conflict_info.merged for more details.
404 */
405 unsigned clean:1;
406
407 /*
408 * basename_offset: offset of basename of path.
409 *
410 * perf optimization to avoid recomputing offset of final '/'
411 * character in pathname (0 if no '/' in pathname).
412 */
413 size_t basename_offset;
414
415 /*
416 * directory_name: containing directory name.
417 *
418 * Note that we assume directory_name is constructed such that
419 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
420 * i.e. string equality is equivalent to pointer equality. For this
421 * to hold, we have to be careful setting directory_name.
422 */
423 const char *directory_name;
424 };
425
426 struct conflict_info {
427 /*
428 * merged: the version of the path that will be written to working tree
429 *
430 * WARNING: It is critical to check merged.clean and ensure it is 0
431 * before reading any conflict_info fields outside of merged.
432 * Allocated merge_info structs will always have clean set to 1.
433 * Allocated conflict_info structs will have merged.clean set to 0
434 * initially. The merged.clean field is how we know if it is safe
435 * to access other parts of conflict_info besides merged; if a
436 * conflict_info's merged.clean is changed to 1, the rest of the
437 * algorithm is not allowed to look at anything outside of the
438 * merged member anymore.
439 */
440 struct merged_info merged;
441
442 /* oids & modes from each of the three trees for this path */
443 struct version_info stages[3];
444
445 /* pathnames for each stage; may differ due to rename detection */
446 const char *pathnames[3];
447
448 /* Whether this path is/was involved in a directory/file conflict */
449 unsigned df_conflict:1;
450
451 /*
452 * Whether this path is/was involved in a non-content conflict other
453 * than a directory/file conflict (e.g. rename/rename, rename/delete,
454 * file location based on possible directory rename).
455 */
456 unsigned path_conflict:1;
457
458 /*
459 * For filemask and dirmask, the ith bit corresponds to whether the
460 * ith entry is a file (filemask) or a directory (dirmask). Thus,
461 * filemask & dirmask is always zero, and filemask | dirmask is at
462 * most 7 but can be less when a path does not appear as either a
463 * file or a directory on at least one side of history.
464 *
465 * Note that these masks are related to enum merge_side, as the ith
466 * entry corresponds to side i.
467 *
468 * These values come from a traverse_trees() call; more info may be
469 * found looking at tree-walk.h's struct traverse_info,
470 * particularly the documentation above the "fn" member (note that
471 * filemask = mask & ~dirmask from that documentation).
472 */
473 unsigned filemask:3;
474 unsigned dirmask:3;
475
476 /*
477 * Optimization to track which stages match, to avoid the need to
478 * recompute it in multiple steps. Either 0 or at least 2 bits are
479 * set; if at least 2 bits are set, their corresponding stages match.
480 */
481 unsigned match_mask:3;
482 };
483
484 /*** Function Grouping: various utility functions ***/
485
486 /*
487 * For the next three macros, see warning for conflict_info.merged.
488 *
489 * In each of the below, mi is a struct merged_info*, and ci was defined
490 * as a struct conflict_info* (but we need to verify ci isn't actually
491 * pointed at a struct merged_info*).
492 *
493 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
494 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
495 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
496 */
497 #define INITIALIZE_CI(ci, mi) do { \
498 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
499 } while (0)
500 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
501 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
502 (ci) = (struct conflict_info *)(mi); \
503 assert((ci) && !(mi)->clean); \
504 } while (0)
505
506 static void free_strmap_strings(struct strmap *map)
507 {
508 struct hashmap_iter iter;
509 struct strmap_entry *entry;
510
511 strmap_for_each_entry(map, &iter, entry) {
512 free((char*)entry->key);
513 }
514 }
515
516 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
517 int reinitialize)
518 {
519 struct rename_info *renames = &opti->renames;
520 int i;
521 void (*strmap_clear_func)(struct strmap *, int) =
522 reinitialize ? strmap_partial_clear : strmap_clear;
523 void (*strintmap_clear_func)(struct strintmap *) =
524 reinitialize ? strintmap_partial_clear : strintmap_clear;
525 void (*strset_clear_func)(struct strset *) =
526 reinitialize ? strset_partial_clear : strset_clear;
527
528 strmap_clear_func(&opti->paths, 0);
529
530 /*
531 * All keys and values in opti->conflicted are a subset of those in
532 * opti->paths. We don't want to deallocate anything twice, so we
533 * don't free the keys and we pass 0 for free_values.
534 */
535 strmap_clear_func(&opti->conflicted, 0);
536
537 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
538 discard_index(&opti->attr_index);
539
540 /* Free memory used by various renames maps */
541 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
542 strintmap_clear_func(&renames->dirs_removed[i]);
543 strmap_clear_func(&renames->dir_renames[i], 0);
544 strintmap_clear_func(&renames->relevant_sources[i]);
545 if (!reinitialize)
546 assert(renames->cached_pairs_valid_side == 0);
547 if (i != renames->cached_pairs_valid_side &&
548 -1 != renames->cached_pairs_valid_side) {
549 strset_clear_func(&renames->cached_target_names[i]);
550 strmap_clear_func(&renames->cached_pairs[i], 1);
551 strset_clear_func(&renames->cached_irrelevant[i]);
552 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
553 if (!reinitialize)
554 strmap_clear(&renames->dir_rename_count[i], 1);
555 }
556 }
557 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
558 strintmap_clear_func(&renames->deferred[i].possible_trivial_merges);
559 strset_clear_func(&renames->deferred[i].target_dirs);
560 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
561 }
562 renames->cached_pairs_valid_side = 0;
563 renames->dir_rename_mask = 0;
564
565 if (!reinitialize) {
566 struct hashmap_iter iter;
567 struct strmap_entry *e;
568
569 /* Release and free each strbuf found in output */
570 strmap_for_each_entry(&opti->output, &iter, e) {
571 struct strbuf *sb = e->value;
572 strbuf_release(sb);
573 /*
574 * While strictly speaking we don't need to free(sb)
575 * here because we could pass free_values=1 when
576 * calling strmap_clear() on opti->output, that would
577 * require strmap_clear to do another
578 * strmap_for_each_entry() loop, so we just free it
579 * while we're iterating anyway.
580 */
581 free(sb);
582 }
583 strmap_clear(&opti->output, 0);
584 }
585
586 mem_pool_discard(&opti->pool, 0);
587
588 /* Clean out callback_data as well. */
589 FREE_AND_NULL(renames->callback_data);
590 renames->callback_data_nr = renames->callback_data_alloc = 0;
591 }
592
593 __attribute__((format (printf, 2, 3)))
594 static int err(struct merge_options *opt, const char *err, ...)
595 {
596 va_list params;
597 struct strbuf sb = STRBUF_INIT;
598
599 strbuf_addstr(&sb, "error: ");
600 va_start(params, err);
601 strbuf_vaddf(&sb, err, params);
602 va_end(params);
603
604 error("%s", sb.buf);
605 strbuf_release(&sb);
606
607 return -1;
608 }
609
610 static void format_commit(struct strbuf *sb,
611 int indent,
612 struct repository *repo,
613 struct commit *commit)
614 {
615 struct merge_remote_desc *desc;
616 struct pretty_print_context ctx = {0};
617 ctx.abbrev = DEFAULT_ABBREV;
618
619 strbuf_addchars(sb, ' ', indent);
620 desc = merge_remote_util(commit);
621 if (desc) {
622 strbuf_addf(sb, "virtual %s\n", desc->name);
623 return;
624 }
625
626 repo_format_commit_message(repo, commit, "%h %s", sb, &ctx);
627 strbuf_addch(sb, '\n');
628 }
629
630 __attribute__((format (printf, 4, 5)))
631 static void path_msg(struct merge_options *opt,
632 const char *path,
633 int omittable_hint, /* skippable under --remerge-diff */
634 const char *fmt, ...)
635 {
636 va_list ap;
637 struct strbuf *sb, *dest;
638 struct strbuf tmp = STRBUF_INIT;
639
640 if (opt->record_conflict_msgs_as_headers && omittable_hint)
641 return; /* Do not record mere hints in headers */
642 if (opt->priv->call_depth && opt->verbosity < 5)
643 return; /* Ignore messages from inner merges */
644
645 sb = strmap_get(&opt->priv->output, path);
646 if (!sb) {
647 sb = xmalloc(sizeof(*sb));
648 strbuf_init(sb, 0);
649 strmap_put(&opt->priv->output, path, sb);
650 }
651
652 dest = (opt->record_conflict_msgs_as_headers ? &tmp : sb);
653
654 va_start(ap, fmt);
655 if (opt->priv->call_depth) {
656 strbuf_addchars(dest, ' ', 2);
657 strbuf_addstr(dest, "From inner merge:");
658 strbuf_addchars(dest, ' ', opt->priv->call_depth * 2);
659 }
660 strbuf_vaddf(dest, fmt, ap);
661 va_end(ap);
662
663 if (opt->record_conflict_msgs_as_headers) {
664 int i_sb = 0, i_tmp = 0;
665
666 /* Start with the specified prefix */
667 if (opt->msg_header_prefix)
668 strbuf_addf(sb, "%s ", opt->msg_header_prefix);
669
670 /* Copy tmp to sb, adding spaces after newlines */
671 strbuf_grow(sb, sb->len + 2*tmp.len); /* more than sufficient */
672 for (; i_tmp < tmp.len; i_tmp++, i_sb++) {
673 /* Copy next character from tmp to sb */
674 sb->buf[sb->len + i_sb] = tmp.buf[i_tmp];
675
676 /* If we copied a newline, add a space */
677 if (tmp.buf[i_tmp] == '\n')
678 sb->buf[++i_sb] = ' ';
679 }
680 /* Update length and ensure it's NUL-terminated */
681 sb->len += i_sb;
682 sb->buf[sb->len] = '\0';
683
684 strbuf_release(&tmp);
685 }
686
687 /* Add final newline character to sb */
688 strbuf_addch(sb, '\n');
689 }
690
691 static struct diff_filespec *pool_alloc_filespec(struct mem_pool *pool,
692 const char *path)
693 {
694 /* Similar to alloc_filespec(), but allocate from pool and reuse path */
695 struct diff_filespec *spec;
696
697 spec = mem_pool_calloc(pool, 1, sizeof(*spec));
698 spec->path = (char*)path; /* spec won't modify it */
699
700 spec->count = 1;
701 spec->is_binary = -1;
702 return spec;
703 }
704
705 static struct diff_filepair *pool_diff_queue(struct mem_pool *pool,
706 struct diff_queue_struct *queue,
707 struct diff_filespec *one,
708 struct diff_filespec *two)
709 {
710 /* Same code as diff_queue(), except allocate from pool */
711 struct diff_filepair *dp;
712
713 dp = mem_pool_calloc(pool, 1, sizeof(*dp));
714 dp->one = one;
715 dp->two = two;
716 if (queue)
717 diff_q(queue, dp);
718 return dp;
719 }
720
721 /* add a string to a strbuf, but converting "/" to "_" */
722 static void add_flattened_path(struct strbuf *out, const char *s)
723 {
724 size_t i = out->len;
725 strbuf_addstr(out, s);
726 for (; i < out->len; i++)
727 if (out->buf[i] == '/')
728 out->buf[i] = '_';
729 }
730
731 static char *unique_path(struct merge_options *opt,
732 const char *path,
733 const char *branch)
734 {
735 char *ret = NULL;
736 struct strbuf newpath = STRBUF_INIT;
737 int suffix = 0;
738 size_t base_len;
739 struct strmap *existing_paths = &opt->priv->paths;
740
741 strbuf_addf(&newpath, "%s~", path);
742 add_flattened_path(&newpath, branch);
743
744 base_len = newpath.len;
745 while (strmap_contains(existing_paths, newpath.buf)) {
746 strbuf_setlen(&newpath, base_len);
747 strbuf_addf(&newpath, "_%d", suffix++);
748 }
749
750 /* Track the new path in our memory pool */
751 ret = mem_pool_alloc(&opt->priv->pool, newpath.len + 1);
752 memcpy(ret, newpath.buf, newpath.len + 1);
753 strbuf_release(&newpath);
754 return ret;
755 }
756
757 /*** Function Grouping: functions related to collect_merge_info() ***/
758
759 static int traverse_trees_wrapper_callback(int n,
760 unsigned long mask,
761 unsigned long dirmask,
762 struct name_entry *names,
763 struct traverse_info *info)
764 {
765 struct merge_options *opt = info->data;
766 struct rename_info *renames = &opt->priv->renames;
767 unsigned filemask = mask & ~dirmask;
768
769 assert(n==3);
770
771 if (!renames->callback_data_traverse_path)
772 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
773
774 if (filemask && filemask == renames->dir_rename_mask)
775 renames->dir_rename_mask = 0x07;
776
777 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
778 renames->callback_data_alloc);
779 renames->callback_data[renames->callback_data_nr].mask = mask;
780 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
781 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
782 names, 3);
783 renames->callback_data_nr++;
784
785 return mask;
786 }
787
788 /*
789 * Much like traverse_trees(), BUT:
790 * - read all the tree entries FIRST, saving them
791 * - note that the above step provides an opportunity to compute necessary
792 * additional details before the "real" traversal
793 * - loop through the saved entries and call the original callback on them
794 */
795 static int traverse_trees_wrapper(struct index_state *istate,
796 int n,
797 struct tree_desc *t,
798 struct traverse_info *info)
799 {
800 int ret, i, old_offset;
801 traverse_callback_t old_fn;
802 char *old_callback_data_traverse_path;
803 struct merge_options *opt = info->data;
804 struct rename_info *renames = &opt->priv->renames;
805
806 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
807
808 old_callback_data_traverse_path = renames->callback_data_traverse_path;
809 old_fn = info->fn;
810 old_offset = renames->callback_data_nr;
811
812 renames->callback_data_traverse_path = NULL;
813 info->fn = traverse_trees_wrapper_callback;
814 ret = traverse_trees(istate, n, t, info);
815 if (ret < 0)
816 return ret;
817
818 info->traverse_path = renames->callback_data_traverse_path;
819 info->fn = old_fn;
820 for (i = old_offset; i < renames->callback_data_nr; ++i) {
821 info->fn(n,
822 renames->callback_data[i].mask,
823 renames->callback_data[i].dirmask,
824 renames->callback_data[i].names,
825 info);
826 }
827
828 renames->callback_data_nr = old_offset;
829 free(renames->callback_data_traverse_path);
830 renames->callback_data_traverse_path = old_callback_data_traverse_path;
831 info->traverse_path = NULL;
832 return 0;
833 }
834
835 static void setup_path_info(struct merge_options *opt,
836 struct string_list_item *result,
837 const char *current_dir_name,
838 int current_dir_name_len,
839 char *fullpath, /* we'll take over ownership */
840 struct name_entry *names,
841 struct name_entry *merged_version,
842 unsigned is_null, /* boolean */
843 unsigned df_conflict, /* boolean */
844 unsigned filemask,
845 unsigned dirmask,
846 int resolved /* boolean */)
847 {
848 /* result->util is void*, so mi is a convenience typed variable */
849 struct merged_info *mi;
850
851 assert(!is_null || resolved);
852 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
853 assert(resolved == (merged_version != NULL));
854
855 mi = mem_pool_calloc(&opt->priv->pool, 1,
856 resolved ? sizeof(struct merged_info) :
857 sizeof(struct conflict_info));
858 mi->directory_name = current_dir_name;
859 mi->basename_offset = current_dir_name_len;
860 mi->clean = !!resolved;
861 if (resolved) {
862 mi->result.mode = merged_version->mode;
863 oidcpy(&mi->result.oid, &merged_version->oid);
864 mi->is_null = !!is_null;
865 } else {
866 int i;
867 struct conflict_info *ci;
868
869 ASSIGN_AND_VERIFY_CI(ci, mi);
870 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
871 ci->pathnames[i] = fullpath;
872 ci->stages[i].mode = names[i].mode;
873 oidcpy(&ci->stages[i].oid, &names[i].oid);
874 }
875 ci->filemask = filemask;
876 ci->dirmask = dirmask;
877 ci->df_conflict = !!df_conflict;
878 if (dirmask)
879 /*
880 * Assume is_null for now, but if we have entries
881 * under the directory then when it is complete in
882 * write_completed_directory() it'll update this.
883 * Also, for D/F conflicts, we have to handle the
884 * directory first, then clear this bit and process
885 * the file to see how it is handled -- that occurs
886 * near the top of process_entry().
887 */
888 mi->is_null = 1;
889 }
890 strmap_put(&opt->priv->paths, fullpath, mi);
891 result->string = fullpath;
892 result->util = mi;
893 }
894
895 static void add_pair(struct merge_options *opt,
896 struct name_entry *names,
897 const char *pathname,
898 unsigned side,
899 unsigned is_add /* if false, is_delete */,
900 unsigned match_mask,
901 unsigned dir_rename_mask)
902 {
903 struct diff_filespec *one, *two;
904 struct rename_info *renames = &opt->priv->renames;
905 int names_idx = is_add ? side : 0;
906
907 if (is_add) {
908 assert(match_mask == 0 || match_mask == 6);
909 if (strset_contains(&renames->cached_target_names[side],
910 pathname))
911 return;
912 } else {
913 unsigned content_relevant = (match_mask == 0);
914 unsigned location_relevant = (dir_rename_mask == 0x07);
915
916 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
917
918 /*
919 * If pathname is found in cached_irrelevant[side] due to
920 * previous pick but for this commit content is relevant,
921 * then we need to remove it from cached_irrelevant.
922 */
923 if (content_relevant)
924 /* strset_remove is no-op if strset doesn't have key */
925 strset_remove(&renames->cached_irrelevant[side],
926 pathname);
927
928 /*
929 * We do not need to re-detect renames for paths that we already
930 * know the pairing, i.e. for cached_pairs (or
931 * cached_irrelevant). However, handle_deferred_entries() needs
932 * to loop over the union of keys from relevant_sources[side] and
933 * cached_pairs[side], so for simplicity we set relevant_sources
934 * for all the cached_pairs too and then strip them back out in
935 * prune_cached_from_relevant() at the beginning of
936 * detect_regular_renames().
937 */
938 if (content_relevant || location_relevant) {
939 /* content_relevant trumps location_relevant */
940 strintmap_set(&renames->relevant_sources[side], pathname,
941 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
942 }
943
944 /*
945 * Avoid creating pair if we've already cached rename results.
946 * Note that we do this after setting relevant_sources[side]
947 * as noted in the comment above.
948 */
949 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
950 strset_contains(&renames->cached_irrelevant[side], pathname))
951 return;
952 }
953
954 one = pool_alloc_filespec(&opt->priv->pool, pathname);
955 two = pool_alloc_filespec(&opt->priv->pool, pathname);
956 fill_filespec(is_add ? two : one,
957 &names[names_idx].oid, 1, names[names_idx].mode);
958 pool_diff_queue(&opt->priv->pool, &renames->pairs[side], one, two);
959 }
960
961 static void collect_rename_info(struct merge_options *opt,
962 struct name_entry *names,
963 const char *dirname,
964 const char *fullname,
965 unsigned filemask,
966 unsigned dirmask,
967 unsigned match_mask)
968 {
969 struct rename_info *renames = &opt->priv->renames;
970 unsigned side;
971
972 /*
973 * Update dir_rename_mask (determines ignore-rename-source validity)
974 *
975 * dir_rename_mask helps us keep track of when directory rename
976 * detection may be relevant. Basically, whenver a directory is
977 * removed on one side of history, and a file is added to that
978 * directory on the other side of history, directory rename
979 * detection is relevant (meaning we have to detect renames for all
980 * files within that directory to deduce where the directory
981 * moved). Also, whenever a directory needs directory rename
982 * detection, due to the "majority rules" choice for where to move
983 * it (see t6423 testcase 1f), we also need to detect renames for
984 * all files within subdirectories of that directory as well.
985 *
986 * Here we haven't looked at files within the directory yet, we are
987 * just looking at the directory itself. So, if we aren't yet in
988 * a case where a parent directory needed directory rename detection
989 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
990 * on one side of history, record the mask of the other side of
991 * history in dir_rename_mask.
992 */
993 if (renames->dir_rename_mask != 0x07 &&
994 (dirmask == 3 || dirmask == 5)) {
995 /* simple sanity check */
996 assert(renames->dir_rename_mask == 0 ||
997 renames->dir_rename_mask == (dirmask & ~1));
998 /* update dir_rename_mask; have it record mask of new side */
999 renames->dir_rename_mask = (dirmask & ~1);
1000 }
1001
1002 /* Update dirs_removed, as needed */
1003 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
1004 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
1005 unsigned sides = (0x07 - dirmask)/2;
1006 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
1007 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
1008 /*
1009 * Record relevance of this directory. However, note that
1010 * when collect_merge_info_callback() recurses into this
1011 * directory and calls collect_rename_info() on paths
1012 * within that directory, if we find a path that was added
1013 * to this directory on the other side of history, we will
1014 * upgrade this value to RELEVANT_FOR_SELF; see below.
1015 */
1016 if (sides & 1)
1017 strintmap_set(&renames->dirs_removed[1], fullname,
1018 relevance);
1019 if (sides & 2)
1020 strintmap_set(&renames->dirs_removed[2], fullname,
1021 relevance);
1022 }
1023
1024 /*
1025 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
1026 * When we run across a file added to a directory. In such a case,
1027 * find the directory of the file and upgrade its relevance.
1028 */
1029 if (renames->dir_rename_mask == 0x07 &&
1030 (filemask == 2 || filemask == 4)) {
1031 /*
1032 * Need directory rename for parent directory on other side
1033 * of history from added file. Thus
1034 * side = (~filemask & 0x06) >> 1
1035 * or
1036 * side = 3 - (filemask/2).
1037 */
1038 unsigned side = 3 - (filemask >> 1);
1039 strintmap_set(&renames->dirs_removed[side], dirname,
1040 RELEVANT_FOR_SELF);
1041 }
1042
1043 if (filemask == 0 || filemask == 7)
1044 return;
1045
1046 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
1047 unsigned side_mask = (1 << side);
1048
1049 /* Check for deletion on side */
1050 if ((filemask & 1) && !(filemask & side_mask))
1051 add_pair(opt, names, fullname, side, 0 /* delete */,
1052 match_mask & filemask,
1053 renames->dir_rename_mask);
1054
1055 /* Check for addition on side */
1056 if (!(filemask & 1) && (filemask & side_mask))
1057 add_pair(opt, names, fullname, side, 1 /* add */,
1058 match_mask & filemask,
1059 renames->dir_rename_mask);
1060 }
1061 }
1062
1063 static int collect_merge_info_callback(int n,
1064 unsigned long mask,
1065 unsigned long dirmask,
1066 struct name_entry *names,
1067 struct traverse_info *info)
1068 {
1069 /*
1070 * n is 3. Always.
1071 * common ancestor (mbase) has mask 1, and stored in index 0 of names
1072 * head of side 1 (side1) has mask 2, and stored in index 1 of names
1073 * head of side 2 (side2) has mask 4, and stored in index 2 of names
1074 */
1075 struct merge_options *opt = info->data;
1076 struct merge_options_internal *opti = opt->priv;
1077 struct rename_info *renames = &opt->priv->renames;
1078 struct string_list_item pi; /* Path Info */
1079 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
1080 struct name_entry *p;
1081 size_t len;
1082 char *fullpath;
1083 const char *dirname = opti->current_dir_name;
1084 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
1085 unsigned filemask = mask & ~dirmask;
1086 unsigned match_mask = 0; /* will be updated below */
1087 unsigned mbase_null = !(mask & 1);
1088 unsigned side1_null = !(mask & 2);
1089 unsigned side2_null = !(mask & 4);
1090 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
1091 names[0].mode == names[1].mode &&
1092 oideq(&names[0].oid, &names[1].oid));
1093 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
1094 names[0].mode == names[2].mode &&
1095 oideq(&names[0].oid, &names[2].oid));
1096 unsigned sides_match = (!side1_null && !side2_null &&
1097 names[1].mode == names[2].mode &&
1098 oideq(&names[1].oid, &names[2].oid));
1099
1100 /*
1101 * Note: When a path is a file on one side of history and a directory
1102 * in another, we have a directory/file conflict. In such cases, if
1103 * the conflict doesn't resolve from renames and deletions, then we
1104 * always leave directories where they are and move files out of the
1105 * way. Thus, while struct conflict_info has a df_conflict field to
1106 * track such conflicts, we ignore that field for any directories at
1107 * a path and only pay attention to it for files at the given path.
1108 * The fact that we leave directories were they are also means that
1109 * we do not need to worry about getting additional df_conflict
1110 * information propagated from parent directories down to children
1111 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
1112 * sets a newinfo.df_conflicts field specifically to propagate it).
1113 */
1114 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
1115
1116 /* n = 3 is a fundamental assumption. */
1117 if (n != 3)
1118 BUG("Called collect_merge_info_callback wrong");
1119
1120 /*
1121 * A bunch of sanity checks verifying that traverse_trees() calls
1122 * us the way I expect. Could just remove these at some point,
1123 * though maybe they are helpful to future code readers.
1124 */
1125 assert(mbase_null == is_null_oid(&names[0].oid));
1126 assert(side1_null == is_null_oid(&names[1].oid));
1127 assert(side2_null == is_null_oid(&names[2].oid));
1128 assert(!mbase_null || !side1_null || !side2_null);
1129 assert(mask > 0 && mask < 8);
1130
1131 /* Determine match_mask */
1132 if (side1_matches_mbase)
1133 match_mask = (side2_matches_mbase ? 7 : 3);
1134 else if (side2_matches_mbase)
1135 match_mask = 5;
1136 else if (sides_match)
1137 match_mask = 6;
1138
1139 /*
1140 * Get the name of the relevant filepath, which we'll pass to
1141 * setup_path_info() for tracking.
1142 */
1143 p = names;
1144 while (!p->mode)
1145 p++;
1146 len = traverse_path_len(info, p->pathlen);
1147
1148 /* +1 in both of the following lines to include the NUL byte */
1149 fullpath = mem_pool_alloc(&opt->priv->pool, len + 1);
1150 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1151
1152 /*
1153 * If mbase, side1, and side2 all match, we can resolve early. Even
1154 * if these are trees, there will be no renames or anything
1155 * underneath.
1156 */
1157 if (side1_matches_mbase && side2_matches_mbase) {
1158 /* mbase, side1, & side2 all match; use mbase as resolution */
1159 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1160 names, names+0, mbase_null, 0 /* df_conflict */,
1161 filemask, dirmask, 1 /* resolved */);
1162 return mask;
1163 }
1164
1165 /*
1166 * If the sides match, and all three paths are present and are
1167 * files, then we can take either as the resolution. We can't do
1168 * this with trees, because there may be rename sources from the
1169 * merge_base.
1170 */
1171 if (sides_match && filemask == 0x07) {
1172 /* use side1 (== side2) version as resolution */
1173 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1174 names, names+1, side1_null, 0,
1175 filemask, dirmask, 1);
1176 return mask;
1177 }
1178
1179 /*
1180 * If side1 matches mbase and all three paths are present and are
1181 * files, then we can use side2 as the resolution. We cannot
1182 * necessarily do so this for trees, because there may be rename
1183 * destinations within side2.
1184 */
1185 if (side1_matches_mbase && filemask == 0x07) {
1186 /* use side2 version as resolution */
1187 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1188 names, names+2, side2_null, 0,
1189 filemask, dirmask, 1);
1190 return mask;
1191 }
1192
1193 /* Similar to above but swapping sides 1 and 2 */
1194 if (side2_matches_mbase && filemask == 0x07) {
1195 /* use side1 version as resolution */
1196 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1197 names, names+1, side1_null, 0,
1198 filemask, dirmask, 1);
1199 return mask;
1200 }
1201
1202 /*
1203 * Sometimes we can tell that a source path need not be included in
1204 * rename detection -- namely, whenever either
1205 * side1_matches_mbase && side2_null
1206 * or
1207 * side2_matches_mbase && side1_null
1208 * However, we call collect_rename_info() even in those cases,
1209 * because exact renames are cheap and would let us remove both a
1210 * source and destination path. We'll cull the unneeded sources
1211 * later.
1212 */
1213 collect_rename_info(opt, names, dirname, fullpath,
1214 filemask, dirmask, match_mask);
1215
1216 /*
1217 * None of the special cases above matched, so we have a
1218 * provisional conflict. (Rename detection might allow us to
1219 * unconflict some more cases, but that comes later so all we can
1220 * do now is record the different non-null file hashes.)
1221 */
1222 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1223 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1224
1225 ci = pi.util;
1226 VERIFY_CI(ci);
1227 ci->match_mask = match_mask;
1228
1229 /* If dirmask, recurse into subdirectories */
1230 if (dirmask) {
1231 struct traverse_info newinfo;
1232 struct tree_desc t[3];
1233 void *buf[3] = {NULL, NULL, NULL};
1234 const char *original_dir_name;
1235 int i, ret, side;
1236
1237 /*
1238 * Check for whether we can avoid recursing due to one side
1239 * matching the merge base. The side that does NOT match is
1240 * the one that might have a rename destination we need.
1241 */
1242 assert(!side1_matches_mbase || !side2_matches_mbase);
1243 side = side1_matches_mbase ? MERGE_SIDE2 :
1244 side2_matches_mbase ? MERGE_SIDE1 : MERGE_BASE;
1245 if (filemask == 0 && (dirmask == 2 || dirmask == 4)) {
1246 /*
1247 * Also defer recursing into new directories; set up a
1248 * few variables to let us do so.
1249 */
1250 ci->match_mask = (7 - dirmask);
1251 side = dirmask / 2;
1252 }
1253 if (renames->dir_rename_mask != 0x07 &&
1254 side != MERGE_BASE &&
1255 renames->deferred[side].trivial_merges_okay &&
1256 !strset_contains(&renames->deferred[side].target_dirs,
1257 pi.string)) {
1258 strintmap_set(&renames->deferred[side].possible_trivial_merges,
1259 pi.string, renames->dir_rename_mask);
1260 renames->dir_rename_mask = prev_dir_rename_mask;
1261 return mask;
1262 }
1263
1264 /* We need to recurse */
1265 ci->match_mask &= filemask;
1266 newinfo = *info;
1267 newinfo.prev = info;
1268 newinfo.name = p->path;
1269 newinfo.namelen = p->pathlen;
1270 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1271 /*
1272 * If this directory we are about to recurse into cared about
1273 * its parent directory (the current directory) having a D/F
1274 * conflict, then we'd propagate the masks in this way:
1275 * newinfo.df_conflicts |= (mask & ~dirmask);
1276 * But we don't worry about propagating D/F conflicts. (See
1277 * comment near setting of local df_conflict variable near
1278 * the beginning of this function).
1279 */
1280
1281 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1282 if (i == 1 && side1_matches_mbase)
1283 t[1] = t[0];
1284 else if (i == 2 && side2_matches_mbase)
1285 t[2] = t[0];
1286 else if (i == 2 && sides_match)
1287 t[2] = t[1];
1288 else {
1289 const struct object_id *oid = NULL;
1290 if (dirmask & 1)
1291 oid = &names[i].oid;
1292 buf[i] = fill_tree_descriptor(opt->repo,
1293 t + i, oid);
1294 }
1295 dirmask >>= 1;
1296 }
1297
1298 original_dir_name = opti->current_dir_name;
1299 opti->current_dir_name = pi.string;
1300 if (renames->dir_rename_mask == 0 ||
1301 renames->dir_rename_mask == 0x07)
1302 ret = traverse_trees(NULL, 3, t, &newinfo);
1303 else
1304 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1305 opti->current_dir_name = original_dir_name;
1306 renames->dir_rename_mask = prev_dir_rename_mask;
1307
1308 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1309 free(buf[i]);
1310
1311 if (ret < 0)
1312 return -1;
1313 }
1314
1315 return mask;
1316 }
1317
1318 static void resolve_trivial_directory_merge(struct conflict_info *ci, int side)
1319 {
1320 VERIFY_CI(ci);
1321 assert((side == 1 && ci->match_mask == 5) ||
1322 (side == 2 && ci->match_mask == 3));
1323 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1324 ci->merged.result.mode = ci->stages[side].mode;
1325 ci->merged.is_null = is_null_oid(&ci->stages[side].oid);
1326 ci->match_mask = 0;
1327 ci->merged.clean = 1; /* (ci->filemask == 0); */
1328 }
1329
1330 static int handle_deferred_entries(struct merge_options *opt,
1331 struct traverse_info *info)
1332 {
1333 struct rename_info *renames = &opt->priv->renames;
1334 struct hashmap_iter iter;
1335 struct strmap_entry *entry;
1336 int side, ret = 0;
1337 int path_count_before, path_count_after = 0;
1338
1339 path_count_before = strmap_get_size(&opt->priv->paths);
1340 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
1341 unsigned optimization_okay = 1;
1342 struct strintmap copy;
1343
1344 /* Loop over the set of paths we need to know rename info for */
1345 strset_for_each_entry(&renames->relevant_sources[side],
1346 &iter, entry) {
1347 char *rename_target, *dir, *dir_marker;
1348 struct strmap_entry *e;
1349
1350 /*
1351 * If we don't know delete/rename info for this path,
1352 * then we need to recurse into all trees to get all
1353 * adds to make sure we have it.
1354 */
1355 if (strset_contains(&renames->cached_irrelevant[side],
1356 entry->key))
1357 continue;
1358 e = strmap_get_entry(&renames->cached_pairs[side],
1359 entry->key);
1360 if (!e) {
1361 optimization_okay = 0;
1362 break;
1363 }
1364
1365 /* If this is a delete, we have enough info already */
1366 rename_target = e->value;
1367 if (!rename_target)
1368 continue;
1369
1370 /* If we already walked the rename target, we're good */
1371 if (strmap_contains(&opt->priv->paths, rename_target))
1372 continue;
1373
1374 /*
1375 * Otherwise, we need to get a list of directories that
1376 * will need to be recursed into to get this
1377 * rename_target.
1378 */
1379 dir = xstrdup(rename_target);
1380 while ((dir_marker = strrchr(dir, '/'))) {
1381 *dir_marker = '\0';
1382 if (strset_contains(&renames->deferred[side].target_dirs,
1383 dir))
1384 break;
1385 strset_add(&renames->deferred[side].target_dirs,
1386 dir);
1387 }
1388 free(dir);
1389 }
1390 renames->deferred[side].trivial_merges_okay = optimization_okay;
1391 /*
1392 * We need to recurse into any directories in
1393 * possible_trivial_merges[side] found in target_dirs[side].
1394 * But when we recurse, we may need to queue up some of the
1395 * subdirectories for possible_trivial_merges[side]. Since
1396 * we can't safely iterate through a hashmap while also adding
1397 * entries, move the entries into 'copy', iterate over 'copy',
1398 * and then we'll also iterate anything added into
1399 * possible_trivial_merges[side] once this loop is done.
1400 */
1401 copy = renames->deferred[side].possible_trivial_merges;
1402 strintmap_init_with_options(&renames->deferred[side].possible_trivial_merges,
1403 0,
1404 &opt->priv->pool,
1405 0);
1406 strintmap_for_each_entry(&copy, &iter, entry) {
1407 const char *path = entry->key;
1408 unsigned dir_rename_mask = (intptr_t)entry->value;
1409 struct conflict_info *ci;
1410 unsigned dirmask;
1411 struct tree_desc t[3];
1412 void *buf[3] = {NULL,};
1413 int i;
1414
1415 ci = strmap_get(&opt->priv->paths, path);
1416 VERIFY_CI(ci);
1417 dirmask = ci->dirmask;
1418
1419 if (optimization_okay &&
1420 !strset_contains(&renames->deferred[side].target_dirs,
1421 path)) {
1422 resolve_trivial_directory_merge(ci, side);
1423 continue;
1424 }
1425
1426 info->name = path;
1427 info->namelen = strlen(path);
1428 info->pathlen = info->namelen + 1;
1429
1430 for (i = 0; i < 3; i++, dirmask >>= 1) {
1431 if (i == 1 && ci->match_mask == 3)
1432 t[1] = t[0];
1433 else if (i == 2 && ci->match_mask == 5)
1434 t[2] = t[0];
1435 else if (i == 2 && ci->match_mask == 6)
1436 t[2] = t[1];
1437 else {
1438 const struct object_id *oid = NULL;
1439 if (dirmask & 1)
1440 oid = &ci->stages[i].oid;
1441 buf[i] = fill_tree_descriptor(opt->repo,
1442 t+i, oid);
1443 }
1444 }
1445
1446 ci->match_mask &= ci->filemask;
1447 opt->priv->current_dir_name = path;
1448 renames->dir_rename_mask = dir_rename_mask;
1449 if (renames->dir_rename_mask == 0 ||
1450 renames->dir_rename_mask == 0x07)
1451 ret = traverse_trees(NULL, 3, t, info);
1452 else
1453 ret = traverse_trees_wrapper(NULL, 3, t, info);
1454
1455 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1456 free(buf[i]);
1457
1458 if (ret < 0)
1459 return ret;
1460 }
1461 strintmap_clear(&copy);
1462 strintmap_for_each_entry(&renames->deferred[side].possible_trivial_merges,
1463 &iter, entry) {
1464 const char *path = entry->key;
1465 struct conflict_info *ci;
1466
1467 ci = strmap_get(&opt->priv->paths, path);
1468 VERIFY_CI(ci);
1469
1470 assert(renames->deferred[side].trivial_merges_okay &&
1471 !strset_contains(&renames->deferred[side].target_dirs,
1472 path));
1473 resolve_trivial_directory_merge(ci, side);
1474 }
1475 if (!optimization_okay || path_count_after)
1476 path_count_after = strmap_get_size(&opt->priv->paths);
1477 }
1478 if (path_count_after) {
1479 /*
1480 * The choice of wanted_factor here does not affect
1481 * correctness, only performance. When the
1482 * path_count_after / path_count_before
1483 * ratio is high, redoing after renames is a big
1484 * performance boost. I suspect that redoing is a wash
1485 * somewhere near a value of 2, and below that redoing will
1486 * slow things down. I applied a fudge factor and picked
1487 * 3; see the commit message when this was introduced for
1488 * back of the envelope calculations for this ratio.
1489 */
1490 const int wanted_factor = 3;
1491
1492 /* We should only redo collect_merge_info one time */
1493 assert(renames->redo_after_renames == 0);
1494
1495 if (path_count_after / path_count_before >= wanted_factor) {
1496 renames->redo_after_renames = 1;
1497 renames->cached_pairs_valid_side = -1;
1498 }
1499 } else if (renames->redo_after_renames == 2)
1500 renames->redo_after_renames = 0;
1501 return ret;
1502 }
1503
1504 static int collect_merge_info(struct merge_options *opt,
1505 struct tree *merge_base,
1506 struct tree *side1,
1507 struct tree *side2)
1508 {
1509 int ret;
1510 struct tree_desc t[3];
1511 struct traverse_info info;
1512
1513 opt->priv->toplevel_dir = "";
1514 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1515 setup_traverse_info(&info, opt->priv->toplevel_dir);
1516 info.fn = collect_merge_info_callback;
1517 info.data = opt;
1518 info.show_all_errors = 1;
1519
1520 parse_tree(merge_base);
1521 parse_tree(side1);
1522 parse_tree(side2);
1523 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1524 init_tree_desc(t + 1, side1->buffer, side1->size);
1525 init_tree_desc(t + 2, side2->buffer, side2->size);
1526
1527 trace2_region_enter("merge", "traverse_trees", opt->repo);
1528 ret = traverse_trees(NULL, 3, t, &info);
1529 if (ret == 0)
1530 ret = handle_deferred_entries(opt, &info);
1531 trace2_region_leave("merge", "traverse_trees", opt->repo);
1532
1533 return ret;
1534 }
1535
1536 /*** Function Grouping: functions related to threeway content merges ***/
1537
1538 static int find_first_merges(struct repository *repo,
1539 const char *path,
1540 struct commit *a,
1541 struct commit *b,
1542 struct object_array *result)
1543 {
1544 int i, j;
1545 struct object_array merges = OBJECT_ARRAY_INIT;
1546 struct commit *commit;
1547 int contains_another;
1548
1549 char merged_revision[GIT_MAX_HEXSZ + 2];
1550 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1551 "--all", merged_revision, NULL };
1552 struct rev_info revs;
1553 struct setup_revision_opt rev_opts;
1554
1555 memset(result, 0, sizeof(struct object_array));
1556 memset(&rev_opts, 0, sizeof(rev_opts));
1557
1558 /* get all revisions that merge commit a */
1559 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1560 oid_to_hex(&a->object.oid));
1561 repo_init_revisions(repo, &revs, NULL);
1562 /* FIXME: can't handle linked worktrees in submodules yet */
1563 revs.single_worktree = path != NULL;
1564 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1565
1566 /* save all revisions from the above list that contain b */
1567 if (prepare_revision_walk(&revs))
1568 die("revision walk setup failed");
1569 while ((commit = get_revision(&revs)) != NULL) {
1570 struct object *o = &(commit->object);
1571 if (repo_in_merge_bases(repo, b, commit))
1572 add_object_array(o, NULL, &merges);
1573 }
1574 reset_revision_walk();
1575
1576 /* Now we've got all merges that contain a and b. Prune all
1577 * merges that contain another found merge and save them in
1578 * result.
1579 */
1580 for (i = 0; i < merges.nr; i++) {
1581 struct commit *m1 = (struct commit *) merges.objects[i].item;
1582
1583 contains_another = 0;
1584 for (j = 0; j < merges.nr; j++) {
1585 struct commit *m2 = (struct commit *) merges.objects[j].item;
1586 if (i != j && repo_in_merge_bases(repo, m2, m1)) {
1587 contains_another = 1;
1588 break;
1589 }
1590 }
1591
1592 if (!contains_another)
1593 add_object_array(merges.objects[i].item, NULL, result);
1594 }
1595
1596 object_array_clear(&merges);
1597 release_revisions(&revs);
1598 return result->nr;
1599 }
1600
1601 static int merge_submodule(struct merge_options *opt,
1602 const char *path,
1603 const struct object_id *o,
1604 const struct object_id *a,
1605 const struct object_id *b,
1606 struct object_id *result)
1607 {
1608 struct repository subrepo;
1609 struct strbuf sb = STRBUF_INIT;
1610 int ret = 0;
1611 struct commit *commit_o, *commit_a, *commit_b;
1612 int parent_count;
1613 struct object_array merges;
1614
1615 int i;
1616 int search = !opt->priv->call_depth;
1617
1618 /* store fallback answer in result in case we fail */
1619 oidcpy(result, opt->priv->call_depth ? o : a);
1620
1621 /* we can not handle deletion conflicts */
1622 if (is_null_oid(o))
1623 return 0;
1624 if (is_null_oid(a))
1625 return 0;
1626 if (is_null_oid(b))
1627 return 0;
1628
1629 if (repo_submodule_init(&subrepo, opt->repo, path, null_oid())) {
1630 path_msg(opt, path, 0,
1631 _("Failed to merge submodule %s (not checked out)"),
1632 path);
1633 return 0;
1634 }
1635
1636 if (!(commit_o = lookup_commit_reference(&subrepo, o)) ||
1637 !(commit_a = lookup_commit_reference(&subrepo, a)) ||
1638 !(commit_b = lookup_commit_reference(&subrepo, b))) {
1639 path_msg(opt, path, 0,
1640 _("Failed to merge submodule %s (commits not present)"),
1641 path);
1642 goto cleanup;
1643 }
1644
1645 /* check whether both changes are forward */
1646 if (!repo_in_merge_bases(&subrepo, commit_o, commit_a) ||
1647 !repo_in_merge_bases(&subrepo, commit_o, commit_b)) {
1648 path_msg(opt, path, 0,
1649 _("Failed to merge submodule %s "
1650 "(commits don't follow merge-base)"),
1651 path);
1652 goto cleanup;
1653 }
1654
1655 /* Case #1: a is contained in b or vice versa */
1656 if (repo_in_merge_bases(&subrepo, commit_a, commit_b)) {
1657 oidcpy(result, b);
1658 path_msg(opt, path, 1,
1659 _("Note: Fast-forwarding submodule %s to %s"),
1660 path, oid_to_hex(b));
1661 ret = 1;
1662 goto cleanup;
1663 }
1664 if (repo_in_merge_bases(&subrepo, commit_b, commit_a)) {
1665 oidcpy(result, a);
1666 path_msg(opt, path, 1,
1667 _("Note: Fast-forwarding submodule %s to %s"),
1668 path, oid_to_hex(a));
1669 ret = 1;
1670 goto cleanup;
1671 }
1672
1673 /*
1674 * Case #2: There are one or more merges that contain a and b in
1675 * the submodule. If there is only one, then present it as a
1676 * suggestion to the user, but leave it marked unmerged so the
1677 * user needs to confirm the resolution.
1678 */
1679
1680 /* Skip the search if makes no sense to the calling context. */
1681 if (!search)
1682 goto cleanup;
1683
1684 /* find commit which merges them */
1685 parent_count = find_first_merges(&subrepo, path, commit_a, commit_b,
1686 &merges);
1687 switch (parent_count) {
1688 case 0:
1689 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
1690 break;
1691
1692 case 1:
1693 format_commit(&sb, 4, &subrepo,
1694 (struct commit *)merges.objects[0].item);
1695 path_msg(opt, path, 0,
1696 _("Failed to merge submodule %s, but a possible merge "
1697 "resolution exists:\n%s\n"),
1698 path, sb.buf);
1699 path_msg(opt, path, 1,
1700 _("If this is correct simply add it to the index "
1701 "for example\n"
1702 "by using:\n\n"
1703 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
1704 "which will accept this suggestion.\n"),
1705 oid_to_hex(&merges.objects[0].item->oid), path);
1706 strbuf_release(&sb);
1707 break;
1708 default:
1709 for (i = 0; i < merges.nr; i++)
1710 format_commit(&sb, 4, &subrepo,
1711 (struct commit *)merges.objects[i].item);
1712 path_msg(opt, path, 0,
1713 _("Failed to merge submodule %s, but multiple "
1714 "possible merges exist:\n%s"), path, sb.buf);
1715 strbuf_release(&sb);
1716 }
1717
1718 object_array_clear(&merges);
1719 cleanup:
1720 repo_clear(&subrepo);
1721 return ret;
1722 }
1723
1724 static void initialize_attr_index(struct merge_options *opt)
1725 {
1726 /*
1727 * The renormalize_buffer() functions require attributes, and
1728 * annoyingly those can only be read from the working tree or from
1729 * an index_state. merge-ort doesn't have an index_state, so we
1730 * generate a fake one containing only attribute information.
1731 */
1732 struct merged_info *mi;
1733 struct index_state *attr_index = &opt->priv->attr_index;
1734 struct cache_entry *ce;
1735
1736 attr_index->initialized = 1;
1737
1738 if (!opt->renormalize)
1739 return;
1740
1741 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1742 if (!mi)
1743 return;
1744
1745 if (mi->clean) {
1746 int len = strlen(GITATTRIBUTES_FILE);
1747 ce = make_empty_cache_entry(attr_index, len);
1748 ce->ce_mode = create_ce_mode(mi->result.mode);
1749 ce->ce_flags = create_ce_flags(0);
1750 ce->ce_namelen = len;
1751 oidcpy(&ce->oid, &mi->result.oid);
1752 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1753 add_index_entry(attr_index, ce,
1754 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1755 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1756 } else {
1757 int stage, len;
1758 struct conflict_info *ci;
1759
1760 ASSIGN_AND_VERIFY_CI(ci, mi);
1761 for (stage = 0; stage < 3; stage++) {
1762 unsigned stage_mask = (1 << stage);
1763
1764 if (!(ci->filemask & stage_mask))
1765 continue;
1766 len = strlen(GITATTRIBUTES_FILE);
1767 ce = make_empty_cache_entry(attr_index, len);
1768 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
1769 ce->ce_flags = create_ce_flags(stage);
1770 ce->ce_namelen = len;
1771 oidcpy(&ce->oid, &ci->stages[stage].oid);
1772 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1773 add_index_entry(attr_index, ce,
1774 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1775 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
1776 &ce->oid);
1777 }
1778 }
1779 }
1780
1781 static int merge_3way(struct merge_options *opt,
1782 const char *path,
1783 const struct object_id *o,
1784 const struct object_id *a,
1785 const struct object_id *b,
1786 const char *pathnames[3],
1787 const int extra_marker_size,
1788 mmbuffer_t *result_buf)
1789 {
1790 mmfile_t orig, src1, src2;
1791 struct ll_merge_options ll_opts = {0};
1792 char *base, *name1, *name2;
1793 enum ll_merge_result merge_status;
1794
1795 if (!opt->priv->attr_index.initialized)
1796 initialize_attr_index(opt);
1797
1798 ll_opts.renormalize = opt->renormalize;
1799 ll_opts.extra_marker_size = extra_marker_size;
1800 ll_opts.xdl_opts = opt->xdl_opts;
1801
1802 if (opt->priv->call_depth) {
1803 ll_opts.virtual_ancestor = 1;
1804 ll_opts.variant = 0;
1805 } else {
1806 switch (opt->recursive_variant) {
1807 case MERGE_VARIANT_OURS:
1808 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1809 break;
1810 case MERGE_VARIANT_THEIRS:
1811 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1812 break;
1813 default:
1814 ll_opts.variant = 0;
1815 break;
1816 }
1817 }
1818
1819 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1820 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1821 base = mkpathdup("%s", opt->ancestor);
1822 name1 = mkpathdup("%s", opt->branch1);
1823 name2 = mkpathdup("%s", opt->branch2);
1824 } else {
1825 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1826 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1827 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1828 }
1829
1830 read_mmblob(&orig, o);
1831 read_mmblob(&src1, a);
1832 read_mmblob(&src2, b);
1833
1834 merge_status = ll_merge(result_buf, path, &orig, base,
1835 &src1, name1, &src2, name2,
1836 &opt->priv->attr_index, &ll_opts);
1837 if (merge_status == LL_MERGE_BINARY_CONFLICT)
1838 path_msg(opt, path, 0,
1839 "warning: Cannot merge binary files: %s (%s vs. %s)",
1840 path, name1, name2);
1841
1842 free(base);
1843 free(name1);
1844 free(name2);
1845 free(orig.ptr);
1846 free(src1.ptr);
1847 free(src2.ptr);
1848 return merge_status;
1849 }
1850
1851 static int handle_content_merge(struct merge_options *opt,
1852 const char *path,
1853 const struct version_info *o,
1854 const struct version_info *a,
1855 const struct version_info *b,
1856 const char *pathnames[3],
1857 const int extra_marker_size,
1858 struct version_info *result)
1859 {
1860 /*
1861 * path is the target location where we want to put the file, and
1862 * is used to determine any normalization rules in ll_merge.
1863 *
1864 * The normal case is that path and all entries in pathnames are
1865 * identical, though renames can affect which path we got one of
1866 * the three blobs to merge on various sides of history.
1867 *
1868 * extra_marker_size is the amount to extend conflict markers in
1869 * ll_merge; this is neeed if we have content merges of content
1870 * merges, which happens for example with rename/rename(2to1) and
1871 * rename/add conflicts.
1872 */
1873 unsigned clean = 1;
1874
1875 /*
1876 * handle_content_merge() needs both files to be of the same type, i.e.
1877 * both files OR both submodules OR both symlinks. Conflicting types
1878 * needs to be handled elsewhere.
1879 */
1880 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
1881
1882 /* Merge modes */
1883 if (a->mode == b->mode || a->mode == o->mode)
1884 result->mode = b->mode;
1885 else {
1886 /* must be the 100644/100755 case */
1887 assert(S_ISREG(a->mode));
1888 result->mode = a->mode;
1889 clean = (b->mode == o->mode);
1890 /*
1891 * FIXME: If opt->priv->call_depth && !clean, then we really
1892 * should not make result->mode match either a->mode or
1893 * b->mode; that causes t6036 "check conflicting mode for
1894 * regular file" to fail. It would be best to use some other
1895 * mode, but we'll confuse all kinds of stuff if we use one
1896 * where S_ISREG(result->mode) isn't true, and if we use
1897 * something like 0100666, then tree-walk.c's calls to
1898 * canon_mode() will just normalize that to 100644 for us and
1899 * thus not solve anything.
1900 *
1901 * Figure out if there's some kind of way we can work around
1902 * this...
1903 */
1904 }
1905
1906 /*
1907 * Trivial oid merge.
1908 *
1909 * Note: While one might assume that the next four lines would
1910 * be unnecessary due to the fact that match_mask is often
1911 * setup and already handled, renames don't always take care
1912 * of that.
1913 */
1914 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
1915 oidcpy(&result->oid, &b->oid);
1916 else if (oideq(&b->oid, &o->oid))
1917 oidcpy(&result->oid, &a->oid);
1918
1919 /* Remaining rules depend on file vs. submodule vs. symlink. */
1920 else if (S_ISREG(a->mode)) {
1921 mmbuffer_t result_buf;
1922 int ret = 0, merge_status;
1923 int two_way;
1924
1925 /*
1926 * If 'o' is different type, treat it as null so we do a
1927 * two-way merge.
1928 */
1929 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1930
1931 merge_status = merge_3way(opt, path,
1932 two_way ? null_oid() : &o->oid,
1933 &a->oid, &b->oid,
1934 pathnames, extra_marker_size,
1935 &result_buf);
1936
1937 if ((merge_status < 0) || !result_buf.ptr)
1938 ret = err(opt, _("Failed to execute internal merge"));
1939
1940 if (!ret &&
1941 write_object_file(result_buf.ptr, result_buf.size,
1942 OBJ_BLOB, &result->oid))
1943 ret = err(opt, _("Unable to add %s to database"),
1944 path);
1945
1946 free(result_buf.ptr);
1947 if (ret)
1948 return -1;
1949 clean &= (merge_status == 0);
1950 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1951 } else if (S_ISGITLINK(a->mode)) {
1952 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1953 clean = merge_submodule(opt, pathnames[0],
1954 two_way ? null_oid() : &o->oid,
1955 &a->oid, &b->oid, &result->oid);
1956 if (opt->priv->call_depth && two_way && !clean) {
1957 result->mode = o->mode;
1958 oidcpy(&result->oid, &o->oid);
1959 }
1960 } else if (S_ISLNK(a->mode)) {
1961 if (opt->priv->call_depth) {
1962 clean = 0;
1963 result->mode = o->mode;
1964 oidcpy(&result->oid, &o->oid);
1965 } else {
1966 switch (opt->recursive_variant) {
1967 case MERGE_VARIANT_NORMAL:
1968 clean = 0;
1969 oidcpy(&result->oid, &a->oid);
1970 break;
1971 case MERGE_VARIANT_OURS:
1972 oidcpy(&result->oid, &a->oid);
1973 break;
1974 case MERGE_VARIANT_THEIRS:
1975 oidcpy(&result->oid, &b->oid);
1976 break;
1977 }
1978 }
1979 } else
1980 BUG("unsupported object type in the tree: %06o for %s",
1981 a->mode, path);
1982
1983 return clean;
1984 }
1985
1986 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1987 *** which are split into directory and regular rename detection sections. ***/
1988
1989 /*** Function Grouping: functions related to directory rename detection ***/
1990
1991 struct collision_info {
1992 struct string_list source_files;
1993 unsigned reported_already:1;
1994 };
1995
1996 /*
1997 * Return a new string that replaces the beginning portion (which matches
1998 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
1999 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
2000 * NOTE:
2001 * Caller must ensure that old_path starts with rename_info->key + '/'.
2002 */
2003 static char *apply_dir_rename(struct strmap_entry *rename_info,
2004 const char *old_path)
2005 {
2006 struct strbuf new_path = STRBUF_INIT;
2007 const char *old_dir = rename_info->key;
2008 const char *new_dir = rename_info->value;
2009 int oldlen, newlen, new_dir_len;
2010
2011 oldlen = strlen(old_dir);
2012 if (*new_dir == '\0')
2013 /*
2014 * If someone renamed/merged a subdirectory into the root
2015 * directory (e.g. 'some/subdir' -> ''), then we want to
2016 * avoid returning
2017 * '' + '/filename'
2018 * as the rename; we need to make old_path + oldlen advance
2019 * past the '/' character.
2020 */
2021 oldlen++;
2022 new_dir_len = strlen(new_dir);
2023 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
2024 strbuf_grow(&new_path, newlen);
2025 strbuf_add(&new_path, new_dir, new_dir_len);
2026 strbuf_addstr(&new_path, &old_path[oldlen]);
2027
2028 return strbuf_detach(&new_path, NULL);
2029 }
2030
2031 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
2032 {
2033 struct merged_info *mi = strmap_get(paths, path);
2034 struct conflict_info *ci;
2035 if (!mi)
2036 return 0;
2037 INITIALIZE_CI(ci, mi);
2038 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
2039 }
2040
2041 /*
2042 * See if there is a directory rename for path, and if there are any file
2043 * level conflicts on the given side for the renamed location. If there is
2044 * a rename and there are no conflicts, return the new name. Otherwise,
2045 * return NULL.
2046 */
2047 static char *handle_path_level_conflicts(struct merge_options *opt,
2048 const char *path,
2049 unsigned side_index,
2050 struct strmap_entry *rename_info,
2051 struct strmap *collisions)
2052 {
2053 char *new_path = NULL;
2054 struct collision_info *c_info;
2055 int clean = 1;
2056 struct strbuf collision_paths = STRBUF_INIT;
2057
2058 /*
2059 * entry has the mapping of old directory name to new directory name
2060 * that we want to apply to path.
2061 */
2062 new_path = apply_dir_rename(rename_info, path);
2063 if (!new_path)
2064 BUG("Failed to apply directory rename!");
2065
2066 /*
2067 * The caller needs to have ensured that it has pre-populated
2068 * collisions with all paths that map to new_path. Do a quick check
2069 * to ensure that's the case.
2070 */
2071 c_info = strmap_get(collisions, new_path);
2072 if (!c_info)
2073 BUG("c_info is NULL");
2074
2075 /*
2076 * Check for one-sided add/add/.../add conflicts, i.e.
2077 * where implicit renames from the other side doing
2078 * directory rename(s) can affect this side of history
2079 * to put multiple paths into the same location. Warn
2080 * and bail on directory renames for such paths.
2081 */
2082 if (c_info->reported_already) {
2083 clean = 0;
2084 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
2085 c_info->reported_already = 1;
2086 strbuf_add_separated_string_list(&collision_paths, ", ",
2087 &c_info->source_files);
2088 path_msg(opt, new_path, 0,
2089 _("CONFLICT (implicit dir rename): Existing file/dir "
2090 "at %s in the way of implicit directory rename(s) "
2091 "putting the following path(s) there: %s."),
2092 new_path, collision_paths.buf);
2093 clean = 0;
2094 } else if (c_info->source_files.nr > 1) {
2095 c_info->reported_already = 1;
2096 strbuf_add_separated_string_list(&collision_paths, ", ",
2097 &c_info->source_files);
2098 path_msg(opt, new_path, 0,
2099 _("CONFLICT (implicit dir rename): Cannot map more "
2100 "than one path to %s; implicit directory renames "
2101 "tried to put these paths there: %s"),
2102 new_path, collision_paths.buf);
2103 clean = 0;
2104 }
2105
2106 /* Free memory we no longer need */
2107 strbuf_release(&collision_paths);
2108 if (!clean && new_path) {
2109 free(new_path);
2110 return NULL;
2111 }
2112
2113 return new_path;
2114 }
2115
2116 static void get_provisional_directory_renames(struct merge_options *opt,
2117 unsigned side,
2118 int *clean)
2119 {
2120 struct hashmap_iter iter;
2121 struct strmap_entry *entry;
2122 struct rename_info *renames = &opt->priv->renames;
2123
2124 /*
2125 * Collapse
2126 * dir_rename_count: old_directory -> {new_directory -> count}
2127 * down to
2128 * dir_renames: old_directory -> best_new_directory
2129 * where best_new_directory is the one with the unique highest count.
2130 */
2131 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
2132 const char *source_dir = entry->key;
2133 struct strintmap *counts = entry->value;
2134 struct hashmap_iter count_iter;
2135 struct strmap_entry *count_entry;
2136 int max = 0;
2137 int bad_max = 0;
2138 const char *best = NULL;
2139
2140 strintmap_for_each_entry(counts, &count_iter, count_entry) {
2141 const char *target_dir = count_entry->key;
2142 intptr_t count = (intptr_t)count_entry->value;
2143
2144 if (count == max)
2145 bad_max = max;
2146 else if (count > max) {
2147 max = count;
2148 best = target_dir;
2149 }
2150 }
2151
2152 if (max == 0)
2153 continue;
2154
2155 if (bad_max == max) {
2156 path_msg(opt, source_dir, 0,
2157 _("CONFLICT (directory rename split): "
2158 "Unclear where to rename %s to; it was "
2159 "renamed to multiple other directories, with "
2160 "no destination getting a majority of the "
2161 "files."),
2162 source_dir);
2163 *clean = 0;
2164 } else {
2165 strmap_put(&renames->dir_renames[side],
2166 source_dir, (void*)best);
2167 }
2168 }
2169 }
2170
2171 static void handle_directory_level_conflicts(struct merge_options *opt)
2172 {
2173 struct hashmap_iter iter;
2174 struct strmap_entry *entry;
2175 struct string_list duplicated = STRING_LIST_INIT_NODUP;
2176 struct rename_info *renames = &opt->priv->renames;
2177 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
2178 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
2179 int i;
2180
2181 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
2182 if (strmap_contains(side2_dir_renames, entry->key))
2183 string_list_append(&duplicated, entry->key);
2184 }
2185
2186 for (i = 0; i < duplicated.nr; i++) {
2187 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
2188 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
2189 }
2190 string_list_clear(&duplicated, 0);
2191 }
2192
2193 static struct strmap_entry *check_dir_renamed(const char *path,
2194 struct strmap *dir_renames)
2195 {
2196 char *temp = xstrdup(path);
2197 char *end;
2198 struct strmap_entry *e = NULL;
2199
2200 while ((end = strrchr(temp, '/'))) {
2201 *end = '\0';
2202 e = strmap_get_entry(dir_renames, temp);
2203 if (e)
2204 break;
2205 }
2206 free(temp);
2207 return e;
2208 }
2209
2210 static void compute_collisions(struct strmap *collisions,
2211 struct strmap *dir_renames,
2212 struct diff_queue_struct *pairs)
2213 {
2214 int i;
2215
2216 strmap_init_with_options(collisions, NULL, 0);
2217 if (strmap_empty(dir_renames))
2218 return;
2219
2220 /*
2221 * Multiple files can be mapped to the same path due to directory
2222 * renames done by the other side of history. Since that other
2223 * side of history could have merged multiple directories into one,
2224 * if our side of history added the same file basename to each of
2225 * those directories, then all N of them would get implicitly
2226 * renamed by the directory rename detection into the same path,
2227 * and we'd get an add/add/.../add conflict, and all those adds
2228 * from *this* side of history. This is not representable in the
2229 * index, and users aren't going to easily be able to make sense of
2230 * it. So we need to provide a good warning about what's
2231 * happening, and fall back to no-directory-rename detection
2232 * behavior for those paths.
2233 *
2234 * See testcases 9e and all of section 5 from t6043 for examples.
2235 */
2236 for (i = 0; i < pairs->nr; ++i) {
2237 struct strmap_entry *rename_info;
2238 struct collision_info *collision_info;
2239 char *new_path;
2240 struct diff_filepair *pair = pairs->queue[i];
2241
2242 if (pair->status != 'A' && pair->status != 'R')
2243 continue;
2244 rename_info = check_dir_renamed(pair->two->path, dir_renames);
2245 if (!rename_info)
2246 continue;
2247
2248 new_path = apply_dir_rename(rename_info, pair->two->path);
2249 assert(new_path);
2250 collision_info = strmap_get(collisions, new_path);
2251 if (collision_info) {
2252 free(new_path);
2253 } else {
2254 CALLOC_ARRAY(collision_info, 1);
2255 string_list_init_nodup(&collision_info->source_files);
2256 strmap_put(collisions, new_path, collision_info);
2257 }
2258 string_list_insert(&collision_info->source_files,
2259 pair->two->path);
2260 }
2261 }
2262
2263 static void free_collisions(struct strmap *collisions)
2264 {
2265 struct hashmap_iter iter;
2266 struct strmap_entry *entry;
2267
2268 /* Free each value in the collisions map */
2269 strmap_for_each_entry(collisions, &iter, entry) {
2270 struct collision_info *info = entry->value;
2271 string_list_clear(&info->source_files, 0);
2272 }
2273 /*
2274 * In compute_collisions(), we set collisions.strdup_strings to 0
2275 * so that we wouldn't have to make another copy of the new_path
2276 * allocated by apply_dir_rename(). But now that we've used them
2277 * and have no other references to these strings, it is time to
2278 * deallocate them.
2279 */
2280 free_strmap_strings(collisions);
2281 strmap_clear(collisions, 1);
2282 }
2283
2284 static char *check_for_directory_rename(struct merge_options *opt,
2285 const char *path,
2286 unsigned side_index,
2287 struct strmap *dir_renames,
2288 struct strmap *dir_rename_exclusions,
2289 struct strmap *collisions,
2290 int *clean_merge)
2291 {
2292 char *new_path;
2293 struct strmap_entry *rename_info;
2294 struct strmap_entry *otherinfo;
2295 const char *new_dir;
2296 int other_side = 3 - side_index;
2297
2298 /*
2299 * Cases where we don't have or don't want a directory rename for
2300 * this path.
2301 */
2302 if (strmap_empty(dir_renames))
2303 return NULL;
2304 if (strmap_get(&collisions[other_side], path))
2305 return NULL;
2306 rename_info = check_dir_renamed(path, dir_renames);
2307 if (!rename_info)
2308 return NULL;
2309
2310 /*
2311 * This next part is a little weird. We do not want to do an
2312 * implicit rename into a directory we renamed on our side, because
2313 * that will result in a spurious rename/rename(1to2) conflict. An
2314 * example:
2315 * Base commit: dumbdir/afile, otherdir/bfile
2316 * Side 1: smrtdir/afile, otherdir/bfile
2317 * Side 2: dumbdir/afile, dumbdir/bfile
2318 * Here, while working on Side 1, we could notice that otherdir was
2319 * renamed/merged to dumbdir, and change the diff_filepair for
2320 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
2321 * 2 will notice the rename from dumbdir to smrtdir, and do the
2322 * transitive rename to move it from dumbdir/bfile to
2323 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
2324 * smrtdir, a rename/rename(1to2) conflict. We really just want
2325 * the file to end up in smrtdir. And the way to achieve that is
2326 * to not let Side1 do the rename to dumbdir, since we know that is
2327 * the source of one of our directory renames.
2328 *
2329 * That's why otherinfo and dir_rename_exclusions is here.
2330 *
2331 * As it turns out, this also prevents N-way transient rename
2332 * confusion; See testcases 9c and 9d of t6043.
2333 */
2334 new_dir = rename_info->value; /* old_dir = rename_info->key; */
2335 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
2336 if (otherinfo) {
2337 path_msg(opt, rename_info->key, 1,
2338 _("WARNING: Avoiding applying %s -> %s rename "
2339 "to %s, because %s itself was renamed."),
2340 rename_info->key, new_dir, path, new_dir);
2341 return NULL;
2342 }
2343
2344 new_path = handle_path_level_conflicts(opt, path, side_index,
2345 rename_info,
2346 &collisions[side_index]);
2347 *clean_merge &= (new_path != NULL);
2348
2349 return new_path;
2350 }
2351
2352 static void apply_directory_rename_modifications(struct merge_options *opt,
2353 struct diff_filepair *pair,
2354 char *new_path)
2355 {
2356 /*
2357 * The basic idea is to get the conflict_info from opt->priv->paths
2358 * at old path, and insert it into new_path; basically just this:
2359 * ci = strmap_get(&opt->priv->paths, old_path);
2360 * strmap_remove(&opt->priv->paths, old_path, 0);
2361 * strmap_put(&opt->priv->paths, new_path, ci);
2362 * However, there are some factors complicating this:
2363 * - opt->priv->paths may already have an entry at new_path
2364 * - Each ci tracks its containing directory, so we need to
2365 * update that
2366 * - If another ci has the same containing directory, then
2367 * the two char*'s MUST point to the same location. See the
2368 * comment in struct merged_info. strcmp equality is not
2369 * enough; we need pointer equality.
2370 * - opt->priv->paths must hold the parent directories of any
2371 * entries that are added. So, if this directory rename
2372 * causes entirely new directories, we must recursively add
2373 * parent directories.
2374 * - For each parent directory added to opt->priv->paths, we
2375 * also need to get its parent directory stored in its
2376 * conflict_info->merged.directory_name with all the same
2377 * requirements about pointer equality.
2378 */
2379 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
2380 struct conflict_info *ci, *new_ci;
2381 struct strmap_entry *entry;
2382 const char *branch_with_new_path, *branch_with_dir_rename;
2383 const char *old_path = pair->two->path;
2384 const char *parent_name;
2385 const char *cur_path;
2386 int i, len;
2387
2388 entry = strmap_get_entry(&opt->priv->paths, old_path);
2389 old_path = entry->key;
2390 ci = entry->value;
2391 VERIFY_CI(ci);
2392
2393 /* Find parent directories missing from opt->priv->paths */
2394 cur_path = mem_pool_strdup(&opt->priv->pool, new_path);
2395 free((char*)new_path);
2396 new_path = (char *)cur_path;
2397
2398 while (1) {
2399 /* Find the parent directory of cur_path */
2400 char *last_slash = strrchr(cur_path, '/');
2401 if (last_slash) {
2402 parent_name = mem_pool_strndup(&opt->priv->pool,
2403 cur_path,
2404 last_slash - cur_path);
2405 } else {
2406 parent_name = opt->priv->toplevel_dir;
2407 break;
2408 }
2409
2410 /* Look it up in opt->priv->paths */
2411 entry = strmap_get_entry(&opt->priv->paths, parent_name);
2412 if (entry) {
2413 parent_name = entry->key; /* reuse known pointer */
2414 break;
2415 }
2416
2417 /* Record this is one of the directories we need to insert */
2418 string_list_append(&dirs_to_insert, parent_name);
2419 cur_path = parent_name;
2420 }
2421
2422 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
2423 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
2424 struct conflict_info *dir_ci;
2425 char *cur_dir = dirs_to_insert.items[i].string;
2426
2427 CALLOC_ARRAY(dir_ci, 1);
2428
2429 dir_ci->merged.directory_name = parent_name;
2430 len = strlen(parent_name);
2431 /* len+1 because of trailing '/' character */
2432 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
2433 dir_ci->dirmask = ci->filemask;
2434 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
2435
2436 parent_name = cur_dir;
2437 }
2438
2439 assert(ci->filemask == 2 || ci->filemask == 4);
2440 assert(ci->dirmask == 0);
2441 strmap_remove(&opt->priv->paths, old_path, 0);
2442
2443 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2444 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2445
2446 /* Now, finally update ci and stick it into opt->priv->paths */
2447 ci->merged.directory_name = parent_name;
2448 len = strlen(parent_name);
2449 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2450 new_ci = strmap_get(&opt->priv->paths, new_path);
2451 if (!new_ci) {
2452 /* Place ci back into opt->priv->paths, but at new_path */
2453 strmap_put(&opt->priv->paths, new_path, ci);
2454 } else {
2455 int index;
2456
2457 /* A few sanity checks */
2458 VERIFY_CI(new_ci);
2459 assert(ci->filemask == 2 || ci->filemask == 4);
2460 assert((new_ci->filemask & ci->filemask) == 0);
2461 assert(!new_ci->merged.clean);
2462
2463 /* Copy stuff from ci into new_ci */
2464 new_ci->filemask |= ci->filemask;
2465 if (new_ci->dirmask)
2466 new_ci->df_conflict = 1;
2467 index = (ci->filemask >> 1);
2468 new_ci->pathnames[index] = ci->pathnames[index];
2469 new_ci->stages[index].mode = ci->stages[index].mode;
2470 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2471
2472 ci = new_ci;
2473 }
2474
2475 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2476 /* Notify user of updated path */
2477 if (pair->status == 'A')
2478 path_msg(opt, new_path, 1,
2479 _("Path updated: %s added in %s inside a "
2480 "directory that was renamed in %s; moving "
2481 "it to %s."),
2482 old_path, branch_with_new_path,
2483 branch_with_dir_rename, new_path);
2484 else
2485 path_msg(opt, new_path, 1,
2486 _("Path updated: %s renamed to %s in %s, "
2487 "inside a directory that was renamed in %s; "
2488 "moving it to %s."),
2489 pair->one->path, old_path, branch_with_new_path,
2490 branch_with_dir_rename, new_path);
2491 } else {
2492 /*
2493 * opt->detect_directory_renames has the value
2494 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2495 */
2496 ci->path_conflict = 1;
2497 if (pair->status == 'A')
2498 path_msg(opt, new_path, 1,
2499 _("CONFLICT (file location): %s added in %s "
2500 "inside a directory that was renamed in %s, "
2501 "suggesting it should perhaps be moved to "
2502 "%s."),
2503 old_path, branch_with_new_path,
2504 branch_with_dir_rename, new_path);
2505 else
2506 path_msg(opt, new_path, 1,
2507 _("CONFLICT (file location): %s renamed to %s "
2508 "in %s, inside a directory that was renamed "
2509 "in %s, suggesting it should perhaps be "
2510 "moved to %s."),
2511 pair->one->path, old_path, branch_with_new_path,
2512 branch_with_dir_rename, new_path);
2513 }
2514
2515 /*
2516 * Finally, record the new location.
2517 */
2518 pair->two->path = new_path;
2519 }
2520
2521 /*** Function Grouping: functions related to regular rename detection ***/
2522
2523 static int process_renames(struct merge_options *opt,
2524 struct diff_queue_struct *renames)
2525 {
2526 int clean_merge = 1, i;
2527
2528 for (i = 0; i < renames->nr; ++i) {
2529 const char *oldpath = NULL, *newpath;
2530 struct diff_filepair *pair = renames->queue[i];
2531 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2532 struct strmap_entry *old_ent, *new_ent;
2533 unsigned int old_sidemask;
2534 int target_index, other_source_index;
2535 int source_deleted, collision, type_changed;
2536 const char *rename_branch = NULL, *delete_branch = NULL;
2537
2538 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2539 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2540 if (old_ent) {
2541 oldpath = old_ent->key;
2542 oldinfo = old_ent->value;
2543 }
2544 newpath = pair->two->path;
2545 if (new_ent) {
2546 newpath = new_ent->key;
2547 newinfo = new_ent->value;
2548 }
2549
2550 /*
2551 * If pair->one->path isn't in opt->priv->paths, that means
2552 * that either directory rename detection removed that
2553 * path, or a parent directory of oldpath was resolved and
2554 * we don't even need the rename; in either case, we can
2555 * skip it. If oldinfo->merged.clean, then the other side
2556 * of history had no changes to oldpath and we don't need
2557 * the rename and can skip it.
2558 */
2559 if (!oldinfo || oldinfo->merged.clean)
2560 continue;
2561
2562 /*
2563 * diff_filepairs have copies of pathnames, thus we have to
2564 * use standard 'strcmp()' (negated) instead of '=='.
2565 */
2566 if (i + 1 < renames->nr &&
2567 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2568 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2569 const char *pathnames[3];
2570 struct version_info merged;
2571 struct conflict_info *base, *side1, *side2;
2572 unsigned was_binary_blob = 0;
2573
2574 pathnames[0] = oldpath;
2575 pathnames[1] = newpath;
2576 pathnames[2] = renames->queue[i+1]->two->path;
2577
2578 base = strmap_get(&opt->priv->paths, pathnames[0]);
2579 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2580 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2581
2582 VERIFY_CI(base);
2583 VERIFY_CI(side1);
2584 VERIFY_CI(side2);
2585
2586 if (!strcmp(pathnames[1], pathnames[2])) {
2587 struct rename_info *ri = &opt->priv->renames;
2588 int j;
2589
2590 /* Both sides renamed the same way */
2591 assert(side1 == side2);
2592 memcpy(&side1->stages[0], &base->stages[0],
2593 sizeof(merged));
2594 side1->filemask |= (1 << MERGE_BASE);
2595 /* Mark base as resolved by removal */
2596 base->merged.is_null = 1;
2597 base->merged.clean = 1;
2598
2599 /*
2600 * Disable remembering renames optimization;
2601 * rename/rename(1to1) is incredibly rare, and
2602 * just disabling the optimization is easier
2603 * than purging cached_pairs,
2604 * cached_target_names, and dir_rename_counts.
2605 */
2606 for (j = 0; j < 3; j++)
2607 ri->merge_trees[j] = NULL;
2608
2609 /* We handled both renames, i.e. i+1 handled */
2610 i++;
2611 /* Move to next rename */
2612 continue;
2613 }
2614
2615 /* This is a rename/rename(1to2) */
2616 clean_merge = handle_content_merge(opt,
2617 pair->one->path,
2618 &base->stages[0],
2619 &side1->stages[1],
2620 &side2->stages[2],
2621 pathnames,
2622 1 + 2 * opt->priv->call_depth,
2623 &merged);
2624 if (!clean_merge &&
2625 merged.mode == side1->stages[1].mode &&
2626 oideq(&merged.oid, &side1->stages[1].oid))
2627 was_binary_blob = 1;
2628 memcpy(&side1->stages[1], &merged, sizeof(merged));
2629 if (was_binary_blob) {
2630 /*
2631 * Getting here means we were attempting to
2632 * merge a binary blob.
2633 *
2634 * Since we can't merge binaries,
2635 * handle_content_merge() just takes one
2636 * side. But we don't want to copy the
2637 * contents of one side to both paths. We
2638 * used the contents of side1 above for
2639 * side1->stages, let's use the contents of
2640 * side2 for side2->stages below.
2641 */
2642 oidcpy(&merged.oid, &side2->stages[2].oid);
2643 merged.mode = side2->stages[2].mode;
2644 }
2645 memcpy(&side2->stages[2], &merged, sizeof(merged));
2646
2647 side1->path_conflict = 1;
2648 side2->path_conflict = 1;
2649 /*
2650 * TODO: For renames we normally remove the path at the
2651 * old name. It would thus seem consistent to do the
2652 * same for rename/rename(1to2) cases, but we haven't
2653 * done so traditionally and a number of the regression
2654 * tests now encode an expectation that the file is
2655 * left there at stage 1. If we ever decide to change
2656 * this, add the following two lines here:
2657 * base->merged.is_null = 1;
2658 * base->merged.clean = 1;
2659 * and remove the setting of base->path_conflict to 1.
2660 */
2661 base->path_conflict = 1;
2662 path_msg(opt, oldpath, 0,
2663 _("CONFLICT (rename/rename): %s renamed to "
2664 "%s in %s and to %s in %s."),
2665 pathnames[0],
2666 pathnames[1], opt->branch1,
2667 pathnames[2], opt->branch2);
2668
2669 i++; /* We handled both renames, i.e. i+1 handled */
2670 continue;
2671 }
2672
2673 VERIFY_CI(oldinfo);
2674 VERIFY_CI(newinfo);
2675 target_index = pair->score; /* from collect_renames() */
2676 assert(target_index == 1 || target_index == 2);
2677 other_source_index = 3 - target_index;
2678 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2679 source_deleted = (oldinfo->filemask == 1);
2680 collision = ((newinfo->filemask & old_sidemask) != 0);
2681 type_changed = !source_deleted &&
2682 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2683 S_ISREG(newinfo->stages[target_index].mode));
2684 if (type_changed && collision) {
2685 /*
2686 * special handling so later blocks can handle this...
2687 *
2688 * if type_changed && collision are both true, then this
2689 * was really a double rename, but one side wasn't
2690 * detected due to lack of break detection. I.e.
2691 * something like
2692 * orig: has normal file 'foo'
2693 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2694 * side2: renames 'foo' to 'bar'
2695 * In this case, the foo->bar rename on side1 won't be
2696 * detected because the new symlink named 'foo' is
2697 * there and we don't do break detection. But we detect
2698 * this here because we don't want to merge the content
2699 * of the foo symlink with the foo->bar file, so we
2700 * have some logic to handle this special case. The
2701 * easiest way to do that is make 'bar' on side1 not
2702 * be considered a colliding file but the other part
2703 * of a normal rename. If the file is very different,
2704 * well we're going to get content merge conflicts
2705 * anyway so it doesn't hurt. And if the colliding
2706 * file also has a different type, that'll be handled
2707 * by the content merge logic in process_entry() too.
2708 *
2709 * See also t6430, 'rename vs. rename/symlink'
2710 */
2711 collision = 0;
2712 }
2713 if (source_deleted) {
2714 if (target_index == 1) {
2715 rename_branch = opt->branch1;
2716 delete_branch = opt->branch2;
2717 } else {
2718 rename_branch = opt->branch2;
2719 delete_branch = opt->branch1;
2720 }
2721 }
2722
2723 assert(source_deleted || oldinfo->filemask & old_sidemask);
2724
2725 /* Need to check for special types of rename conflicts... */
2726 if (collision && !source_deleted) {
2727 /* collision: rename/add or rename/rename(2to1) */
2728 const char *pathnames[3];
2729 struct version_info merged;
2730
2731 struct conflict_info *base, *side1, *side2;
2732 unsigned clean;
2733
2734 pathnames[0] = oldpath;
2735 pathnames[other_source_index] = oldpath;
2736 pathnames[target_index] = newpath;
2737
2738 base = strmap_get(&opt->priv->paths, pathnames[0]);
2739 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2740 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2741
2742 VERIFY_CI(base);
2743 VERIFY_CI(side1);
2744 VERIFY_CI(side2);
2745
2746 clean = handle_content_merge(opt, pair->one->path,
2747 &base->stages[0],
2748 &side1->stages[1],
2749 &side2->stages[2],
2750 pathnames,
2751 1 + 2 * opt->priv->call_depth,
2752 &merged);
2753
2754 memcpy(&newinfo->stages[target_index], &merged,
2755 sizeof(merged));
2756 if (!clean) {
2757 path_msg(opt, newpath, 0,
2758 _("CONFLICT (rename involved in "
2759 "collision): rename of %s -> %s has "
2760 "content conflicts AND collides "
2761 "with another path; this may result "
2762 "in nested conflict markers."),
2763 oldpath, newpath);
2764 }
2765 } else if (collision && source_deleted) {
2766 /*
2767 * rename/add/delete or rename/rename(2to1)/delete:
2768 * since oldpath was deleted on the side that didn't
2769 * do the rename, there's not much of a content merge
2770 * we can do for the rename. oldinfo->merged.is_null
2771 * was already set, so we just leave things as-is so
2772 * they look like an add/add conflict.
2773 */
2774
2775 newinfo->path_conflict = 1;
2776 path_msg(opt, newpath, 0,
2777 _("CONFLICT (rename/delete): %s renamed "
2778 "to %s in %s, but deleted in %s."),
2779 oldpath, newpath, rename_branch, delete_branch);
2780 } else {
2781 /*
2782 * a few different cases...start by copying the
2783 * existing stage(s) from oldinfo over the newinfo
2784 * and update the pathname(s).
2785 */
2786 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
2787 sizeof(newinfo->stages[0]));
2788 newinfo->filemask |= (1 << MERGE_BASE);
2789 newinfo->pathnames[0] = oldpath;
2790 if (type_changed) {
2791 /* rename vs. typechange */
2792 /* Mark the original as resolved by removal */
2793 memcpy(&oldinfo->stages[0].oid, null_oid(),
2794 sizeof(oldinfo->stages[0].oid));
2795 oldinfo->stages[0].mode = 0;
2796 oldinfo->filemask &= 0x06;
2797 } else if (source_deleted) {
2798 /* rename/delete */
2799 newinfo->path_conflict = 1;
2800 path_msg(opt, newpath, 0,
2801 _("CONFLICT (rename/delete): %s renamed"
2802 " to %s in %s, but deleted in %s."),
2803 oldpath, newpath,
2804 rename_branch, delete_branch);
2805 } else {
2806 /* normal rename */
2807 memcpy(&newinfo->stages[other_source_index],
2808 &oldinfo->stages[other_source_index],
2809 sizeof(newinfo->stages[0]));
2810 newinfo->filemask |= (1 << other_source_index);
2811 newinfo->pathnames[other_source_index] = oldpath;
2812 }
2813 }
2814
2815 if (!type_changed) {
2816 /* Mark the original as resolved by removal */
2817 oldinfo->merged.is_null = 1;
2818 oldinfo->merged.clean = 1;
2819 }
2820
2821 }
2822
2823 return clean_merge;
2824 }
2825
2826 static inline int possible_side_renames(struct rename_info *renames,
2827 unsigned side_index)
2828 {
2829 return renames->pairs[side_index].nr > 0 &&
2830 !strintmap_empty(&renames->relevant_sources[side_index]);
2831 }
2832
2833 static inline int possible_renames(struct rename_info *renames)
2834 {
2835 return possible_side_renames(renames, 1) ||
2836 possible_side_renames(renames, 2) ||
2837 !strmap_empty(&renames->cached_pairs[1]) ||
2838 !strmap_empty(&renames->cached_pairs[2]);
2839 }
2840
2841 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
2842 {
2843 /*
2844 * A simplified version of diff_resolve_rename_copy(); would probably
2845 * just use that function but it's static...
2846 */
2847 int i;
2848 struct diff_filepair *p;
2849
2850 for (i = 0; i < q->nr; ++i) {
2851 p = q->queue[i];
2852 p->status = 0; /* undecided */
2853 if (!DIFF_FILE_VALID(p->one))
2854 p->status = DIFF_STATUS_ADDED;
2855 else if (!DIFF_FILE_VALID(p->two))
2856 p->status = DIFF_STATUS_DELETED;
2857 else if (DIFF_PAIR_RENAME(p))
2858 p->status = DIFF_STATUS_RENAMED;
2859 }
2860 }
2861
2862 static void prune_cached_from_relevant(struct rename_info *renames,
2863 unsigned side)
2864 {
2865 /* Reason for this function described in add_pair() */
2866 struct hashmap_iter iter;
2867 struct strmap_entry *entry;
2868
2869 /* Remove from relevant_sources all entries in cached_pairs[side] */
2870 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
2871 strintmap_remove(&renames->relevant_sources[side],
2872 entry->key);
2873 }
2874 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
2875 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
2876 strintmap_remove(&renames->relevant_sources[side],
2877 entry->key);
2878 }
2879 }
2880
2881 static void use_cached_pairs(struct merge_options *opt,
2882 struct strmap *cached_pairs,
2883 struct diff_queue_struct *pairs)
2884 {
2885 struct hashmap_iter iter;
2886 struct strmap_entry *entry;
2887
2888 /*
2889 * Add to side_pairs all entries from renames->cached_pairs[side_index].
2890 * (Info in cached_irrelevant[side_index] is not relevant here.)
2891 */
2892 strmap_for_each_entry(cached_pairs, &iter, entry) {
2893 struct diff_filespec *one, *two;
2894 const char *old_name = entry->key;
2895 const char *new_name = entry->value;
2896 if (!new_name)
2897 new_name = old_name;
2898
2899 /*
2900 * cached_pairs has *copies* of old_name and new_name,
2901 * because it has to persist across merges. Since
2902 * pool_alloc_filespec() will just re-use the existing
2903 * filenames, which will also get re-used by
2904 * opt->priv->paths if they become renames, and then
2905 * get freed at the end of the merge, that would leave
2906 * the copy in cached_pairs dangling. Avoid this by
2907 * making a copy here.
2908 */
2909 old_name = mem_pool_strdup(&opt->priv->pool, old_name);
2910 new_name = mem_pool_strdup(&opt->priv->pool, new_name);
2911
2912 /* We don't care about oid/mode, only filenames and status */
2913 one = pool_alloc_filespec(&opt->priv->pool, old_name);
2914 two = pool_alloc_filespec(&opt->priv->pool, new_name);
2915 pool_diff_queue(&opt->priv->pool, pairs, one, two);
2916 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
2917 }
2918 }
2919
2920 static void cache_new_pair(struct rename_info *renames,
2921 int side,
2922 char *old_path,
2923 char *new_path,
2924 int free_old_value)
2925 {
2926 char *old_value;
2927 new_path = xstrdup(new_path);
2928 old_value = strmap_put(&renames->cached_pairs[side],
2929 old_path, new_path);
2930 strset_add(&renames->cached_target_names[side], new_path);
2931 if (free_old_value)
2932 free(old_value);
2933 else
2934 assert(!old_value);
2935 }
2936
2937 static void possibly_cache_new_pair(struct rename_info *renames,
2938 struct diff_filepair *p,
2939 unsigned side,
2940 char *new_path)
2941 {
2942 int dir_renamed_side = 0;
2943
2944 if (new_path) {
2945 /*
2946 * Directory renames happen on the other side of history from
2947 * the side that adds new files to the old directory.
2948 */
2949 dir_renamed_side = 3 - side;
2950 } else {
2951 int val = strintmap_get(&renames->relevant_sources[side],
2952 p->one->path);
2953 if (val == RELEVANT_NO_MORE) {
2954 assert(p->status == 'D');
2955 strset_add(&renames->cached_irrelevant[side],
2956 p->one->path);
2957 }
2958 if (val <= 0)
2959 return;
2960 }
2961
2962 if (p->status == 'D') {
2963 /*
2964 * If we already had this delete, we'll just set it's value
2965 * to NULL again, so no harm.
2966 */
2967 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
2968 } else if (p->status == 'R') {
2969 if (!new_path)
2970 new_path = p->two->path;
2971 else
2972 cache_new_pair(renames, dir_renamed_side,
2973 p->two->path, new_path, 0);
2974 cache_new_pair(renames, side, p->one->path, new_path, 1);
2975 } else if (p->status == 'A' && new_path) {
2976 cache_new_pair(renames, dir_renamed_side,
2977 p->two->path, new_path, 0);
2978 }
2979 }
2980
2981 static int compare_pairs(const void *a_, const void *b_)
2982 {
2983 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
2984 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
2985
2986 return strcmp(a->one->path, b->one->path);
2987 }
2988
2989 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
2990 static int detect_regular_renames(struct merge_options *opt,
2991 unsigned side_index)
2992 {
2993 struct diff_options diff_opts;
2994 struct rename_info *renames = &opt->priv->renames;
2995
2996 prune_cached_from_relevant(renames, side_index);
2997 if (!possible_side_renames(renames, side_index)) {
2998 /*
2999 * No rename detection needed for this side, but we still need
3000 * to make sure 'adds' are marked correctly in case the other
3001 * side had directory renames.
3002 */
3003 resolve_diffpair_statuses(&renames->pairs[side_index]);
3004 return 0;
3005 }
3006
3007 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
3008 repo_diff_setup(opt->repo, &diff_opts);
3009 diff_opts.flags.recursive = 1;
3010 diff_opts.flags.rename_empty = 0;
3011 diff_opts.detect_rename = DIFF_DETECT_RENAME;
3012 diff_opts.rename_limit = opt->rename_limit;
3013 if (opt->rename_limit <= 0)
3014 diff_opts.rename_limit = 7000;
3015 diff_opts.rename_score = opt->rename_score;
3016 diff_opts.show_rename_progress = opt->show_rename_progress;
3017 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
3018 diff_setup_done(&diff_opts);
3019
3020 diff_queued_diff = renames->pairs[side_index];
3021 trace2_region_enter("diff", "diffcore_rename", opt->repo);
3022 diffcore_rename_extended(&diff_opts,
3023 &opt->priv->pool,
3024 &renames->relevant_sources[side_index],
3025 &renames->dirs_removed[side_index],
3026 &renames->dir_rename_count[side_index],
3027 &renames->cached_pairs[side_index]);
3028 trace2_region_leave("diff", "diffcore_rename", opt->repo);
3029 resolve_diffpair_statuses(&diff_queued_diff);
3030
3031 if (diff_opts.needed_rename_limit > 0)
3032 renames->redo_after_renames = 0;
3033 if (diff_opts.needed_rename_limit > renames->needed_limit)
3034 renames->needed_limit = diff_opts.needed_rename_limit;
3035
3036 renames->pairs[side_index] = diff_queued_diff;
3037
3038 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
3039 diff_queued_diff.nr = 0;
3040 diff_queued_diff.queue = NULL;
3041 diff_flush(&diff_opts);
3042
3043 return 1;
3044 }
3045
3046 /*
3047 * Get information of all renames which occurred in 'side_pairs', making use
3048 * of any implicit directory renames in side_dir_renames (also making use of
3049 * implicit directory renames rename_exclusions as needed by
3050 * check_for_directory_rename()). Add all (updated) renames into result.
3051 */
3052 static int collect_renames(struct merge_options *opt,
3053 struct diff_queue_struct *result,
3054 unsigned side_index,
3055 struct strmap *collisions,
3056 struct strmap *dir_renames_for_side,
3057 struct strmap *rename_exclusions)
3058 {
3059 int i, clean = 1;
3060 struct diff_queue_struct *side_pairs;
3061 struct rename_info *renames = &opt->priv->renames;
3062
3063 side_pairs = &renames->pairs[side_index];
3064
3065 for (i = 0; i < side_pairs->nr; ++i) {
3066 struct diff_filepair *p = side_pairs->queue[i];
3067 char *new_path; /* non-NULL only with directory renames */
3068
3069 if (p->status != 'A' && p->status != 'R') {
3070 possibly_cache_new_pair(renames, p, side_index, NULL);
3071 pool_diff_free_filepair(&opt->priv->pool, p);
3072 continue;
3073 }
3074
3075 new_path = check_for_directory_rename(opt, p->two->path,
3076 side_index,
3077 dir_renames_for_side,
3078 rename_exclusions,
3079 collisions,
3080 &clean);
3081
3082 possibly_cache_new_pair(renames, p, side_index, new_path);
3083 if (p->status != 'R' && !new_path) {
3084 pool_diff_free_filepair(&opt->priv->pool, p);
3085 continue;
3086 }
3087
3088 if (new_path)
3089 apply_directory_rename_modifications(opt, p, new_path);
3090
3091 /*
3092 * p->score comes back from diffcore_rename_extended() with
3093 * the similarity of the renamed file. The similarity is
3094 * was used to determine that the two files were related
3095 * and are a rename, which we have already used, but beyond
3096 * that we have no use for the similarity. So p->score is
3097 * now irrelevant. However, process_renames() will need to
3098 * know which side of the merge this rename was associated
3099 * with, so overwrite p->score with that value.
3100 */
3101 p->score = side_index;
3102 result->queue[result->nr++] = p;
3103 }
3104
3105 return clean;
3106 }
3107
3108 static int detect_and_process_renames(struct merge_options *opt,
3109 struct tree *merge_base,
3110 struct tree *side1,
3111 struct tree *side2)
3112 {
3113 struct diff_queue_struct combined = { 0 };
3114 struct rename_info *renames = &opt->priv->renames;
3115 struct strmap collisions[3];
3116 int need_dir_renames, s, i, clean = 1;
3117 unsigned detection_run = 0;
3118
3119 if (!possible_renames(renames))
3120 goto cleanup;
3121
3122 trace2_region_enter("merge", "regular renames", opt->repo);
3123 detection_run |= detect_regular_renames(opt, MERGE_SIDE1);
3124 detection_run |= detect_regular_renames(opt, MERGE_SIDE2);
3125 if (renames->needed_limit) {
3126 renames->cached_pairs_valid_side = 0;
3127 renames->redo_after_renames = 0;
3128 }
3129 if (renames->redo_after_renames && detection_run) {
3130 int i, side;
3131 struct diff_filepair *p;
3132
3133 /* Cache the renames, we found */
3134 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
3135 for (i = 0; i < renames->pairs[side].nr; ++i) {
3136 p = renames->pairs[side].queue[i];
3137 possibly_cache_new_pair(renames, p, side, NULL);
3138 }
3139 }
3140
3141 /* Restart the merge with the cached renames */
3142 renames->redo_after_renames = 2;
3143 trace2_region_leave("merge", "regular renames", opt->repo);
3144 goto cleanup;
3145 }
3146 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
3147 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
3148 trace2_region_leave("merge", "regular renames", opt->repo);
3149
3150 trace2_region_enter("merge", "directory renames", opt->repo);
3151 need_dir_renames =
3152 !opt->priv->call_depth &&
3153 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
3154 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
3155
3156 if (need_dir_renames) {
3157 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
3158 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
3159 handle_directory_level_conflicts(opt);
3160 }
3161
3162 ALLOC_GROW(combined.queue,
3163 renames->pairs[1].nr + renames->pairs[2].nr,
3164 combined.alloc);
3165 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
3166 int other_side = 3 - i;
3167 compute_collisions(&collisions[i],
3168 &renames->dir_renames[other_side],
3169 &renames->pairs[i]);
3170 }
3171 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
3172 collisions,
3173 &renames->dir_renames[2],
3174 &renames->dir_renames[1]);
3175 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
3176 collisions,
3177 &renames->dir_renames[1],
3178 &renames->dir_renames[2]);
3179 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++)
3180 free_collisions(&collisions[i]);
3181 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
3182 trace2_region_leave("merge", "directory renames", opt->repo);
3183
3184 trace2_region_enter("merge", "process renames", opt->repo);
3185 clean &= process_renames(opt, &combined);
3186 trace2_region_leave("merge", "process renames", opt->repo);
3187
3188 goto simple_cleanup; /* collect_renames() handles some of cleanup */
3189
3190 cleanup:
3191 /*
3192 * Free now unneeded filepairs, which would have been handled
3193 * in collect_renames() normally but we skipped that code.
3194 */
3195 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3196 struct diff_queue_struct *side_pairs;
3197 int i;
3198
3199 side_pairs = &renames->pairs[s];
3200 for (i = 0; i < side_pairs->nr; ++i) {
3201 struct diff_filepair *p = side_pairs->queue[i];
3202 pool_diff_free_filepair(&opt->priv->pool, p);
3203 }
3204 }
3205
3206 simple_cleanup:
3207 /* Free memory for renames->pairs[] and combined */
3208 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3209 free(renames->pairs[s].queue);
3210 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
3211 }
3212 for (i = 0; i < combined.nr; i++)
3213 pool_diff_free_filepair(&opt->priv->pool, combined.queue[i]);
3214 free(combined.queue);
3215
3216 return clean;
3217 }
3218
3219 /*** Function Grouping: functions related to process_entries() ***/
3220
3221 static int sort_dirs_next_to_their_children(const char *one, const char *two)
3222 {
3223 unsigned char c1, c2;
3224
3225 /*
3226 * Here we only care that entries for directories appear adjacent
3227 * to and before files underneath the directory. We can achieve
3228 * that by pretending to add a trailing slash to every file and
3229 * then sorting. In other words, we do not want the natural
3230 * sorting of
3231 * foo
3232 * foo.txt
3233 * foo/bar
3234 * Instead, we want "foo" to sort as though it were "foo/", so that
3235 * we instead get
3236 * foo.txt
3237 * foo
3238 * foo/bar
3239 * To achieve this, we basically implement our own strcmp, except that
3240 * if we get to the end of either string instead of comparing NUL to
3241 * another character, we compare '/' to it.
3242 *
3243 * If this unusual "sort as though '/' were appended" perplexes
3244 * you, perhaps it will help to note that this is not the final
3245 * sort. write_tree() will sort again without the trailing slash
3246 * magic, but just on paths immediately under a given tree.
3247 *
3248 * The reason to not use df_name_compare directly was that it was
3249 * just too expensive (we don't have the string lengths handy), so
3250 * it was reimplemented.
3251 */
3252
3253 /*
3254 * NOTE: This function will never be called with two equal strings,
3255 * because it is used to sort the keys of a strmap, and strmaps have
3256 * unique keys by construction. That simplifies our c1==c2 handling
3257 * below.
3258 */
3259
3260 while (*one && (*one == *two)) {
3261 one++;
3262 two++;
3263 }
3264
3265 c1 = *one ? *one : '/';
3266 c2 = *two ? *two : '/';
3267
3268 if (c1 == c2) {
3269 /* Getting here means one is a leading directory of the other */
3270 return (*one) ? 1 : -1;
3271 } else
3272 return c1 - c2;
3273 }
3274
3275 static int read_oid_strbuf(struct merge_options *opt,
3276 const struct object_id *oid,
3277 struct strbuf *dst)
3278 {
3279 void *buf;
3280 enum object_type type;
3281 unsigned long size;
3282 buf = read_object_file(oid, &type, &size);
3283 if (!buf)
3284 return err(opt, _("cannot read object %s"), oid_to_hex(oid));
3285 if (type != OBJ_BLOB) {
3286 free(buf);
3287 return err(opt, _("object %s is not a blob"), oid_to_hex(oid));
3288 }
3289 strbuf_attach(dst, buf, size, size + 1);
3290 return 0;
3291 }
3292
3293 static int blob_unchanged(struct merge_options *opt,
3294 const struct version_info *base,
3295 const struct version_info *side,
3296 const char *path)
3297 {
3298 struct strbuf basebuf = STRBUF_INIT;
3299 struct strbuf sidebuf = STRBUF_INIT;
3300 int ret = 0; /* assume changed for safety */
3301 struct index_state *idx = &opt->priv->attr_index;
3302
3303 if (!idx->initialized)
3304 initialize_attr_index(opt);
3305
3306 if (base->mode != side->mode)
3307 return 0;
3308 if (oideq(&base->oid, &side->oid))
3309 return 1;
3310
3311 if (read_oid_strbuf(opt, &base->oid, &basebuf) ||
3312 read_oid_strbuf(opt, &side->oid, &sidebuf))
3313 goto error_return;
3314 /*
3315 * Note: binary | is used so that both renormalizations are
3316 * performed. Comparison can be skipped if both files are
3317 * unchanged since their sha1s have already been compared.
3318 */
3319 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
3320 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
3321 ret = (basebuf.len == sidebuf.len &&
3322 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
3323
3324 error_return:
3325 strbuf_release(&basebuf);
3326 strbuf_release(&sidebuf);
3327 return ret;
3328 }
3329
3330 struct directory_versions {
3331 /*
3332 * versions: list of (basename -> version_info)
3333 *
3334 * The basenames are in reverse lexicographic order of full pathnames,
3335 * as processed in process_entries(). This puts all entries within
3336 * a directory together, and covers the directory itself after
3337 * everything within it, allowing us to write subtrees before needing
3338 * to record information for the tree itself.
3339 */
3340 struct string_list versions;
3341
3342 /*
3343 * offsets: list of (full relative path directories -> integer offsets)
3344 *
3345 * Since versions contains basenames from files in multiple different
3346 * directories, we need to know which entries in versions correspond
3347 * to which directories. Values of e.g.
3348 * "" 0
3349 * src 2
3350 * src/moduleA 5
3351 * Would mean that entries 0-1 of versions are files in the toplevel
3352 * directory, entries 2-4 are files under src/, and the remaining
3353 * entries starting at index 5 are files under src/moduleA/.
3354 */
3355 struct string_list offsets;
3356
3357 /*
3358 * last_directory: directory that previously processed file found in
3359 *
3360 * last_directory starts NULL, but records the directory in which the
3361 * previous file was found within. As soon as
3362 * directory(current_file) != last_directory
3363 * then we need to start updating accounting in versions & offsets.
3364 * Note that last_directory is always the last path in "offsets" (or
3365 * NULL if "offsets" is empty) so this exists just for quick access.
3366 */
3367 const char *last_directory;
3368
3369 /* last_directory_len: cached computation of strlen(last_directory) */
3370 unsigned last_directory_len;
3371 };
3372
3373 static int tree_entry_order(const void *a_, const void *b_)
3374 {
3375 const struct string_list_item *a = a_;
3376 const struct string_list_item *b = b_;
3377
3378 const struct merged_info *ami = a->util;
3379 const struct merged_info *bmi = b->util;
3380 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
3381 b->string, strlen(b->string), bmi->result.mode);
3382 }
3383
3384 static void write_tree(struct object_id *result_oid,
3385 struct string_list *versions,
3386 unsigned int offset,
3387 size_t hash_size)
3388 {
3389 size_t maxlen = 0, extra;
3390 unsigned int nr;
3391 struct strbuf buf = STRBUF_INIT;
3392 int i;
3393
3394 assert(offset <= versions->nr);
3395 nr = versions->nr - offset;
3396 if (versions->nr)
3397 /* No need for STABLE_QSORT -- filenames must be unique */
3398 QSORT(versions->items + offset, nr, tree_entry_order);
3399
3400 /* Pre-allocate some space in buf */
3401 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
3402 for (i = 0; i < nr; i++) {
3403 maxlen += strlen(versions->items[offset+i].string) + extra;
3404 }
3405 strbuf_grow(&buf, maxlen);
3406
3407 /* Write each entry out to buf */
3408 for (i = 0; i < nr; i++) {
3409 struct merged_info *mi = versions->items[offset+i].util;
3410 struct version_info *ri = &mi->result;
3411 strbuf_addf(&buf, "%o %s%c",
3412 ri->mode,
3413 versions->items[offset+i].string, '\0');
3414 strbuf_add(&buf, ri->oid.hash, hash_size);
3415 }
3416
3417 /* Write this object file out, and record in result_oid */
3418 write_object_file(buf.buf, buf.len, OBJ_TREE, result_oid);
3419 strbuf_release(&buf);
3420 }
3421
3422 static void record_entry_for_tree(struct directory_versions *dir_metadata,
3423 const char *path,
3424 struct merged_info *mi)
3425 {
3426 const char *basename;
3427
3428 if (mi->is_null)
3429 /* nothing to record */
3430 return;
3431
3432 basename = path + mi->basename_offset;
3433 assert(strchr(basename, '/') == NULL);
3434 string_list_append(&dir_metadata->versions,
3435 basename)->util = &mi->result;
3436 }
3437
3438 static void write_completed_directory(struct merge_options *opt,
3439 const char *new_directory_name,
3440 struct directory_versions *info)
3441 {
3442 const char *prev_dir;
3443 struct merged_info *dir_info = NULL;
3444 unsigned int offset;
3445
3446 /*
3447 * Some explanation of info->versions and info->offsets...
3448 *
3449 * process_entries() iterates over all relevant files AND
3450 * directories in reverse lexicographic order, and calls this
3451 * function. Thus, an example of the paths that process_entries()
3452 * could operate on (along with the directories for those paths
3453 * being shown) is:
3454 *
3455 * xtract.c ""
3456 * tokens.txt ""
3457 * src/moduleB/umm.c src/moduleB
3458 * src/moduleB/stuff.h src/moduleB
3459 * src/moduleB/baz.c src/moduleB
3460 * src/moduleB src
3461 * src/moduleA/foo.c src/moduleA
3462 * src/moduleA/bar.c src/moduleA
3463 * src/moduleA src
3464 * src ""
3465 * Makefile ""
3466 *
3467 * info->versions:
3468 *
3469 * always contains the unprocessed entries and their
3470 * version_info information. For example, after the first five
3471 * entries above, info->versions would be:
3472 *
3473 * xtract.c <xtract.c's version_info>
3474 * token.txt <token.txt's version_info>
3475 * umm.c <src/moduleB/umm.c's version_info>
3476 * stuff.h <src/moduleB/stuff.h's version_info>
3477 * baz.c <src/moduleB/baz.c's version_info>
3478 *
3479 * Once a subdirectory is completed we remove the entries in
3480 * that subdirectory from info->versions, writing it as a tree
3481 * (write_tree()). Thus, as soon as we get to src/moduleB,
3482 * info->versions would be updated to
3483 *
3484 * xtract.c <xtract.c's version_info>
3485 * token.txt <token.txt's version_info>
3486 * moduleB <src/moduleB's version_info>
3487 *
3488 * info->offsets:
3489 *
3490 * helps us track which entries in info->versions correspond to
3491 * which directories. When we are N directories deep (e.g. 4
3492 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3493 * directories (+1 because of toplevel dir). Corresponding to
3494 * the info->versions example above, after processing five entries
3495 * info->offsets will be:
3496 *
3497 * "" 0
3498 * src/moduleB 2
3499 *
3500 * which is used to know that xtract.c & token.txt are from the
3501 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3502 * src/moduleB directory. Again, following the example above,
3503 * once we need to process src/moduleB, then info->offsets is
3504 * updated to
3505 *
3506 * "" 0
3507 * src 2
3508 *
3509 * which says that moduleB (and only moduleB so far) is in the
3510 * src directory.
3511 *
3512 * One unique thing to note about info->offsets here is that
3513 * "src" was not added to info->offsets until there was a path
3514 * (a file OR directory) immediately below src/ that got
3515 * processed.
3516 *
3517 * Since process_entry() just appends new entries to info->versions,
3518 * write_completed_directory() only needs to do work if the next path
3519 * is in a directory that is different than the last directory found
3520 * in info->offsets.
3521 */
3522
3523 /*
3524 * If we are working with the same directory as the last entry, there
3525 * is no work to do. (See comments above the directory_name member of
3526 * struct merged_info for why we can use pointer comparison instead of
3527 * strcmp here.)
3528 */
3529 if (new_directory_name == info->last_directory)
3530 return;
3531
3532 /*
3533 * If we are just starting (last_directory is NULL), or last_directory
3534 * is a prefix of the current directory, then we can just update
3535 * info->offsets to record the offset where we started this directory
3536 * and update last_directory to have quick access to it.
3537 */
3538 if (info->last_directory == NULL ||
3539 !strncmp(new_directory_name, info->last_directory,
3540 info->last_directory_len)) {
3541 uintptr_t offset = info->versions.nr;
3542
3543 info->last_directory = new_directory_name;
3544 info->last_directory_len = strlen(info->last_directory);
3545 /*
3546 * Record the offset into info->versions where we will
3547 * start recording basenames of paths found within
3548 * new_directory_name.
3549 */
3550 string_list_append(&info->offsets,
3551 info->last_directory)->util = (void*)offset;
3552 return;
3553 }
3554
3555 /*
3556 * The next entry that will be processed will be within
3557 * new_directory_name. Since at this point we know that
3558 * new_directory_name is within a different directory than
3559 * info->last_directory, we have all entries for info->last_directory
3560 * in info->versions and we need to create a tree object for them.
3561 */
3562 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3563 assert(dir_info);
3564 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3565 if (offset == info->versions.nr) {
3566 /*
3567 * Actually, we don't need to create a tree object in this
3568 * case. Whenever all files within a directory disappear
3569 * during the merge (e.g. unmodified on one side and
3570 * deleted on the other, or files were renamed elsewhere),
3571 * then we get here and the directory itself needs to be
3572 * omitted from its parent tree as well.
3573 */
3574 dir_info->is_null = 1;
3575 } else {
3576 /*
3577 * Write out the tree to the git object directory, and also
3578 * record the mode and oid in dir_info->result.
3579 */
3580 dir_info->is_null = 0;
3581 dir_info->result.mode = S_IFDIR;
3582 write_tree(&dir_info->result.oid, &info->versions, offset,
3583 opt->repo->hash_algo->rawsz);
3584 }
3585
3586 /*
3587 * We've now used several entries from info->versions and one entry
3588 * from info->offsets, so we get rid of those values.
3589 */
3590 info->offsets.nr--;
3591 info->versions.nr = offset;
3592
3593 /*
3594 * Now we've taken care of the completed directory, but we need to
3595 * prepare things since future entries will be in
3596 * new_directory_name. (In particular, process_entry() will be
3597 * appending new entries to info->versions.) So, we need to make
3598 * sure new_directory_name is the last entry in info->offsets.
3599 */
3600 prev_dir = info->offsets.nr == 0 ? NULL :
3601 info->offsets.items[info->offsets.nr-1].string;
3602 if (new_directory_name != prev_dir) {
3603 uintptr_t c = info->versions.nr;
3604 string_list_append(&info->offsets,
3605 new_directory_name)->util = (void*)c;
3606 }
3607
3608 /* And, of course, we need to update last_directory to match. */
3609 info->last_directory = new_directory_name;
3610 info->last_directory_len = strlen(info->last_directory);
3611 }
3612
3613 /* Per entry merge function */
3614 static void process_entry(struct merge_options *opt,
3615 const char *path,
3616 struct conflict_info *ci,
3617 struct directory_versions *dir_metadata)
3618 {
3619 int df_file_index = 0;
3620
3621 VERIFY_CI(ci);
3622 assert(ci->filemask >= 0 && ci->filemask <= 7);
3623 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3624 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3625 ci->match_mask == 5 || ci->match_mask == 6);
3626
3627 if (ci->dirmask) {
3628 record_entry_for_tree(dir_metadata, path, &ci->merged);
3629 if (ci->filemask == 0)
3630 /* nothing else to handle */
3631 return;
3632 assert(ci->df_conflict);
3633 }
3634
3635 if (ci->df_conflict && ci->merged.result.mode == 0) {
3636 int i;
3637
3638 /*
3639 * directory no longer in the way, but we do have a file we
3640 * need to place here so we need to clean away the "directory
3641 * merges to nothing" result.
3642 */
3643 ci->df_conflict = 0;
3644 assert(ci->filemask != 0);
3645 ci->merged.clean = 0;
3646 ci->merged.is_null = 0;
3647 /* and we want to zero out any directory-related entries */
3648 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3649 ci->dirmask = 0;
3650 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3651 if (ci->filemask & (1 << i))
3652 continue;
3653 ci->stages[i].mode = 0;
3654 oidcpy(&ci->stages[i].oid, null_oid());
3655 }
3656 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3657 /*
3658 * This started out as a D/F conflict, and the entries in
3659 * the competing directory were not removed by the merge as
3660 * evidenced by write_completed_directory() writing a value
3661 * to ci->merged.result.mode.
3662 */
3663 struct conflict_info *new_ci;
3664 const char *branch;
3665 const char *old_path = path;
3666 int i;
3667
3668 assert(ci->merged.result.mode == S_IFDIR);
3669
3670 /*
3671 * If filemask is 1, we can just ignore the file as having
3672 * been deleted on both sides. We do not want to overwrite
3673 * ci->merged.result, since it stores the tree for all the
3674 * files under it.
3675 */
3676 if (ci->filemask == 1) {
3677 ci->filemask = 0;
3678 return;
3679 }
3680
3681 /*
3682 * This file still exists on at least one side, and we want
3683 * the directory to remain here, so we need to move this
3684 * path to some new location.
3685 */
3686 new_ci = mem_pool_calloc(&opt->priv->pool, 1, sizeof(*new_ci));
3687
3688 /* We don't really want new_ci->merged.result copied, but it'll
3689 * be overwritten below so it doesn't matter. We also don't
3690 * want any directory mode/oid values copied, but we'll zero
3691 * those out immediately. We do want the rest of ci copied.
3692 */
3693 memcpy(new_ci, ci, sizeof(*ci));
3694 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3695 new_ci->dirmask = 0;
3696 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3697 if (new_ci->filemask & (1 << i))
3698 continue;
3699 /* zero out any entries related to directories */
3700 new_ci->stages[i].mode = 0;
3701 oidcpy(&new_ci->stages[i].oid, null_oid());
3702 }
3703
3704 /*
3705 * Find out which side this file came from; note that we
3706 * cannot just use ci->filemask, because renames could cause
3707 * the filemask to go back to 7. So we use dirmask, then
3708 * pick the opposite side's index.
3709 */
3710 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3711 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3712 path = unique_path(opt, path, branch);
3713 strmap_put(&opt->priv->paths, path, new_ci);
3714
3715 path_msg(opt, path, 0,
3716 _("CONFLICT (file/directory): directory in the way "
3717 "of %s from %s; moving it to %s instead."),
3718 old_path, branch, path);
3719
3720 /*
3721 * Zero out the filemask for the old ci. At this point, ci
3722 * was just an entry for a directory, so we don't need to
3723 * do anything more with it.
3724 */
3725 ci->filemask = 0;
3726
3727 /*
3728 * Now note that we're working on the new entry (path was
3729 * updated above.
3730 */
3731 ci = new_ci;
3732 }
3733
3734 /*
3735 * NOTE: Below there is a long switch-like if-elseif-elseif... block
3736 * which the code goes through even for the df_conflict cases
3737 * above.
3738 */
3739 if (ci->match_mask) {
3740 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3741 if (ci->match_mask == 6) {
3742 /* stages[1] == stages[2] */
3743 ci->merged.result.mode = ci->stages[1].mode;
3744 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3745 } else {
3746 /* determine the mask of the side that didn't match */
3747 unsigned int othermask = 7 & ~ci->match_mask;
3748 int side = (othermask == 4) ? 2 : 1;
3749
3750 ci->merged.result.mode = ci->stages[side].mode;
3751 ci->merged.is_null = !ci->merged.result.mode;
3752 if (ci->merged.is_null)
3753 ci->merged.clean = 1;
3754 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3755
3756 assert(othermask == 2 || othermask == 4);
3757 assert(ci->merged.is_null ==
3758 (ci->filemask == ci->match_mask));
3759 }
3760 } else if (ci->filemask >= 6 &&
3761 (S_IFMT & ci->stages[1].mode) !=
3762 (S_IFMT & ci->stages[2].mode)) {
3763 /* Two different items from (file/submodule/symlink) */
3764 if (opt->priv->call_depth) {
3765 /* Just use the version from the merge base */
3766 ci->merged.clean = 0;
3767 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
3768 ci->merged.result.mode = ci->stages[0].mode;
3769 ci->merged.is_null = (ci->merged.result.mode == 0);
3770 } else {
3771 /* Handle by renaming one or both to separate paths. */
3772 unsigned o_mode = ci->stages[0].mode;
3773 unsigned a_mode = ci->stages[1].mode;
3774 unsigned b_mode = ci->stages[2].mode;
3775 struct conflict_info *new_ci;
3776 const char *a_path = NULL, *b_path = NULL;
3777 int rename_a = 0, rename_b = 0;
3778
3779 new_ci = mem_pool_alloc(&opt->priv->pool,
3780 sizeof(*new_ci));
3781
3782 if (S_ISREG(a_mode))
3783 rename_a = 1;
3784 else if (S_ISREG(b_mode))
3785 rename_b = 1;
3786 else {
3787 rename_a = 1;
3788 rename_b = 1;
3789 }
3790
3791 if (rename_a && rename_b) {
3792 path_msg(opt, path, 0,
3793 _("CONFLICT (distinct types): %s had "
3794 "different types on each side; "
3795 "renamed both of them so each can "
3796 "be recorded somewhere."),
3797 path);
3798 } else {
3799 path_msg(opt, path, 0,
3800 _("CONFLICT (distinct types): %s had "
3801 "different types on each side; "
3802 "renamed one of them so each can be "
3803 "recorded somewhere."),
3804 path);
3805 }
3806
3807 ci->merged.clean = 0;
3808 memcpy(new_ci, ci, sizeof(*new_ci));
3809
3810 /* Put b into new_ci, removing a from stages */
3811 new_ci->merged.result.mode = ci->stages[2].mode;
3812 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
3813 new_ci->stages[1].mode = 0;
3814 oidcpy(&new_ci->stages[1].oid, null_oid());
3815 new_ci->filemask = 5;
3816 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
3817 new_ci->stages[0].mode = 0;
3818 oidcpy(&new_ci->stages[0].oid, null_oid());
3819 new_ci->filemask = 4;
3820 }
3821
3822 /* Leave only a in ci, fixing stages. */
3823 ci->merged.result.mode = ci->stages[1].mode;
3824 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3825 ci->stages[2].mode = 0;
3826 oidcpy(&ci->stages[2].oid, null_oid());
3827 ci->filemask = 3;
3828 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
3829 ci->stages[0].mode = 0;
3830 oidcpy(&ci->stages[0].oid, null_oid());
3831 ci->filemask = 2;
3832 }
3833
3834 /* Insert entries into opt->priv_paths */
3835 assert(rename_a || rename_b);
3836 if (rename_a) {
3837 a_path = unique_path(opt, path, opt->branch1);
3838 strmap_put(&opt->priv->paths, a_path, ci);
3839 }
3840
3841 if (rename_b)
3842 b_path = unique_path(opt, path, opt->branch2);
3843 else
3844 b_path = path;
3845 strmap_put(&opt->priv->paths, b_path, new_ci);
3846
3847 if (rename_a && rename_b)
3848 strmap_remove(&opt->priv->paths, path, 0);
3849
3850 /*
3851 * Do special handling for b_path since process_entry()
3852 * won't be called on it specially.
3853 */
3854 strmap_put(&opt->priv->conflicted, b_path, new_ci);
3855 record_entry_for_tree(dir_metadata, b_path,
3856 &new_ci->merged);
3857
3858 /*
3859 * Remaining code for processing this entry should
3860 * think in terms of processing a_path.
3861 */
3862 if (a_path)
3863 path = a_path;
3864 }
3865 } else if (ci->filemask >= 6) {
3866 /* Need a two-way or three-way content merge */
3867 struct version_info merged_file;
3868 unsigned clean_merge;
3869 struct version_info *o = &ci->stages[0];
3870 struct version_info *a = &ci->stages[1];
3871 struct version_info *b = &ci->stages[2];
3872
3873 clean_merge = handle_content_merge(opt, path, o, a, b,
3874 ci->pathnames,
3875 opt->priv->call_depth * 2,
3876 &merged_file);
3877 ci->merged.clean = clean_merge &&
3878 !ci->df_conflict && !ci->path_conflict;
3879 ci->merged.result.mode = merged_file.mode;
3880 ci->merged.is_null = (merged_file.mode == 0);
3881 oidcpy(&ci->merged.result.oid, &merged_file.oid);
3882 if (clean_merge && ci->df_conflict) {
3883 assert(df_file_index == 1 || df_file_index == 2);
3884 ci->filemask = 1 << df_file_index;
3885 ci->stages[df_file_index].mode = merged_file.mode;
3886 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
3887 }
3888 if (!clean_merge) {
3889 const char *reason = _("content");
3890 if (ci->filemask == 6)
3891 reason = _("add/add");
3892 if (S_ISGITLINK(merged_file.mode))
3893 reason = _("submodule");
3894 path_msg(opt, path, 0,
3895 _("CONFLICT (%s): Merge conflict in %s"),
3896 reason, path);
3897 }
3898 } else if (ci->filemask == 3 || ci->filemask == 5) {
3899 /* Modify/delete */
3900 const char *modify_branch, *delete_branch;
3901 int side = (ci->filemask == 5) ? 2 : 1;
3902 int index = opt->priv->call_depth ? 0 : side;
3903
3904 ci->merged.result.mode = ci->stages[index].mode;
3905 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
3906 ci->merged.clean = 0;
3907
3908 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
3909 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
3910
3911 if (opt->renormalize &&
3912 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
3913 path)) {
3914 if (!ci->path_conflict) {
3915 /*
3916 * Blob unchanged after renormalization, so
3917 * there's no modify/delete conflict after all;
3918 * we can just remove the file.
3919 */
3920 ci->merged.is_null = 1;
3921 ci->merged.clean = 1;
3922 /*
3923 * file goes away => even if there was a
3924 * directory/file conflict there isn't one now.
3925 */
3926 ci->df_conflict = 0;
3927 } else {
3928 /* rename/delete, so conflict remains */
3929 }
3930 } else if (ci->path_conflict &&
3931 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
3932 /*
3933 * This came from a rename/delete; no action to take,
3934 * but avoid printing "modify/delete" conflict notice
3935 * since the contents were not modified.
3936 */
3937 } else {
3938 path_msg(opt, path, 0,
3939 _("CONFLICT (modify/delete): %s deleted in %s "
3940 "and modified in %s. Version %s of %s left "
3941 "in tree."),
3942 path, delete_branch, modify_branch,
3943 modify_branch, path);
3944 }
3945 } else if (ci->filemask == 2 || ci->filemask == 4) {
3946 /* Added on one side */
3947 int side = (ci->filemask == 4) ? 2 : 1;
3948 ci->merged.result.mode = ci->stages[side].mode;
3949 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3950 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3951 } else if (ci->filemask == 1) {
3952 /* Deleted on both sides */
3953 ci->merged.is_null = 1;
3954 ci->merged.result.mode = 0;
3955 oidcpy(&ci->merged.result.oid, null_oid());
3956 assert(!ci->df_conflict);
3957 ci->merged.clean = !ci->path_conflict;
3958 }
3959
3960 /*
3961 * If still conflicted, record it separately. This allows us to later
3962 * iterate over just conflicted entries when updating the index instead
3963 * of iterating over all entries.
3964 */
3965 if (!ci->merged.clean)
3966 strmap_put(&opt->priv->conflicted, path, ci);
3967
3968 /* Record metadata for ci->merged in dir_metadata */
3969 record_entry_for_tree(dir_metadata, path, &ci->merged);
3970 }
3971
3972 static void prefetch_for_content_merges(struct merge_options *opt,
3973 struct string_list *plist)
3974 {
3975 struct string_list_item *e;
3976 struct oid_array to_fetch = OID_ARRAY_INIT;
3977
3978 if (opt->repo != the_repository || !has_promisor_remote())
3979 return;
3980
3981 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
3982 /* char *path = e->string; */
3983 struct conflict_info *ci = e->util;
3984 int i;
3985
3986 /* Ignore clean entries */
3987 if (ci->merged.clean)
3988 continue;
3989
3990 /* Ignore entries that don't need a content merge */
3991 if (ci->match_mask || ci->filemask < 6 ||
3992 !S_ISREG(ci->stages[1].mode) ||
3993 !S_ISREG(ci->stages[2].mode) ||
3994 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
3995 continue;
3996
3997 /* Also don't need content merge if base matches either side */
3998 if (ci->filemask == 7 &&
3999 S_ISREG(ci->stages[0].mode) &&
4000 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
4001 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
4002 continue;
4003
4004 for (i = 0; i < 3; i++) {
4005 unsigned side_mask = (1 << i);
4006 struct version_info *vi = &ci->stages[i];
4007
4008 if ((ci->filemask & side_mask) &&
4009 S_ISREG(vi->mode) &&
4010 oid_object_info_extended(opt->repo, &vi->oid, NULL,
4011 OBJECT_INFO_FOR_PREFETCH))
4012 oid_array_append(&to_fetch, &vi->oid);
4013 }
4014 }
4015
4016 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
4017 oid_array_clear(&to_fetch);
4018 }
4019
4020 static void process_entries(struct merge_options *opt,
4021 struct object_id *result_oid)
4022 {
4023 struct hashmap_iter iter;
4024 struct strmap_entry *e;
4025 struct string_list plist = STRING_LIST_INIT_NODUP;
4026 struct string_list_item *entry;
4027 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
4028 STRING_LIST_INIT_NODUP,
4029 NULL, 0 };
4030
4031 trace2_region_enter("merge", "process_entries setup", opt->repo);
4032 if (strmap_empty(&opt->priv->paths)) {
4033 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
4034 return;
4035 }
4036
4037 /* Hack to pre-allocate plist to the desired size */
4038 trace2_region_enter("merge", "plist grow", opt->repo);
4039 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
4040 trace2_region_leave("merge", "plist grow", opt->repo);
4041
4042 /* Put every entry from paths into plist, then sort */
4043 trace2_region_enter("merge", "plist copy", opt->repo);
4044 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
4045 string_list_append(&plist, e->key)->util = e->value;
4046 }
4047 trace2_region_leave("merge", "plist copy", opt->repo);
4048
4049 trace2_region_enter("merge", "plist special sort", opt->repo);
4050 plist.cmp = sort_dirs_next_to_their_children;
4051 string_list_sort(&plist);
4052 trace2_region_leave("merge", "plist special sort", opt->repo);
4053
4054 trace2_region_leave("merge", "process_entries setup", opt->repo);
4055
4056 /*
4057 * Iterate over the items in reverse order, so we can handle paths
4058 * below a directory before needing to handle the directory itself.
4059 *
4060 * This allows us to write subtrees before we need to write trees,
4061 * and it also enables sane handling of directory/file conflicts
4062 * (because it allows us to know whether the directory is still in
4063 * the way when it is time to process the file at the same path).
4064 */
4065 trace2_region_enter("merge", "processing", opt->repo);
4066 prefetch_for_content_merges(opt, &plist);
4067 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
4068 char *path = entry->string;
4069 /*
4070 * NOTE: mi may actually be a pointer to a conflict_info, but
4071 * we have to check mi->clean first to see if it's safe to
4072 * reassign to such a pointer type.
4073 */
4074 struct merged_info *mi = entry->util;
4075
4076 write_completed_directory(opt, mi->directory_name,
4077 &dir_metadata);
4078 if (mi->clean)
4079 record_entry_for_tree(&dir_metadata, path, mi);
4080 else {
4081 struct conflict_info *ci = (struct conflict_info *)mi;
4082 process_entry(opt, path, ci, &dir_metadata);
4083 }
4084 }
4085 trace2_region_leave("merge", "processing", opt->repo);
4086
4087 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
4088 if (dir_metadata.offsets.nr != 1 ||
4089 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
4090 printf("dir_metadata.offsets.nr = %"PRIuMAX" (should be 1)\n",
4091 (uintmax_t)dir_metadata.offsets.nr);
4092 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
4093 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
4094 fflush(stdout);
4095 BUG("dir_metadata accounting completely off; shouldn't happen");
4096 }
4097 write_tree(result_oid, &dir_metadata.versions, 0,
4098 opt->repo->hash_algo->rawsz);
4099 string_list_clear(&plist, 0);
4100 string_list_clear(&dir_metadata.versions, 0);
4101 string_list_clear(&dir_metadata.offsets, 0);
4102 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
4103 }
4104
4105 /*** Function Grouping: functions related to merge_switch_to_result() ***/
4106
4107 static int checkout(struct merge_options *opt,
4108 struct tree *prev,
4109 struct tree *next)
4110 {
4111 /* Switch the index/working copy from old to new */
4112 int ret;
4113 struct tree_desc trees[2];
4114 struct unpack_trees_options unpack_opts;
4115
4116 memset(&unpack_opts, 0, sizeof(unpack_opts));
4117 unpack_opts.head_idx = -1;
4118 unpack_opts.src_index = opt->repo->index;
4119 unpack_opts.dst_index = opt->repo->index;
4120
4121 setup_unpack_trees_porcelain(&unpack_opts, "merge");
4122
4123 /*
4124 * NOTE: if this were just "git checkout" code, we would probably
4125 * read or refresh the cache and check for a conflicted index, but
4126 * builtin/merge.c or sequencer.c really needs to read the index
4127 * and check for conflicted entries before starting merging for a
4128 * good user experience (no sense waiting for merges/rebases before
4129 * erroring out), so there's no reason to duplicate that work here.
4130 */
4131
4132 /* 2-way merge to the new branch */
4133 unpack_opts.update = 1;
4134 unpack_opts.merge = 1;
4135 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
4136 unpack_opts.verbose_update = (opt->verbosity > 2);
4137 unpack_opts.fn = twoway_merge;
4138 unpack_opts.preserve_ignored = 0; /* FIXME: !opts->overwrite_ignore */
4139 parse_tree(prev);
4140 init_tree_desc(&trees[0], prev->buffer, prev->size);
4141 parse_tree(next);
4142 init_tree_desc(&trees[1], next->buffer, next->size);
4143
4144 ret = unpack_trees(2, trees, &unpack_opts);
4145 clear_unpack_trees_porcelain(&unpack_opts);
4146 return ret;
4147 }
4148
4149 static int record_conflicted_index_entries(struct merge_options *opt)
4150 {
4151 struct hashmap_iter iter;
4152 struct strmap_entry *e;
4153 struct index_state *index = opt->repo->index;
4154 struct checkout state = CHECKOUT_INIT;
4155 int errs = 0;
4156 int original_cache_nr;
4157
4158 if (strmap_empty(&opt->priv->conflicted))
4159 return 0;
4160
4161 /*
4162 * We are in a conflicted state. These conflicts might be inside
4163 * sparse-directory entries, so check if any entries are outside
4164 * of the sparse-checkout cone preemptively.
4165 *
4166 * We set original_cache_nr below, but that might change if
4167 * index_name_pos() calls ask for paths within sparse directories.
4168 */
4169 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4170 if (!path_in_sparse_checkout(e->key, index)) {
4171 ensure_full_index(index);
4172 break;
4173 }
4174 }
4175
4176 /* If any entries have skip_worktree set, we'll have to check 'em out */
4177 state.force = 1;
4178 state.quiet = 1;
4179 state.refresh_cache = 1;
4180 state.istate = index;
4181 original_cache_nr = index->cache_nr;
4182
4183 /* Append every entry from conflicted into index, then sort */
4184 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4185 const char *path = e->key;
4186 struct conflict_info *ci = e->value;
4187 int pos;
4188 struct cache_entry *ce;
4189 int i;
4190
4191 VERIFY_CI(ci);
4192
4193 /*
4194 * The index will already have a stage=0 entry for this path,
4195 * because we created an as-merged-as-possible version of the
4196 * file and checkout() moved the working copy and index over
4197 * to that version.
4198 *
4199 * However, previous iterations through this loop will have
4200 * added unstaged entries to the end of the cache which
4201 * ignore the standard alphabetical ordering of cache
4202 * entries and break invariants needed for index_name_pos()
4203 * to work. However, we know the entry we want is before
4204 * those appended cache entries, so do a temporary swap on
4205 * cache_nr to only look through entries of interest.
4206 */
4207 SWAP(index->cache_nr, original_cache_nr);
4208 pos = index_name_pos(index, path, strlen(path));
4209 SWAP(index->cache_nr, original_cache_nr);
4210 if (pos < 0) {
4211 if (ci->filemask != 1)
4212 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
4213 cache_tree_invalidate_path(index, path);
4214 } else {
4215 ce = index->cache[pos];
4216
4217 /*
4218 * Clean paths with CE_SKIP_WORKTREE set will not be
4219 * written to the working tree by the unpack_trees()
4220 * call in checkout(). Our conflicted entries would
4221 * have appeared clean to that code since we ignored
4222 * the higher order stages. Thus, we need override
4223 * the CE_SKIP_WORKTREE bit and manually write those
4224 * files to the working disk here.
4225 */
4226 if (ce_skip_worktree(ce)) {
4227 struct stat st;
4228
4229 if (!lstat(path, &st)) {
4230 char *new_name = unique_path(opt,
4231 path,
4232 "cruft");
4233
4234 path_msg(opt, path, 1,
4235 _("Note: %s not up to date and in way of checking out conflicted version; old copy renamed to %s"),
4236 path, new_name);
4237 errs |= rename(path, new_name);
4238 }
4239 errs |= checkout_entry(ce, &state, NULL, NULL);
4240 }
4241
4242 /*
4243 * Mark this cache entry for removal and instead add
4244 * new stage>0 entries corresponding to the
4245 * conflicts. If there are many conflicted entries, we
4246 * want to avoid memmove'ing O(NM) entries by
4247 * inserting the new entries one at a time. So,
4248 * instead, we just add the new cache entries to the
4249 * end (ignoring normal index requirements on sort
4250 * order) and sort the index once we're all done.
4251 */
4252 ce->ce_flags |= CE_REMOVE;
4253 }
4254
4255 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4256 struct version_info *vi;
4257 if (!(ci->filemask & (1ul << i)))
4258 continue;
4259 vi = &ci->stages[i];
4260 ce = make_cache_entry(index, vi->mode, &vi->oid,
4261 path, i+1, 0);
4262 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
4263 }
4264 }
4265
4266 /*
4267 * Remove the unused cache entries (and invalidate the relevant
4268 * cache-trees), then sort the index entries to get the conflicted
4269 * entries we added to the end into their right locations.
4270 */
4271 remove_marked_cache_entries(index, 1);
4272 /*
4273 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
4274 * on filename and secondarily on stage, and (name, stage #) are a
4275 * unique tuple.
4276 */
4277 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
4278
4279 return errs;
4280 }
4281
4282 void merge_switch_to_result(struct merge_options *opt,
4283 struct tree *head,
4284 struct merge_result *result,
4285 int update_worktree_and_index,
4286 int display_update_msgs)
4287 {
4288 assert(opt->priv == NULL);
4289 if (result->clean >= 0 && update_worktree_and_index) {
4290 const char *filename;
4291 FILE *fp;
4292
4293 trace2_region_enter("merge", "checkout", opt->repo);
4294 if (checkout(opt, head, result->tree)) {
4295 /* failure to function */
4296 result->clean = -1;
4297 merge_finalize(opt, result);
4298 trace2_region_leave("merge", "checkout", opt->repo);
4299 return;
4300 }
4301 trace2_region_leave("merge", "checkout", opt->repo);
4302
4303 trace2_region_enter("merge", "record_conflicted", opt->repo);
4304 opt->priv = result->priv;
4305 if (record_conflicted_index_entries(opt)) {
4306 /* failure to function */
4307 opt->priv = NULL;
4308 result->clean = -1;
4309 merge_finalize(opt, result);
4310 trace2_region_leave("merge", "record_conflicted",
4311 opt->repo);
4312 return;
4313 }
4314 opt->priv = NULL;
4315 trace2_region_leave("merge", "record_conflicted", opt->repo);
4316
4317 trace2_region_enter("merge", "write_auto_merge", opt->repo);
4318 filename = git_path_auto_merge(opt->repo);
4319 fp = xfopen(filename, "w");
4320 fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid));
4321 fclose(fp);
4322 trace2_region_leave("merge", "write_auto_merge", opt->repo);
4323 }
4324
4325 if (display_update_msgs) {
4326 struct merge_options_internal *opti = result->priv;
4327 struct hashmap_iter iter;
4328 struct strmap_entry *e;
4329 struct string_list olist = STRING_LIST_INIT_NODUP;
4330 int i;
4331
4332 if (opt->record_conflict_msgs_as_headers)
4333 BUG("Either display conflict messages or record them as headers, not both");
4334
4335 trace2_region_enter("merge", "display messages", opt->repo);
4336
4337 /* Hack to pre-allocate olist to the desired size */
4338 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
4339 olist.alloc);
4340
4341 /* Put every entry from output into olist, then sort */
4342 strmap_for_each_entry(&opti->output, &iter, e) {
4343 string_list_append(&olist, e->key)->util = e->value;
4344 }
4345 string_list_sort(&olist);
4346
4347 /* Iterate over the items, printing them */
4348 for (i = 0; i < olist.nr; ++i) {
4349 struct strbuf *sb = olist.items[i].util;
4350
4351 printf("%s", sb->buf);
4352 }
4353 string_list_clear(&olist, 0);
4354
4355 /* Also include needed rename limit adjustment now */
4356 diff_warn_rename_limit("merge.renamelimit",
4357 opti->renames.needed_limit, 0);
4358
4359 trace2_region_leave("merge", "display messages", opt->repo);
4360 }
4361
4362 merge_finalize(opt, result);
4363 }
4364
4365 void merge_finalize(struct merge_options *opt,
4366 struct merge_result *result)
4367 {
4368 struct merge_options_internal *opti = result->priv;
4369
4370 if (opt->renormalize)
4371 git_attr_set_direction(GIT_ATTR_CHECKIN);
4372 assert(opt->priv == NULL);
4373
4374 clear_or_reinit_internal_opts(opti, 0);
4375 FREE_AND_NULL(opti);
4376 }
4377
4378 /*** Function Grouping: helper functions for merge_incore_*() ***/
4379
4380 static struct tree *shift_tree_object(struct repository *repo,
4381 struct tree *one, struct tree *two,
4382 const char *subtree_shift)
4383 {
4384 struct object_id shifted;
4385
4386 if (!*subtree_shift) {
4387 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
4388 } else {
4389 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
4390 subtree_shift);
4391 }
4392 if (oideq(&two->object.oid, &shifted))
4393 return two;
4394 return lookup_tree(repo, &shifted);
4395 }
4396
4397 static inline void set_commit_tree(struct commit *c, struct tree *t)
4398 {
4399 c->maybe_tree = t;
4400 }
4401
4402 static struct commit *make_virtual_commit(struct repository *repo,
4403 struct tree *tree,
4404 const char *comment)
4405 {
4406 struct commit *commit = alloc_commit_node(repo);
4407
4408 set_merge_remote_desc(commit, comment, (struct object *)commit);
4409 set_commit_tree(commit, tree);
4410 commit->object.parsed = 1;
4411 return commit;
4412 }
4413
4414 static void merge_start(struct merge_options *opt, struct merge_result *result)
4415 {
4416 struct rename_info *renames;
4417 int i;
4418 struct mem_pool *pool = NULL;
4419
4420 /* Sanity checks on opt */
4421 trace2_region_enter("merge", "sanity checks", opt->repo);
4422 assert(opt->repo);
4423
4424 assert(opt->branch1 && opt->branch2);
4425
4426 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
4427 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
4428 assert(opt->rename_limit >= -1);
4429 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
4430 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
4431
4432 assert(opt->xdl_opts >= 0);
4433 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
4434 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
4435
4436 if (opt->msg_header_prefix)
4437 assert(opt->record_conflict_msgs_as_headers);
4438
4439 /*
4440 * detect_renames, verbosity, buffer_output, and obuf are ignored
4441 * fields that were used by "recursive" rather than "ort" -- but
4442 * sanity check them anyway.
4443 */
4444 assert(opt->detect_renames >= -1 &&
4445 opt->detect_renames <= DIFF_DETECT_COPY);
4446 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
4447 assert(opt->buffer_output <= 2);
4448 assert(opt->obuf.len == 0);
4449
4450 assert(opt->priv == NULL);
4451 if (result->_properly_initialized != 0 &&
4452 result->_properly_initialized != RESULT_INITIALIZED)
4453 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
4454 assert(!!result->priv == !!result->_properly_initialized);
4455 if (result->priv) {
4456 opt->priv = result->priv;
4457 result->priv = NULL;
4458 /*
4459 * opt->priv non-NULL means we had results from a previous
4460 * run; do a few sanity checks that user didn't mess with
4461 * it in an obvious fashion.
4462 */
4463 assert(opt->priv->call_depth == 0);
4464 assert(!opt->priv->toplevel_dir ||
4465 0 == strlen(opt->priv->toplevel_dir));
4466 }
4467 trace2_region_leave("merge", "sanity checks", opt->repo);
4468
4469 /* Default to histogram diff. Actually, just hardcode it...for now. */
4470 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
4471
4472 /* Handle attr direction stuff for renormalization */
4473 if (opt->renormalize)
4474 git_attr_set_direction(GIT_ATTR_CHECKOUT);
4475
4476 /* Initialization of opt->priv, our internal merge data */
4477 trace2_region_enter("merge", "allocate/init", opt->repo);
4478 if (opt->priv) {
4479 clear_or_reinit_internal_opts(opt->priv, 1);
4480 trace2_region_leave("merge", "allocate/init", opt->repo);
4481 return;
4482 }
4483 opt->priv = xcalloc(1, sizeof(*opt->priv));
4484
4485 /* Initialization of various renames fields */
4486 renames = &opt->priv->renames;
4487 mem_pool_init(&opt->priv->pool, 0);
4488 pool = &opt->priv->pool;
4489 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4490 strintmap_init_with_options(&renames->dirs_removed[i],
4491 NOT_RELEVANT, pool, 0);
4492 strmap_init_with_options(&renames->dir_rename_count[i],
4493 NULL, 1);
4494 strmap_init_with_options(&renames->dir_renames[i],
4495 NULL, 0);
4496 /*
4497 * relevant_sources uses -1 for the default, because we need
4498 * to be able to distinguish not-in-strintmap from valid
4499 * relevant_source values from enum file_rename_relevance.
4500 * In particular, possibly_cache_new_pair() expects a negative
4501 * value for not-found entries.
4502 */
4503 strintmap_init_with_options(&renames->relevant_sources[i],
4504 -1 /* explicitly invalid */,
4505 pool, 0);
4506 strmap_init_with_options(&renames->cached_pairs[i],
4507 NULL, 1);
4508 strset_init_with_options(&renames->cached_irrelevant[i],
4509 NULL, 1);
4510 strset_init_with_options(&renames->cached_target_names[i],
4511 NULL, 0);
4512 }
4513 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4514 strintmap_init_with_options(&renames->deferred[i].possible_trivial_merges,
4515 0, pool, 0);
4516 strset_init_with_options(&renames->deferred[i].target_dirs,
4517 pool, 1);
4518 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
4519 }
4520
4521 /*
4522 * Although we initialize opt->priv->paths with strdup_strings=0,
4523 * that's just to avoid making yet another copy of an allocated
4524 * string. Putting the entry into paths means we are taking
4525 * ownership, so we will later free it.
4526 *
4527 * In contrast, conflicted just has a subset of keys from paths, so
4528 * we don't want to free those (it'd be a duplicate free).
4529 */
4530 strmap_init_with_options(&opt->priv->paths, pool, 0);
4531 strmap_init_with_options(&opt->priv->conflicted, pool, 0);
4532
4533 /*
4534 * keys & strbufs in output will sometimes need to outlive "paths",
4535 * so it will have a copy of relevant keys. It's probably a small
4536 * subset of the overall paths that have special output.
4537 */
4538 strmap_init(&opt->priv->output);
4539
4540 trace2_region_leave("merge", "allocate/init", opt->repo);
4541 }
4542
4543 static void merge_check_renames_reusable(struct merge_options *opt,
4544 struct merge_result *result,
4545 struct tree *merge_base,
4546 struct tree *side1,
4547 struct tree *side2)
4548 {
4549 struct rename_info *renames;
4550 struct tree **merge_trees;
4551 struct merge_options_internal *opti = result->priv;
4552
4553 if (!opti)
4554 return;
4555
4556 renames = &opti->renames;
4557 merge_trees = renames->merge_trees;
4558
4559 /*
4560 * Handle case where previous merge operation did not want cache to
4561 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4562 */
4563 if (!merge_trees[0]) {
4564 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4565 renames->cached_pairs_valid_side = 0; /* neither side valid */
4566 return;
4567 }
4568
4569 /*
4570 * Handle other cases; note that merge_trees[0..2] will only
4571 * be NULL if opti is, or if all three were manually set to
4572 * NULL by e.g. rename/rename(1to1) handling.
4573 */
4574 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4575
4576 /* Check if we meet a condition for re-using cached_pairs */
4577 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4578 oideq(&side1->object.oid, &result->tree->object.oid))
4579 renames->cached_pairs_valid_side = MERGE_SIDE1;
4580 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4581 oideq(&side2->object.oid, &result->tree->object.oid))
4582 renames->cached_pairs_valid_side = MERGE_SIDE2;
4583 else
4584 renames->cached_pairs_valid_side = 0; /* neither side valid */
4585 }
4586
4587 /*** Function Grouping: merge_incore_*() and their internal variants ***/
4588
4589 /*
4590 * Originally from merge_trees_internal(); heavily adapted, though.
4591 */
4592 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
4593 struct tree *merge_base,
4594 struct tree *side1,
4595 struct tree *side2,
4596 struct merge_result *result)
4597 {
4598 struct object_id working_tree_oid;
4599
4600 if (opt->subtree_shift) {
4601 side2 = shift_tree_object(opt->repo, side1, side2,
4602 opt->subtree_shift);
4603 merge_base = shift_tree_object(opt->repo, side1, merge_base,
4604 opt->subtree_shift);
4605 }
4606
4607 redo:
4608 trace2_region_enter("merge", "collect_merge_info", opt->repo);
4609 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
4610 /*
4611 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
4612 * base, and 2-3) the trees for the two trees we're merging.
4613 */
4614 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
4615 oid_to_hex(&merge_base->object.oid),
4616 oid_to_hex(&side1->object.oid),
4617 oid_to_hex(&side2->object.oid));
4618 result->clean = -1;
4619 return;
4620 }
4621 trace2_region_leave("merge", "collect_merge_info", opt->repo);
4622
4623 trace2_region_enter("merge", "renames", opt->repo);
4624 result->clean = detect_and_process_renames(opt, merge_base,
4625 side1, side2);
4626 trace2_region_leave("merge", "renames", opt->repo);
4627 if (opt->priv->renames.redo_after_renames == 2) {
4628 trace2_region_enter("merge", "reset_maps", opt->repo);
4629 clear_or_reinit_internal_opts(opt->priv, 1);
4630 trace2_region_leave("merge", "reset_maps", opt->repo);
4631 goto redo;
4632 }
4633
4634 trace2_region_enter("merge", "process_entries", opt->repo);
4635 process_entries(opt, &working_tree_oid);
4636 trace2_region_leave("merge", "process_entries", opt->repo);
4637
4638 /* Set return values */
4639 result->path_messages = &opt->priv->output;
4640 result->tree = parse_tree_indirect(&working_tree_oid);
4641 /* existence of conflicted entries implies unclean */
4642 result->clean &= strmap_empty(&opt->priv->conflicted);
4643 if (!opt->priv->call_depth) {
4644 result->priv = opt->priv;
4645 result->_properly_initialized = RESULT_INITIALIZED;
4646 opt->priv = NULL;
4647 }
4648 }
4649
4650 /*
4651 * Originally from merge_recursive_internal(); somewhat adapted, though.
4652 */
4653 static void merge_ort_internal(struct merge_options *opt,
4654 struct commit_list *merge_bases,
4655 struct commit *h1,
4656 struct commit *h2,
4657 struct merge_result *result)
4658 {
4659 struct commit *next;
4660 struct commit *merged_merge_bases;
4661 const char *ancestor_name;
4662 struct strbuf merge_base_abbrev = STRBUF_INIT;
4663
4664 if (!merge_bases) {
4665 merge_bases = get_merge_bases(h1, h2);
4666 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
4667 merge_bases = reverse_commit_list(merge_bases);
4668 }
4669
4670 merged_merge_bases = pop_commit(&merge_bases);
4671 if (!merged_merge_bases) {
4672 /* if there is no common ancestor, use an empty tree */
4673 struct tree *tree;
4674
4675 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
4676 merged_merge_bases = make_virtual_commit(opt->repo, tree,
4677 "ancestor");
4678 ancestor_name = "empty tree";
4679 } else if (merge_bases) {
4680 ancestor_name = "merged common ancestors";
4681 } else {
4682 strbuf_add_unique_abbrev(&merge_base_abbrev,
4683 &merged_merge_bases->object.oid,
4684 DEFAULT_ABBREV);
4685 ancestor_name = merge_base_abbrev.buf;
4686 }
4687
4688 for (next = pop_commit(&merge_bases); next;
4689 next = pop_commit(&merge_bases)) {
4690 const char *saved_b1, *saved_b2;
4691 struct commit *prev = merged_merge_bases;
4692
4693 opt->priv->call_depth++;
4694 /*
4695 * When the merge fails, the result contains files
4696 * with conflict markers. The cleanness flag is
4697 * ignored (unless indicating an error), it was never
4698 * actually used, as result of merge_trees has always
4699 * overwritten it: the committed "conflicts" were
4700 * already resolved.
4701 */
4702 saved_b1 = opt->branch1;
4703 saved_b2 = opt->branch2;
4704 opt->branch1 = "Temporary merge branch 1";
4705 opt->branch2 = "Temporary merge branch 2";
4706 merge_ort_internal(opt, NULL, prev, next, result);
4707 if (result->clean < 0)
4708 return;
4709 opt->branch1 = saved_b1;
4710 opt->branch2 = saved_b2;
4711 opt->priv->call_depth--;
4712
4713 merged_merge_bases = make_virtual_commit(opt->repo,
4714 result->tree,
4715 "merged tree");
4716 commit_list_insert(prev, &merged_merge_bases->parents);
4717 commit_list_insert(next, &merged_merge_bases->parents->next);
4718
4719 clear_or_reinit_internal_opts(opt->priv, 1);
4720 }
4721
4722 opt->ancestor = ancestor_name;
4723 merge_ort_nonrecursive_internal(opt,
4724 repo_get_commit_tree(opt->repo,
4725 merged_merge_bases),
4726 repo_get_commit_tree(opt->repo, h1),
4727 repo_get_commit_tree(opt->repo, h2),
4728 result);
4729 strbuf_release(&merge_base_abbrev);
4730 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
4731 }
4732
4733 void merge_incore_nonrecursive(struct merge_options *opt,
4734 struct tree *merge_base,
4735 struct tree *side1,
4736 struct tree *side2,
4737 struct merge_result *result)
4738 {
4739 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
4740
4741 trace2_region_enter("merge", "merge_start", opt->repo);
4742 assert(opt->ancestor != NULL);
4743 merge_check_renames_reusable(opt, result, merge_base, side1, side2);
4744 merge_start(opt, result);
4745 /*
4746 * Record the trees used in this merge, so if there's a next merge in
4747 * a cherry-pick or rebase sequence it might be able to take advantage
4748 * of the cached_pairs in that next merge.
4749 */
4750 opt->priv->renames.merge_trees[0] = merge_base;
4751 opt->priv->renames.merge_trees[1] = side1;
4752 opt->priv->renames.merge_trees[2] = side2;
4753 trace2_region_leave("merge", "merge_start", opt->repo);
4754
4755 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
4756 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
4757 }
4758
4759 void merge_incore_recursive(struct merge_options *opt,
4760 struct commit_list *merge_bases,
4761 struct commit *side1,
4762 struct commit *side2,
4763 struct merge_result *result)
4764 {
4765 trace2_region_enter("merge", "incore_recursive", opt->repo);
4766
4767 /* We set the ancestor label based on the merge_bases */
4768 assert(opt->ancestor == NULL);
4769
4770 trace2_region_enter("merge", "merge_start", opt->repo);
4771 merge_start(opt, result);
4772 trace2_region_leave("merge", "merge_start", opt->repo);
4773
4774 merge_ort_internal(opt, merge_bases, side1, side2, result);
4775 trace2_region_leave("merge", "incore_recursive", opt->repo);
4776 }