]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
Merge branch 'dl/packet-read-response-end-fix'
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "cache.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "attr.h"
22 #include "blob.h"
23 #include "cache-tree.h"
24 #include "commit.h"
25 #include "commit-reach.h"
26 #include "diff.h"
27 #include "diffcore.h"
28 #include "dir.h"
29 #include "entry.h"
30 #include "ll-merge.h"
31 #include "object-store.h"
32 #include "promisor-remote.h"
33 #include "revision.h"
34 #include "strmap.h"
35 #include "submodule.h"
36 #include "tree.h"
37 #include "unpack-trees.h"
38 #include "xdiff-interface.h"
39
40 /*
41 * We have many arrays of size 3. Whenever we have such an array, the
42 * indices refer to one of the sides of the three-way merge. This is so
43 * pervasive that the constants 0, 1, and 2 are used in many places in the
44 * code (especially in arithmetic operations to find the other side's index
45 * or to compute a relevant mask), but sometimes these enum names are used
46 * to aid code clarity.
47 *
48 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
49 * referred to there is one of these three sides.
50 */
51 enum merge_side {
52 MERGE_BASE = 0,
53 MERGE_SIDE1 = 1,
54 MERGE_SIDE2 = 2
55 };
56
57 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
58
59 struct traversal_callback_data {
60 unsigned long mask;
61 unsigned long dirmask;
62 struct name_entry names[3];
63 };
64
65 struct rename_info {
66 /*
67 * All variables that are arrays of size 3 correspond to data tracked
68 * for the sides in enum merge_side. Index 0 is almost always unused
69 * because we often only need to track information for MERGE_SIDE1 and
70 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
71 * are determined relative to what changed since the MERGE_BASE).
72 */
73
74 /*
75 * pairs: pairing of filenames from diffcore_rename()
76 */
77 struct diff_queue_struct pairs[3];
78
79 /*
80 * dirs_removed: directories removed on a given side of history.
81 *
82 * The keys of dirs_removed[side] are the directories that were removed
83 * on the given side of history. The value of the strintmap for each
84 * directory is a value from enum dir_rename_relevance.
85 */
86 struct strintmap dirs_removed[3];
87
88 /*
89 * dir_rename_count: tracking where parts of a directory were renamed to
90 *
91 * When files in a directory are renamed, they may not all go to the
92 * same location. Each strmap here tracks:
93 * old_dir => {new_dir => int}
94 * That is, dir_rename_count[side] is a strmap to a strintmap.
95 */
96 struct strmap dir_rename_count[3];
97
98 /*
99 * dir_renames: computed directory renames
100 *
101 * This is a map of old_dir => new_dir and is derived in part from
102 * dir_rename_count.
103 */
104 struct strmap dir_renames[3];
105
106 /*
107 * relevant_sources: deleted paths wanted in rename detection, and why
108 *
109 * relevant_sources is a set of deleted paths on each side of
110 * history for which we need rename detection. If a path is deleted
111 * on one side of history, we need to detect if it is part of a
112 * rename if either
113 * * the file is modified/deleted on the other side of history
114 * * we need to detect renames for an ancestor directory
115 * If neither of those are true, we can skip rename detection for
116 * that path. The reason is stored as a value from enum
117 * file_rename_relevance, as the reason can inform the algorithm in
118 * diffcore_rename_extended().
119 */
120 struct strintmap relevant_sources[3];
121
122 /*
123 * dir_rename_mask:
124 * 0: optimization removing unmodified potential rename source okay
125 * 2 or 4: optimization okay, but must check for files added to dir
126 * 7: optimization forbidden; need rename source in case of dir rename
127 */
128 unsigned dir_rename_mask:3;
129
130 /*
131 * callback_data_*: supporting data structures for alternate traversal
132 *
133 * We sometimes need to be able to traverse through all the files
134 * in a given tree before all immediate subdirectories within that
135 * tree. Since traverse_trees() doesn't do that naturally, we have
136 * a traverse_trees_wrapper() that stores any immediate
137 * subdirectories while traversing files, then traverses the
138 * immediate subdirectories later. These callback_data* variables
139 * store the information for the subdirectories so that we can do
140 * that traversal order.
141 */
142 struct traversal_callback_data *callback_data;
143 int callback_data_nr, callback_data_alloc;
144 char *callback_data_traverse_path;
145
146 /*
147 * merge_trees: trees passed to the merge algorithm for the merge
148 *
149 * merge_trees records the trees passed to the merge algorithm. But,
150 * this data also is stored in merge_result->priv. If a sequence of
151 * merges are being done (such as when cherry-picking or rebasing),
152 * the next merge can look at this and re-use information from
153 * previous merges under certain circumstances.
154 *
155 * See also all the cached_* variables.
156 */
157 struct tree *merge_trees[3];
158
159 /*
160 * cached_pairs_valid_side: which side's cached info can be reused
161 *
162 * See the description for merge_trees. For repeated merges, at most
163 * only one side's cached information can be used. Valid values:
164 * MERGE_SIDE2: cached data from side2 can be reused
165 * MERGE_SIDE1: cached data from side1 can be reused
166 * 0: no cached data can be reused
167 */
168 int cached_pairs_valid_side;
169
170 /*
171 * cached_pairs: Caching of renames and deletions.
172 *
173 * These are mappings recording renames and deletions of individual
174 * files (not directories). They are thus a map from an old
175 * filename to either NULL (for deletions) or a new filename (for
176 * renames).
177 */
178 struct strmap cached_pairs[3];
179
180 /*
181 * cached_target_names: just the destinations from cached_pairs
182 *
183 * We sometimes want a fast lookup to determine if a given filename
184 * is one of the destinations in cached_pairs. cached_target_names
185 * is thus duplicative information, but it provides a fast lookup.
186 */
187 struct strset cached_target_names[3];
188
189 /*
190 * cached_irrelevant: Caching of rename_sources that aren't relevant.
191 *
192 * If we try to detect a rename for a source path and succeed, it's
193 * part of a rename. If we try to detect a rename for a source path
194 * and fail, then it's a delete. If we do not try to detect a rename
195 * for a path, then we don't know if it's a rename or a delete. If
196 * merge-ort doesn't think the path is relevant, then we just won't
197 * cache anything for that path. But there's a slight problem in
198 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
199 * commit 9bd342137e ("diffcore-rename: determine which
200 * relevant_sources are no longer relevant", 2021-03-13),
201 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
202 * avoid excessive calls to diffcore_rename_extended() we still need
203 * to cache such paths, though we cannot record them as either
204 * renames or deletes. So we cache them here as a "turned out to be
205 * irrelevant *for this commit*" as they are often also irrelevant
206 * for subsequent commits, though we will have to do some extra
207 * checking to see whether such paths become relevant for rename
208 * detection when cherry-picking/rebasing subsequent commits.
209 */
210 struct strset cached_irrelevant[3];
211
212 /*
213 * needed_limit: value needed for inexact rename detection to run
214 *
215 * If the current rename limit wasn't high enough for inexact
216 * rename detection to run, this records the limit needed. Otherwise,
217 * this value remains 0.
218 */
219 int needed_limit;
220 };
221
222 struct merge_options_internal {
223 /*
224 * paths: primary data structure in all of merge ort.
225 *
226 * The keys of paths:
227 * * are full relative paths from the toplevel of the repository
228 * (e.g. "drivers/firmware/raspberrypi.c").
229 * * store all relevant paths in the repo, both directories and
230 * files (e.g. drivers, drivers/firmware would also be included)
231 * * these keys serve to intern all the path strings, which allows
232 * us to do pointer comparison on directory names instead of
233 * strcmp; we just have to be careful to use the interned strings.
234 * (Technically paths_to_free may track some strings that were
235 * removed from froms paths.)
236 *
237 * The values of paths:
238 * * either a pointer to a merged_info, or a conflict_info struct
239 * * merged_info contains all relevant information for a
240 * non-conflicted entry.
241 * * conflict_info contains a merged_info, plus any additional
242 * information about a conflict such as the higher orders stages
243 * involved and the names of the paths those came from (handy
244 * once renames get involved).
245 * * a path may start "conflicted" (i.e. point to a conflict_info)
246 * and then a later step (e.g. three-way content merge) determines
247 * it can be cleanly merged, at which point it'll be marked clean
248 * and the algorithm will ignore any data outside the contained
249 * merged_info for that entry
250 * * If an entry remains conflicted, the merged_info portion of a
251 * conflict_info will later be filled with whatever version of
252 * the file should be placed in the working directory (e.g. an
253 * as-merged-as-possible variation that contains conflict markers).
254 */
255 struct strmap paths;
256
257 /*
258 * conflicted: a subset of keys->values from "paths"
259 *
260 * conflicted is basically an optimization between process_entries()
261 * and record_conflicted_index_entries(); the latter could loop over
262 * ALL the entries in paths AGAIN and look for the ones that are
263 * still conflicted, but since process_entries() has to loop over
264 * all of them, it saves the ones it couldn't resolve in this strmap
265 * so that record_conflicted_index_entries() can iterate just the
266 * relevant entries.
267 */
268 struct strmap conflicted;
269
270 /*
271 * paths_to_free: additional list of strings to free
272 *
273 * If keys are removed from "paths", they are added to paths_to_free
274 * to ensure they are later freed. We avoid free'ing immediately since
275 * other places (e.g. conflict_info.pathnames[]) may still be
276 * referencing these paths.
277 */
278 struct string_list paths_to_free;
279
280 /*
281 * output: special messages and conflict notices for various paths
282 *
283 * This is a map of pathnames (a subset of the keys in "paths" above)
284 * to strbufs. It gathers various warning/conflict/notice messages
285 * for later processing.
286 */
287 struct strmap output;
288
289 /*
290 * renames: various data relating to rename detection
291 */
292 struct rename_info renames;
293
294 /*
295 * attr_index: hacky minimal index used for renormalization
296 *
297 * renormalization code _requires_ an index, though it only needs to
298 * find a .gitattributes file within the index. So, when
299 * renormalization is important, we create a special index with just
300 * that one file.
301 */
302 struct index_state attr_index;
303
304 /*
305 * current_dir_name, toplevel_dir: temporary vars
306 *
307 * These are used in collect_merge_info_callback(), and will set the
308 * various merged_info.directory_name for the various paths we get;
309 * see documentation for that variable and the requirements placed on
310 * that field.
311 */
312 const char *current_dir_name;
313 const char *toplevel_dir;
314
315 /* call_depth: recursion level counter for merging merge bases */
316 int call_depth;
317 };
318
319 struct version_info {
320 struct object_id oid;
321 unsigned short mode;
322 };
323
324 struct merged_info {
325 /* if is_null, ignore result. otherwise result has oid & mode */
326 struct version_info result;
327 unsigned is_null:1;
328
329 /*
330 * clean: whether the path in question is cleanly merged.
331 *
332 * see conflict_info.merged for more details.
333 */
334 unsigned clean:1;
335
336 /*
337 * basename_offset: offset of basename of path.
338 *
339 * perf optimization to avoid recomputing offset of final '/'
340 * character in pathname (0 if no '/' in pathname).
341 */
342 size_t basename_offset;
343
344 /*
345 * directory_name: containing directory name.
346 *
347 * Note that we assume directory_name is constructed such that
348 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
349 * i.e. string equality is equivalent to pointer equality. For this
350 * to hold, we have to be careful setting directory_name.
351 */
352 const char *directory_name;
353 };
354
355 struct conflict_info {
356 /*
357 * merged: the version of the path that will be written to working tree
358 *
359 * WARNING: It is critical to check merged.clean and ensure it is 0
360 * before reading any conflict_info fields outside of merged.
361 * Allocated merge_info structs will always have clean set to 1.
362 * Allocated conflict_info structs will have merged.clean set to 0
363 * initially. The merged.clean field is how we know if it is safe
364 * to access other parts of conflict_info besides merged; if a
365 * conflict_info's merged.clean is changed to 1, the rest of the
366 * algorithm is not allowed to look at anything outside of the
367 * merged member anymore.
368 */
369 struct merged_info merged;
370
371 /* oids & modes from each of the three trees for this path */
372 struct version_info stages[3];
373
374 /* pathnames for each stage; may differ due to rename detection */
375 const char *pathnames[3];
376
377 /* Whether this path is/was involved in a directory/file conflict */
378 unsigned df_conflict:1;
379
380 /*
381 * Whether this path is/was involved in a non-content conflict other
382 * than a directory/file conflict (e.g. rename/rename, rename/delete,
383 * file location based on possible directory rename).
384 */
385 unsigned path_conflict:1;
386
387 /*
388 * For filemask and dirmask, the ith bit corresponds to whether the
389 * ith entry is a file (filemask) or a directory (dirmask). Thus,
390 * filemask & dirmask is always zero, and filemask | dirmask is at
391 * most 7 but can be less when a path does not appear as either a
392 * file or a directory on at least one side of history.
393 *
394 * Note that these masks are related to enum merge_side, as the ith
395 * entry corresponds to side i.
396 *
397 * These values come from a traverse_trees() call; more info may be
398 * found looking at tree-walk.h's struct traverse_info,
399 * particularly the documentation above the "fn" member (note that
400 * filemask = mask & ~dirmask from that documentation).
401 */
402 unsigned filemask:3;
403 unsigned dirmask:3;
404
405 /*
406 * Optimization to track which stages match, to avoid the need to
407 * recompute it in multiple steps. Either 0 or at least 2 bits are
408 * set; if at least 2 bits are set, their corresponding stages match.
409 */
410 unsigned match_mask:3;
411 };
412
413 /*** Function Grouping: various utility functions ***/
414
415 /*
416 * For the next three macros, see warning for conflict_info.merged.
417 *
418 * In each of the below, mi is a struct merged_info*, and ci was defined
419 * as a struct conflict_info* (but we need to verify ci isn't actually
420 * pointed at a struct merged_info*).
421 *
422 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
423 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
424 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
425 */
426 #define INITIALIZE_CI(ci, mi) do { \
427 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
428 } while (0)
429 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
430 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
431 (ci) = (struct conflict_info *)(mi); \
432 assert((ci) && !(mi)->clean); \
433 } while (0)
434
435 static void free_strmap_strings(struct strmap *map)
436 {
437 struct hashmap_iter iter;
438 struct strmap_entry *entry;
439
440 strmap_for_each_entry(map, &iter, entry) {
441 free((char*)entry->key);
442 }
443 }
444
445 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
446 int reinitialize)
447 {
448 struct rename_info *renames = &opti->renames;
449 int i;
450 void (*strmap_func)(struct strmap *, int) =
451 reinitialize ? strmap_partial_clear : strmap_clear;
452 void (*strintmap_func)(struct strintmap *) =
453 reinitialize ? strintmap_partial_clear : strintmap_clear;
454 void (*strset_func)(struct strset *) =
455 reinitialize ? strset_partial_clear : strset_clear;
456
457 /*
458 * We marked opti->paths with strdup_strings = 0, so that we
459 * wouldn't have to make another copy of the fullpath created by
460 * make_traverse_path from setup_path_info(). But, now that we've
461 * used it and have no other references to these strings, it is time
462 * to deallocate them.
463 */
464 free_strmap_strings(&opti->paths);
465 strmap_func(&opti->paths, 1);
466
467 /*
468 * All keys and values in opti->conflicted are a subset of those in
469 * opti->paths. We don't want to deallocate anything twice, so we
470 * don't free the keys and we pass 0 for free_values.
471 */
472 strmap_func(&opti->conflicted, 0);
473
474 /*
475 * opti->paths_to_free is similar to opti->paths; we created it with
476 * strdup_strings = 0 to avoid making _another_ copy of the fullpath
477 * but now that we've used it and have no other references to these
478 * strings, it is time to deallocate them. We do so by temporarily
479 * setting strdup_strings to 1.
480 */
481 opti->paths_to_free.strdup_strings = 1;
482 string_list_clear(&opti->paths_to_free, 0);
483 opti->paths_to_free.strdup_strings = 0;
484
485 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
486 discard_index(&opti->attr_index);
487
488 /* Free memory used by various renames maps */
489 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
490 strintmap_func(&renames->dirs_removed[i]);
491 strmap_func(&renames->dir_renames[i], 0);
492 strintmap_func(&renames->relevant_sources[i]);
493 if (!reinitialize)
494 assert(renames->cached_pairs_valid_side == 0);
495 if (i != renames->cached_pairs_valid_side) {
496 strset_func(&renames->cached_target_names[i]);
497 strmap_func(&renames->cached_pairs[i], 1);
498 strset_func(&renames->cached_irrelevant[i]);
499 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
500 if (!reinitialize)
501 strmap_clear(&renames->dir_rename_count[i], 1);
502 }
503 }
504 renames->cached_pairs_valid_side = 0;
505 renames->dir_rename_mask = 0;
506
507 if (!reinitialize) {
508 struct hashmap_iter iter;
509 struct strmap_entry *e;
510
511 /* Release and free each strbuf found in output */
512 strmap_for_each_entry(&opti->output, &iter, e) {
513 struct strbuf *sb = e->value;
514 strbuf_release(sb);
515 /*
516 * While strictly speaking we don't need to free(sb)
517 * here because we could pass free_values=1 when
518 * calling strmap_clear() on opti->output, that would
519 * require strmap_clear to do another
520 * strmap_for_each_entry() loop, so we just free it
521 * while we're iterating anyway.
522 */
523 free(sb);
524 }
525 strmap_clear(&opti->output, 0);
526 }
527
528 /* Clean out callback_data as well. */
529 FREE_AND_NULL(renames->callback_data);
530 renames->callback_data_nr = renames->callback_data_alloc = 0;
531 }
532
533 static int err(struct merge_options *opt, const char *err, ...)
534 {
535 va_list params;
536 struct strbuf sb = STRBUF_INIT;
537
538 strbuf_addstr(&sb, "error: ");
539 va_start(params, err);
540 strbuf_vaddf(&sb, err, params);
541 va_end(params);
542
543 error("%s", sb.buf);
544 strbuf_release(&sb);
545
546 return -1;
547 }
548
549 static void format_commit(struct strbuf *sb,
550 int indent,
551 struct commit *commit)
552 {
553 struct merge_remote_desc *desc;
554 struct pretty_print_context ctx = {0};
555 ctx.abbrev = DEFAULT_ABBREV;
556
557 strbuf_addchars(sb, ' ', indent);
558 desc = merge_remote_util(commit);
559 if (desc) {
560 strbuf_addf(sb, "virtual %s\n", desc->name);
561 return;
562 }
563
564 format_commit_message(commit, "%h %s", sb, &ctx);
565 strbuf_addch(sb, '\n');
566 }
567
568 __attribute__((format (printf, 4, 5)))
569 static void path_msg(struct merge_options *opt,
570 const char *path,
571 int omittable_hint, /* skippable under --remerge-diff */
572 const char *fmt, ...)
573 {
574 va_list ap;
575 struct strbuf *sb = strmap_get(&opt->priv->output, path);
576 if (!sb) {
577 sb = xmalloc(sizeof(*sb));
578 strbuf_init(sb, 0);
579 strmap_put(&opt->priv->output, path, sb);
580 }
581
582 va_start(ap, fmt);
583 strbuf_vaddf(sb, fmt, ap);
584 va_end(ap);
585
586 strbuf_addch(sb, '\n');
587 }
588
589 /* add a string to a strbuf, but converting "/" to "_" */
590 static void add_flattened_path(struct strbuf *out, const char *s)
591 {
592 size_t i = out->len;
593 strbuf_addstr(out, s);
594 for (; i < out->len; i++)
595 if (out->buf[i] == '/')
596 out->buf[i] = '_';
597 }
598
599 static char *unique_path(struct strmap *existing_paths,
600 const char *path,
601 const char *branch)
602 {
603 struct strbuf newpath = STRBUF_INIT;
604 int suffix = 0;
605 size_t base_len;
606
607 strbuf_addf(&newpath, "%s~", path);
608 add_flattened_path(&newpath, branch);
609
610 base_len = newpath.len;
611 while (strmap_contains(existing_paths, newpath.buf)) {
612 strbuf_setlen(&newpath, base_len);
613 strbuf_addf(&newpath, "_%d", suffix++);
614 }
615
616 return strbuf_detach(&newpath, NULL);
617 }
618
619 /*** Function Grouping: functions related to collect_merge_info() ***/
620
621 static int traverse_trees_wrapper_callback(int n,
622 unsigned long mask,
623 unsigned long dirmask,
624 struct name_entry *names,
625 struct traverse_info *info)
626 {
627 struct merge_options *opt = info->data;
628 struct rename_info *renames = &opt->priv->renames;
629 unsigned filemask = mask & ~dirmask;
630
631 assert(n==3);
632
633 if (!renames->callback_data_traverse_path)
634 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
635
636 if (filemask && filemask == renames->dir_rename_mask)
637 renames->dir_rename_mask = 0x07;
638
639 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
640 renames->callback_data_alloc);
641 renames->callback_data[renames->callback_data_nr].mask = mask;
642 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
643 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
644 names, 3);
645 renames->callback_data_nr++;
646
647 return mask;
648 }
649
650 /*
651 * Much like traverse_trees(), BUT:
652 * - read all the tree entries FIRST, saving them
653 * - note that the above step provides an opportunity to compute necessary
654 * additional details before the "real" traversal
655 * - loop through the saved entries and call the original callback on them
656 */
657 static int traverse_trees_wrapper(struct index_state *istate,
658 int n,
659 struct tree_desc *t,
660 struct traverse_info *info)
661 {
662 int ret, i, old_offset;
663 traverse_callback_t old_fn;
664 char *old_callback_data_traverse_path;
665 struct merge_options *opt = info->data;
666 struct rename_info *renames = &opt->priv->renames;
667
668 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
669
670 old_callback_data_traverse_path = renames->callback_data_traverse_path;
671 old_fn = info->fn;
672 old_offset = renames->callback_data_nr;
673
674 renames->callback_data_traverse_path = NULL;
675 info->fn = traverse_trees_wrapper_callback;
676 ret = traverse_trees(istate, n, t, info);
677 if (ret < 0)
678 return ret;
679
680 info->traverse_path = renames->callback_data_traverse_path;
681 info->fn = old_fn;
682 for (i = old_offset; i < renames->callback_data_nr; ++i) {
683 info->fn(n,
684 renames->callback_data[i].mask,
685 renames->callback_data[i].dirmask,
686 renames->callback_data[i].names,
687 info);
688 }
689
690 renames->callback_data_nr = old_offset;
691 free(renames->callback_data_traverse_path);
692 renames->callback_data_traverse_path = old_callback_data_traverse_path;
693 info->traverse_path = NULL;
694 return 0;
695 }
696
697 static void setup_path_info(struct merge_options *opt,
698 struct string_list_item *result,
699 const char *current_dir_name,
700 int current_dir_name_len,
701 char *fullpath, /* we'll take over ownership */
702 struct name_entry *names,
703 struct name_entry *merged_version,
704 unsigned is_null, /* boolean */
705 unsigned df_conflict, /* boolean */
706 unsigned filemask,
707 unsigned dirmask,
708 int resolved /* boolean */)
709 {
710 /* result->util is void*, so mi is a convenience typed variable */
711 struct merged_info *mi;
712
713 assert(!is_null || resolved);
714 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
715 assert(resolved == (merged_version != NULL));
716
717 mi = xcalloc(1, resolved ? sizeof(struct merged_info) :
718 sizeof(struct conflict_info));
719 mi->directory_name = current_dir_name;
720 mi->basename_offset = current_dir_name_len;
721 mi->clean = !!resolved;
722 if (resolved) {
723 mi->result.mode = merged_version->mode;
724 oidcpy(&mi->result.oid, &merged_version->oid);
725 mi->is_null = !!is_null;
726 } else {
727 int i;
728 struct conflict_info *ci;
729
730 ASSIGN_AND_VERIFY_CI(ci, mi);
731 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
732 ci->pathnames[i] = fullpath;
733 ci->stages[i].mode = names[i].mode;
734 oidcpy(&ci->stages[i].oid, &names[i].oid);
735 }
736 ci->filemask = filemask;
737 ci->dirmask = dirmask;
738 ci->df_conflict = !!df_conflict;
739 if (dirmask)
740 /*
741 * Assume is_null for now, but if we have entries
742 * under the directory then when it is complete in
743 * write_completed_directory() it'll update this.
744 * Also, for D/F conflicts, we have to handle the
745 * directory first, then clear this bit and process
746 * the file to see how it is handled -- that occurs
747 * near the top of process_entry().
748 */
749 mi->is_null = 1;
750 }
751 strmap_put(&opt->priv->paths, fullpath, mi);
752 result->string = fullpath;
753 result->util = mi;
754 }
755
756 static void add_pair(struct merge_options *opt,
757 struct name_entry *names,
758 const char *pathname,
759 unsigned side,
760 unsigned is_add /* if false, is_delete */,
761 unsigned match_mask,
762 unsigned dir_rename_mask)
763 {
764 struct diff_filespec *one, *two;
765 struct rename_info *renames = &opt->priv->renames;
766 int names_idx = is_add ? side : 0;
767
768 if (is_add) {
769 assert(match_mask == 0 || match_mask == 6);
770 if (strset_contains(&renames->cached_target_names[side],
771 pathname))
772 return;
773 } else {
774 unsigned content_relevant = (match_mask == 0);
775 unsigned location_relevant = (dir_rename_mask == 0x07);
776
777 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
778
779 /*
780 * If pathname is found in cached_irrelevant[side] due to
781 * previous pick but for this commit content is relevant,
782 * then we need to remove it from cached_irrelevant.
783 */
784 if (content_relevant)
785 /* strset_remove is no-op if strset doesn't have key */
786 strset_remove(&renames->cached_irrelevant[side],
787 pathname);
788
789 /*
790 * We do not need to re-detect renames for paths that we already
791 * know the pairing, i.e. for cached_pairs (or
792 * cached_irrelevant). However, handle_deferred_entries() needs
793 * to loop over the union of keys from relevant_sources[side] and
794 * cached_pairs[side], so for simplicity we set relevant_sources
795 * for all the cached_pairs too and then strip them back out in
796 * prune_cached_from_relevant() at the beginning of
797 * detect_regular_renames().
798 */
799 if (content_relevant || location_relevant) {
800 /* content_relevant trumps location_relevant */
801 strintmap_set(&renames->relevant_sources[side], pathname,
802 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
803 }
804
805 /*
806 * Avoid creating pair if we've already cached rename results.
807 * Note that we do this after setting relevant_sources[side]
808 * as noted in the comment above.
809 */
810 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
811 strset_contains(&renames->cached_irrelevant[side], pathname))
812 return;
813 }
814
815 one = alloc_filespec(pathname);
816 two = alloc_filespec(pathname);
817 fill_filespec(is_add ? two : one,
818 &names[names_idx].oid, 1, names[names_idx].mode);
819 diff_queue(&renames->pairs[side], one, two);
820 }
821
822 static void collect_rename_info(struct merge_options *opt,
823 struct name_entry *names,
824 const char *dirname,
825 const char *fullname,
826 unsigned filemask,
827 unsigned dirmask,
828 unsigned match_mask)
829 {
830 struct rename_info *renames = &opt->priv->renames;
831 unsigned side;
832
833 /*
834 * Update dir_rename_mask (determines ignore-rename-source validity)
835 *
836 * dir_rename_mask helps us keep track of when directory rename
837 * detection may be relevant. Basically, whenver a directory is
838 * removed on one side of history, and a file is added to that
839 * directory on the other side of history, directory rename
840 * detection is relevant (meaning we have to detect renames for all
841 * files within that directory to deduce where the directory
842 * moved). Also, whenever a directory needs directory rename
843 * detection, due to the "majority rules" choice for where to move
844 * it (see t6423 testcase 1f), we also need to detect renames for
845 * all files within subdirectories of that directory as well.
846 *
847 * Here we haven't looked at files within the directory yet, we are
848 * just looking at the directory itself. So, if we aren't yet in
849 * a case where a parent directory needed directory rename detection
850 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
851 * on one side of history, record the mask of the other side of
852 * history in dir_rename_mask.
853 */
854 if (renames->dir_rename_mask != 0x07 &&
855 (dirmask == 3 || dirmask == 5)) {
856 /* simple sanity check */
857 assert(renames->dir_rename_mask == 0 ||
858 renames->dir_rename_mask == (dirmask & ~1));
859 /* update dir_rename_mask; have it record mask of new side */
860 renames->dir_rename_mask = (dirmask & ~1);
861 }
862
863 /* Update dirs_removed, as needed */
864 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
865 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
866 unsigned sides = (0x07 - dirmask)/2;
867 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
868 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
869 /*
870 * Record relevance of this directory. However, note that
871 * when collect_merge_info_callback() recurses into this
872 * directory and calls collect_rename_info() on paths
873 * within that directory, if we find a path that was added
874 * to this directory on the other side of history, we will
875 * upgrade this value to RELEVANT_FOR_SELF; see below.
876 */
877 if (sides & 1)
878 strintmap_set(&renames->dirs_removed[1], fullname,
879 relevance);
880 if (sides & 2)
881 strintmap_set(&renames->dirs_removed[2], fullname,
882 relevance);
883 }
884
885 /*
886 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
887 * When we run across a file added to a directory. In such a case,
888 * find the directory of the file and upgrade its relevance.
889 */
890 if (renames->dir_rename_mask == 0x07 &&
891 (filemask == 2 || filemask == 4)) {
892 /*
893 * Need directory rename for parent directory on other side
894 * of history from added file. Thus
895 * side = (~filemask & 0x06) >> 1
896 * or
897 * side = 3 - (filemask/2).
898 */
899 unsigned side = 3 - (filemask >> 1);
900 strintmap_set(&renames->dirs_removed[side], dirname,
901 RELEVANT_FOR_SELF);
902 }
903
904 if (filemask == 0 || filemask == 7)
905 return;
906
907 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
908 unsigned side_mask = (1 << side);
909
910 /* Check for deletion on side */
911 if ((filemask & 1) && !(filemask & side_mask))
912 add_pair(opt, names, fullname, side, 0 /* delete */,
913 match_mask & filemask,
914 renames->dir_rename_mask);
915
916 /* Check for addition on side */
917 if (!(filemask & 1) && (filemask & side_mask))
918 add_pair(opt, names, fullname, side, 1 /* add */,
919 match_mask & filemask,
920 renames->dir_rename_mask);
921 }
922 }
923
924 static int collect_merge_info_callback(int n,
925 unsigned long mask,
926 unsigned long dirmask,
927 struct name_entry *names,
928 struct traverse_info *info)
929 {
930 /*
931 * n is 3. Always.
932 * common ancestor (mbase) has mask 1, and stored in index 0 of names
933 * head of side 1 (side1) has mask 2, and stored in index 1 of names
934 * head of side 2 (side2) has mask 4, and stored in index 2 of names
935 */
936 struct merge_options *opt = info->data;
937 struct merge_options_internal *opti = opt->priv;
938 struct rename_info *renames = &opt->priv->renames;
939 struct string_list_item pi; /* Path Info */
940 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
941 struct name_entry *p;
942 size_t len;
943 char *fullpath;
944 const char *dirname = opti->current_dir_name;
945 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
946 unsigned filemask = mask & ~dirmask;
947 unsigned match_mask = 0; /* will be updated below */
948 unsigned mbase_null = !(mask & 1);
949 unsigned side1_null = !(mask & 2);
950 unsigned side2_null = !(mask & 4);
951 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
952 names[0].mode == names[1].mode &&
953 oideq(&names[0].oid, &names[1].oid));
954 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
955 names[0].mode == names[2].mode &&
956 oideq(&names[0].oid, &names[2].oid));
957 unsigned sides_match = (!side1_null && !side2_null &&
958 names[1].mode == names[2].mode &&
959 oideq(&names[1].oid, &names[2].oid));
960
961 /*
962 * Note: When a path is a file on one side of history and a directory
963 * in another, we have a directory/file conflict. In such cases, if
964 * the conflict doesn't resolve from renames and deletions, then we
965 * always leave directories where they are and move files out of the
966 * way. Thus, while struct conflict_info has a df_conflict field to
967 * track such conflicts, we ignore that field for any directories at
968 * a path and only pay attention to it for files at the given path.
969 * The fact that we leave directories were they are also means that
970 * we do not need to worry about getting additional df_conflict
971 * information propagated from parent directories down to children
972 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
973 * sets a newinfo.df_conflicts field specifically to propagate it).
974 */
975 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
976
977 /* n = 3 is a fundamental assumption. */
978 if (n != 3)
979 BUG("Called collect_merge_info_callback wrong");
980
981 /*
982 * A bunch of sanity checks verifying that traverse_trees() calls
983 * us the way I expect. Could just remove these at some point,
984 * though maybe they are helpful to future code readers.
985 */
986 assert(mbase_null == is_null_oid(&names[0].oid));
987 assert(side1_null == is_null_oid(&names[1].oid));
988 assert(side2_null == is_null_oid(&names[2].oid));
989 assert(!mbase_null || !side1_null || !side2_null);
990 assert(mask > 0 && mask < 8);
991
992 /* Determine match_mask */
993 if (side1_matches_mbase)
994 match_mask = (side2_matches_mbase ? 7 : 3);
995 else if (side2_matches_mbase)
996 match_mask = 5;
997 else if (sides_match)
998 match_mask = 6;
999
1000 /*
1001 * Get the name of the relevant filepath, which we'll pass to
1002 * setup_path_info() for tracking.
1003 */
1004 p = names;
1005 while (!p->mode)
1006 p++;
1007 len = traverse_path_len(info, p->pathlen);
1008
1009 /* +1 in both of the following lines to include the NUL byte */
1010 fullpath = xmalloc(len + 1);
1011 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1012
1013 /*
1014 * If mbase, side1, and side2 all match, we can resolve early. Even
1015 * if these are trees, there will be no renames or anything
1016 * underneath.
1017 */
1018 if (side1_matches_mbase && side2_matches_mbase) {
1019 /* mbase, side1, & side2 all match; use mbase as resolution */
1020 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1021 names, names+0, mbase_null, 0,
1022 filemask, dirmask, 1);
1023 return mask;
1024 }
1025
1026 /*
1027 * Gather additional information used in rename detection.
1028 */
1029 collect_rename_info(opt, names, dirname, fullpath,
1030 filemask, dirmask, match_mask);
1031
1032 /*
1033 * Record information about the path so we can resolve later in
1034 * process_entries.
1035 */
1036 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1037 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1038
1039 ci = pi.util;
1040 VERIFY_CI(ci);
1041 ci->match_mask = match_mask;
1042
1043 /* If dirmask, recurse into subdirectories */
1044 if (dirmask) {
1045 struct traverse_info newinfo;
1046 struct tree_desc t[3];
1047 void *buf[3] = {NULL, NULL, NULL};
1048 const char *original_dir_name;
1049 int i, ret;
1050
1051 ci->match_mask &= filemask;
1052 newinfo = *info;
1053 newinfo.prev = info;
1054 newinfo.name = p->path;
1055 newinfo.namelen = p->pathlen;
1056 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1057 /*
1058 * If this directory we are about to recurse into cared about
1059 * its parent directory (the current directory) having a D/F
1060 * conflict, then we'd propagate the masks in this way:
1061 * newinfo.df_conflicts |= (mask & ~dirmask);
1062 * But we don't worry about propagating D/F conflicts. (See
1063 * comment near setting of local df_conflict variable near
1064 * the beginning of this function).
1065 */
1066
1067 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1068 if (i == 1 && side1_matches_mbase)
1069 t[1] = t[0];
1070 else if (i == 2 && side2_matches_mbase)
1071 t[2] = t[0];
1072 else if (i == 2 && sides_match)
1073 t[2] = t[1];
1074 else {
1075 const struct object_id *oid = NULL;
1076 if (dirmask & 1)
1077 oid = &names[i].oid;
1078 buf[i] = fill_tree_descriptor(opt->repo,
1079 t + i, oid);
1080 }
1081 dirmask >>= 1;
1082 }
1083
1084 original_dir_name = opti->current_dir_name;
1085 opti->current_dir_name = pi.string;
1086 if (renames->dir_rename_mask == 0 ||
1087 renames->dir_rename_mask == 0x07)
1088 ret = traverse_trees(NULL, 3, t, &newinfo);
1089 else
1090 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1091 opti->current_dir_name = original_dir_name;
1092 renames->dir_rename_mask = prev_dir_rename_mask;
1093
1094 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1095 free(buf[i]);
1096
1097 if (ret < 0)
1098 return -1;
1099 }
1100
1101 return mask;
1102 }
1103
1104 static int collect_merge_info(struct merge_options *opt,
1105 struct tree *merge_base,
1106 struct tree *side1,
1107 struct tree *side2)
1108 {
1109 int ret;
1110 struct tree_desc t[3];
1111 struct traverse_info info;
1112
1113 opt->priv->toplevel_dir = "";
1114 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1115 setup_traverse_info(&info, opt->priv->toplevel_dir);
1116 info.fn = collect_merge_info_callback;
1117 info.data = opt;
1118 info.show_all_errors = 1;
1119
1120 parse_tree(merge_base);
1121 parse_tree(side1);
1122 parse_tree(side2);
1123 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1124 init_tree_desc(t + 1, side1->buffer, side1->size);
1125 init_tree_desc(t + 2, side2->buffer, side2->size);
1126
1127 trace2_region_enter("merge", "traverse_trees", opt->repo);
1128 ret = traverse_trees(NULL, 3, t, &info);
1129 trace2_region_leave("merge", "traverse_trees", opt->repo);
1130
1131 return ret;
1132 }
1133
1134 /*** Function Grouping: functions related to threeway content merges ***/
1135
1136 static int find_first_merges(struct repository *repo,
1137 const char *path,
1138 struct commit *a,
1139 struct commit *b,
1140 struct object_array *result)
1141 {
1142 int i, j;
1143 struct object_array merges = OBJECT_ARRAY_INIT;
1144 struct commit *commit;
1145 int contains_another;
1146
1147 char merged_revision[GIT_MAX_HEXSZ + 2];
1148 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1149 "--all", merged_revision, NULL };
1150 struct rev_info revs;
1151 struct setup_revision_opt rev_opts;
1152
1153 memset(result, 0, sizeof(struct object_array));
1154 memset(&rev_opts, 0, sizeof(rev_opts));
1155
1156 /* get all revisions that merge commit a */
1157 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1158 oid_to_hex(&a->object.oid));
1159 repo_init_revisions(repo, &revs, NULL);
1160 rev_opts.submodule = path;
1161 /* FIXME: can't handle linked worktrees in submodules yet */
1162 revs.single_worktree = path != NULL;
1163 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1164
1165 /* save all revisions from the above list that contain b */
1166 if (prepare_revision_walk(&revs))
1167 die("revision walk setup failed");
1168 while ((commit = get_revision(&revs)) != NULL) {
1169 struct object *o = &(commit->object);
1170 if (in_merge_bases(b, commit))
1171 add_object_array(o, NULL, &merges);
1172 }
1173 reset_revision_walk();
1174
1175 /* Now we've got all merges that contain a and b. Prune all
1176 * merges that contain another found merge and save them in
1177 * result.
1178 */
1179 for (i = 0; i < merges.nr; i++) {
1180 struct commit *m1 = (struct commit *) merges.objects[i].item;
1181
1182 contains_another = 0;
1183 for (j = 0; j < merges.nr; j++) {
1184 struct commit *m2 = (struct commit *) merges.objects[j].item;
1185 if (i != j && in_merge_bases(m2, m1)) {
1186 contains_another = 1;
1187 break;
1188 }
1189 }
1190
1191 if (!contains_another)
1192 add_object_array(merges.objects[i].item, NULL, result);
1193 }
1194
1195 object_array_clear(&merges);
1196 return result->nr;
1197 }
1198
1199 static int merge_submodule(struct merge_options *opt,
1200 const char *path,
1201 const struct object_id *o,
1202 const struct object_id *a,
1203 const struct object_id *b,
1204 struct object_id *result)
1205 {
1206 struct commit *commit_o, *commit_a, *commit_b;
1207 int parent_count;
1208 struct object_array merges;
1209 struct strbuf sb = STRBUF_INIT;
1210
1211 int i;
1212 int search = !opt->priv->call_depth;
1213
1214 /* store fallback answer in result in case we fail */
1215 oidcpy(result, opt->priv->call_depth ? o : a);
1216
1217 /* we can not handle deletion conflicts */
1218 if (is_null_oid(o))
1219 return 0;
1220 if (is_null_oid(a))
1221 return 0;
1222 if (is_null_oid(b))
1223 return 0;
1224
1225 if (add_submodule_odb(path)) {
1226 path_msg(opt, path, 0,
1227 _("Failed to merge submodule %s (not checked out)"),
1228 path);
1229 return 0;
1230 }
1231
1232 if (!(commit_o = lookup_commit_reference(opt->repo, o)) ||
1233 !(commit_a = lookup_commit_reference(opt->repo, a)) ||
1234 !(commit_b = lookup_commit_reference(opt->repo, b))) {
1235 path_msg(opt, path, 0,
1236 _("Failed to merge submodule %s (commits not present)"),
1237 path);
1238 return 0;
1239 }
1240
1241 /* check whether both changes are forward */
1242 if (!in_merge_bases(commit_o, commit_a) ||
1243 !in_merge_bases(commit_o, commit_b)) {
1244 path_msg(opt, path, 0,
1245 _("Failed to merge submodule %s "
1246 "(commits don't follow merge-base)"),
1247 path);
1248 return 0;
1249 }
1250
1251 /* Case #1: a is contained in b or vice versa */
1252 if (in_merge_bases(commit_a, commit_b)) {
1253 oidcpy(result, b);
1254 path_msg(opt, path, 1,
1255 _("Note: Fast-forwarding submodule %s to %s"),
1256 path, oid_to_hex(b));
1257 return 1;
1258 }
1259 if (in_merge_bases(commit_b, commit_a)) {
1260 oidcpy(result, a);
1261 path_msg(opt, path, 1,
1262 _("Note: Fast-forwarding submodule %s to %s"),
1263 path, oid_to_hex(a));
1264 return 1;
1265 }
1266
1267 /*
1268 * Case #2: There are one or more merges that contain a and b in
1269 * the submodule. If there is only one, then present it as a
1270 * suggestion to the user, but leave it marked unmerged so the
1271 * user needs to confirm the resolution.
1272 */
1273
1274 /* Skip the search if makes no sense to the calling context. */
1275 if (!search)
1276 return 0;
1277
1278 /* find commit which merges them */
1279 parent_count = find_first_merges(opt->repo, path, commit_a, commit_b,
1280 &merges);
1281 switch (parent_count) {
1282 case 0:
1283 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
1284 break;
1285
1286 case 1:
1287 format_commit(&sb, 4,
1288 (struct commit *)merges.objects[0].item);
1289 path_msg(opt, path, 0,
1290 _("Failed to merge submodule %s, but a possible merge "
1291 "resolution exists:\n%s\n"),
1292 path, sb.buf);
1293 path_msg(opt, path, 1,
1294 _("If this is correct simply add it to the index "
1295 "for example\n"
1296 "by using:\n\n"
1297 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
1298 "which will accept this suggestion.\n"),
1299 oid_to_hex(&merges.objects[0].item->oid), path);
1300 strbuf_release(&sb);
1301 break;
1302 default:
1303 for (i = 0; i < merges.nr; i++)
1304 format_commit(&sb, 4,
1305 (struct commit *)merges.objects[i].item);
1306 path_msg(opt, path, 0,
1307 _("Failed to merge submodule %s, but multiple "
1308 "possible merges exist:\n%s"), path, sb.buf);
1309 strbuf_release(&sb);
1310 }
1311
1312 object_array_clear(&merges);
1313 return 0;
1314 }
1315
1316 static void initialize_attr_index(struct merge_options *opt)
1317 {
1318 /*
1319 * The renormalize_buffer() functions require attributes, and
1320 * annoyingly those can only be read from the working tree or from
1321 * an index_state. merge-ort doesn't have an index_state, so we
1322 * generate a fake one containing only attribute information.
1323 */
1324 struct merged_info *mi;
1325 struct index_state *attr_index = &opt->priv->attr_index;
1326 struct cache_entry *ce;
1327
1328 attr_index->initialized = 1;
1329
1330 if (!opt->renormalize)
1331 return;
1332
1333 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1334 if (!mi)
1335 return;
1336
1337 if (mi->clean) {
1338 int len = strlen(GITATTRIBUTES_FILE);
1339 ce = make_empty_cache_entry(attr_index, len);
1340 ce->ce_mode = create_ce_mode(mi->result.mode);
1341 ce->ce_flags = create_ce_flags(0);
1342 ce->ce_namelen = len;
1343 oidcpy(&ce->oid, &mi->result.oid);
1344 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1345 add_index_entry(attr_index, ce,
1346 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1347 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1348 } else {
1349 int stage, len;
1350 struct conflict_info *ci;
1351
1352 ASSIGN_AND_VERIFY_CI(ci, mi);
1353 for (stage = 0; stage < 3; stage++) {
1354 unsigned stage_mask = (1 << stage);
1355
1356 if (!(ci->filemask & stage_mask))
1357 continue;
1358 len = strlen(GITATTRIBUTES_FILE);
1359 ce = make_empty_cache_entry(attr_index, len);
1360 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
1361 ce->ce_flags = create_ce_flags(stage);
1362 ce->ce_namelen = len;
1363 oidcpy(&ce->oid, &ci->stages[stage].oid);
1364 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1365 add_index_entry(attr_index, ce,
1366 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1367 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
1368 &ce->oid);
1369 }
1370 }
1371 }
1372
1373 static int merge_3way(struct merge_options *opt,
1374 const char *path,
1375 const struct object_id *o,
1376 const struct object_id *a,
1377 const struct object_id *b,
1378 const char *pathnames[3],
1379 const int extra_marker_size,
1380 mmbuffer_t *result_buf)
1381 {
1382 mmfile_t orig, src1, src2;
1383 struct ll_merge_options ll_opts = {0};
1384 char *base, *name1, *name2;
1385 int merge_status;
1386
1387 if (!opt->priv->attr_index.initialized)
1388 initialize_attr_index(opt);
1389
1390 ll_opts.renormalize = opt->renormalize;
1391 ll_opts.extra_marker_size = extra_marker_size;
1392 ll_opts.xdl_opts = opt->xdl_opts;
1393
1394 if (opt->priv->call_depth) {
1395 ll_opts.virtual_ancestor = 1;
1396 ll_opts.variant = 0;
1397 } else {
1398 switch (opt->recursive_variant) {
1399 case MERGE_VARIANT_OURS:
1400 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1401 break;
1402 case MERGE_VARIANT_THEIRS:
1403 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1404 break;
1405 default:
1406 ll_opts.variant = 0;
1407 break;
1408 }
1409 }
1410
1411 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1412 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1413 base = mkpathdup("%s", opt->ancestor);
1414 name1 = mkpathdup("%s", opt->branch1);
1415 name2 = mkpathdup("%s", opt->branch2);
1416 } else {
1417 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1418 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1419 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1420 }
1421
1422 read_mmblob(&orig, o);
1423 read_mmblob(&src1, a);
1424 read_mmblob(&src2, b);
1425
1426 merge_status = ll_merge(result_buf, path, &orig, base,
1427 &src1, name1, &src2, name2,
1428 &opt->priv->attr_index, &ll_opts);
1429
1430 free(base);
1431 free(name1);
1432 free(name2);
1433 free(orig.ptr);
1434 free(src1.ptr);
1435 free(src2.ptr);
1436 return merge_status;
1437 }
1438
1439 static int handle_content_merge(struct merge_options *opt,
1440 const char *path,
1441 const struct version_info *o,
1442 const struct version_info *a,
1443 const struct version_info *b,
1444 const char *pathnames[3],
1445 const int extra_marker_size,
1446 struct version_info *result)
1447 {
1448 /*
1449 * path is the target location where we want to put the file, and
1450 * is used to determine any normalization rules in ll_merge.
1451 *
1452 * The normal case is that path and all entries in pathnames are
1453 * identical, though renames can affect which path we got one of
1454 * the three blobs to merge on various sides of history.
1455 *
1456 * extra_marker_size is the amount to extend conflict markers in
1457 * ll_merge; this is neeed if we have content merges of content
1458 * merges, which happens for example with rename/rename(2to1) and
1459 * rename/add conflicts.
1460 */
1461 unsigned clean = 1;
1462
1463 /*
1464 * handle_content_merge() needs both files to be of the same type, i.e.
1465 * both files OR both submodules OR both symlinks. Conflicting types
1466 * needs to be handled elsewhere.
1467 */
1468 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
1469
1470 /* Merge modes */
1471 if (a->mode == b->mode || a->mode == o->mode)
1472 result->mode = b->mode;
1473 else {
1474 /* must be the 100644/100755 case */
1475 assert(S_ISREG(a->mode));
1476 result->mode = a->mode;
1477 clean = (b->mode == o->mode);
1478 /*
1479 * FIXME: If opt->priv->call_depth && !clean, then we really
1480 * should not make result->mode match either a->mode or
1481 * b->mode; that causes t6036 "check conflicting mode for
1482 * regular file" to fail. It would be best to use some other
1483 * mode, but we'll confuse all kinds of stuff if we use one
1484 * where S_ISREG(result->mode) isn't true, and if we use
1485 * something like 0100666, then tree-walk.c's calls to
1486 * canon_mode() will just normalize that to 100644 for us and
1487 * thus not solve anything.
1488 *
1489 * Figure out if there's some kind of way we can work around
1490 * this...
1491 */
1492 }
1493
1494 /*
1495 * Trivial oid merge.
1496 *
1497 * Note: While one might assume that the next four lines would
1498 * be unnecessary due to the fact that match_mask is often
1499 * setup and already handled, renames don't always take care
1500 * of that.
1501 */
1502 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
1503 oidcpy(&result->oid, &b->oid);
1504 else if (oideq(&b->oid, &o->oid))
1505 oidcpy(&result->oid, &a->oid);
1506
1507 /* Remaining rules depend on file vs. submodule vs. symlink. */
1508 else if (S_ISREG(a->mode)) {
1509 mmbuffer_t result_buf;
1510 int ret = 0, merge_status;
1511 int two_way;
1512
1513 /*
1514 * If 'o' is different type, treat it as null so we do a
1515 * two-way merge.
1516 */
1517 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1518
1519 merge_status = merge_3way(opt, path,
1520 two_way ? null_oid() : &o->oid,
1521 &a->oid, &b->oid,
1522 pathnames, extra_marker_size,
1523 &result_buf);
1524
1525 if ((merge_status < 0) || !result_buf.ptr)
1526 ret = err(opt, _("Failed to execute internal merge"));
1527
1528 if (!ret &&
1529 write_object_file(result_buf.ptr, result_buf.size,
1530 blob_type, &result->oid))
1531 ret = err(opt, _("Unable to add %s to database"),
1532 path);
1533
1534 free(result_buf.ptr);
1535 if (ret)
1536 return -1;
1537 clean &= (merge_status == 0);
1538 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1539 } else if (S_ISGITLINK(a->mode)) {
1540 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1541 clean = merge_submodule(opt, pathnames[0],
1542 two_way ? null_oid() : &o->oid,
1543 &a->oid, &b->oid, &result->oid);
1544 if (opt->priv->call_depth && two_way && !clean) {
1545 result->mode = o->mode;
1546 oidcpy(&result->oid, &o->oid);
1547 }
1548 } else if (S_ISLNK(a->mode)) {
1549 if (opt->priv->call_depth) {
1550 clean = 0;
1551 result->mode = o->mode;
1552 oidcpy(&result->oid, &o->oid);
1553 } else {
1554 switch (opt->recursive_variant) {
1555 case MERGE_VARIANT_NORMAL:
1556 clean = 0;
1557 oidcpy(&result->oid, &a->oid);
1558 break;
1559 case MERGE_VARIANT_OURS:
1560 oidcpy(&result->oid, &a->oid);
1561 break;
1562 case MERGE_VARIANT_THEIRS:
1563 oidcpy(&result->oid, &b->oid);
1564 break;
1565 }
1566 }
1567 } else
1568 BUG("unsupported object type in the tree: %06o for %s",
1569 a->mode, path);
1570
1571 return clean;
1572 }
1573
1574 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1575 *** which are split into directory and regular rename detection sections. ***/
1576
1577 /*** Function Grouping: functions related to directory rename detection ***/
1578
1579 struct collision_info {
1580 struct string_list source_files;
1581 unsigned reported_already:1;
1582 };
1583
1584 /*
1585 * Return a new string that replaces the beginning portion (which matches
1586 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
1587 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
1588 * NOTE:
1589 * Caller must ensure that old_path starts with rename_info->key + '/'.
1590 */
1591 static char *apply_dir_rename(struct strmap_entry *rename_info,
1592 const char *old_path)
1593 {
1594 struct strbuf new_path = STRBUF_INIT;
1595 const char *old_dir = rename_info->key;
1596 const char *new_dir = rename_info->value;
1597 int oldlen, newlen, new_dir_len;
1598
1599 oldlen = strlen(old_dir);
1600 if (*new_dir == '\0')
1601 /*
1602 * If someone renamed/merged a subdirectory into the root
1603 * directory (e.g. 'some/subdir' -> ''), then we want to
1604 * avoid returning
1605 * '' + '/filename'
1606 * as the rename; we need to make old_path + oldlen advance
1607 * past the '/' character.
1608 */
1609 oldlen++;
1610 new_dir_len = strlen(new_dir);
1611 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
1612 strbuf_grow(&new_path, newlen);
1613 strbuf_add(&new_path, new_dir, new_dir_len);
1614 strbuf_addstr(&new_path, &old_path[oldlen]);
1615
1616 return strbuf_detach(&new_path, NULL);
1617 }
1618
1619 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
1620 {
1621 struct merged_info *mi = strmap_get(paths, path);
1622 struct conflict_info *ci;
1623 if (!mi)
1624 return 0;
1625 INITIALIZE_CI(ci, mi);
1626 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
1627 }
1628
1629 /*
1630 * See if there is a directory rename for path, and if there are any file
1631 * level conflicts on the given side for the renamed location. If there is
1632 * a rename and there are no conflicts, return the new name. Otherwise,
1633 * return NULL.
1634 */
1635 static char *handle_path_level_conflicts(struct merge_options *opt,
1636 const char *path,
1637 unsigned side_index,
1638 struct strmap_entry *rename_info,
1639 struct strmap *collisions)
1640 {
1641 char *new_path = NULL;
1642 struct collision_info *c_info;
1643 int clean = 1;
1644 struct strbuf collision_paths = STRBUF_INIT;
1645
1646 /*
1647 * entry has the mapping of old directory name to new directory name
1648 * that we want to apply to path.
1649 */
1650 new_path = apply_dir_rename(rename_info, path);
1651 if (!new_path)
1652 BUG("Failed to apply directory rename!");
1653
1654 /*
1655 * The caller needs to have ensured that it has pre-populated
1656 * collisions with all paths that map to new_path. Do a quick check
1657 * to ensure that's the case.
1658 */
1659 c_info = strmap_get(collisions, new_path);
1660 if (c_info == NULL)
1661 BUG("c_info is NULL");
1662
1663 /*
1664 * Check for one-sided add/add/.../add conflicts, i.e.
1665 * where implicit renames from the other side doing
1666 * directory rename(s) can affect this side of history
1667 * to put multiple paths into the same location. Warn
1668 * and bail on directory renames for such paths.
1669 */
1670 if (c_info->reported_already) {
1671 clean = 0;
1672 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
1673 c_info->reported_already = 1;
1674 strbuf_add_separated_string_list(&collision_paths, ", ",
1675 &c_info->source_files);
1676 path_msg(opt, new_path, 0,
1677 _("CONFLICT (implicit dir rename): Existing file/dir "
1678 "at %s in the way of implicit directory rename(s) "
1679 "putting the following path(s) there: %s."),
1680 new_path, collision_paths.buf);
1681 clean = 0;
1682 } else if (c_info->source_files.nr > 1) {
1683 c_info->reported_already = 1;
1684 strbuf_add_separated_string_list(&collision_paths, ", ",
1685 &c_info->source_files);
1686 path_msg(opt, new_path, 0,
1687 _("CONFLICT (implicit dir rename): Cannot map more "
1688 "than one path to %s; implicit directory renames "
1689 "tried to put these paths there: %s"),
1690 new_path, collision_paths.buf);
1691 clean = 0;
1692 }
1693
1694 /* Free memory we no longer need */
1695 strbuf_release(&collision_paths);
1696 if (!clean && new_path) {
1697 free(new_path);
1698 return NULL;
1699 }
1700
1701 return new_path;
1702 }
1703
1704 static void get_provisional_directory_renames(struct merge_options *opt,
1705 unsigned side,
1706 int *clean)
1707 {
1708 struct hashmap_iter iter;
1709 struct strmap_entry *entry;
1710 struct rename_info *renames = &opt->priv->renames;
1711
1712 /*
1713 * Collapse
1714 * dir_rename_count: old_directory -> {new_directory -> count}
1715 * down to
1716 * dir_renames: old_directory -> best_new_directory
1717 * where best_new_directory is the one with the unique highest count.
1718 */
1719 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
1720 const char *source_dir = entry->key;
1721 struct strintmap *counts = entry->value;
1722 struct hashmap_iter count_iter;
1723 struct strmap_entry *count_entry;
1724 int max = 0;
1725 int bad_max = 0;
1726 const char *best = NULL;
1727
1728 strintmap_for_each_entry(counts, &count_iter, count_entry) {
1729 const char *target_dir = count_entry->key;
1730 intptr_t count = (intptr_t)count_entry->value;
1731
1732 if (count == max)
1733 bad_max = max;
1734 else if (count > max) {
1735 max = count;
1736 best = target_dir;
1737 }
1738 }
1739
1740 if (max == 0)
1741 continue;
1742
1743 if (bad_max == max) {
1744 path_msg(opt, source_dir, 0,
1745 _("CONFLICT (directory rename split): "
1746 "Unclear where to rename %s to; it was "
1747 "renamed to multiple other directories, with "
1748 "no destination getting a majority of the "
1749 "files."),
1750 source_dir);
1751 *clean = 0;
1752 } else {
1753 strmap_put(&renames->dir_renames[side],
1754 source_dir, (void*)best);
1755 }
1756 }
1757 }
1758
1759 static void handle_directory_level_conflicts(struct merge_options *opt)
1760 {
1761 struct hashmap_iter iter;
1762 struct strmap_entry *entry;
1763 struct string_list duplicated = STRING_LIST_INIT_NODUP;
1764 struct rename_info *renames = &opt->priv->renames;
1765 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
1766 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
1767 int i;
1768
1769 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
1770 if (strmap_contains(side2_dir_renames, entry->key))
1771 string_list_append(&duplicated, entry->key);
1772 }
1773
1774 for (i = 0; i < duplicated.nr; i++) {
1775 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
1776 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
1777 }
1778 string_list_clear(&duplicated, 0);
1779 }
1780
1781 static struct strmap_entry *check_dir_renamed(const char *path,
1782 struct strmap *dir_renames)
1783 {
1784 char *temp = xstrdup(path);
1785 char *end;
1786 struct strmap_entry *e = NULL;
1787
1788 while ((end = strrchr(temp, '/'))) {
1789 *end = '\0';
1790 e = strmap_get_entry(dir_renames, temp);
1791 if (e)
1792 break;
1793 }
1794 free(temp);
1795 return e;
1796 }
1797
1798 static void compute_collisions(struct strmap *collisions,
1799 struct strmap *dir_renames,
1800 struct diff_queue_struct *pairs)
1801 {
1802 int i;
1803
1804 strmap_init_with_options(collisions, NULL, 0);
1805 if (strmap_empty(dir_renames))
1806 return;
1807
1808 /*
1809 * Multiple files can be mapped to the same path due to directory
1810 * renames done by the other side of history. Since that other
1811 * side of history could have merged multiple directories into one,
1812 * if our side of history added the same file basename to each of
1813 * those directories, then all N of them would get implicitly
1814 * renamed by the directory rename detection into the same path,
1815 * and we'd get an add/add/.../add conflict, and all those adds
1816 * from *this* side of history. This is not representable in the
1817 * index, and users aren't going to easily be able to make sense of
1818 * it. So we need to provide a good warning about what's
1819 * happening, and fall back to no-directory-rename detection
1820 * behavior for those paths.
1821 *
1822 * See testcases 9e and all of section 5 from t6043 for examples.
1823 */
1824 for (i = 0; i < pairs->nr; ++i) {
1825 struct strmap_entry *rename_info;
1826 struct collision_info *collision_info;
1827 char *new_path;
1828 struct diff_filepair *pair = pairs->queue[i];
1829
1830 if (pair->status != 'A' && pair->status != 'R')
1831 continue;
1832 rename_info = check_dir_renamed(pair->two->path, dir_renames);
1833 if (!rename_info)
1834 continue;
1835
1836 new_path = apply_dir_rename(rename_info, pair->two->path);
1837 assert(new_path);
1838 collision_info = strmap_get(collisions, new_path);
1839 if (collision_info) {
1840 free(new_path);
1841 } else {
1842 CALLOC_ARRAY(collision_info, 1);
1843 string_list_init_nodup(&collision_info->source_files);
1844 strmap_put(collisions, new_path, collision_info);
1845 }
1846 string_list_insert(&collision_info->source_files,
1847 pair->two->path);
1848 }
1849 }
1850
1851 static char *check_for_directory_rename(struct merge_options *opt,
1852 const char *path,
1853 unsigned side_index,
1854 struct strmap *dir_renames,
1855 struct strmap *dir_rename_exclusions,
1856 struct strmap *collisions,
1857 int *clean_merge)
1858 {
1859 char *new_path = NULL;
1860 struct strmap_entry *rename_info;
1861 struct strmap_entry *otherinfo = NULL;
1862 const char *new_dir;
1863
1864 if (strmap_empty(dir_renames))
1865 return new_path;
1866 rename_info = check_dir_renamed(path, dir_renames);
1867 if (!rename_info)
1868 return new_path;
1869 /* old_dir = rename_info->key; */
1870 new_dir = rename_info->value;
1871
1872 /*
1873 * This next part is a little weird. We do not want to do an
1874 * implicit rename into a directory we renamed on our side, because
1875 * that will result in a spurious rename/rename(1to2) conflict. An
1876 * example:
1877 * Base commit: dumbdir/afile, otherdir/bfile
1878 * Side 1: smrtdir/afile, otherdir/bfile
1879 * Side 2: dumbdir/afile, dumbdir/bfile
1880 * Here, while working on Side 1, we could notice that otherdir was
1881 * renamed/merged to dumbdir, and change the diff_filepair for
1882 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
1883 * 2 will notice the rename from dumbdir to smrtdir, and do the
1884 * transitive rename to move it from dumbdir/bfile to
1885 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
1886 * smrtdir, a rename/rename(1to2) conflict. We really just want
1887 * the file to end up in smrtdir. And the way to achieve that is
1888 * to not let Side1 do the rename to dumbdir, since we know that is
1889 * the source of one of our directory renames.
1890 *
1891 * That's why otherinfo and dir_rename_exclusions is here.
1892 *
1893 * As it turns out, this also prevents N-way transient rename
1894 * confusion; See testcases 9c and 9d of t6043.
1895 */
1896 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
1897 if (otherinfo) {
1898 path_msg(opt, rename_info->key, 1,
1899 _("WARNING: Avoiding applying %s -> %s rename "
1900 "to %s, because %s itself was renamed."),
1901 rename_info->key, new_dir, path, new_dir);
1902 return NULL;
1903 }
1904
1905 new_path = handle_path_level_conflicts(opt, path, side_index,
1906 rename_info, collisions);
1907 *clean_merge &= (new_path != NULL);
1908
1909 return new_path;
1910 }
1911
1912 static void apply_directory_rename_modifications(struct merge_options *opt,
1913 struct diff_filepair *pair,
1914 char *new_path)
1915 {
1916 /*
1917 * The basic idea is to get the conflict_info from opt->priv->paths
1918 * at old path, and insert it into new_path; basically just this:
1919 * ci = strmap_get(&opt->priv->paths, old_path);
1920 * strmap_remove(&opt->priv->paths, old_path, 0);
1921 * strmap_put(&opt->priv->paths, new_path, ci);
1922 * However, there are some factors complicating this:
1923 * - opt->priv->paths may already have an entry at new_path
1924 * - Each ci tracks its containing directory, so we need to
1925 * update that
1926 * - If another ci has the same containing directory, then
1927 * the two char*'s MUST point to the same location. See the
1928 * comment in struct merged_info. strcmp equality is not
1929 * enough; we need pointer equality.
1930 * - opt->priv->paths must hold the parent directories of any
1931 * entries that are added. So, if this directory rename
1932 * causes entirely new directories, we must recursively add
1933 * parent directories.
1934 * - For each parent directory added to opt->priv->paths, we
1935 * also need to get its parent directory stored in its
1936 * conflict_info->merged.directory_name with all the same
1937 * requirements about pointer equality.
1938 */
1939 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
1940 struct conflict_info *ci, *new_ci;
1941 struct strmap_entry *entry;
1942 const char *branch_with_new_path, *branch_with_dir_rename;
1943 const char *old_path = pair->two->path;
1944 const char *parent_name;
1945 const char *cur_path;
1946 int i, len;
1947
1948 entry = strmap_get_entry(&opt->priv->paths, old_path);
1949 old_path = entry->key;
1950 ci = entry->value;
1951 VERIFY_CI(ci);
1952
1953 /* Find parent directories missing from opt->priv->paths */
1954 cur_path = new_path;
1955 while (1) {
1956 /* Find the parent directory of cur_path */
1957 char *last_slash = strrchr(cur_path, '/');
1958 if (last_slash) {
1959 parent_name = xstrndup(cur_path, last_slash - cur_path);
1960 } else {
1961 parent_name = opt->priv->toplevel_dir;
1962 break;
1963 }
1964
1965 /* Look it up in opt->priv->paths */
1966 entry = strmap_get_entry(&opt->priv->paths, parent_name);
1967 if (entry) {
1968 free((char*)parent_name);
1969 parent_name = entry->key; /* reuse known pointer */
1970 break;
1971 }
1972
1973 /* Record this is one of the directories we need to insert */
1974 string_list_append(&dirs_to_insert, parent_name);
1975 cur_path = parent_name;
1976 }
1977
1978 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
1979 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
1980 struct conflict_info *dir_ci;
1981 char *cur_dir = dirs_to_insert.items[i].string;
1982
1983 CALLOC_ARRAY(dir_ci, 1);
1984
1985 dir_ci->merged.directory_name = parent_name;
1986 len = strlen(parent_name);
1987 /* len+1 because of trailing '/' character */
1988 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
1989 dir_ci->dirmask = ci->filemask;
1990 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
1991
1992 parent_name = cur_dir;
1993 }
1994
1995 /*
1996 * We are removing old_path from opt->priv->paths. old_path also will
1997 * eventually need to be freed, but it may still be used by e.g.
1998 * ci->pathnames. So, store it in another string-list for now.
1999 */
2000 string_list_append(&opt->priv->paths_to_free, old_path);
2001
2002 assert(ci->filemask == 2 || ci->filemask == 4);
2003 assert(ci->dirmask == 0);
2004 strmap_remove(&opt->priv->paths, old_path, 0);
2005
2006 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2007 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2008
2009 /* Now, finally update ci and stick it into opt->priv->paths */
2010 ci->merged.directory_name = parent_name;
2011 len = strlen(parent_name);
2012 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2013 new_ci = strmap_get(&opt->priv->paths, new_path);
2014 if (!new_ci) {
2015 /* Place ci back into opt->priv->paths, but at new_path */
2016 strmap_put(&opt->priv->paths, new_path, ci);
2017 } else {
2018 int index;
2019
2020 /* A few sanity checks */
2021 VERIFY_CI(new_ci);
2022 assert(ci->filemask == 2 || ci->filemask == 4);
2023 assert((new_ci->filemask & ci->filemask) == 0);
2024 assert(!new_ci->merged.clean);
2025
2026 /* Copy stuff from ci into new_ci */
2027 new_ci->filemask |= ci->filemask;
2028 if (new_ci->dirmask)
2029 new_ci->df_conflict = 1;
2030 index = (ci->filemask >> 1);
2031 new_ci->pathnames[index] = ci->pathnames[index];
2032 new_ci->stages[index].mode = ci->stages[index].mode;
2033 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2034
2035 free(ci);
2036 ci = new_ci;
2037 }
2038
2039 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2040 /* Notify user of updated path */
2041 if (pair->status == 'A')
2042 path_msg(opt, new_path, 1,
2043 _("Path updated: %s added in %s inside a "
2044 "directory that was renamed in %s; moving "
2045 "it to %s."),
2046 old_path, branch_with_new_path,
2047 branch_with_dir_rename, new_path);
2048 else
2049 path_msg(opt, new_path, 1,
2050 _("Path updated: %s renamed to %s in %s, "
2051 "inside a directory that was renamed in %s; "
2052 "moving it to %s."),
2053 pair->one->path, old_path, branch_with_new_path,
2054 branch_with_dir_rename, new_path);
2055 } else {
2056 /*
2057 * opt->detect_directory_renames has the value
2058 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2059 */
2060 ci->path_conflict = 1;
2061 if (pair->status == 'A')
2062 path_msg(opt, new_path, 0,
2063 _("CONFLICT (file location): %s added in %s "
2064 "inside a directory that was renamed in %s, "
2065 "suggesting it should perhaps be moved to "
2066 "%s."),
2067 old_path, branch_with_new_path,
2068 branch_with_dir_rename, new_path);
2069 else
2070 path_msg(opt, new_path, 0,
2071 _("CONFLICT (file location): %s renamed to %s "
2072 "in %s, inside a directory that was renamed "
2073 "in %s, suggesting it should perhaps be "
2074 "moved to %s."),
2075 pair->one->path, old_path, branch_with_new_path,
2076 branch_with_dir_rename, new_path);
2077 }
2078
2079 /*
2080 * Finally, record the new location.
2081 */
2082 pair->two->path = new_path;
2083 }
2084
2085 /*** Function Grouping: functions related to regular rename detection ***/
2086
2087 static int process_renames(struct merge_options *opt,
2088 struct diff_queue_struct *renames)
2089 {
2090 int clean_merge = 1, i;
2091
2092 for (i = 0; i < renames->nr; ++i) {
2093 const char *oldpath = NULL, *newpath;
2094 struct diff_filepair *pair = renames->queue[i];
2095 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2096 struct strmap_entry *old_ent, *new_ent;
2097 unsigned int old_sidemask;
2098 int target_index, other_source_index;
2099 int source_deleted, collision, type_changed;
2100 const char *rename_branch = NULL, *delete_branch = NULL;
2101
2102 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2103 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2104 if (old_ent) {
2105 oldpath = old_ent->key;
2106 oldinfo = old_ent->value;
2107 }
2108 newpath = pair->two->path;
2109 if (new_ent) {
2110 newpath = new_ent->key;
2111 newinfo = new_ent->value;
2112 }
2113
2114 /*
2115 * If pair->one->path isn't in opt->priv->paths, that means
2116 * that either directory rename detection removed that
2117 * path, or a parent directory of oldpath was resolved and
2118 * we don't even need the rename; in either case, we can
2119 * skip it. If oldinfo->merged.clean, then the other side
2120 * of history had no changes to oldpath and we don't need
2121 * the rename and can skip it.
2122 */
2123 if (!oldinfo || oldinfo->merged.clean)
2124 continue;
2125
2126 /*
2127 * diff_filepairs have copies of pathnames, thus we have to
2128 * use standard 'strcmp()' (negated) instead of '=='.
2129 */
2130 if (i + 1 < renames->nr &&
2131 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2132 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2133 const char *pathnames[3];
2134 struct version_info merged;
2135 struct conflict_info *base, *side1, *side2;
2136 unsigned was_binary_blob = 0;
2137
2138 pathnames[0] = oldpath;
2139 pathnames[1] = newpath;
2140 pathnames[2] = renames->queue[i+1]->two->path;
2141
2142 base = strmap_get(&opt->priv->paths, pathnames[0]);
2143 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2144 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2145
2146 VERIFY_CI(base);
2147 VERIFY_CI(side1);
2148 VERIFY_CI(side2);
2149
2150 if (!strcmp(pathnames[1], pathnames[2])) {
2151 struct rename_info *ri = &opt->priv->renames;
2152 int j;
2153
2154 /* Both sides renamed the same way */
2155 assert(side1 == side2);
2156 memcpy(&side1->stages[0], &base->stages[0],
2157 sizeof(merged));
2158 side1->filemask |= (1 << MERGE_BASE);
2159 /* Mark base as resolved by removal */
2160 base->merged.is_null = 1;
2161 base->merged.clean = 1;
2162
2163 /*
2164 * Disable remembering renames optimization;
2165 * rename/rename(1to1) is incredibly rare, and
2166 * just disabling the optimization is easier
2167 * than purging cached_pairs,
2168 * cached_target_names, and dir_rename_counts.
2169 */
2170 for (j = 0; j < 3; j++)
2171 ri->merge_trees[j] = NULL;
2172
2173 /* We handled both renames, i.e. i+1 handled */
2174 i++;
2175 /* Move to next rename */
2176 continue;
2177 }
2178
2179 /* This is a rename/rename(1to2) */
2180 clean_merge = handle_content_merge(opt,
2181 pair->one->path,
2182 &base->stages[0],
2183 &side1->stages[1],
2184 &side2->stages[2],
2185 pathnames,
2186 1 + 2 * opt->priv->call_depth,
2187 &merged);
2188 if (!clean_merge &&
2189 merged.mode == side1->stages[1].mode &&
2190 oideq(&merged.oid, &side1->stages[1].oid))
2191 was_binary_blob = 1;
2192 memcpy(&side1->stages[1], &merged, sizeof(merged));
2193 if (was_binary_blob) {
2194 /*
2195 * Getting here means we were attempting to
2196 * merge a binary blob.
2197 *
2198 * Since we can't merge binaries,
2199 * handle_content_merge() just takes one
2200 * side. But we don't want to copy the
2201 * contents of one side to both paths. We
2202 * used the contents of side1 above for
2203 * side1->stages, let's use the contents of
2204 * side2 for side2->stages below.
2205 */
2206 oidcpy(&merged.oid, &side2->stages[2].oid);
2207 merged.mode = side2->stages[2].mode;
2208 }
2209 memcpy(&side2->stages[2], &merged, sizeof(merged));
2210
2211 side1->path_conflict = 1;
2212 side2->path_conflict = 1;
2213 /*
2214 * TODO: For renames we normally remove the path at the
2215 * old name. It would thus seem consistent to do the
2216 * same for rename/rename(1to2) cases, but we haven't
2217 * done so traditionally and a number of the regression
2218 * tests now encode an expectation that the file is
2219 * left there at stage 1. If we ever decide to change
2220 * this, add the following two lines here:
2221 * base->merged.is_null = 1;
2222 * base->merged.clean = 1;
2223 * and remove the setting of base->path_conflict to 1.
2224 */
2225 base->path_conflict = 1;
2226 path_msg(opt, oldpath, 0,
2227 _("CONFLICT (rename/rename): %s renamed to "
2228 "%s in %s and to %s in %s."),
2229 pathnames[0],
2230 pathnames[1], opt->branch1,
2231 pathnames[2], opt->branch2);
2232
2233 i++; /* We handled both renames, i.e. i+1 handled */
2234 continue;
2235 }
2236
2237 VERIFY_CI(oldinfo);
2238 VERIFY_CI(newinfo);
2239 target_index = pair->score; /* from collect_renames() */
2240 assert(target_index == 1 || target_index == 2);
2241 other_source_index = 3 - target_index;
2242 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2243 source_deleted = (oldinfo->filemask == 1);
2244 collision = ((newinfo->filemask & old_sidemask) != 0);
2245 type_changed = !source_deleted &&
2246 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2247 S_ISREG(newinfo->stages[target_index].mode));
2248 if (type_changed && collision) {
2249 /*
2250 * special handling so later blocks can handle this...
2251 *
2252 * if type_changed && collision are both true, then this
2253 * was really a double rename, but one side wasn't
2254 * detected due to lack of break detection. I.e.
2255 * something like
2256 * orig: has normal file 'foo'
2257 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2258 * side2: renames 'foo' to 'bar'
2259 * In this case, the foo->bar rename on side1 won't be
2260 * detected because the new symlink named 'foo' is
2261 * there and we don't do break detection. But we detect
2262 * this here because we don't want to merge the content
2263 * of the foo symlink with the foo->bar file, so we
2264 * have some logic to handle this special case. The
2265 * easiest way to do that is make 'bar' on side1 not
2266 * be considered a colliding file but the other part
2267 * of a normal rename. If the file is very different,
2268 * well we're going to get content merge conflicts
2269 * anyway so it doesn't hurt. And if the colliding
2270 * file also has a different type, that'll be handled
2271 * by the content merge logic in process_entry() too.
2272 *
2273 * See also t6430, 'rename vs. rename/symlink'
2274 */
2275 collision = 0;
2276 }
2277 if (source_deleted) {
2278 if (target_index == 1) {
2279 rename_branch = opt->branch1;
2280 delete_branch = opt->branch2;
2281 } else {
2282 rename_branch = opt->branch2;
2283 delete_branch = opt->branch1;
2284 }
2285 }
2286
2287 assert(source_deleted || oldinfo->filemask & old_sidemask);
2288
2289 /* Need to check for special types of rename conflicts... */
2290 if (collision && !source_deleted) {
2291 /* collision: rename/add or rename/rename(2to1) */
2292 const char *pathnames[3];
2293 struct version_info merged;
2294
2295 struct conflict_info *base, *side1, *side2;
2296 unsigned clean;
2297
2298 pathnames[0] = oldpath;
2299 pathnames[other_source_index] = oldpath;
2300 pathnames[target_index] = newpath;
2301
2302 base = strmap_get(&opt->priv->paths, pathnames[0]);
2303 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2304 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2305
2306 VERIFY_CI(base);
2307 VERIFY_CI(side1);
2308 VERIFY_CI(side2);
2309
2310 clean = handle_content_merge(opt, pair->one->path,
2311 &base->stages[0],
2312 &side1->stages[1],
2313 &side2->stages[2],
2314 pathnames,
2315 1 + 2 * opt->priv->call_depth,
2316 &merged);
2317
2318 memcpy(&newinfo->stages[target_index], &merged,
2319 sizeof(merged));
2320 if (!clean) {
2321 path_msg(opt, newpath, 0,
2322 _("CONFLICT (rename involved in "
2323 "collision): rename of %s -> %s has "
2324 "content conflicts AND collides "
2325 "with another path; this may result "
2326 "in nested conflict markers."),
2327 oldpath, newpath);
2328 }
2329 } else if (collision && source_deleted) {
2330 /*
2331 * rename/add/delete or rename/rename(2to1)/delete:
2332 * since oldpath was deleted on the side that didn't
2333 * do the rename, there's not much of a content merge
2334 * we can do for the rename. oldinfo->merged.is_null
2335 * was already set, so we just leave things as-is so
2336 * they look like an add/add conflict.
2337 */
2338
2339 newinfo->path_conflict = 1;
2340 path_msg(opt, newpath, 0,
2341 _("CONFLICT (rename/delete): %s renamed "
2342 "to %s in %s, but deleted in %s."),
2343 oldpath, newpath, rename_branch, delete_branch);
2344 } else {
2345 /*
2346 * a few different cases...start by copying the
2347 * existing stage(s) from oldinfo over the newinfo
2348 * and update the pathname(s).
2349 */
2350 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
2351 sizeof(newinfo->stages[0]));
2352 newinfo->filemask |= (1 << MERGE_BASE);
2353 newinfo->pathnames[0] = oldpath;
2354 if (type_changed) {
2355 /* rename vs. typechange */
2356 /* Mark the original as resolved by removal */
2357 memcpy(&oldinfo->stages[0].oid, null_oid(),
2358 sizeof(oldinfo->stages[0].oid));
2359 oldinfo->stages[0].mode = 0;
2360 oldinfo->filemask &= 0x06;
2361 } else if (source_deleted) {
2362 /* rename/delete */
2363 newinfo->path_conflict = 1;
2364 path_msg(opt, newpath, 0,
2365 _("CONFLICT (rename/delete): %s renamed"
2366 " to %s in %s, but deleted in %s."),
2367 oldpath, newpath,
2368 rename_branch, delete_branch);
2369 } else {
2370 /* normal rename */
2371 memcpy(&newinfo->stages[other_source_index],
2372 &oldinfo->stages[other_source_index],
2373 sizeof(newinfo->stages[0]));
2374 newinfo->filemask |= (1 << other_source_index);
2375 newinfo->pathnames[other_source_index] = oldpath;
2376 }
2377 }
2378
2379 if (!type_changed) {
2380 /* Mark the original as resolved by removal */
2381 oldinfo->merged.is_null = 1;
2382 oldinfo->merged.clean = 1;
2383 }
2384
2385 }
2386
2387 return clean_merge;
2388 }
2389
2390 static inline int possible_side_renames(struct rename_info *renames,
2391 unsigned side_index)
2392 {
2393 return renames->pairs[side_index].nr > 0 &&
2394 !strintmap_empty(&renames->relevant_sources[side_index]);
2395 }
2396
2397 static inline int possible_renames(struct rename_info *renames)
2398 {
2399 return possible_side_renames(renames, 1) ||
2400 possible_side_renames(renames, 2) ||
2401 !strmap_empty(&renames->cached_pairs[1]) ||
2402 !strmap_empty(&renames->cached_pairs[2]);
2403 }
2404
2405 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
2406 {
2407 /*
2408 * A simplified version of diff_resolve_rename_copy(); would probably
2409 * just use that function but it's static...
2410 */
2411 int i;
2412 struct diff_filepair *p;
2413
2414 for (i = 0; i < q->nr; ++i) {
2415 p = q->queue[i];
2416 p->status = 0; /* undecided */
2417 if (!DIFF_FILE_VALID(p->one))
2418 p->status = DIFF_STATUS_ADDED;
2419 else if (!DIFF_FILE_VALID(p->two))
2420 p->status = DIFF_STATUS_DELETED;
2421 else if (DIFF_PAIR_RENAME(p))
2422 p->status = DIFF_STATUS_RENAMED;
2423 }
2424 }
2425
2426 static void prune_cached_from_relevant(struct rename_info *renames,
2427 unsigned side)
2428 {
2429 /* Reason for this function described in add_pair() */
2430 struct hashmap_iter iter;
2431 struct strmap_entry *entry;
2432
2433 /* Remove from relevant_sources all entries in cached_pairs[side] */
2434 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
2435 strintmap_remove(&renames->relevant_sources[side],
2436 entry->key);
2437 }
2438 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
2439 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
2440 strintmap_remove(&renames->relevant_sources[side],
2441 entry->key);
2442 }
2443 }
2444
2445 static void use_cached_pairs(struct merge_options *opt,
2446 struct strmap *cached_pairs,
2447 struct diff_queue_struct *pairs)
2448 {
2449 struct hashmap_iter iter;
2450 struct strmap_entry *entry;
2451
2452 /*
2453 * Add to side_pairs all entries from renames->cached_pairs[side_index].
2454 * (Info in cached_irrelevant[side_index] is not relevant here.)
2455 */
2456 strmap_for_each_entry(cached_pairs, &iter, entry) {
2457 struct diff_filespec *one, *two;
2458 const char *old_name = entry->key;
2459 const char *new_name = entry->value;
2460 if (!new_name)
2461 new_name = old_name;
2462
2463 /* We don't care about oid/mode, only filenames and status */
2464 one = alloc_filespec(old_name);
2465 two = alloc_filespec(new_name);
2466 diff_queue(pairs, one, two);
2467 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
2468 }
2469 }
2470
2471 static void cache_new_pair(struct rename_info *renames,
2472 int side,
2473 char *old_path,
2474 char *new_path,
2475 int free_old_value)
2476 {
2477 char *old_value;
2478 new_path = xstrdup(new_path);
2479 old_value = strmap_put(&renames->cached_pairs[side],
2480 old_path, new_path);
2481 strset_add(&renames->cached_target_names[side], new_path);
2482 if (free_old_value)
2483 free(old_value);
2484 else
2485 assert(!old_value);
2486 }
2487
2488 static void possibly_cache_new_pair(struct rename_info *renames,
2489 struct diff_filepair *p,
2490 unsigned side,
2491 char *new_path)
2492 {
2493 int dir_renamed_side = 0;
2494
2495 if (new_path) {
2496 /*
2497 * Directory renames happen on the other side of history from
2498 * the side that adds new files to the old directory.
2499 */
2500 dir_renamed_side = 3 - side;
2501 } else {
2502 int val = strintmap_get(&renames->relevant_sources[side],
2503 p->one->path);
2504 if (val == RELEVANT_NO_MORE) {
2505 assert(p->status == 'D');
2506 strset_add(&renames->cached_irrelevant[side],
2507 p->one->path);
2508 }
2509 if (val <= 0)
2510 return;
2511 }
2512
2513 if (p->status == 'D') {
2514 /*
2515 * If we already had this delete, we'll just set it's value
2516 * to NULL again, so no harm.
2517 */
2518 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
2519 } else if (p->status == 'R') {
2520 if (!new_path)
2521 new_path = p->two->path;
2522 else
2523 cache_new_pair(renames, dir_renamed_side,
2524 p->two->path, new_path, 0);
2525 cache_new_pair(renames, side, p->one->path, new_path, 1);
2526 } else if (p->status == 'A' && new_path) {
2527 cache_new_pair(renames, dir_renamed_side,
2528 p->two->path, new_path, 0);
2529 }
2530 }
2531
2532 static int compare_pairs(const void *a_, const void *b_)
2533 {
2534 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
2535 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
2536
2537 return strcmp(a->one->path, b->one->path);
2538 }
2539
2540 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
2541 static void detect_regular_renames(struct merge_options *opt,
2542 unsigned side_index)
2543 {
2544 struct diff_options diff_opts;
2545 struct rename_info *renames = &opt->priv->renames;
2546
2547 prune_cached_from_relevant(renames, side_index);
2548 if (!possible_side_renames(renames, side_index)) {
2549 /*
2550 * No rename detection needed for this side, but we still need
2551 * to make sure 'adds' are marked correctly in case the other
2552 * side had directory renames.
2553 */
2554 resolve_diffpair_statuses(&renames->pairs[side_index]);
2555 return;
2556 }
2557
2558 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
2559 repo_diff_setup(opt->repo, &diff_opts);
2560 diff_opts.flags.recursive = 1;
2561 diff_opts.flags.rename_empty = 0;
2562 diff_opts.detect_rename = DIFF_DETECT_RENAME;
2563 diff_opts.rename_limit = opt->rename_limit;
2564 if (opt->rename_limit <= 0)
2565 diff_opts.rename_limit = 1000;
2566 diff_opts.rename_score = opt->rename_score;
2567 diff_opts.show_rename_progress = opt->show_rename_progress;
2568 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2569 diff_setup_done(&diff_opts);
2570
2571 diff_queued_diff = renames->pairs[side_index];
2572 trace2_region_enter("diff", "diffcore_rename", opt->repo);
2573 diffcore_rename_extended(&diff_opts,
2574 &renames->relevant_sources[side_index],
2575 &renames->dirs_removed[side_index],
2576 &renames->dir_rename_count[side_index],
2577 &renames->cached_pairs[side_index]);
2578 trace2_region_leave("diff", "diffcore_rename", opt->repo);
2579 resolve_diffpair_statuses(&diff_queued_diff);
2580
2581 if (diff_opts.needed_rename_limit > renames->needed_limit)
2582 renames->needed_limit = diff_opts.needed_rename_limit;
2583
2584 renames->pairs[side_index] = diff_queued_diff;
2585
2586 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2587 diff_queued_diff.nr = 0;
2588 diff_queued_diff.queue = NULL;
2589 diff_flush(&diff_opts);
2590 }
2591
2592 /*
2593 * Get information of all renames which occurred in 'side_pairs', making use
2594 * of any implicit directory renames in side_dir_renames (also making use of
2595 * implicit directory renames rename_exclusions as needed by
2596 * check_for_directory_rename()). Add all (updated) renames into result.
2597 */
2598 static int collect_renames(struct merge_options *opt,
2599 struct diff_queue_struct *result,
2600 unsigned side_index,
2601 struct strmap *dir_renames_for_side,
2602 struct strmap *rename_exclusions)
2603 {
2604 int i, clean = 1;
2605 struct strmap collisions;
2606 struct diff_queue_struct *side_pairs;
2607 struct hashmap_iter iter;
2608 struct strmap_entry *entry;
2609 struct rename_info *renames = &opt->priv->renames;
2610
2611 side_pairs = &renames->pairs[side_index];
2612 compute_collisions(&collisions, dir_renames_for_side, side_pairs);
2613
2614 for (i = 0; i < side_pairs->nr; ++i) {
2615 struct diff_filepair *p = side_pairs->queue[i];
2616 char *new_path; /* non-NULL only with directory renames */
2617
2618 if (p->status != 'A' && p->status != 'R') {
2619 possibly_cache_new_pair(renames, p, side_index, NULL);
2620 diff_free_filepair(p);
2621 continue;
2622 }
2623
2624 new_path = check_for_directory_rename(opt, p->two->path,
2625 side_index,
2626 dir_renames_for_side,
2627 rename_exclusions,
2628 &collisions,
2629 &clean);
2630
2631 possibly_cache_new_pair(renames, p, side_index, new_path);
2632 if (p->status != 'R' && !new_path) {
2633 diff_free_filepair(p);
2634 continue;
2635 }
2636
2637 if (new_path)
2638 apply_directory_rename_modifications(opt, p, new_path);
2639
2640 /*
2641 * p->score comes back from diffcore_rename_extended() with
2642 * the similarity of the renamed file. The similarity is
2643 * was used to determine that the two files were related
2644 * and are a rename, which we have already used, but beyond
2645 * that we have no use for the similarity. So p->score is
2646 * now irrelevant. However, process_renames() will need to
2647 * know which side of the merge this rename was associated
2648 * with, so overwrite p->score with that value.
2649 */
2650 p->score = side_index;
2651 result->queue[result->nr++] = p;
2652 }
2653
2654 /* Free each value in the collisions map */
2655 strmap_for_each_entry(&collisions, &iter, entry) {
2656 struct collision_info *info = entry->value;
2657 string_list_clear(&info->source_files, 0);
2658 }
2659 /*
2660 * In compute_collisions(), we set collisions.strdup_strings to 0
2661 * so that we wouldn't have to make another copy of the new_path
2662 * allocated by apply_dir_rename(). But now that we've used them
2663 * and have no other references to these strings, it is time to
2664 * deallocate them.
2665 */
2666 free_strmap_strings(&collisions);
2667 strmap_clear(&collisions, 1);
2668 return clean;
2669 }
2670
2671 static int detect_and_process_renames(struct merge_options *opt,
2672 struct tree *merge_base,
2673 struct tree *side1,
2674 struct tree *side2)
2675 {
2676 struct diff_queue_struct combined;
2677 struct rename_info *renames = &opt->priv->renames;
2678 int need_dir_renames, s, clean = 1;
2679
2680 memset(&combined, 0, sizeof(combined));
2681 if (!possible_renames(renames))
2682 goto cleanup;
2683
2684 trace2_region_enter("merge", "regular renames", opt->repo);
2685 detect_regular_renames(opt, MERGE_SIDE1);
2686 detect_regular_renames(opt, MERGE_SIDE2);
2687 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
2688 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
2689 trace2_region_leave("merge", "regular renames", opt->repo);
2690
2691 trace2_region_enter("merge", "directory renames", opt->repo);
2692 need_dir_renames =
2693 !opt->priv->call_depth &&
2694 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
2695 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
2696
2697 if (need_dir_renames) {
2698 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
2699 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
2700 handle_directory_level_conflicts(opt);
2701 }
2702
2703 ALLOC_GROW(combined.queue,
2704 renames->pairs[1].nr + renames->pairs[2].nr,
2705 combined.alloc);
2706 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
2707 &renames->dir_renames[2],
2708 &renames->dir_renames[1]);
2709 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
2710 &renames->dir_renames[1],
2711 &renames->dir_renames[2]);
2712 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
2713 trace2_region_leave("merge", "directory renames", opt->repo);
2714
2715 trace2_region_enter("merge", "process renames", opt->repo);
2716 clean &= process_renames(opt, &combined);
2717 trace2_region_leave("merge", "process renames", opt->repo);
2718
2719 goto simple_cleanup; /* collect_renames() handles some of cleanup */
2720
2721 cleanup:
2722 /*
2723 * Free now unneeded filepairs, which would have been handled
2724 * in collect_renames() normally but we skipped that code.
2725 */
2726 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
2727 struct diff_queue_struct *side_pairs;
2728 int i;
2729
2730 side_pairs = &renames->pairs[s];
2731 for (i = 0; i < side_pairs->nr; ++i) {
2732 struct diff_filepair *p = side_pairs->queue[i];
2733 diff_free_filepair(p);
2734 }
2735 }
2736
2737 simple_cleanup:
2738 /* Free memory for renames->pairs[] and combined */
2739 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
2740 free(renames->pairs[s].queue);
2741 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
2742 }
2743 if (combined.nr) {
2744 int i;
2745 for (i = 0; i < combined.nr; i++)
2746 diff_free_filepair(combined.queue[i]);
2747 free(combined.queue);
2748 }
2749
2750 return clean;
2751 }
2752
2753 /*** Function Grouping: functions related to process_entries() ***/
2754
2755 static int sort_dirs_next_to_their_children(const char *one, const char *two)
2756 {
2757 unsigned char c1, c2;
2758
2759 /*
2760 * Here we only care that entries for directories appear adjacent
2761 * to and before files underneath the directory. We can achieve
2762 * that by pretending to add a trailing slash to every file and
2763 * then sorting. In other words, we do not want the natural
2764 * sorting of
2765 * foo
2766 * foo.txt
2767 * foo/bar
2768 * Instead, we want "foo" to sort as though it were "foo/", so that
2769 * we instead get
2770 * foo.txt
2771 * foo
2772 * foo/bar
2773 * To achieve this, we basically implement our own strcmp, except that
2774 * if we get to the end of either string instead of comparing NUL to
2775 * another character, we compare '/' to it.
2776 *
2777 * If this unusual "sort as though '/' were appended" perplexes
2778 * you, perhaps it will help to note that this is not the final
2779 * sort. write_tree() will sort again without the trailing slash
2780 * magic, but just on paths immediately under a given tree.
2781 *
2782 * The reason to not use df_name_compare directly was that it was
2783 * just too expensive (we don't have the string lengths handy), so
2784 * it was reimplemented.
2785 */
2786
2787 /*
2788 * NOTE: This function will never be called with two equal strings,
2789 * because it is used to sort the keys of a strmap, and strmaps have
2790 * unique keys by construction. That simplifies our c1==c2 handling
2791 * below.
2792 */
2793
2794 while (*one && (*one == *two)) {
2795 one++;
2796 two++;
2797 }
2798
2799 c1 = *one ? *one : '/';
2800 c2 = *two ? *two : '/';
2801
2802 if (c1 == c2) {
2803 /* Getting here means one is a leading directory of the other */
2804 return (*one) ? 1 : -1;
2805 } else
2806 return c1 - c2;
2807 }
2808
2809 static int read_oid_strbuf(struct merge_options *opt,
2810 const struct object_id *oid,
2811 struct strbuf *dst)
2812 {
2813 void *buf;
2814 enum object_type type;
2815 unsigned long size;
2816 buf = read_object_file(oid, &type, &size);
2817 if (!buf)
2818 return err(opt, _("cannot read object %s"), oid_to_hex(oid));
2819 if (type != OBJ_BLOB) {
2820 free(buf);
2821 return err(opt, _("object %s is not a blob"), oid_to_hex(oid));
2822 }
2823 strbuf_attach(dst, buf, size, size + 1);
2824 return 0;
2825 }
2826
2827 static int blob_unchanged(struct merge_options *opt,
2828 const struct version_info *base,
2829 const struct version_info *side,
2830 const char *path)
2831 {
2832 struct strbuf basebuf = STRBUF_INIT;
2833 struct strbuf sidebuf = STRBUF_INIT;
2834 int ret = 0; /* assume changed for safety */
2835 struct index_state *idx = &opt->priv->attr_index;
2836
2837 if (!idx->initialized)
2838 initialize_attr_index(opt);
2839
2840 if (base->mode != side->mode)
2841 return 0;
2842 if (oideq(&base->oid, &side->oid))
2843 return 1;
2844
2845 if (read_oid_strbuf(opt, &base->oid, &basebuf) ||
2846 read_oid_strbuf(opt, &side->oid, &sidebuf))
2847 goto error_return;
2848 /*
2849 * Note: binary | is used so that both renormalizations are
2850 * performed. Comparison can be skipped if both files are
2851 * unchanged since their sha1s have already been compared.
2852 */
2853 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
2854 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
2855 ret = (basebuf.len == sidebuf.len &&
2856 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
2857
2858 error_return:
2859 strbuf_release(&basebuf);
2860 strbuf_release(&sidebuf);
2861 return ret;
2862 }
2863
2864 struct directory_versions {
2865 /*
2866 * versions: list of (basename -> version_info)
2867 *
2868 * The basenames are in reverse lexicographic order of full pathnames,
2869 * as processed in process_entries(). This puts all entries within
2870 * a directory together, and covers the directory itself after
2871 * everything within it, allowing us to write subtrees before needing
2872 * to record information for the tree itself.
2873 */
2874 struct string_list versions;
2875
2876 /*
2877 * offsets: list of (full relative path directories -> integer offsets)
2878 *
2879 * Since versions contains basenames from files in multiple different
2880 * directories, we need to know which entries in versions correspond
2881 * to which directories. Values of e.g.
2882 * "" 0
2883 * src 2
2884 * src/moduleA 5
2885 * Would mean that entries 0-1 of versions are files in the toplevel
2886 * directory, entries 2-4 are files under src/, and the remaining
2887 * entries starting at index 5 are files under src/moduleA/.
2888 */
2889 struct string_list offsets;
2890
2891 /*
2892 * last_directory: directory that previously processed file found in
2893 *
2894 * last_directory starts NULL, but records the directory in which the
2895 * previous file was found within. As soon as
2896 * directory(current_file) != last_directory
2897 * then we need to start updating accounting in versions & offsets.
2898 * Note that last_directory is always the last path in "offsets" (or
2899 * NULL if "offsets" is empty) so this exists just for quick access.
2900 */
2901 const char *last_directory;
2902
2903 /* last_directory_len: cached computation of strlen(last_directory) */
2904 unsigned last_directory_len;
2905 };
2906
2907 static int tree_entry_order(const void *a_, const void *b_)
2908 {
2909 const struct string_list_item *a = a_;
2910 const struct string_list_item *b = b_;
2911
2912 const struct merged_info *ami = a->util;
2913 const struct merged_info *bmi = b->util;
2914 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
2915 b->string, strlen(b->string), bmi->result.mode);
2916 }
2917
2918 static void write_tree(struct object_id *result_oid,
2919 struct string_list *versions,
2920 unsigned int offset,
2921 size_t hash_size)
2922 {
2923 size_t maxlen = 0, extra;
2924 unsigned int nr;
2925 struct strbuf buf = STRBUF_INIT;
2926 int i;
2927
2928 assert(offset <= versions->nr);
2929 nr = versions->nr - offset;
2930 if (versions->nr)
2931 /* No need for STABLE_QSORT -- filenames must be unique */
2932 QSORT(versions->items + offset, nr, tree_entry_order);
2933
2934 /* Pre-allocate some space in buf */
2935 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
2936 for (i = 0; i < nr; i++) {
2937 maxlen += strlen(versions->items[offset+i].string) + extra;
2938 }
2939 strbuf_grow(&buf, maxlen);
2940
2941 /* Write each entry out to buf */
2942 for (i = 0; i < nr; i++) {
2943 struct merged_info *mi = versions->items[offset+i].util;
2944 struct version_info *ri = &mi->result;
2945 strbuf_addf(&buf, "%o %s%c",
2946 ri->mode,
2947 versions->items[offset+i].string, '\0');
2948 strbuf_add(&buf, ri->oid.hash, hash_size);
2949 }
2950
2951 /* Write this object file out, and record in result_oid */
2952 write_object_file(buf.buf, buf.len, tree_type, result_oid);
2953 strbuf_release(&buf);
2954 }
2955
2956 static void record_entry_for_tree(struct directory_versions *dir_metadata,
2957 const char *path,
2958 struct merged_info *mi)
2959 {
2960 const char *basename;
2961
2962 if (mi->is_null)
2963 /* nothing to record */
2964 return;
2965
2966 basename = path + mi->basename_offset;
2967 assert(strchr(basename, '/') == NULL);
2968 string_list_append(&dir_metadata->versions,
2969 basename)->util = &mi->result;
2970 }
2971
2972 static void write_completed_directory(struct merge_options *opt,
2973 const char *new_directory_name,
2974 struct directory_versions *info)
2975 {
2976 const char *prev_dir;
2977 struct merged_info *dir_info = NULL;
2978 unsigned int offset;
2979
2980 /*
2981 * Some explanation of info->versions and info->offsets...
2982 *
2983 * process_entries() iterates over all relevant files AND
2984 * directories in reverse lexicographic order, and calls this
2985 * function. Thus, an example of the paths that process_entries()
2986 * could operate on (along with the directories for those paths
2987 * being shown) is:
2988 *
2989 * xtract.c ""
2990 * tokens.txt ""
2991 * src/moduleB/umm.c src/moduleB
2992 * src/moduleB/stuff.h src/moduleB
2993 * src/moduleB/baz.c src/moduleB
2994 * src/moduleB src
2995 * src/moduleA/foo.c src/moduleA
2996 * src/moduleA/bar.c src/moduleA
2997 * src/moduleA src
2998 * src ""
2999 * Makefile ""
3000 *
3001 * info->versions:
3002 *
3003 * always contains the unprocessed entries and their
3004 * version_info information. For example, after the first five
3005 * entries above, info->versions would be:
3006 *
3007 * xtract.c <xtract.c's version_info>
3008 * token.txt <token.txt's version_info>
3009 * umm.c <src/moduleB/umm.c's version_info>
3010 * stuff.h <src/moduleB/stuff.h's version_info>
3011 * baz.c <src/moduleB/baz.c's version_info>
3012 *
3013 * Once a subdirectory is completed we remove the entries in
3014 * that subdirectory from info->versions, writing it as a tree
3015 * (write_tree()). Thus, as soon as we get to src/moduleB,
3016 * info->versions would be updated to
3017 *
3018 * xtract.c <xtract.c's version_info>
3019 * token.txt <token.txt's version_info>
3020 * moduleB <src/moduleB's version_info>
3021 *
3022 * info->offsets:
3023 *
3024 * helps us track which entries in info->versions correspond to
3025 * which directories. When we are N directories deep (e.g. 4
3026 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3027 * directories (+1 because of toplevel dir). Corresponding to
3028 * the info->versions example above, after processing five entries
3029 * info->offsets will be:
3030 *
3031 * "" 0
3032 * src/moduleB 2
3033 *
3034 * which is used to know that xtract.c & token.txt are from the
3035 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3036 * src/moduleB directory. Again, following the example above,
3037 * once we need to process src/moduleB, then info->offsets is
3038 * updated to
3039 *
3040 * "" 0
3041 * src 2
3042 *
3043 * which says that moduleB (and only moduleB so far) is in the
3044 * src directory.
3045 *
3046 * One unique thing to note about info->offsets here is that
3047 * "src" was not added to info->offsets until there was a path
3048 * (a file OR directory) immediately below src/ that got
3049 * processed.
3050 *
3051 * Since process_entry() just appends new entries to info->versions,
3052 * write_completed_directory() only needs to do work if the next path
3053 * is in a directory that is different than the last directory found
3054 * in info->offsets.
3055 */
3056
3057 /*
3058 * If we are working with the same directory as the last entry, there
3059 * is no work to do. (See comments above the directory_name member of
3060 * struct merged_info for why we can use pointer comparison instead of
3061 * strcmp here.)
3062 */
3063 if (new_directory_name == info->last_directory)
3064 return;
3065
3066 /*
3067 * If we are just starting (last_directory is NULL), or last_directory
3068 * is a prefix of the current directory, then we can just update
3069 * info->offsets to record the offset where we started this directory
3070 * and update last_directory to have quick access to it.
3071 */
3072 if (info->last_directory == NULL ||
3073 !strncmp(new_directory_name, info->last_directory,
3074 info->last_directory_len)) {
3075 uintptr_t offset = info->versions.nr;
3076
3077 info->last_directory = new_directory_name;
3078 info->last_directory_len = strlen(info->last_directory);
3079 /*
3080 * Record the offset into info->versions where we will
3081 * start recording basenames of paths found within
3082 * new_directory_name.
3083 */
3084 string_list_append(&info->offsets,
3085 info->last_directory)->util = (void*)offset;
3086 return;
3087 }
3088
3089 /*
3090 * The next entry that will be processed will be within
3091 * new_directory_name. Since at this point we know that
3092 * new_directory_name is within a different directory than
3093 * info->last_directory, we have all entries for info->last_directory
3094 * in info->versions and we need to create a tree object for them.
3095 */
3096 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3097 assert(dir_info);
3098 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3099 if (offset == info->versions.nr) {
3100 /*
3101 * Actually, we don't need to create a tree object in this
3102 * case. Whenever all files within a directory disappear
3103 * during the merge (e.g. unmodified on one side and
3104 * deleted on the other, or files were renamed elsewhere),
3105 * then we get here and the directory itself needs to be
3106 * omitted from its parent tree as well.
3107 */
3108 dir_info->is_null = 1;
3109 } else {
3110 /*
3111 * Write out the tree to the git object directory, and also
3112 * record the mode and oid in dir_info->result.
3113 */
3114 dir_info->is_null = 0;
3115 dir_info->result.mode = S_IFDIR;
3116 write_tree(&dir_info->result.oid, &info->versions, offset,
3117 opt->repo->hash_algo->rawsz);
3118 }
3119
3120 /*
3121 * We've now used several entries from info->versions and one entry
3122 * from info->offsets, so we get rid of those values.
3123 */
3124 info->offsets.nr--;
3125 info->versions.nr = offset;
3126
3127 /*
3128 * Now we've taken care of the completed directory, but we need to
3129 * prepare things since future entries will be in
3130 * new_directory_name. (In particular, process_entry() will be
3131 * appending new entries to info->versions.) So, we need to make
3132 * sure new_directory_name is the last entry in info->offsets.
3133 */
3134 prev_dir = info->offsets.nr == 0 ? NULL :
3135 info->offsets.items[info->offsets.nr-1].string;
3136 if (new_directory_name != prev_dir) {
3137 uintptr_t c = info->versions.nr;
3138 string_list_append(&info->offsets,
3139 new_directory_name)->util = (void*)c;
3140 }
3141
3142 /* And, of course, we need to update last_directory to match. */
3143 info->last_directory = new_directory_name;
3144 info->last_directory_len = strlen(info->last_directory);
3145 }
3146
3147 /* Per entry merge function */
3148 static void process_entry(struct merge_options *opt,
3149 const char *path,
3150 struct conflict_info *ci,
3151 struct directory_versions *dir_metadata)
3152 {
3153 int df_file_index = 0;
3154
3155 VERIFY_CI(ci);
3156 assert(ci->filemask >= 0 && ci->filemask <= 7);
3157 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3158 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3159 ci->match_mask == 5 || ci->match_mask == 6);
3160
3161 if (ci->dirmask) {
3162 record_entry_for_tree(dir_metadata, path, &ci->merged);
3163 if (ci->filemask == 0)
3164 /* nothing else to handle */
3165 return;
3166 assert(ci->df_conflict);
3167 }
3168
3169 if (ci->df_conflict && ci->merged.result.mode == 0) {
3170 int i;
3171
3172 /*
3173 * directory no longer in the way, but we do have a file we
3174 * need to place here so we need to clean away the "directory
3175 * merges to nothing" result.
3176 */
3177 ci->df_conflict = 0;
3178 assert(ci->filemask != 0);
3179 ci->merged.clean = 0;
3180 ci->merged.is_null = 0;
3181 /* and we want to zero out any directory-related entries */
3182 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3183 ci->dirmask = 0;
3184 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3185 if (ci->filemask & (1 << i))
3186 continue;
3187 ci->stages[i].mode = 0;
3188 oidcpy(&ci->stages[i].oid, null_oid());
3189 }
3190 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3191 /*
3192 * This started out as a D/F conflict, and the entries in
3193 * the competing directory were not removed by the merge as
3194 * evidenced by write_completed_directory() writing a value
3195 * to ci->merged.result.mode.
3196 */
3197 struct conflict_info *new_ci;
3198 const char *branch;
3199 const char *old_path = path;
3200 int i;
3201
3202 assert(ci->merged.result.mode == S_IFDIR);
3203
3204 /*
3205 * If filemask is 1, we can just ignore the file as having
3206 * been deleted on both sides. We do not want to overwrite
3207 * ci->merged.result, since it stores the tree for all the
3208 * files under it.
3209 */
3210 if (ci->filemask == 1) {
3211 ci->filemask = 0;
3212 return;
3213 }
3214
3215 /*
3216 * This file still exists on at least one side, and we want
3217 * the directory to remain here, so we need to move this
3218 * path to some new location.
3219 */
3220 CALLOC_ARRAY(new_ci, 1);
3221 /* We don't really want new_ci->merged.result copied, but it'll
3222 * be overwritten below so it doesn't matter. We also don't
3223 * want any directory mode/oid values copied, but we'll zero
3224 * those out immediately. We do want the rest of ci copied.
3225 */
3226 memcpy(new_ci, ci, sizeof(*ci));
3227 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3228 new_ci->dirmask = 0;
3229 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3230 if (new_ci->filemask & (1 << i))
3231 continue;
3232 /* zero out any entries related to directories */
3233 new_ci->stages[i].mode = 0;
3234 oidcpy(&new_ci->stages[i].oid, null_oid());
3235 }
3236
3237 /*
3238 * Find out which side this file came from; note that we
3239 * cannot just use ci->filemask, because renames could cause
3240 * the filemask to go back to 7. So we use dirmask, then
3241 * pick the opposite side's index.
3242 */
3243 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3244 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3245 path = unique_path(&opt->priv->paths, path, branch);
3246 strmap_put(&opt->priv->paths, path, new_ci);
3247
3248 path_msg(opt, path, 0,
3249 _("CONFLICT (file/directory): directory in the way "
3250 "of %s from %s; moving it to %s instead."),
3251 old_path, branch, path);
3252
3253 /*
3254 * Zero out the filemask for the old ci. At this point, ci
3255 * was just an entry for a directory, so we don't need to
3256 * do anything more with it.
3257 */
3258 ci->filemask = 0;
3259
3260 /*
3261 * Now note that we're working on the new entry (path was
3262 * updated above.
3263 */
3264 ci = new_ci;
3265 }
3266
3267 /*
3268 * NOTE: Below there is a long switch-like if-elseif-elseif... block
3269 * which the code goes through even for the df_conflict cases
3270 * above.
3271 */
3272 if (ci->match_mask) {
3273 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3274 if (ci->match_mask == 6) {
3275 /* stages[1] == stages[2] */
3276 ci->merged.result.mode = ci->stages[1].mode;
3277 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3278 } else {
3279 /* determine the mask of the side that didn't match */
3280 unsigned int othermask = 7 & ~ci->match_mask;
3281 int side = (othermask == 4) ? 2 : 1;
3282
3283 ci->merged.result.mode = ci->stages[side].mode;
3284 ci->merged.is_null = !ci->merged.result.mode;
3285 if (ci->merged.is_null)
3286 ci->merged.clean = 1;
3287 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3288
3289 assert(othermask == 2 || othermask == 4);
3290 assert(ci->merged.is_null ==
3291 (ci->filemask == ci->match_mask));
3292 }
3293 } else if (ci->filemask >= 6 &&
3294 (S_IFMT & ci->stages[1].mode) !=
3295 (S_IFMT & ci->stages[2].mode)) {
3296 /* Two different items from (file/submodule/symlink) */
3297 if (opt->priv->call_depth) {
3298 /* Just use the version from the merge base */
3299 ci->merged.clean = 0;
3300 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
3301 ci->merged.result.mode = ci->stages[0].mode;
3302 ci->merged.is_null = (ci->merged.result.mode == 0);
3303 } else {
3304 /* Handle by renaming one or both to separate paths. */
3305 unsigned o_mode = ci->stages[0].mode;
3306 unsigned a_mode = ci->stages[1].mode;
3307 unsigned b_mode = ci->stages[2].mode;
3308 struct conflict_info *new_ci;
3309 const char *a_path = NULL, *b_path = NULL;
3310 int rename_a = 0, rename_b = 0;
3311
3312 new_ci = xmalloc(sizeof(*new_ci));
3313
3314 if (S_ISREG(a_mode))
3315 rename_a = 1;
3316 else if (S_ISREG(b_mode))
3317 rename_b = 1;
3318 else {
3319 rename_a = 1;
3320 rename_b = 1;
3321 }
3322
3323 if (rename_a && rename_b) {
3324 path_msg(opt, path, 0,
3325 _("CONFLICT (distinct types): %s had "
3326 "different types on each side; "
3327 "renamed both of them so each can "
3328 "be recorded somewhere."),
3329 path);
3330 } else {
3331 path_msg(opt, path, 0,
3332 _("CONFLICT (distinct types): %s had "
3333 "different types on each side; "
3334 "renamed one of them so each can be "
3335 "recorded somewhere."),
3336 path);
3337 }
3338
3339 ci->merged.clean = 0;
3340 memcpy(new_ci, ci, sizeof(*new_ci));
3341
3342 /* Put b into new_ci, removing a from stages */
3343 new_ci->merged.result.mode = ci->stages[2].mode;
3344 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
3345 new_ci->stages[1].mode = 0;
3346 oidcpy(&new_ci->stages[1].oid, null_oid());
3347 new_ci->filemask = 5;
3348 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
3349 new_ci->stages[0].mode = 0;
3350 oidcpy(&new_ci->stages[0].oid, null_oid());
3351 new_ci->filemask = 4;
3352 }
3353
3354 /* Leave only a in ci, fixing stages. */
3355 ci->merged.result.mode = ci->stages[1].mode;
3356 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3357 ci->stages[2].mode = 0;
3358 oidcpy(&ci->stages[2].oid, null_oid());
3359 ci->filemask = 3;
3360 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
3361 ci->stages[0].mode = 0;
3362 oidcpy(&ci->stages[0].oid, null_oid());
3363 ci->filemask = 2;
3364 }
3365
3366 /* Insert entries into opt->priv_paths */
3367 assert(rename_a || rename_b);
3368 if (rename_a) {
3369 a_path = unique_path(&opt->priv->paths,
3370 path, opt->branch1);
3371 strmap_put(&opt->priv->paths, a_path, ci);
3372 }
3373
3374 if (rename_b)
3375 b_path = unique_path(&opt->priv->paths,
3376 path, opt->branch2);
3377 else
3378 b_path = path;
3379 strmap_put(&opt->priv->paths, b_path, new_ci);
3380
3381 if (rename_a && rename_b) {
3382 strmap_remove(&opt->priv->paths, path, 0);
3383 /*
3384 * We removed path from opt->priv->paths. path
3385 * will also eventually need to be freed, but
3386 * it may still be used by e.g. ci->pathnames.
3387 * So, store it in another string-list for now.
3388 */
3389 string_list_append(&opt->priv->paths_to_free,
3390 path);
3391 }
3392
3393 /*
3394 * Do special handling for b_path since process_entry()
3395 * won't be called on it specially.
3396 */
3397 strmap_put(&opt->priv->conflicted, b_path, new_ci);
3398 record_entry_for_tree(dir_metadata, b_path,
3399 &new_ci->merged);
3400
3401 /*
3402 * Remaining code for processing this entry should
3403 * think in terms of processing a_path.
3404 */
3405 if (a_path)
3406 path = a_path;
3407 }
3408 } else if (ci->filemask >= 6) {
3409 /* Need a two-way or three-way content merge */
3410 struct version_info merged_file;
3411 unsigned clean_merge;
3412 struct version_info *o = &ci->stages[0];
3413 struct version_info *a = &ci->stages[1];
3414 struct version_info *b = &ci->stages[2];
3415
3416 clean_merge = handle_content_merge(opt, path, o, a, b,
3417 ci->pathnames,
3418 opt->priv->call_depth * 2,
3419 &merged_file);
3420 ci->merged.clean = clean_merge &&
3421 !ci->df_conflict && !ci->path_conflict;
3422 ci->merged.result.mode = merged_file.mode;
3423 ci->merged.is_null = (merged_file.mode == 0);
3424 oidcpy(&ci->merged.result.oid, &merged_file.oid);
3425 if (clean_merge && ci->df_conflict) {
3426 assert(df_file_index == 1 || df_file_index == 2);
3427 ci->filemask = 1 << df_file_index;
3428 ci->stages[df_file_index].mode = merged_file.mode;
3429 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
3430 }
3431 if (!clean_merge) {
3432 const char *reason = _("content");
3433 if (ci->filemask == 6)
3434 reason = _("add/add");
3435 if (S_ISGITLINK(merged_file.mode))
3436 reason = _("submodule");
3437 path_msg(opt, path, 0,
3438 _("CONFLICT (%s): Merge conflict in %s"),
3439 reason, path);
3440 }
3441 } else if (ci->filemask == 3 || ci->filemask == 5) {
3442 /* Modify/delete */
3443 const char *modify_branch, *delete_branch;
3444 int side = (ci->filemask == 5) ? 2 : 1;
3445 int index = opt->priv->call_depth ? 0 : side;
3446
3447 ci->merged.result.mode = ci->stages[index].mode;
3448 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
3449 ci->merged.clean = 0;
3450
3451 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
3452 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
3453
3454 if (opt->renormalize &&
3455 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
3456 path)) {
3457 ci->merged.is_null = 1;
3458 ci->merged.clean = 1;
3459 assert(!ci->df_conflict && !ci->path_conflict);
3460 } else if (ci->path_conflict &&
3461 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
3462 /*
3463 * This came from a rename/delete; no action to take,
3464 * but avoid printing "modify/delete" conflict notice
3465 * since the contents were not modified.
3466 */
3467 } else {
3468 path_msg(opt, path, 0,
3469 _("CONFLICT (modify/delete): %s deleted in %s "
3470 "and modified in %s. Version %s of %s left "
3471 "in tree."),
3472 path, delete_branch, modify_branch,
3473 modify_branch, path);
3474 }
3475 } else if (ci->filemask == 2 || ci->filemask == 4) {
3476 /* Added on one side */
3477 int side = (ci->filemask == 4) ? 2 : 1;
3478 ci->merged.result.mode = ci->stages[side].mode;
3479 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3480 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3481 } else if (ci->filemask == 1) {
3482 /* Deleted on both sides */
3483 ci->merged.is_null = 1;
3484 ci->merged.result.mode = 0;
3485 oidcpy(&ci->merged.result.oid, null_oid());
3486 assert(!ci->df_conflict);
3487 ci->merged.clean = !ci->path_conflict;
3488 }
3489
3490 /*
3491 * If still conflicted, record it separately. This allows us to later
3492 * iterate over just conflicted entries when updating the index instead
3493 * of iterating over all entries.
3494 */
3495 if (!ci->merged.clean)
3496 strmap_put(&opt->priv->conflicted, path, ci);
3497
3498 /* Record metadata for ci->merged in dir_metadata */
3499 record_entry_for_tree(dir_metadata, path, &ci->merged);
3500 }
3501
3502 static void prefetch_for_content_merges(struct merge_options *opt,
3503 struct string_list *plist)
3504 {
3505 struct string_list_item *e;
3506 struct oid_array to_fetch = OID_ARRAY_INIT;
3507
3508 if (opt->repo != the_repository || !has_promisor_remote())
3509 return;
3510
3511 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
3512 /* char *path = e->string; */
3513 struct conflict_info *ci = e->util;
3514 int i;
3515
3516 /* Ignore clean entries */
3517 if (ci->merged.clean)
3518 continue;
3519
3520 /* Ignore entries that don't need a content merge */
3521 if (ci->match_mask || ci->filemask < 6 ||
3522 !S_ISREG(ci->stages[1].mode) ||
3523 !S_ISREG(ci->stages[2].mode) ||
3524 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
3525 continue;
3526
3527 /* Also don't need content merge if base matches either side */
3528 if (ci->filemask == 7 &&
3529 S_ISREG(ci->stages[0].mode) &&
3530 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
3531 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
3532 continue;
3533
3534 for (i = 0; i < 3; i++) {
3535 unsigned side_mask = (1 << i);
3536 struct version_info *vi = &ci->stages[i];
3537
3538 if ((ci->filemask & side_mask) &&
3539 S_ISREG(vi->mode) &&
3540 oid_object_info_extended(opt->repo, &vi->oid, NULL,
3541 OBJECT_INFO_FOR_PREFETCH))
3542 oid_array_append(&to_fetch, &vi->oid);
3543 }
3544 }
3545
3546 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
3547 oid_array_clear(&to_fetch);
3548 }
3549
3550 static void process_entries(struct merge_options *opt,
3551 struct object_id *result_oid)
3552 {
3553 struct hashmap_iter iter;
3554 struct strmap_entry *e;
3555 struct string_list plist = STRING_LIST_INIT_NODUP;
3556 struct string_list_item *entry;
3557 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
3558 STRING_LIST_INIT_NODUP,
3559 NULL, 0 };
3560
3561 trace2_region_enter("merge", "process_entries setup", opt->repo);
3562 if (strmap_empty(&opt->priv->paths)) {
3563 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
3564 return;
3565 }
3566
3567 /* Hack to pre-allocate plist to the desired size */
3568 trace2_region_enter("merge", "plist grow", opt->repo);
3569 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
3570 trace2_region_leave("merge", "plist grow", opt->repo);
3571
3572 /* Put every entry from paths into plist, then sort */
3573 trace2_region_enter("merge", "plist copy", opt->repo);
3574 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
3575 string_list_append(&plist, e->key)->util = e->value;
3576 }
3577 trace2_region_leave("merge", "plist copy", opt->repo);
3578
3579 trace2_region_enter("merge", "plist special sort", opt->repo);
3580 plist.cmp = sort_dirs_next_to_their_children;
3581 string_list_sort(&plist);
3582 trace2_region_leave("merge", "plist special sort", opt->repo);
3583
3584 trace2_region_leave("merge", "process_entries setup", opt->repo);
3585
3586 /*
3587 * Iterate over the items in reverse order, so we can handle paths
3588 * below a directory before needing to handle the directory itself.
3589 *
3590 * This allows us to write subtrees before we need to write trees,
3591 * and it also enables sane handling of directory/file conflicts
3592 * (because it allows us to know whether the directory is still in
3593 * the way when it is time to process the file at the same path).
3594 */
3595 trace2_region_enter("merge", "processing", opt->repo);
3596 prefetch_for_content_merges(opt, &plist);
3597 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
3598 char *path = entry->string;
3599 /*
3600 * NOTE: mi may actually be a pointer to a conflict_info, but
3601 * we have to check mi->clean first to see if it's safe to
3602 * reassign to such a pointer type.
3603 */
3604 struct merged_info *mi = entry->util;
3605
3606 write_completed_directory(opt, mi->directory_name,
3607 &dir_metadata);
3608 if (mi->clean)
3609 record_entry_for_tree(&dir_metadata, path, mi);
3610 else {
3611 struct conflict_info *ci = (struct conflict_info *)mi;
3612 process_entry(opt, path, ci, &dir_metadata);
3613 }
3614 }
3615 trace2_region_leave("merge", "processing", opt->repo);
3616
3617 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
3618 if (dir_metadata.offsets.nr != 1 ||
3619 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
3620 printf("dir_metadata.offsets.nr = %d (should be 1)\n",
3621 dir_metadata.offsets.nr);
3622 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
3623 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
3624 fflush(stdout);
3625 BUG("dir_metadata accounting completely off; shouldn't happen");
3626 }
3627 write_tree(result_oid, &dir_metadata.versions, 0,
3628 opt->repo->hash_algo->rawsz);
3629 string_list_clear(&plist, 0);
3630 string_list_clear(&dir_metadata.versions, 0);
3631 string_list_clear(&dir_metadata.offsets, 0);
3632 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
3633 }
3634
3635 /*** Function Grouping: functions related to merge_switch_to_result() ***/
3636
3637 static int checkout(struct merge_options *opt,
3638 struct tree *prev,
3639 struct tree *next)
3640 {
3641 /* Switch the index/working copy from old to new */
3642 int ret;
3643 struct tree_desc trees[2];
3644 struct unpack_trees_options unpack_opts;
3645
3646 memset(&unpack_opts, 0, sizeof(unpack_opts));
3647 unpack_opts.head_idx = -1;
3648 unpack_opts.src_index = opt->repo->index;
3649 unpack_opts.dst_index = opt->repo->index;
3650
3651 setup_unpack_trees_porcelain(&unpack_opts, "merge");
3652
3653 /*
3654 * NOTE: if this were just "git checkout" code, we would probably
3655 * read or refresh the cache and check for a conflicted index, but
3656 * builtin/merge.c or sequencer.c really needs to read the index
3657 * and check for conflicted entries before starting merging for a
3658 * good user experience (no sense waiting for merges/rebases before
3659 * erroring out), so there's no reason to duplicate that work here.
3660 */
3661
3662 /* 2-way merge to the new branch */
3663 unpack_opts.update = 1;
3664 unpack_opts.merge = 1;
3665 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
3666 unpack_opts.verbose_update = (opt->verbosity > 2);
3667 unpack_opts.fn = twoway_merge;
3668 if (1/* FIXME: opts->overwrite_ignore*/) {
3669 CALLOC_ARRAY(unpack_opts.dir, 1);
3670 unpack_opts.dir->flags |= DIR_SHOW_IGNORED;
3671 setup_standard_excludes(unpack_opts.dir);
3672 }
3673 parse_tree(prev);
3674 init_tree_desc(&trees[0], prev->buffer, prev->size);
3675 parse_tree(next);
3676 init_tree_desc(&trees[1], next->buffer, next->size);
3677
3678 ret = unpack_trees(2, trees, &unpack_opts);
3679 clear_unpack_trees_porcelain(&unpack_opts);
3680 dir_clear(unpack_opts.dir);
3681 FREE_AND_NULL(unpack_opts.dir);
3682 return ret;
3683 }
3684
3685 static int record_conflicted_index_entries(struct merge_options *opt)
3686 {
3687 struct hashmap_iter iter;
3688 struct strmap_entry *e;
3689 struct index_state *index = opt->repo->index;
3690 struct checkout state = CHECKOUT_INIT;
3691 int errs = 0;
3692 int original_cache_nr;
3693
3694 if (strmap_empty(&opt->priv->conflicted))
3695 return 0;
3696
3697 /* If any entries have skip_worktree set, we'll have to check 'em out */
3698 state.force = 1;
3699 state.quiet = 1;
3700 state.refresh_cache = 1;
3701 state.istate = index;
3702 original_cache_nr = index->cache_nr;
3703
3704 /* Put every entry from paths into plist, then sort */
3705 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
3706 const char *path = e->key;
3707 struct conflict_info *ci = e->value;
3708 int pos;
3709 struct cache_entry *ce;
3710 int i;
3711
3712 VERIFY_CI(ci);
3713
3714 /*
3715 * The index will already have a stage=0 entry for this path,
3716 * because we created an as-merged-as-possible version of the
3717 * file and checkout() moved the working copy and index over
3718 * to that version.
3719 *
3720 * However, previous iterations through this loop will have
3721 * added unstaged entries to the end of the cache which
3722 * ignore the standard alphabetical ordering of cache
3723 * entries and break invariants needed for index_name_pos()
3724 * to work. However, we know the entry we want is before
3725 * those appended cache entries, so do a temporary swap on
3726 * cache_nr to only look through entries of interest.
3727 */
3728 SWAP(index->cache_nr, original_cache_nr);
3729 pos = index_name_pos(index, path, strlen(path));
3730 SWAP(index->cache_nr, original_cache_nr);
3731 if (pos < 0) {
3732 if (ci->filemask != 1)
3733 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
3734 cache_tree_invalidate_path(index, path);
3735 } else {
3736 ce = index->cache[pos];
3737
3738 /*
3739 * Clean paths with CE_SKIP_WORKTREE set will not be
3740 * written to the working tree by the unpack_trees()
3741 * call in checkout(). Our conflicted entries would
3742 * have appeared clean to that code since we ignored
3743 * the higher order stages. Thus, we need override
3744 * the CE_SKIP_WORKTREE bit and manually write those
3745 * files to the working disk here.
3746 */
3747 if (ce_skip_worktree(ce)) {
3748 struct stat st;
3749
3750 if (!lstat(path, &st)) {
3751 char *new_name = unique_path(&opt->priv->paths,
3752 path,
3753 "cruft");
3754
3755 path_msg(opt, path, 1,
3756 _("Note: %s not up to date and in way of checking out conflicted version; old copy renamed to %s"),
3757 path, new_name);
3758 errs |= rename(path, new_name);
3759 free(new_name);
3760 }
3761 errs |= checkout_entry(ce, &state, NULL, NULL);
3762 }
3763
3764 /*
3765 * Mark this cache entry for removal and instead add
3766 * new stage>0 entries corresponding to the
3767 * conflicts. If there are many conflicted entries, we
3768 * want to avoid memmove'ing O(NM) entries by
3769 * inserting the new entries one at a time. So,
3770 * instead, we just add the new cache entries to the
3771 * end (ignoring normal index requirements on sort
3772 * order) and sort the index once we're all done.
3773 */
3774 ce->ce_flags |= CE_REMOVE;
3775 }
3776
3777 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3778 struct version_info *vi;
3779 if (!(ci->filemask & (1ul << i)))
3780 continue;
3781 vi = &ci->stages[i];
3782 ce = make_cache_entry(index, vi->mode, &vi->oid,
3783 path, i+1, 0);
3784 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
3785 }
3786 }
3787
3788 /*
3789 * Remove the unused cache entries (and invalidate the relevant
3790 * cache-trees), then sort the index entries to get the conflicted
3791 * entries we added to the end into their right locations.
3792 */
3793 remove_marked_cache_entries(index, 1);
3794 /*
3795 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
3796 * on filename and secondarily on stage, and (name, stage #) are a
3797 * unique tuple.
3798 */
3799 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
3800
3801 return errs;
3802 }
3803
3804 void merge_switch_to_result(struct merge_options *opt,
3805 struct tree *head,
3806 struct merge_result *result,
3807 int update_worktree_and_index,
3808 int display_update_msgs)
3809 {
3810 assert(opt->priv == NULL);
3811 if (result->clean >= 0 && update_worktree_and_index) {
3812 const char *filename;
3813 FILE *fp;
3814
3815 trace2_region_enter("merge", "checkout", opt->repo);
3816 if (checkout(opt, head, result->tree)) {
3817 /* failure to function */
3818 result->clean = -1;
3819 return;
3820 }
3821 trace2_region_leave("merge", "checkout", opt->repo);
3822
3823 trace2_region_enter("merge", "record_conflicted", opt->repo);
3824 opt->priv = result->priv;
3825 if (record_conflicted_index_entries(opt)) {
3826 /* failure to function */
3827 opt->priv = NULL;
3828 result->clean = -1;
3829 return;
3830 }
3831 opt->priv = NULL;
3832 trace2_region_leave("merge", "record_conflicted", opt->repo);
3833
3834 trace2_region_enter("merge", "write_auto_merge", opt->repo);
3835 filename = git_path_auto_merge(opt->repo);
3836 fp = xfopen(filename, "w");
3837 fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid));
3838 fclose(fp);
3839 trace2_region_leave("merge", "write_auto_merge", opt->repo);
3840 }
3841
3842 if (display_update_msgs) {
3843 struct merge_options_internal *opti = result->priv;
3844 struct hashmap_iter iter;
3845 struct strmap_entry *e;
3846 struct string_list olist = STRING_LIST_INIT_NODUP;
3847 int i;
3848
3849 trace2_region_enter("merge", "display messages", opt->repo);
3850
3851 /* Hack to pre-allocate olist to the desired size */
3852 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
3853 olist.alloc);
3854
3855 /* Put every entry from output into olist, then sort */
3856 strmap_for_each_entry(&opti->output, &iter, e) {
3857 string_list_append(&olist, e->key)->util = e->value;
3858 }
3859 string_list_sort(&olist);
3860
3861 /* Iterate over the items, printing them */
3862 for (i = 0; i < olist.nr; ++i) {
3863 struct strbuf *sb = olist.items[i].util;
3864
3865 printf("%s", sb->buf);
3866 }
3867 string_list_clear(&olist, 0);
3868
3869 /* Also include needed rename limit adjustment now */
3870 diff_warn_rename_limit("merge.renamelimit",
3871 opti->renames.needed_limit, 0);
3872
3873 trace2_region_leave("merge", "display messages", opt->repo);
3874 }
3875
3876 merge_finalize(opt, result);
3877 }
3878
3879 void merge_finalize(struct merge_options *opt,
3880 struct merge_result *result)
3881 {
3882 struct merge_options_internal *opti = result->priv;
3883
3884 if (opt->renormalize)
3885 git_attr_set_direction(GIT_ATTR_CHECKIN);
3886 assert(opt->priv == NULL);
3887
3888 clear_or_reinit_internal_opts(opti, 0);
3889 FREE_AND_NULL(opti);
3890 }
3891
3892 /*** Function Grouping: helper functions for merge_incore_*() ***/
3893
3894 static struct tree *shift_tree_object(struct repository *repo,
3895 struct tree *one, struct tree *two,
3896 const char *subtree_shift)
3897 {
3898 struct object_id shifted;
3899
3900 if (!*subtree_shift) {
3901 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
3902 } else {
3903 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
3904 subtree_shift);
3905 }
3906 if (oideq(&two->object.oid, &shifted))
3907 return two;
3908 return lookup_tree(repo, &shifted);
3909 }
3910
3911 static inline void set_commit_tree(struct commit *c, struct tree *t)
3912 {
3913 c->maybe_tree = t;
3914 }
3915
3916 static struct commit *make_virtual_commit(struct repository *repo,
3917 struct tree *tree,
3918 const char *comment)
3919 {
3920 struct commit *commit = alloc_commit_node(repo);
3921
3922 set_merge_remote_desc(commit, comment, (struct object *)commit);
3923 set_commit_tree(commit, tree);
3924 commit->object.parsed = 1;
3925 return commit;
3926 }
3927
3928 static void merge_start(struct merge_options *opt, struct merge_result *result)
3929 {
3930 struct rename_info *renames;
3931 int i;
3932
3933 /* Sanity checks on opt */
3934 trace2_region_enter("merge", "sanity checks", opt->repo);
3935 assert(opt->repo);
3936
3937 assert(opt->branch1 && opt->branch2);
3938
3939 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
3940 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
3941 assert(opt->rename_limit >= -1);
3942 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
3943 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
3944
3945 assert(opt->xdl_opts >= 0);
3946 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
3947 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
3948
3949 /*
3950 * detect_renames, verbosity, buffer_output, and obuf are ignored
3951 * fields that were used by "recursive" rather than "ort" -- but
3952 * sanity check them anyway.
3953 */
3954 assert(opt->detect_renames >= -1 &&
3955 opt->detect_renames <= DIFF_DETECT_COPY);
3956 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
3957 assert(opt->buffer_output <= 2);
3958 assert(opt->obuf.len == 0);
3959
3960 assert(opt->priv == NULL);
3961 if (result->_properly_initialized != 0 &&
3962 result->_properly_initialized != RESULT_INITIALIZED)
3963 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
3964 assert(!!result->priv == !!result->_properly_initialized);
3965 if (result->priv) {
3966 opt->priv = result->priv;
3967 result->priv = NULL;
3968 /*
3969 * opt->priv non-NULL means we had results from a previous
3970 * run; do a few sanity checks that user didn't mess with
3971 * it in an obvious fashion.
3972 */
3973 assert(opt->priv->call_depth == 0);
3974 assert(!opt->priv->toplevel_dir ||
3975 0 == strlen(opt->priv->toplevel_dir));
3976 }
3977 trace2_region_leave("merge", "sanity checks", opt->repo);
3978
3979 /* Default to histogram diff. Actually, just hardcode it...for now. */
3980 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
3981
3982 /* Handle attr direction stuff for renormalization */
3983 if (opt->renormalize)
3984 git_attr_set_direction(GIT_ATTR_CHECKOUT);
3985
3986 /* Initialization of opt->priv, our internal merge data */
3987 trace2_region_enter("merge", "allocate/init", opt->repo);
3988 if (opt->priv) {
3989 clear_or_reinit_internal_opts(opt->priv, 1);
3990 trace2_region_leave("merge", "allocate/init", opt->repo);
3991 return;
3992 }
3993 opt->priv = xcalloc(1, sizeof(*opt->priv));
3994
3995 /* Initialization of various renames fields */
3996 renames = &opt->priv->renames;
3997 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
3998 strintmap_init_with_options(&renames->dirs_removed[i],
3999 NOT_RELEVANT, NULL, 0);
4000 strmap_init_with_options(&renames->dir_rename_count[i],
4001 NULL, 1);
4002 strmap_init_with_options(&renames->dir_renames[i],
4003 NULL, 0);
4004 /*
4005 * relevant_sources uses -1 for the default, because we need
4006 * to be able to distinguish not-in-strintmap from valid
4007 * relevant_source values from enum file_rename_relevance.
4008 * In particular, possibly_cache_new_pair() expects a negative
4009 * value for not-found entries.
4010 */
4011 strintmap_init_with_options(&renames->relevant_sources[i],
4012 -1 /* explicitly invalid */,
4013 NULL, 0);
4014 strmap_init_with_options(&renames->cached_pairs[i],
4015 NULL, 1);
4016 strset_init_with_options(&renames->cached_irrelevant[i],
4017 NULL, 1);
4018 strset_init_with_options(&renames->cached_target_names[i],
4019 NULL, 0);
4020 }
4021
4022 /*
4023 * Although we initialize opt->priv->paths with strdup_strings=0,
4024 * that's just to avoid making yet another copy of an allocated
4025 * string. Putting the entry into paths means we are taking
4026 * ownership, so we will later free it. paths_to_free is similar.
4027 *
4028 * In contrast, conflicted just has a subset of keys from paths, so
4029 * we don't want to free those (it'd be a duplicate free).
4030 */
4031 strmap_init_with_options(&opt->priv->paths, NULL, 0);
4032 strmap_init_with_options(&opt->priv->conflicted, NULL, 0);
4033 string_list_init_nodup(&opt->priv->paths_to_free);
4034
4035 /*
4036 * keys & strbufs in output will sometimes need to outlive "paths",
4037 * so it will have a copy of relevant keys. It's probably a small
4038 * subset of the overall paths that have special output.
4039 */
4040 strmap_init(&opt->priv->output);
4041
4042 trace2_region_leave("merge", "allocate/init", opt->repo);
4043 }
4044
4045 static void merge_check_renames_reusable(struct merge_options *opt,
4046 struct merge_result *result,
4047 struct tree *merge_base,
4048 struct tree *side1,
4049 struct tree *side2)
4050 {
4051 struct rename_info *renames;
4052 struct tree **merge_trees;
4053 struct merge_options_internal *opti = result->priv;
4054
4055 if (!opti)
4056 return;
4057
4058 renames = &opti->renames;
4059 merge_trees = renames->merge_trees;
4060
4061 /*
4062 * Handle case where previous merge operation did not want cache to
4063 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4064 */
4065 if (!merge_trees[0]) {
4066 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4067 renames->cached_pairs_valid_side = 0; /* neither side valid */
4068 return;
4069 }
4070
4071 /*
4072 * Handle other cases; note that merge_trees[0..2] will only
4073 * be NULL if opti is, or if all three were manually set to
4074 * NULL by e.g. rename/rename(1to1) handling.
4075 */
4076 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4077
4078 /* Check if we meet a condition for re-using cached_pairs */
4079 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4080 oideq(&side1->object.oid, &result->tree->object.oid))
4081 renames->cached_pairs_valid_side = MERGE_SIDE1;
4082 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4083 oideq(&side2->object.oid, &result->tree->object.oid))
4084 renames->cached_pairs_valid_side = MERGE_SIDE2;
4085 else
4086 renames->cached_pairs_valid_side = 0; /* neither side valid */
4087 }
4088
4089 /*** Function Grouping: merge_incore_*() and their internal variants ***/
4090
4091 /*
4092 * Originally from merge_trees_internal(); heavily adapted, though.
4093 */
4094 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
4095 struct tree *merge_base,
4096 struct tree *side1,
4097 struct tree *side2,
4098 struct merge_result *result)
4099 {
4100 struct object_id working_tree_oid;
4101
4102 if (opt->subtree_shift) {
4103 side2 = shift_tree_object(opt->repo, side1, side2,
4104 opt->subtree_shift);
4105 merge_base = shift_tree_object(opt->repo, side1, merge_base,
4106 opt->subtree_shift);
4107 }
4108
4109 trace2_region_enter("merge", "collect_merge_info", opt->repo);
4110 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
4111 /*
4112 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
4113 * base, and 2-3) the trees for the two trees we're merging.
4114 */
4115 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
4116 oid_to_hex(&merge_base->object.oid),
4117 oid_to_hex(&side1->object.oid),
4118 oid_to_hex(&side2->object.oid));
4119 result->clean = -1;
4120 return;
4121 }
4122 trace2_region_leave("merge", "collect_merge_info", opt->repo);
4123
4124 trace2_region_enter("merge", "renames", opt->repo);
4125 result->clean = detect_and_process_renames(opt, merge_base,
4126 side1, side2);
4127 trace2_region_leave("merge", "renames", opt->repo);
4128
4129 trace2_region_enter("merge", "process_entries", opt->repo);
4130 process_entries(opt, &working_tree_oid);
4131 trace2_region_leave("merge", "process_entries", opt->repo);
4132
4133 /* Set return values */
4134 result->tree = parse_tree_indirect(&working_tree_oid);
4135 /* existence of conflicted entries implies unclean */
4136 result->clean &= strmap_empty(&opt->priv->conflicted);
4137 if (!opt->priv->call_depth) {
4138 result->priv = opt->priv;
4139 result->_properly_initialized = RESULT_INITIALIZED;
4140 opt->priv = NULL;
4141 }
4142 }
4143
4144 /*
4145 * Originally from merge_recursive_internal(); somewhat adapted, though.
4146 */
4147 static void merge_ort_internal(struct merge_options *opt,
4148 struct commit_list *merge_bases,
4149 struct commit *h1,
4150 struct commit *h2,
4151 struct merge_result *result)
4152 {
4153 struct commit_list *iter;
4154 struct commit *merged_merge_bases;
4155 const char *ancestor_name;
4156 struct strbuf merge_base_abbrev = STRBUF_INIT;
4157
4158 if (!merge_bases) {
4159 merge_bases = get_merge_bases(h1, h2);
4160 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
4161 merge_bases = reverse_commit_list(merge_bases);
4162 }
4163
4164 merged_merge_bases = pop_commit(&merge_bases);
4165 if (merged_merge_bases == NULL) {
4166 /* if there is no common ancestor, use an empty tree */
4167 struct tree *tree;
4168
4169 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
4170 merged_merge_bases = make_virtual_commit(opt->repo, tree,
4171 "ancestor");
4172 ancestor_name = "empty tree";
4173 } else if (merge_bases) {
4174 ancestor_name = "merged common ancestors";
4175 } else {
4176 strbuf_add_unique_abbrev(&merge_base_abbrev,
4177 &merged_merge_bases->object.oid,
4178 DEFAULT_ABBREV);
4179 ancestor_name = merge_base_abbrev.buf;
4180 }
4181
4182 for (iter = merge_bases; iter; iter = iter->next) {
4183 const char *saved_b1, *saved_b2;
4184 struct commit *prev = merged_merge_bases;
4185
4186 opt->priv->call_depth++;
4187 /*
4188 * When the merge fails, the result contains files
4189 * with conflict markers. The cleanness flag is
4190 * ignored (unless indicating an error), it was never
4191 * actually used, as result of merge_trees has always
4192 * overwritten it: the committed "conflicts" were
4193 * already resolved.
4194 */
4195 saved_b1 = opt->branch1;
4196 saved_b2 = opt->branch2;
4197 opt->branch1 = "Temporary merge branch 1";
4198 opt->branch2 = "Temporary merge branch 2";
4199 merge_ort_internal(opt, NULL, prev, iter->item, result);
4200 if (result->clean < 0)
4201 return;
4202 opt->branch1 = saved_b1;
4203 opt->branch2 = saved_b2;
4204 opt->priv->call_depth--;
4205
4206 merged_merge_bases = make_virtual_commit(opt->repo,
4207 result->tree,
4208 "merged tree");
4209 commit_list_insert(prev, &merged_merge_bases->parents);
4210 commit_list_insert(iter->item,
4211 &merged_merge_bases->parents->next);
4212
4213 clear_or_reinit_internal_opts(opt->priv, 1);
4214 }
4215
4216 opt->ancestor = ancestor_name;
4217 merge_ort_nonrecursive_internal(opt,
4218 repo_get_commit_tree(opt->repo,
4219 merged_merge_bases),
4220 repo_get_commit_tree(opt->repo, h1),
4221 repo_get_commit_tree(opt->repo, h2),
4222 result);
4223 strbuf_release(&merge_base_abbrev);
4224 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
4225 }
4226
4227 void merge_incore_nonrecursive(struct merge_options *opt,
4228 struct tree *merge_base,
4229 struct tree *side1,
4230 struct tree *side2,
4231 struct merge_result *result)
4232 {
4233 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
4234
4235 trace2_region_enter("merge", "merge_start", opt->repo);
4236 assert(opt->ancestor != NULL);
4237 merge_check_renames_reusable(opt, result, merge_base, side1, side2);
4238 merge_start(opt, result);
4239 /*
4240 * Record the trees used in this merge, so if there's a next merge in
4241 * a cherry-pick or rebase sequence it might be able to take advantage
4242 * of the cached_pairs in that next merge.
4243 */
4244 opt->priv->renames.merge_trees[0] = merge_base;
4245 opt->priv->renames.merge_trees[1] = side1;
4246 opt->priv->renames.merge_trees[2] = side2;
4247 trace2_region_leave("merge", "merge_start", opt->repo);
4248
4249 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
4250 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
4251 }
4252
4253 void merge_incore_recursive(struct merge_options *opt,
4254 struct commit_list *merge_bases,
4255 struct commit *side1,
4256 struct commit *side2,
4257 struct merge_result *result)
4258 {
4259 trace2_region_enter("merge", "incore_recursive", opt->repo);
4260
4261 /* We set the ancestor label based on the merge_bases */
4262 assert(opt->ancestor == NULL);
4263
4264 trace2_region_enter("merge", "merge_start", opt->repo);
4265 merge_start(opt, result);
4266 trace2_region_leave("merge", "merge_start", opt->repo);
4267
4268 merge_ort_internal(opt, merge_bases, side1, side2, result);
4269 trace2_region_leave("merge", "incore_recursive", opt->repo);
4270 }