]> git.ipfire.org Git - thirdparty/git.git/blob - merge-ort.c
merge-ort: set up a memory pool
[thirdparty/git.git] / merge-ort.c
1 /*
2 * "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
3 * as a drop-in replacement for the "recursive" merge strategy, allowing one
4 * to replace
5 *
6 * git merge [-s recursive]
7 *
8 * with
9 *
10 * git merge -s ort
11 *
12 * Note: git's parser allows the space between '-s' and its argument to be
13 * missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
14 * "cale", "peedy", or "ins" instead of "ort"?)
15 */
16
17 #include "cache.h"
18 #include "merge-ort.h"
19
20 #include "alloc.h"
21 #include "attr.h"
22 #include "blob.h"
23 #include "cache-tree.h"
24 #include "commit.h"
25 #include "commit-reach.h"
26 #include "diff.h"
27 #include "diffcore.h"
28 #include "dir.h"
29 #include "entry.h"
30 #include "ll-merge.h"
31 #include "object-store.h"
32 #include "promisor-remote.h"
33 #include "revision.h"
34 #include "strmap.h"
35 #include "submodule.h"
36 #include "tree.h"
37 #include "unpack-trees.h"
38 #include "xdiff-interface.h"
39
40 #define USE_MEMORY_POOL 1 /* faster, but obscures memory leak hunting */
41
42 /*
43 * We have many arrays of size 3. Whenever we have such an array, the
44 * indices refer to one of the sides of the three-way merge. This is so
45 * pervasive that the constants 0, 1, and 2 are used in many places in the
46 * code (especially in arithmetic operations to find the other side's index
47 * or to compute a relevant mask), but sometimes these enum names are used
48 * to aid code clarity.
49 *
50 * See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
51 * referred to there is one of these three sides.
52 */
53 enum merge_side {
54 MERGE_BASE = 0,
55 MERGE_SIDE1 = 1,
56 MERGE_SIDE2 = 2
57 };
58
59 static unsigned RESULT_INITIALIZED = 0x1abe11ed; /* unlikely accidental value */
60
61 struct traversal_callback_data {
62 unsigned long mask;
63 unsigned long dirmask;
64 struct name_entry names[3];
65 };
66
67 struct deferred_traversal_data {
68 /*
69 * possible_trivial_merges: directories to be explored only when needed
70 *
71 * possible_trivial_merges is a map of directory names to
72 * dir_rename_mask. When we detect that a directory is unchanged on
73 * one side, we can sometimes resolve the directory without recursing
74 * into it. Renames are the only things that can prevent such an
75 * optimization. However, for rename sources:
76 * - If no parent directory needed directory rename detection, then
77 * no path under such a directory can be a relevant_source.
78 * and for rename destinations:
79 * - If no cached rename has a target path under the directory AND
80 * - If there are no unpaired relevant_sources elsewhere in the
81 * repository
82 * then we don't need any path under this directory for a rename
83 * destination. The only way to know the last item above is to defer
84 * handling such directories until the end of collect_merge_info(),
85 * in handle_deferred_entries().
86 *
87 * For each we store dir_rename_mask, since that's the only bit of
88 * information we need, other than the path, to resume the recursive
89 * traversal.
90 */
91 struct strintmap possible_trivial_merges;
92
93 /*
94 * trivial_merges_okay: if trivial directory merges are okay
95 *
96 * See possible_trivial_merges above. The "no unpaired
97 * relevant_sources elsewhere in the repository" is a single boolean
98 * per merge side, which we store here. Note that while 0 means no,
99 * 1 only means "maybe" rather than "yes"; we optimistically set it
100 * to 1 initially and only clear when we determine it is unsafe to
101 * do trivial directory merges.
102 */
103 unsigned trivial_merges_okay;
104
105 /*
106 * target_dirs: ancestor directories of rename targets
107 *
108 * target_dirs contains all directory names that are an ancestor of
109 * any rename destination.
110 */
111 struct strset target_dirs;
112 };
113
114 struct rename_info {
115 /*
116 * All variables that are arrays of size 3 correspond to data tracked
117 * for the sides in enum merge_side. Index 0 is almost always unused
118 * because we often only need to track information for MERGE_SIDE1 and
119 * MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
120 * are determined relative to what changed since the MERGE_BASE).
121 */
122
123 /*
124 * pairs: pairing of filenames from diffcore_rename()
125 */
126 struct diff_queue_struct pairs[3];
127
128 /*
129 * dirs_removed: directories removed on a given side of history.
130 *
131 * The keys of dirs_removed[side] are the directories that were removed
132 * on the given side of history. The value of the strintmap for each
133 * directory is a value from enum dir_rename_relevance.
134 */
135 struct strintmap dirs_removed[3];
136
137 /*
138 * dir_rename_count: tracking where parts of a directory were renamed to
139 *
140 * When files in a directory are renamed, they may not all go to the
141 * same location. Each strmap here tracks:
142 * old_dir => {new_dir => int}
143 * That is, dir_rename_count[side] is a strmap to a strintmap.
144 */
145 struct strmap dir_rename_count[3];
146
147 /*
148 * dir_renames: computed directory renames
149 *
150 * This is a map of old_dir => new_dir and is derived in part from
151 * dir_rename_count.
152 */
153 struct strmap dir_renames[3];
154
155 /*
156 * relevant_sources: deleted paths wanted in rename detection, and why
157 *
158 * relevant_sources is a set of deleted paths on each side of
159 * history for which we need rename detection. If a path is deleted
160 * on one side of history, we need to detect if it is part of a
161 * rename if either
162 * * the file is modified/deleted on the other side of history
163 * * we need to detect renames for an ancestor directory
164 * If neither of those are true, we can skip rename detection for
165 * that path. The reason is stored as a value from enum
166 * file_rename_relevance, as the reason can inform the algorithm in
167 * diffcore_rename_extended().
168 */
169 struct strintmap relevant_sources[3];
170
171 struct deferred_traversal_data deferred[3];
172
173 /*
174 * dir_rename_mask:
175 * 0: optimization removing unmodified potential rename source okay
176 * 2 or 4: optimization okay, but must check for files added to dir
177 * 7: optimization forbidden; need rename source in case of dir rename
178 */
179 unsigned dir_rename_mask:3;
180
181 /*
182 * callback_data_*: supporting data structures for alternate traversal
183 *
184 * We sometimes need to be able to traverse through all the files
185 * in a given tree before all immediate subdirectories within that
186 * tree. Since traverse_trees() doesn't do that naturally, we have
187 * a traverse_trees_wrapper() that stores any immediate
188 * subdirectories while traversing files, then traverses the
189 * immediate subdirectories later. These callback_data* variables
190 * store the information for the subdirectories so that we can do
191 * that traversal order.
192 */
193 struct traversal_callback_data *callback_data;
194 int callback_data_nr, callback_data_alloc;
195 char *callback_data_traverse_path;
196
197 /*
198 * merge_trees: trees passed to the merge algorithm for the merge
199 *
200 * merge_trees records the trees passed to the merge algorithm. But,
201 * this data also is stored in merge_result->priv. If a sequence of
202 * merges are being done (such as when cherry-picking or rebasing),
203 * the next merge can look at this and re-use information from
204 * previous merges under certain circumstances.
205 *
206 * See also all the cached_* variables.
207 */
208 struct tree *merge_trees[3];
209
210 /*
211 * cached_pairs_valid_side: which side's cached info can be reused
212 *
213 * See the description for merge_trees. For repeated merges, at most
214 * only one side's cached information can be used. Valid values:
215 * MERGE_SIDE2: cached data from side2 can be reused
216 * MERGE_SIDE1: cached data from side1 can be reused
217 * 0: no cached data can be reused
218 * -1: See redo_after_renames; both sides can be reused.
219 */
220 int cached_pairs_valid_side;
221
222 /*
223 * cached_pairs: Caching of renames and deletions.
224 *
225 * These are mappings recording renames and deletions of individual
226 * files (not directories). They are thus a map from an old
227 * filename to either NULL (for deletions) or a new filename (for
228 * renames).
229 */
230 struct strmap cached_pairs[3];
231
232 /*
233 * cached_target_names: just the destinations from cached_pairs
234 *
235 * We sometimes want a fast lookup to determine if a given filename
236 * is one of the destinations in cached_pairs. cached_target_names
237 * is thus duplicative information, but it provides a fast lookup.
238 */
239 struct strset cached_target_names[3];
240
241 /*
242 * cached_irrelevant: Caching of rename_sources that aren't relevant.
243 *
244 * If we try to detect a rename for a source path and succeed, it's
245 * part of a rename. If we try to detect a rename for a source path
246 * and fail, then it's a delete. If we do not try to detect a rename
247 * for a path, then we don't know if it's a rename or a delete. If
248 * merge-ort doesn't think the path is relevant, then we just won't
249 * cache anything for that path. But there's a slight problem in
250 * that merge-ort can think a path is RELEVANT_LOCATION, but due to
251 * commit 9bd342137e ("diffcore-rename: determine which
252 * relevant_sources are no longer relevant", 2021-03-13),
253 * diffcore-rename can downgrade the path to RELEVANT_NO_MORE. To
254 * avoid excessive calls to diffcore_rename_extended() we still need
255 * to cache such paths, though we cannot record them as either
256 * renames or deletes. So we cache them here as a "turned out to be
257 * irrelevant *for this commit*" as they are often also irrelevant
258 * for subsequent commits, though we will have to do some extra
259 * checking to see whether such paths become relevant for rename
260 * detection when cherry-picking/rebasing subsequent commits.
261 */
262 struct strset cached_irrelevant[3];
263
264 /*
265 * redo_after_renames: optimization flag for "restarting" the merge
266 *
267 * Sometimes it pays to detect renames, cache them, and then
268 * restart the merge operation from the beginning. The reason for
269 * this is that when we know where all the renames are, we know
270 * whether a certain directory has any paths under it affected --
271 * and if a directory is not affected then it permits us to do
272 * trivial tree merging in more cases. Doing trivial tree merging
273 * prevents the need to run process_entry() on every path
274 * underneath trees that can be trivially merged, and
275 * process_entry() is more expensive than collect_merge_info() --
276 * plus, the second collect_merge_info() will be much faster since
277 * it doesn't have to recurse into the relevant trees.
278 *
279 * Values for this flag:
280 * 0 = don't bother, not worth it (or conditions not yet checked)
281 * 1 = conditions for optimization met, optimization worthwhile
282 * 2 = we already did it (don't restart merge yet again)
283 */
284 unsigned redo_after_renames;
285
286 /*
287 * needed_limit: value needed for inexact rename detection to run
288 *
289 * If the current rename limit wasn't high enough for inexact
290 * rename detection to run, this records the limit needed. Otherwise,
291 * this value remains 0.
292 */
293 int needed_limit;
294 };
295
296 struct merge_options_internal {
297 /*
298 * paths: primary data structure in all of merge ort.
299 *
300 * The keys of paths:
301 * * are full relative paths from the toplevel of the repository
302 * (e.g. "drivers/firmware/raspberrypi.c").
303 * * store all relevant paths in the repo, both directories and
304 * files (e.g. drivers, drivers/firmware would also be included)
305 * * these keys serve to intern all the path strings, which allows
306 * us to do pointer comparison on directory names instead of
307 * strcmp; we just have to be careful to use the interned strings.
308 * (Technically paths_to_free may track some strings that were
309 * removed from froms paths.)
310 *
311 * The values of paths:
312 * * either a pointer to a merged_info, or a conflict_info struct
313 * * merged_info contains all relevant information for a
314 * non-conflicted entry.
315 * * conflict_info contains a merged_info, plus any additional
316 * information about a conflict such as the higher orders stages
317 * involved and the names of the paths those came from (handy
318 * once renames get involved).
319 * * a path may start "conflicted" (i.e. point to a conflict_info)
320 * and then a later step (e.g. three-way content merge) determines
321 * it can be cleanly merged, at which point it'll be marked clean
322 * and the algorithm will ignore any data outside the contained
323 * merged_info for that entry
324 * * If an entry remains conflicted, the merged_info portion of a
325 * conflict_info will later be filled with whatever version of
326 * the file should be placed in the working directory (e.g. an
327 * as-merged-as-possible variation that contains conflict markers).
328 */
329 struct strmap paths;
330
331 /*
332 * conflicted: a subset of keys->values from "paths"
333 *
334 * conflicted is basically an optimization between process_entries()
335 * and record_conflicted_index_entries(); the latter could loop over
336 * ALL the entries in paths AGAIN and look for the ones that are
337 * still conflicted, but since process_entries() has to loop over
338 * all of them, it saves the ones it couldn't resolve in this strmap
339 * so that record_conflicted_index_entries() can iterate just the
340 * relevant entries.
341 */
342 struct strmap conflicted;
343
344 /*
345 * pool: memory pool for fast allocation/deallocation
346 *
347 * We allocate room for lots of filenames and auxiliary data
348 * structures in merge_options_internal, and it tends to all be
349 * freed together too. Using a memory pool for these provides a
350 * nice speedup.
351 */
352 struct mem_pool internal_pool;
353 struct mem_pool *pool; /* NULL, or pointer to internal_pool */
354
355 /*
356 * paths_to_free: additional list of strings to free
357 *
358 * If keys are removed from "paths", they are added to paths_to_free
359 * to ensure they are later freed. We avoid free'ing immediately since
360 * other places (e.g. conflict_info.pathnames[]) may still be
361 * referencing these paths.
362 */
363 struct string_list paths_to_free;
364
365 /*
366 * output: special messages and conflict notices for various paths
367 *
368 * This is a map of pathnames (a subset of the keys in "paths" above)
369 * to strbufs. It gathers various warning/conflict/notice messages
370 * for later processing.
371 */
372 struct strmap output;
373
374 /*
375 * renames: various data relating to rename detection
376 */
377 struct rename_info renames;
378
379 /*
380 * attr_index: hacky minimal index used for renormalization
381 *
382 * renormalization code _requires_ an index, though it only needs to
383 * find a .gitattributes file within the index. So, when
384 * renormalization is important, we create a special index with just
385 * that one file.
386 */
387 struct index_state attr_index;
388
389 /*
390 * current_dir_name, toplevel_dir: temporary vars
391 *
392 * These are used in collect_merge_info_callback(), and will set the
393 * various merged_info.directory_name for the various paths we get;
394 * see documentation for that variable and the requirements placed on
395 * that field.
396 */
397 const char *current_dir_name;
398 const char *toplevel_dir;
399
400 /* call_depth: recursion level counter for merging merge bases */
401 int call_depth;
402 };
403
404 struct version_info {
405 struct object_id oid;
406 unsigned short mode;
407 };
408
409 struct merged_info {
410 /* if is_null, ignore result. otherwise result has oid & mode */
411 struct version_info result;
412 unsigned is_null:1;
413
414 /*
415 * clean: whether the path in question is cleanly merged.
416 *
417 * see conflict_info.merged for more details.
418 */
419 unsigned clean:1;
420
421 /*
422 * basename_offset: offset of basename of path.
423 *
424 * perf optimization to avoid recomputing offset of final '/'
425 * character in pathname (0 if no '/' in pathname).
426 */
427 size_t basename_offset;
428
429 /*
430 * directory_name: containing directory name.
431 *
432 * Note that we assume directory_name is constructed such that
433 * strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
434 * i.e. string equality is equivalent to pointer equality. For this
435 * to hold, we have to be careful setting directory_name.
436 */
437 const char *directory_name;
438 };
439
440 struct conflict_info {
441 /*
442 * merged: the version of the path that will be written to working tree
443 *
444 * WARNING: It is critical to check merged.clean and ensure it is 0
445 * before reading any conflict_info fields outside of merged.
446 * Allocated merge_info structs will always have clean set to 1.
447 * Allocated conflict_info structs will have merged.clean set to 0
448 * initially. The merged.clean field is how we know if it is safe
449 * to access other parts of conflict_info besides merged; if a
450 * conflict_info's merged.clean is changed to 1, the rest of the
451 * algorithm is not allowed to look at anything outside of the
452 * merged member anymore.
453 */
454 struct merged_info merged;
455
456 /* oids & modes from each of the three trees for this path */
457 struct version_info stages[3];
458
459 /* pathnames for each stage; may differ due to rename detection */
460 const char *pathnames[3];
461
462 /* Whether this path is/was involved in a directory/file conflict */
463 unsigned df_conflict:1;
464
465 /*
466 * Whether this path is/was involved in a non-content conflict other
467 * than a directory/file conflict (e.g. rename/rename, rename/delete,
468 * file location based on possible directory rename).
469 */
470 unsigned path_conflict:1;
471
472 /*
473 * For filemask and dirmask, the ith bit corresponds to whether the
474 * ith entry is a file (filemask) or a directory (dirmask). Thus,
475 * filemask & dirmask is always zero, and filemask | dirmask is at
476 * most 7 but can be less when a path does not appear as either a
477 * file or a directory on at least one side of history.
478 *
479 * Note that these masks are related to enum merge_side, as the ith
480 * entry corresponds to side i.
481 *
482 * These values come from a traverse_trees() call; more info may be
483 * found looking at tree-walk.h's struct traverse_info,
484 * particularly the documentation above the "fn" member (note that
485 * filemask = mask & ~dirmask from that documentation).
486 */
487 unsigned filemask:3;
488 unsigned dirmask:3;
489
490 /*
491 * Optimization to track which stages match, to avoid the need to
492 * recompute it in multiple steps. Either 0 or at least 2 bits are
493 * set; if at least 2 bits are set, their corresponding stages match.
494 */
495 unsigned match_mask:3;
496 };
497
498 /*** Function Grouping: various utility functions ***/
499
500 /*
501 * For the next three macros, see warning for conflict_info.merged.
502 *
503 * In each of the below, mi is a struct merged_info*, and ci was defined
504 * as a struct conflict_info* (but we need to verify ci isn't actually
505 * pointed at a struct merged_info*).
506 *
507 * INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
508 * VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
509 * ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
510 */
511 #define INITIALIZE_CI(ci, mi) do { \
512 (ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
513 } while (0)
514 #define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
515 #define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
516 (ci) = (struct conflict_info *)(mi); \
517 assert((ci) && !(mi)->clean); \
518 } while (0)
519
520 static void free_strmap_strings(struct strmap *map)
521 {
522 struct hashmap_iter iter;
523 struct strmap_entry *entry;
524
525 strmap_for_each_entry(map, &iter, entry) {
526 free((char*)entry->key);
527 }
528 }
529
530 static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
531 int reinitialize)
532 {
533 struct rename_info *renames = &opti->renames;
534 int i;
535 void (*strmap_clear_func)(struct strmap *, int) =
536 reinitialize ? strmap_partial_clear : strmap_clear;
537 void (*strintmap_clear_func)(struct strintmap *) =
538 reinitialize ? strintmap_partial_clear : strintmap_clear;
539 void (*strset_clear_func)(struct strset *) =
540 reinitialize ? strset_partial_clear : strset_clear;
541
542 /*
543 * We marked opti->paths with strdup_strings = 0, so that we
544 * wouldn't have to make another copy of the fullpath created by
545 * make_traverse_path from setup_path_info(). But, now that we've
546 * used it and have no other references to these strings, it is time
547 * to deallocate them.
548 */
549 free_strmap_strings(&opti->paths);
550 strmap_clear_func(&opti->paths, 1);
551
552 /*
553 * All keys and values in opti->conflicted are a subset of those in
554 * opti->paths. We don't want to deallocate anything twice, so we
555 * don't free the keys and we pass 0 for free_values.
556 */
557 strmap_clear_func(&opti->conflicted, 0);
558
559 /*
560 * opti->paths_to_free is similar to opti->paths; we created it with
561 * strdup_strings = 0 to avoid making _another_ copy of the fullpath
562 * but now that we've used it and have no other references to these
563 * strings, it is time to deallocate them. We do so by temporarily
564 * setting strdup_strings to 1.
565 */
566 opti->paths_to_free.strdup_strings = 1;
567 string_list_clear(&opti->paths_to_free, 0);
568 opti->paths_to_free.strdup_strings = 0;
569
570 if (opti->attr_index.cache_nr) /* true iff opt->renormalize */
571 discard_index(&opti->attr_index);
572
573 /* Free memory used by various renames maps */
574 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
575 strintmap_clear_func(&renames->dirs_removed[i]);
576 strmap_clear_func(&renames->dir_renames[i], 0);
577 strintmap_clear_func(&renames->relevant_sources[i]);
578 if (!reinitialize)
579 assert(renames->cached_pairs_valid_side == 0);
580 if (i != renames->cached_pairs_valid_side &&
581 -1 != renames->cached_pairs_valid_side) {
582 strset_clear_func(&renames->cached_target_names[i]);
583 strmap_clear_func(&renames->cached_pairs[i], 1);
584 strset_clear_func(&renames->cached_irrelevant[i]);
585 partial_clear_dir_rename_count(&renames->dir_rename_count[i]);
586 if (!reinitialize)
587 strmap_clear(&renames->dir_rename_count[i], 1);
588 }
589 }
590 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
591 strintmap_clear_func(&renames->deferred[i].possible_trivial_merges);
592 strset_clear_func(&renames->deferred[i].target_dirs);
593 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
594 }
595 renames->cached_pairs_valid_side = 0;
596 renames->dir_rename_mask = 0;
597
598 if (!reinitialize) {
599 struct hashmap_iter iter;
600 struct strmap_entry *e;
601
602 /* Release and free each strbuf found in output */
603 strmap_for_each_entry(&opti->output, &iter, e) {
604 struct strbuf *sb = e->value;
605 strbuf_release(sb);
606 /*
607 * While strictly speaking we don't need to free(sb)
608 * here because we could pass free_values=1 when
609 * calling strmap_clear() on opti->output, that would
610 * require strmap_clear to do another
611 * strmap_for_each_entry() loop, so we just free it
612 * while we're iterating anyway.
613 */
614 free(sb);
615 }
616 strmap_clear(&opti->output, 0);
617 }
618
619 #if USE_MEMORY_POOL
620 mem_pool_discard(&opti->internal_pool, 0);
621 if (!reinitialize)
622 opti->pool = NULL;
623 #endif
624
625 /* Clean out callback_data as well. */
626 FREE_AND_NULL(renames->callback_data);
627 renames->callback_data_nr = renames->callback_data_alloc = 0;
628 }
629
630 static int err(struct merge_options *opt, const char *err, ...)
631 {
632 va_list params;
633 struct strbuf sb = STRBUF_INIT;
634
635 strbuf_addstr(&sb, "error: ");
636 va_start(params, err);
637 strbuf_vaddf(&sb, err, params);
638 va_end(params);
639
640 error("%s", sb.buf);
641 strbuf_release(&sb);
642
643 return -1;
644 }
645
646 static void format_commit(struct strbuf *sb,
647 int indent,
648 struct commit *commit)
649 {
650 struct merge_remote_desc *desc;
651 struct pretty_print_context ctx = {0};
652 ctx.abbrev = DEFAULT_ABBREV;
653
654 strbuf_addchars(sb, ' ', indent);
655 desc = merge_remote_util(commit);
656 if (desc) {
657 strbuf_addf(sb, "virtual %s\n", desc->name);
658 return;
659 }
660
661 format_commit_message(commit, "%h %s", sb, &ctx);
662 strbuf_addch(sb, '\n');
663 }
664
665 __attribute__((format (printf, 4, 5)))
666 static void path_msg(struct merge_options *opt,
667 const char *path,
668 int omittable_hint, /* skippable under --remerge-diff */
669 const char *fmt, ...)
670 {
671 va_list ap;
672 struct strbuf *sb = strmap_get(&opt->priv->output, path);
673 if (!sb) {
674 sb = xmalloc(sizeof(*sb));
675 strbuf_init(sb, 0);
676 strmap_put(&opt->priv->output, path, sb);
677 }
678
679 va_start(ap, fmt);
680 strbuf_vaddf(sb, fmt, ap);
681 va_end(ap);
682
683 strbuf_addch(sb, '\n');
684 }
685
686 MAYBE_UNUSED
687 static void *pool_calloc(struct mem_pool *pool, size_t count, size_t size)
688 {
689 if (!pool)
690 return xcalloc(count, size);
691 return mem_pool_calloc(pool, count, size);
692 }
693
694 MAYBE_UNUSED
695 static void *pool_alloc(struct mem_pool *pool, size_t size)
696 {
697 if (!pool)
698 return xmalloc(size);
699 return mem_pool_alloc(pool, size);
700 }
701
702 MAYBE_UNUSED
703 static void *pool_strndup(struct mem_pool *pool, const char *str, size_t len)
704 {
705 if (!pool)
706 return xstrndup(str, len);
707 return mem_pool_strndup(pool, str, len);
708 }
709
710 /* add a string to a strbuf, but converting "/" to "_" */
711 static void add_flattened_path(struct strbuf *out, const char *s)
712 {
713 size_t i = out->len;
714 strbuf_addstr(out, s);
715 for (; i < out->len; i++)
716 if (out->buf[i] == '/')
717 out->buf[i] = '_';
718 }
719
720 static char *unique_path(struct strmap *existing_paths,
721 const char *path,
722 const char *branch)
723 {
724 struct strbuf newpath = STRBUF_INIT;
725 int suffix = 0;
726 size_t base_len;
727
728 strbuf_addf(&newpath, "%s~", path);
729 add_flattened_path(&newpath, branch);
730
731 base_len = newpath.len;
732 while (strmap_contains(existing_paths, newpath.buf)) {
733 strbuf_setlen(&newpath, base_len);
734 strbuf_addf(&newpath, "_%d", suffix++);
735 }
736
737 return strbuf_detach(&newpath, NULL);
738 }
739
740 /*** Function Grouping: functions related to collect_merge_info() ***/
741
742 static int traverse_trees_wrapper_callback(int n,
743 unsigned long mask,
744 unsigned long dirmask,
745 struct name_entry *names,
746 struct traverse_info *info)
747 {
748 struct merge_options *opt = info->data;
749 struct rename_info *renames = &opt->priv->renames;
750 unsigned filemask = mask & ~dirmask;
751
752 assert(n==3);
753
754 if (!renames->callback_data_traverse_path)
755 renames->callback_data_traverse_path = xstrdup(info->traverse_path);
756
757 if (filemask && filemask == renames->dir_rename_mask)
758 renames->dir_rename_mask = 0x07;
759
760 ALLOC_GROW(renames->callback_data, renames->callback_data_nr + 1,
761 renames->callback_data_alloc);
762 renames->callback_data[renames->callback_data_nr].mask = mask;
763 renames->callback_data[renames->callback_data_nr].dirmask = dirmask;
764 COPY_ARRAY(renames->callback_data[renames->callback_data_nr].names,
765 names, 3);
766 renames->callback_data_nr++;
767
768 return mask;
769 }
770
771 /*
772 * Much like traverse_trees(), BUT:
773 * - read all the tree entries FIRST, saving them
774 * - note that the above step provides an opportunity to compute necessary
775 * additional details before the "real" traversal
776 * - loop through the saved entries and call the original callback on them
777 */
778 static int traverse_trees_wrapper(struct index_state *istate,
779 int n,
780 struct tree_desc *t,
781 struct traverse_info *info)
782 {
783 int ret, i, old_offset;
784 traverse_callback_t old_fn;
785 char *old_callback_data_traverse_path;
786 struct merge_options *opt = info->data;
787 struct rename_info *renames = &opt->priv->renames;
788
789 assert(renames->dir_rename_mask == 2 || renames->dir_rename_mask == 4);
790
791 old_callback_data_traverse_path = renames->callback_data_traverse_path;
792 old_fn = info->fn;
793 old_offset = renames->callback_data_nr;
794
795 renames->callback_data_traverse_path = NULL;
796 info->fn = traverse_trees_wrapper_callback;
797 ret = traverse_trees(istate, n, t, info);
798 if (ret < 0)
799 return ret;
800
801 info->traverse_path = renames->callback_data_traverse_path;
802 info->fn = old_fn;
803 for (i = old_offset; i < renames->callback_data_nr; ++i) {
804 info->fn(n,
805 renames->callback_data[i].mask,
806 renames->callback_data[i].dirmask,
807 renames->callback_data[i].names,
808 info);
809 }
810
811 renames->callback_data_nr = old_offset;
812 free(renames->callback_data_traverse_path);
813 renames->callback_data_traverse_path = old_callback_data_traverse_path;
814 info->traverse_path = NULL;
815 return 0;
816 }
817
818 static void setup_path_info(struct merge_options *opt,
819 struct string_list_item *result,
820 const char *current_dir_name,
821 int current_dir_name_len,
822 char *fullpath, /* we'll take over ownership */
823 struct name_entry *names,
824 struct name_entry *merged_version,
825 unsigned is_null, /* boolean */
826 unsigned df_conflict, /* boolean */
827 unsigned filemask,
828 unsigned dirmask,
829 int resolved /* boolean */)
830 {
831 /* result->util is void*, so mi is a convenience typed variable */
832 struct merged_info *mi;
833
834 assert(!is_null || resolved);
835 assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
836 assert(resolved == (merged_version != NULL));
837
838 mi = xcalloc(1, resolved ? sizeof(struct merged_info) :
839 sizeof(struct conflict_info));
840 mi->directory_name = current_dir_name;
841 mi->basename_offset = current_dir_name_len;
842 mi->clean = !!resolved;
843 if (resolved) {
844 mi->result.mode = merged_version->mode;
845 oidcpy(&mi->result.oid, &merged_version->oid);
846 mi->is_null = !!is_null;
847 } else {
848 int i;
849 struct conflict_info *ci;
850
851 ASSIGN_AND_VERIFY_CI(ci, mi);
852 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
853 ci->pathnames[i] = fullpath;
854 ci->stages[i].mode = names[i].mode;
855 oidcpy(&ci->stages[i].oid, &names[i].oid);
856 }
857 ci->filemask = filemask;
858 ci->dirmask = dirmask;
859 ci->df_conflict = !!df_conflict;
860 if (dirmask)
861 /*
862 * Assume is_null for now, but if we have entries
863 * under the directory then when it is complete in
864 * write_completed_directory() it'll update this.
865 * Also, for D/F conflicts, we have to handle the
866 * directory first, then clear this bit and process
867 * the file to see how it is handled -- that occurs
868 * near the top of process_entry().
869 */
870 mi->is_null = 1;
871 }
872 strmap_put(&opt->priv->paths, fullpath, mi);
873 result->string = fullpath;
874 result->util = mi;
875 }
876
877 static void add_pair(struct merge_options *opt,
878 struct name_entry *names,
879 const char *pathname,
880 unsigned side,
881 unsigned is_add /* if false, is_delete */,
882 unsigned match_mask,
883 unsigned dir_rename_mask)
884 {
885 struct diff_filespec *one, *two;
886 struct rename_info *renames = &opt->priv->renames;
887 int names_idx = is_add ? side : 0;
888
889 if (is_add) {
890 assert(match_mask == 0 || match_mask == 6);
891 if (strset_contains(&renames->cached_target_names[side],
892 pathname))
893 return;
894 } else {
895 unsigned content_relevant = (match_mask == 0);
896 unsigned location_relevant = (dir_rename_mask == 0x07);
897
898 assert(match_mask == 0 || match_mask == 3 || match_mask == 5);
899
900 /*
901 * If pathname is found in cached_irrelevant[side] due to
902 * previous pick but for this commit content is relevant,
903 * then we need to remove it from cached_irrelevant.
904 */
905 if (content_relevant)
906 /* strset_remove is no-op if strset doesn't have key */
907 strset_remove(&renames->cached_irrelevant[side],
908 pathname);
909
910 /*
911 * We do not need to re-detect renames for paths that we already
912 * know the pairing, i.e. for cached_pairs (or
913 * cached_irrelevant). However, handle_deferred_entries() needs
914 * to loop over the union of keys from relevant_sources[side] and
915 * cached_pairs[side], so for simplicity we set relevant_sources
916 * for all the cached_pairs too and then strip them back out in
917 * prune_cached_from_relevant() at the beginning of
918 * detect_regular_renames().
919 */
920 if (content_relevant || location_relevant) {
921 /* content_relevant trumps location_relevant */
922 strintmap_set(&renames->relevant_sources[side], pathname,
923 content_relevant ? RELEVANT_CONTENT : RELEVANT_LOCATION);
924 }
925
926 /*
927 * Avoid creating pair if we've already cached rename results.
928 * Note that we do this after setting relevant_sources[side]
929 * as noted in the comment above.
930 */
931 if (strmap_contains(&renames->cached_pairs[side], pathname) ||
932 strset_contains(&renames->cached_irrelevant[side], pathname))
933 return;
934 }
935
936 one = alloc_filespec(pathname);
937 two = alloc_filespec(pathname);
938 fill_filespec(is_add ? two : one,
939 &names[names_idx].oid, 1, names[names_idx].mode);
940 diff_queue(&renames->pairs[side], one, two);
941 }
942
943 static void collect_rename_info(struct merge_options *opt,
944 struct name_entry *names,
945 const char *dirname,
946 const char *fullname,
947 unsigned filemask,
948 unsigned dirmask,
949 unsigned match_mask)
950 {
951 struct rename_info *renames = &opt->priv->renames;
952 unsigned side;
953
954 /*
955 * Update dir_rename_mask (determines ignore-rename-source validity)
956 *
957 * dir_rename_mask helps us keep track of when directory rename
958 * detection may be relevant. Basically, whenver a directory is
959 * removed on one side of history, and a file is added to that
960 * directory on the other side of history, directory rename
961 * detection is relevant (meaning we have to detect renames for all
962 * files within that directory to deduce where the directory
963 * moved). Also, whenever a directory needs directory rename
964 * detection, due to the "majority rules" choice for where to move
965 * it (see t6423 testcase 1f), we also need to detect renames for
966 * all files within subdirectories of that directory as well.
967 *
968 * Here we haven't looked at files within the directory yet, we are
969 * just looking at the directory itself. So, if we aren't yet in
970 * a case where a parent directory needed directory rename detection
971 * (i.e. dir_rename_mask != 0x07), and if the directory was removed
972 * on one side of history, record the mask of the other side of
973 * history in dir_rename_mask.
974 */
975 if (renames->dir_rename_mask != 0x07 &&
976 (dirmask == 3 || dirmask == 5)) {
977 /* simple sanity check */
978 assert(renames->dir_rename_mask == 0 ||
979 renames->dir_rename_mask == (dirmask & ~1));
980 /* update dir_rename_mask; have it record mask of new side */
981 renames->dir_rename_mask = (dirmask & ~1);
982 }
983
984 /* Update dirs_removed, as needed */
985 if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
986 /* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
987 unsigned sides = (0x07 - dirmask)/2;
988 unsigned relevance = (renames->dir_rename_mask == 0x07) ?
989 RELEVANT_FOR_ANCESTOR : NOT_RELEVANT;
990 /*
991 * Record relevance of this directory. However, note that
992 * when collect_merge_info_callback() recurses into this
993 * directory and calls collect_rename_info() on paths
994 * within that directory, if we find a path that was added
995 * to this directory on the other side of history, we will
996 * upgrade this value to RELEVANT_FOR_SELF; see below.
997 */
998 if (sides & 1)
999 strintmap_set(&renames->dirs_removed[1], fullname,
1000 relevance);
1001 if (sides & 2)
1002 strintmap_set(&renames->dirs_removed[2], fullname,
1003 relevance);
1004 }
1005
1006 /*
1007 * Here's the block that potentially upgrades to RELEVANT_FOR_SELF.
1008 * When we run across a file added to a directory. In such a case,
1009 * find the directory of the file and upgrade its relevance.
1010 */
1011 if (renames->dir_rename_mask == 0x07 &&
1012 (filemask == 2 || filemask == 4)) {
1013 /*
1014 * Need directory rename for parent directory on other side
1015 * of history from added file. Thus
1016 * side = (~filemask & 0x06) >> 1
1017 * or
1018 * side = 3 - (filemask/2).
1019 */
1020 unsigned side = 3 - (filemask >> 1);
1021 strintmap_set(&renames->dirs_removed[side], dirname,
1022 RELEVANT_FOR_SELF);
1023 }
1024
1025 if (filemask == 0 || filemask == 7)
1026 return;
1027
1028 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; ++side) {
1029 unsigned side_mask = (1 << side);
1030
1031 /* Check for deletion on side */
1032 if ((filemask & 1) && !(filemask & side_mask))
1033 add_pair(opt, names, fullname, side, 0 /* delete */,
1034 match_mask & filemask,
1035 renames->dir_rename_mask);
1036
1037 /* Check for addition on side */
1038 if (!(filemask & 1) && (filemask & side_mask))
1039 add_pair(opt, names, fullname, side, 1 /* add */,
1040 match_mask & filemask,
1041 renames->dir_rename_mask);
1042 }
1043 }
1044
1045 static int collect_merge_info_callback(int n,
1046 unsigned long mask,
1047 unsigned long dirmask,
1048 struct name_entry *names,
1049 struct traverse_info *info)
1050 {
1051 /*
1052 * n is 3. Always.
1053 * common ancestor (mbase) has mask 1, and stored in index 0 of names
1054 * head of side 1 (side1) has mask 2, and stored in index 1 of names
1055 * head of side 2 (side2) has mask 4, and stored in index 2 of names
1056 */
1057 struct merge_options *opt = info->data;
1058 struct merge_options_internal *opti = opt->priv;
1059 struct rename_info *renames = &opt->priv->renames;
1060 struct string_list_item pi; /* Path Info */
1061 struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
1062 struct name_entry *p;
1063 size_t len;
1064 char *fullpath;
1065 const char *dirname = opti->current_dir_name;
1066 unsigned prev_dir_rename_mask = renames->dir_rename_mask;
1067 unsigned filemask = mask & ~dirmask;
1068 unsigned match_mask = 0; /* will be updated below */
1069 unsigned mbase_null = !(mask & 1);
1070 unsigned side1_null = !(mask & 2);
1071 unsigned side2_null = !(mask & 4);
1072 unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
1073 names[0].mode == names[1].mode &&
1074 oideq(&names[0].oid, &names[1].oid));
1075 unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
1076 names[0].mode == names[2].mode &&
1077 oideq(&names[0].oid, &names[2].oid));
1078 unsigned sides_match = (!side1_null && !side2_null &&
1079 names[1].mode == names[2].mode &&
1080 oideq(&names[1].oid, &names[2].oid));
1081
1082 /*
1083 * Note: When a path is a file on one side of history and a directory
1084 * in another, we have a directory/file conflict. In such cases, if
1085 * the conflict doesn't resolve from renames and deletions, then we
1086 * always leave directories where they are and move files out of the
1087 * way. Thus, while struct conflict_info has a df_conflict field to
1088 * track such conflicts, we ignore that field for any directories at
1089 * a path and only pay attention to it for files at the given path.
1090 * The fact that we leave directories were they are also means that
1091 * we do not need to worry about getting additional df_conflict
1092 * information propagated from parent directories down to children
1093 * (unlike, say traverse_trees_recursive() in unpack-trees.c, which
1094 * sets a newinfo.df_conflicts field specifically to propagate it).
1095 */
1096 unsigned df_conflict = (filemask != 0) && (dirmask != 0);
1097
1098 /* n = 3 is a fundamental assumption. */
1099 if (n != 3)
1100 BUG("Called collect_merge_info_callback wrong");
1101
1102 /*
1103 * A bunch of sanity checks verifying that traverse_trees() calls
1104 * us the way I expect. Could just remove these at some point,
1105 * though maybe they are helpful to future code readers.
1106 */
1107 assert(mbase_null == is_null_oid(&names[0].oid));
1108 assert(side1_null == is_null_oid(&names[1].oid));
1109 assert(side2_null == is_null_oid(&names[2].oid));
1110 assert(!mbase_null || !side1_null || !side2_null);
1111 assert(mask > 0 && mask < 8);
1112
1113 /* Determine match_mask */
1114 if (side1_matches_mbase)
1115 match_mask = (side2_matches_mbase ? 7 : 3);
1116 else if (side2_matches_mbase)
1117 match_mask = 5;
1118 else if (sides_match)
1119 match_mask = 6;
1120
1121 /*
1122 * Get the name of the relevant filepath, which we'll pass to
1123 * setup_path_info() for tracking.
1124 */
1125 p = names;
1126 while (!p->mode)
1127 p++;
1128 len = traverse_path_len(info, p->pathlen);
1129
1130 /* +1 in both of the following lines to include the NUL byte */
1131 fullpath = xmalloc(len + 1);
1132 make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
1133
1134 /*
1135 * If mbase, side1, and side2 all match, we can resolve early. Even
1136 * if these are trees, there will be no renames or anything
1137 * underneath.
1138 */
1139 if (side1_matches_mbase && side2_matches_mbase) {
1140 /* mbase, side1, & side2 all match; use mbase as resolution */
1141 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1142 names, names+0, mbase_null, 0 /* df_conflict */,
1143 filemask, dirmask, 1 /* resolved */);
1144 return mask;
1145 }
1146
1147 /*
1148 * If the sides match, and all three paths are present and are
1149 * files, then we can take either as the resolution. We can't do
1150 * this with trees, because there may be rename sources from the
1151 * merge_base.
1152 */
1153 if (sides_match && filemask == 0x07) {
1154 /* use side1 (== side2) version as resolution */
1155 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1156 names, names+1, side1_null, 0,
1157 filemask, dirmask, 1);
1158 return mask;
1159 }
1160
1161 /*
1162 * If side1 matches mbase and all three paths are present and are
1163 * files, then we can use side2 as the resolution. We cannot
1164 * necessarily do so this for trees, because there may be rename
1165 * destinations within side2.
1166 */
1167 if (side1_matches_mbase && filemask == 0x07) {
1168 /* use side2 version as resolution */
1169 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1170 names, names+2, side2_null, 0,
1171 filemask, dirmask, 1);
1172 return mask;
1173 }
1174
1175 /* Similar to above but swapping sides 1 and 2 */
1176 if (side2_matches_mbase && filemask == 0x07) {
1177 /* use side1 version as resolution */
1178 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1179 names, names+1, side1_null, 0,
1180 filemask, dirmask, 1);
1181 return mask;
1182 }
1183
1184 /*
1185 * Sometimes we can tell that a source path need not be included in
1186 * rename detection -- namely, whenever either
1187 * side1_matches_mbase && side2_null
1188 * or
1189 * side2_matches_mbase && side1_null
1190 * However, we call collect_rename_info() even in those cases,
1191 * because exact renames are cheap and would let us remove both a
1192 * source and destination path. We'll cull the unneeded sources
1193 * later.
1194 */
1195 collect_rename_info(opt, names, dirname, fullpath,
1196 filemask, dirmask, match_mask);
1197
1198 /*
1199 * None of the special cases above matched, so we have a
1200 * provisional conflict. (Rename detection might allow us to
1201 * unconflict some more cases, but that comes later so all we can
1202 * do now is record the different non-null file hashes.)
1203 */
1204 setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
1205 names, NULL, 0, df_conflict, filemask, dirmask, 0);
1206
1207 ci = pi.util;
1208 VERIFY_CI(ci);
1209 ci->match_mask = match_mask;
1210
1211 /* If dirmask, recurse into subdirectories */
1212 if (dirmask) {
1213 struct traverse_info newinfo;
1214 struct tree_desc t[3];
1215 void *buf[3] = {NULL, NULL, NULL};
1216 const char *original_dir_name;
1217 int i, ret, side;
1218
1219 /*
1220 * Check for whether we can avoid recursing due to one side
1221 * matching the merge base. The side that does NOT match is
1222 * the one that might have a rename destination we need.
1223 */
1224 assert(!side1_matches_mbase || !side2_matches_mbase);
1225 side = side1_matches_mbase ? MERGE_SIDE2 :
1226 side2_matches_mbase ? MERGE_SIDE1 : MERGE_BASE;
1227 if (filemask == 0 && (dirmask == 2 || dirmask == 4)) {
1228 /*
1229 * Also defer recursing into new directories; set up a
1230 * few variables to let us do so.
1231 */
1232 ci->match_mask = (7 - dirmask);
1233 side = dirmask / 2;
1234 }
1235 if (renames->dir_rename_mask != 0x07 &&
1236 side != MERGE_BASE &&
1237 renames->deferred[side].trivial_merges_okay &&
1238 !strset_contains(&renames->deferred[side].target_dirs,
1239 pi.string)) {
1240 strintmap_set(&renames->deferred[side].possible_trivial_merges,
1241 pi.string, renames->dir_rename_mask);
1242 renames->dir_rename_mask = prev_dir_rename_mask;
1243 return mask;
1244 }
1245
1246 /* We need to recurse */
1247 ci->match_mask &= filemask;
1248 newinfo = *info;
1249 newinfo.prev = info;
1250 newinfo.name = p->path;
1251 newinfo.namelen = p->pathlen;
1252 newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
1253 /*
1254 * If this directory we are about to recurse into cared about
1255 * its parent directory (the current directory) having a D/F
1256 * conflict, then we'd propagate the masks in this way:
1257 * newinfo.df_conflicts |= (mask & ~dirmask);
1258 * But we don't worry about propagating D/F conflicts. (See
1259 * comment near setting of local df_conflict variable near
1260 * the beginning of this function).
1261 */
1262
1263 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
1264 if (i == 1 && side1_matches_mbase)
1265 t[1] = t[0];
1266 else if (i == 2 && side2_matches_mbase)
1267 t[2] = t[0];
1268 else if (i == 2 && sides_match)
1269 t[2] = t[1];
1270 else {
1271 const struct object_id *oid = NULL;
1272 if (dirmask & 1)
1273 oid = &names[i].oid;
1274 buf[i] = fill_tree_descriptor(opt->repo,
1275 t + i, oid);
1276 }
1277 dirmask >>= 1;
1278 }
1279
1280 original_dir_name = opti->current_dir_name;
1281 opti->current_dir_name = pi.string;
1282 if (renames->dir_rename_mask == 0 ||
1283 renames->dir_rename_mask == 0x07)
1284 ret = traverse_trees(NULL, 3, t, &newinfo);
1285 else
1286 ret = traverse_trees_wrapper(NULL, 3, t, &newinfo);
1287 opti->current_dir_name = original_dir_name;
1288 renames->dir_rename_mask = prev_dir_rename_mask;
1289
1290 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1291 free(buf[i]);
1292
1293 if (ret < 0)
1294 return -1;
1295 }
1296
1297 return mask;
1298 }
1299
1300 static void resolve_trivial_directory_merge(struct conflict_info *ci, int side)
1301 {
1302 VERIFY_CI(ci);
1303 assert((side == 1 && ci->match_mask == 5) ||
1304 (side == 2 && ci->match_mask == 3));
1305 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
1306 ci->merged.result.mode = ci->stages[side].mode;
1307 ci->merged.is_null = is_null_oid(&ci->stages[side].oid);
1308 ci->match_mask = 0;
1309 ci->merged.clean = 1; /* (ci->filemask == 0); */
1310 }
1311
1312 static int handle_deferred_entries(struct merge_options *opt,
1313 struct traverse_info *info)
1314 {
1315 struct rename_info *renames = &opt->priv->renames;
1316 struct hashmap_iter iter;
1317 struct strmap_entry *entry;
1318 int side, ret = 0;
1319 int path_count_before, path_count_after = 0;
1320
1321 path_count_before = strmap_get_size(&opt->priv->paths);
1322 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
1323 unsigned optimization_okay = 1;
1324 struct strintmap copy;
1325
1326 /* Loop over the set of paths we need to know rename info for */
1327 strset_for_each_entry(&renames->relevant_sources[side],
1328 &iter, entry) {
1329 char *rename_target, *dir, *dir_marker;
1330 struct strmap_entry *e;
1331
1332 /*
1333 * If we don't know delete/rename info for this path,
1334 * then we need to recurse into all trees to get all
1335 * adds to make sure we have it.
1336 */
1337 if (strset_contains(&renames->cached_irrelevant[side],
1338 entry->key))
1339 continue;
1340 e = strmap_get_entry(&renames->cached_pairs[side],
1341 entry->key);
1342 if (!e) {
1343 optimization_okay = 0;
1344 break;
1345 }
1346
1347 /* If this is a delete, we have enough info already */
1348 rename_target = e->value;
1349 if (!rename_target)
1350 continue;
1351
1352 /* If we already walked the rename target, we're good */
1353 if (strmap_contains(&opt->priv->paths, rename_target))
1354 continue;
1355
1356 /*
1357 * Otherwise, we need to get a list of directories that
1358 * will need to be recursed into to get this
1359 * rename_target.
1360 */
1361 dir = xstrdup(rename_target);
1362 while ((dir_marker = strrchr(dir, '/'))) {
1363 *dir_marker = '\0';
1364 if (strset_contains(&renames->deferred[side].target_dirs,
1365 dir))
1366 break;
1367 strset_add(&renames->deferred[side].target_dirs,
1368 dir);
1369 }
1370 free(dir);
1371 }
1372 renames->deferred[side].trivial_merges_okay = optimization_okay;
1373 /*
1374 * We need to recurse into any directories in
1375 * possible_trivial_merges[side] found in target_dirs[side].
1376 * But when we recurse, we may need to queue up some of the
1377 * subdirectories for possible_trivial_merges[side]. Since
1378 * we can't safely iterate through a hashmap while also adding
1379 * entries, move the entries into 'copy', iterate over 'copy',
1380 * and then we'll also iterate anything added into
1381 * possible_trivial_merges[side] once this loop is done.
1382 */
1383 copy = renames->deferred[side].possible_trivial_merges;
1384 strintmap_init_with_options(&renames->deferred[side].possible_trivial_merges,
1385 0,
1386 NULL,
1387 0);
1388 strintmap_for_each_entry(&copy, &iter, entry) {
1389 const char *path = entry->key;
1390 unsigned dir_rename_mask = (intptr_t)entry->value;
1391 struct conflict_info *ci;
1392 unsigned dirmask;
1393 struct tree_desc t[3];
1394 void *buf[3] = {NULL,};
1395 int i;
1396
1397 ci = strmap_get(&opt->priv->paths, path);
1398 VERIFY_CI(ci);
1399 dirmask = ci->dirmask;
1400
1401 if (optimization_okay &&
1402 !strset_contains(&renames->deferred[side].target_dirs,
1403 path)) {
1404 resolve_trivial_directory_merge(ci, side);
1405 continue;
1406 }
1407
1408 info->name = path;
1409 info->namelen = strlen(path);
1410 info->pathlen = info->namelen + 1;
1411
1412 for (i = 0; i < 3; i++, dirmask >>= 1) {
1413 if (i == 1 && ci->match_mask == 3)
1414 t[1] = t[0];
1415 else if (i == 2 && ci->match_mask == 5)
1416 t[2] = t[0];
1417 else if (i == 2 && ci->match_mask == 6)
1418 t[2] = t[1];
1419 else {
1420 const struct object_id *oid = NULL;
1421 if (dirmask & 1)
1422 oid = &ci->stages[i].oid;
1423 buf[i] = fill_tree_descriptor(opt->repo,
1424 t+i, oid);
1425 }
1426 }
1427
1428 ci->match_mask &= ci->filemask;
1429 opt->priv->current_dir_name = path;
1430 renames->dir_rename_mask = dir_rename_mask;
1431 if (renames->dir_rename_mask == 0 ||
1432 renames->dir_rename_mask == 0x07)
1433 ret = traverse_trees(NULL, 3, t, info);
1434 else
1435 ret = traverse_trees_wrapper(NULL, 3, t, info);
1436
1437 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
1438 free(buf[i]);
1439
1440 if (ret < 0)
1441 return ret;
1442 }
1443 strintmap_clear(&copy);
1444 strintmap_for_each_entry(&renames->deferred[side].possible_trivial_merges,
1445 &iter, entry) {
1446 const char *path = entry->key;
1447 struct conflict_info *ci;
1448
1449 ci = strmap_get(&opt->priv->paths, path);
1450 VERIFY_CI(ci);
1451
1452 assert(renames->deferred[side].trivial_merges_okay &&
1453 !strset_contains(&renames->deferred[side].target_dirs,
1454 path));
1455 resolve_trivial_directory_merge(ci, side);
1456 }
1457 if (!optimization_okay || path_count_after)
1458 path_count_after = strmap_get_size(&opt->priv->paths);
1459 }
1460 if (path_count_after) {
1461 /*
1462 * The choice of wanted_factor here does not affect
1463 * correctness, only performance. When the
1464 * path_count_after / path_count_before
1465 * ratio is high, redoing after renames is a big
1466 * performance boost. I suspect that redoing is a wash
1467 * somewhere near a value of 2, and below that redoing will
1468 * slow things down. I applied a fudge factor and picked
1469 * 3; see the commit message when this was introduced for
1470 * back of the envelope calculations for this ratio.
1471 */
1472 const int wanted_factor = 3;
1473
1474 /* We should only redo collect_merge_info one time */
1475 assert(renames->redo_after_renames == 0);
1476
1477 if (path_count_after / path_count_before >= wanted_factor) {
1478 renames->redo_after_renames = 1;
1479 renames->cached_pairs_valid_side = -1;
1480 }
1481 } else if (renames->redo_after_renames == 2)
1482 renames->redo_after_renames = 0;
1483 return ret;
1484 }
1485
1486 static int collect_merge_info(struct merge_options *opt,
1487 struct tree *merge_base,
1488 struct tree *side1,
1489 struct tree *side2)
1490 {
1491 int ret;
1492 struct tree_desc t[3];
1493 struct traverse_info info;
1494
1495 opt->priv->toplevel_dir = "";
1496 opt->priv->current_dir_name = opt->priv->toplevel_dir;
1497 setup_traverse_info(&info, opt->priv->toplevel_dir);
1498 info.fn = collect_merge_info_callback;
1499 info.data = opt;
1500 info.show_all_errors = 1;
1501
1502 parse_tree(merge_base);
1503 parse_tree(side1);
1504 parse_tree(side2);
1505 init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
1506 init_tree_desc(t + 1, side1->buffer, side1->size);
1507 init_tree_desc(t + 2, side2->buffer, side2->size);
1508
1509 trace2_region_enter("merge", "traverse_trees", opt->repo);
1510 ret = traverse_trees(NULL, 3, t, &info);
1511 if (ret == 0)
1512 ret = handle_deferred_entries(opt, &info);
1513 trace2_region_leave("merge", "traverse_trees", opt->repo);
1514
1515 return ret;
1516 }
1517
1518 /*** Function Grouping: functions related to threeway content merges ***/
1519
1520 static int find_first_merges(struct repository *repo,
1521 const char *path,
1522 struct commit *a,
1523 struct commit *b,
1524 struct object_array *result)
1525 {
1526 int i, j;
1527 struct object_array merges = OBJECT_ARRAY_INIT;
1528 struct commit *commit;
1529 int contains_another;
1530
1531 char merged_revision[GIT_MAX_HEXSZ + 2];
1532 const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
1533 "--all", merged_revision, NULL };
1534 struct rev_info revs;
1535 struct setup_revision_opt rev_opts;
1536
1537 memset(result, 0, sizeof(struct object_array));
1538 memset(&rev_opts, 0, sizeof(rev_opts));
1539
1540 /* get all revisions that merge commit a */
1541 xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
1542 oid_to_hex(&a->object.oid));
1543 repo_init_revisions(repo, &revs, NULL);
1544 rev_opts.submodule = path;
1545 /* FIXME: can't handle linked worktrees in submodules yet */
1546 revs.single_worktree = path != NULL;
1547 setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
1548
1549 /* save all revisions from the above list that contain b */
1550 if (prepare_revision_walk(&revs))
1551 die("revision walk setup failed");
1552 while ((commit = get_revision(&revs)) != NULL) {
1553 struct object *o = &(commit->object);
1554 if (in_merge_bases(b, commit))
1555 add_object_array(o, NULL, &merges);
1556 }
1557 reset_revision_walk();
1558
1559 /* Now we've got all merges that contain a and b. Prune all
1560 * merges that contain another found merge and save them in
1561 * result.
1562 */
1563 for (i = 0; i < merges.nr; i++) {
1564 struct commit *m1 = (struct commit *) merges.objects[i].item;
1565
1566 contains_another = 0;
1567 for (j = 0; j < merges.nr; j++) {
1568 struct commit *m2 = (struct commit *) merges.objects[j].item;
1569 if (i != j && in_merge_bases(m2, m1)) {
1570 contains_another = 1;
1571 break;
1572 }
1573 }
1574
1575 if (!contains_another)
1576 add_object_array(merges.objects[i].item, NULL, result);
1577 }
1578
1579 object_array_clear(&merges);
1580 return result->nr;
1581 }
1582
1583 static int merge_submodule(struct merge_options *opt,
1584 const char *path,
1585 const struct object_id *o,
1586 const struct object_id *a,
1587 const struct object_id *b,
1588 struct object_id *result)
1589 {
1590 struct commit *commit_o, *commit_a, *commit_b;
1591 int parent_count;
1592 struct object_array merges;
1593 struct strbuf sb = STRBUF_INIT;
1594
1595 int i;
1596 int search = !opt->priv->call_depth;
1597
1598 /* store fallback answer in result in case we fail */
1599 oidcpy(result, opt->priv->call_depth ? o : a);
1600
1601 /* we can not handle deletion conflicts */
1602 if (is_null_oid(o))
1603 return 0;
1604 if (is_null_oid(a))
1605 return 0;
1606 if (is_null_oid(b))
1607 return 0;
1608
1609 if (add_submodule_odb(path)) {
1610 path_msg(opt, path, 0,
1611 _("Failed to merge submodule %s (not checked out)"),
1612 path);
1613 return 0;
1614 }
1615
1616 if (!(commit_o = lookup_commit_reference(opt->repo, o)) ||
1617 !(commit_a = lookup_commit_reference(opt->repo, a)) ||
1618 !(commit_b = lookup_commit_reference(opt->repo, b))) {
1619 path_msg(opt, path, 0,
1620 _("Failed to merge submodule %s (commits not present)"),
1621 path);
1622 return 0;
1623 }
1624
1625 /* check whether both changes are forward */
1626 if (!in_merge_bases(commit_o, commit_a) ||
1627 !in_merge_bases(commit_o, commit_b)) {
1628 path_msg(opt, path, 0,
1629 _("Failed to merge submodule %s "
1630 "(commits don't follow merge-base)"),
1631 path);
1632 return 0;
1633 }
1634
1635 /* Case #1: a is contained in b or vice versa */
1636 if (in_merge_bases(commit_a, commit_b)) {
1637 oidcpy(result, b);
1638 path_msg(opt, path, 1,
1639 _("Note: Fast-forwarding submodule %s to %s"),
1640 path, oid_to_hex(b));
1641 return 1;
1642 }
1643 if (in_merge_bases(commit_b, commit_a)) {
1644 oidcpy(result, a);
1645 path_msg(opt, path, 1,
1646 _("Note: Fast-forwarding submodule %s to %s"),
1647 path, oid_to_hex(a));
1648 return 1;
1649 }
1650
1651 /*
1652 * Case #2: There are one or more merges that contain a and b in
1653 * the submodule. If there is only one, then present it as a
1654 * suggestion to the user, but leave it marked unmerged so the
1655 * user needs to confirm the resolution.
1656 */
1657
1658 /* Skip the search if makes no sense to the calling context. */
1659 if (!search)
1660 return 0;
1661
1662 /* find commit which merges them */
1663 parent_count = find_first_merges(opt->repo, path, commit_a, commit_b,
1664 &merges);
1665 switch (parent_count) {
1666 case 0:
1667 path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
1668 break;
1669
1670 case 1:
1671 format_commit(&sb, 4,
1672 (struct commit *)merges.objects[0].item);
1673 path_msg(opt, path, 0,
1674 _("Failed to merge submodule %s, but a possible merge "
1675 "resolution exists:\n%s\n"),
1676 path, sb.buf);
1677 path_msg(opt, path, 1,
1678 _("If this is correct simply add it to the index "
1679 "for example\n"
1680 "by using:\n\n"
1681 " git update-index --cacheinfo 160000 %s \"%s\"\n\n"
1682 "which will accept this suggestion.\n"),
1683 oid_to_hex(&merges.objects[0].item->oid), path);
1684 strbuf_release(&sb);
1685 break;
1686 default:
1687 for (i = 0; i < merges.nr; i++)
1688 format_commit(&sb, 4,
1689 (struct commit *)merges.objects[i].item);
1690 path_msg(opt, path, 0,
1691 _("Failed to merge submodule %s, but multiple "
1692 "possible merges exist:\n%s"), path, sb.buf);
1693 strbuf_release(&sb);
1694 }
1695
1696 object_array_clear(&merges);
1697 return 0;
1698 }
1699
1700 static void initialize_attr_index(struct merge_options *opt)
1701 {
1702 /*
1703 * The renormalize_buffer() functions require attributes, and
1704 * annoyingly those can only be read from the working tree or from
1705 * an index_state. merge-ort doesn't have an index_state, so we
1706 * generate a fake one containing only attribute information.
1707 */
1708 struct merged_info *mi;
1709 struct index_state *attr_index = &opt->priv->attr_index;
1710 struct cache_entry *ce;
1711
1712 attr_index->initialized = 1;
1713
1714 if (!opt->renormalize)
1715 return;
1716
1717 mi = strmap_get(&opt->priv->paths, GITATTRIBUTES_FILE);
1718 if (!mi)
1719 return;
1720
1721 if (mi->clean) {
1722 int len = strlen(GITATTRIBUTES_FILE);
1723 ce = make_empty_cache_entry(attr_index, len);
1724 ce->ce_mode = create_ce_mode(mi->result.mode);
1725 ce->ce_flags = create_ce_flags(0);
1726 ce->ce_namelen = len;
1727 oidcpy(&ce->oid, &mi->result.oid);
1728 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1729 add_index_entry(attr_index, ce,
1730 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1731 get_stream_filter(attr_index, GITATTRIBUTES_FILE, &ce->oid);
1732 } else {
1733 int stage, len;
1734 struct conflict_info *ci;
1735
1736 ASSIGN_AND_VERIFY_CI(ci, mi);
1737 for (stage = 0; stage < 3; stage++) {
1738 unsigned stage_mask = (1 << stage);
1739
1740 if (!(ci->filemask & stage_mask))
1741 continue;
1742 len = strlen(GITATTRIBUTES_FILE);
1743 ce = make_empty_cache_entry(attr_index, len);
1744 ce->ce_mode = create_ce_mode(ci->stages[stage].mode);
1745 ce->ce_flags = create_ce_flags(stage);
1746 ce->ce_namelen = len;
1747 oidcpy(&ce->oid, &ci->stages[stage].oid);
1748 memcpy(ce->name, GITATTRIBUTES_FILE, len);
1749 add_index_entry(attr_index, ce,
1750 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
1751 get_stream_filter(attr_index, GITATTRIBUTES_FILE,
1752 &ce->oid);
1753 }
1754 }
1755 }
1756
1757 static int merge_3way(struct merge_options *opt,
1758 const char *path,
1759 const struct object_id *o,
1760 const struct object_id *a,
1761 const struct object_id *b,
1762 const char *pathnames[3],
1763 const int extra_marker_size,
1764 mmbuffer_t *result_buf)
1765 {
1766 mmfile_t orig, src1, src2;
1767 struct ll_merge_options ll_opts = {0};
1768 char *base, *name1, *name2;
1769 int merge_status;
1770
1771 if (!opt->priv->attr_index.initialized)
1772 initialize_attr_index(opt);
1773
1774 ll_opts.renormalize = opt->renormalize;
1775 ll_opts.extra_marker_size = extra_marker_size;
1776 ll_opts.xdl_opts = opt->xdl_opts;
1777
1778 if (opt->priv->call_depth) {
1779 ll_opts.virtual_ancestor = 1;
1780 ll_opts.variant = 0;
1781 } else {
1782 switch (opt->recursive_variant) {
1783 case MERGE_VARIANT_OURS:
1784 ll_opts.variant = XDL_MERGE_FAVOR_OURS;
1785 break;
1786 case MERGE_VARIANT_THEIRS:
1787 ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
1788 break;
1789 default:
1790 ll_opts.variant = 0;
1791 break;
1792 }
1793 }
1794
1795 assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
1796 if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
1797 base = mkpathdup("%s", opt->ancestor);
1798 name1 = mkpathdup("%s", opt->branch1);
1799 name2 = mkpathdup("%s", opt->branch2);
1800 } else {
1801 base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
1802 name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
1803 name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
1804 }
1805
1806 read_mmblob(&orig, o);
1807 read_mmblob(&src1, a);
1808 read_mmblob(&src2, b);
1809
1810 merge_status = ll_merge(result_buf, path, &orig, base,
1811 &src1, name1, &src2, name2,
1812 &opt->priv->attr_index, &ll_opts);
1813
1814 free(base);
1815 free(name1);
1816 free(name2);
1817 free(orig.ptr);
1818 free(src1.ptr);
1819 free(src2.ptr);
1820 return merge_status;
1821 }
1822
1823 static int handle_content_merge(struct merge_options *opt,
1824 const char *path,
1825 const struct version_info *o,
1826 const struct version_info *a,
1827 const struct version_info *b,
1828 const char *pathnames[3],
1829 const int extra_marker_size,
1830 struct version_info *result)
1831 {
1832 /*
1833 * path is the target location where we want to put the file, and
1834 * is used to determine any normalization rules in ll_merge.
1835 *
1836 * The normal case is that path and all entries in pathnames are
1837 * identical, though renames can affect which path we got one of
1838 * the three blobs to merge on various sides of history.
1839 *
1840 * extra_marker_size is the amount to extend conflict markers in
1841 * ll_merge; this is neeed if we have content merges of content
1842 * merges, which happens for example with rename/rename(2to1) and
1843 * rename/add conflicts.
1844 */
1845 unsigned clean = 1;
1846
1847 /*
1848 * handle_content_merge() needs both files to be of the same type, i.e.
1849 * both files OR both submodules OR both symlinks. Conflicting types
1850 * needs to be handled elsewhere.
1851 */
1852 assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
1853
1854 /* Merge modes */
1855 if (a->mode == b->mode || a->mode == o->mode)
1856 result->mode = b->mode;
1857 else {
1858 /* must be the 100644/100755 case */
1859 assert(S_ISREG(a->mode));
1860 result->mode = a->mode;
1861 clean = (b->mode == o->mode);
1862 /*
1863 * FIXME: If opt->priv->call_depth && !clean, then we really
1864 * should not make result->mode match either a->mode or
1865 * b->mode; that causes t6036 "check conflicting mode for
1866 * regular file" to fail. It would be best to use some other
1867 * mode, but we'll confuse all kinds of stuff if we use one
1868 * where S_ISREG(result->mode) isn't true, and if we use
1869 * something like 0100666, then tree-walk.c's calls to
1870 * canon_mode() will just normalize that to 100644 for us and
1871 * thus not solve anything.
1872 *
1873 * Figure out if there's some kind of way we can work around
1874 * this...
1875 */
1876 }
1877
1878 /*
1879 * Trivial oid merge.
1880 *
1881 * Note: While one might assume that the next four lines would
1882 * be unnecessary due to the fact that match_mask is often
1883 * setup and already handled, renames don't always take care
1884 * of that.
1885 */
1886 if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
1887 oidcpy(&result->oid, &b->oid);
1888 else if (oideq(&b->oid, &o->oid))
1889 oidcpy(&result->oid, &a->oid);
1890
1891 /* Remaining rules depend on file vs. submodule vs. symlink. */
1892 else if (S_ISREG(a->mode)) {
1893 mmbuffer_t result_buf;
1894 int ret = 0, merge_status;
1895 int two_way;
1896
1897 /*
1898 * If 'o' is different type, treat it as null so we do a
1899 * two-way merge.
1900 */
1901 two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1902
1903 merge_status = merge_3way(opt, path,
1904 two_way ? null_oid() : &o->oid,
1905 &a->oid, &b->oid,
1906 pathnames, extra_marker_size,
1907 &result_buf);
1908
1909 if ((merge_status < 0) || !result_buf.ptr)
1910 ret = err(opt, _("Failed to execute internal merge"));
1911
1912 if (!ret &&
1913 write_object_file(result_buf.ptr, result_buf.size,
1914 blob_type, &result->oid))
1915 ret = err(opt, _("Unable to add %s to database"),
1916 path);
1917
1918 free(result_buf.ptr);
1919 if (ret)
1920 return -1;
1921 clean &= (merge_status == 0);
1922 path_msg(opt, path, 1, _("Auto-merging %s"), path);
1923 } else if (S_ISGITLINK(a->mode)) {
1924 int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
1925 clean = merge_submodule(opt, pathnames[0],
1926 two_way ? null_oid() : &o->oid,
1927 &a->oid, &b->oid, &result->oid);
1928 if (opt->priv->call_depth && two_way && !clean) {
1929 result->mode = o->mode;
1930 oidcpy(&result->oid, &o->oid);
1931 }
1932 } else if (S_ISLNK(a->mode)) {
1933 if (opt->priv->call_depth) {
1934 clean = 0;
1935 result->mode = o->mode;
1936 oidcpy(&result->oid, &o->oid);
1937 } else {
1938 switch (opt->recursive_variant) {
1939 case MERGE_VARIANT_NORMAL:
1940 clean = 0;
1941 oidcpy(&result->oid, &a->oid);
1942 break;
1943 case MERGE_VARIANT_OURS:
1944 oidcpy(&result->oid, &a->oid);
1945 break;
1946 case MERGE_VARIANT_THEIRS:
1947 oidcpy(&result->oid, &b->oid);
1948 break;
1949 }
1950 }
1951 } else
1952 BUG("unsupported object type in the tree: %06o for %s",
1953 a->mode, path);
1954
1955 return clean;
1956 }
1957
1958 /*** Function Grouping: functions related to detect_and_process_renames(), ***
1959 *** which are split into directory and regular rename detection sections. ***/
1960
1961 /*** Function Grouping: functions related to directory rename detection ***/
1962
1963 struct collision_info {
1964 struct string_list source_files;
1965 unsigned reported_already:1;
1966 };
1967
1968 /*
1969 * Return a new string that replaces the beginning portion (which matches
1970 * rename_info->key), with rename_info->util.new_dir. In perl-speak:
1971 * new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
1972 * NOTE:
1973 * Caller must ensure that old_path starts with rename_info->key + '/'.
1974 */
1975 static char *apply_dir_rename(struct strmap_entry *rename_info,
1976 const char *old_path)
1977 {
1978 struct strbuf new_path = STRBUF_INIT;
1979 const char *old_dir = rename_info->key;
1980 const char *new_dir = rename_info->value;
1981 int oldlen, newlen, new_dir_len;
1982
1983 oldlen = strlen(old_dir);
1984 if (*new_dir == '\0')
1985 /*
1986 * If someone renamed/merged a subdirectory into the root
1987 * directory (e.g. 'some/subdir' -> ''), then we want to
1988 * avoid returning
1989 * '' + '/filename'
1990 * as the rename; we need to make old_path + oldlen advance
1991 * past the '/' character.
1992 */
1993 oldlen++;
1994 new_dir_len = strlen(new_dir);
1995 newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
1996 strbuf_grow(&new_path, newlen);
1997 strbuf_add(&new_path, new_dir, new_dir_len);
1998 strbuf_addstr(&new_path, &old_path[oldlen]);
1999
2000 return strbuf_detach(&new_path, NULL);
2001 }
2002
2003 static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
2004 {
2005 struct merged_info *mi = strmap_get(paths, path);
2006 struct conflict_info *ci;
2007 if (!mi)
2008 return 0;
2009 INITIALIZE_CI(ci, mi);
2010 return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
2011 }
2012
2013 /*
2014 * See if there is a directory rename for path, and if there are any file
2015 * level conflicts on the given side for the renamed location. If there is
2016 * a rename and there are no conflicts, return the new name. Otherwise,
2017 * return NULL.
2018 */
2019 static char *handle_path_level_conflicts(struct merge_options *opt,
2020 const char *path,
2021 unsigned side_index,
2022 struct strmap_entry *rename_info,
2023 struct strmap *collisions)
2024 {
2025 char *new_path = NULL;
2026 struct collision_info *c_info;
2027 int clean = 1;
2028 struct strbuf collision_paths = STRBUF_INIT;
2029
2030 /*
2031 * entry has the mapping of old directory name to new directory name
2032 * that we want to apply to path.
2033 */
2034 new_path = apply_dir_rename(rename_info, path);
2035 if (!new_path)
2036 BUG("Failed to apply directory rename!");
2037
2038 /*
2039 * The caller needs to have ensured that it has pre-populated
2040 * collisions with all paths that map to new_path. Do a quick check
2041 * to ensure that's the case.
2042 */
2043 c_info = strmap_get(collisions, new_path);
2044 if (c_info == NULL)
2045 BUG("c_info is NULL");
2046
2047 /*
2048 * Check for one-sided add/add/.../add conflicts, i.e.
2049 * where implicit renames from the other side doing
2050 * directory rename(s) can affect this side of history
2051 * to put multiple paths into the same location. Warn
2052 * and bail on directory renames for such paths.
2053 */
2054 if (c_info->reported_already) {
2055 clean = 0;
2056 } else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
2057 c_info->reported_already = 1;
2058 strbuf_add_separated_string_list(&collision_paths, ", ",
2059 &c_info->source_files);
2060 path_msg(opt, new_path, 0,
2061 _("CONFLICT (implicit dir rename): Existing file/dir "
2062 "at %s in the way of implicit directory rename(s) "
2063 "putting the following path(s) there: %s."),
2064 new_path, collision_paths.buf);
2065 clean = 0;
2066 } else if (c_info->source_files.nr > 1) {
2067 c_info->reported_already = 1;
2068 strbuf_add_separated_string_list(&collision_paths, ", ",
2069 &c_info->source_files);
2070 path_msg(opt, new_path, 0,
2071 _("CONFLICT (implicit dir rename): Cannot map more "
2072 "than one path to %s; implicit directory renames "
2073 "tried to put these paths there: %s"),
2074 new_path, collision_paths.buf);
2075 clean = 0;
2076 }
2077
2078 /* Free memory we no longer need */
2079 strbuf_release(&collision_paths);
2080 if (!clean && new_path) {
2081 free(new_path);
2082 return NULL;
2083 }
2084
2085 return new_path;
2086 }
2087
2088 static void get_provisional_directory_renames(struct merge_options *opt,
2089 unsigned side,
2090 int *clean)
2091 {
2092 struct hashmap_iter iter;
2093 struct strmap_entry *entry;
2094 struct rename_info *renames = &opt->priv->renames;
2095
2096 /*
2097 * Collapse
2098 * dir_rename_count: old_directory -> {new_directory -> count}
2099 * down to
2100 * dir_renames: old_directory -> best_new_directory
2101 * where best_new_directory is the one with the unique highest count.
2102 */
2103 strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
2104 const char *source_dir = entry->key;
2105 struct strintmap *counts = entry->value;
2106 struct hashmap_iter count_iter;
2107 struct strmap_entry *count_entry;
2108 int max = 0;
2109 int bad_max = 0;
2110 const char *best = NULL;
2111
2112 strintmap_for_each_entry(counts, &count_iter, count_entry) {
2113 const char *target_dir = count_entry->key;
2114 intptr_t count = (intptr_t)count_entry->value;
2115
2116 if (count == max)
2117 bad_max = max;
2118 else if (count > max) {
2119 max = count;
2120 best = target_dir;
2121 }
2122 }
2123
2124 if (max == 0)
2125 continue;
2126
2127 if (bad_max == max) {
2128 path_msg(opt, source_dir, 0,
2129 _("CONFLICT (directory rename split): "
2130 "Unclear where to rename %s to; it was "
2131 "renamed to multiple other directories, with "
2132 "no destination getting a majority of the "
2133 "files."),
2134 source_dir);
2135 *clean = 0;
2136 } else {
2137 strmap_put(&renames->dir_renames[side],
2138 source_dir, (void*)best);
2139 }
2140 }
2141 }
2142
2143 static void handle_directory_level_conflicts(struct merge_options *opt)
2144 {
2145 struct hashmap_iter iter;
2146 struct strmap_entry *entry;
2147 struct string_list duplicated = STRING_LIST_INIT_NODUP;
2148 struct rename_info *renames = &opt->priv->renames;
2149 struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
2150 struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
2151 int i;
2152
2153 strmap_for_each_entry(side1_dir_renames, &iter, entry) {
2154 if (strmap_contains(side2_dir_renames, entry->key))
2155 string_list_append(&duplicated, entry->key);
2156 }
2157
2158 for (i = 0; i < duplicated.nr; i++) {
2159 strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
2160 strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
2161 }
2162 string_list_clear(&duplicated, 0);
2163 }
2164
2165 static struct strmap_entry *check_dir_renamed(const char *path,
2166 struct strmap *dir_renames)
2167 {
2168 char *temp = xstrdup(path);
2169 char *end;
2170 struct strmap_entry *e = NULL;
2171
2172 while ((end = strrchr(temp, '/'))) {
2173 *end = '\0';
2174 e = strmap_get_entry(dir_renames, temp);
2175 if (e)
2176 break;
2177 }
2178 free(temp);
2179 return e;
2180 }
2181
2182 static void compute_collisions(struct strmap *collisions,
2183 struct strmap *dir_renames,
2184 struct diff_queue_struct *pairs)
2185 {
2186 int i;
2187
2188 strmap_init_with_options(collisions, NULL, 0);
2189 if (strmap_empty(dir_renames))
2190 return;
2191
2192 /*
2193 * Multiple files can be mapped to the same path due to directory
2194 * renames done by the other side of history. Since that other
2195 * side of history could have merged multiple directories into one,
2196 * if our side of history added the same file basename to each of
2197 * those directories, then all N of them would get implicitly
2198 * renamed by the directory rename detection into the same path,
2199 * and we'd get an add/add/.../add conflict, and all those adds
2200 * from *this* side of history. This is not representable in the
2201 * index, and users aren't going to easily be able to make sense of
2202 * it. So we need to provide a good warning about what's
2203 * happening, and fall back to no-directory-rename detection
2204 * behavior for those paths.
2205 *
2206 * See testcases 9e and all of section 5 from t6043 for examples.
2207 */
2208 for (i = 0; i < pairs->nr; ++i) {
2209 struct strmap_entry *rename_info;
2210 struct collision_info *collision_info;
2211 char *new_path;
2212 struct diff_filepair *pair = pairs->queue[i];
2213
2214 if (pair->status != 'A' && pair->status != 'R')
2215 continue;
2216 rename_info = check_dir_renamed(pair->two->path, dir_renames);
2217 if (!rename_info)
2218 continue;
2219
2220 new_path = apply_dir_rename(rename_info, pair->two->path);
2221 assert(new_path);
2222 collision_info = strmap_get(collisions, new_path);
2223 if (collision_info) {
2224 free(new_path);
2225 } else {
2226 CALLOC_ARRAY(collision_info, 1);
2227 string_list_init_nodup(&collision_info->source_files);
2228 strmap_put(collisions, new_path, collision_info);
2229 }
2230 string_list_insert(&collision_info->source_files,
2231 pair->two->path);
2232 }
2233 }
2234
2235 static char *check_for_directory_rename(struct merge_options *opt,
2236 const char *path,
2237 unsigned side_index,
2238 struct strmap *dir_renames,
2239 struct strmap *dir_rename_exclusions,
2240 struct strmap *collisions,
2241 int *clean_merge)
2242 {
2243 char *new_path = NULL;
2244 struct strmap_entry *rename_info;
2245 struct strmap_entry *otherinfo = NULL;
2246 const char *new_dir;
2247
2248 if (strmap_empty(dir_renames))
2249 return new_path;
2250 rename_info = check_dir_renamed(path, dir_renames);
2251 if (!rename_info)
2252 return new_path;
2253 /* old_dir = rename_info->key; */
2254 new_dir = rename_info->value;
2255
2256 /*
2257 * This next part is a little weird. We do not want to do an
2258 * implicit rename into a directory we renamed on our side, because
2259 * that will result in a spurious rename/rename(1to2) conflict. An
2260 * example:
2261 * Base commit: dumbdir/afile, otherdir/bfile
2262 * Side 1: smrtdir/afile, otherdir/bfile
2263 * Side 2: dumbdir/afile, dumbdir/bfile
2264 * Here, while working on Side 1, we could notice that otherdir was
2265 * renamed/merged to dumbdir, and change the diff_filepair for
2266 * otherdir/bfile into a rename into dumbdir/bfile. However, Side
2267 * 2 will notice the rename from dumbdir to smrtdir, and do the
2268 * transitive rename to move it from dumbdir/bfile to
2269 * smrtdir/bfile. That gives us bfile in dumbdir vs being in
2270 * smrtdir, a rename/rename(1to2) conflict. We really just want
2271 * the file to end up in smrtdir. And the way to achieve that is
2272 * to not let Side1 do the rename to dumbdir, since we know that is
2273 * the source of one of our directory renames.
2274 *
2275 * That's why otherinfo and dir_rename_exclusions is here.
2276 *
2277 * As it turns out, this also prevents N-way transient rename
2278 * confusion; See testcases 9c and 9d of t6043.
2279 */
2280 otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
2281 if (otherinfo) {
2282 path_msg(opt, rename_info->key, 1,
2283 _("WARNING: Avoiding applying %s -> %s rename "
2284 "to %s, because %s itself was renamed."),
2285 rename_info->key, new_dir, path, new_dir);
2286 return NULL;
2287 }
2288
2289 new_path = handle_path_level_conflicts(opt, path, side_index,
2290 rename_info, collisions);
2291 *clean_merge &= (new_path != NULL);
2292
2293 return new_path;
2294 }
2295
2296 static void apply_directory_rename_modifications(struct merge_options *opt,
2297 struct diff_filepair *pair,
2298 char *new_path)
2299 {
2300 /*
2301 * The basic idea is to get the conflict_info from opt->priv->paths
2302 * at old path, and insert it into new_path; basically just this:
2303 * ci = strmap_get(&opt->priv->paths, old_path);
2304 * strmap_remove(&opt->priv->paths, old_path, 0);
2305 * strmap_put(&opt->priv->paths, new_path, ci);
2306 * However, there are some factors complicating this:
2307 * - opt->priv->paths may already have an entry at new_path
2308 * - Each ci tracks its containing directory, so we need to
2309 * update that
2310 * - If another ci has the same containing directory, then
2311 * the two char*'s MUST point to the same location. See the
2312 * comment in struct merged_info. strcmp equality is not
2313 * enough; we need pointer equality.
2314 * - opt->priv->paths must hold the parent directories of any
2315 * entries that are added. So, if this directory rename
2316 * causes entirely new directories, we must recursively add
2317 * parent directories.
2318 * - For each parent directory added to opt->priv->paths, we
2319 * also need to get its parent directory stored in its
2320 * conflict_info->merged.directory_name with all the same
2321 * requirements about pointer equality.
2322 */
2323 struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
2324 struct conflict_info *ci, *new_ci;
2325 struct strmap_entry *entry;
2326 const char *branch_with_new_path, *branch_with_dir_rename;
2327 const char *old_path = pair->two->path;
2328 const char *parent_name;
2329 const char *cur_path;
2330 int i, len;
2331
2332 entry = strmap_get_entry(&opt->priv->paths, old_path);
2333 old_path = entry->key;
2334 ci = entry->value;
2335 VERIFY_CI(ci);
2336
2337 /* Find parent directories missing from opt->priv->paths */
2338 cur_path = new_path;
2339 while (1) {
2340 /* Find the parent directory of cur_path */
2341 char *last_slash = strrchr(cur_path, '/');
2342 if (last_slash) {
2343 parent_name = xstrndup(cur_path, last_slash - cur_path);
2344 } else {
2345 parent_name = opt->priv->toplevel_dir;
2346 break;
2347 }
2348
2349 /* Look it up in opt->priv->paths */
2350 entry = strmap_get_entry(&opt->priv->paths, parent_name);
2351 if (entry) {
2352 free((char*)parent_name);
2353 parent_name = entry->key; /* reuse known pointer */
2354 break;
2355 }
2356
2357 /* Record this is one of the directories we need to insert */
2358 string_list_append(&dirs_to_insert, parent_name);
2359 cur_path = parent_name;
2360 }
2361
2362 /* Traverse dirs_to_insert and insert them into opt->priv->paths */
2363 for (i = dirs_to_insert.nr-1; i >= 0; --i) {
2364 struct conflict_info *dir_ci;
2365 char *cur_dir = dirs_to_insert.items[i].string;
2366
2367 CALLOC_ARRAY(dir_ci, 1);
2368
2369 dir_ci->merged.directory_name = parent_name;
2370 len = strlen(parent_name);
2371 /* len+1 because of trailing '/' character */
2372 dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
2373 dir_ci->dirmask = ci->filemask;
2374 strmap_put(&opt->priv->paths, cur_dir, dir_ci);
2375
2376 parent_name = cur_dir;
2377 }
2378
2379 /*
2380 * We are removing old_path from opt->priv->paths. old_path also will
2381 * eventually need to be freed, but it may still be used by e.g.
2382 * ci->pathnames. So, store it in another string-list for now.
2383 */
2384 string_list_append(&opt->priv->paths_to_free, old_path);
2385
2386 assert(ci->filemask == 2 || ci->filemask == 4);
2387 assert(ci->dirmask == 0);
2388 strmap_remove(&opt->priv->paths, old_path, 0);
2389
2390 branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
2391 branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
2392
2393 /* Now, finally update ci and stick it into opt->priv->paths */
2394 ci->merged.directory_name = parent_name;
2395 len = strlen(parent_name);
2396 ci->merged.basename_offset = (len > 0 ? len+1 : len);
2397 new_ci = strmap_get(&opt->priv->paths, new_path);
2398 if (!new_ci) {
2399 /* Place ci back into opt->priv->paths, but at new_path */
2400 strmap_put(&opt->priv->paths, new_path, ci);
2401 } else {
2402 int index;
2403
2404 /* A few sanity checks */
2405 VERIFY_CI(new_ci);
2406 assert(ci->filemask == 2 || ci->filemask == 4);
2407 assert((new_ci->filemask & ci->filemask) == 0);
2408 assert(!new_ci->merged.clean);
2409
2410 /* Copy stuff from ci into new_ci */
2411 new_ci->filemask |= ci->filemask;
2412 if (new_ci->dirmask)
2413 new_ci->df_conflict = 1;
2414 index = (ci->filemask >> 1);
2415 new_ci->pathnames[index] = ci->pathnames[index];
2416 new_ci->stages[index].mode = ci->stages[index].mode;
2417 oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
2418
2419 free(ci);
2420 ci = new_ci;
2421 }
2422
2423 if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
2424 /* Notify user of updated path */
2425 if (pair->status == 'A')
2426 path_msg(opt, new_path, 1,
2427 _("Path updated: %s added in %s inside a "
2428 "directory that was renamed in %s; moving "
2429 "it to %s."),
2430 old_path, branch_with_new_path,
2431 branch_with_dir_rename, new_path);
2432 else
2433 path_msg(opt, new_path, 1,
2434 _("Path updated: %s renamed to %s in %s, "
2435 "inside a directory that was renamed in %s; "
2436 "moving it to %s."),
2437 pair->one->path, old_path, branch_with_new_path,
2438 branch_with_dir_rename, new_path);
2439 } else {
2440 /*
2441 * opt->detect_directory_renames has the value
2442 * MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
2443 */
2444 ci->path_conflict = 1;
2445 if (pair->status == 'A')
2446 path_msg(opt, new_path, 0,
2447 _("CONFLICT (file location): %s added in %s "
2448 "inside a directory that was renamed in %s, "
2449 "suggesting it should perhaps be moved to "
2450 "%s."),
2451 old_path, branch_with_new_path,
2452 branch_with_dir_rename, new_path);
2453 else
2454 path_msg(opt, new_path, 0,
2455 _("CONFLICT (file location): %s renamed to %s "
2456 "in %s, inside a directory that was renamed "
2457 "in %s, suggesting it should perhaps be "
2458 "moved to %s."),
2459 pair->one->path, old_path, branch_with_new_path,
2460 branch_with_dir_rename, new_path);
2461 }
2462
2463 /*
2464 * Finally, record the new location.
2465 */
2466 pair->two->path = new_path;
2467 }
2468
2469 /*** Function Grouping: functions related to regular rename detection ***/
2470
2471 static int process_renames(struct merge_options *opt,
2472 struct diff_queue_struct *renames)
2473 {
2474 int clean_merge = 1, i;
2475
2476 for (i = 0; i < renames->nr; ++i) {
2477 const char *oldpath = NULL, *newpath;
2478 struct diff_filepair *pair = renames->queue[i];
2479 struct conflict_info *oldinfo = NULL, *newinfo = NULL;
2480 struct strmap_entry *old_ent, *new_ent;
2481 unsigned int old_sidemask;
2482 int target_index, other_source_index;
2483 int source_deleted, collision, type_changed;
2484 const char *rename_branch = NULL, *delete_branch = NULL;
2485
2486 old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
2487 new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
2488 if (old_ent) {
2489 oldpath = old_ent->key;
2490 oldinfo = old_ent->value;
2491 }
2492 newpath = pair->two->path;
2493 if (new_ent) {
2494 newpath = new_ent->key;
2495 newinfo = new_ent->value;
2496 }
2497
2498 /*
2499 * If pair->one->path isn't in opt->priv->paths, that means
2500 * that either directory rename detection removed that
2501 * path, or a parent directory of oldpath was resolved and
2502 * we don't even need the rename; in either case, we can
2503 * skip it. If oldinfo->merged.clean, then the other side
2504 * of history had no changes to oldpath and we don't need
2505 * the rename and can skip it.
2506 */
2507 if (!oldinfo || oldinfo->merged.clean)
2508 continue;
2509
2510 /*
2511 * diff_filepairs have copies of pathnames, thus we have to
2512 * use standard 'strcmp()' (negated) instead of '=='.
2513 */
2514 if (i + 1 < renames->nr &&
2515 !strcmp(oldpath, renames->queue[i+1]->one->path)) {
2516 /* Handle rename/rename(1to2) or rename/rename(1to1) */
2517 const char *pathnames[3];
2518 struct version_info merged;
2519 struct conflict_info *base, *side1, *side2;
2520 unsigned was_binary_blob = 0;
2521
2522 pathnames[0] = oldpath;
2523 pathnames[1] = newpath;
2524 pathnames[2] = renames->queue[i+1]->two->path;
2525
2526 base = strmap_get(&opt->priv->paths, pathnames[0]);
2527 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2528 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2529
2530 VERIFY_CI(base);
2531 VERIFY_CI(side1);
2532 VERIFY_CI(side2);
2533
2534 if (!strcmp(pathnames[1], pathnames[2])) {
2535 struct rename_info *ri = &opt->priv->renames;
2536 int j;
2537
2538 /* Both sides renamed the same way */
2539 assert(side1 == side2);
2540 memcpy(&side1->stages[0], &base->stages[0],
2541 sizeof(merged));
2542 side1->filemask |= (1 << MERGE_BASE);
2543 /* Mark base as resolved by removal */
2544 base->merged.is_null = 1;
2545 base->merged.clean = 1;
2546
2547 /*
2548 * Disable remembering renames optimization;
2549 * rename/rename(1to1) is incredibly rare, and
2550 * just disabling the optimization is easier
2551 * than purging cached_pairs,
2552 * cached_target_names, and dir_rename_counts.
2553 */
2554 for (j = 0; j < 3; j++)
2555 ri->merge_trees[j] = NULL;
2556
2557 /* We handled both renames, i.e. i+1 handled */
2558 i++;
2559 /* Move to next rename */
2560 continue;
2561 }
2562
2563 /* This is a rename/rename(1to2) */
2564 clean_merge = handle_content_merge(opt,
2565 pair->one->path,
2566 &base->stages[0],
2567 &side1->stages[1],
2568 &side2->stages[2],
2569 pathnames,
2570 1 + 2 * opt->priv->call_depth,
2571 &merged);
2572 if (!clean_merge &&
2573 merged.mode == side1->stages[1].mode &&
2574 oideq(&merged.oid, &side1->stages[1].oid))
2575 was_binary_blob = 1;
2576 memcpy(&side1->stages[1], &merged, sizeof(merged));
2577 if (was_binary_blob) {
2578 /*
2579 * Getting here means we were attempting to
2580 * merge a binary blob.
2581 *
2582 * Since we can't merge binaries,
2583 * handle_content_merge() just takes one
2584 * side. But we don't want to copy the
2585 * contents of one side to both paths. We
2586 * used the contents of side1 above for
2587 * side1->stages, let's use the contents of
2588 * side2 for side2->stages below.
2589 */
2590 oidcpy(&merged.oid, &side2->stages[2].oid);
2591 merged.mode = side2->stages[2].mode;
2592 }
2593 memcpy(&side2->stages[2], &merged, sizeof(merged));
2594
2595 side1->path_conflict = 1;
2596 side2->path_conflict = 1;
2597 /*
2598 * TODO: For renames we normally remove the path at the
2599 * old name. It would thus seem consistent to do the
2600 * same for rename/rename(1to2) cases, but we haven't
2601 * done so traditionally and a number of the regression
2602 * tests now encode an expectation that the file is
2603 * left there at stage 1. If we ever decide to change
2604 * this, add the following two lines here:
2605 * base->merged.is_null = 1;
2606 * base->merged.clean = 1;
2607 * and remove the setting of base->path_conflict to 1.
2608 */
2609 base->path_conflict = 1;
2610 path_msg(opt, oldpath, 0,
2611 _("CONFLICT (rename/rename): %s renamed to "
2612 "%s in %s and to %s in %s."),
2613 pathnames[0],
2614 pathnames[1], opt->branch1,
2615 pathnames[2], opt->branch2);
2616
2617 i++; /* We handled both renames, i.e. i+1 handled */
2618 continue;
2619 }
2620
2621 VERIFY_CI(oldinfo);
2622 VERIFY_CI(newinfo);
2623 target_index = pair->score; /* from collect_renames() */
2624 assert(target_index == 1 || target_index == 2);
2625 other_source_index = 3 - target_index;
2626 old_sidemask = (1 << other_source_index); /* 2 or 4 */
2627 source_deleted = (oldinfo->filemask == 1);
2628 collision = ((newinfo->filemask & old_sidemask) != 0);
2629 type_changed = !source_deleted &&
2630 (S_ISREG(oldinfo->stages[other_source_index].mode) !=
2631 S_ISREG(newinfo->stages[target_index].mode));
2632 if (type_changed && collision) {
2633 /*
2634 * special handling so later blocks can handle this...
2635 *
2636 * if type_changed && collision are both true, then this
2637 * was really a double rename, but one side wasn't
2638 * detected due to lack of break detection. I.e.
2639 * something like
2640 * orig: has normal file 'foo'
2641 * side1: renames 'foo' to 'bar', adds 'foo' symlink
2642 * side2: renames 'foo' to 'bar'
2643 * In this case, the foo->bar rename on side1 won't be
2644 * detected because the new symlink named 'foo' is
2645 * there and we don't do break detection. But we detect
2646 * this here because we don't want to merge the content
2647 * of the foo symlink with the foo->bar file, so we
2648 * have some logic to handle this special case. The
2649 * easiest way to do that is make 'bar' on side1 not
2650 * be considered a colliding file but the other part
2651 * of a normal rename. If the file is very different,
2652 * well we're going to get content merge conflicts
2653 * anyway so it doesn't hurt. And if the colliding
2654 * file also has a different type, that'll be handled
2655 * by the content merge logic in process_entry() too.
2656 *
2657 * See also t6430, 'rename vs. rename/symlink'
2658 */
2659 collision = 0;
2660 }
2661 if (source_deleted) {
2662 if (target_index == 1) {
2663 rename_branch = opt->branch1;
2664 delete_branch = opt->branch2;
2665 } else {
2666 rename_branch = opt->branch2;
2667 delete_branch = opt->branch1;
2668 }
2669 }
2670
2671 assert(source_deleted || oldinfo->filemask & old_sidemask);
2672
2673 /* Need to check for special types of rename conflicts... */
2674 if (collision && !source_deleted) {
2675 /* collision: rename/add or rename/rename(2to1) */
2676 const char *pathnames[3];
2677 struct version_info merged;
2678
2679 struct conflict_info *base, *side1, *side2;
2680 unsigned clean;
2681
2682 pathnames[0] = oldpath;
2683 pathnames[other_source_index] = oldpath;
2684 pathnames[target_index] = newpath;
2685
2686 base = strmap_get(&opt->priv->paths, pathnames[0]);
2687 side1 = strmap_get(&opt->priv->paths, pathnames[1]);
2688 side2 = strmap_get(&opt->priv->paths, pathnames[2]);
2689
2690 VERIFY_CI(base);
2691 VERIFY_CI(side1);
2692 VERIFY_CI(side2);
2693
2694 clean = handle_content_merge(opt, pair->one->path,
2695 &base->stages[0],
2696 &side1->stages[1],
2697 &side2->stages[2],
2698 pathnames,
2699 1 + 2 * opt->priv->call_depth,
2700 &merged);
2701
2702 memcpy(&newinfo->stages[target_index], &merged,
2703 sizeof(merged));
2704 if (!clean) {
2705 path_msg(opt, newpath, 0,
2706 _("CONFLICT (rename involved in "
2707 "collision): rename of %s -> %s has "
2708 "content conflicts AND collides "
2709 "with another path; this may result "
2710 "in nested conflict markers."),
2711 oldpath, newpath);
2712 }
2713 } else if (collision && source_deleted) {
2714 /*
2715 * rename/add/delete or rename/rename(2to1)/delete:
2716 * since oldpath was deleted on the side that didn't
2717 * do the rename, there's not much of a content merge
2718 * we can do for the rename. oldinfo->merged.is_null
2719 * was already set, so we just leave things as-is so
2720 * they look like an add/add conflict.
2721 */
2722
2723 newinfo->path_conflict = 1;
2724 path_msg(opt, newpath, 0,
2725 _("CONFLICT (rename/delete): %s renamed "
2726 "to %s in %s, but deleted in %s."),
2727 oldpath, newpath, rename_branch, delete_branch);
2728 } else {
2729 /*
2730 * a few different cases...start by copying the
2731 * existing stage(s) from oldinfo over the newinfo
2732 * and update the pathname(s).
2733 */
2734 memcpy(&newinfo->stages[0], &oldinfo->stages[0],
2735 sizeof(newinfo->stages[0]));
2736 newinfo->filemask |= (1 << MERGE_BASE);
2737 newinfo->pathnames[0] = oldpath;
2738 if (type_changed) {
2739 /* rename vs. typechange */
2740 /* Mark the original as resolved by removal */
2741 memcpy(&oldinfo->stages[0].oid, null_oid(),
2742 sizeof(oldinfo->stages[0].oid));
2743 oldinfo->stages[0].mode = 0;
2744 oldinfo->filemask &= 0x06;
2745 } else if (source_deleted) {
2746 /* rename/delete */
2747 newinfo->path_conflict = 1;
2748 path_msg(opt, newpath, 0,
2749 _("CONFLICT (rename/delete): %s renamed"
2750 " to %s in %s, but deleted in %s."),
2751 oldpath, newpath,
2752 rename_branch, delete_branch);
2753 } else {
2754 /* normal rename */
2755 memcpy(&newinfo->stages[other_source_index],
2756 &oldinfo->stages[other_source_index],
2757 sizeof(newinfo->stages[0]));
2758 newinfo->filemask |= (1 << other_source_index);
2759 newinfo->pathnames[other_source_index] = oldpath;
2760 }
2761 }
2762
2763 if (!type_changed) {
2764 /* Mark the original as resolved by removal */
2765 oldinfo->merged.is_null = 1;
2766 oldinfo->merged.clean = 1;
2767 }
2768
2769 }
2770
2771 return clean_merge;
2772 }
2773
2774 static inline int possible_side_renames(struct rename_info *renames,
2775 unsigned side_index)
2776 {
2777 return renames->pairs[side_index].nr > 0 &&
2778 !strintmap_empty(&renames->relevant_sources[side_index]);
2779 }
2780
2781 static inline int possible_renames(struct rename_info *renames)
2782 {
2783 return possible_side_renames(renames, 1) ||
2784 possible_side_renames(renames, 2) ||
2785 !strmap_empty(&renames->cached_pairs[1]) ||
2786 !strmap_empty(&renames->cached_pairs[2]);
2787 }
2788
2789 static void resolve_diffpair_statuses(struct diff_queue_struct *q)
2790 {
2791 /*
2792 * A simplified version of diff_resolve_rename_copy(); would probably
2793 * just use that function but it's static...
2794 */
2795 int i;
2796 struct diff_filepair *p;
2797
2798 for (i = 0; i < q->nr; ++i) {
2799 p = q->queue[i];
2800 p->status = 0; /* undecided */
2801 if (!DIFF_FILE_VALID(p->one))
2802 p->status = DIFF_STATUS_ADDED;
2803 else if (!DIFF_FILE_VALID(p->two))
2804 p->status = DIFF_STATUS_DELETED;
2805 else if (DIFF_PAIR_RENAME(p))
2806 p->status = DIFF_STATUS_RENAMED;
2807 }
2808 }
2809
2810 static void prune_cached_from_relevant(struct rename_info *renames,
2811 unsigned side)
2812 {
2813 /* Reason for this function described in add_pair() */
2814 struct hashmap_iter iter;
2815 struct strmap_entry *entry;
2816
2817 /* Remove from relevant_sources all entries in cached_pairs[side] */
2818 strmap_for_each_entry(&renames->cached_pairs[side], &iter, entry) {
2819 strintmap_remove(&renames->relevant_sources[side],
2820 entry->key);
2821 }
2822 /* Remove from relevant_sources all entries in cached_irrelevant[side] */
2823 strset_for_each_entry(&renames->cached_irrelevant[side], &iter, entry) {
2824 strintmap_remove(&renames->relevant_sources[side],
2825 entry->key);
2826 }
2827 }
2828
2829 static void use_cached_pairs(struct merge_options *opt,
2830 struct strmap *cached_pairs,
2831 struct diff_queue_struct *pairs)
2832 {
2833 struct hashmap_iter iter;
2834 struct strmap_entry *entry;
2835
2836 /*
2837 * Add to side_pairs all entries from renames->cached_pairs[side_index].
2838 * (Info in cached_irrelevant[side_index] is not relevant here.)
2839 */
2840 strmap_for_each_entry(cached_pairs, &iter, entry) {
2841 struct diff_filespec *one, *two;
2842 const char *old_name = entry->key;
2843 const char *new_name = entry->value;
2844 if (!new_name)
2845 new_name = old_name;
2846
2847 /* We don't care about oid/mode, only filenames and status */
2848 one = alloc_filespec(old_name);
2849 two = alloc_filespec(new_name);
2850 diff_queue(pairs, one, two);
2851 pairs->queue[pairs->nr-1]->status = entry->value ? 'R' : 'D';
2852 }
2853 }
2854
2855 static void cache_new_pair(struct rename_info *renames,
2856 int side,
2857 char *old_path,
2858 char *new_path,
2859 int free_old_value)
2860 {
2861 char *old_value;
2862 new_path = xstrdup(new_path);
2863 old_value = strmap_put(&renames->cached_pairs[side],
2864 old_path, new_path);
2865 strset_add(&renames->cached_target_names[side], new_path);
2866 if (free_old_value)
2867 free(old_value);
2868 else
2869 assert(!old_value);
2870 }
2871
2872 static void possibly_cache_new_pair(struct rename_info *renames,
2873 struct diff_filepair *p,
2874 unsigned side,
2875 char *new_path)
2876 {
2877 int dir_renamed_side = 0;
2878
2879 if (new_path) {
2880 /*
2881 * Directory renames happen on the other side of history from
2882 * the side that adds new files to the old directory.
2883 */
2884 dir_renamed_side = 3 - side;
2885 } else {
2886 int val = strintmap_get(&renames->relevant_sources[side],
2887 p->one->path);
2888 if (val == RELEVANT_NO_MORE) {
2889 assert(p->status == 'D');
2890 strset_add(&renames->cached_irrelevant[side],
2891 p->one->path);
2892 }
2893 if (val <= 0)
2894 return;
2895 }
2896
2897 if (p->status == 'D') {
2898 /*
2899 * If we already had this delete, we'll just set it's value
2900 * to NULL again, so no harm.
2901 */
2902 strmap_put(&renames->cached_pairs[side], p->one->path, NULL);
2903 } else if (p->status == 'R') {
2904 if (!new_path)
2905 new_path = p->two->path;
2906 else
2907 cache_new_pair(renames, dir_renamed_side,
2908 p->two->path, new_path, 0);
2909 cache_new_pair(renames, side, p->one->path, new_path, 1);
2910 } else if (p->status == 'A' && new_path) {
2911 cache_new_pair(renames, dir_renamed_side,
2912 p->two->path, new_path, 0);
2913 }
2914 }
2915
2916 static int compare_pairs(const void *a_, const void *b_)
2917 {
2918 const struct diff_filepair *a = *((const struct diff_filepair **)a_);
2919 const struct diff_filepair *b = *((const struct diff_filepair **)b_);
2920
2921 return strcmp(a->one->path, b->one->path);
2922 }
2923
2924 /* Call diffcore_rename() to update deleted/added pairs into rename pairs */
2925 static int detect_regular_renames(struct merge_options *opt,
2926 unsigned side_index)
2927 {
2928 struct diff_options diff_opts;
2929 struct rename_info *renames = &opt->priv->renames;
2930
2931 prune_cached_from_relevant(renames, side_index);
2932 if (!possible_side_renames(renames, side_index)) {
2933 /*
2934 * No rename detection needed for this side, but we still need
2935 * to make sure 'adds' are marked correctly in case the other
2936 * side had directory renames.
2937 */
2938 resolve_diffpair_statuses(&renames->pairs[side_index]);
2939 return 0;
2940 }
2941
2942 partial_clear_dir_rename_count(&renames->dir_rename_count[side_index]);
2943 repo_diff_setup(opt->repo, &diff_opts);
2944 diff_opts.flags.recursive = 1;
2945 diff_opts.flags.rename_empty = 0;
2946 diff_opts.detect_rename = DIFF_DETECT_RENAME;
2947 diff_opts.rename_limit = opt->rename_limit;
2948 if (opt->rename_limit <= 0)
2949 diff_opts.rename_limit = 1000;
2950 diff_opts.rename_score = opt->rename_score;
2951 diff_opts.show_rename_progress = opt->show_rename_progress;
2952 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2953 diff_setup_done(&diff_opts);
2954
2955 diff_queued_diff = renames->pairs[side_index];
2956 trace2_region_enter("diff", "diffcore_rename", opt->repo);
2957 diffcore_rename_extended(&diff_opts,
2958 &renames->relevant_sources[side_index],
2959 &renames->dirs_removed[side_index],
2960 &renames->dir_rename_count[side_index],
2961 &renames->cached_pairs[side_index]);
2962 trace2_region_leave("diff", "diffcore_rename", opt->repo);
2963 resolve_diffpair_statuses(&diff_queued_diff);
2964
2965 if (diff_opts.needed_rename_limit > 0)
2966 renames->redo_after_renames = 0;
2967 if (diff_opts.needed_rename_limit > renames->needed_limit)
2968 renames->needed_limit = diff_opts.needed_rename_limit;
2969
2970 renames->pairs[side_index] = diff_queued_diff;
2971
2972 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2973 diff_queued_diff.nr = 0;
2974 diff_queued_diff.queue = NULL;
2975 diff_flush(&diff_opts);
2976
2977 return 1;
2978 }
2979
2980 /*
2981 * Get information of all renames which occurred in 'side_pairs', making use
2982 * of any implicit directory renames in side_dir_renames (also making use of
2983 * implicit directory renames rename_exclusions as needed by
2984 * check_for_directory_rename()). Add all (updated) renames into result.
2985 */
2986 static int collect_renames(struct merge_options *opt,
2987 struct diff_queue_struct *result,
2988 unsigned side_index,
2989 struct strmap *dir_renames_for_side,
2990 struct strmap *rename_exclusions)
2991 {
2992 int i, clean = 1;
2993 struct strmap collisions;
2994 struct diff_queue_struct *side_pairs;
2995 struct hashmap_iter iter;
2996 struct strmap_entry *entry;
2997 struct rename_info *renames = &opt->priv->renames;
2998
2999 side_pairs = &renames->pairs[side_index];
3000 compute_collisions(&collisions, dir_renames_for_side, side_pairs);
3001
3002 for (i = 0; i < side_pairs->nr; ++i) {
3003 struct diff_filepair *p = side_pairs->queue[i];
3004 char *new_path; /* non-NULL only with directory renames */
3005
3006 if (p->status != 'A' && p->status != 'R') {
3007 possibly_cache_new_pair(renames, p, side_index, NULL);
3008 diff_free_filepair(p);
3009 continue;
3010 }
3011
3012 new_path = check_for_directory_rename(opt, p->two->path,
3013 side_index,
3014 dir_renames_for_side,
3015 rename_exclusions,
3016 &collisions,
3017 &clean);
3018
3019 possibly_cache_new_pair(renames, p, side_index, new_path);
3020 if (p->status != 'R' && !new_path) {
3021 diff_free_filepair(p);
3022 continue;
3023 }
3024
3025 if (new_path)
3026 apply_directory_rename_modifications(opt, p, new_path);
3027
3028 /*
3029 * p->score comes back from diffcore_rename_extended() with
3030 * the similarity of the renamed file. The similarity is
3031 * was used to determine that the two files were related
3032 * and are a rename, which we have already used, but beyond
3033 * that we have no use for the similarity. So p->score is
3034 * now irrelevant. However, process_renames() will need to
3035 * know which side of the merge this rename was associated
3036 * with, so overwrite p->score with that value.
3037 */
3038 p->score = side_index;
3039 result->queue[result->nr++] = p;
3040 }
3041
3042 /* Free each value in the collisions map */
3043 strmap_for_each_entry(&collisions, &iter, entry) {
3044 struct collision_info *info = entry->value;
3045 string_list_clear(&info->source_files, 0);
3046 }
3047 /*
3048 * In compute_collisions(), we set collisions.strdup_strings to 0
3049 * so that we wouldn't have to make another copy of the new_path
3050 * allocated by apply_dir_rename(). But now that we've used them
3051 * and have no other references to these strings, it is time to
3052 * deallocate them.
3053 */
3054 free_strmap_strings(&collisions);
3055 strmap_clear(&collisions, 1);
3056 return clean;
3057 }
3058
3059 static int detect_and_process_renames(struct merge_options *opt,
3060 struct tree *merge_base,
3061 struct tree *side1,
3062 struct tree *side2)
3063 {
3064 struct diff_queue_struct combined;
3065 struct rename_info *renames = &opt->priv->renames;
3066 int need_dir_renames, s, clean = 1;
3067 unsigned detection_run = 0;
3068
3069 memset(&combined, 0, sizeof(combined));
3070 if (!possible_renames(renames))
3071 goto cleanup;
3072
3073 trace2_region_enter("merge", "regular renames", opt->repo);
3074 detection_run |= detect_regular_renames(opt, MERGE_SIDE1);
3075 detection_run |= detect_regular_renames(opt, MERGE_SIDE2);
3076 if (renames->redo_after_renames && detection_run) {
3077 int i, side;
3078 struct diff_filepair *p;
3079
3080 /* Cache the renames, we found */
3081 for (side = MERGE_SIDE1; side <= MERGE_SIDE2; side++) {
3082 for (i = 0; i < renames->pairs[side].nr; ++i) {
3083 p = renames->pairs[side].queue[i];
3084 possibly_cache_new_pair(renames, p, side, NULL);
3085 }
3086 }
3087
3088 /* Restart the merge with the cached renames */
3089 renames->redo_after_renames = 2;
3090 trace2_region_leave("merge", "regular renames", opt->repo);
3091 goto cleanup;
3092 }
3093 use_cached_pairs(opt, &renames->cached_pairs[1], &renames->pairs[1]);
3094 use_cached_pairs(opt, &renames->cached_pairs[2], &renames->pairs[2]);
3095 trace2_region_leave("merge", "regular renames", opt->repo);
3096
3097 trace2_region_enter("merge", "directory renames", opt->repo);
3098 need_dir_renames =
3099 !opt->priv->call_depth &&
3100 (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
3101 opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
3102
3103 if (need_dir_renames) {
3104 get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
3105 get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
3106 handle_directory_level_conflicts(opt);
3107 }
3108
3109 ALLOC_GROW(combined.queue,
3110 renames->pairs[1].nr + renames->pairs[2].nr,
3111 combined.alloc);
3112 clean &= collect_renames(opt, &combined, MERGE_SIDE1,
3113 &renames->dir_renames[2],
3114 &renames->dir_renames[1]);
3115 clean &= collect_renames(opt, &combined, MERGE_SIDE2,
3116 &renames->dir_renames[1],
3117 &renames->dir_renames[2]);
3118 STABLE_QSORT(combined.queue, combined.nr, compare_pairs);
3119 trace2_region_leave("merge", "directory renames", opt->repo);
3120
3121 trace2_region_enter("merge", "process renames", opt->repo);
3122 clean &= process_renames(opt, &combined);
3123 trace2_region_leave("merge", "process renames", opt->repo);
3124
3125 goto simple_cleanup; /* collect_renames() handles some of cleanup */
3126
3127 cleanup:
3128 /*
3129 * Free now unneeded filepairs, which would have been handled
3130 * in collect_renames() normally but we skipped that code.
3131 */
3132 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3133 struct diff_queue_struct *side_pairs;
3134 int i;
3135
3136 side_pairs = &renames->pairs[s];
3137 for (i = 0; i < side_pairs->nr; ++i) {
3138 struct diff_filepair *p = side_pairs->queue[i];
3139 diff_free_filepair(p);
3140 }
3141 }
3142
3143 simple_cleanup:
3144 /* Free memory for renames->pairs[] and combined */
3145 for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
3146 free(renames->pairs[s].queue);
3147 DIFF_QUEUE_CLEAR(&renames->pairs[s]);
3148 }
3149 if (combined.nr) {
3150 int i;
3151 for (i = 0; i < combined.nr; i++)
3152 diff_free_filepair(combined.queue[i]);
3153 free(combined.queue);
3154 }
3155
3156 return clean;
3157 }
3158
3159 /*** Function Grouping: functions related to process_entries() ***/
3160
3161 static int sort_dirs_next_to_their_children(const char *one, const char *two)
3162 {
3163 unsigned char c1, c2;
3164
3165 /*
3166 * Here we only care that entries for directories appear adjacent
3167 * to and before files underneath the directory. We can achieve
3168 * that by pretending to add a trailing slash to every file and
3169 * then sorting. In other words, we do not want the natural
3170 * sorting of
3171 * foo
3172 * foo.txt
3173 * foo/bar
3174 * Instead, we want "foo" to sort as though it were "foo/", so that
3175 * we instead get
3176 * foo.txt
3177 * foo
3178 * foo/bar
3179 * To achieve this, we basically implement our own strcmp, except that
3180 * if we get to the end of either string instead of comparing NUL to
3181 * another character, we compare '/' to it.
3182 *
3183 * If this unusual "sort as though '/' were appended" perplexes
3184 * you, perhaps it will help to note that this is not the final
3185 * sort. write_tree() will sort again without the trailing slash
3186 * magic, but just on paths immediately under a given tree.
3187 *
3188 * The reason to not use df_name_compare directly was that it was
3189 * just too expensive (we don't have the string lengths handy), so
3190 * it was reimplemented.
3191 */
3192
3193 /*
3194 * NOTE: This function will never be called with two equal strings,
3195 * because it is used to sort the keys of a strmap, and strmaps have
3196 * unique keys by construction. That simplifies our c1==c2 handling
3197 * below.
3198 */
3199
3200 while (*one && (*one == *two)) {
3201 one++;
3202 two++;
3203 }
3204
3205 c1 = *one ? *one : '/';
3206 c2 = *two ? *two : '/';
3207
3208 if (c1 == c2) {
3209 /* Getting here means one is a leading directory of the other */
3210 return (*one) ? 1 : -1;
3211 } else
3212 return c1 - c2;
3213 }
3214
3215 static int read_oid_strbuf(struct merge_options *opt,
3216 const struct object_id *oid,
3217 struct strbuf *dst)
3218 {
3219 void *buf;
3220 enum object_type type;
3221 unsigned long size;
3222 buf = read_object_file(oid, &type, &size);
3223 if (!buf)
3224 return err(opt, _("cannot read object %s"), oid_to_hex(oid));
3225 if (type != OBJ_BLOB) {
3226 free(buf);
3227 return err(opt, _("object %s is not a blob"), oid_to_hex(oid));
3228 }
3229 strbuf_attach(dst, buf, size, size + 1);
3230 return 0;
3231 }
3232
3233 static int blob_unchanged(struct merge_options *opt,
3234 const struct version_info *base,
3235 const struct version_info *side,
3236 const char *path)
3237 {
3238 struct strbuf basebuf = STRBUF_INIT;
3239 struct strbuf sidebuf = STRBUF_INIT;
3240 int ret = 0; /* assume changed for safety */
3241 struct index_state *idx = &opt->priv->attr_index;
3242
3243 if (!idx->initialized)
3244 initialize_attr_index(opt);
3245
3246 if (base->mode != side->mode)
3247 return 0;
3248 if (oideq(&base->oid, &side->oid))
3249 return 1;
3250
3251 if (read_oid_strbuf(opt, &base->oid, &basebuf) ||
3252 read_oid_strbuf(opt, &side->oid, &sidebuf))
3253 goto error_return;
3254 /*
3255 * Note: binary | is used so that both renormalizations are
3256 * performed. Comparison can be skipped if both files are
3257 * unchanged since their sha1s have already been compared.
3258 */
3259 if (renormalize_buffer(idx, path, basebuf.buf, basebuf.len, &basebuf) |
3260 renormalize_buffer(idx, path, sidebuf.buf, sidebuf.len, &sidebuf))
3261 ret = (basebuf.len == sidebuf.len &&
3262 !memcmp(basebuf.buf, sidebuf.buf, basebuf.len));
3263
3264 error_return:
3265 strbuf_release(&basebuf);
3266 strbuf_release(&sidebuf);
3267 return ret;
3268 }
3269
3270 struct directory_versions {
3271 /*
3272 * versions: list of (basename -> version_info)
3273 *
3274 * The basenames are in reverse lexicographic order of full pathnames,
3275 * as processed in process_entries(). This puts all entries within
3276 * a directory together, and covers the directory itself after
3277 * everything within it, allowing us to write subtrees before needing
3278 * to record information for the tree itself.
3279 */
3280 struct string_list versions;
3281
3282 /*
3283 * offsets: list of (full relative path directories -> integer offsets)
3284 *
3285 * Since versions contains basenames from files in multiple different
3286 * directories, we need to know which entries in versions correspond
3287 * to which directories. Values of e.g.
3288 * "" 0
3289 * src 2
3290 * src/moduleA 5
3291 * Would mean that entries 0-1 of versions are files in the toplevel
3292 * directory, entries 2-4 are files under src/, and the remaining
3293 * entries starting at index 5 are files under src/moduleA/.
3294 */
3295 struct string_list offsets;
3296
3297 /*
3298 * last_directory: directory that previously processed file found in
3299 *
3300 * last_directory starts NULL, but records the directory in which the
3301 * previous file was found within. As soon as
3302 * directory(current_file) != last_directory
3303 * then we need to start updating accounting in versions & offsets.
3304 * Note that last_directory is always the last path in "offsets" (or
3305 * NULL if "offsets" is empty) so this exists just for quick access.
3306 */
3307 const char *last_directory;
3308
3309 /* last_directory_len: cached computation of strlen(last_directory) */
3310 unsigned last_directory_len;
3311 };
3312
3313 static int tree_entry_order(const void *a_, const void *b_)
3314 {
3315 const struct string_list_item *a = a_;
3316 const struct string_list_item *b = b_;
3317
3318 const struct merged_info *ami = a->util;
3319 const struct merged_info *bmi = b->util;
3320 return base_name_compare(a->string, strlen(a->string), ami->result.mode,
3321 b->string, strlen(b->string), bmi->result.mode);
3322 }
3323
3324 static void write_tree(struct object_id *result_oid,
3325 struct string_list *versions,
3326 unsigned int offset,
3327 size_t hash_size)
3328 {
3329 size_t maxlen = 0, extra;
3330 unsigned int nr;
3331 struct strbuf buf = STRBUF_INIT;
3332 int i;
3333
3334 assert(offset <= versions->nr);
3335 nr = versions->nr - offset;
3336 if (versions->nr)
3337 /* No need for STABLE_QSORT -- filenames must be unique */
3338 QSORT(versions->items + offset, nr, tree_entry_order);
3339
3340 /* Pre-allocate some space in buf */
3341 extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
3342 for (i = 0; i < nr; i++) {
3343 maxlen += strlen(versions->items[offset+i].string) + extra;
3344 }
3345 strbuf_grow(&buf, maxlen);
3346
3347 /* Write each entry out to buf */
3348 for (i = 0; i < nr; i++) {
3349 struct merged_info *mi = versions->items[offset+i].util;
3350 struct version_info *ri = &mi->result;
3351 strbuf_addf(&buf, "%o %s%c",
3352 ri->mode,
3353 versions->items[offset+i].string, '\0');
3354 strbuf_add(&buf, ri->oid.hash, hash_size);
3355 }
3356
3357 /* Write this object file out, and record in result_oid */
3358 write_object_file(buf.buf, buf.len, tree_type, result_oid);
3359 strbuf_release(&buf);
3360 }
3361
3362 static void record_entry_for_tree(struct directory_versions *dir_metadata,
3363 const char *path,
3364 struct merged_info *mi)
3365 {
3366 const char *basename;
3367
3368 if (mi->is_null)
3369 /* nothing to record */
3370 return;
3371
3372 basename = path + mi->basename_offset;
3373 assert(strchr(basename, '/') == NULL);
3374 string_list_append(&dir_metadata->versions,
3375 basename)->util = &mi->result;
3376 }
3377
3378 static void write_completed_directory(struct merge_options *opt,
3379 const char *new_directory_name,
3380 struct directory_versions *info)
3381 {
3382 const char *prev_dir;
3383 struct merged_info *dir_info = NULL;
3384 unsigned int offset;
3385
3386 /*
3387 * Some explanation of info->versions and info->offsets...
3388 *
3389 * process_entries() iterates over all relevant files AND
3390 * directories in reverse lexicographic order, and calls this
3391 * function. Thus, an example of the paths that process_entries()
3392 * could operate on (along with the directories for those paths
3393 * being shown) is:
3394 *
3395 * xtract.c ""
3396 * tokens.txt ""
3397 * src/moduleB/umm.c src/moduleB
3398 * src/moduleB/stuff.h src/moduleB
3399 * src/moduleB/baz.c src/moduleB
3400 * src/moduleB src
3401 * src/moduleA/foo.c src/moduleA
3402 * src/moduleA/bar.c src/moduleA
3403 * src/moduleA src
3404 * src ""
3405 * Makefile ""
3406 *
3407 * info->versions:
3408 *
3409 * always contains the unprocessed entries and their
3410 * version_info information. For example, after the first five
3411 * entries above, info->versions would be:
3412 *
3413 * xtract.c <xtract.c's version_info>
3414 * token.txt <token.txt's version_info>
3415 * umm.c <src/moduleB/umm.c's version_info>
3416 * stuff.h <src/moduleB/stuff.h's version_info>
3417 * baz.c <src/moduleB/baz.c's version_info>
3418 *
3419 * Once a subdirectory is completed we remove the entries in
3420 * that subdirectory from info->versions, writing it as a tree
3421 * (write_tree()). Thus, as soon as we get to src/moduleB,
3422 * info->versions would be updated to
3423 *
3424 * xtract.c <xtract.c's version_info>
3425 * token.txt <token.txt's version_info>
3426 * moduleB <src/moduleB's version_info>
3427 *
3428 * info->offsets:
3429 *
3430 * helps us track which entries in info->versions correspond to
3431 * which directories. When we are N directories deep (e.g. 4
3432 * for src/modA/submod/subdir/), we have up to N+1 unprocessed
3433 * directories (+1 because of toplevel dir). Corresponding to
3434 * the info->versions example above, after processing five entries
3435 * info->offsets will be:
3436 *
3437 * "" 0
3438 * src/moduleB 2
3439 *
3440 * which is used to know that xtract.c & token.txt are from the
3441 * toplevel dirctory, while umm.c & stuff.h & baz.c are from the
3442 * src/moduleB directory. Again, following the example above,
3443 * once we need to process src/moduleB, then info->offsets is
3444 * updated to
3445 *
3446 * "" 0
3447 * src 2
3448 *
3449 * which says that moduleB (and only moduleB so far) is in the
3450 * src directory.
3451 *
3452 * One unique thing to note about info->offsets here is that
3453 * "src" was not added to info->offsets until there was a path
3454 * (a file OR directory) immediately below src/ that got
3455 * processed.
3456 *
3457 * Since process_entry() just appends new entries to info->versions,
3458 * write_completed_directory() only needs to do work if the next path
3459 * is in a directory that is different than the last directory found
3460 * in info->offsets.
3461 */
3462
3463 /*
3464 * If we are working with the same directory as the last entry, there
3465 * is no work to do. (See comments above the directory_name member of
3466 * struct merged_info for why we can use pointer comparison instead of
3467 * strcmp here.)
3468 */
3469 if (new_directory_name == info->last_directory)
3470 return;
3471
3472 /*
3473 * If we are just starting (last_directory is NULL), or last_directory
3474 * is a prefix of the current directory, then we can just update
3475 * info->offsets to record the offset where we started this directory
3476 * and update last_directory to have quick access to it.
3477 */
3478 if (info->last_directory == NULL ||
3479 !strncmp(new_directory_name, info->last_directory,
3480 info->last_directory_len)) {
3481 uintptr_t offset = info->versions.nr;
3482
3483 info->last_directory = new_directory_name;
3484 info->last_directory_len = strlen(info->last_directory);
3485 /*
3486 * Record the offset into info->versions where we will
3487 * start recording basenames of paths found within
3488 * new_directory_name.
3489 */
3490 string_list_append(&info->offsets,
3491 info->last_directory)->util = (void*)offset;
3492 return;
3493 }
3494
3495 /*
3496 * The next entry that will be processed will be within
3497 * new_directory_name. Since at this point we know that
3498 * new_directory_name is within a different directory than
3499 * info->last_directory, we have all entries for info->last_directory
3500 * in info->versions and we need to create a tree object for them.
3501 */
3502 dir_info = strmap_get(&opt->priv->paths, info->last_directory);
3503 assert(dir_info);
3504 offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
3505 if (offset == info->versions.nr) {
3506 /*
3507 * Actually, we don't need to create a tree object in this
3508 * case. Whenever all files within a directory disappear
3509 * during the merge (e.g. unmodified on one side and
3510 * deleted on the other, or files were renamed elsewhere),
3511 * then we get here and the directory itself needs to be
3512 * omitted from its parent tree as well.
3513 */
3514 dir_info->is_null = 1;
3515 } else {
3516 /*
3517 * Write out the tree to the git object directory, and also
3518 * record the mode and oid in dir_info->result.
3519 */
3520 dir_info->is_null = 0;
3521 dir_info->result.mode = S_IFDIR;
3522 write_tree(&dir_info->result.oid, &info->versions, offset,
3523 opt->repo->hash_algo->rawsz);
3524 }
3525
3526 /*
3527 * We've now used several entries from info->versions and one entry
3528 * from info->offsets, so we get rid of those values.
3529 */
3530 info->offsets.nr--;
3531 info->versions.nr = offset;
3532
3533 /*
3534 * Now we've taken care of the completed directory, but we need to
3535 * prepare things since future entries will be in
3536 * new_directory_name. (In particular, process_entry() will be
3537 * appending new entries to info->versions.) So, we need to make
3538 * sure new_directory_name is the last entry in info->offsets.
3539 */
3540 prev_dir = info->offsets.nr == 0 ? NULL :
3541 info->offsets.items[info->offsets.nr-1].string;
3542 if (new_directory_name != prev_dir) {
3543 uintptr_t c = info->versions.nr;
3544 string_list_append(&info->offsets,
3545 new_directory_name)->util = (void*)c;
3546 }
3547
3548 /* And, of course, we need to update last_directory to match. */
3549 info->last_directory = new_directory_name;
3550 info->last_directory_len = strlen(info->last_directory);
3551 }
3552
3553 /* Per entry merge function */
3554 static void process_entry(struct merge_options *opt,
3555 const char *path,
3556 struct conflict_info *ci,
3557 struct directory_versions *dir_metadata)
3558 {
3559 int df_file_index = 0;
3560
3561 VERIFY_CI(ci);
3562 assert(ci->filemask >= 0 && ci->filemask <= 7);
3563 /* ci->match_mask == 7 was handled in collect_merge_info_callback() */
3564 assert(ci->match_mask == 0 || ci->match_mask == 3 ||
3565 ci->match_mask == 5 || ci->match_mask == 6);
3566
3567 if (ci->dirmask) {
3568 record_entry_for_tree(dir_metadata, path, &ci->merged);
3569 if (ci->filemask == 0)
3570 /* nothing else to handle */
3571 return;
3572 assert(ci->df_conflict);
3573 }
3574
3575 if (ci->df_conflict && ci->merged.result.mode == 0) {
3576 int i;
3577
3578 /*
3579 * directory no longer in the way, but we do have a file we
3580 * need to place here so we need to clean away the "directory
3581 * merges to nothing" result.
3582 */
3583 ci->df_conflict = 0;
3584 assert(ci->filemask != 0);
3585 ci->merged.clean = 0;
3586 ci->merged.is_null = 0;
3587 /* and we want to zero out any directory-related entries */
3588 ci->match_mask = (ci->match_mask & ~ci->dirmask);
3589 ci->dirmask = 0;
3590 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3591 if (ci->filemask & (1 << i))
3592 continue;
3593 ci->stages[i].mode = 0;
3594 oidcpy(&ci->stages[i].oid, null_oid());
3595 }
3596 } else if (ci->df_conflict && ci->merged.result.mode != 0) {
3597 /*
3598 * This started out as a D/F conflict, and the entries in
3599 * the competing directory were not removed by the merge as
3600 * evidenced by write_completed_directory() writing a value
3601 * to ci->merged.result.mode.
3602 */
3603 struct conflict_info *new_ci;
3604 const char *branch;
3605 const char *old_path = path;
3606 int i;
3607
3608 assert(ci->merged.result.mode == S_IFDIR);
3609
3610 /*
3611 * If filemask is 1, we can just ignore the file as having
3612 * been deleted on both sides. We do not want to overwrite
3613 * ci->merged.result, since it stores the tree for all the
3614 * files under it.
3615 */
3616 if (ci->filemask == 1) {
3617 ci->filemask = 0;
3618 return;
3619 }
3620
3621 /*
3622 * This file still exists on at least one side, and we want
3623 * the directory to remain here, so we need to move this
3624 * path to some new location.
3625 */
3626 CALLOC_ARRAY(new_ci, 1);
3627 /* We don't really want new_ci->merged.result copied, but it'll
3628 * be overwritten below so it doesn't matter. We also don't
3629 * want any directory mode/oid values copied, but we'll zero
3630 * those out immediately. We do want the rest of ci copied.
3631 */
3632 memcpy(new_ci, ci, sizeof(*ci));
3633 new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
3634 new_ci->dirmask = 0;
3635 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
3636 if (new_ci->filemask & (1 << i))
3637 continue;
3638 /* zero out any entries related to directories */
3639 new_ci->stages[i].mode = 0;
3640 oidcpy(&new_ci->stages[i].oid, null_oid());
3641 }
3642
3643 /*
3644 * Find out which side this file came from; note that we
3645 * cannot just use ci->filemask, because renames could cause
3646 * the filemask to go back to 7. So we use dirmask, then
3647 * pick the opposite side's index.
3648 */
3649 df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
3650 branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
3651 path = unique_path(&opt->priv->paths, path, branch);
3652 strmap_put(&opt->priv->paths, path, new_ci);
3653
3654 path_msg(opt, path, 0,
3655 _("CONFLICT (file/directory): directory in the way "
3656 "of %s from %s; moving it to %s instead."),
3657 old_path, branch, path);
3658
3659 /*
3660 * Zero out the filemask for the old ci. At this point, ci
3661 * was just an entry for a directory, so we don't need to
3662 * do anything more with it.
3663 */
3664 ci->filemask = 0;
3665
3666 /*
3667 * Now note that we're working on the new entry (path was
3668 * updated above.
3669 */
3670 ci = new_ci;
3671 }
3672
3673 /*
3674 * NOTE: Below there is a long switch-like if-elseif-elseif... block
3675 * which the code goes through even for the df_conflict cases
3676 * above.
3677 */
3678 if (ci->match_mask) {
3679 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3680 if (ci->match_mask == 6) {
3681 /* stages[1] == stages[2] */
3682 ci->merged.result.mode = ci->stages[1].mode;
3683 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3684 } else {
3685 /* determine the mask of the side that didn't match */
3686 unsigned int othermask = 7 & ~ci->match_mask;
3687 int side = (othermask == 4) ? 2 : 1;
3688
3689 ci->merged.result.mode = ci->stages[side].mode;
3690 ci->merged.is_null = !ci->merged.result.mode;
3691 if (ci->merged.is_null)
3692 ci->merged.clean = 1;
3693 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3694
3695 assert(othermask == 2 || othermask == 4);
3696 assert(ci->merged.is_null ==
3697 (ci->filemask == ci->match_mask));
3698 }
3699 } else if (ci->filemask >= 6 &&
3700 (S_IFMT & ci->stages[1].mode) !=
3701 (S_IFMT & ci->stages[2].mode)) {
3702 /* Two different items from (file/submodule/symlink) */
3703 if (opt->priv->call_depth) {
3704 /* Just use the version from the merge base */
3705 ci->merged.clean = 0;
3706 oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
3707 ci->merged.result.mode = ci->stages[0].mode;
3708 ci->merged.is_null = (ci->merged.result.mode == 0);
3709 } else {
3710 /* Handle by renaming one or both to separate paths. */
3711 unsigned o_mode = ci->stages[0].mode;
3712 unsigned a_mode = ci->stages[1].mode;
3713 unsigned b_mode = ci->stages[2].mode;
3714 struct conflict_info *new_ci;
3715 const char *a_path = NULL, *b_path = NULL;
3716 int rename_a = 0, rename_b = 0;
3717
3718 new_ci = xmalloc(sizeof(*new_ci));
3719
3720 if (S_ISREG(a_mode))
3721 rename_a = 1;
3722 else if (S_ISREG(b_mode))
3723 rename_b = 1;
3724 else {
3725 rename_a = 1;
3726 rename_b = 1;
3727 }
3728
3729 if (rename_a && rename_b) {
3730 path_msg(opt, path, 0,
3731 _("CONFLICT (distinct types): %s had "
3732 "different types on each side; "
3733 "renamed both of them so each can "
3734 "be recorded somewhere."),
3735 path);
3736 } else {
3737 path_msg(opt, path, 0,
3738 _("CONFLICT (distinct types): %s had "
3739 "different types on each side; "
3740 "renamed one of them so each can be "
3741 "recorded somewhere."),
3742 path);
3743 }
3744
3745 ci->merged.clean = 0;
3746 memcpy(new_ci, ci, sizeof(*new_ci));
3747
3748 /* Put b into new_ci, removing a from stages */
3749 new_ci->merged.result.mode = ci->stages[2].mode;
3750 oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
3751 new_ci->stages[1].mode = 0;
3752 oidcpy(&new_ci->stages[1].oid, null_oid());
3753 new_ci->filemask = 5;
3754 if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
3755 new_ci->stages[0].mode = 0;
3756 oidcpy(&new_ci->stages[0].oid, null_oid());
3757 new_ci->filemask = 4;
3758 }
3759
3760 /* Leave only a in ci, fixing stages. */
3761 ci->merged.result.mode = ci->stages[1].mode;
3762 oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
3763 ci->stages[2].mode = 0;
3764 oidcpy(&ci->stages[2].oid, null_oid());
3765 ci->filemask = 3;
3766 if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
3767 ci->stages[0].mode = 0;
3768 oidcpy(&ci->stages[0].oid, null_oid());
3769 ci->filemask = 2;
3770 }
3771
3772 /* Insert entries into opt->priv_paths */
3773 assert(rename_a || rename_b);
3774 if (rename_a) {
3775 a_path = unique_path(&opt->priv->paths,
3776 path, opt->branch1);
3777 strmap_put(&opt->priv->paths, a_path, ci);
3778 }
3779
3780 if (rename_b)
3781 b_path = unique_path(&opt->priv->paths,
3782 path, opt->branch2);
3783 else
3784 b_path = path;
3785 strmap_put(&opt->priv->paths, b_path, new_ci);
3786
3787 if (rename_a && rename_b) {
3788 strmap_remove(&opt->priv->paths, path, 0);
3789 /*
3790 * We removed path from opt->priv->paths. path
3791 * will also eventually need to be freed, but
3792 * it may still be used by e.g. ci->pathnames.
3793 * So, store it in another string-list for now.
3794 */
3795 string_list_append(&opt->priv->paths_to_free,
3796 path);
3797 }
3798
3799 /*
3800 * Do special handling for b_path since process_entry()
3801 * won't be called on it specially.
3802 */
3803 strmap_put(&opt->priv->conflicted, b_path, new_ci);
3804 record_entry_for_tree(dir_metadata, b_path,
3805 &new_ci->merged);
3806
3807 /*
3808 * Remaining code for processing this entry should
3809 * think in terms of processing a_path.
3810 */
3811 if (a_path)
3812 path = a_path;
3813 }
3814 } else if (ci->filemask >= 6) {
3815 /* Need a two-way or three-way content merge */
3816 struct version_info merged_file;
3817 unsigned clean_merge;
3818 struct version_info *o = &ci->stages[0];
3819 struct version_info *a = &ci->stages[1];
3820 struct version_info *b = &ci->stages[2];
3821
3822 clean_merge = handle_content_merge(opt, path, o, a, b,
3823 ci->pathnames,
3824 opt->priv->call_depth * 2,
3825 &merged_file);
3826 ci->merged.clean = clean_merge &&
3827 !ci->df_conflict && !ci->path_conflict;
3828 ci->merged.result.mode = merged_file.mode;
3829 ci->merged.is_null = (merged_file.mode == 0);
3830 oidcpy(&ci->merged.result.oid, &merged_file.oid);
3831 if (clean_merge && ci->df_conflict) {
3832 assert(df_file_index == 1 || df_file_index == 2);
3833 ci->filemask = 1 << df_file_index;
3834 ci->stages[df_file_index].mode = merged_file.mode;
3835 oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
3836 }
3837 if (!clean_merge) {
3838 const char *reason = _("content");
3839 if (ci->filemask == 6)
3840 reason = _("add/add");
3841 if (S_ISGITLINK(merged_file.mode))
3842 reason = _("submodule");
3843 path_msg(opt, path, 0,
3844 _("CONFLICT (%s): Merge conflict in %s"),
3845 reason, path);
3846 }
3847 } else if (ci->filemask == 3 || ci->filemask == 5) {
3848 /* Modify/delete */
3849 const char *modify_branch, *delete_branch;
3850 int side = (ci->filemask == 5) ? 2 : 1;
3851 int index = opt->priv->call_depth ? 0 : side;
3852
3853 ci->merged.result.mode = ci->stages[index].mode;
3854 oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
3855 ci->merged.clean = 0;
3856
3857 modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
3858 delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
3859
3860 if (opt->renormalize &&
3861 blob_unchanged(opt, &ci->stages[0], &ci->stages[side],
3862 path)) {
3863 ci->merged.is_null = 1;
3864 ci->merged.clean = 1;
3865 assert(!ci->df_conflict && !ci->path_conflict);
3866 } else if (ci->path_conflict &&
3867 oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
3868 /*
3869 * This came from a rename/delete; no action to take,
3870 * but avoid printing "modify/delete" conflict notice
3871 * since the contents were not modified.
3872 */
3873 } else {
3874 path_msg(opt, path, 0,
3875 _("CONFLICT (modify/delete): %s deleted in %s "
3876 "and modified in %s. Version %s of %s left "
3877 "in tree."),
3878 path, delete_branch, modify_branch,
3879 modify_branch, path);
3880 }
3881 } else if (ci->filemask == 2 || ci->filemask == 4) {
3882 /* Added on one side */
3883 int side = (ci->filemask == 4) ? 2 : 1;
3884 ci->merged.result.mode = ci->stages[side].mode;
3885 oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
3886 ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
3887 } else if (ci->filemask == 1) {
3888 /* Deleted on both sides */
3889 ci->merged.is_null = 1;
3890 ci->merged.result.mode = 0;
3891 oidcpy(&ci->merged.result.oid, null_oid());
3892 assert(!ci->df_conflict);
3893 ci->merged.clean = !ci->path_conflict;
3894 }
3895
3896 /*
3897 * If still conflicted, record it separately. This allows us to later
3898 * iterate over just conflicted entries when updating the index instead
3899 * of iterating over all entries.
3900 */
3901 if (!ci->merged.clean)
3902 strmap_put(&opt->priv->conflicted, path, ci);
3903
3904 /* Record metadata for ci->merged in dir_metadata */
3905 record_entry_for_tree(dir_metadata, path, &ci->merged);
3906 }
3907
3908 static void prefetch_for_content_merges(struct merge_options *opt,
3909 struct string_list *plist)
3910 {
3911 struct string_list_item *e;
3912 struct oid_array to_fetch = OID_ARRAY_INIT;
3913
3914 if (opt->repo != the_repository || !has_promisor_remote())
3915 return;
3916
3917 for (e = &plist->items[plist->nr-1]; e >= plist->items; --e) {
3918 /* char *path = e->string; */
3919 struct conflict_info *ci = e->util;
3920 int i;
3921
3922 /* Ignore clean entries */
3923 if (ci->merged.clean)
3924 continue;
3925
3926 /* Ignore entries that don't need a content merge */
3927 if (ci->match_mask || ci->filemask < 6 ||
3928 !S_ISREG(ci->stages[1].mode) ||
3929 !S_ISREG(ci->stages[2].mode) ||
3930 oideq(&ci->stages[1].oid, &ci->stages[2].oid))
3931 continue;
3932
3933 /* Also don't need content merge if base matches either side */
3934 if (ci->filemask == 7 &&
3935 S_ISREG(ci->stages[0].mode) &&
3936 (oideq(&ci->stages[0].oid, &ci->stages[1].oid) ||
3937 oideq(&ci->stages[0].oid, &ci->stages[2].oid)))
3938 continue;
3939
3940 for (i = 0; i < 3; i++) {
3941 unsigned side_mask = (1 << i);
3942 struct version_info *vi = &ci->stages[i];
3943
3944 if ((ci->filemask & side_mask) &&
3945 S_ISREG(vi->mode) &&
3946 oid_object_info_extended(opt->repo, &vi->oid, NULL,
3947 OBJECT_INFO_FOR_PREFETCH))
3948 oid_array_append(&to_fetch, &vi->oid);
3949 }
3950 }
3951
3952 promisor_remote_get_direct(opt->repo, to_fetch.oid, to_fetch.nr);
3953 oid_array_clear(&to_fetch);
3954 }
3955
3956 static void process_entries(struct merge_options *opt,
3957 struct object_id *result_oid)
3958 {
3959 struct hashmap_iter iter;
3960 struct strmap_entry *e;
3961 struct string_list plist = STRING_LIST_INIT_NODUP;
3962 struct string_list_item *entry;
3963 struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
3964 STRING_LIST_INIT_NODUP,
3965 NULL, 0 };
3966
3967 trace2_region_enter("merge", "process_entries setup", opt->repo);
3968 if (strmap_empty(&opt->priv->paths)) {
3969 oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
3970 return;
3971 }
3972
3973 /* Hack to pre-allocate plist to the desired size */
3974 trace2_region_enter("merge", "plist grow", opt->repo);
3975 ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
3976 trace2_region_leave("merge", "plist grow", opt->repo);
3977
3978 /* Put every entry from paths into plist, then sort */
3979 trace2_region_enter("merge", "plist copy", opt->repo);
3980 strmap_for_each_entry(&opt->priv->paths, &iter, e) {
3981 string_list_append(&plist, e->key)->util = e->value;
3982 }
3983 trace2_region_leave("merge", "plist copy", opt->repo);
3984
3985 trace2_region_enter("merge", "plist special sort", opt->repo);
3986 plist.cmp = sort_dirs_next_to_their_children;
3987 string_list_sort(&plist);
3988 trace2_region_leave("merge", "plist special sort", opt->repo);
3989
3990 trace2_region_leave("merge", "process_entries setup", opt->repo);
3991
3992 /*
3993 * Iterate over the items in reverse order, so we can handle paths
3994 * below a directory before needing to handle the directory itself.
3995 *
3996 * This allows us to write subtrees before we need to write trees,
3997 * and it also enables sane handling of directory/file conflicts
3998 * (because it allows us to know whether the directory is still in
3999 * the way when it is time to process the file at the same path).
4000 */
4001 trace2_region_enter("merge", "processing", opt->repo);
4002 prefetch_for_content_merges(opt, &plist);
4003 for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
4004 char *path = entry->string;
4005 /*
4006 * NOTE: mi may actually be a pointer to a conflict_info, but
4007 * we have to check mi->clean first to see if it's safe to
4008 * reassign to such a pointer type.
4009 */
4010 struct merged_info *mi = entry->util;
4011
4012 write_completed_directory(opt, mi->directory_name,
4013 &dir_metadata);
4014 if (mi->clean)
4015 record_entry_for_tree(&dir_metadata, path, mi);
4016 else {
4017 struct conflict_info *ci = (struct conflict_info *)mi;
4018 process_entry(opt, path, ci, &dir_metadata);
4019 }
4020 }
4021 trace2_region_leave("merge", "processing", opt->repo);
4022
4023 trace2_region_enter("merge", "process_entries cleanup", opt->repo);
4024 if (dir_metadata.offsets.nr != 1 ||
4025 (uintptr_t)dir_metadata.offsets.items[0].util != 0) {
4026 printf("dir_metadata.offsets.nr = %d (should be 1)\n",
4027 dir_metadata.offsets.nr);
4028 printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
4029 (unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
4030 fflush(stdout);
4031 BUG("dir_metadata accounting completely off; shouldn't happen");
4032 }
4033 write_tree(result_oid, &dir_metadata.versions, 0,
4034 opt->repo->hash_algo->rawsz);
4035 string_list_clear(&plist, 0);
4036 string_list_clear(&dir_metadata.versions, 0);
4037 string_list_clear(&dir_metadata.offsets, 0);
4038 trace2_region_leave("merge", "process_entries cleanup", opt->repo);
4039 }
4040
4041 /*** Function Grouping: functions related to merge_switch_to_result() ***/
4042
4043 static int checkout(struct merge_options *opt,
4044 struct tree *prev,
4045 struct tree *next)
4046 {
4047 /* Switch the index/working copy from old to new */
4048 int ret;
4049 struct tree_desc trees[2];
4050 struct unpack_trees_options unpack_opts;
4051
4052 memset(&unpack_opts, 0, sizeof(unpack_opts));
4053 unpack_opts.head_idx = -1;
4054 unpack_opts.src_index = opt->repo->index;
4055 unpack_opts.dst_index = opt->repo->index;
4056
4057 setup_unpack_trees_porcelain(&unpack_opts, "merge");
4058
4059 /*
4060 * NOTE: if this were just "git checkout" code, we would probably
4061 * read or refresh the cache and check for a conflicted index, but
4062 * builtin/merge.c or sequencer.c really needs to read the index
4063 * and check for conflicted entries before starting merging for a
4064 * good user experience (no sense waiting for merges/rebases before
4065 * erroring out), so there's no reason to duplicate that work here.
4066 */
4067
4068 /* 2-way merge to the new branch */
4069 unpack_opts.update = 1;
4070 unpack_opts.merge = 1;
4071 unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
4072 unpack_opts.verbose_update = (opt->verbosity > 2);
4073 unpack_opts.fn = twoway_merge;
4074 if (1/* FIXME: opts->overwrite_ignore*/) {
4075 CALLOC_ARRAY(unpack_opts.dir, 1);
4076 unpack_opts.dir->flags |= DIR_SHOW_IGNORED;
4077 setup_standard_excludes(unpack_opts.dir);
4078 }
4079 parse_tree(prev);
4080 init_tree_desc(&trees[0], prev->buffer, prev->size);
4081 parse_tree(next);
4082 init_tree_desc(&trees[1], next->buffer, next->size);
4083
4084 ret = unpack_trees(2, trees, &unpack_opts);
4085 clear_unpack_trees_porcelain(&unpack_opts);
4086 dir_clear(unpack_opts.dir);
4087 FREE_AND_NULL(unpack_opts.dir);
4088 return ret;
4089 }
4090
4091 static int record_conflicted_index_entries(struct merge_options *opt)
4092 {
4093 struct hashmap_iter iter;
4094 struct strmap_entry *e;
4095 struct index_state *index = opt->repo->index;
4096 struct checkout state = CHECKOUT_INIT;
4097 int errs = 0;
4098 int original_cache_nr;
4099
4100 if (strmap_empty(&opt->priv->conflicted))
4101 return 0;
4102
4103 /* If any entries have skip_worktree set, we'll have to check 'em out */
4104 state.force = 1;
4105 state.quiet = 1;
4106 state.refresh_cache = 1;
4107 state.istate = index;
4108 original_cache_nr = index->cache_nr;
4109
4110 /* Put every entry from paths into plist, then sort */
4111 strmap_for_each_entry(&opt->priv->conflicted, &iter, e) {
4112 const char *path = e->key;
4113 struct conflict_info *ci = e->value;
4114 int pos;
4115 struct cache_entry *ce;
4116 int i;
4117
4118 VERIFY_CI(ci);
4119
4120 /*
4121 * The index will already have a stage=0 entry for this path,
4122 * because we created an as-merged-as-possible version of the
4123 * file and checkout() moved the working copy and index over
4124 * to that version.
4125 *
4126 * However, previous iterations through this loop will have
4127 * added unstaged entries to the end of the cache which
4128 * ignore the standard alphabetical ordering of cache
4129 * entries and break invariants needed for index_name_pos()
4130 * to work. However, we know the entry we want is before
4131 * those appended cache entries, so do a temporary swap on
4132 * cache_nr to only look through entries of interest.
4133 */
4134 SWAP(index->cache_nr, original_cache_nr);
4135 pos = index_name_pos(index, path, strlen(path));
4136 SWAP(index->cache_nr, original_cache_nr);
4137 if (pos < 0) {
4138 if (ci->filemask != 1)
4139 BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
4140 cache_tree_invalidate_path(index, path);
4141 } else {
4142 ce = index->cache[pos];
4143
4144 /*
4145 * Clean paths with CE_SKIP_WORKTREE set will not be
4146 * written to the working tree by the unpack_trees()
4147 * call in checkout(). Our conflicted entries would
4148 * have appeared clean to that code since we ignored
4149 * the higher order stages. Thus, we need override
4150 * the CE_SKIP_WORKTREE bit and manually write those
4151 * files to the working disk here.
4152 */
4153 if (ce_skip_worktree(ce)) {
4154 struct stat st;
4155
4156 if (!lstat(path, &st)) {
4157 char *new_name = unique_path(&opt->priv->paths,
4158 path,
4159 "cruft");
4160
4161 path_msg(opt, path, 1,
4162 _("Note: %s not up to date and in way of checking out conflicted version; old copy renamed to %s"),
4163 path, new_name);
4164 errs |= rename(path, new_name);
4165 free(new_name);
4166 }
4167 errs |= checkout_entry(ce, &state, NULL, NULL);
4168 }
4169
4170 /*
4171 * Mark this cache entry for removal and instead add
4172 * new stage>0 entries corresponding to the
4173 * conflicts. If there are many conflicted entries, we
4174 * want to avoid memmove'ing O(NM) entries by
4175 * inserting the new entries one at a time. So,
4176 * instead, we just add the new cache entries to the
4177 * end (ignoring normal index requirements on sort
4178 * order) and sort the index once we're all done.
4179 */
4180 ce->ce_flags |= CE_REMOVE;
4181 }
4182
4183 for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
4184 struct version_info *vi;
4185 if (!(ci->filemask & (1ul << i)))
4186 continue;
4187 vi = &ci->stages[i];
4188 ce = make_cache_entry(index, vi->mode, &vi->oid,
4189 path, i+1, 0);
4190 add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
4191 }
4192 }
4193
4194 /*
4195 * Remove the unused cache entries (and invalidate the relevant
4196 * cache-trees), then sort the index entries to get the conflicted
4197 * entries we added to the end into their right locations.
4198 */
4199 remove_marked_cache_entries(index, 1);
4200 /*
4201 * No need for STABLE_QSORT -- cmp_cache_name_compare sorts primarily
4202 * on filename and secondarily on stage, and (name, stage #) are a
4203 * unique tuple.
4204 */
4205 QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
4206
4207 return errs;
4208 }
4209
4210 void merge_switch_to_result(struct merge_options *opt,
4211 struct tree *head,
4212 struct merge_result *result,
4213 int update_worktree_and_index,
4214 int display_update_msgs)
4215 {
4216 assert(opt->priv == NULL);
4217 if (result->clean >= 0 && update_worktree_and_index) {
4218 const char *filename;
4219 FILE *fp;
4220
4221 trace2_region_enter("merge", "checkout", opt->repo);
4222 if (checkout(opt, head, result->tree)) {
4223 /* failure to function */
4224 result->clean = -1;
4225 return;
4226 }
4227 trace2_region_leave("merge", "checkout", opt->repo);
4228
4229 trace2_region_enter("merge", "record_conflicted", opt->repo);
4230 opt->priv = result->priv;
4231 if (record_conflicted_index_entries(opt)) {
4232 /* failure to function */
4233 opt->priv = NULL;
4234 result->clean = -1;
4235 return;
4236 }
4237 opt->priv = NULL;
4238 trace2_region_leave("merge", "record_conflicted", opt->repo);
4239
4240 trace2_region_enter("merge", "write_auto_merge", opt->repo);
4241 filename = git_path_auto_merge(opt->repo);
4242 fp = xfopen(filename, "w");
4243 fprintf(fp, "%s\n", oid_to_hex(&result->tree->object.oid));
4244 fclose(fp);
4245 trace2_region_leave("merge", "write_auto_merge", opt->repo);
4246 }
4247
4248 if (display_update_msgs) {
4249 struct merge_options_internal *opti = result->priv;
4250 struct hashmap_iter iter;
4251 struct strmap_entry *e;
4252 struct string_list olist = STRING_LIST_INIT_NODUP;
4253 int i;
4254
4255 trace2_region_enter("merge", "display messages", opt->repo);
4256
4257 /* Hack to pre-allocate olist to the desired size */
4258 ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
4259 olist.alloc);
4260
4261 /* Put every entry from output into olist, then sort */
4262 strmap_for_each_entry(&opti->output, &iter, e) {
4263 string_list_append(&olist, e->key)->util = e->value;
4264 }
4265 string_list_sort(&olist);
4266
4267 /* Iterate over the items, printing them */
4268 for (i = 0; i < olist.nr; ++i) {
4269 struct strbuf *sb = olist.items[i].util;
4270
4271 printf("%s", sb->buf);
4272 }
4273 string_list_clear(&olist, 0);
4274
4275 /* Also include needed rename limit adjustment now */
4276 diff_warn_rename_limit("merge.renamelimit",
4277 opti->renames.needed_limit, 0);
4278
4279 trace2_region_leave("merge", "display messages", opt->repo);
4280 }
4281
4282 merge_finalize(opt, result);
4283 }
4284
4285 void merge_finalize(struct merge_options *opt,
4286 struct merge_result *result)
4287 {
4288 struct merge_options_internal *opti = result->priv;
4289
4290 if (opt->renormalize)
4291 git_attr_set_direction(GIT_ATTR_CHECKIN);
4292 assert(opt->priv == NULL);
4293
4294 clear_or_reinit_internal_opts(opti, 0);
4295 FREE_AND_NULL(opti);
4296 }
4297
4298 /*** Function Grouping: helper functions for merge_incore_*() ***/
4299
4300 static struct tree *shift_tree_object(struct repository *repo,
4301 struct tree *one, struct tree *two,
4302 const char *subtree_shift)
4303 {
4304 struct object_id shifted;
4305
4306 if (!*subtree_shift) {
4307 shift_tree(repo, &one->object.oid, &two->object.oid, &shifted, 0);
4308 } else {
4309 shift_tree_by(repo, &one->object.oid, &two->object.oid, &shifted,
4310 subtree_shift);
4311 }
4312 if (oideq(&two->object.oid, &shifted))
4313 return two;
4314 return lookup_tree(repo, &shifted);
4315 }
4316
4317 static inline void set_commit_tree(struct commit *c, struct tree *t)
4318 {
4319 c->maybe_tree = t;
4320 }
4321
4322 static struct commit *make_virtual_commit(struct repository *repo,
4323 struct tree *tree,
4324 const char *comment)
4325 {
4326 struct commit *commit = alloc_commit_node(repo);
4327
4328 set_merge_remote_desc(commit, comment, (struct object *)commit);
4329 set_commit_tree(commit, tree);
4330 commit->object.parsed = 1;
4331 return commit;
4332 }
4333
4334 static void merge_start(struct merge_options *opt, struct merge_result *result)
4335 {
4336 struct rename_info *renames;
4337 int i;
4338
4339 /* Sanity checks on opt */
4340 trace2_region_enter("merge", "sanity checks", opt->repo);
4341 assert(opt->repo);
4342
4343 assert(opt->branch1 && opt->branch2);
4344
4345 assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
4346 opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
4347 assert(opt->rename_limit >= -1);
4348 assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
4349 assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
4350
4351 assert(opt->xdl_opts >= 0);
4352 assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
4353 opt->recursive_variant <= MERGE_VARIANT_THEIRS);
4354
4355 /*
4356 * detect_renames, verbosity, buffer_output, and obuf are ignored
4357 * fields that were used by "recursive" rather than "ort" -- but
4358 * sanity check them anyway.
4359 */
4360 assert(opt->detect_renames >= -1 &&
4361 opt->detect_renames <= DIFF_DETECT_COPY);
4362 assert(opt->verbosity >= 0 && opt->verbosity <= 5);
4363 assert(opt->buffer_output <= 2);
4364 assert(opt->obuf.len == 0);
4365
4366 assert(opt->priv == NULL);
4367 if (result->_properly_initialized != 0 &&
4368 result->_properly_initialized != RESULT_INITIALIZED)
4369 BUG("struct merge_result passed to merge_incore_*recursive() must be zeroed or filled with values from a previous run");
4370 assert(!!result->priv == !!result->_properly_initialized);
4371 if (result->priv) {
4372 opt->priv = result->priv;
4373 result->priv = NULL;
4374 /*
4375 * opt->priv non-NULL means we had results from a previous
4376 * run; do a few sanity checks that user didn't mess with
4377 * it in an obvious fashion.
4378 */
4379 assert(opt->priv->call_depth == 0);
4380 assert(!opt->priv->toplevel_dir ||
4381 0 == strlen(opt->priv->toplevel_dir));
4382 }
4383 trace2_region_leave("merge", "sanity checks", opt->repo);
4384
4385 /* Default to histogram diff. Actually, just hardcode it...for now. */
4386 opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
4387
4388 /* Handle attr direction stuff for renormalization */
4389 if (opt->renormalize)
4390 git_attr_set_direction(GIT_ATTR_CHECKOUT);
4391
4392 /* Initialization of opt->priv, our internal merge data */
4393 trace2_region_enter("merge", "allocate/init", opt->repo);
4394 if (opt->priv) {
4395 clear_or_reinit_internal_opts(opt->priv, 1);
4396 trace2_region_leave("merge", "allocate/init", opt->repo);
4397 return;
4398 }
4399 opt->priv = xcalloc(1, sizeof(*opt->priv));
4400
4401 /* Initialization of various renames fields */
4402 renames = &opt->priv->renames;
4403 #if USE_MEMORY_POOL
4404 mem_pool_init(&opt->priv->internal_pool, 0);
4405 opt->priv->pool = &opt->priv->internal_pool;
4406 #else
4407 opt->priv->pool = NULL;
4408 #endif
4409 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4410 strintmap_init_with_options(&renames->dirs_removed[i],
4411 NOT_RELEVANT, NULL, 0);
4412 strmap_init_with_options(&renames->dir_rename_count[i],
4413 NULL, 1);
4414 strmap_init_with_options(&renames->dir_renames[i],
4415 NULL, 0);
4416 /*
4417 * relevant_sources uses -1 for the default, because we need
4418 * to be able to distinguish not-in-strintmap from valid
4419 * relevant_source values from enum file_rename_relevance.
4420 * In particular, possibly_cache_new_pair() expects a negative
4421 * value for not-found entries.
4422 */
4423 strintmap_init_with_options(&renames->relevant_sources[i],
4424 -1 /* explicitly invalid */,
4425 NULL, 0);
4426 strmap_init_with_options(&renames->cached_pairs[i],
4427 NULL, 1);
4428 strset_init_with_options(&renames->cached_irrelevant[i],
4429 NULL, 1);
4430 strset_init_with_options(&renames->cached_target_names[i],
4431 NULL, 0);
4432 }
4433 for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
4434 strintmap_init_with_options(&renames->deferred[i].possible_trivial_merges,
4435 0, NULL, 0);
4436 strset_init_with_options(&renames->deferred[i].target_dirs,
4437 NULL, 1);
4438 renames->deferred[i].trivial_merges_okay = 1; /* 1 == maybe */
4439 }
4440
4441 /*
4442 * Although we initialize opt->priv->paths with strdup_strings=0,
4443 * that's just to avoid making yet another copy of an allocated
4444 * string. Putting the entry into paths means we are taking
4445 * ownership, so we will later free it. paths_to_free is similar.
4446 *
4447 * In contrast, conflicted just has a subset of keys from paths, so
4448 * we don't want to free those (it'd be a duplicate free).
4449 */
4450 strmap_init_with_options(&opt->priv->paths, NULL, 0);
4451 strmap_init_with_options(&opt->priv->conflicted, NULL, 0);
4452 string_list_init_nodup(&opt->priv->paths_to_free);
4453
4454 /*
4455 * keys & strbufs in output will sometimes need to outlive "paths",
4456 * so it will have a copy of relevant keys. It's probably a small
4457 * subset of the overall paths that have special output.
4458 */
4459 strmap_init(&opt->priv->output);
4460
4461 trace2_region_leave("merge", "allocate/init", opt->repo);
4462 }
4463
4464 static void merge_check_renames_reusable(struct merge_options *opt,
4465 struct merge_result *result,
4466 struct tree *merge_base,
4467 struct tree *side1,
4468 struct tree *side2)
4469 {
4470 struct rename_info *renames;
4471 struct tree **merge_trees;
4472 struct merge_options_internal *opti = result->priv;
4473
4474 if (!opti)
4475 return;
4476
4477 renames = &opti->renames;
4478 merge_trees = renames->merge_trees;
4479
4480 /*
4481 * Handle case where previous merge operation did not want cache to
4482 * take effect, e.g. because rename/rename(1to1) makes it invalid.
4483 */
4484 if (!merge_trees[0]) {
4485 assert(!merge_trees[0] && !merge_trees[1] && !merge_trees[2]);
4486 renames->cached_pairs_valid_side = 0; /* neither side valid */
4487 return;
4488 }
4489
4490 /*
4491 * Handle other cases; note that merge_trees[0..2] will only
4492 * be NULL if opti is, or if all three were manually set to
4493 * NULL by e.g. rename/rename(1to1) handling.
4494 */
4495 assert(merge_trees[0] && merge_trees[1] && merge_trees[2]);
4496
4497 /* Check if we meet a condition for re-using cached_pairs */
4498 if (oideq(&merge_base->object.oid, &merge_trees[2]->object.oid) &&
4499 oideq(&side1->object.oid, &result->tree->object.oid))
4500 renames->cached_pairs_valid_side = MERGE_SIDE1;
4501 else if (oideq(&merge_base->object.oid, &merge_trees[1]->object.oid) &&
4502 oideq(&side2->object.oid, &result->tree->object.oid))
4503 renames->cached_pairs_valid_side = MERGE_SIDE2;
4504 else
4505 renames->cached_pairs_valid_side = 0; /* neither side valid */
4506 }
4507
4508 /*** Function Grouping: merge_incore_*() and their internal variants ***/
4509
4510 /*
4511 * Originally from merge_trees_internal(); heavily adapted, though.
4512 */
4513 static void merge_ort_nonrecursive_internal(struct merge_options *opt,
4514 struct tree *merge_base,
4515 struct tree *side1,
4516 struct tree *side2,
4517 struct merge_result *result)
4518 {
4519 struct object_id working_tree_oid;
4520
4521 if (opt->subtree_shift) {
4522 side2 = shift_tree_object(opt->repo, side1, side2,
4523 opt->subtree_shift);
4524 merge_base = shift_tree_object(opt->repo, side1, merge_base,
4525 opt->subtree_shift);
4526 }
4527
4528 redo:
4529 trace2_region_enter("merge", "collect_merge_info", opt->repo);
4530 if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
4531 /*
4532 * TRANSLATORS: The %s arguments are: 1) tree hash of a merge
4533 * base, and 2-3) the trees for the two trees we're merging.
4534 */
4535 err(opt, _("collecting merge info failed for trees %s, %s, %s"),
4536 oid_to_hex(&merge_base->object.oid),
4537 oid_to_hex(&side1->object.oid),
4538 oid_to_hex(&side2->object.oid));
4539 result->clean = -1;
4540 return;
4541 }
4542 trace2_region_leave("merge", "collect_merge_info", opt->repo);
4543
4544 trace2_region_enter("merge", "renames", opt->repo);
4545 result->clean = detect_and_process_renames(opt, merge_base,
4546 side1, side2);
4547 trace2_region_leave("merge", "renames", opt->repo);
4548 if (opt->priv->renames.redo_after_renames == 2) {
4549 trace2_region_enter("merge", "reset_maps", opt->repo);
4550 clear_or_reinit_internal_opts(opt->priv, 1);
4551 trace2_region_leave("merge", "reset_maps", opt->repo);
4552 goto redo;
4553 }
4554
4555 trace2_region_enter("merge", "process_entries", opt->repo);
4556 process_entries(opt, &working_tree_oid);
4557 trace2_region_leave("merge", "process_entries", opt->repo);
4558
4559 /* Set return values */
4560 result->tree = parse_tree_indirect(&working_tree_oid);
4561 /* existence of conflicted entries implies unclean */
4562 result->clean &= strmap_empty(&opt->priv->conflicted);
4563 if (!opt->priv->call_depth) {
4564 result->priv = opt->priv;
4565 result->_properly_initialized = RESULT_INITIALIZED;
4566 opt->priv = NULL;
4567 }
4568 }
4569
4570 /*
4571 * Originally from merge_recursive_internal(); somewhat adapted, though.
4572 */
4573 static void merge_ort_internal(struct merge_options *opt,
4574 struct commit_list *merge_bases,
4575 struct commit *h1,
4576 struct commit *h2,
4577 struct merge_result *result)
4578 {
4579 struct commit_list *iter;
4580 struct commit *merged_merge_bases;
4581 const char *ancestor_name;
4582 struct strbuf merge_base_abbrev = STRBUF_INIT;
4583
4584 if (!merge_bases) {
4585 merge_bases = get_merge_bases(h1, h2);
4586 /* See merge-ort.h:merge_incore_recursive() declaration NOTE */
4587 merge_bases = reverse_commit_list(merge_bases);
4588 }
4589
4590 merged_merge_bases = pop_commit(&merge_bases);
4591 if (merged_merge_bases == NULL) {
4592 /* if there is no common ancestor, use an empty tree */
4593 struct tree *tree;
4594
4595 tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
4596 merged_merge_bases = make_virtual_commit(opt->repo, tree,
4597 "ancestor");
4598 ancestor_name = "empty tree";
4599 } else if (merge_bases) {
4600 ancestor_name = "merged common ancestors";
4601 } else {
4602 strbuf_add_unique_abbrev(&merge_base_abbrev,
4603 &merged_merge_bases->object.oid,
4604 DEFAULT_ABBREV);
4605 ancestor_name = merge_base_abbrev.buf;
4606 }
4607
4608 for (iter = merge_bases; iter; iter = iter->next) {
4609 const char *saved_b1, *saved_b2;
4610 struct commit *prev = merged_merge_bases;
4611
4612 opt->priv->call_depth++;
4613 /*
4614 * When the merge fails, the result contains files
4615 * with conflict markers. The cleanness flag is
4616 * ignored (unless indicating an error), it was never
4617 * actually used, as result of merge_trees has always
4618 * overwritten it: the committed "conflicts" were
4619 * already resolved.
4620 */
4621 saved_b1 = opt->branch1;
4622 saved_b2 = opt->branch2;
4623 opt->branch1 = "Temporary merge branch 1";
4624 opt->branch2 = "Temporary merge branch 2";
4625 merge_ort_internal(opt, NULL, prev, iter->item, result);
4626 if (result->clean < 0)
4627 return;
4628 opt->branch1 = saved_b1;
4629 opt->branch2 = saved_b2;
4630 opt->priv->call_depth--;
4631
4632 merged_merge_bases = make_virtual_commit(opt->repo,
4633 result->tree,
4634 "merged tree");
4635 commit_list_insert(prev, &merged_merge_bases->parents);
4636 commit_list_insert(iter->item,
4637 &merged_merge_bases->parents->next);
4638
4639 clear_or_reinit_internal_opts(opt->priv, 1);
4640 }
4641
4642 opt->ancestor = ancestor_name;
4643 merge_ort_nonrecursive_internal(opt,
4644 repo_get_commit_tree(opt->repo,
4645 merged_merge_bases),
4646 repo_get_commit_tree(opt->repo, h1),
4647 repo_get_commit_tree(opt->repo, h2),
4648 result);
4649 strbuf_release(&merge_base_abbrev);
4650 opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
4651 }
4652
4653 void merge_incore_nonrecursive(struct merge_options *opt,
4654 struct tree *merge_base,
4655 struct tree *side1,
4656 struct tree *side2,
4657 struct merge_result *result)
4658 {
4659 trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
4660
4661 trace2_region_enter("merge", "merge_start", opt->repo);
4662 assert(opt->ancestor != NULL);
4663 merge_check_renames_reusable(opt, result, merge_base, side1, side2);
4664 merge_start(opt, result);
4665 /*
4666 * Record the trees used in this merge, so if there's a next merge in
4667 * a cherry-pick or rebase sequence it might be able to take advantage
4668 * of the cached_pairs in that next merge.
4669 */
4670 opt->priv->renames.merge_trees[0] = merge_base;
4671 opt->priv->renames.merge_trees[1] = side1;
4672 opt->priv->renames.merge_trees[2] = side2;
4673 trace2_region_leave("merge", "merge_start", opt->repo);
4674
4675 merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
4676 trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
4677 }
4678
4679 void merge_incore_recursive(struct merge_options *opt,
4680 struct commit_list *merge_bases,
4681 struct commit *side1,
4682 struct commit *side2,
4683 struct merge_result *result)
4684 {
4685 trace2_region_enter("merge", "incore_recursive", opt->repo);
4686
4687 /* We set the ancestor label based on the merge_bases */
4688 assert(opt->ancestor == NULL);
4689
4690 trace2_region_enter("merge", "merge_start", opt->repo);
4691 merge_start(opt, result);
4692 trace2_region_leave("merge", "merge_start", opt->repo);
4693
4694 merge_ort_internal(opt, merge_bases, side1, side2, result);
4695 trace2_region_leave("merge", "incore_recursive", opt->repo);
4696 }