]> git.ipfire.org Git - thirdparty/qemu.git/blob - migration/savevm.c
sysemu: Split sysemu/runstate.h off sysemu/sysemu.h
[thirdparty/qemu.git] / migration / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2009-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
28
29 #include "qemu/osdep.h"
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #include "net/net.h"
33 #include "migration.h"
34 #include "migration/snapshot.h"
35 #include "migration/vmstate.h"
36 #include "migration/misc.h"
37 #include "migration/register.h"
38 #include "migration/global_state.h"
39 #include "ram.h"
40 #include "qemu-file-channel.h"
41 #include "qemu-file.h"
42 #include "savevm.h"
43 #include "postcopy-ram.h"
44 #include "qapi/error.h"
45 #include "qapi/qapi-commands-migration.h"
46 #include "qapi/qapi-commands-misc.h"
47 #include "qapi/qmp/qerror.h"
48 #include "qemu/error-report.h"
49 #include "sysemu/cpus.h"
50 #include "exec/memory.h"
51 #include "exec/target_page.h"
52 #include "trace.h"
53 #include "qemu/iov.h"
54 #include "qemu/main-loop.h"
55 #include "block/snapshot.h"
56 #include "qemu/cutils.h"
57 #include "io/channel-buffer.h"
58 #include "io/channel-file.h"
59 #include "sysemu/replay.h"
60 #include "sysemu/runstate.h"
61 #include "sysemu/sysemu.h"
62 #include "qjson.h"
63 #include "migration/colo.h"
64 #include "qemu/bitmap.h"
65 #include "net/announce.h"
66
67 const unsigned int postcopy_ram_discard_version = 0;
68
69 /* Subcommands for QEMU_VM_COMMAND */
70 enum qemu_vm_cmd {
71 MIG_CMD_INVALID = 0, /* Must be 0 */
72 MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */
73 MIG_CMD_PING, /* Request a PONG on the RP */
74
75 MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just
76 warn we might want to do PC */
77 MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming
78 pages as it's running. */
79 MIG_CMD_POSTCOPY_RUN, /* Start execution */
80
81 MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that
82 were previously sent during
83 precopy but are dirty. */
84 MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */
85 MIG_CMD_ENABLE_COLO, /* Enable COLO */
86 MIG_CMD_POSTCOPY_RESUME, /* resume postcopy on dest */
87 MIG_CMD_RECV_BITMAP, /* Request for recved bitmap on dst */
88 MIG_CMD_MAX
89 };
90
91 #define MAX_VM_CMD_PACKAGED_SIZE UINT32_MAX
92 static struct mig_cmd_args {
93 ssize_t len; /* -1 = variable */
94 const char *name;
95 } mig_cmd_args[] = {
96 [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" },
97 [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" },
98 [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" },
99 [MIG_CMD_POSTCOPY_ADVISE] = { .len = -1, .name = "POSTCOPY_ADVISE" },
100 [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" },
101 [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" },
102 [MIG_CMD_POSTCOPY_RAM_DISCARD] = {
103 .len = -1, .name = "POSTCOPY_RAM_DISCARD" },
104 [MIG_CMD_POSTCOPY_RESUME] = { .len = 0, .name = "POSTCOPY_RESUME" },
105 [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" },
106 [MIG_CMD_RECV_BITMAP] = { .len = -1, .name = "RECV_BITMAP" },
107 [MIG_CMD_MAX] = { .len = -1, .name = "MAX" },
108 };
109
110 /* Note for MIG_CMD_POSTCOPY_ADVISE:
111 * The format of arguments is depending on postcopy mode:
112 * - postcopy RAM only
113 * uint64_t host page size
114 * uint64_t taget page size
115 *
116 * - postcopy RAM and postcopy dirty bitmaps
117 * format is the same as for postcopy RAM only
118 *
119 * - postcopy dirty bitmaps only
120 * Nothing. Command length field is 0.
121 *
122 * Be careful: adding a new postcopy entity with some other parameters should
123 * not break format self-description ability. Good way is to introduce some
124 * generic extendable format with an exception for two old entities.
125 */
126
127 /***********************************************************/
128 /* savevm/loadvm support */
129
130 static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt,
131 int64_t pos)
132 {
133 int ret;
134 QEMUIOVector qiov;
135
136 qemu_iovec_init_external(&qiov, iov, iovcnt);
137 ret = bdrv_writev_vmstate(opaque, &qiov, pos);
138 if (ret < 0) {
139 return ret;
140 }
141
142 return qiov.size;
143 }
144
145 static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos,
146 size_t size)
147 {
148 return bdrv_load_vmstate(opaque, buf, pos, size);
149 }
150
151 static int bdrv_fclose(void *opaque)
152 {
153 return bdrv_flush(opaque);
154 }
155
156 static const QEMUFileOps bdrv_read_ops = {
157 .get_buffer = block_get_buffer,
158 .close = bdrv_fclose
159 };
160
161 static const QEMUFileOps bdrv_write_ops = {
162 .writev_buffer = block_writev_buffer,
163 .close = bdrv_fclose
164 };
165
166 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
167 {
168 if (is_writable) {
169 return qemu_fopen_ops(bs, &bdrv_write_ops);
170 }
171 return qemu_fopen_ops(bs, &bdrv_read_ops);
172 }
173
174
175 /* QEMUFile timer support.
176 * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c
177 */
178
179 void timer_put(QEMUFile *f, QEMUTimer *ts)
180 {
181 uint64_t expire_time;
182
183 expire_time = timer_expire_time_ns(ts);
184 qemu_put_be64(f, expire_time);
185 }
186
187 void timer_get(QEMUFile *f, QEMUTimer *ts)
188 {
189 uint64_t expire_time;
190
191 expire_time = qemu_get_be64(f);
192 if (expire_time != -1) {
193 timer_mod_ns(ts, expire_time);
194 } else {
195 timer_del(ts);
196 }
197 }
198
199
200 /* VMState timer support.
201 * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c
202 */
203
204 static int get_timer(QEMUFile *f, void *pv, size_t size,
205 const VMStateField *field)
206 {
207 QEMUTimer *v = pv;
208 timer_get(f, v);
209 return 0;
210 }
211
212 static int put_timer(QEMUFile *f, void *pv, size_t size,
213 const VMStateField *field, QJSON *vmdesc)
214 {
215 QEMUTimer *v = pv;
216 timer_put(f, v);
217
218 return 0;
219 }
220
221 const VMStateInfo vmstate_info_timer = {
222 .name = "timer",
223 .get = get_timer,
224 .put = put_timer,
225 };
226
227
228 typedef struct CompatEntry {
229 char idstr[256];
230 int instance_id;
231 } CompatEntry;
232
233 typedef struct SaveStateEntry {
234 QTAILQ_ENTRY(SaveStateEntry) entry;
235 char idstr[256];
236 int instance_id;
237 int alias_id;
238 int version_id;
239 /* version id read from the stream */
240 int load_version_id;
241 int section_id;
242 /* section id read from the stream */
243 int load_section_id;
244 const SaveVMHandlers *ops;
245 const VMStateDescription *vmsd;
246 void *opaque;
247 CompatEntry *compat;
248 int is_ram;
249 } SaveStateEntry;
250
251 typedef struct SaveState {
252 QTAILQ_HEAD(, SaveStateEntry) handlers;
253 int global_section_id;
254 uint32_t len;
255 const char *name;
256 uint32_t target_page_bits;
257 uint32_t caps_count;
258 MigrationCapability *capabilities;
259 } SaveState;
260
261 static SaveState savevm_state = {
262 .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers),
263 .global_section_id = 0,
264 };
265
266 static bool should_validate_capability(int capability)
267 {
268 assert(capability >= 0 && capability < MIGRATION_CAPABILITY__MAX);
269 /* Validate only new capabilities to keep compatibility. */
270 switch (capability) {
271 case MIGRATION_CAPABILITY_X_IGNORE_SHARED:
272 return true;
273 default:
274 return false;
275 }
276 }
277
278 static uint32_t get_validatable_capabilities_count(void)
279 {
280 MigrationState *s = migrate_get_current();
281 uint32_t result = 0;
282 int i;
283 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
284 if (should_validate_capability(i) && s->enabled_capabilities[i]) {
285 result++;
286 }
287 }
288 return result;
289 }
290
291 static int configuration_pre_save(void *opaque)
292 {
293 SaveState *state = opaque;
294 const char *current_name = MACHINE_GET_CLASS(current_machine)->name;
295 MigrationState *s = migrate_get_current();
296 int i, j;
297
298 state->len = strlen(current_name);
299 state->name = current_name;
300 state->target_page_bits = qemu_target_page_bits();
301
302 state->caps_count = get_validatable_capabilities_count();
303 state->capabilities = g_renew(MigrationCapability, state->capabilities,
304 state->caps_count);
305 for (i = j = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
306 if (should_validate_capability(i) && s->enabled_capabilities[i]) {
307 state->capabilities[j++] = i;
308 }
309 }
310
311 return 0;
312 }
313
314 static int configuration_pre_load(void *opaque)
315 {
316 SaveState *state = opaque;
317
318 /* If there is no target-page-bits subsection it means the source
319 * predates the variable-target-page-bits support and is using the
320 * minimum possible value for this CPU.
321 */
322 state->target_page_bits = qemu_target_page_bits_min();
323 return 0;
324 }
325
326 static bool configuration_validate_capabilities(SaveState *state)
327 {
328 bool ret = true;
329 MigrationState *s = migrate_get_current();
330 unsigned long *source_caps_bm;
331 int i;
332
333 source_caps_bm = bitmap_new(MIGRATION_CAPABILITY__MAX);
334 for (i = 0; i < state->caps_count; i++) {
335 MigrationCapability capability = state->capabilities[i];
336 set_bit(capability, source_caps_bm);
337 }
338
339 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
340 bool source_state, target_state;
341 if (!should_validate_capability(i)) {
342 continue;
343 }
344 source_state = test_bit(i, source_caps_bm);
345 target_state = s->enabled_capabilities[i];
346 if (source_state != target_state) {
347 error_report("Capability %s is %s, but received capability is %s",
348 MigrationCapability_str(i),
349 target_state ? "on" : "off",
350 source_state ? "on" : "off");
351 ret = false;
352 /* Don't break here to report all failed capabilities */
353 }
354 }
355
356 g_free(source_caps_bm);
357 return ret;
358 }
359
360 static int configuration_post_load(void *opaque, int version_id)
361 {
362 SaveState *state = opaque;
363 const char *current_name = MACHINE_GET_CLASS(current_machine)->name;
364
365 if (strncmp(state->name, current_name, state->len) != 0) {
366 error_report("Machine type received is '%.*s' and local is '%s'",
367 (int) state->len, state->name, current_name);
368 return -EINVAL;
369 }
370
371 if (state->target_page_bits != qemu_target_page_bits()) {
372 error_report("Received TARGET_PAGE_BITS is %d but local is %d",
373 state->target_page_bits, qemu_target_page_bits());
374 return -EINVAL;
375 }
376
377 if (!configuration_validate_capabilities(state)) {
378 return -EINVAL;
379 }
380
381 return 0;
382 }
383
384 static int get_capability(QEMUFile *f, void *pv, size_t size,
385 const VMStateField *field)
386 {
387 MigrationCapability *capability = pv;
388 char capability_str[UINT8_MAX + 1];
389 uint8_t len;
390 int i;
391
392 len = qemu_get_byte(f);
393 qemu_get_buffer(f, (uint8_t *)capability_str, len);
394 capability_str[len] = '\0';
395 for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) {
396 if (!strcmp(MigrationCapability_str(i), capability_str)) {
397 *capability = i;
398 return 0;
399 }
400 }
401 error_report("Received unknown capability %s", capability_str);
402 return -EINVAL;
403 }
404
405 static int put_capability(QEMUFile *f, void *pv, size_t size,
406 const VMStateField *field, QJSON *vmdesc)
407 {
408 MigrationCapability *capability = pv;
409 const char *capability_str = MigrationCapability_str(*capability);
410 size_t len = strlen(capability_str);
411 assert(len <= UINT8_MAX);
412
413 qemu_put_byte(f, len);
414 qemu_put_buffer(f, (uint8_t *)capability_str, len);
415 return 0;
416 }
417
418 static const VMStateInfo vmstate_info_capability = {
419 .name = "capability",
420 .get = get_capability,
421 .put = put_capability,
422 };
423
424 /* The target-page-bits subsection is present only if the
425 * target page size is not the same as the default (ie the
426 * minimum page size for a variable-page-size guest CPU).
427 * If it is present then it contains the actual target page
428 * bits for the machine, and migration will fail if the
429 * two ends don't agree about it.
430 */
431 static bool vmstate_target_page_bits_needed(void *opaque)
432 {
433 return qemu_target_page_bits()
434 > qemu_target_page_bits_min();
435 }
436
437 static const VMStateDescription vmstate_target_page_bits = {
438 .name = "configuration/target-page-bits",
439 .version_id = 1,
440 .minimum_version_id = 1,
441 .needed = vmstate_target_page_bits_needed,
442 .fields = (VMStateField[]) {
443 VMSTATE_UINT32(target_page_bits, SaveState),
444 VMSTATE_END_OF_LIST()
445 }
446 };
447
448 static bool vmstate_capabilites_needed(void *opaque)
449 {
450 return get_validatable_capabilities_count() > 0;
451 }
452
453 static const VMStateDescription vmstate_capabilites = {
454 .name = "configuration/capabilities",
455 .version_id = 1,
456 .minimum_version_id = 1,
457 .needed = vmstate_capabilites_needed,
458 .fields = (VMStateField[]) {
459 VMSTATE_UINT32_V(caps_count, SaveState, 1),
460 VMSTATE_VARRAY_UINT32_ALLOC(capabilities, SaveState, caps_count, 1,
461 vmstate_info_capability,
462 MigrationCapability),
463 VMSTATE_END_OF_LIST()
464 }
465 };
466
467 static const VMStateDescription vmstate_configuration = {
468 .name = "configuration",
469 .version_id = 1,
470 .pre_load = configuration_pre_load,
471 .post_load = configuration_post_load,
472 .pre_save = configuration_pre_save,
473 .fields = (VMStateField[]) {
474 VMSTATE_UINT32(len, SaveState),
475 VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len),
476 VMSTATE_END_OF_LIST()
477 },
478 .subsections = (const VMStateDescription*[]) {
479 &vmstate_target_page_bits,
480 &vmstate_capabilites,
481 NULL
482 }
483 };
484
485 static void dump_vmstate_vmsd(FILE *out_file,
486 const VMStateDescription *vmsd, int indent,
487 bool is_subsection);
488
489 static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field,
490 int indent)
491 {
492 fprintf(out_file, "%*s{\n", indent, "");
493 indent += 2;
494 fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name);
495 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
496 field->version_id);
497 fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "",
498 field->field_exists ? "true" : "false");
499 fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size);
500 if (field->vmsd != NULL) {
501 fprintf(out_file, ",\n");
502 dump_vmstate_vmsd(out_file, field->vmsd, indent, false);
503 }
504 fprintf(out_file, "\n%*s}", indent - 2, "");
505 }
506
507 static void dump_vmstate_vmss(FILE *out_file,
508 const VMStateDescription **subsection,
509 int indent)
510 {
511 if (*subsection != NULL) {
512 dump_vmstate_vmsd(out_file, *subsection, indent, true);
513 }
514 }
515
516 static void dump_vmstate_vmsd(FILE *out_file,
517 const VMStateDescription *vmsd, int indent,
518 bool is_subsection)
519 {
520 if (is_subsection) {
521 fprintf(out_file, "%*s{\n", indent, "");
522 } else {
523 fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description");
524 }
525 indent += 2;
526 fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name);
527 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
528 vmsd->version_id);
529 fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "",
530 vmsd->minimum_version_id);
531 if (vmsd->fields != NULL) {
532 const VMStateField *field = vmsd->fields;
533 bool first;
534
535 fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, "");
536 first = true;
537 while (field->name != NULL) {
538 if (field->flags & VMS_MUST_EXIST) {
539 /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */
540 field++;
541 continue;
542 }
543 if (!first) {
544 fprintf(out_file, ",\n");
545 }
546 dump_vmstate_vmsf(out_file, field, indent + 2);
547 field++;
548 first = false;
549 }
550 fprintf(out_file, "\n%*s]", indent, "");
551 }
552 if (vmsd->subsections != NULL) {
553 const VMStateDescription **subsection = vmsd->subsections;
554 bool first;
555
556 fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, "");
557 first = true;
558 while (*subsection != NULL) {
559 if (!first) {
560 fprintf(out_file, ",\n");
561 }
562 dump_vmstate_vmss(out_file, subsection, indent + 2);
563 subsection++;
564 first = false;
565 }
566 fprintf(out_file, "\n%*s]", indent, "");
567 }
568 fprintf(out_file, "\n%*s}", indent - 2, "");
569 }
570
571 static void dump_machine_type(FILE *out_file)
572 {
573 MachineClass *mc;
574
575 mc = MACHINE_GET_CLASS(current_machine);
576
577 fprintf(out_file, " \"vmschkmachine\": {\n");
578 fprintf(out_file, " \"Name\": \"%s\"\n", mc->name);
579 fprintf(out_file, " },\n");
580 }
581
582 void dump_vmstate_json_to_file(FILE *out_file)
583 {
584 GSList *list, *elt;
585 bool first;
586
587 fprintf(out_file, "{\n");
588 dump_machine_type(out_file);
589
590 first = true;
591 list = object_class_get_list(TYPE_DEVICE, true);
592 for (elt = list; elt; elt = elt->next) {
593 DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data,
594 TYPE_DEVICE);
595 const char *name;
596 int indent = 2;
597
598 if (!dc->vmsd) {
599 continue;
600 }
601
602 if (!first) {
603 fprintf(out_file, ",\n");
604 }
605 name = object_class_get_name(OBJECT_CLASS(dc));
606 fprintf(out_file, "%*s\"%s\": {\n", indent, "", name);
607 indent += 2;
608 fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name);
609 fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "",
610 dc->vmsd->version_id);
611 fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "",
612 dc->vmsd->minimum_version_id);
613
614 dump_vmstate_vmsd(out_file, dc->vmsd, indent, false);
615
616 fprintf(out_file, "\n%*s}", indent - 2, "");
617 first = false;
618 }
619 fprintf(out_file, "\n}\n");
620 fclose(out_file);
621 }
622
623 static int calculate_new_instance_id(const char *idstr)
624 {
625 SaveStateEntry *se;
626 int instance_id = 0;
627
628 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
629 if (strcmp(idstr, se->idstr) == 0
630 && instance_id <= se->instance_id) {
631 instance_id = se->instance_id + 1;
632 }
633 }
634 return instance_id;
635 }
636
637 static int calculate_compat_instance_id(const char *idstr)
638 {
639 SaveStateEntry *se;
640 int instance_id = 0;
641
642 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
643 if (!se->compat) {
644 continue;
645 }
646
647 if (strcmp(idstr, se->compat->idstr) == 0
648 && instance_id <= se->compat->instance_id) {
649 instance_id = se->compat->instance_id + 1;
650 }
651 }
652 return instance_id;
653 }
654
655 static inline MigrationPriority save_state_priority(SaveStateEntry *se)
656 {
657 if (se->vmsd) {
658 return se->vmsd->priority;
659 }
660 return MIG_PRI_DEFAULT;
661 }
662
663 static void savevm_state_handler_insert(SaveStateEntry *nse)
664 {
665 MigrationPriority priority = save_state_priority(nse);
666 SaveStateEntry *se;
667
668 assert(priority <= MIG_PRI_MAX);
669
670 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
671 if (save_state_priority(se) < priority) {
672 break;
673 }
674 }
675
676 if (se) {
677 QTAILQ_INSERT_BEFORE(se, nse, entry);
678 } else {
679 QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry);
680 }
681 }
682
683 /* TODO: Individual devices generally have very little idea about the rest
684 of the system, so instance_id should be removed/replaced.
685 Meanwhile pass -1 as instance_id if you do not already have a clearly
686 distinguishing id for all instances of your device class. */
687 int register_savevm_live(DeviceState *dev,
688 const char *idstr,
689 int instance_id,
690 int version_id,
691 const SaveVMHandlers *ops,
692 void *opaque)
693 {
694 SaveStateEntry *se;
695
696 se = g_new0(SaveStateEntry, 1);
697 se->version_id = version_id;
698 se->section_id = savevm_state.global_section_id++;
699 se->ops = ops;
700 se->opaque = opaque;
701 se->vmsd = NULL;
702 /* if this is a live_savem then set is_ram */
703 if (ops->save_setup != NULL) {
704 se->is_ram = 1;
705 }
706
707 if (dev) {
708 char *id = qdev_get_dev_path(dev);
709 if (id) {
710 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >=
711 sizeof(se->idstr)) {
712 error_report("Path too long for VMState (%s)", id);
713 g_free(id);
714 g_free(se);
715
716 return -1;
717 }
718 g_free(id);
719
720 se->compat = g_new0(CompatEntry, 1);
721 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
722 se->compat->instance_id = instance_id == -1 ?
723 calculate_compat_instance_id(idstr) : instance_id;
724 instance_id = -1;
725 }
726 }
727 pstrcat(se->idstr, sizeof(se->idstr), idstr);
728
729 if (instance_id == -1) {
730 se->instance_id = calculate_new_instance_id(se->idstr);
731 } else {
732 se->instance_id = instance_id;
733 }
734 assert(!se->compat || se->instance_id == 0);
735 savevm_state_handler_insert(se);
736 return 0;
737 }
738
739 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
740 {
741 SaveStateEntry *se, *new_se;
742 char id[256] = "";
743
744 if (dev) {
745 char *path = qdev_get_dev_path(dev);
746 if (path) {
747 pstrcpy(id, sizeof(id), path);
748 pstrcat(id, sizeof(id), "/");
749 g_free(path);
750 }
751 }
752 pstrcat(id, sizeof(id), idstr);
753
754 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
755 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
756 QTAILQ_REMOVE(&savevm_state.handlers, se, entry);
757 g_free(se->compat);
758 g_free(se);
759 }
760 }
761 }
762
763 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
764 const VMStateDescription *vmsd,
765 void *opaque, int alias_id,
766 int required_for_version,
767 Error **errp)
768 {
769 SaveStateEntry *se;
770
771 /* If this triggers, alias support can be dropped for the vmsd. */
772 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
773
774 se = g_new0(SaveStateEntry, 1);
775 se->version_id = vmsd->version_id;
776 se->section_id = savevm_state.global_section_id++;
777 se->opaque = opaque;
778 se->vmsd = vmsd;
779 se->alias_id = alias_id;
780
781 if (dev) {
782 char *id = qdev_get_dev_path(dev);
783 if (id) {
784 if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >=
785 sizeof(se->idstr)) {
786 error_setg(errp, "Path too long for VMState (%s)", id);
787 g_free(id);
788 g_free(se);
789
790 return -1;
791 }
792 g_free(id);
793
794 se->compat = g_new0(CompatEntry, 1);
795 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
796 se->compat->instance_id = instance_id == -1 ?
797 calculate_compat_instance_id(vmsd->name) : instance_id;
798 instance_id = -1;
799 }
800 }
801 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
802
803 if (instance_id == -1) {
804 se->instance_id = calculate_new_instance_id(se->idstr);
805 } else {
806 se->instance_id = instance_id;
807 }
808 assert(!se->compat || se->instance_id == 0);
809 savevm_state_handler_insert(se);
810 return 0;
811 }
812
813 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
814 void *opaque)
815 {
816 SaveStateEntry *se, *new_se;
817
818 QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) {
819 if (se->vmsd == vmsd && se->opaque == opaque) {
820 QTAILQ_REMOVE(&savevm_state.handlers, se, entry);
821 g_free(se->compat);
822 g_free(se);
823 }
824 }
825 }
826
827 static int vmstate_load(QEMUFile *f, SaveStateEntry *se)
828 {
829 trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)");
830 if (!se->vmsd) { /* Old style */
831 return se->ops->load_state(f, se->opaque, se->load_version_id);
832 }
833 return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id);
834 }
835
836 static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc)
837 {
838 int64_t old_offset, size;
839
840 old_offset = qemu_ftell_fast(f);
841 se->ops->save_state(f, se->opaque);
842 size = qemu_ftell_fast(f) - old_offset;
843
844 if (vmdesc) {
845 json_prop_int(vmdesc, "size", size);
846 json_start_array(vmdesc, "fields");
847 json_start_object(vmdesc, NULL);
848 json_prop_str(vmdesc, "name", "data");
849 json_prop_int(vmdesc, "size", size);
850 json_prop_str(vmdesc, "type", "buffer");
851 json_end_object(vmdesc);
852 json_end_array(vmdesc);
853 }
854 }
855
856 static int vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc)
857 {
858 trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)");
859 if (!se->vmsd) {
860 vmstate_save_old_style(f, se, vmdesc);
861 return 0;
862 }
863 return vmstate_save_state(f, se->vmsd, se->opaque, vmdesc);
864 }
865
866 /*
867 * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL)
868 */
869 static void save_section_header(QEMUFile *f, SaveStateEntry *se,
870 uint8_t section_type)
871 {
872 qemu_put_byte(f, section_type);
873 qemu_put_be32(f, se->section_id);
874
875 if (section_type == QEMU_VM_SECTION_FULL ||
876 section_type == QEMU_VM_SECTION_START) {
877 /* ID string */
878 size_t len = strlen(se->idstr);
879 qemu_put_byte(f, len);
880 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
881
882 qemu_put_be32(f, se->instance_id);
883 qemu_put_be32(f, se->version_id);
884 }
885 }
886
887 /*
888 * Write a footer onto device sections that catches cases misformatted device
889 * sections.
890 */
891 static void save_section_footer(QEMUFile *f, SaveStateEntry *se)
892 {
893 if (migrate_get_current()->send_section_footer) {
894 qemu_put_byte(f, QEMU_VM_SECTION_FOOTER);
895 qemu_put_be32(f, se->section_id);
896 }
897 }
898
899 /**
900 * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the
901 * command and associated data.
902 *
903 * @f: File to send command on
904 * @command: Command type to send
905 * @len: Length of associated data
906 * @data: Data associated with command.
907 */
908 static void qemu_savevm_command_send(QEMUFile *f,
909 enum qemu_vm_cmd command,
910 uint16_t len,
911 uint8_t *data)
912 {
913 trace_savevm_command_send(command, len);
914 qemu_put_byte(f, QEMU_VM_COMMAND);
915 qemu_put_be16(f, (uint16_t)command);
916 qemu_put_be16(f, len);
917 qemu_put_buffer(f, data, len);
918 qemu_fflush(f);
919 }
920
921 void qemu_savevm_send_colo_enable(QEMUFile *f)
922 {
923 trace_savevm_send_colo_enable();
924 qemu_savevm_command_send(f, MIG_CMD_ENABLE_COLO, 0, NULL);
925 }
926
927 void qemu_savevm_send_ping(QEMUFile *f, uint32_t value)
928 {
929 uint32_t buf;
930
931 trace_savevm_send_ping(value);
932 buf = cpu_to_be32(value);
933 qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf);
934 }
935
936 void qemu_savevm_send_open_return_path(QEMUFile *f)
937 {
938 trace_savevm_send_open_return_path();
939 qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL);
940 }
941
942 /* We have a buffer of data to send; we don't want that all to be loaded
943 * by the command itself, so the command contains just the length of the
944 * extra buffer that we then send straight after it.
945 * TODO: Must be a better way to organise that
946 *
947 * Returns:
948 * 0 on success
949 * -ve on error
950 */
951 int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len)
952 {
953 uint32_t tmp;
954
955 if (len > MAX_VM_CMD_PACKAGED_SIZE) {
956 error_report("%s: Unreasonably large packaged state: %zu",
957 __func__, len);
958 return -1;
959 }
960
961 tmp = cpu_to_be32(len);
962
963 trace_qemu_savevm_send_packaged();
964 qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp);
965
966 qemu_put_buffer(f, buf, len);
967
968 return 0;
969 }
970
971 /* Send prior to any postcopy transfer */
972 void qemu_savevm_send_postcopy_advise(QEMUFile *f)
973 {
974 if (migrate_postcopy_ram()) {
975 uint64_t tmp[2];
976 tmp[0] = cpu_to_be64(ram_pagesize_summary());
977 tmp[1] = cpu_to_be64(qemu_target_page_size());
978
979 trace_qemu_savevm_send_postcopy_advise();
980 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE,
981 16, (uint8_t *)tmp);
982 } else {
983 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 0, NULL);
984 }
985 }
986
987 /* Sent prior to starting the destination running in postcopy, discard pages
988 * that have already been sent but redirtied on the source.
989 * CMD_POSTCOPY_RAM_DISCARD consist of:
990 * byte version (0)
991 * byte Length of name field (not including 0)
992 * n x byte RAM block name
993 * byte 0 terminator (just for safety)
994 * n x Byte ranges within the named RAMBlock
995 * be64 Start of the range
996 * be64 Length
997 *
998 * name: RAMBlock name that these entries are part of
999 * len: Number of page entries
1000 * start_list: 'len' addresses
1001 * length_list: 'len' addresses
1002 *
1003 */
1004 void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name,
1005 uint16_t len,
1006 uint64_t *start_list,
1007 uint64_t *length_list)
1008 {
1009 uint8_t *buf;
1010 uint16_t tmplen;
1011 uint16_t t;
1012 size_t name_len = strlen(name);
1013
1014 trace_qemu_savevm_send_postcopy_ram_discard(name, len);
1015 assert(name_len < 256);
1016 buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len);
1017 buf[0] = postcopy_ram_discard_version;
1018 buf[1] = name_len;
1019 memcpy(buf + 2, name, name_len);
1020 tmplen = 2 + name_len;
1021 buf[tmplen++] = '\0';
1022
1023 for (t = 0; t < len; t++) {
1024 stq_be_p(buf + tmplen, start_list[t]);
1025 tmplen += 8;
1026 stq_be_p(buf + tmplen, length_list[t]);
1027 tmplen += 8;
1028 }
1029 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf);
1030 g_free(buf);
1031 }
1032
1033 /* Get the destination into a state where it can receive postcopy data. */
1034 void qemu_savevm_send_postcopy_listen(QEMUFile *f)
1035 {
1036 trace_savevm_send_postcopy_listen();
1037 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL);
1038 }
1039
1040 /* Kick the destination into running */
1041 void qemu_savevm_send_postcopy_run(QEMUFile *f)
1042 {
1043 trace_savevm_send_postcopy_run();
1044 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL);
1045 }
1046
1047 void qemu_savevm_send_postcopy_resume(QEMUFile *f)
1048 {
1049 trace_savevm_send_postcopy_resume();
1050 qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RESUME, 0, NULL);
1051 }
1052
1053 void qemu_savevm_send_recv_bitmap(QEMUFile *f, char *block_name)
1054 {
1055 size_t len;
1056 char buf[256];
1057
1058 trace_savevm_send_recv_bitmap(block_name);
1059
1060 buf[0] = len = strlen(block_name);
1061 memcpy(buf + 1, block_name, len);
1062
1063 qemu_savevm_command_send(f, MIG_CMD_RECV_BITMAP, len + 1, (uint8_t *)buf);
1064 }
1065
1066 bool qemu_savevm_state_blocked(Error **errp)
1067 {
1068 SaveStateEntry *se;
1069
1070 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1071 if (se->vmsd && se->vmsd->unmigratable) {
1072 error_setg(errp, "State blocked by non-migratable device '%s'",
1073 se->idstr);
1074 return true;
1075 }
1076 }
1077 return false;
1078 }
1079
1080 void qemu_savevm_state_header(QEMUFile *f)
1081 {
1082 trace_savevm_state_header();
1083 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1084 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1085
1086 if (migrate_get_current()->send_configuration) {
1087 qemu_put_byte(f, QEMU_VM_CONFIGURATION);
1088 vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0);
1089 }
1090 }
1091
1092 void qemu_savevm_state_setup(QEMUFile *f)
1093 {
1094 SaveStateEntry *se;
1095 Error *local_err = NULL;
1096 int ret;
1097
1098 trace_savevm_state_setup();
1099 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1100 if (!se->ops || !se->ops->save_setup) {
1101 continue;
1102 }
1103 if (se->ops && se->ops->is_active) {
1104 if (!se->ops->is_active(se->opaque)) {
1105 continue;
1106 }
1107 }
1108 save_section_header(f, se, QEMU_VM_SECTION_START);
1109
1110 ret = se->ops->save_setup(f, se->opaque);
1111 save_section_footer(f, se);
1112 if (ret < 0) {
1113 qemu_file_set_error(f, ret);
1114 break;
1115 }
1116 }
1117
1118 if (precopy_notify(PRECOPY_NOTIFY_SETUP, &local_err)) {
1119 error_report_err(local_err);
1120 }
1121 }
1122
1123 int qemu_savevm_state_resume_prepare(MigrationState *s)
1124 {
1125 SaveStateEntry *se;
1126 int ret;
1127
1128 trace_savevm_state_resume_prepare();
1129
1130 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1131 if (!se->ops || !se->ops->resume_prepare) {
1132 continue;
1133 }
1134 if (se->ops && se->ops->is_active) {
1135 if (!se->ops->is_active(se->opaque)) {
1136 continue;
1137 }
1138 }
1139 ret = se->ops->resume_prepare(s, se->opaque);
1140 if (ret < 0) {
1141 return ret;
1142 }
1143 }
1144
1145 return 0;
1146 }
1147
1148 /*
1149 * this function has three return values:
1150 * negative: there was one error, and we have -errno.
1151 * 0 : We haven't finished, caller have to go again
1152 * 1 : We have finished, we can go to complete phase
1153 */
1154 int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy)
1155 {
1156 SaveStateEntry *se;
1157 int ret = 1;
1158
1159 trace_savevm_state_iterate();
1160 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1161 if (!se->ops || !se->ops->save_live_iterate) {
1162 continue;
1163 }
1164 if (se->ops->is_active &&
1165 !se->ops->is_active(se->opaque)) {
1166 continue;
1167 }
1168 if (se->ops->is_active_iterate &&
1169 !se->ops->is_active_iterate(se->opaque)) {
1170 continue;
1171 }
1172 /*
1173 * In the postcopy phase, any device that doesn't know how to
1174 * do postcopy should have saved it's state in the _complete
1175 * call that's already run, it might get confused if we call
1176 * iterate afterwards.
1177 */
1178 if (postcopy &&
1179 !(se->ops->has_postcopy && se->ops->has_postcopy(se->opaque))) {
1180 continue;
1181 }
1182 if (qemu_file_rate_limit(f)) {
1183 return 0;
1184 }
1185 trace_savevm_section_start(se->idstr, se->section_id);
1186
1187 save_section_header(f, se, QEMU_VM_SECTION_PART);
1188
1189 ret = se->ops->save_live_iterate(f, se->opaque);
1190 trace_savevm_section_end(se->idstr, se->section_id, ret);
1191 save_section_footer(f, se);
1192
1193 if (ret < 0) {
1194 qemu_file_set_error(f, ret);
1195 }
1196 if (ret <= 0) {
1197 /* Do not proceed to the next vmstate before this one reported
1198 completion of the current stage. This serializes the migration
1199 and reduces the probability that a faster changing state is
1200 synchronized over and over again. */
1201 break;
1202 }
1203 }
1204 return ret;
1205 }
1206
1207 static bool should_send_vmdesc(void)
1208 {
1209 MachineState *machine = MACHINE(qdev_get_machine());
1210 bool in_postcopy = migration_in_postcopy();
1211 return !machine->suppress_vmdesc && !in_postcopy;
1212 }
1213
1214 /*
1215 * Calls the save_live_complete_postcopy methods
1216 * causing the last few pages to be sent immediately and doing any associated
1217 * cleanup.
1218 * Note postcopy also calls qemu_savevm_state_complete_precopy to complete
1219 * all the other devices, but that happens at the point we switch to postcopy.
1220 */
1221 void qemu_savevm_state_complete_postcopy(QEMUFile *f)
1222 {
1223 SaveStateEntry *se;
1224 int ret;
1225
1226 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1227 if (!se->ops || !se->ops->save_live_complete_postcopy) {
1228 continue;
1229 }
1230 if (se->ops && se->ops->is_active) {
1231 if (!se->ops->is_active(se->opaque)) {
1232 continue;
1233 }
1234 }
1235 trace_savevm_section_start(se->idstr, se->section_id);
1236 /* Section type */
1237 qemu_put_byte(f, QEMU_VM_SECTION_END);
1238 qemu_put_be32(f, se->section_id);
1239
1240 ret = se->ops->save_live_complete_postcopy(f, se->opaque);
1241 trace_savevm_section_end(se->idstr, se->section_id, ret);
1242 save_section_footer(f, se);
1243 if (ret < 0) {
1244 qemu_file_set_error(f, ret);
1245 return;
1246 }
1247 }
1248
1249 qemu_put_byte(f, QEMU_VM_EOF);
1250 qemu_fflush(f);
1251 }
1252
1253 int qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only,
1254 bool inactivate_disks)
1255 {
1256 QJSON *vmdesc;
1257 int vmdesc_len;
1258 SaveStateEntry *se;
1259 int ret;
1260 bool in_postcopy = migration_in_postcopy();
1261 Error *local_err = NULL;
1262
1263 if (precopy_notify(PRECOPY_NOTIFY_COMPLETE, &local_err)) {
1264 error_report_err(local_err);
1265 }
1266
1267 trace_savevm_state_complete_precopy();
1268
1269 cpu_synchronize_all_states();
1270
1271 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1272 if (!se->ops ||
1273 (in_postcopy && se->ops->has_postcopy &&
1274 se->ops->has_postcopy(se->opaque)) ||
1275 (in_postcopy && !iterable_only) ||
1276 !se->ops->save_live_complete_precopy) {
1277 continue;
1278 }
1279
1280 if (se->ops && se->ops->is_active) {
1281 if (!se->ops->is_active(se->opaque)) {
1282 continue;
1283 }
1284 }
1285 trace_savevm_section_start(se->idstr, se->section_id);
1286
1287 save_section_header(f, se, QEMU_VM_SECTION_END);
1288
1289 ret = se->ops->save_live_complete_precopy(f, se->opaque);
1290 trace_savevm_section_end(se->idstr, se->section_id, ret);
1291 save_section_footer(f, se);
1292 if (ret < 0) {
1293 qemu_file_set_error(f, ret);
1294 return -1;
1295 }
1296 }
1297
1298 if (iterable_only) {
1299 return 0;
1300 }
1301
1302 vmdesc = qjson_new();
1303 json_prop_int(vmdesc, "page_size", qemu_target_page_size());
1304 json_start_array(vmdesc, "devices");
1305 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1306
1307 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1308 continue;
1309 }
1310 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) {
1311 trace_savevm_section_skip(se->idstr, se->section_id);
1312 continue;
1313 }
1314
1315 trace_savevm_section_start(se->idstr, se->section_id);
1316
1317 json_start_object(vmdesc, NULL);
1318 json_prop_str(vmdesc, "name", se->idstr);
1319 json_prop_int(vmdesc, "instance_id", se->instance_id);
1320
1321 save_section_header(f, se, QEMU_VM_SECTION_FULL);
1322 ret = vmstate_save(f, se, vmdesc);
1323 if (ret) {
1324 qemu_file_set_error(f, ret);
1325 return ret;
1326 }
1327 trace_savevm_section_end(se->idstr, se->section_id, 0);
1328 save_section_footer(f, se);
1329
1330 json_end_object(vmdesc);
1331 }
1332
1333 if (inactivate_disks) {
1334 /* Inactivate before sending QEMU_VM_EOF so that the
1335 * bdrv_invalidate_cache_all() on the other end won't fail. */
1336 ret = bdrv_inactivate_all();
1337 if (ret) {
1338 error_report("%s: bdrv_inactivate_all() failed (%d)",
1339 __func__, ret);
1340 qemu_file_set_error(f, ret);
1341 return ret;
1342 }
1343 }
1344 if (!in_postcopy) {
1345 /* Postcopy stream will still be going */
1346 qemu_put_byte(f, QEMU_VM_EOF);
1347 }
1348
1349 json_end_array(vmdesc);
1350 qjson_finish(vmdesc);
1351 vmdesc_len = strlen(qjson_get_str(vmdesc));
1352
1353 if (should_send_vmdesc()) {
1354 qemu_put_byte(f, QEMU_VM_VMDESCRIPTION);
1355 qemu_put_be32(f, vmdesc_len);
1356 qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len);
1357 }
1358 qjson_destroy(vmdesc);
1359
1360 qemu_fflush(f);
1361 return 0;
1362 }
1363
1364 /* Give an estimate of the amount left to be transferred,
1365 * the result is split into the amount for units that can and
1366 * for units that can't do postcopy.
1367 */
1368 void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size,
1369 uint64_t *res_precopy_only,
1370 uint64_t *res_compatible,
1371 uint64_t *res_postcopy_only)
1372 {
1373 SaveStateEntry *se;
1374
1375 *res_precopy_only = 0;
1376 *res_compatible = 0;
1377 *res_postcopy_only = 0;
1378
1379
1380 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1381 if (!se->ops || !se->ops->save_live_pending) {
1382 continue;
1383 }
1384 if (se->ops && se->ops->is_active) {
1385 if (!se->ops->is_active(se->opaque)) {
1386 continue;
1387 }
1388 }
1389 se->ops->save_live_pending(f, se->opaque, threshold_size,
1390 res_precopy_only, res_compatible,
1391 res_postcopy_only);
1392 }
1393 }
1394
1395 void qemu_savevm_state_cleanup(void)
1396 {
1397 SaveStateEntry *se;
1398 Error *local_err = NULL;
1399
1400 if (precopy_notify(PRECOPY_NOTIFY_CLEANUP, &local_err)) {
1401 error_report_err(local_err);
1402 }
1403
1404 trace_savevm_state_cleanup();
1405 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1406 if (se->ops && se->ops->save_cleanup) {
1407 se->ops->save_cleanup(se->opaque);
1408 }
1409 }
1410 }
1411
1412 static int qemu_savevm_state(QEMUFile *f, Error **errp)
1413 {
1414 int ret;
1415 MigrationState *ms = migrate_get_current();
1416 MigrationStatus status;
1417
1418 if (migration_is_setup_or_active(ms->state) ||
1419 ms->state == MIGRATION_STATUS_CANCELLING ||
1420 ms->state == MIGRATION_STATUS_COLO) {
1421 error_setg(errp, QERR_MIGRATION_ACTIVE);
1422 return -EINVAL;
1423 }
1424
1425 if (migrate_use_block()) {
1426 error_setg(errp, "Block migration and snapshots are incompatible");
1427 return -EINVAL;
1428 }
1429
1430 migrate_init(ms);
1431 ms->to_dst_file = f;
1432
1433 qemu_mutex_unlock_iothread();
1434 qemu_savevm_state_header(f);
1435 qemu_savevm_state_setup(f);
1436 qemu_mutex_lock_iothread();
1437
1438 while (qemu_file_get_error(f) == 0) {
1439 if (qemu_savevm_state_iterate(f, false) > 0) {
1440 break;
1441 }
1442 }
1443
1444 ret = qemu_file_get_error(f);
1445 if (ret == 0) {
1446 qemu_savevm_state_complete_precopy(f, false, false);
1447 ret = qemu_file_get_error(f);
1448 }
1449 qemu_savevm_state_cleanup();
1450 if (ret != 0) {
1451 error_setg_errno(errp, -ret, "Error while writing VM state");
1452 }
1453
1454 if (ret != 0) {
1455 status = MIGRATION_STATUS_FAILED;
1456 } else {
1457 status = MIGRATION_STATUS_COMPLETED;
1458 }
1459 migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status);
1460
1461 /* f is outer parameter, it should not stay in global migration state after
1462 * this function finished */
1463 ms->to_dst_file = NULL;
1464
1465 return ret;
1466 }
1467
1468 void qemu_savevm_live_state(QEMUFile *f)
1469 {
1470 /* save QEMU_VM_SECTION_END section */
1471 qemu_savevm_state_complete_precopy(f, true, false);
1472 qemu_put_byte(f, QEMU_VM_EOF);
1473 }
1474
1475 int qemu_save_device_state(QEMUFile *f)
1476 {
1477 SaveStateEntry *se;
1478
1479 if (!migration_in_colo_state()) {
1480 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1481 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1482 }
1483 cpu_synchronize_all_states();
1484
1485 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1486 int ret;
1487
1488 if (se->is_ram) {
1489 continue;
1490 }
1491 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1492 continue;
1493 }
1494 if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) {
1495 continue;
1496 }
1497
1498 save_section_header(f, se, QEMU_VM_SECTION_FULL);
1499
1500 ret = vmstate_save(f, se, NULL);
1501 if (ret) {
1502 return ret;
1503 }
1504
1505 save_section_footer(f, se);
1506 }
1507
1508 qemu_put_byte(f, QEMU_VM_EOF);
1509
1510 return qemu_file_get_error(f);
1511 }
1512
1513 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1514 {
1515 SaveStateEntry *se;
1516
1517 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
1518 if (!strcmp(se->idstr, idstr) &&
1519 (instance_id == se->instance_id ||
1520 instance_id == se->alias_id))
1521 return se;
1522 /* Migrating from an older version? */
1523 if (strstr(se->idstr, idstr) && se->compat) {
1524 if (!strcmp(se->compat->idstr, idstr) &&
1525 (instance_id == se->compat->instance_id ||
1526 instance_id == se->alias_id))
1527 return se;
1528 }
1529 }
1530 return NULL;
1531 }
1532
1533 enum LoadVMExitCodes {
1534 /* Allow a command to quit all layers of nested loadvm loops */
1535 LOADVM_QUIT = 1,
1536 };
1537
1538 /* ------ incoming postcopy messages ------ */
1539 /* 'advise' arrives before any transfers just to tell us that a postcopy
1540 * *might* happen - it might be skipped if precopy transferred everything
1541 * quickly.
1542 */
1543 static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis,
1544 uint16_t len)
1545 {
1546 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE);
1547 uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps;
1548 Error *local_err = NULL;
1549
1550 trace_loadvm_postcopy_handle_advise();
1551 if (ps != POSTCOPY_INCOMING_NONE) {
1552 error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps);
1553 return -1;
1554 }
1555
1556 switch (len) {
1557 case 0:
1558 if (migrate_postcopy_ram()) {
1559 error_report("RAM postcopy is enabled but have 0 byte advise");
1560 return -EINVAL;
1561 }
1562 return 0;
1563 case 8 + 8:
1564 if (!migrate_postcopy_ram()) {
1565 error_report("RAM postcopy is disabled but have 16 byte advise");
1566 return -EINVAL;
1567 }
1568 break;
1569 default:
1570 error_report("CMD_POSTCOPY_ADVISE invalid length (%d)", len);
1571 return -EINVAL;
1572 }
1573
1574 if (!postcopy_ram_supported_by_host(mis)) {
1575 postcopy_state_set(POSTCOPY_INCOMING_NONE);
1576 return -1;
1577 }
1578
1579 remote_pagesize_summary = qemu_get_be64(mis->from_src_file);
1580 local_pagesize_summary = ram_pagesize_summary();
1581
1582 if (remote_pagesize_summary != local_pagesize_summary) {
1583 /*
1584 * This detects two potential causes of mismatch:
1585 * a) A mismatch in host page sizes
1586 * Some combinations of mismatch are probably possible but it gets
1587 * a bit more complicated. In particular we need to place whole
1588 * host pages on the dest at once, and we need to ensure that we
1589 * handle dirtying to make sure we never end up sending part of
1590 * a hostpage on it's own.
1591 * b) The use of different huge page sizes on source/destination
1592 * a more fine grain test is performed during RAM block migration
1593 * but this test here causes a nice early clear failure, and
1594 * also fails when passed to an older qemu that doesn't
1595 * do huge pages.
1596 */
1597 error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64
1598 " d=%" PRIx64 ")",
1599 remote_pagesize_summary, local_pagesize_summary);
1600 return -1;
1601 }
1602
1603 remote_tps = qemu_get_be64(mis->from_src_file);
1604 if (remote_tps != qemu_target_page_size()) {
1605 /*
1606 * Again, some differences could be dealt with, but for now keep it
1607 * simple.
1608 */
1609 error_report("Postcopy needs matching target page sizes (s=%d d=%zd)",
1610 (int)remote_tps, qemu_target_page_size());
1611 return -1;
1612 }
1613
1614 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_ADVISE, &local_err)) {
1615 error_report_err(local_err);
1616 return -1;
1617 }
1618
1619 if (ram_postcopy_incoming_init(mis)) {
1620 return -1;
1621 }
1622
1623 postcopy_state_set(POSTCOPY_INCOMING_ADVISE);
1624
1625 return 0;
1626 }
1627
1628 /* After postcopy we will be told to throw some pages away since they're
1629 * dirty and will have to be demand fetched. Must happen before CPU is
1630 * started.
1631 * There can be 0..many of these messages, each encoding multiple pages.
1632 */
1633 static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis,
1634 uint16_t len)
1635 {
1636 int tmp;
1637 char ramid[256];
1638 PostcopyState ps = postcopy_state_get();
1639
1640 trace_loadvm_postcopy_ram_handle_discard();
1641
1642 switch (ps) {
1643 case POSTCOPY_INCOMING_ADVISE:
1644 /* 1st discard */
1645 tmp = postcopy_ram_prepare_discard(mis);
1646 if (tmp) {
1647 return tmp;
1648 }
1649 break;
1650
1651 case POSTCOPY_INCOMING_DISCARD:
1652 /* Expected state */
1653 break;
1654
1655 default:
1656 error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)",
1657 ps);
1658 return -1;
1659 }
1660 /* We're expecting a
1661 * Version (0)
1662 * a RAM ID string (length byte, name, 0 term)
1663 * then at least 1 16 byte chunk
1664 */
1665 if (len < (1 + 1 + 1 + 1 + 2 * 8)) {
1666 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len);
1667 return -1;
1668 }
1669
1670 tmp = qemu_get_byte(mis->from_src_file);
1671 if (tmp != postcopy_ram_discard_version) {
1672 error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp);
1673 return -1;
1674 }
1675
1676 if (!qemu_get_counted_string(mis->from_src_file, ramid)) {
1677 error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID");
1678 return -1;
1679 }
1680 tmp = qemu_get_byte(mis->from_src_file);
1681 if (tmp != 0) {
1682 error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp);
1683 return -1;
1684 }
1685
1686 len -= 3 + strlen(ramid);
1687 if (len % 16) {
1688 error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len);
1689 return -1;
1690 }
1691 trace_loadvm_postcopy_ram_handle_discard_header(ramid, len);
1692 while (len) {
1693 uint64_t start_addr, block_length;
1694 start_addr = qemu_get_be64(mis->from_src_file);
1695 block_length = qemu_get_be64(mis->from_src_file);
1696
1697 len -= 16;
1698 int ret = ram_discard_range(ramid, start_addr, block_length);
1699 if (ret) {
1700 return ret;
1701 }
1702 }
1703 trace_loadvm_postcopy_ram_handle_discard_end();
1704
1705 return 0;
1706 }
1707
1708 /*
1709 * Triggered by a postcopy_listen command; this thread takes over reading
1710 * the input stream, leaving the main thread free to carry on loading the rest
1711 * of the device state (from RAM).
1712 * (TODO:This could do with being in a postcopy file - but there again it's
1713 * just another input loop, not that postcopy specific)
1714 */
1715 static void *postcopy_ram_listen_thread(void *opaque)
1716 {
1717 MigrationIncomingState *mis = migration_incoming_get_current();
1718 QEMUFile *f = mis->from_src_file;
1719 int load_res;
1720
1721 migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE,
1722 MIGRATION_STATUS_POSTCOPY_ACTIVE);
1723 qemu_sem_post(&mis->listen_thread_sem);
1724 trace_postcopy_ram_listen_thread_start();
1725
1726 rcu_register_thread();
1727 /*
1728 * Because we're a thread and not a coroutine we can't yield
1729 * in qemu_file, and thus we must be blocking now.
1730 */
1731 qemu_file_set_blocking(f, true);
1732 load_res = qemu_loadvm_state_main(f, mis);
1733
1734 /*
1735 * This is tricky, but, mis->from_src_file can change after it
1736 * returns, when postcopy recovery happened. In the future, we may
1737 * want a wrapper for the QEMUFile handle.
1738 */
1739 f = mis->from_src_file;
1740
1741 /* And non-blocking again so we don't block in any cleanup */
1742 qemu_file_set_blocking(f, false);
1743
1744 trace_postcopy_ram_listen_thread_exit();
1745 if (load_res < 0) {
1746 error_report("%s: loadvm failed: %d", __func__, load_res);
1747 qemu_file_set_error(f, load_res);
1748 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
1749 MIGRATION_STATUS_FAILED);
1750 } else {
1751 /*
1752 * This looks good, but it's possible that the device loading in the
1753 * main thread hasn't finished yet, and so we might not be in 'RUN'
1754 * state yet; wait for the end of the main thread.
1755 */
1756 qemu_event_wait(&mis->main_thread_load_event);
1757 }
1758 postcopy_ram_incoming_cleanup(mis);
1759
1760 if (load_res < 0) {
1761 /*
1762 * If something went wrong then we have a bad state so exit;
1763 * depending how far we got it might be possible at this point
1764 * to leave the guest running and fire MCEs for pages that never
1765 * arrived as a desperate recovery step.
1766 */
1767 rcu_unregister_thread();
1768 exit(EXIT_FAILURE);
1769 }
1770
1771 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
1772 MIGRATION_STATUS_COMPLETED);
1773 /*
1774 * If everything has worked fine, then the main thread has waited
1775 * for us to start, and we're the last use of the mis.
1776 * (If something broke then qemu will have to exit anyway since it's
1777 * got a bad migration state).
1778 */
1779 migration_incoming_state_destroy();
1780 qemu_loadvm_state_cleanup();
1781
1782 rcu_unregister_thread();
1783 mis->have_listen_thread = false;
1784 return NULL;
1785 }
1786
1787 /* After this message we must be able to immediately receive postcopy data */
1788 static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis)
1789 {
1790 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING);
1791 trace_loadvm_postcopy_handle_listen();
1792 Error *local_err = NULL;
1793
1794 if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) {
1795 error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps);
1796 return -1;
1797 }
1798 if (ps == POSTCOPY_INCOMING_ADVISE) {
1799 /*
1800 * A rare case, we entered listen without having to do any discards,
1801 * so do the setup that's normally done at the time of the 1st discard.
1802 */
1803 if (migrate_postcopy_ram()) {
1804 postcopy_ram_prepare_discard(mis);
1805 }
1806 }
1807
1808 /*
1809 * Sensitise RAM - can now generate requests for blocks that don't exist
1810 * However, at this point the CPU shouldn't be running, and the IO
1811 * shouldn't be doing anything yet so don't actually expect requests
1812 */
1813 if (migrate_postcopy_ram()) {
1814 if (postcopy_ram_enable_notify(mis)) {
1815 postcopy_ram_incoming_cleanup(mis);
1816 return -1;
1817 }
1818 }
1819
1820 if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_LISTEN, &local_err)) {
1821 error_report_err(local_err);
1822 return -1;
1823 }
1824
1825 if (mis->have_listen_thread) {
1826 error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread");
1827 return -1;
1828 }
1829
1830 mis->have_listen_thread = true;
1831 /* Start up the listening thread and wait for it to signal ready */
1832 qemu_sem_init(&mis->listen_thread_sem, 0);
1833 qemu_thread_create(&mis->listen_thread, "postcopy/listen",
1834 postcopy_ram_listen_thread, NULL,
1835 QEMU_THREAD_DETACHED);
1836 qemu_sem_wait(&mis->listen_thread_sem);
1837 qemu_sem_destroy(&mis->listen_thread_sem);
1838
1839 return 0;
1840 }
1841
1842
1843 typedef struct {
1844 QEMUBH *bh;
1845 } HandleRunBhData;
1846
1847 static void loadvm_postcopy_handle_run_bh(void *opaque)
1848 {
1849 Error *local_err = NULL;
1850 HandleRunBhData *data = opaque;
1851 MigrationIncomingState *mis = migration_incoming_get_current();
1852
1853 /* TODO we should move all of this lot into postcopy_ram.c or a shared code
1854 * in migration.c
1855 */
1856 cpu_synchronize_all_post_init();
1857
1858 qemu_announce_self(&mis->announce_timer, migrate_announce_params());
1859
1860 /* Make sure all file formats flush their mutable metadata.
1861 * If we get an error here, just don't restart the VM yet. */
1862 bdrv_invalidate_cache_all(&local_err);
1863 if (local_err) {
1864 error_report_err(local_err);
1865 local_err = NULL;
1866 autostart = false;
1867 }
1868
1869 trace_loadvm_postcopy_handle_run_cpu_sync();
1870
1871 trace_loadvm_postcopy_handle_run_vmstart();
1872
1873 dirty_bitmap_mig_before_vm_start();
1874
1875 if (autostart) {
1876 /* Hold onto your hats, starting the CPU */
1877 vm_start();
1878 } else {
1879 /* leave it paused and let management decide when to start the CPU */
1880 runstate_set(RUN_STATE_PAUSED);
1881 }
1882
1883 qemu_bh_delete(data->bh);
1884 g_free(data);
1885 }
1886
1887 /* After all discards we can start running and asking for pages */
1888 static int loadvm_postcopy_handle_run(MigrationIncomingState *mis)
1889 {
1890 PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING);
1891 HandleRunBhData *data;
1892
1893 trace_loadvm_postcopy_handle_run();
1894 if (ps != POSTCOPY_INCOMING_LISTENING) {
1895 error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps);
1896 return -1;
1897 }
1898
1899 data = g_new(HandleRunBhData, 1);
1900 data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data);
1901 qemu_bh_schedule(data->bh);
1902
1903 /* We need to finish reading the stream from the package
1904 * and also stop reading anything more from the stream that loaded the
1905 * package (since it's now being read by the listener thread).
1906 * LOADVM_QUIT will quit all the layers of nested loadvm loops.
1907 */
1908 return LOADVM_QUIT;
1909 }
1910
1911 static int loadvm_postcopy_handle_resume(MigrationIncomingState *mis)
1912 {
1913 if (mis->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
1914 error_report("%s: illegal resume received", __func__);
1915 /* Don't fail the load, only for this. */
1916 return 0;
1917 }
1918
1919 /*
1920 * This means source VM is ready to resume the postcopy migration.
1921 * It's time to switch state and release the fault thread to
1922 * continue service page faults.
1923 */
1924 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_RECOVER,
1925 MIGRATION_STATUS_POSTCOPY_ACTIVE);
1926 qemu_sem_post(&mis->postcopy_pause_sem_fault);
1927
1928 trace_loadvm_postcopy_handle_resume();
1929
1930 /* Tell source that "we are ready" */
1931 migrate_send_rp_resume_ack(mis, MIGRATION_RESUME_ACK_VALUE);
1932
1933 return 0;
1934 }
1935
1936 /**
1937 * Immediately following this command is a blob of data containing an embedded
1938 * chunk of migration stream; read it and load it.
1939 *
1940 * @mis: Incoming state
1941 * @length: Length of packaged data to read
1942 *
1943 * Returns: Negative values on error
1944 *
1945 */
1946 static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis)
1947 {
1948 int ret;
1949 size_t length;
1950 QIOChannelBuffer *bioc;
1951
1952 length = qemu_get_be32(mis->from_src_file);
1953 trace_loadvm_handle_cmd_packaged(length);
1954
1955 if (length > MAX_VM_CMD_PACKAGED_SIZE) {
1956 error_report("Unreasonably large packaged state: %zu", length);
1957 return -1;
1958 }
1959
1960 bioc = qio_channel_buffer_new(length);
1961 qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer");
1962 ret = qemu_get_buffer(mis->from_src_file,
1963 bioc->data,
1964 length);
1965 if (ret != length) {
1966 object_unref(OBJECT(bioc));
1967 error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu",
1968 ret, length);
1969 return (ret < 0) ? ret : -EAGAIN;
1970 }
1971 bioc->usage += length;
1972 trace_loadvm_handle_cmd_packaged_received(ret);
1973
1974 QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc));
1975
1976 ret = qemu_loadvm_state_main(packf, mis);
1977 trace_loadvm_handle_cmd_packaged_main(ret);
1978 qemu_fclose(packf);
1979 object_unref(OBJECT(bioc));
1980
1981 return ret;
1982 }
1983
1984 /*
1985 * Handle request that source requests for recved_bitmap on
1986 * destination. Payload format:
1987 *
1988 * len (1 byte) + ramblock_name (<255 bytes)
1989 */
1990 static int loadvm_handle_recv_bitmap(MigrationIncomingState *mis,
1991 uint16_t len)
1992 {
1993 QEMUFile *file = mis->from_src_file;
1994 RAMBlock *rb;
1995 char block_name[256];
1996 size_t cnt;
1997
1998 cnt = qemu_get_counted_string(file, block_name);
1999 if (!cnt) {
2000 error_report("%s: failed to read block name", __func__);
2001 return -EINVAL;
2002 }
2003
2004 /* Validate before using the data */
2005 if (qemu_file_get_error(file)) {
2006 return qemu_file_get_error(file);
2007 }
2008
2009 if (len != cnt + 1) {
2010 error_report("%s: invalid payload length (%d)", __func__, len);
2011 return -EINVAL;
2012 }
2013
2014 rb = qemu_ram_block_by_name(block_name);
2015 if (!rb) {
2016 error_report("%s: block '%s' not found", __func__, block_name);
2017 return -EINVAL;
2018 }
2019
2020 migrate_send_rp_recv_bitmap(mis, block_name);
2021
2022 trace_loadvm_handle_recv_bitmap(block_name);
2023
2024 return 0;
2025 }
2026
2027 static int loadvm_process_enable_colo(MigrationIncomingState *mis)
2028 {
2029 migration_incoming_enable_colo();
2030 return colo_init_ram_cache();
2031 }
2032
2033 /*
2034 * Process an incoming 'QEMU_VM_COMMAND'
2035 * 0 just a normal return
2036 * LOADVM_QUIT All good, but exit the loop
2037 * <0 Error
2038 */
2039 static int loadvm_process_command(QEMUFile *f)
2040 {
2041 MigrationIncomingState *mis = migration_incoming_get_current();
2042 uint16_t cmd;
2043 uint16_t len;
2044 uint32_t tmp32;
2045
2046 cmd = qemu_get_be16(f);
2047 len = qemu_get_be16(f);
2048
2049 /* Check validity before continue processing of cmds */
2050 if (qemu_file_get_error(f)) {
2051 return qemu_file_get_error(f);
2052 }
2053
2054 trace_loadvm_process_command(cmd, len);
2055 if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) {
2056 error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len);
2057 return -EINVAL;
2058 }
2059
2060 if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) {
2061 error_report("%s received with bad length - expecting %zu, got %d",
2062 mig_cmd_args[cmd].name,
2063 (size_t)mig_cmd_args[cmd].len, len);
2064 return -ERANGE;
2065 }
2066
2067 switch (cmd) {
2068 case MIG_CMD_OPEN_RETURN_PATH:
2069 if (mis->to_src_file) {
2070 error_report("CMD_OPEN_RETURN_PATH called when RP already open");
2071 /* Not really a problem, so don't give up */
2072 return 0;
2073 }
2074 mis->to_src_file = qemu_file_get_return_path(f);
2075 if (!mis->to_src_file) {
2076 error_report("CMD_OPEN_RETURN_PATH failed");
2077 return -1;
2078 }
2079 break;
2080
2081 case MIG_CMD_PING:
2082 tmp32 = qemu_get_be32(f);
2083 trace_loadvm_process_command_ping(tmp32);
2084 if (!mis->to_src_file) {
2085 error_report("CMD_PING (0x%x) received with no return path",
2086 tmp32);
2087 return -1;
2088 }
2089 migrate_send_rp_pong(mis, tmp32);
2090 break;
2091
2092 case MIG_CMD_PACKAGED:
2093 return loadvm_handle_cmd_packaged(mis);
2094
2095 case MIG_CMD_POSTCOPY_ADVISE:
2096 return loadvm_postcopy_handle_advise(mis, len);
2097
2098 case MIG_CMD_POSTCOPY_LISTEN:
2099 return loadvm_postcopy_handle_listen(mis);
2100
2101 case MIG_CMD_POSTCOPY_RUN:
2102 return loadvm_postcopy_handle_run(mis);
2103
2104 case MIG_CMD_POSTCOPY_RAM_DISCARD:
2105 return loadvm_postcopy_ram_handle_discard(mis, len);
2106
2107 case MIG_CMD_POSTCOPY_RESUME:
2108 return loadvm_postcopy_handle_resume(mis);
2109
2110 case MIG_CMD_RECV_BITMAP:
2111 return loadvm_handle_recv_bitmap(mis, len);
2112
2113 case MIG_CMD_ENABLE_COLO:
2114 return loadvm_process_enable_colo(mis);
2115 }
2116
2117 return 0;
2118 }
2119
2120 /*
2121 * Read a footer off the wire and check that it matches the expected section
2122 *
2123 * Returns: true if the footer was good
2124 * false if there is a problem (and calls error_report to say why)
2125 */
2126 static bool check_section_footer(QEMUFile *f, SaveStateEntry *se)
2127 {
2128 int ret;
2129 uint8_t read_mark;
2130 uint32_t read_section_id;
2131
2132 if (!migrate_get_current()->send_section_footer) {
2133 /* No footer to check */
2134 return true;
2135 }
2136
2137 read_mark = qemu_get_byte(f);
2138
2139 ret = qemu_file_get_error(f);
2140 if (ret) {
2141 error_report("%s: Read section footer failed: %d",
2142 __func__, ret);
2143 return false;
2144 }
2145
2146 if (read_mark != QEMU_VM_SECTION_FOOTER) {
2147 error_report("Missing section footer for %s", se->idstr);
2148 return false;
2149 }
2150
2151 read_section_id = qemu_get_be32(f);
2152 if (read_section_id != se->load_section_id) {
2153 error_report("Mismatched section id in footer for %s -"
2154 " read 0x%x expected 0x%x",
2155 se->idstr, read_section_id, se->load_section_id);
2156 return false;
2157 }
2158
2159 /* All good */
2160 return true;
2161 }
2162
2163 static int
2164 qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis)
2165 {
2166 uint32_t instance_id, version_id, section_id;
2167 SaveStateEntry *se;
2168 char idstr[256];
2169 int ret;
2170
2171 /* Read section start */
2172 section_id = qemu_get_be32(f);
2173 if (!qemu_get_counted_string(f, idstr)) {
2174 error_report("Unable to read ID string for section %u",
2175 section_id);
2176 return -EINVAL;
2177 }
2178 instance_id = qemu_get_be32(f);
2179 version_id = qemu_get_be32(f);
2180
2181 ret = qemu_file_get_error(f);
2182 if (ret) {
2183 error_report("%s: Failed to read instance/version ID: %d",
2184 __func__, ret);
2185 return ret;
2186 }
2187
2188 trace_qemu_loadvm_state_section_startfull(section_id, idstr,
2189 instance_id, version_id);
2190 /* Find savevm section */
2191 se = find_se(idstr, instance_id);
2192 if (se == NULL) {
2193 error_report("Unknown savevm section or instance '%s' %d. "
2194 "Make sure that your current VM setup matches your "
2195 "saved VM setup, including any hotplugged devices",
2196 idstr, instance_id);
2197 return -EINVAL;
2198 }
2199
2200 /* Validate version */
2201 if (version_id > se->version_id) {
2202 error_report("savevm: unsupported version %d for '%s' v%d",
2203 version_id, idstr, se->version_id);
2204 return -EINVAL;
2205 }
2206 se->load_version_id = version_id;
2207 se->load_section_id = section_id;
2208
2209 /* Validate if it is a device's state */
2210 if (xen_enabled() && se->is_ram) {
2211 error_report("loadvm: %s RAM loading not allowed on Xen", idstr);
2212 return -EINVAL;
2213 }
2214
2215 ret = vmstate_load(f, se);
2216 if (ret < 0) {
2217 error_report("error while loading state for instance 0x%x of"
2218 " device '%s'", instance_id, idstr);
2219 return ret;
2220 }
2221 if (!check_section_footer(f, se)) {
2222 return -EINVAL;
2223 }
2224
2225 return 0;
2226 }
2227
2228 static int
2229 qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis)
2230 {
2231 uint32_t section_id;
2232 SaveStateEntry *se;
2233 int ret;
2234
2235 section_id = qemu_get_be32(f);
2236
2237 ret = qemu_file_get_error(f);
2238 if (ret) {
2239 error_report("%s: Failed to read section ID: %d",
2240 __func__, ret);
2241 return ret;
2242 }
2243
2244 trace_qemu_loadvm_state_section_partend(section_id);
2245 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2246 if (se->load_section_id == section_id) {
2247 break;
2248 }
2249 }
2250 if (se == NULL) {
2251 error_report("Unknown savevm section %d", section_id);
2252 return -EINVAL;
2253 }
2254
2255 ret = vmstate_load(f, se);
2256 if (ret < 0) {
2257 error_report("error while loading state section id %d(%s)",
2258 section_id, se->idstr);
2259 return ret;
2260 }
2261 if (!check_section_footer(f, se)) {
2262 return -EINVAL;
2263 }
2264
2265 return 0;
2266 }
2267
2268 static int qemu_loadvm_state_header(QEMUFile *f)
2269 {
2270 unsigned int v;
2271 int ret;
2272
2273 v = qemu_get_be32(f);
2274 if (v != QEMU_VM_FILE_MAGIC) {
2275 error_report("Not a migration stream");
2276 return -EINVAL;
2277 }
2278
2279 v = qemu_get_be32(f);
2280 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2281 error_report("SaveVM v2 format is obsolete and don't work anymore");
2282 return -ENOTSUP;
2283 }
2284 if (v != QEMU_VM_FILE_VERSION) {
2285 error_report("Unsupported migration stream version");
2286 return -ENOTSUP;
2287 }
2288
2289 if (migrate_get_current()->send_configuration) {
2290 if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) {
2291 error_report("Configuration section missing");
2292 qemu_loadvm_state_cleanup();
2293 return -EINVAL;
2294 }
2295 ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0);
2296
2297 if (ret) {
2298 qemu_loadvm_state_cleanup();
2299 return ret;
2300 }
2301 }
2302 return 0;
2303 }
2304
2305 static int qemu_loadvm_state_setup(QEMUFile *f)
2306 {
2307 SaveStateEntry *se;
2308 int ret;
2309
2310 trace_loadvm_state_setup();
2311 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2312 if (!se->ops || !se->ops->load_setup) {
2313 continue;
2314 }
2315 if (se->ops && se->ops->is_active) {
2316 if (!se->ops->is_active(se->opaque)) {
2317 continue;
2318 }
2319 }
2320
2321 ret = se->ops->load_setup(f, se->opaque);
2322 if (ret < 0) {
2323 qemu_file_set_error(f, ret);
2324 error_report("Load state of device %s failed", se->idstr);
2325 return ret;
2326 }
2327 }
2328 return 0;
2329 }
2330
2331 void qemu_loadvm_state_cleanup(void)
2332 {
2333 SaveStateEntry *se;
2334
2335 trace_loadvm_state_cleanup();
2336 QTAILQ_FOREACH(se, &savevm_state.handlers, entry) {
2337 if (se->ops && se->ops->load_cleanup) {
2338 se->ops->load_cleanup(se->opaque);
2339 }
2340 }
2341 }
2342
2343 /* Return true if we should continue the migration, or false. */
2344 static bool postcopy_pause_incoming(MigrationIncomingState *mis)
2345 {
2346 trace_postcopy_pause_incoming();
2347
2348 /* Clear the triggered bit to allow one recovery */
2349 mis->postcopy_recover_triggered = false;
2350
2351 assert(mis->from_src_file);
2352 qemu_file_shutdown(mis->from_src_file);
2353 qemu_fclose(mis->from_src_file);
2354 mis->from_src_file = NULL;
2355
2356 assert(mis->to_src_file);
2357 qemu_file_shutdown(mis->to_src_file);
2358 qemu_mutex_lock(&mis->rp_mutex);
2359 qemu_fclose(mis->to_src_file);
2360 mis->to_src_file = NULL;
2361 qemu_mutex_unlock(&mis->rp_mutex);
2362
2363 migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE,
2364 MIGRATION_STATUS_POSTCOPY_PAUSED);
2365
2366 /* Notify the fault thread for the invalidated file handle */
2367 postcopy_fault_thread_notify(mis);
2368
2369 error_report("Detected IO failure for postcopy. "
2370 "Migration paused.");
2371
2372 while (mis->state == MIGRATION_STATUS_POSTCOPY_PAUSED) {
2373 qemu_sem_wait(&mis->postcopy_pause_sem_dst);
2374 }
2375
2376 trace_postcopy_pause_incoming_continued();
2377
2378 return true;
2379 }
2380
2381 int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis)
2382 {
2383 uint8_t section_type;
2384 int ret = 0;
2385
2386 retry:
2387 while (true) {
2388 section_type = qemu_get_byte(f);
2389
2390 if (qemu_file_get_error(f)) {
2391 ret = qemu_file_get_error(f);
2392 break;
2393 }
2394
2395 trace_qemu_loadvm_state_section(section_type);
2396 switch (section_type) {
2397 case QEMU_VM_SECTION_START:
2398 case QEMU_VM_SECTION_FULL:
2399 ret = qemu_loadvm_section_start_full(f, mis);
2400 if (ret < 0) {
2401 goto out;
2402 }
2403 break;
2404 case QEMU_VM_SECTION_PART:
2405 case QEMU_VM_SECTION_END:
2406 ret = qemu_loadvm_section_part_end(f, mis);
2407 if (ret < 0) {
2408 goto out;
2409 }
2410 break;
2411 case QEMU_VM_COMMAND:
2412 ret = loadvm_process_command(f);
2413 trace_qemu_loadvm_state_section_command(ret);
2414 if ((ret < 0) || (ret & LOADVM_QUIT)) {
2415 goto out;
2416 }
2417 break;
2418 case QEMU_VM_EOF:
2419 /* This is the end of migration */
2420 goto out;
2421 default:
2422 error_report("Unknown savevm section type %d", section_type);
2423 ret = -EINVAL;
2424 goto out;
2425 }
2426 }
2427
2428 out:
2429 if (ret < 0) {
2430 qemu_file_set_error(f, ret);
2431
2432 /*
2433 * If we are during an active postcopy, then we pause instead
2434 * of bail out to at least keep the VM's dirty data. Note
2435 * that POSTCOPY_INCOMING_LISTENING stage is still not enough,
2436 * during which we're still receiving device states and we
2437 * still haven't yet started the VM on destination.
2438 */
2439 if (postcopy_state_get() == POSTCOPY_INCOMING_RUNNING &&
2440 postcopy_pause_incoming(mis)) {
2441 /* Reset f to point to the newly created channel */
2442 f = mis->from_src_file;
2443 goto retry;
2444 }
2445 }
2446 return ret;
2447 }
2448
2449 int qemu_loadvm_state(QEMUFile *f)
2450 {
2451 MigrationIncomingState *mis = migration_incoming_get_current();
2452 Error *local_err = NULL;
2453 int ret;
2454
2455 if (qemu_savevm_state_blocked(&local_err)) {
2456 error_report_err(local_err);
2457 return -EINVAL;
2458 }
2459
2460 ret = qemu_loadvm_state_header(f);
2461 if (ret) {
2462 return ret;
2463 }
2464
2465 if (qemu_loadvm_state_setup(f) != 0) {
2466 return -EINVAL;
2467 }
2468
2469 cpu_synchronize_all_pre_loadvm();
2470
2471 ret = qemu_loadvm_state_main(f, mis);
2472 qemu_event_set(&mis->main_thread_load_event);
2473
2474 trace_qemu_loadvm_state_post_main(ret);
2475
2476 if (mis->have_listen_thread) {
2477 /* Listen thread still going, can't clean up yet */
2478 return ret;
2479 }
2480
2481 if (ret == 0) {
2482 ret = qemu_file_get_error(f);
2483 }
2484
2485 /*
2486 * Try to read in the VMDESC section as well, so that dumping tools that
2487 * intercept our migration stream have the chance to see it.
2488 */
2489
2490 /* We've got to be careful; if we don't read the data and just shut the fd
2491 * then the sender can error if we close while it's still sending.
2492 * We also mustn't read data that isn't there; some transports (RDMA)
2493 * will stall waiting for that data when the source has already closed.
2494 */
2495 if (ret == 0 && should_send_vmdesc()) {
2496 uint8_t *buf;
2497 uint32_t size;
2498 uint8_t section_type = qemu_get_byte(f);
2499
2500 if (section_type != QEMU_VM_VMDESCRIPTION) {
2501 error_report("Expected vmdescription section, but got %d",
2502 section_type);
2503 /*
2504 * It doesn't seem worth failing at this point since
2505 * we apparently have an otherwise valid VM state
2506 */
2507 } else {
2508 buf = g_malloc(0x1000);
2509 size = qemu_get_be32(f);
2510
2511 while (size > 0) {
2512 uint32_t read_chunk = MIN(size, 0x1000);
2513 qemu_get_buffer(f, buf, read_chunk);
2514 size -= read_chunk;
2515 }
2516 g_free(buf);
2517 }
2518 }
2519
2520 qemu_loadvm_state_cleanup();
2521 cpu_synchronize_all_post_init();
2522
2523 return ret;
2524 }
2525
2526 int qemu_load_device_state(QEMUFile *f)
2527 {
2528 MigrationIncomingState *mis = migration_incoming_get_current();
2529 int ret;
2530
2531 /* Load QEMU_VM_SECTION_FULL section */
2532 ret = qemu_loadvm_state_main(f, mis);
2533 if (ret < 0) {
2534 error_report("Failed to load device state: %d", ret);
2535 return ret;
2536 }
2537
2538 cpu_synchronize_all_post_init();
2539 return 0;
2540 }
2541
2542 int save_snapshot(const char *name, Error **errp)
2543 {
2544 BlockDriverState *bs, *bs1;
2545 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2546 int ret = -1;
2547 QEMUFile *f;
2548 int saved_vm_running;
2549 uint64_t vm_state_size;
2550 qemu_timeval tv;
2551 struct tm tm;
2552 AioContext *aio_context;
2553
2554 if (migration_is_blocked(errp)) {
2555 return ret;
2556 }
2557
2558 if (!replay_can_snapshot()) {
2559 error_setg(errp, "Record/replay does not allow making snapshot "
2560 "right now. Try once more later.");
2561 return ret;
2562 }
2563
2564 if (!bdrv_all_can_snapshot(&bs)) {
2565 error_setg(errp, "Device '%s' is writable but does not support "
2566 "snapshots", bdrv_get_device_name(bs));
2567 return ret;
2568 }
2569
2570 /* Delete old snapshots of the same name */
2571 if (name) {
2572 ret = bdrv_all_delete_snapshot(name, &bs1, errp);
2573 if (ret < 0) {
2574 error_prepend(errp, "Error while deleting snapshot on device "
2575 "'%s': ", bdrv_get_device_name(bs1));
2576 return ret;
2577 }
2578 }
2579
2580 bs = bdrv_all_find_vmstate_bs();
2581 if (bs == NULL) {
2582 error_setg(errp, "No block device can accept snapshots");
2583 return ret;
2584 }
2585 aio_context = bdrv_get_aio_context(bs);
2586
2587 saved_vm_running = runstate_is_running();
2588
2589 ret = global_state_store();
2590 if (ret) {
2591 error_setg(errp, "Error saving global state");
2592 return ret;
2593 }
2594 vm_stop(RUN_STATE_SAVE_VM);
2595
2596 bdrv_drain_all_begin();
2597
2598 aio_context_acquire(aio_context);
2599
2600 memset(sn, 0, sizeof(*sn));
2601
2602 /* fill auxiliary fields */
2603 qemu_gettimeofday(&tv);
2604 sn->date_sec = tv.tv_sec;
2605 sn->date_nsec = tv.tv_usec * 1000;
2606 sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2607
2608 if (name) {
2609 ret = bdrv_snapshot_find(bs, old_sn, name);
2610 if (ret >= 0) {
2611 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2612 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2613 } else {
2614 pstrcpy(sn->name, sizeof(sn->name), name);
2615 }
2616 } else {
2617 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2618 localtime_r((const time_t *)&tv.tv_sec, &tm);
2619 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2620 }
2621
2622 /* save the VM state */
2623 f = qemu_fopen_bdrv(bs, 1);
2624 if (!f) {
2625 error_setg(errp, "Could not open VM state file");
2626 goto the_end;
2627 }
2628 ret = qemu_savevm_state(f, errp);
2629 vm_state_size = qemu_ftell(f);
2630 qemu_fclose(f);
2631 if (ret < 0) {
2632 goto the_end;
2633 }
2634
2635 /* The bdrv_all_create_snapshot() call that follows acquires the AioContext
2636 * for itself. BDRV_POLL_WHILE() does not support nested locking because
2637 * it only releases the lock once. Therefore synchronous I/O will deadlock
2638 * unless we release the AioContext before bdrv_all_create_snapshot().
2639 */
2640 aio_context_release(aio_context);
2641 aio_context = NULL;
2642
2643 ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs);
2644 if (ret < 0) {
2645 error_setg(errp, "Error while creating snapshot on '%s'",
2646 bdrv_get_device_name(bs));
2647 goto the_end;
2648 }
2649
2650 ret = 0;
2651
2652 the_end:
2653 if (aio_context) {
2654 aio_context_release(aio_context);
2655 }
2656
2657 bdrv_drain_all_end();
2658
2659 if (saved_vm_running) {
2660 vm_start();
2661 }
2662 return ret;
2663 }
2664
2665 void qmp_xen_save_devices_state(const char *filename, bool has_live, bool live,
2666 Error **errp)
2667 {
2668 QEMUFile *f;
2669 QIOChannelFile *ioc;
2670 int saved_vm_running;
2671 int ret;
2672
2673 if (!has_live) {
2674 /* live default to true so old version of Xen tool stack can have a
2675 * successfull live migration */
2676 live = true;
2677 }
2678
2679 saved_vm_running = runstate_is_running();
2680 vm_stop(RUN_STATE_SAVE_VM);
2681 global_state_store_running();
2682
2683 ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp);
2684 if (!ioc) {
2685 goto the_end;
2686 }
2687 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state");
2688 f = qemu_fopen_channel_output(QIO_CHANNEL(ioc));
2689 object_unref(OBJECT(ioc));
2690 ret = qemu_save_device_state(f);
2691 if (ret < 0 || qemu_fclose(f) < 0) {
2692 error_setg(errp, QERR_IO_ERROR);
2693 } else {
2694 /* libxl calls the QMP command "stop" before calling
2695 * "xen-save-devices-state" and in case of migration failure, libxl
2696 * would call "cont".
2697 * So call bdrv_inactivate_all (release locks) here to let the other
2698 * side of the migration take controle of the images.
2699 */
2700 if (live && !saved_vm_running) {
2701 ret = bdrv_inactivate_all();
2702 if (ret) {
2703 error_setg(errp, "%s: bdrv_inactivate_all() failed (%d)",
2704 __func__, ret);
2705 }
2706 }
2707 }
2708
2709 the_end:
2710 if (saved_vm_running) {
2711 vm_start();
2712 }
2713 }
2714
2715 void qmp_xen_load_devices_state(const char *filename, Error **errp)
2716 {
2717 QEMUFile *f;
2718 QIOChannelFile *ioc;
2719 int ret;
2720
2721 /* Guest must be paused before loading the device state; the RAM state
2722 * will already have been loaded by xc
2723 */
2724 if (runstate_is_running()) {
2725 error_setg(errp, "Cannot update device state while vm is running");
2726 return;
2727 }
2728 vm_stop(RUN_STATE_RESTORE_VM);
2729
2730 ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp);
2731 if (!ioc) {
2732 return;
2733 }
2734 qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state");
2735 f = qemu_fopen_channel_input(QIO_CHANNEL(ioc));
2736 object_unref(OBJECT(ioc));
2737
2738 ret = qemu_loadvm_state(f);
2739 qemu_fclose(f);
2740 if (ret < 0) {
2741 error_setg(errp, QERR_IO_ERROR);
2742 }
2743 migration_incoming_state_destroy();
2744 }
2745
2746 int load_snapshot(const char *name, Error **errp)
2747 {
2748 BlockDriverState *bs, *bs_vm_state;
2749 QEMUSnapshotInfo sn;
2750 QEMUFile *f;
2751 int ret;
2752 AioContext *aio_context;
2753 MigrationIncomingState *mis = migration_incoming_get_current();
2754
2755 if (!replay_can_snapshot()) {
2756 error_setg(errp, "Record/replay does not allow loading snapshot "
2757 "right now. Try once more later.");
2758 return -EINVAL;
2759 }
2760
2761 if (!bdrv_all_can_snapshot(&bs)) {
2762 error_setg(errp,
2763 "Device '%s' is writable but does not support snapshots",
2764 bdrv_get_device_name(bs));
2765 return -ENOTSUP;
2766 }
2767 ret = bdrv_all_find_snapshot(name, &bs);
2768 if (ret < 0) {
2769 error_setg(errp,
2770 "Device '%s' does not have the requested snapshot '%s'",
2771 bdrv_get_device_name(bs), name);
2772 return ret;
2773 }
2774
2775 bs_vm_state = bdrv_all_find_vmstate_bs();
2776 if (!bs_vm_state) {
2777 error_setg(errp, "No block device supports snapshots");
2778 return -ENOTSUP;
2779 }
2780 aio_context = bdrv_get_aio_context(bs_vm_state);
2781
2782 /* Don't even try to load empty VM states */
2783 aio_context_acquire(aio_context);
2784 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2785 aio_context_release(aio_context);
2786 if (ret < 0) {
2787 return ret;
2788 } else if (sn.vm_state_size == 0) {
2789 error_setg(errp, "This is a disk-only snapshot. Revert to it "
2790 " offline using qemu-img");
2791 return -EINVAL;
2792 }
2793
2794 /* Flush all IO requests so they don't interfere with the new state. */
2795 bdrv_drain_all_begin();
2796
2797 ret = bdrv_all_goto_snapshot(name, &bs, errp);
2798 if (ret < 0) {
2799 error_prepend(errp, "Could not load snapshot '%s' on '%s': ",
2800 name, bdrv_get_device_name(bs));
2801 goto err_drain;
2802 }
2803
2804 /* restore the VM state */
2805 f = qemu_fopen_bdrv(bs_vm_state, 0);
2806 if (!f) {
2807 error_setg(errp, "Could not open VM state file");
2808 ret = -EINVAL;
2809 goto err_drain;
2810 }
2811
2812 qemu_system_reset(SHUTDOWN_CAUSE_NONE);
2813 mis->from_src_file = f;
2814
2815 aio_context_acquire(aio_context);
2816 ret = qemu_loadvm_state(f);
2817 migration_incoming_state_destroy();
2818 aio_context_release(aio_context);
2819
2820 bdrv_drain_all_end();
2821
2822 if (ret < 0) {
2823 error_setg(errp, "Error %d while loading VM state", ret);
2824 return ret;
2825 }
2826
2827 return 0;
2828
2829 err_drain:
2830 bdrv_drain_all_end();
2831 return ret;
2832 }
2833
2834 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2835 {
2836 qemu_ram_set_idstr(mr->ram_block,
2837 memory_region_name(mr), dev);
2838 qemu_ram_set_migratable(mr->ram_block);
2839 }
2840
2841 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2842 {
2843 qemu_ram_unset_idstr(mr->ram_block);
2844 qemu_ram_unset_migratable(mr->ram_block);
2845 }
2846
2847 void vmstate_register_ram_global(MemoryRegion *mr)
2848 {
2849 vmstate_register_ram(mr, NULL);
2850 }
2851
2852 bool vmstate_check_only_migratable(const VMStateDescription *vmsd)
2853 {
2854 /* check needed if --only-migratable is specified */
2855 if (!only_migratable) {
2856 return true;
2857 }
2858
2859 return !(vmsd && vmsd->unmigratable);
2860 }