]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/compaction.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[thirdparty/linux.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
80
81 post_alloc_hook(page, order, __GFP_MOVABLE);
82 if (order)
83 split_page(page, order);
84
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
89 }
90
91 list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174 }
175
176 /*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
181 void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183 {
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207 {
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 zone->compact_cached_free_pfn =
219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
226 */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 if (!PageCompound(page))
230 return false;
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
238 }
239
240 /*
241 * This function is called to clear all cached information on pageblocks that
242 * should be skipped for page isolation when the migrate and free page scanner
243 * meet.
244 */
245 static void __reset_isolation_suitable(struct zone *zone)
246 {
247 unsigned long start_pfn = zone->zone_start_pfn;
248 unsigned long end_pfn = zone_end_pfn(zone);
249 unsigned long pfn;
250
251 zone->compact_blockskip_flush = false;
252
253 /* Walk the zone and mark every pageblock as suitable for isolation */
254 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
255 struct page *page;
256
257 cond_resched();
258
259 page = pfn_to_online_page(pfn);
260 if (!page)
261 continue;
262 if (zone != page_zone(page))
263 continue;
264 if (pageblock_skip_persistent(page))
265 continue;
266
267 clear_pageblock_skip(page);
268 }
269
270 reset_cached_positions(zone);
271 }
272
273 void reset_isolation_suitable(pg_data_t *pgdat)
274 {
275 int zoneid;
276
277 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
278 struct zone *zone = &pgdat->node_zones[zoneid];
279 if (!populated_zone(zone))
280 continue;
281
282 /* Only flush if a full compaction finished recently */
283 if (zone->compact_blockskip_flush)
284 __reset_isolation_suitable(zone);
285 }
286 }
287
288 /*
289 * If no pages were isolated then mark this pageblock to be skipped in the
290 * future. The information is later cleared by __reset_isolation_suitable().
291 */
292 static void update_pageblock_skip(struct compact_control *cc,
293 struct page *page, unsigned long nr_isolated,
294 bool migrate_scanner)
295 {
296 struct zone *zone = cc->zone;
297 unsigned long pfn;
298
299 if (cc->no_set_skip_hint)
300 return;
301
302 if (!page)
303 return;
304
305 if (nr_isolated)
306 return;
307
308 set_pageblock_skip(page);
309
310 pfn = page_to_pfn(page);
311
312 /* Update where async and sync compaction should restart */
313 if (migrate_scanner) {
314 if (pfn > zone->compact_cached_migrate_pfn[0])
315 zone->compact_cached_migrate_pfn[0] = pfn;
316 if (cc->mode != MIGRATE_ASYNC &&
317 pfn > zone->compact_cached_migrate_pfn[1])
318 zone->compact_cached_migrate_pfn[1] = pfn;
319 } else {
320 if (pfn < zone->compact_cached_free_pfn)
321 zone->compact_cached_free_pfn = pfn;
322 }
323 }
324 #else
325 static inline bool isolation_suitable(struct compact_control *cc,
326 struct page *page)
327 {
328 return true;
329 }
330
331 static inline bool pageblock_skip_persistent(struct page *page)
332 {
333 return false;
334 }
335
336 static inline void update_pageblock_skip(struct compact_control *cc,
337 struct page *page, unsigned long nr_isolated,
338 bool migrate_scanner)
339 {
340 }
341 #endif /* CONFIG_COMPACTION */
342
343 /*
344 * Compaction requires the taking of some coarse locks that are potentially
345 * very heavily contended. For async compaction, back out if the lock cannot
346 * be taken immediately. For sync compaction, spin on the lock if needed.
347 *
348 * Returns true if the lock is held
349 * Returns false if the lock is not held and compaction should abort
350 */
351 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
352 struct compact_control *cc)
353 {
354 if (cc->mode == MIGRATE_ASYNC) {
355 if (!spin_trylock_irqsave(lock, *flags)) {
356 cc->contended = true;
357 return false;
358 }
359 } else {
360 spin_lock_irqsave(lock, *flags);
361 }
362
363 return true;
364 }
365
366 /*
367 * Compaction requires the taking of some coarse locks that are potentially
368 * very heavily contended. The lock should be periodically unlocked to avoid
369 * having disabled IRQs for a long time, even when there is nobody waiting on
370 * the lock. It might also be that allowing the IRQs will result in
371 * need_resched() becoming true. If scheduling is needed, async compaction
372 * aborts. Sync compaction schedules.
373 * Either compaction type will also abort if a fatal signal is pending.
374 * In either case if the lock was locked, it is dropped and not regained.
375 *
376 * Returns true if compaction should abort due to fatal signal pending, or
377 * async compaction due to need_resched()
378 * Returns false when compaction can continue (sync compaction might have
379 * scheduled)
380 */
381 static bool compact_unlock_should_abort(spinlock_t *lock,
382 unsigned long flags, bool *locked, struct compact_control *cc)
383 {
384 if (*locked) {
385 spin_unlock_irqrestore(lock, flags);
386 *locked = false;
387 }
388
389 if (fatal_signal_pending(current)) {
390 cc->contended = true;
391 return true;
392 }
393
394 if (need_resched()) {
395 if (cc->mode == MIGRATE_ASYNC) {
396 cc->contended = true;
397 return true;
398 }
399 cond_resched();
400 }
401
402 return false;
403 }
404
405 /*
406 * Aside from avoiding lock contention, compaction also periodically checks
407 * need_resched() and either schedules in sync compaction or aborts async
408 * compaction. This is similar to what compact_unlock_should_abort() does, but
409 * is used where no lock is concerned.
410 *
411 * Returns false when no scheduling was needed, or sync compaction scheduled.
412 * Returns true when async compaction should abort.
413 */
414 static inline bool compact_should_abort(struct compact_control *cc)
415 {
416 /* async compaction aborts if contended */
417 if (need_resched()) {
418 if (cc->mode == MIGRATE_ASYNC) {
419 cc->contended = true;
420 return true;
421 }
422
423 cond_resched();
424 }
425
426 return false;
427 }
428
429 /*
430 * Isolate free pages onto a private freelist. If @strict is true, will abort
431 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
432 * (even though it may still end up isolating some pages).
433 */
434 static unsigned long isolate_freepages_block(struct compact_control *cc,
435 unsigned long *start_pfn,
436 unsigned long end_pfn,
437 struct list_head *freelist,
438 bool strict)
439 {
440 int nr_scanned = 0, total_isolated = 0;
441 struct page *cursor, *valid_page = NULL;
442 unsigned long flags = 0;
443 bool locked = false;
444 unsigned long blockpfn = *start_pfn;
445 unsigned int order;
446
447 cursor = pfn_to_page(blockpfn);
448
449 /* Isolate free pages. */
450 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
451 int isolated;
452 struct page *page = cursor;
453
454 /*
455 * Periodically drop the lock (if held) regardless of its
456 * contention, to give chance to IRQs. Abort if fatal signal
457 * pending or async compaction detects need_resched()
458 */
459 if (!(blockpfn % SWAP_CLUSTER_MAX)
460 && compact_unlock_should_abort(&cc->zone->lock, flags,
461 &locked, cc))
462 break;
463
464 nr_scanned++;
465 if (!pfn_valid_within(blockpfn))
466 goto isolate_fail;
467
468 if (!valid_page)
469 valid_page = page;
470
471 /*
472 * For compound pages such as THP and hugetlbfs, we can save
473 * potentially a lot of iterations if we skip them at once.
474 * The check is racy, but we can consider only valid values
475 * and the only danger is skipping too much.
476 */
477 if (PageCompound(page)) {
478 const unsigned int order = compound_order(page);
479
480 if (likely(order < MAX_ORDER)) {
481 blockpfn += (1UL << order) - 1;
482 cursor += (1UL << order) - 1;
483 }
484 goto isolate_fail;
485 }
486
487 if (!PageBuddy(page))
488 goto isolate_fail;
489
490 /*
491 * If we already hold the lock, we can skip some rechecking.
492 * Note that if we hold the lock now, checked_pageblock was
493 * already set in some previous iteration (or strict is true),
494 * so it is correct to skip the suitable migration target
495 * recheck as well.
496 */
497 if (!locked) {
498 /*
499 * The zone lock must be held to isolate freepages.
500 * Unfortunately this is a very coarse lock and can be
501 * heavily contended if there are parallel allocations
502 * or parallel compactions. For async compaction do not
503 * spin on the lock and we acquire the lock as late as
504 * possible.
505 */
506 locked = compact_trylock_irqsave(&cc->zone->lock,
507 &flags, cc);
508 if (!locked)
509 break;
510
511 /* Recheck this is a buddy page under lock */
512 if (!PageBuddy(page))
513 goto isolate_fail;
514 }
515
516 /* Found a free page, will break it into order-0 pages */
517 order = page_order(page);
518 isolated = __isolate_free_page(page, order);
519 if (!isolated)
520 break;
521 set_page_private(page, order);
522
523 total_isolated += isolated;
524 cc->nr_freepages += isolated;
525 list_add_tail(&page->lru, freelist);
526
527 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
528 blockpfn += isolated;
529 break;
530 }
531 /* Advance to the end of split page */
532 blockpfn += isolated - 1;
533 cursor += isolated - 1;
534 continue;
535
536 isolate_fail:
537 if (strict)
538 break;
539 else
540 continue;
541
542 }
543
544 if (locked)
545 spin_unlock_irqrestore(&cc->zone->lock, flags);
546
547 /*
548 * There is a tiny chance that we have read bogus compound_order(),
549 * so be careful to not go outside of the pageblock.
550 */
551 if (unlikely(blockpfn > end_pfn))
552 blockpfn = end_pfn;
553
554 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
555 nr_scanned, total_isolated);
556
557 /* Record how far we have got within the block */
558 *start_pfn = blockpfn;
559
560 /*
561 * If strict isolation is requested by CMA then check that all the
562 * pages requested were isolated. If there were any failures, 0 is
563 * returned and CMA will fail.
564 */
565 if (strict && blockpfn < end_pfn)
566 total_isolated = 0;
567
568 /* Update the pageblock-skip if the whole pageblock was scanned */
569 if (blockpfn == end_pfn)
570 update_pageblock_skip(cc, valid_page, total_isolated, false);
571
572 cc->total_free_scanned += nr_scanned;
573 if (total_isolated)
574 count_compact_events(COMPACTISOLATED, total_isolated);
575 return total_isolated;
576 }
577
578 /**
579 * isolate_freepages_range() - isolate free pages.
580 * @cc: Compaction control structure.
581 * @start_pfn: The first PFN to start isolating.
582 * @end_pfn: The one-past-last PFN.
583 *
584 * Non-free pages, invalid PFNs, or zone boundaries within the
585 * [start_pfn, end_pfn) range are considered errors, cause function to
586 * undo its actions and return zero.
587 *
588 * Otherwise, function returns one-past-the-last PFN of isolated page
589 * (which may be greater then end_pfn if end fell in a middle of
590 * a free page).
591 */
592 unsigned long
593 isolate_freepages_range(struct compact_control *cc,
594 unsigned long start_pfn, unsigned long end_pfn)
595 {
596 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
597 LIST_HEAD(freelist);
598
599 pfn = start_pfn;
600 block_start_pfn = pageblock_start_pfn(pfn);
601 if (block_start_pfn < cc->zone->zone_start_pfn)
602 block_start_pfn = cc->zone->zone_start_pfn;
603 block_end_pfn = pageblock_end_pfn(pfn);
604
605 for (; pfn < end_pfn; pfn += isolated,
606 block_start_pfn = block_end_pfn,
607 block_end_pfn += pageblock_nr_pages) {
608 /* Protect pfn from changing by isolate_freepages_block */
609 unsigned long isolate_start_pfn = pfn;
610
611 block_end_pfn = min(block_end_pfn, end_pfn);
612
613 /*
614 * pfn could pass the block_end_pfn if isolated freepage
615 * is more than pageblock order. In this case, we adjust
616 * scanning range to right one.
617 */
618 if (pfn >= block_end_pfn) {
619 block_start_pfn = pageblock_start_pfn(pfn);
620 block_end_pfn = pageblock_end_pfn(pfn);
621 block_end_pfn = min(block_end_pfn, end_pfn);
622 }
623
624 if (!pageblock_pfn_to_page(block_start_pfn,
625 block_end_pfn, cc->zone))
626 break;
627
628 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
629 block_end_pfn, &freelist, true);
630
631 /*
632 * In strict mode, isolate_freepages_block() returns 0 if
633 * there are any holes in the block (ie. invalid PFNs or
634 * non-free pages).
635 */
636 if (!isolated)
637 break;
638
639 /*
640 * If we managed to isolate pages, it is always (1 << n) *
641 * pageblock_nr_pages for some non-negative n. (Max order
642 * page may span two pageblocks).
643 */
644 }
645
646 /* __isolate_free_page() does not map the pages */
647 map_pages(&freelist);
648
649 if (pfn < end_pfn) {
650 /* Loop terminated early, cleanup. */
651 release_freepages(&freelist);
652 return 0;
653 }
654
655 /* We don't use freelists for anything. */
656 return pfn;
657 }
658
659 /* Similar to reclaim, but different enough that they don't share logic */
660 static bool too_many_isolated(struct zone *zone)
661 {
662 unsigned long active, inactive, isolated;
663
664 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
665 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
666 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
667 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
668 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
669 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
670
671 return isolated > (inactive + active) / 2;
672 }
673
674 /**
675 * isolate_migratepages_block() - isolate all migrate-able pages within
676 * a single pageblock
677 * @cc: Compaction control structure.
678 * @low_pfn: The first PFN to isolate
679 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
680 * @isolate_mode: Isolation mode to be used.
681 *
682 * Isolate all pages that can be migrated from the range specified by
683 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
684 * Returns zero if there is a fatal signal pending, otherwise PFN of the
685 * first page that was not scanned (which may be both less, equal to or more
686 * than end_pfn).
687 *
688 * The pages are isolated on cc->migratepages list (not required to be empty),
689 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
690 * is neither read nor updated.
691 */
692 static unsigned long
693 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
694 unsigned long end_pfn, isolate_mode_t isolate_mode)
695 {
696 struct zone *zone = cc->zone;
697 unsigned long nr_scanned = 0, nr_isolated = 0;
698 struct lruvec *lruvec;
699 unsigned long flags = 0;
700 bool locked = false;
701 struct page *page = NULL, *valid_page = NULL;
702 unsigned long start_pfn = low_pfn;
703 bool skip_on_failure = false;
704 unsigned long next_skip_pfn = 0;
705
706 /*
707 * Ensure that there are not too many pages isolated from the LRU
708 * list by either parallel reclaimers or compaction. If there are,
709 * delay for some time until fewer pages are isolated
710 */
711 while (unlikely(too_many_isolated(zone))) {
712 /* async migration should just abort */
713 if (cc->mode == MIGRATE_ASYNC)
714 return 0;
715
716 congestion_wait(BLK_RW_ASYNC, HZ/10);
717
718 if (fatal_signal_pending(current))
719 return 0;
720 }
721
722 if (compact_should_abort(cc))
723 return 0;
724
725 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
726 skip_on_failure = true;
727 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
728 }
729
730 /* Time to isolate some pages for migration */
731 for (; low_pfn < end_pfn; low_pfn++) {
732
733 if (skip_on_failure && low_pfn >= next_skip_pfn) {
734 /*
735 * We have isolated all migration candidates in the
736 * previous order-aligned block, and did not skip it due
737 * to failure. We should migrate the pages now and
738 * hopefully succeed compaction.
739 */
740 if (nr_isolated)
741 break;
742
743 /*
744 * We failed to isolate in the previous order-aligned
745 * block. Set the new boundary to the end of the
746 * current block. Note we can't simply increase
747 * next_skip_pfn by 1 << order, as low_pfn might have
748 * been incremented by a higher number due to skipping
749 * a compound or a high-order buddy page in the
750 * previous loop iteration.
751 */
752 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
753 }
754
755 /*
756 * Periodically drop the lock (if held) regardless of its
757 * contention, to give chance to IRQs. Abort async compaction
758 * if contended.
759 */
760 if (!(low_pfn % SWAP_CLUSTER_MAX)
761 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
762 &locked, cc))
763 break;
764
765 if (!pfn_valid_within(low_pfn))
766 goto isolate_fail;
767 nr_scanned++;
768
769 page = pfn_to_page(low_pfn);
770
771 if (!valid_page)
772 valid_page = page;
773
774 /*
775 * Skip if free. We read page order here without zone lock
776 * which is generally unsafe, but the race window is small and
777 * the worst thing that can happen is that we skip some
778 * potential isolation targets.
779 */
780 if (PageBuddy(page)) {
781 unsigned long freepage_order = page_order_unsafe(page);
782
783 /*
784 * Without lock, we cannot be sure that what we got is
785 * a valid page order. Consider only values in the
786 * valid order range to prevent low_pfn overflow.
787 */
788 if (freepage_order > 0 && freepage_order < MAX_ORDER)
789 low_pfn += (1UL << freepage_order) - 1;
790 continue;
791 }
792
793 /*
794 * Regardless of being on LRU, compound pages such as THP and
795 * hugetlbfs are not to be compacted. We can potentially save
796 * a lot of iterations if we skip them at once. The check is
797 * racy, but we can consider only valid values and the only
798 * danger is skipping too much.
799 */
800 if (PageCompound(page)) {
801 const unsigned int order = compound_order(page);
802
803 if (likely(order < MAX_ORDER))
804 low_pfn += (1UL << order) - 1;
805 goto isolate_fail;
806 }
807
808 /*
809 * Check may be lockless but that's ok as we recheck later.
810 * It's possible to migrate LRU and non-lru movable pages.
811 * Skip any other type of page
812 */
813 if (!PageLRU(page)) {
814 /*
815 * __PageMovable can return false positive so we need
816 * to verify it under page_lock.
817 */
818 if (unlikely(__PageMovable(page)) &&
819 !PageIsolated(page)) {
820 if (locked) {
821 spin_unlock_irqrestore(zone_lru_lock(zone),
822 flags);
823 locked = false;
824 }
825
826 if (!isolate_movable_page(page, isolate_mode))
827 goto isolate_success;
828 }
829
830 goto isolate_fail;
831 }
832
833 /*
834 * Migration will fail if an anonymous page is pinned in memory,
835 * so avoid taking lru_lock and isolating it unnecessarily in an
836 * admittedly racy check.
837 */
838 if (!page_mapping(page) &&
839 page_count(page) > page_mapcount(page))
840 goto isolate_fail;
841
842 /*
843 * Only allow to migrate anonymous pages in GFP_NOFS context
844 * because those do not depend on fs locks.
845 */
846 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
847 goto isolate_fail;
848
849 /* If we already hold the lock, we can skip some rechecking */
850 if (!locked) {
851 locked = compact_trylock_irqsave(zone_lru_lock(zone),
852 &flags, cc);
853 if (!locked)
854 break;
855
856 /* Recheck PageLRU and PageCompound under lock */
857 if (!PageLRU(page))
858 goto isolate_fail;
859
860 /*
861 * Page become compound since the non-locked check,
862 * and it's on LRU. It can only be a THP so the order
863 * is safe to read and it's 0 for tail pages.
864 */
865 if (unlikely(PageCompound(page))) {
866 low_pfn += (1UL << compound_order(page)) - 1;
867 goto isolate_fail;
868 }
869 }
870
871 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
872
873 /* Try isolate the page */
874 if (__isolate_lru_page(page, isolate_mode) != 0)
875 goto isolate_fail;
876
877 VM_BUG_ON_PAGE(PageCompound(page), page);
878
879 /* Successfully isolated */
880 del_page_from_lru_list(page, lruvec, page_lru(page));
881 inc_node_page_state(page,
882 NR_ISOLATED_ANON + page_is_file_cache(page));
883
884 isolate_success:
885 list_add(&page->lru, &cc->migratepages);
886 cc->nr_migratepages++;
887 nr_isolated++;
888
889 /*
890 * Record where we could have freed pages by migration and not
891 * yet flushed them to buddy allocator.
892 * - this is the lowest page that was isolated and likely be
893 * then freed by migration.
894 */
895 if (!cc->last_migrated_pfn)
896 cc->last_migrated_pfn = low_pfn;
897
898 /* Avoid isolating too much */
899 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
900 ++low_pfn;
901 break;
902 }
903
904 continue;
905 isolate_fail:
906 if (!skip_on_failure)
907 continue;
908
909 /*
910 * We have isolated some pages, but then failed. Release them
911 * instead of migrating, as we cannot form the cc->order buddy
912 * page anyway.
913 */
914 if (nr_isolated) {
915 if (locked) {
916 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
917 locked = false;
918 }
919 putback_movable_pages(&cc->migratepages);
920 cc->nr_migratepages = 0;
921 cc->last_migrated_pfn = 0;
922 nr_isolated = 0;
923 }
924
925 if (low_pfn < next_skip_pfn) {
926 low_pfn = next_skip_pfn - 1;
927 /*
928 * The check near the loop beginning would have updated
929 * next_skip_pfn too, but this is a bit simpler.
930 */
931 next_skip_pfn += 1UL << cc->order;
932 }
933 }
934
935 /*
936 * The PageBuddy() check could have potentially brought us outside
937 * the range to be scanned.
938 */
939 if (unlikely(low_pfn > end_pfn))
940 low_pfn = end_pfn;
941
942 if (locked)
943 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
944
945 /*
946 * Update the pageblock-skip information and cached scanner pfn,
947 * if the whole pageblock was scanned without isolating any page.
948 */
949 if (low_pfn == end_pfn)
950 update_pageblock_skip(cc, valid_page, nr_isolated, true);
951
952 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
953 nr_scanned, nr_isolated);
954
955 cc->total_migrate_scanned += nr_scanned;
956 if (nr_isolated)
957 count_compact_events(COMPACTISOLATED, nr_isolated);
958
959 return low_pfn;
960 }
961
962 /**
963 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
964 * @cc: Compaction control structure.
965 * @start_pfn: The first PFN to start isolating.
966 * @end_pfn: The one-past-last PFN.
967 *
968 * Returns zero if isolation fails fatally due to e.g. pending signal.
969 * Otherwise, function returns one-past-the-last PFN of isolated page
970 * (which may be greater than end_pfn if end fell in a middle of a THP page).
971 */
972 unsigned long
973 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
974 unsigned long end_pfn)
975 {
976 unsigned long pfn, block_start_pfn, block_end_pfn;
977
978 /* Scan block by block. First and last block may be incomplete */
979 pfn = start_pfn;
980 block_start_pfn = pageblock_start_pfn(pfn);
981 if (block_start_pfn < cc->zone->zone_start_pfn)
982 block_start_pfn = cc->zone->zone_start_pfn;
983 block_end_pfn = pageblock_end_pfn(pfn);
984
985 for (; pfn < end_pfn; pfn = block_end_pfn,
986 block_start_pfn = block_end_pfn,
987 block_end_pfn += pageblock_nr_pages) {
988
989 block_end_pfn = min(block_end_pfn, end_pfn);
990
991 if (!pageblock_pfn_to_page(block_start_pfn,
992 block_end_pfn, cc->zone))
993 continue;
994
995 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
996 ISOLATE_UNEVICTABLE);
997
998 if (!pfn)
999 break;
1000
1001 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1002 break;
1003 }
1004
1005 return pfn;
1006 }
1007
1008 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1009 #ifdef CONFIG_COMPACTION
1010
1011 static bool suitable_migration_source(struct compact_control *cc,
1012 struct page *page)
1013 {
1014 int block_mt;
1015
1016 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1017 return true;
1018
1019 block_mt = get_pageblock_migratetype(page);
1020
1021 if (cc->migratetype == MIGRATE_MOVABLE)
1022 return is_migrate_movable(block_mt);
1023 else
1024 return block_mt == cc->migratetype;
1025 }
1026
1027 /* Returns true if the page is within a block suitable for migration to */
1028 static bool suitable_migration_target(struct compact_control *cc,
1029 struct page *page)
1030 {
1031 /* If the page is a large free page, then disallow migration */
1032 if (PageBuddy(page)) {
1033 /*
1034 * We are checking page_order without zone->lock taken. But
1035 * the only small danger is that we skip a potentially suitable
1036 * pageblock, so it's not worth to check order for valid range.
1037 */
1038 if (page_order_unsafe(page) >= pageblock_order)
1039 return false;
1040 }
1041
1042 if (cc->ignore_block_suitable)
1043 return true;
1044
1045 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1046 if (is_migrate_movable(get_pageblock_migratetype(page)))
1047 return true;
1048
1049 /* Otherwise skip the block */
1050 return false;
1051 }
1052
1053 /*
1054 * Test whether the free scanner has reached the same or lower pageblock than
1055 * the migration scanner, and compaction should thus terminate.
1056 */
1057 static inline bool compact_scanners_met(struct compact_control *cc)
1058 {
1059 return (cc->free_pfn >> pageblock_order)
1060 <= (cc->migrate_pfn >> pageblock_order);
1061 }
1062
1063 /*
1064 * Based on information in the current compact_control, find blocks
1065 * suitable for isolating free pages from and then isolate them.
1066 */
1067 static void isolate_freepages(struct compact_control *cc)
1068 {
1069 struct zone *zone = cc->zone;
1070 struct page *page;
1071 unsigned long block_start_pfn; /* start of current pageblock */
1072 unsigned long isolate_start_pfn; /* exact pfn we start at */
1073 unsigned long block_end_pfn; /* end of current pageblock */
1074 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1075 struct list_head *freelist = &cc->freepages;
1076
1077 /*
1078 * Initialise the free scanner. The starting point is where we last
1079 * successfully isolated from, zone-cached value, or the end of the
1080 * zone when isolating for the first time. For looping we also need
1081 * this pfn aligned down to the pageblock boundary, because we do
1082 * block_start_pfn -= pageblock_nr_pages in the for loop.
1083 * For ending point, take care when isolating in last pageblock of a
1084 * a zone which ends in the middle of a pageblock.
1085 * The low boundary is the end of the pageblock the migration scanner
1086 * is using.
1087 */
1088 isolate_start_pfn = cc->free_pfn;
1089 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1090 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1091 zone_end_pfn(zone));
1092 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1093
1094 /*
1095 * Isolate free pages until enough are available to migrate the
1096 * pages on cc->migratepages. We stop searching if the migrate
1097 * and free page scanners meet or enough free pages are isolated.
1098 */
1099 for (; block_start_pfn >= low_pfn;
1100 block_end_pfn = block_start_pfn,
1101 block_start_pfn -= pageblock_nr_pages,
1102 isolate_start_pfn = block_start_pfn) {
1103 /*
1104 * This can iterate a massively long zone without finding any
1105 * suitable migration targets, so periodically check if we need
1106 * to schedule, or even abort async compaction.
1107 */
1108 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1109 && compact_should_abort(cc))
1110 break;
1111
1112 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1113 zone);
1114 if (!page)
1115 continue;
1116
1117 /* Check the block is suitable for migration */
1118 if (!suitable_migration_target(cc, page))
1119 continue;
1120
1121 /* If isolation recently failed, do not retry */
1122 if (!isolation_suitable(cc, page))
1123 continue;
1124
1125 /* Found a block suitable for isolating free pages from. */
1126 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1127 freelist, false);
1128
1129 /*
1130 * If we isolated enough freepages, or aborted due to lock
1131 * contention, terminate.
1132 */
1133 if ((cc->nr_freepages >= cc->nr_migratepages)
1134 || cc->contended) {
1135 if (isolate_start_pfn >= block_end_pfn) {
1136 /*
1137 * Restart at previous pageblock if more
1138 * freepages can be isolated next time.
1139 */
1140 isolate_start_pfn =
1141 block_start_pfn - pageblock_nr_pages;
1142 }
1143 break;
1144 } else if (isolate_start_pfn < block_end_pfn) {
1145 /*
1146 * If isolation failed early, do not continue
1147 * needlessly.
1148 */
1149 break;
1150 }
1151 }
1152
1153 /* __isolate_free_page() does not map the pages */
1154 map_pages(freelist);
1155
1156 /*
1157 * Record where the free scanner will restart next time. Either we
1158 * broke from the loop and set isolate_start_pfn based on the last
1159 * call to isolate_freepages_block(), or we met the migration scanner
1160 * and the loop terminated due to isolate_start_pfn < low_pfn
1161 */
1162 cc->free_pfn = isolate_start_pfn;
1163 }
1164
1165 /*
1166 * This is a migrate-callback that "allocates" freepages by taking pages
1167 * from the isolated freelists in the block we are migrating to.
1168 */
1169 static struct page *compaction_alloc(struct page *migratepage,
1170 unsigned long data)
1171 {
1172 struct compact_control *cc = (struct compact_control *)data;
1173 struct page *freepage;
1174
1175 /*
1176 * Isolate free pages if necessary, and if we are not aborting due to
1177 * contention.
1178 */
1179 if (list_empty(&cc->freepages)) {
1180 if (!cc->contended)
1181 isolate_freepages(cc);
1182
1183 if (list_empty(&cc->freepages))
1184 return NULL;
1185 }
1186
1187 freepage = list_entry(cc->freepages.next, struct page, lru);
1188 list_del(&freepage->lru);
1189 cc->nr_freepages--;
1190
1191 return freepage;
1192 }
1193
1194 /*
1195 * This is a migrate-callback that "frees" freepages back to the isolated
1196 * freelist. All pages on the freelist are from the same zone, so there is no
1197 * special handling needed for NUMA.
1198 */
1199 static void compaction_free(struct page *page, unsigned long data)
1200 {
1201 struct compact_control *cc = (struct compact_control *)data;
1202
1203 list_add(&page->lru, &cc->freepages);
1204 cc->nr_freepages++;
1205 }
1206
1207 /* possible outcome of isolate_migratepages */
1208 typedef enum {
1209 ISOLATE_ABORT, /* Abort compaction now */
1210 ISOLATE_NONE, /* No pages isolated, continue scanning */
1211 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1212 } isolate_migrate_t;
1213
1214 /*
1215 * Allow userspace to control policy on scanning the unevictable LRU for
1216 * compactable pages.
1217 */
1218 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1219
1220 /*
1221 * Isolate all pages that can be migrated from the first suitable block,
1222 * starting at the block pointed to by the migrate scanner pfn within
1223 * compact_control.
1224 */
1225 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1226 struct compact_control *cc)
1227 {
1228 unsigned long block_start_pfn;
1229 unsigned long block_end_pfn;
1230 unsigned long low_pfn;
1231 struct page *page;
1232 const isolate_mode_t isolate_mode =
1233 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1234 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1235
1236 /*
1237 * Start at where we last stopped, or beginning of the zone as
1238 * initialized by compact_zone()
1239 */
1240 low_pfn = cc->migrate_pfn;
1241 block_start_pfn = pageblock_start_pfn(low_pfn);
1242 if (block_start_pfn < zone->zone_start_pfn)
1243 block_start_pfn = zone->zone_start_pfn;
1244
1245 /* Only scan within a pageblock boundary */
1246 block_end_pfn = pageblock_end_pfn(low_pfn);
1247
1248 /*
1249 * Iterate over whole pageblocks until we find the first suitable.
1250 * Do not cross the free scanner.
1251 */
1252 for (; block_end_pfn <= cc->free_pfn;
1253 low_pfn = block_end_pfn,
1254 block_start_pfn = block_end_pfn,
1255 block_end_pfn += pageblock_nr_pages) {
1256
1257 /*
1258 * This can potentially iterate a massively long zone with
1259 * many pageblocks unsuitable, so periodically check if we
1260 * need to schedule, or even abort async compaction.
1261 */
1262 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1263 && compact_should_abort(cc))
1264 break;
1265
1266 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1267 zone);
1268 if (!page)
1269 continue;
1270
1271 /* If isolation recently failed, do not retry */
1272 if (!isolation_suitable(cc, page))
1273 continue;
1274
1275 /*
1276 * For async compaction, also only scan in MOVABLE blocks.
1277 * Async compaction is optimistic to see if the minimum amount
1278 * of work satisfies the allocation.
1279 */
1280 if (!suitable_migration_source(cc, page))
1281 continue;
1282
1283 /* Perform the isolation */
1284 low_pfn = isolate_migratepages_block(cc, low_pfn,
1285 block_end_pfn, isolate_mode);
1286
1287 if (!low_pfn || cc->contended)
1288 return ISOLATE_ABORT;
1289
1290 /*
1291 * Either we isolated something and proceed with migration. Or
1292 * we failed and compact_zone should decide if we should
1293 * continue or not.
1294 */
1295 break;
1296 }
1297
1298 /* Record where migration scanner will be restarted. */
1299 cc->migrate_pfn = low_pfn;
1300
1301 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1302 }
1303
1304 /*
1305 * order == -1 is expected when compacting via
1306 * /proc/sys/vm/compact_memory
1307 */
1308 static inline bool is_via_compact_memory(int order)
1309 {
1310 return order == -1;
1311 }
1312
1313 static enum compact_result __compact_finished(struct zone *zone,
1314 struct compact_control *cc)
1315 {
1316 unsigned int order;
1317 const int migratetype = cc->migratetype;
1318
1319 if (cc->contended || fatal_signal_pending(current))
1320 return COMPACT_CONTENDED;
1321
1322 /* Compaction run completes if the migrate and free scanner meet */
1323 if (compact_scanners_met(cc)) {
1324 /* Let the next compaction start anew. */
1325 reset_cached_positions(zone);
1326
1327 /*
1328 * Mark that the PG_migrate_skip information should be cleared
1329 * by kswapd when it goes to sleep. kcompactd does not set the
1330 * flag itself as the decision to be clear should be directly
1331 * based on an allocation request.
1332 */
1333 if (cc->direct_compaction)
1334 zone->compact_blockskip_flush = true;
1335
1336 if (cc->whole_zone)
1337 return COMPACT_COMPLETE;
1338 else
1339 return COMPACT_PARTIAL_SKIPPED;
1340 }
1341
1342 if (is_via_compact_memory(cc->order))
1343 return COMPACT_CONTINUE;
1344
1345 if (cc->finishing_block) {
1346 /*
1347 * We have finished the pageblock, but better check again that
1348 * we really succeeded.
1349 */
1350 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1351 cc->finishing_block = false;
1352 else
1353 return COMPACT_CONTINUE;
1354 }
1355
1356 /* Direct compactor: Is a suitable page free? */
1357 for (order = cc->order; order < MAX_ORDER; order++) {
1358 struct free_area *area = &zone->free_area[order];
1359 bool can_steal;
1360
1361 /* Job done if page is free of the right migratetype */
1362 if (!list_empty(&area->free_list[migratetype]))
1363 return COMPACT_SUCCESS;
1364
1365 #ifdef CONFIG_CMA
1366 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1367 if (migratetype == MIGRATE_MOVABLE &&
1368 !list_empty(&area->free_list[MIGRATE_CMA]))
1369 return COMPACT_SUCCESS;
1370 #endif
1371 /*
1372 * Job done if allocation would steal freepages from
1373 * other migratetype buddy lists.
1374 */
1375 if (find_suitable_fallback(area, order, migratetype,
1376 true, &can_steal) != -1) {
1377
1378 /* movable pages are OK in any pageblock */
1379 if (migratetype == MIGRATE_MOVABLE)
1380 return COMPACT_SUCCESS;
1381
1382 /*
1383 * We are stealing for a non-movable allocation. Make
1384 * sure we finish compacting the current pageblock
1385 * first so it is as free as possible and we won't
1386 * have to steal another one soon. This only applies
1387 * to sync compaction, as async compaction operates
1388 * on pageblocks of the same migratetype.
1389 */
1390 if (cc->mode == MIGRATE_ASYNC ||
1391 IS_ALIGNED(cc->migrate_pfn,
1392 pageblock_nr_pages)) {
1393 return COMPACT_SUCCESS;
1394 }
1395
1396 cc->finishing_block = true;
1397 return COMPACT_CONTINUE;
1398 }
1399 }
1400
1401 return COMPACT_NO_SUITABLE_PAGE;
1402 }
1403
1404 static enum compact_result compact_finished(struct zone *zone,
1405 struct compact_control *cc)
1406 {
1407 int ret;
1408
1409 ret = __compact_finished(zone, cc);
1410 trace_mm_compaction_finished(zone, cc->order, ret);
1411 if (ret == COMPACT_NO_SUITABLE_PAGE)
1412 ret = COMPACT_CONTINUE;
1413
1414 return ret;
1415 }
1416
1417 /*
1418 * compaction_suitable: Is this suitable to run compaction on this zone now?
1419 * Returns
1420 * COMPACT_SKIPPED - If there are too few free pages for compaction
1421 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1422 * COMPACT_CONTINUE - If compaction should run now
1423 */
1424 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1425 unsigned int alloc_flags,
1426 int classzone_idx,
1427 unsigned long wmark_target)
1428 {
1429 unsigned long watermark;
1430
1431 if (is_via_compact_memory(order))
1432 return COMPACT_CONTINUE;
1433
1434 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1435 /*
1436 * If watermarks for high-order allocation are already met, there
1437 * should be no need for compaction at all.
1438 */
1439 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1440 alloc_flags))
1441 return COMPACT_SUCCESS;
1442
1443 /*
1444 * Watermarks for order-0 must be met for compaction to be able to
1445 * isolate free pages for migration targets. This means that the
1446 * watermark and alloc_flags have to match, or be more pessimistic than
1447 * the check in __isolate_free_page(). We don't use the direct
1448 * compactor's alloc_flags, as they are not relevant for freepage
1449 * isolation. We however do use the direct compactor's classzone_idx to
1450 * skip over zones where lowmem reserves would prevent allocation even
1451 * if compaction succeeds.
1452 * For costly orders, we require low watermark instead of min for
1453 * compaction to proceed to increase its chances.
1454 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1455 * suitable migration targets
1456 */
1457 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1458 low_wmark_pages(zone) : min_wmark_pages(zone);
1459 watermark += compact_gap(order);
1460 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1461 ALLOC_CMA, wmark_target))
1462 return COMPACT_SKIPPED;
1463
1464 return COMPACT_CONTINUE;
1465 }
1466
1467 enum compact_result compaction_suitable(struct zone *zone, int order,
1468 unsigned int alloc_flags,
1469 int classzone_idx)
1470 {
1471 enum compact_result ret;
1472 int fragindex;
1473
1474 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1475 zone_page_state(zone, NR_FREE_PAGES));
1476 /*
1477 * fragmentation index determines if allocation failures are due to
1478 * low memory or external fragmentation
1479 *
1480 * index of -1000 would imply allocations might succeed depending on
1481 * watermarks, but we already failed the high-order watermark check
1482 * index towards 0 implies failure is due to lack of memory
1483 * index towards 1000 implies failure is due to fragmentation
1484 *
1485 * Only compact if a failure would be due to fragmentation. Also
1486 * ignore fragindex for non-costly orders where the alternative to
1487 * a successful reclaim/compaction is OOM. Fragindex and the
1488 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1489 * excessive compaction for costly orders, but it should not be at the
1490 * expense of system stability.
1491 */
1492 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1493 fragindex = fragmentation_index(zone, order);
1494 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1495 ret = COMPACT_NOT_SUITABLE_ZONE;
1496 }
1497
1498 trace_mm_compaction_suitable(zone, order, ret);
1499 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1500 ret = COMPACT_SKIPPED;
1501
1502 return ret;
1503 }
1504
1505 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1506 int alloc_flags)
1507 {
1508 struct zone *zone;
1509 struct zoneref *z;
1510
1511 /*
1512 * Make sure at least one zone would pass __compaction_suitable if we continue
1513 * retrying the reclaim.
1514 */
1515 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1516 ac->nodemask) {
1517 unsigned long available;
1518 enum compact_result compact_result;
1519
1520 /*
1521 * Do not consider all the reclaimable memory because we do not
1522 * want to trash just for a single high order allocation which
1523 * is even not guaranteed to appear even if __compaction_suitable
1524 * is happy about the watermark check.
1525 */
1526 available = zone_reclaimable_pages(zone) / order;
1527 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1528 compact_result = __compaction_suitable(zone, order, alloc_flags,
1529 ac_classzone_idx(ac), available);
1530 if (compact_result != COMPACT_SKIPPED)
1531 return true;
1532 }
1533
1534 return false;
1535 }
1536
1537 static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1538 {
1539 enum compact_result ret;
1540 unsigned long start_pfn = zone->zone_start_pfn;
1541 unsigned long end_pfn = zone_end_pfn(zone);
1542 const bool sync = cc->mode != MIGRATE_ASYNC;
1543
1544 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1545 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1546 cc->classzone_idx);
1547 /* Compaction is likely to fail */
1548 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1549 return ret;
1550
1551 /* huh, compaction_suitable is returning something unexpected */
1552 VM_BUG_ON(ret != COMPACT_CONTINUE);
1553
1554 /*
1555 * Clear pageblock skip if there were failures recently and compaction
1556 * is about to be retried after being deferred.
1557 */
1558 if (compaction_restarting(zone, cc->order))
1559 __reset_isolation_suitable(zone);
1560
1561 /*
1562 * Setup to move all movable pages to the end of the zone. Used cached
1563 * information on where the scanners should start (unless we explicitly
1564 * want to compact the whole zone), but check that it is initialised
1565 * by ensuring the values are within zone boundaries.
1566 */
1567 if (cc->whole_zone) {
1568 cc->migrate_pfn = start_pfn;
1569 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1570 } else {
1571 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1572 cc->free_pfn = zone->compact_cached_free_pfn;
1573 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1574 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1575 zone->compact_cached_free_pfn = cc->free_pfn;
1576 }
1577 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1578 cc->migrate_pfn = start_pfn;
1579 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1580 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1581 }
1582
1583 if (cc->migrate_pfn == start_pfn)
1584 cc->whole_zone = true;
1585 }
1586
1587 cc->last_migrated_pfn = 0;
1588
1589 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1590 cc->free_pfn, end_pfn, sync);
1591
1592 migrate_prep_local();
1593
1594 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1595 int err;
1596
1597 switch (isolate_migratepages(zone, cc)) {
1598 case ISOLATE_ABORT:
1599 ret = COMPACT_CONTENDED;
1600 putback_movable_pages(&cc->migratepages);
1601 cc->nr_migratepages = 0;
1602 goto out;
1603 case ISOLATE_NONE:
1604 /*
1605 * We haven't isolated and migrated anything, but
1606 * there might still be unflushed migrations from
1607 * previous cc->order aligned block.
1608 */
1609 goto check_drain;
1610 case ISOLATE_SUCCESS:
1611 ;
1612 }
1613
1614 err = migrate_pages(&cc->migratepages, compaction_alloc,
1615 compaction_free, (unsigned long)cc, cc->mode,
1616 MR_COMPACTION);
1617
1618 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1619 &cc->migratepages);
1620
1621 /* All pages were either migrated or will be released */
1622 cc->nr_migratepages = 0;
1623 if (err) {
1624 putback_movable_pages(&cc->migratepages);
1625 /*
1626 * migrate_pages() may return -ENOMEM when scanners meet
1627 * and we want compact_finished() to detect it
1628 */
1629 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1630 ret = COMPACT_CONTENDED;
1631 goto out;
1632 }
1633 /*
1634 * We failed to migrate at least one page in the current
1635 * order-aligned block, so skip the rest of it.
1636 */
1637 if (cc->direct_compaction &&
1638 (cc->mode == MIGRATE_ASYNC)) {
1639 cc->migrate_pfn = block_end_pfn(
1640 cc->migrate_pfn - 1, cc->order);
1641 /* Draining pcplists is useless in this case */
1642 cc->last_migrated_pfn = 0;
1643
1644 }
1645 }
1646
1647 check_drain:
1648 /*
1649 * Has the migration scanner moved away from the previous
1650 * cc->order aligned block where we migrated from? If yes,
1651 * flush the pages that were freed, so that they can merge and
1652 * compact_finished() can detect immediately if allocation
1653 * would succeed.
1654 */
1655 if (cc->order > 0 && cc->last_migrated_pfn) {
1656 int cpu;
1657 unsigned long current_block_start =
1658 block_start_pfn(cc->migrate_pfn, cc->order);
1659
1660 if (cc->last_migrated_pfn < current_block_start) {
1661 cpu = get_cpu();
1662 lru_add_drain_cpu(cpu);
1663 drain_local_pages(zone);
1664 put_cpu();
1665 /* No more flushing until we migrate again */
1666 cc->last_migrated_pfn = 0;
1667 }
1668 }
1669
1670 }
1671
1672 out:
1673 /*
1674 * Release free pages and update where the free scanner should restart,
1675 * so we don't leave any returned pages behind in the next attempt.
1676 */
1677 if (cc->nr_freepages > 0) {
1678 unsigned long free_pfn = release_freepages(&cc->freepages);
1679
1680 cc->nr_freepages = 0;
1681 VM_BUG_ON(free_pfn == 0);
1682 /* The cached pfn is always the first in a pageblock */
1683 free_pfn = pageblock_start_pfn(free_pfn);
1684 /*
1685 * Only go back, not forward. The cached pfn might have been
1686 * already reset to zone end in compact_finished()
1687 */
1688 if (free_pfn > zone->compact_cached_free_pfn)
1689 zone->compact_cached_free_pfn = free_pfn;
1690 }
1691
1692 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1693 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1694
1695 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1696 cc->free_pfn, end_pfn, sync, ret);
1697
1698 return ret;
1699 }
1700
1701 static enum compact_result compact_zone_order(struct zone *zone, int order,
1702 gfp_t gfp_mask, enum compact_priority prio,
1703 unsigned int alloc_flags, int classzone_idx)
1704 {
1705 enum compact_result ret;
1706 struct compact_control cc = {
1707 .nr_freepages = 0,
1708 .nr_migratepages = 0,
1709 .total_migrate_scanned = 0,
1710 .total_free_scanned = 0,
1711 .order = order,
1712 .gfp_mask = gfp_mask,
1713 .zone = zone,
1714 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1715 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1716 .alloc_flags = alloc_flags,
1717 .classzone_idx = classzone_idx,
1718 .direct_compaction = true,
1719 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1720 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1721 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1722 };
1723 INIT_LIST_HEAD(&cc.freepages);
1724 INIT_LIST_HEAD(&cc.migratepages);
1725
1726 ret = compact_zone(zone, &cc);
1727
1728 VM_BUG_ON(!list_empty(&cc.freepages));
1729 VM_BUG_ON(!list_empty(&cc.migratepages));
1730
1731 return ret;
1732 }
1733
1734 int sysctl_extfrag_threshold = 500;
1735
1736 /**
1737 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1738 * @gfp_mask: The GFP mask of the current allocation
1739 * @order: The order of the current allocation
1740 * @alloc_flags: The allocation flags of the current allocation
1741 * @ac: The context of current allocation
1742 * @prio: Determines how hard direct compaction should try to succeed
1743 *
1744 * This is the main entry point for direct page compaction.
1745 */
1746 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1747 unsigned int alloc_flags, const struct alloc_context *ac,
1748 enum compact_priority prio)
1749 {
1750 int may_perform_io = gfp_mask & __GFP_IO;
1751 struct zoneref *z;
1752 struct zone *zone;
1753 enum compact_result rc = COMPACT_SKIPPED;
1754
1755 /*
1756 * Check if the GFP flags allow compaction - GFP_NOIO is really
1757 * tricky context because the migration might require IO
1758 */
1759 if (!may_perform_io)
1760 return COMPACT_SKIPPED;
1761
1762 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1763
1764 /* Compact each zone in the list */
1765 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1766 ac->nodemask) {
1767 enum compact_result status;
1768
1769 if (prio > MIN_COMPACT_PRIORITY
1770 && compaction_deferred(zone, order)) {
1771 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1772 continue;
1773 }
1774
1775 status = compact_zone_order(zone, order, gfp_mask, prio,
1776 alloc_flags, ac_classzone_idx(ac));
1777 rc = max(status, rc);
1778
1779 /* The allocation should succeed, stop compacting */
1780 if (status == COMPACT_SUCCESS) {
1781 /*
1782 * We think the allocation will succeed in this zone,
1783 * but it is not certain, hence the false. The caller
1784 * will repeat this with true if allocation indeed
1785 * succeeds in this zone.
1786 */
1787 compaction_defer_reset(zone, order, false);
1788
1789 break;
1790 }
1791
1792 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1793 status == COMPACT_PARTIAL_SKIPPED))
1794 /*
1795 * We think that allocation won't succeed in this zone
1796 * so we defer compaction there. If it ends up
1797 * succeeding after all, it will be reset.
1798 */
1799 defer_compaction(zone, order);
1800
1801 /*
1802 * We might have stopped compacting due to need_resched() in
1803 * async compaction, or due to a fatal signal detected. In that
1804 * case do not try further zones
1805 */
1806 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1807 || fatal_signal_pending(current))
1808 break;
1809 }
1810
1811 return rc;
1812 }
1813
1814
1815 /* Compact all zones within a node */
1816 static void compact_node(int nid)
1817 {
1818 pg_data_t *pgdat = NODE_DATA(nid);
1819 int zoneid;
1820 struct zone *zone;
1821 struct compact_control cc = {
1822 .order = -1,
1823 .total_migrate_scanned = 0,
1824 .total_free_scanned = 0,
1825 .mode = MIGRATE_SYNC,
1826 .ignore_skip_hint = true,
1827 .whole_zone = true,
1828 .gfp_mask = GFP_KERNEL,
1829 };
1830
1831
1832 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1833
1834 zone = &pgdat->node_zones[zoneid];
1835 if (!populated_zone(zone))
1836 continue;
1837
1838 cc.nr_freepages = 0;
1839 cc.nr_migratepages = 0;
1840 cc.zone = zone;
1841 INIT_LIST_HEAD(&cc.freepages);
1842 INIT_LIST_HEAD(&cc.migratepages);
1843
1844 compact_zone(zone, &cc);
1845
1846 VM_BUG_ON(!list_empty(&cc.freepages));
1847 VM_BUG_ON(!list_empty(&cc.migratepages));
1848 }
1849 }
1850
1851 /* Compact all nodes in the system */
1852 static void compact_nodes(void)
1853 {
1854 int nid;
1855
1856 /* Flush pending updates to the LRU lists */
1857 lru_add_drain_all();
1858
1859 for_each_online_node(nid)
1860 compact_node(nid);
1861 }
1862
1863 /* The written value is actually unused, all memory is compacted */
1864 int sysctl_compact_memory;
1865
1866 /*
1867 * This is the entry point for compacting all nodes via
1868 * /proc/sys/vm/compact_memory
1869 */
1870 int sysctl_compaction_handler(struct ctl_table *table, int write,
1871 void __user *buffer, size_t *length, loff_t *ppos)
1872 {
1873 if (write)
1874 compact_nodes();
1875
1876 return 0;
1877 }
1878
1879 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1880 void __user *buffer, size_t *length, loff_t *ppos)
1881 {
1882 proc_dointvec_minmax(table, write, buffer, length, ppos);
1883
1884 return 0;
1885 }
1886
1887 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1888 static ssize_t sysfs_compact_node(struct device *dev,
1889 struct device_attribute *attr,
1890 const char *buf, size_t count)
1891 {
1892 int nid = dev->id;
1893
1894 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1895 /* Flush pending updates to the LRU lists */
1896 lru_add_drain_all();
1897
1898 compact_node(nid);
1899 }
1900
1901 return count;
1902 }
1903 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
1904
1905 int compaction_register_node(struct node *node)
1906 {
1907 return device_create_file(&node->dev, &dev_attr_compact);
1908 }
1909
1910 void compaction_unregister_node(struct node *node)
1911 {
1912 return device_remove_file(&node->dev, &dev_attr_compact);
1913 }
1914 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1915
1916 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1917 {
1918 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1919 }
1920
1921 static bool kcompactd_node_suitable(pg_data_t *pgdat)
1922 {
1923 int zoneid;
1924 struct zone *zone;
1925 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1926
1927 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1928 zone = &pgdat->node_zones[zoneid];
1929
1930 if (!populated_zone(zone))
1931 continue;
1932
1933 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1934 classzone_idx) == COMPACT_CONTINUE)
1935 return true;
1936 }
1937
1938 return false;
1939 }
1940
1941 static void kcompactd_do_work(pg_data_t *pgdat)
1942 {
1943 /*
1944 * With no special task, compact all zones so that a page of requested
1945 * order is allocatable.
1946 */
1947 int zoneid;
1948 struct zone *zone;
1949 struct compact_control cc = {
1950 .order = pgdat->kcompactd_max_order,
1951 .total_migrate_scanned = 0,
1952 .total_free_scanned = 0,
1953 .classzone_idx = pgdat->kcompactd_classzone_idx,
1954 .mode = MIGRATE_SYNC_LIGHT,
1955 .ignore_skip_hint = false,
1956 .gfp_mask = GFP_KERNEL,
1957 };
1958 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1959 cc.classzone_idx);
1960 count_compact_event(KCOMPACTD_WAKE);
1961
1962 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1963 int status;
1964
1965 zone = &pgdat->node_zones[zoneid];
1966 if (!populated_zone(zone))
1967 continue;
1968
1969 if (compaction_deferred(zone, cc.order))
1970 continue;
1971
1972 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1973 COMPACT_CONTINUE)
1974 continue;
1975
1976 cc.nr_freepages = 0;
1977 cc.nr_migratepages = 0;
1978 cc.total_migrate_scanned = 0;
1979 cc.total_free_scanned = 0;
1980 cc.zone = zone;
1981 INIT_LIST_HEAD(&cc.freepages);
1982 INIT_LIST_HEAD(&cc.migratepages);
1983
1984 if (kthread_should_stop())
1985 return;
1986 status = compact_zone(zone, &cc);
1987
1988 if (status == COMPACT_SUCCESS) {
1989 compaction_defer_reset(zone, cc.order, false);
1990 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1991 /*
1992 * Buddy pages may become stranded on pcps that could
1993 * otherwise coalesce on the zone's free area for
1994 * order >= cc.order. This is ratelimited by the
1995 * upcoming deferral.
1996 */
1997 drain_all_pages(zone);
1998
1999 /*
2000 * We use sync migration mode here, so we defer like
2001 * sync direct compaction does.
2002 */
2003 defer_compaction(zone, cc.order);
2004 }
2005
2006 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2007 cc.total_migrate_scanned);
2008 count_compact_events(KCOMPACTD_FREE_SCANNED,
2009 cc.total_free_scanned);
2010
2011 VM_BUG_ON(!list_empty(&cc.freepages));
2012 VM_BUG_ON(!list_empty(&cc.migratepages));
2013 }
2014
2015 /*
2016 * Regardless of success, we are done until woken up next. But remember
2017 * the requested order/classzone_idx in case it was higher/tighter than
2018 * our current ones
2019 */
2020 if (pgdat->kcompactd_max_order <= cc.order)
2021 pgdat->kcompactd_max_order = 0;
2022 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2023 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2024 }
2025
2026 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2027 {
2028 if (!order)
2029 return;
2030
2031 if (pgdat->kcompactd_max_order < order)
2032 pgdat->kcompactd_max_order = order;
2033
2034 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2035 pgdat->kcompactd_classzone_idx = classzone_idx;
2036
2037 /*
2038 * Pairs with implicit barrier in wait_event_freezable()
2039 * such that wakeups are not missed.
2040 */
2041 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2042 return;
2043
2044 if (!kcompactd_node_suitable(pgdat))
2045 return;
2046
2047 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2048 classzone_idx);
2049 wake_up_interruptible(&pgdat->kcompactd_wait);
2050 }
2051
2052 /*
2053 * The background compaction daemon, started as a kernel thread
2054 * from the init process.
2055 */
2056 static int kcompactd(void *p)
2057 {
2058 pg_data_t *pgdat = (pg_data_t*)p;
2059 struct task_struct *tsk = current;
2060
2061 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2062
2063 if (!cpumask_empty(cpumask))
2064 set_cpus_allowed_ptr(tsk, cpumask);
2065
2066 set_freezable();
2067
2068 pgdat->kcompactd_max_order = 0;
2069 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2070
2071 while (!kthread_should_stop()) {
2072 unsigned long pflags;
2073
2074 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2075 wait_event_freezable(pgdat->kcompactd_wait,
2076 kcompactd_work_requested(pgdat));
2077
2078 psi_memstall_enter(&pflags);
2079 kcompactd_do_work(pgdat);
2080 psi_memstall_leave(&pflags);
2081 }
2082
2083 return 0;
2084 }
2085
2086 /*
2087 * This kcompactd start function will be called by init and node-hot-add.
2088 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2089 */
2090 int kcompactd_run(int nid)
2091 {
2092 pg_data_t *pgdat = NODE_DATA(nid);
2093 int ret = 0;
2094
2095 if (pgdat->kcompactd)
2096 return 0;
2097
2098 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2099 if (IS_ERR(pgdat->kcompactd)) {
2100 pr_err("Failed to start kcompactd on node %d\n", nid);
2101 ret = PTR_ERR(pgdat->kcompactd);
2102 pgdat->kcompactd = NULL;
2103 }
2104 return ret;
2105 }
2106
2107 /*
2108 * Called by memory hotplug when all memory in a node is offlined. Caller must
2109 * hold mem_hotplug_begin/end().
2110 */
2111 void kcompactd_stop(int nid)
2112 {
2113 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2114
2115 if (kcompactd) {
2116 kthread_stop(kcompactd);
2117 NODE_DATA(nid)->kcompactd = NULL;
2118 }
2119 }
2120
2121 /*
2122 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2123 * not required for correctness. So if the last cpu in a node goes
2124 * away, we get changed to run anywhere: as the first one comes back,
2125 * restore their cpu bindings.
2126 */
2127 static int kcompactd_cpu_online(unsigned int cpu)
2128 {
2129 int nid;
2130
2131 for_each_node_state(nid, N_MEMORY) {
2132 pg_data_t *pgdat = NODE_DATA(nid);
2133 const struct cpumask *mask;
2134
2135 mask = cpumask_of_node(pgdat->node_id);
2136
2137 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2138 /* One of our CPUs online: restore mask */
2139 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2140 }
2141 return 0;
2142 }
2143
2144 static int __init kcompactd_init(void)
2145 {
2146 int nid;
2147 int ret;
2148
2149 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2150 "mm/compaction:online",
2151 kcompactd_cpu_online, NULL);
2152 if (ret < 0) {
2153 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2154 return ret;
2155 }
2156
2157 for_each_node_state(nid, N_MEMORY)
2158 kcompactd_run(nid);
2159 return 0;
2160 }
2161 subsys_initcall(kcompactd_init)
2162
2163 #endif /* CONFIG_COMPACTION */