]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/compaction.c
Merge branch 'stmmac-fixes'
[thirdparty/linux.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67 }
68
69 static void split_map_pages(struct list_head *list)
70 {
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
80
81 post_alloc_hook(page, order, __GFP_MOVABLE);
82 if (order)
83 split_page(page, order);
84
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
89 }
90
91 list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174 }
175
176 /*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
181 void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183 {
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207 {
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 zone->compact_cached_free_pfn =
219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
226 */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 if (!PageCompound(page))
230 return false;
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
238 }
239
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 bool check_target)
243 {
244 struct page *page = pfn_to_online_page(pfn);
245 struct page *block_page;
246 struct page *end_page;
247 unsigned long block_pfn;
248
249 if (!page)
250 return false;
251 if (zone != page_zone(page))
252 return false;
253 if (pageblock_skip_persistent(page))
254 return false;
255
256 /*
257 * If skip is already cleared do no further checking once the
258 * restart points have been set.
259 */
260 if (check_source && check_target && !get_pageblock_skip(page))
261 return true;
262
263 /*
264 * If clearing skip for the target scanner, do not select a
265 * non-movable pageblock as the starting point.
266 */
267 if (!check_source && check_target &&
268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 return false;
270
271 /* Ensure the start of the pageblock or zone is online and valid */
272 block_pfn = pageblock_start_pfn(pfn);
273 block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
274 if (block_page) {
275 page = block_page;
276 pfn = block_pfn;
277 }
278
279 /* Ensure the end of the pageblock or zone is online and valid */
280 block_pfn += pageblock_nr_pages;
281 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
282 end_page = pfn_to_online_page(block_pfn);
283 if (!end_page)
284 return false;
285
286 /*
287 * Only clear the hint if a sample indicates there is either a
288 * free page or an LRU page in the block. One or other condition
289 * is necessary for the block to be a migration source/target.
290 */
291 do {
292 if (pfn_valid_within(pfn)) {
293 if (check_source && PageLRU(page)) {
294 clear_pageblock_skip(page);
295 return true;
296 }
297
298 if (check_target && PageBuddy(page)) {
299 clear_pageblock_skip(page);
300 return true;
301 }
302 }
303
304 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
305 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 } while (page < end_page);
307
308 return false;
309 }
310
311 /*
312 * This function is called to clear all cached information on pageblocks that
313 * should be skipped for page isolation when the migrate and free page scanner
314 * meet.
315 */
316 static void __reset_isolation_suitable(struct zone *zone)
317 {
318 unsigned long migrate_pfn = zone->zone_start_pfn;
319 unsigned long free_pfn = zone_end_pfn(zone) - 1;
320 unsigned long reset_migrate = free_pfn;
321 unsigned long reset_free = migrate_pfn;
322 bool source_set = false;
323 bool free_set = false;
324
325 if (!zone->compact_blockskip_flush)
326 return;
327
328 zone->compact_blockskip_flush = false;
329
330 /*
331 * Walk the zone and update pageblock skip information. Source looks
332 * for PageLRU while target looks for PageBuddy. When the scanner
333 * is found, both PageBuddy and PageLRU are checked as the pageblock
334 * is suitable as both source and target.
335 */
336 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
337 free_pfn -= pageblock_nr_pages) {
338 cond_resched();
339
340 /* Update the migrate PFN */
341 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
342 migrate_pfn < reset_migrate) {
343 source_set = true;
344 reset_migrate = migrate_pfn;
345 zone->compact_init_migrate_pfn = reset_migrate;
346 zone->compact_cached_migrate_pfn[0] = reset_migrate;
347 zone->compact_cached_migrate_pfn[1] = reset_migrate;
348 }
349
350 /* Update the free PFN */
351 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
352 free_pfn > reset_free) {
353 free_set = true;
354 reset_free = free_pfn;
355 zone->compact_init_free_pfn = reset_free;
356 zone->compact_cached_free_pfn = reset_free;
357 }
358 }
359
360 /* Leave no distance if no suitable block was reset */
361 if (reset_migrate >= reset_free) {
362 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
363 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
364 zone->compact_cached_free_pfn = free_pfn;
365 }
366 }
367
368 void reset_isolation_suitable(pg_data_t *pgdat)
369 {
370 int zoneid;
371
372 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
373 struct zone *zone = &pgdat->node_zones[zoneid];
374 if (!populated_zone(zone))
375 continue;
376
377 /* Only flush if a full compaction finished recently */
378 if (zone->compact_blockskip_flush)
379 __reset_isolation_suitable(zone);
380 }
381 }
382
383 /*
384 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
385 * locks are not required for read/writers. Returns true if it was already set.
386 */
387 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
388 unsigned long pfn)
389 {
390 bool skip;
391
392 /* Do no update if skip hint is being ignored */
393 if (cc->ignore_skip_hint)
394 return false;
395
396 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
397 return false;
398
399 skip = get_pageblock_skip(page);
400 if (!skip && !cc->no_set_skip_hint)
401 set_pageblock_skip(page);
402
403 return skip;
404 }
405
406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
407 {
408 struct zone *zone = cc->zone;
409
410 pfn = pageblock_end_pfn(pfn);
411
412 /* Set for isolation rather than compaction */
413 if (cc->no_set_skip_hint)
414 return;
415
416 if (pfn > zone->compact_cached_migrate_pfn[0])
417 zone->compact_cached_migrate_pfn[0] = pfn;
418 if (cc->mode != MIGRATE_ASYNC &&
419 pfn > zone->compact_cached_migrate_pfn[1])
420 zone->compact_cached_migrate_pfn[1] = pfn;
421 }
422
423 /*
424 * If no pages were isolated then mark this pageblock to be skipped in the
425 * future. The information is later cleared by __reset_isolation_suitable().
426 */
427 static void update_pageblock_skip(struct compact_control *cc,
428 struct page *page, unsigned long pfn)
429 {
430 struct zone *zone = cc->zone;
431
432 if (cc->no_set_skip_hint)
433 return;
434
435 if (!page)
436 return;
437
438 set_pageblock_skip(page);
439
440 /* Update where async and sync compaction should restart */
441 if (pfn < zone->compact_cached_free_pfn)
442 zone->compact_cached_free_pfn = pfn;
443 }
444 #else
445 static inline bool isolation_suitable(struct compact_control *cc,
446 struct page *page)
447 {
448 return true;
449 }
450
451 static inline bool pageblock_skip_persistent(struct page *page)
452 {
453 return false;
454 }
455
456 static inline void update_pageblock_skip(struct compact_control *cc,
457 struct page *page, unsigned long pfn)
458 {
459 }
460
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463 }
464
465 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
466 unsigned long pfn)
467 {
468 return false;
469 }
470 #endif /* CONFIG_COMPACTION */
471
472 /*
473 * Compaction requires the taking of some coarse locks that are potentially
474 * very heavily contended. For async compaction, trylock and record if the
475 * lock is contended. The lock will still be acquired but compaction will
476 * abort when the current block is finished regardless of success rate.
477 * Sync compaction acquires the lock.
478 *
479 * Always returns true which makes it easier to track lock state in callers.
480 */
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482 struct compact_control *cc)
483 {
484 /* Track if the lock is contended in async mode */
485 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
486 if (spin_trylock_irqsave(lock, *flags))
487 return true;
488
489 cc->contended = true;
490 }
491
492 spin_lock_irqsave(lock, *flags);
493 return true;
494 }
495
496 /*
497 * Compaction requires the taking of some coarse locks that are potentially
498 * very heavily contended. The lock should be periodically unlocked to avoid
499 * having disabled IRQs for a long time, even when there is nobody waiting on
500 * the lock. It might also be that allowing the IRQs will result in
501 * need_resched() becoming true. If scheduling is needed, async compaction
502 * aborts. Sync compaction schedules.
503 * Either compaction type will also abort if a fatal signal is pending.
504 * In either case if the lock was locked, it is dropped and not regained.
505 *
506 * Returns true if compaction should abort due to fatal signal pending, or
507 * async compaction due to need_resched()
508 * Returns false when compaction can continue (sync compaction might have
509 * scheduled)
510 */
511 static bool compact_unlock_should_abort(spinlock_t *lock,
512 unsigned long flags, bool *locked, struct compact_control *cc)
513 {
514 if (*locked) {
515 spin_unlock_irqrestore(lock, flags);
516 *locked = false;
517 }
518
519 if (fatal_signal_pending(current)) {
520 cc->contended = true;
521 return true;
522 }
523
524 cond_resched();
525
526 return false;
527 }
528
529 /*
530 * Isolate free pages onto a private freelist. If @strict is true, will abort
531 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
532 * (even though it may still end up isolating some pages).
533 */
534 static unsigned long isolate_freepages_block(struct compact_control *cc,
535 unsigned long *start_pfn,
536 unsigned long end_pfn,
537 struct list_head *freelist,
538 unsigned int stride,
539 bool strict)
540 {
541 int nr_scanned = 0, total_isolated = 0;
542 struct page *cursor;
543 unsigned long flags = 0;
544 bool locked = false;
545 unsigned long blockpfn = *start_pfn;
546 unsigned int order;
547
548 /* Strict mode is for isolation, speed is secondary */
549 if (strict)
550 stride = 1;
551
552 cursor = pfn_to_page(blockpfn);
553
554 /* Isolate free pages. */
555 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
556 int isolated;
557 struct page *page = cursor;
558
559 /*
560 * Periodically drop the lock (if held) regardless of its
561 * contention, to give chance to IRQs. Abort if fatal signal
562 * pending or async compaction detects need_resched()
563 */
564 if (!(blockpfn % SWAP_CLUSTER_MAX)
565 && compact_unlock_should_abort(&cc->zone->lock, flags,
566 &locked, cc))
567 break;
568
569 nr_scanned++;
570 if (!pfn_valid_within(blockpfn))
571 goto isolate_fail;
572
573 /*
574 * For compound pages such as THP and hugetlbfs, we can save
575 * potentially a lot of iterations if we skip them at once.
576 * The check is racy, but we can consider only valid values
577 * and the only danger is skipping too much.
578 */
579 if (PageCompound(page)) {
580 const unsigned int order = compound_order(page);
581
582 if (likely(order < MAX_ORDER)) {
583 blockpfn += (1UL << order) - 1;
584 cursor += (1UL << order) - 1;
585 }
586 goto isolate_fail;
587 }
588
589 if (!PageBuddy(page))
590 goto isolate_fail;
591
592 /*
593 * If we already hold the lock, we can skip some rechecking.
594 * Note that if we hold the lock now, checked_pageblock was
595 * already set in some previous iteration (or strict is true),
596 * so it is correct to skip the suitable migration target
597 * recheck as well.
598 */
599 if (!locked) {
600 locked = compact_lock_irqsave(&cc->zone->lock,
601 &flags, cc);
602
603 /* Recheck this is a buddy page under lock */
604 if (!PageBuddy(page))
605 goto isolate_fail;
606 }
607
608 /* Found a free page, will break it into order-0 pages */
609 order = page_order(page);
610 isolated = __isolate_free_page(page, order);
611 if (!isolated)
612 break;
613 set_page_private(page, order);
614
615 total_isolated += isolated;
616 cc->nr_freepages += isolated;
617 list_add_tail(&page->lru, freelist);
618
619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 blockpfn += isolated;
621 break;
622 }
623 /* Advance to the end of split page */
624 blockpfn += isolated - 1;
625 cursor += isolated - 1;
626 continue;
627
628 isolate_fail:
629 if (strict)
630 break;
631 else
632 continue;
633
634 }
635
636 if (locked)
637 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
639 /*
640 * There is a tiny chance that we have read bogus compound_order(),
641 * so be careful to not go outside of the pageblock.
642 */
643 if (unlikely(blockpfn > end_pfn))
644 blockpfn = end_pfn;
645
646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 nr_scanned, total_isolated);
648
649 /* Record how far we have got within the block */
650 *start_pfn = blockpfn;
651
652 /*
653 * If strict isolation is requested by CMA then check that all the
654 * pages requested were isolated. If there were any failures, 0 is
655 * returned and CMA will fail.
656 */
657 if (strict && blockpfn < end_pfn)
658 total_isolated = 0;
659
660 cc->total_free_scanned += nr_scanned;
661 if (total_isolated)
662 count_compact_events(COMPACTISOLATED, total_isolated);
663 return total_isolated;
664 }
665
666 /**
667 * isolate_freepages_range() - isolate free pages.
668 * @cc: Compaction control structure.
669 * @start_pfn: The first PFN to start isolating.
670 * @end_pfn: The one-past-last PFN.
671 *
672 * Non-free pages, invalid PFNs, or zone boundaries within the
673 * [start_pfn, end_pfn) range are considered errors, cause function to
674 * undo its actions and return zero.
675 *
676 * Otherwise, function returns one-past-the-last PFN of isolated page
677 * (which may be greater then end_pfn if end fell in a middle of
678 * a free page).
679 */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682 unsigned long start_pfn, unsigned long end_pfn)
683 {
684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685 LIST_HEAD(freelist);
686
687 pfn = start_pfn;
688 block_start_pfn = pageblock_start_pfn(pfn);
689 if (block_start_pfn < cc->zone->zone_start_pfn)
690 block_start_pfn = cc->zone->zone_start_pfn;
691 block_end_pfn = pageblock_end_pfn(pfn);
692
693 for (; pfn < end_pfn; pfn += isolated,
694 block_start_pfn = block_end_pfn,
695 block_end_pfn += pageblock_nr_pages) {
696 /* Protect pfn from changing by isolate_freepages_block */
697 unsigned long isolate_start_pfn = pfn;
698
699 block_end_pfn = min(block_end_pfn, end_pfn);
700
701 /*
702 * pfn could pass the block_end_pfn if isolated freepage
703 * is more than pageblock order. In this case, we adjust
704 * scanning range to right one.
705 */
706 if (pfn >= block_end_pfn) {
707 block_start_pfn = pageblock_start_pfn(pfn);
708 block_end_pfn = pageblock_end_pfn(pfn);
709 block_end_pfn = min(block_end_pfn, end_pfn);
710 }
711
712 if (!pageblock_pfn_to_page(block_start_pfn,
713 block_end_pfn, cc->zone))
714 break;
715
716 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717 block_end_pfn, &freelist, 0, true);
718
719 /*
720 * In strict mode, isolate_freepages_block() returns 0 if
721 * there are any holes in the block (ie. invalid PFNs or
722 * non-free pages).
723 */
724 if (!isolated)
725 break;
726
727 /*
728 * If we managed to isolate pages, it is always (1 << n) *
729 * pageblock_nr_pages for some non-negative n. (Max order
730 * page may span two pageblocks).
731 */
732 }
733
734 /* __isolate_free_page() does not map the pages */
735 split_map_pages(&freelist);
736
737 if (pfn < end_pfn) {
738 /* Loop terminated early, cleanup. */
739 release_freepages(&freelist);
740 return 0;
741 }
742
743 /* We don't use freelists for anything. */
744 return pfn;
745 }
746
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750 unsigned long active, inactive, isolated;
751
752 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
753 node_page_state(pgdat, NR_INACTIVE_ANON);
754 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
755 node_page_state(pgdat, NR_ACTIVE_ANON);
756 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
757 node_page_state(pgdat, NR_ISOLATED_ANON);
758
759 return isolated > (inactive + active) / 2;
760 }
761
762 /**
763 * isolate_migratepages_block() - isolate all migrate-able pages within
764 * a single pageblock
765 * @cc: Compaction control structure.
766 * @low_pfn: The first PFN to isolate
767 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
768 * @isolate_mode: Isolation mode to be used.
769 *
770 * Isolate all pages that can be migrated from the range specified by
771 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
772 * Returns zero if there is a fatal signal pending, otherwise PFN of the
773 * first page that was not scanned (which may be both less, equal to or more
774 * than end_pfn).
775 *
776 * The pages are isolated on cc->migratepages list (not required to be empty),
777 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
778 * is neither read nor updated.
779 */
780 static unsigned long
781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
782 unsigned long end_pfn, isolate_mode_t isolate_mode)
783 {
784 pg_data_t *pgdat = cc->zone->zone_pgdat;
785 unsigned long nr_scanned = 0, nr_isolated = 0;
786 struct lruvec *lruvec;
787 unsigned long flags = 0;
788 bool locked = false;
789 struct page *page = NULL, *valid_page = NULL;
790 unsigned long start_pfn = low_pfn;
791 bool skip_on_failure = false;
792 unsigned long next_skip_pfn = 0;
793 bool skip_updated = false;
794
795 /*
796 * Ensure that there are not too many pages isolated from the LRU
797 * list by either parallel reclaimers or compaction. If there are,
798 * delay for some time until fewer pages are isolated
799 */
800 while (unlikely(too_many_isolated(pgdat))) {
801 /* async migration should just abort */
802 if (cc->mode == MIGRATE_ASYNC)
803 return 0;
804
805 congestion_wait(BLK_RW_ASYNC, HZ/10);
806
807 if (fatal_signal_pending(current))
808 return 0;
809 }
810
811 cond_resched();
812
813 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
814 skip_on_failure = true;
815 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
816 }
817
818 /* Time to isolate some pages for migration */
819 for (; low_pfn < end_pfn; low_pfn++) {
820
821 if (skip_on_failure && low_pfn >= next_skip_pfn) {
822 /*
823 * We have isolated all migration candidates in the
824 * previous order-aligned block, and did not skip it due
825 * to failure. We should migrate the pages now and
826 * hopefully succeed compaction.
827 */
828 if (nr_isolated)
829 break;
830
831 /*
832 * We failed to isolate in the previous order-aligned
833 * block. Set the new boundary to the end of the
834 * current block. Note we can't simply increase
835 * next_skip_pfn by 1 << order, as low_pfn might have
836 * been incremented by a higher number due to skipping
837 * a compound or a high-order buddy page in the
838 * previous loop iteration.
839 */
840 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
841 }
842
843 /*
844 * Periodically drop the lock (if held) regardless of its
845 * contention, to give chance to IRQs. Abort async compaction
846 * if contended.
847 */
848 if (!(low_pfn % SWAP_CLUSTER_MAX)
849 && compact_unlock_should_abort(&pgdat->lru_lock,
850 flags, &locked, cc))
851 break;
852
853 if (!pfn_valid_within(low_pfn))
854 goto isolate_fail;
855 nr_scanned++;
856
857 page = pfn_to_page(low_pfn);
858
859 /*
860 * Check if the pageblock has already been marked skipped.
861 * Only the aligned PFN is checked as the caller isolates
862 * COMPACT_CLUSTER_MAX at a time so the second call must
863 * not falsely conclude that the block should be skipped.
864 */
865 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
866 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
867 low_pfn = end_pfn;
868 goto isolate_abort;
869 }
870 valid_page = page;
871 }
872
873 /*
874 * Skip if free. We read page order here without zone lock
875 * which is generally unsafe, but the race window is small and
876 * the worst thing that can happen is that we skip some
877 * potential isolation targets.
878 */
879 if (PageBuddy(page)) {
880 unsigned long freepage_order = page_order_unsafe(page);
881
882 /*
883 * Without lock, we cannot be sure that what we got is
884 * a valid page order. Consider only values in the
885 * valid order range to prevent low_pfn overflow.
886 */
887 if (freepage_order > 0 && freepage_order < MAX_ORDER)
888 low_pfn += (1UL << freepage_order) - 1;
889 continue;
890 }
891
892 /*
893 * Regardless of being on LRU, compound pages such as THP and
894 * hugetlbfs are not to be compacted. We can potentially save
895 * a lot of iterations if we skip them at once. The check is
896 * racy, but we can consider only valid values and the only
897 * danger is skipping too much.
898 */
899 if (PageCompound(page)) {
900 const unsigned int order = compound_order(page);
901
902 if (likely(order < MAX_ORDER))
903 low_pfn += (1UL << order) - 1;
904 goto isolate_fail;
905 }
906
907 /*
908 * Check may be lockless but that's ok as we recheck later.
909 * It's possible to migrate LRU and non-lru movable pages.
910 * Skip any other type of page
911 */
912 if (!PageLRU(page)) {
913 /*
914 * __PageMovable can return false positive so we need
915 * to verify it under page_lock.
916 */
917 if (unlikely(__PageMovable(page)) &&
918 !PageIsolated(page)) {
919 if (locked) {
920 spin_unlock_irqrestore(&pgdat->lru_lock,
921 flags);
922 locked = false;
923 }
924
925 if (!isolate_movable_page(page, isolate_mode))
926 goto isolate_success;
927 }
928
929 goto isolate_fail;
930 }
931
932 /*
933 * Migration will fail if an anonymous page is pinned in memory,
934 * so avoid taking lru_lock and isolating it unnecessarily in an
935 * admittedly racy check.
936 */
937 if (!page_mapping(page) &&
938 page_count(page) > page_mapcount(page))
939 goto isolate_fail;
940
941 /*
942 * Only allow to migrate anonymous pages in GFP_NOFS context
943 * because those do not depend on fs locks.
944 */
945 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
946 goto isolate_fail;
947
948 /* If we already hold the lock, we can skip some rechecking */
949 if (!locked) {
950 locked = compact_lock_irqsave(&pgdat->lru_lock,
951 &flags, cc);
952
953 /* Try get exclusive access under lock */
954 if (!skip_updated) {
955 skip_updated = true;
956 if (test_and_set_skip(cc, page, low_pfn))
957 goto isolate_abort;
958 }
959
960 /* Recheck PageLRU and PageCompound under lock */
961 if (!PageLRU(page))
962 goto isolate_fail;
963
964 /*
965 * Page become compound since the non-locked check,
966 * and it's on LRU. It can only be a THP so the order
967 * is safe to read and it's 0 for tail pages.
968 */
969 if (unlikely(PageCompound(page))) {
970 low_pfn += (1UL << compound_order(page)) - 1;
971 goto isolate_fail;
972 }
973 }
974
975 lruvec = mem_cgroup_page_lruvec(page, pgdat);
976
977 /* Try isolate the page */
978 if (__isolate_lru_page(page, isolate_mode) != 0)
979 goto isolate_fail;
980
981 VM_BUG_ON_PAGE(PageCompound(page), page);
982
983 /* Successfully isolated */
984 del_page_from_lru_list(page, lruvec, page_lru(page));
985 inc_node_page_state(page,
986 NR_ISOLATED_ANON + page_is_file_cache(page));
987
988 isolate_success:
989 list_add(&page->lru, &cc->migratepages);
990 cc->nr_migratepages++;
991 nr_isolated++;
992
993 /*
994 * Avoid isolating too much unless this block is being
995 * rescanned (e.g. dirty/writeback pages, parallel allocation)
996 * or a lock is contended. For contention, isolate quickly to
997 * potentially remove one source of contention.
998 */
999 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1000 !cc->rescan && !cc->contended) {
1001 ++low_pfn;
1002 break;
1003 }
1004
1005 continue;
1006 isolate_fail:
1007 if (!skip_on_failure)
1008 continue;
1009
1010 /*
1011 * We have isolated some pages, but then failed. Release them
1012 * instead of migrating, as we cannot form the cc->order buddy
1013 * page anyway.
1014 */
1015 if (nr_isolated) {
1016 if (locked) {
1017 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1018 locked = false;
1019 }
1020 putback_movable_pages(&cc->migratepages);
1021 cc->nr_migratepages = 0;
1022 nr_isolated = 0;
1023 }
1024
1025 if (low_pfn < next_skip_pfn) {
1026 low_pfn = next_skip_pfn - 1;
1027 /*
1028 * The check near the loop beginning would have updated
1029 * next_skip_pfn too, but this is a bit simpler.
1030 */
1031 next_skip_pfn += 1UL << cc->order;
1032 }
1033 }
1034
1035 /*
1036 * The PageBuddy() check could have potentially brought us outside
1037 * the range to be scanned.
1038 */
1039 if (unlikely(low_pfn > end_pfn))
1040 low_pfn = end_pfn;
1041
1042 isolate_abort:
1043 if (locked)
1044 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1045
1046 /*
1047 * Updated the cached scanner pfn once the pageblock has been scanned
1048 * Pages will either be migrated in which case there is no point
1049 * scanning in the near future or migration failed in which case the
1050 * failure reason may persist. The block is marked for skipping if
1051 * there were no pages isolated in the block or if the block is
1052 * rescanned twice in a row.
1053 */
1054 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1055 if (valid_page && !skip_updated)
1056 set_pageblock_skip(valid_page);
1057 update_cached_migrate(cc, low_pfn);
1058 }
1059
1060 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1061 nr_scanned, nr_isolated);
1062
1063 cc->total_migrate_scanned += nr_scanned;
1064 if (nr_isolated)
1065 count_compact_events(COMPACTISOLATED, nr_isolated);
1066
1067 return low_pfn;
1068 }
1069
1070 /**
1071 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1072 * @cc: Compaction control structure.
1073 * @start_pfn: The first PFN to start isolating.
1074 * @end_pfn: The one-past-last PFN.
1075 *
1076 * Returns zero if isolation fails fatally due to e.g. pending signal.
1077 * Otherwise, function returns one-past-the-last PFN of isolated page
1078 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1079 */
1080 unsigned long
1081 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1082 unsigned long end_pfn)
1083 {
1084 unsigned long pfn, block_start_pfn, block_end_pfn;
1085
1086 /* Scan block by block. First and last block may be incomplete */
1087 pfn = start_pfn;
1088 block_start_pfn = pageblock_start_pfn(pfn);
1089 if (block_start_pfn < cc->zone->zone_start_pfn)
1090 block_start_pfn = cc->zone->zone_start_pfn;
1091 block_end_pfn = pageblock_end_pfn(pfn);
1092
1093 for (; pfn < end_pfn; pfn = block_end_pfn,
1094 block_start_pfn = block_end_pfn,
1095 block_end_pfn += pageblock_nr_pages) {
1096
1097 block_end_pfn = min(block_end_pfn, end_pfn);
1098
1099 if (!pageblock_pfn_to_page(block_start_pfn,
1100 block_end_pfn, cc->zone))
1101 continue;
1102
1103 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1104 ISOLATE_UNEVICTABLE);
1105
1106 if (!pfn)
1107 break;
1108
1109 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1110 break;
1111 }
1112
1113 return pfn;
1114 }
1115
1116 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1117 #ifdef CONFIG_COMPACTION
1118
1119 static bool suitable_migration_source(struct compact_control *cc,
1120 struct page *page)
1121 {
1122 int block_mt;
1123
1124 if (pageblock_skip_persistent(page))
1125 return false;
1126
1127 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1128 return true;
1129
1130 block_mt = get_pageblock_migratetype(page);
1131
1132 if (cc->migratetype == MIGRATE_MOVABLE)
1133 return is_migrate_movable(block_mt);
1134 else
1135 return block_mt == cc->migratetype;
1136 }
1137
1138 /* Returns true if the page is within a block suitable for migration to */
1139 static bool suitable_migration_target(struct compact_control *cc,
1140 struct page *page)
1141 {
1142 /* If the page is a large free page, then disallow migration */
1143 if (PageBuddy(page)) {
1144 /*
1145 * We are checking page_order without zone->lock taken. But
1146 * the only small danger is that we skip a potentially suitable
1147 * pageblock, so it's not worth to check order for valid range.
1148 */
1149 if (page_order_unsafe(page) >= pageblock_order)
1150 return false;
1151 }
1152
1153 if (cc->ignore_block_suitable)
1154 return true;
1155
1156 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1157 if (is_migrate_movable(get_pageblock_migratetype(page)))
1158 return true;
1159
1160 /* Otherwise skip the block */
1161 return false;
1162 }
1163
1164 static inline unsigned int
1165 freelist_scan_limit(struct compact_control *cc)
1166 {
1167 unsigned short shift = BITS_PER_LONG - 1;
1168
1169 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1170 }
1171
1172 /*
1173 * Test whether the free scanner has reached the same or lower pageblock than
1174 * the migration scanner, and compaction should thus terminate.
1175 */
1176 static inline bool compact_scanners_met(struct compact_control *cc)
1177 {
1178 return (cc->free_pfn >> pageblock_order)
1179 <= (cc->migrate_pfn >> pageblock_order);
1180 }
1181
1182 /*
1183 * Used when scanning for a suitable migration target which scans freelists
1184 * in reverse. Reorders the list such as the unscanned pages are scanned
1185 * first on the next iteration of the free scanner
1186 */
1187 static void
1188 move_freelist_head(struct list_head *freelist, struct page *freepage)
1189 {
1190 LIST_HEAD(sublist);
1191
1192 if (!list_is_last(freelist, &freepage->lru)) {
1193 list_cut_before(&sublist, freelist, &freepage->lru);
1194 if (!list_empty(&sublist))
1195 list_splice_tail(&sublist, freelist);
1196 }
1197 }
1198
1199 /*
1200 * Similar to move_freelist_head except used by the migration scanner
1201 * when scanning forward. It's possible for these list operations to
1202 * move against each other if they search the free list exactly in
1203 * lockstep.
1204 */
1205 static void
1206 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1207 {
1208 LIST_HEAD(sublist);
1209
1210 if (!list_is_first(freelist, &freepage->lru)) {
1211 list_cut_position(&sublist, freelist, &freepage->lru);
1212 if (!list_empty(&sublist))
1213 list_splice_tail(&sublist, freelist);
1214 }
1215 }
1216
1217 static void
1218 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1219 {
1220 unsigned long start_pfn, end_pfn;
1221 struct page *page = pfn_to_page(pfn);
1222
1223 /* Do not search around if there are enough pages already */
1224 if (cc->nr_freepages >= cc->nr_migratepages)
1225 return;
1226
1227 /* Minimise scanning during async compaction */
1228 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1229 return;
1230
1231 /* Pageblock boundaries */
1232 start_pfn = pageblock_start_pfn(pfn);
1233 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1234
1235 /* Scan before */
1236 if (start_pfn != pfn) {
1237 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1238 if (cc->nr_freepages >= cc->nr_migratepages)
1239 return;
1240 }
1241
1242 /* Scan after */
1243 start_pfn = pfn + nr_isolated;
1244 if (start_pfn < end_pfn)
1245 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1246
1247 /* Skip this pageblock in the future as it's full or nearly full */
1248 if (cc->nr_freepages < cc->nr_migratepages)
1249 set_pageblock_skip(page);
1250 }
1251
1252 /* Search orders in round-robin fashion */
1253 static int next_search_order(struct compact_control *cc, int order)
1254 {
1255 order--;
1256 if (order < 0)
1257 order = cc->order - 1;
1258
1259 /* Search wrapped around? */
1260 if (order == cc->search_order) {
1261 cc->search_order--;
1262 if (cc->search_order < 0)
1263 cc->search_order = cc->order - 1;
1264 return -1;
1265 }
1266
1267 return order;
1268 }
1269
1270 static unsigned long
1271 fast_isolate_freepages(struct compact_control *cc)
1272 {
1273 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1274 unsigned int nr_scanned = 0;
1275 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1276 unsigned long nr_isolated = 0;
1277 unsigned long distance;
1278 struct page *page = NULL;
1279 bool scan_start = false;
1280 int order;
1281
1282 /* Full compaction passes in a negative order */
1283 if (cc->order <= 0)
1284 return cc->free_pfn;
1285
1286 /*
1287 * If starting the scan, use a deeper search and use the highest
1288 * PFN found if a suitable one is not found.
1289 */
1290 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1291 limit = pageblock_nr_pages >> 1;
1292 scan_start = true;
1293 }
1294
1295 /*
1296 * Preferred point is in the top quarter of the scan space but take
1297 * a pfn from the top half if the search is problematic.
1298 */
1299 distance = (cc->free_pfn - cc->migrate_pfn);
1300 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1301 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1302
1303 if (WARN_ON_ONCE(min_pfn > low_pfn))
1304 low_pfn = min_pfn;
1305
1306 /*
1307 * Search starts from the last successful isolation order or the next
1308 * order to search after a previous failure
1309 */
1310 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1311
1312 for (order = cc->search_order;
1313 !page && order >= 0;
1314 order = next_search_order(cc, order)) {
1315 struct free_area *area = &cc->zone->free_area[order];
1316 struct list_head *freelist;
1317 struct page *freepage;
1318 unsigned long flags;
1319 unsigned int order_scanned = 0;
1320
1321 if (!area->nr_free)
1322 continue;
1323
1324 spin_lock_irqsave(&cc->zone->lock, flags);
1325 freelist = &area->free_list[MIGRATE_MOVABLE];
1326 list_for_each_entry_reverse(freepage, freelist, lru) {
1327 unsigned long pfn;
1328
1329 order_scanned++;
1330 nr_scanned++;
1331 pfn = page_to_pfn(freepage);
1332
1333 if (pfn >= highest)
1334 highest = pageblock_start_pfn(pfn);
1335
1336 if (pfn >= low_pfn) {
1337 cc->fast_search_fail = 0;
1338 cc->search_order = order;
1339 page = freepage;
1340 break;
1341 }
1342
1343 if (pfn >= min_pfn && pfn > high_pfn) {
1344 high_pfn = pfn;
1345
1346 /* Shorten the scan if a candidate is found */
1347 limit >>= 1;
1348 }
1349
1350 if (order_scanned >= limit)
1351 break;
1352 }
1353
1354 /* Use a minimum pfn if a preferred one was not found */
1355 if (!page && high_pfn) {
1356 page = pfn_to_page(high_pfn);
1357
1358 /* Update freepage for the list reorder below */
1359 freepage = page;
1360 }
1361
1362 /* Reorder to so a future search skips recent pages */
1363 move_freelist_head(freelist, freepage);
1364
1365 /* Isolate the page if available */
1366 if (page) {
1367 if (__isolate_free_page(page, order)) {
1368 set_page_private(page, order);
1369 nr_isolated = 1 << order;
1370 cc->nr_freepages += nr_isolated;
1371 list_add_tail(&page->lru, &cc->freepages);
1372 count_compact_events(COMPACTISOLATED, nr_isolated);
1373 } else {
1374 /* If isolation fails, abort the search */
1375 order = cc->search_order + 1;
1376 page = NULL;
1377 }
1378 }
1379
1380 spin_unlock_irqrestore(&cc->zone->lock, flags);
1381
1382 /*
1383 * Smaller scan on next order so the total scan ig related
1384 * to freelist_scan_limit.
1385 */
1386 if (order_scanned >= limit)
1387 limit = min(1U, limit >> 1);
1388 }
1389
1390 if (!page) {
1391 cc->fast_search_fail++;
1392 if (scan_start) {
1393 /*
1394 * Use the highest PFN found above min. If one was
1395 * not found, be pessemistic for direct compaction
1396 * and use the min mark.
1397 */
1398 if (highest) {
1399 page = pfn_to_page(highest);
1400 cc->free_pfn = highest;
1401 } else {
1402 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1403 page = pfn_to_page(min_pfn);
1404 cc->free_pfn = min_pfn;
1405 }
1406 }
1407 }
1408 }
1409
1410 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1411 highest -= pageblock_nr_pages;
1412 cc->zone->compact_cached_free_pfn = highest;
1413 }
1414
1415 cc->total_free_scanned += nr_scanned;
1416 if (!page)
1417 return cc->free_pfn;
1418
1419 low_pfn = page_to_pfn(page);
1420 fast_isolate_around(cc, low_pfn, nr_isolated);
1421 return low_pfn;
1422 }
1423
1424 /*
1425 * Based on information in the current compact_control, find blocks
1426 * suitable for isolating free pages from and then isolate them.
1427 */
1428 static void isolate_freepages(struct compact_control *cc)
1429 {
1430 struct zone *zone = cc->zone;
1431 struct page *page;
1432 unsigned long block_start_pfn; /* start of current pageblock */
1433 unsigned long isolate_start_pfn; /* exact pfn we start at */
1434 unsigned long block_end_pfn; /* end of current pageblock */
1435 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1436 struct list_head *freelist = &cc->freepages;
1437 unsigned int stride;
1438
1439 /* Try a small search of the free lists for a candidate */
1440 isolate_start_pfn = fast_isolate_freepages(cc);
1441 if (cc->nr_freepages)
1442 goto splitmap;
1443
1444 /*
1445 * Initialise the free scanner. The starting point is where we last
1446 * successfully isolated from, zone-cached value, or the end of the
1447 * zone when isolating for the first time. For looping we also need
1448 * this pfn aligned down to the pageblock boundary, because we do
1449 * block_start_pfn -= pageblock_nr_pages in the for loop.
1450 * For ending point, take care when isolating in last pageblock of a
1451 * a zone which ends in the middle of a pageblock.
1452 * The low boundary is the end of the pageblock the migration scanner
1453 * is using.
1454 */
1455 isolate_start_pfn = cc->free_pfn;
1456 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1457 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1458 zone_end_pfn(zone));
1459 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1460 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1461
1462 /*
1463 * Isolate free pages until enough are available to migrate the
1464 * pages on cc->migratepages. We stop searching if the migrate
1465 * and free page scanners meet or enough free pages are isolated.
1466 */
1467 for (; block_start_pfn >= low_pfn;
1468 block_end_pfn = block_start_pfn,
1469 block_start_pfn -= pageblock_nr_pages,
1470 isolate_start_pfn = block_start_pfn) {
1471 unsigned long nr_isolated;
1472
1473 /*
1474 * This can iterate a massively long zone without finding any
1475 * suitable migration targets, so periodically check resched.
1476 */
1477 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1478 cond_resched();
1479
1480 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1481 zone);
1482 if (!page)
1483 continue;
1484
1485 /* Check the block is suitable for migration */
1486 if (!suitable_migration_target(cc, page))
1487 continue;
1488
1489 /* If isolation recently failed, do not retry */
1490 if (!isolation_suitable(cc, page))
1491 continue;
1492
1493 /* Found a block suitable for isolating free pages from. */
1494 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1495 block_end_pfn, freelist, stride, false);
1496
1497 /* Update the skip hint if the full pageblock was scanned */
1498 if (isolate_start_pfn == block_end_pfn)
1499 update_pageblock_skip(cc, page, block_start_pfn);
1500
1501 /* Are enough freepages isolated? */
1502 if (cc->nr_freepages >= cc->nr_migratepages) {
1503 if (isolate_start_pfn >= block_end_pfn) {
1504 /*
1505 * Restart at previous pageblock if more
1506 * freepages can be isolated next time.
1507 */
1508 isolate_start_pfn =
1509 block_start_pfn - pageblock_nr_pages;
1510 }
1511 break;
1512 } else if (isolate_start_pfn < block_end_pfn) {
1513 /*
1514 * If isolation failed early, do not continue
1515 * needlessly.
1516 */
1517 break;
1518 }
1519
1520 /* Adjust stride depending on isolation */
1521 if (nr_isolated) {
1522 stride = 1;
1523 continue;
1524 }
1525 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1526 }
1527
1528 /*
1529 * Record where the free scanner will restart next time. Either we
1530 * broke from the loop and set isolate_start_pfn based on the last
1531 * call to isolate_freepages_block(), or we met the migration scanner
1532 * and the loop terminated due to isolate_start_pfn < low_pfn
1533 */
1534 cc->free_pfn = isolate_start_pfn;
1535
1536 splitmap:
1537 /* __isolate_free_page() does not map the pages */
1538 split_map_pages(freelist);
1539 }
1540
1541 /*
1542 * This is a migrate-callback that "allocates" freepages by taking pages
1543 * from the isolated freelists in the block we are migrating to.
1544 */
1545 static struct page *compaction_alloc(struct page *migratepage,
1546 unsigned long data)
1547 {
1548 struct compact_control *cc = (struct compact_control *)data;
1549 struct page *freepage;
1550
1551 if (list_empty(&cc->freepages)) {
1552 isolate_freepages(cc);
1553
1554 if (list_empty(&cc->freepages))
1555 return NULL;
1556 }
1557
1558 freepage = list_entry(cc->freepages.next, struct page, lru);
1559 list_del(&freepage->lru);
1560 cc->nr_freepages--;
1561
1562 return freepage;
1563 }
1564
1565 /*
1566 * This is a migrate-callback that "frees" freepages back to the isolated
1567 * freelist. All pages on the freelist are from the same zone, so there is no
1568 * special handling needed for NUMA.
1569 */
1570 static void compaction_free(struct page *page, unsigned long data)
1571 {
1572 struct compact_control *cc = (struct compact_control *)data;
1573
1574 list_add(&page->lru, &cc->freepages);
1575 cc->nr_freepages++;
1576 }
1577
1578 /* possible outcome of isolate_migratepages */
1579 typedef enum {
1580 ISOLATE_ABORT, /* Abort compaction now */
1581 ISOLATE_NONE, /* No pages isolated, continue scanning */
1582 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1583 } isolate_migrate_t;
1584
1585 /*
1586 * Allow userspace to control policy on scanning the unevictable LRU for
1587 * compactable pages.
1588 */
1589 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1590
1591 static inline void
1592 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1593 {
1594 if (cc->fast_start_pfn == ULONG_MAX)
1595 return;
1596
1597 if (!cc->fast_start_pfn)
1598 cc->fast_start_pfn = pfn;
1599
1600 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1601 }
1602
1603 static inline unsigned long
1604 reinit_migrate_pfn(struct compact_control *cc)
1605 {
1606 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1607 return cc->migrate_pfn;
1608
1609 cc->migrate_pfn = cc->fast_start_pfn;
1610 cc->fast_start_pfn = ULONG_MAX;
1611
1612 return cc->migrate_pfn;
1613 }
1614
1615 /*
1616 * Briefly search the free lists for a migration source that already has
1617 * some free pages to reduce the number of pages that need migration
1618 * before a pageblock is free.
1619 */
1620 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1621 {
1622 unsigned int limit = freelist_scan_limit(cc);
1623 unsigned int nr_scanned = 0;
1624 unsigned long distance;
1625 unsigned long pfn = cc->migrate_pfn;
1626 unsigned long high_pfn;
1627 int order;
1628
1629 /* Skip hints are relied on to avoid repeats on the fast search */
1630 if (cc->ignore_skip_hint)
1631 return pfn;
1632
1633 /*
1634 * If the migrate_pfn is not at the start of a zone or the start
1635 * of a pageblock then assume this is a continuation of a previous
1636 * scan restarted due to COMPACT_CLUSTER_MAX.
1637 */
1638 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1639 return pfn;
1640
1641 /*
1642 * For smaller orders, just linearly scan as the number of pages
1643 * to migrate should be relatively small and does not necessarily
1644 * justify freeing up a large block for a small allocation.
1645 */
1646 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1647 return pfn;
1648
1649 /*
1650 * Only allow kcompactd and direct requests for movable pages to
1651 * quickly clear out a MOVABLE pageblock for allocation. This
1652 * reduces the risk that a large movable pageblock is freed for
1653 * an unmovable/reclaimable small allocation.
1654 */
1655 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1656 return pfn;
1657
1658 /*
1659 * When starting the migration scanner, pick any pageblock within the
1660 * first half of the search space. Otherwise try and pick a pageblock
1661 * within the first eighth to reduce the chances that a migration
1662 * target later becomes a source.
1663 */
1664 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1665 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1666 distance >>= 2;
1667 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1668
1669 for (order = cc->order - 1;
1670 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1671 order--) {
1672 struct free_area *area = &cc->zone->free_area[order];
1673 struct list_head *freelist;
1674 unsigned long flags;
1675 struct page *freepage;
1676
1677 if (!area->nr_free)
1678 continue;
1679
1680 spin_lock_irqsave(&cc->zone->lock, flags);
1681 freelist = &area->free_list[MIGRATE_MOVABLE];
1682 list_for_each_entry(freepage, freelist, lru) {
1683 unsigned long free_pfn;
1684
1685 nr_scanned++;
1686 free_pfn = page_to_pfn(freepage);
1687 if (free_pfn < high_pfn) {
1688 /*
1689 * Avoid if skipped recently. Ideally it would
1690 * move to the tail but even safe iteration of
1691 * the list assumes an entry is deleted, not
1692 * reordered.
1693 */
1694 if (get_pageblock_skip(freepage)) {
1695 if (list_is_last(freelist, &freepage->lru))
1696 break;
1697
1698 continue;
1699 }
1700
1701 /* Reorder to so a future search skips recent pages */
1702 move_freelist_tail(freelist, freepage);
1703
1704 update_fast_start_pfn(cc, free_pfn);
1705 pfn = pageblock_start_pfn(free_pfn);
1706 cc->fast_search_fail = 0;
1707 set_pageblock_skip(freepage);
1708 break;
1709 }
1710
1711 if (nr_scanned >= limit) {
1712 cc->fast_search_fail++;
1713 move_freelist_tail(freelist, freepage);
1714 break;
1715 }
1716 }
1717 spin_unlock_irqrestore(&cc->zone->lock, flags);
1718 }
1719
1720 cc->total_migrate_scanned += nr_scanned;
1721
1722 /*
1723 * If fast scanning failed then use a cached entry for a page block
1724 * that had free pages as the basis for starting a linear scan.
1725 */
1726 if (pfn == cc->migrate_pfn)
1727 pfn = reinit_migrate_pfn(cc);
1728
1729 return pfn;
1730 }
1731
1732 /*
1733 * Isolate all pages that can be migrated from the first suitable block,
1734 * starting at the block pointed to by the migrate scanner pfn within
1735 * compact_control.
1736 */
1737 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1738 struct compact_control *cc)
1739 {
1740 unsigned long block_start_pfn;
1741 unsigned long block_end_pfn;
1742 unsigned long low_pfn;
1743 struct page *page;
1744 const isolate_mode_t isolate_mode =
1745 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1746 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1747 bool fast_find_block;
1748
1749 /*
1750 * Start at where we last stopped, or beginning of the zone as
1751 * initialized by compact_zone(). The first failure will use
1752 * the lowest PFN as the starting point for linear scanning.
1753 */
1754 low_pfn = fast_find_migrateblock(cc);
1755 block_start_pfn = pageblock_start_pfn(low_pfn);
1756 if (block_start_pfn < zone->zone_start_pfn)
1757 block_start_pfn = zone->zone_start_pfn;
1758
1759 /*
1760 * fast_find_migrateblock marks a pageblock skipped so to avoid
1761 * the isolation_suitable check below, check whether the fast
1762 * search was successful.
1763 */
1764 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1765
1766 /* Only scan within a pageblock boundary */
1767 block_end_pfn = pageblock_end_pfn(low_pfn);
1768
1769 /*
1770 * Iterate over whole pageblocks until we find the first suitable.
1771 * Do not cross the free scanner.
1772 */
1773 for (; block_end_pfn <= cc->free_pfn;
1774 fast_find_block = false,
1775 low_pfn = block_end_pfn,
1776 block_start_pfn = block_end_pfn,
1777 block_end_pfn += pageblock_nr_pages) {
1778
1779 /*
1780 * This can potentially iterate a massively long zone with
1781 * many pageblocks unsuitable, so periodically check if we
1782 * need to schedule.
1783 */
1784 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1785 cond_resched();
1786
1787 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1788 zone);
1789 if (!page)
1790 continue;
1791
1792 /*
1793 * If isolation recently failed, do not retry. Only check the
1794 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1795 * to be visited multiple times. Assume skip was checked
1796 * before making it "skip" so other compaction instances do
1797 * not scan the same block.
1798 */
1799 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1800 !fast_find_block && !isolation_suitable(cc, page))
1801 continue;
1802
1803 /*
1804 * For async compaction, also only scan in MOVABLE blocks
1805 * without huge pages. Async compaction is optimistic to see
1806 * if the minimum amount of work satisfies the allocation.
1807 * The cached PFN is updated as it's possible that all
1808 * remaining blocks between source and target are unsuitable
1809 * and the compaction scanners fail to meet.
1810 */
1811 if (!suitable_migration_source(cc, page)) {
1812 update_cached_migrate(cc, block_end_pfn);
1813 continue;
1814 }
1815
1816 /* Perform the isolation */
1817 low_pfn = isolate_migratepages_block(cc, low_pfn,
1818 block_end_pfn, isolate_mode);
1819
1820 if (!low_pfn)
1821 return ISOLATE_ABORT;
1822
1823 /*
1824 * Either we isolated something and proceed with migration. Or
1825 * we failed and compact_zone should decide if we should
1826 * continue or not.
1827 */
1828 break;
1829 }
1830
1831 /* Record where migration scanner will be restarted. */
1832 cc->migrate_pfn = low_pfn;
1833
1834 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1835 }
1836
1837 /*
1838 * order == -1 is expected when compacting via
1839 * /proc/sys/vm/compact_memory
1840 */
1841 static inline bool is_via_compact_memory(int order)
1842 {
1843 return order == -1;
1844 }
1845
1846 static enum compact_result __compact_finished(struct compact_control *cc)
1847 {
1848 unsigned int order;
1849 const int migratetype = cc->migratetype;
1850 int ret;
1851
1852 /* Compaction run completes if the migrate and free scanner meet */
1853 if (compact_scanners_met(cc)) {
1854 /* Let the next compaction start anew. */
1855 reset_cached_positions(cc->zone);
1856
1857 /*
1858 * Mark that the PG_migrate_skip information should be cleared
1859 * by kswapd when it goes to sleep. kcompactd does not set the
1860 * flag itself as the decision to be clear should be directly
1861 * based on an allocation request.
1862 */
1863 if (cc->direct_compaction)
1864 cc->zone->compact_blockskip_flush = true;
1865
1866 if (cc->whole_zone)
1867 return COMPACT_COMPLETE;
1868 else
1869 return COMPACT_PARTIAL_SKIPPED;
1870 }
1871
1872 if (is_via_compact_memory(cc->order))
1873 return COMPACT_CONTINUE;
1874
1875 /*
1876 * Always finish scanning a pageblock to reduce the possibility of
1877 * fallbacks in the future. This is particularly important when
1878 * migration source is unmovable/reclaimable but it's not worth
1879 * special casing.
1880 */
1881 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1882 return COMPACT_CONTINUE;
1883
1884 /* Direct compactor: Is a suitable page free? */
1885 ret = COMPACT_NO_SUITABLE_PAGE;
1886 for (order = cc->order; order < MAX_ORDER; order++) {
1887 struct free_area *area = &cc->zone->free_area[order];
1888 bool can_steal;
1889
1890 /* Job done if page is free of the right migratetype */
1891 if (!free_area_empty(area, migratetype))
1892 return COMPACT_SUCCESS;
1893
1894 #ifdef CONFIG_CMA
1895 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1896 if (migratetype == MIGRATE_MOVABLE &&
1897 !free_area_empty(area, MIGRATE_CMA))
1898 return COMPACT_SUCCESS;
1899 #endif
1900 /*
1901 * Job done if allocation would steal freepages from
1902 * other migratetype buddy lists.
1903 */
1904 if (find_suitable_fallback(area, order, migratetype,
1905 true, &can_steal) != -1) {
1906
1907 /* movable pages are OK in any pageblock */
1908 if (migratetype == MIGRATE_MOVABLE)
1909 return COMPACT_SUCCESS;
1910
1911 /*
1912 * We are stealing for a non-movable allocation. Make
1913 * sure we finish compacting the current pageblock
1914 * first so it is as free as possible and we won't
1915 * have to steal another one soon. This only applies
1916 * to sync compaction, as async compaction operates
1917 * on pageblocks of the same migratetype.
1918 */
1919 if (cc->mode == MIGRATE_ASYNC ||
1920 IS_ALIGNED(cc->migrate_pfn,
1921 pageblock_nr_pages)) {
1922 return COMPACT_SUCCESS;
1923 }
1924
1925 ret = COMPACT_CONTINUE;
1926 break;
1927 }
1928 }
1929
1930 if (cc->contended || fatal_signal_pending(current))
1931 ret = COMPACT_CONTENDED;
1932
1933 return ret;
1934 }
1935
1936 static enum compact_result compact_finished(struct compact_control *cc)
1937 {
1938 int ret;
1939
1940 ret = __compact_finished(cc);
1941 trace_mm_compaction_finished(cc->zone, cc->order, ret);
1942 if (ret == COMPACT_NO_SUITABLE_PAGE)
1943 ret = COMPACT_CONTINUE;
1944
1945 return ret;
1946 }
1947
1948 /*
1949 * compaction_suitable: Is this suitable to run compaction on this zone now?
1950 * Returns
1951 * COMPACT_SKIPPED - If there are too few free pages for compaction
1952 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1953 * COMPACT_CONTINUE - If compaction should run now
1954 */
1955 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1956 unsigned int alloc_flags,
1957 int classzone_idx,
1958 unsigned long wmark_target)
1959 {
1960 unsigned long watermark;
1961
1962 if (is_via_compact_memory(order))
1963 return COMPACT_CONTINUE;
1964
1965 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1966 /*
1967 * If watermarks for high-order allocation are already met, there
1968 * should be no need for compaction at all.
1969 */
1970 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1971 alloc_flags))
1972 return COMPACT_SUCCESS;
1973
1974 /*
1975 * Watermarks for order-0 must be met for compaction to be able to
1976 * isolate free pages for migration targets. This means that the
1977 * watermark and alloc_flags have to match, or be more pessimistic than
1978 * the check in __isolate_free_page(). We don't use the direct
1979 * compactor's alloc_flags, as they are not relevant for freepage
1980 * isolation. We however do use the direct compactor's classzone_idx to
1981 * skip over zones where lowmem reserves would prevent allocation even
1982 * if compaction succeeds.
1983 * For costly orders, we require low watermark instead of min for
1984 * compaction to proceed to increase its chances.
1985 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1986 * suitable migration targets
1987 */
1988 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1989 low_wmark_pages(zone) : min_wmark_pages(zone);
1990 watermark += compact_gap(order);
1991 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1992 ALLOC_CMA, wmark_target))
1993 return COMPACT_SKIPPED;
1994
1995 return COMPACT_CONTINUE;
1996 }
1997
1998 enum compact_result compaction_suitable(struct zone *zone, int order,
1999 unsigned int alloc_flags,
2000 int classzone_idx)
2001 {
2002 enum compact_result ret;
2003 int fragindex;
2004
2005 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2006 zone_page_state(zone, NR_FREE_PAGES));
2007 /*
2008 * fragmentation index determines if allocation failures are due to
2009 * low memory or external fragmentation
2010 *
2011 * index of -1000 would imply allocations might succeed depending on
2012 * watermarks, but we already failed the high-order watermark check
2013 * index towards 0 implies failure is due to lack of memory
2014 * index towards 1000 implies failure is due to fragmentation
2015 *
2016 * Only compact if a failure would be due to fragmentation. Also
2017 * ignore fragindex for non-costly orders where the alternative to
2018 * a successful reclaim/compaction is OOM. Fragindex and the
2019 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2020 * excessive compaction for costly orders, but it should not be at the
2021 * expense of system stability.
2022 */
2023 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2024 fragindex = fragmentation_index(zone, order);
2025 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2026 ret = COMPACT_NOT_SUITABLE_ZONE;
2027 }
2028
2029 trace_mm_compaction_suitable(zone, order, ret);
2030 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2031 ret = COMPACT_SKIPPED;
2032
2033 return ret;
2034 }
2035
2036 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2037 int alloc_flags)
2038 {
2039 struct zone *zone;
2040 struct zoneref *z;
2041
2042 /*
2043 * Make sure at least one zone would pass __compaction_suitable if we continue
2044 * retrying the reclaim.
2045 */
2046 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2047 ac->nodemask) {
2048 unsigned long available;
2049 enum compact_result compact_result;
2050
2051 /*
2052 * Do not consider all the reclaimable memory because we do not
2053 * want to trash just for a single high order allocation which
2054 * is even not guaranteed to appear even if __compaction_suitable
2055 * is happy about the watermark check.
2056 */
2057 available = zone_reclaimable_pages(zone) / order;
2058 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2059 compact_result = __compaction_suitable(zone, order, alloc_flags,
2060 ac_classzone_idx(ac), available);
2061 if (compact_result != COMPACT_SKIPPED)
2062 return true;
2063 }
2064
2065 return false;
2066 }
2067
2068 static enum compact_result
2069 compact_zone(struct compact_control *cc, struct capture_control *capc)
2070 {
2071 enum compact_result ret;
2072 unsigned long start_pfn = cc->zone->zone_start_pfn;
2073 unsigned long end_pfn = zone_end_pfn(cc->zone);
2074 unsigned long last_migrated_pfn;
2075 const bool sync = cc->mode != MIGRATE_ASYNC;
2076 bool update_cached;
2077
2078 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2079 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2080 cc->classzone_idx);
2081 /* Compaction is likely to fail */
2082 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2083 return ret;
2084
2085 /* huh, compaction_suitable is returning something unexpected */
2086 VM_BUG_ON(ret != COMPACT_CONTINUE);
2087
2088 /*
2089 * Clear pageblock skip if there were failures recently and compaction
2090 * is about to be retried after being deferred.
2091 */
2092 if (compaction_restarting(cc->zone, cc->order))
2093 __reset_isolation_suitable(cc->zone);
2094
2095 /*
2096 * Setup to move all movable pages to the end of the zone. Used cached
2097 * information on where the scanners should start (unless we explicitly
2098 * want to compact the whole zone), but check that it is initialised
2099 * by ensuring the values are within zone boundaries.
2100 */
2101 cc->fast_start_pfn = 0;
2102 if (cc->whole_zone) {
2103 cc->migrate_pfn = start_pfn;
2104 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2105 } else {
2106 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2107 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2108 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2109 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2110 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2111 }
2112 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2113 cc->migrate_pfn = start_pfn;
2114 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2115 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2116 }
2117
2118 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2119 cc->whole_zone = true;
2120 }
2121
2122 last_migrated_pfn = 0;
2123
2124 /*
2125 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2126 * the basis that some migrations will fail in ASYNC mode. However,
2127 * if the cached PFNs match and pageblocks are skipped due to having
2128 * no isolation candidates, then the sync state does not matter.
2129 * Until a pageblock with isolation candidates is found, keep the
2130 * cached PFNs in sync to avoid revisiting the same blocks.
2131 */
2132 update_cached = !sync &&
2133 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2134
2135 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2136 cc->free_pfn, end_pfn, sync);
2137
2138 migrate_prep_local();
2139
2140 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2141 int err;
2142 unsigned long start_pfn = cc->migrate_pfn;
2143
2144 /*
2145 * Avoid multiple rescans which can happen if a page cannot be
2146 * isolated (dirty/writeback in async mode) or if the migrated
2147 * pages are being allocated before the pageblock is cleared.
2148 * The first rescan will capture the entire pageblock for
2149 * migration. If it fails, it'll be marked skip and scanning
2150 * will proceed as normal.
2151 */
2152 cc->rescan = false;
2153 if (pageblock_start_pfn(last_migrated_pfn) ==
2154 pageblock_start_pfn(start_pfn)) {
2155 cc->rescan = true;
2156 }
2157
2158 switch (isolate_migratepages(cc->zone, cc)) {
2159 case ISOLATE_ABORT:
2160 ret = COMPACT_CONTENDED;
2161 putback_movable_pages(&cc->migratepages);
2162 cc->nr_migratepages = 0;
2163 last_migrated_pfn = 0;
2164 goto out;
2165 case ISOLATE_NONE:
2166 if (update_cached) {
2167 cc->zone->compact_cached_migrate_pfn[1] =
2168 cc->zone->compact_cached_migrate_pfn[0];
2169 }
2170
2171 /*
2172 * We haven't isolated and migrated anything, but
2173 * there might still be unflushed migrations from
2174 * previous cc->order aligned block.
2175 */
2176 goto check_drain;
2177 case ISOLATE_SUCCESS:
2178 update_cached = false;
2179 last_migrated_pfn = start_pfn;
2180 ;
2181 }
2182
2183 err = migrate_pages(&cc->migratepages, compaction_alloc,
2184 compaction_free, (unsigned long)cc, cc->mode,
2185 MR_COMPACTION);
2186
2187 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2188 &cc->migratepages);
2189
2190 /* All pages were either migrated or will be released */
2191 cc->nr_migratepages = 0;
2192 if (err) {
2193 putback_movable_pages(&cc->migratepages);
2194 /*
2195 * migrate_pages() may return -ENOMEM when scanners meet
2196 * and we want compact_finished() to detect it
2197 */
2198 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2199 ret = COMPACT_CONTENDED;
2200 goto out;
2201 }
2202 /*
2203 * We failed to migrate at least one page in the current
2204 * order-aligned block, so skip the rest of it.
2205 */
2206 if (cc->direct_compaction &&
2207 (cc->mode == MIGRATE_ASYNC)) {
2208 cc->migrate_pfn = block_end_pfn(
2209 cc->migrate_pfn - 1, cc->order);
2210 /* Draining pcplists is useless in this case */
2211 last_migrated_pfn = 0;
2212 }
2213 }
2214
2215 check_drain:
2216 /*
2217 * Has the migration scanner moved away from the previous
2218 * cc->order aligned block where we migrated from? If yes,
2219 * flush the pages that were freed, so that they can merge and
2220 * compact_finished() can detect immediately if allocation
2221 * would succeed.
2222 */
2223 if (cc->order > 0 && last_migrated_pfn) {
2224 int cpu;
2225 unsigned long current_block_start =
2226 block_start_pfn(cc->migrate_pfn, cc->order);
2227
2228 if (last_migrated_pfn < current_block_start) {
2229 cpu = get_cpu();
2230 lru_add_drain_cpu(cpu);
2231 drain_local_pages(cc->zone);
2232 put_cpu();
2233 /* No more flushing until we migrate again */
2234 last_migrated_pfn = 0;
2235 }
2236 }
2237
2238 /* Stop if a page has been captured */
2239 if (capc && capc->page) {
2240 ret = COMPACT_SUCCESS;
2241 break;
2242 }
2243 }
2244
2245 out:
2246 /*
2247 * Release free pages and update where the free scanner should restart,
2248 * so we don't leave any returned pages behind in the next attempt.
2249 */
2250 if (cc->nr_freepages > 0) {
2251 unsigned long free_pfn = release_freepages(&cc->freepages);
2252
2253 cc->nr_freepages = 0;
2254 VM_BUG_ON(free_pfn == 0);
2255 /* The cached pfn is always the first in a pageblock */
2256 free_pfn = pageblock_start_pfn(free_pfn);
2257 /*
2258 * Only go back, not forward. The cached pfn might have been
2259 * already reset to zone end in compact_finished()
2260 */
2261 if (free_pfn > cc->zone->compact_cached_free_pfn)
2262 cc->zone->compact_cached_free_pfn = free_pfn;
2263 }
2264
2265 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2266 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2267
2268 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2269 cc->free_pfn, end_pfn, sync, ret);
2270
2271 return ret;
2272 }
2273
2274 static enum compact_result compact_zone_order(struct zone *zone, int order,
2275 gfp_t gfp_mask, enum compact_priority prio,
2276 unsigned int alloc_flags, int classzone_idx,
2277 struct page **capture)
2278 {
2279 enum compact_result ret;
2280 struct compact_control cc = {
2281 .nr_freepages = 0,
2282 .nr_migratepages = 0,
2283 .total_migrate_scanned = 0,
2284 .total_free_scanned = 0,
2285 .order = order,
2286 .search_order = order,
2287 .gfp_mask = gfp_mask,
2288 .zone = zone,
2289 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2290 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2291 .alloc_flags = alloc_flags,
2292 .classzone_idx = classzone_idx,
2293 .direct_compaction = true,
2294 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2295 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2296 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2297 };
2298 struct capture_control capc = {
2299 .cc = &cc,
2300 .page = NULL,
2301 };
2302
2303 if (capture)
2304 current->capture_control = &capc;
2305 INIT_LIST_HEAD(&cc.freepages);
2306 INIT_LIST_HEAD(&cc.migratepages);
2307
2308 ret = compact_zone(&cc, &capc);
2309
2310 VM_BUG_ON(!list_empty(&cc.freepages));
2311 VM_BUG_ON(!list_empty(&cc.migratepages));
2312
2313 *capture = capc.page;
2314 current->capture_control = NULL;
2315
2316 return ret;
2317 }
2318
2319 int sysctl_extfrag_threshold = 500;
2320
2321 /**
2322 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2323 * @gfp_mask: The GFP mask of the current allocation
2324 * @order: The order of the current allocation
2325 * @alloc_flags: The allocation flags of the current allocation
2326 * @ac: The context of current allocation
2327 * @prio: Determines how hard direct compaction should try to succeed
2328 *
2329 * This is the main entry point for direct page compaction.
2330 */
2331 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2332 unsigned int alloc_flags, const struct alloc_context *ac,
2333 enum compact_priority prio, struct page **capture)
2334 {
2335 int may_perform_io = gfp_mask & __GFP_IO;
2336 struct zoneref *z;
2337 struct zone *zone;
2338 enum compact_result rc = COMPACT_SKIPPED;
2339
2340 /*
2341 * Check if the GFP flags allow compaction - GFP_NOIO is really
2342 * tricky context because the migration might require IO
2343 */
2344 if (!may_perform_io)
2345 return COMPACT_SKIPPED;
2346
2347 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2348
2349 /* Compact each zone in the list */
2350 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2351 ac->nodemask) {
2352 enum compact_result status;
2353
2354 if (prio > MIN_COMPACT_PRIORITY
2355 && compaction_deferred(zone, order)) {
2356 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2357 continue;
2358 }
2359
2360 status = compact_zone_order(zone, order, gfp_mask, prio,
2361 alloc_flags, ac_classzone_idx(ac), capture);
2362 rc = max(status, rc);
2363
2364 /* The allocation should succeed, stop compacting */
2365 if (status == COMPACT_SUCCESS) {
2366 /*
2367 * We think the allocation will succeed in this zone,
2368 * but it is not certain, hence the false. The caller
2369 * will repeat this with true if allocation indeed
2370 * succeeds in this zone.
2371 */
2372 compaction_defer_reset(zone, order, false);
2373
2374 break;
2375 }
2376
2377 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2378 status == COMPACT_PARTIAL_SKIPPED))
2379 /*
2380 * We think that allocation won't succeed in this zone
2381 * so we defer compaction there. If it ends up
2382 * succeeding after all, it will be reset.
2383 */
2384 defer_compaction(zone, order);
2385
2386 /*
2387 * We might have stopped compacting due to need_resched() in
2388 * async compaction, or due to a fatal signal detected. In that
2389 * case do not try further zones
2390 */
2391 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2392 || fatal_signal_pending(current))
2393 break;
2394 }
2395
2396 return rc;
2397 }
2398
2399
2400 /* Compact all zones within a node */
2401 static void compact_node(int nid)
2402 {
2403 pg_data_t *pgdat = NODE_DATA(nid);
2404 int zoneid;
2405 struct zone *zone;
2406 struct compact_control cc = {
2407 .order = -1,
2408 .total_migrate_scanned = 0,
2409 .total_free_scanned = 0,
2410 .mode = MIGRATE_SYNC,
2411 .ignore_skip_hint = true,
2412 .whole_zone = true,
2413 .gfp_mask = GFP_KERNEL,
2414 };
2415
2416
2417 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2418
2419 zone = &pgdat->node_zones[zoneid];
2420 if (!populated_zone(zone))
2421 continue;
2422
2423 cc.nr_freepages = 0;
2424 cc.nr_migratepages = 0;
2425 cc.zone = zone;
2426 INIT_LIST_HEAD(&cc.freepages);
2427 INIT_LIST_HEAD(&cc.migratepages);
2428
2429 compact_zone(&cc, NULL);
2430
2431 VM_BUG_ON(!list_empty(&cc.freepages));
2432 VM_BUG_ON(!list_empty(&cc.migratepages));
2433 }
2434 }
2435
2436 /* Compact all nodes in the system */
2437 static void compact_nodes(void)
2438 {
2439 int nid;
2440
2441 /* Flush pending updates to the LRU lists */
2442 lru_add_drain_all();
2443
2444 for_each_online_node(nid)
2445 compact_node(nid);
2446 }
2447
2448 /* The written value is actually unused, all memory is compacted */
2449 int sysctl_compact_memory;
2450
2451 /*
2452 * This is the entry point for compacting all nodes via
2453 * /proc/sys/vm/compact_memory
2454 */
2455 int sysctl_compaction_handler(struct ctl_table *table, int write,
2456 void __user *buffer, size_t *length, loff_t *ppos)
2457 {
2458 if (write)
2459 compact_nodes();
2460
2461 return 0;
2462 }
2463
2464 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2465 static ssize_t sysfs_compact_node(struct device *dev,
2466 struct device_attribute *attr,
2467 const char *buf, size_t count)
2468 {
2469 int nid = dev->id;
2470
2471 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2472 /* Flush pending updates to the LRU lists */
2473 lru_add_drain_all();
2474
2475 compact_node(nid);
2476 }
2477
2478 return count;
2479 }
2480 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2481
2482 int compaction_register_node(struct node *node)
2483 {
2484 return device_create_file(&node->dev, &dev_attr_compact);
2485 }
2486
2487 void compaction_unregister_node(struct node *node)
2488 {
2489 return device_remove_file(&node->dev, &dev_attr_compact);
2490 }
2491 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2492
2493 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2494 {
2495 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2496 }
2497
2498 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2499 {
2500 int zoneid;
2501 struct zone *zone;
2502 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2503
2504 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2505 zone = &pgdat->node_zones[zoneid];
2506
2507 if (!populated_zone(zone))
2508 continue;
2509
2510 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2511 classzone_idx) == COMPACT_CONTINUE)
2512 return true;
2513 }
2514
2515 return false;
2516 }
2517
2518 static void kcompactd_do_work(pg_data_t *pgdat)
2519 {
2520 /*
2521 * With no special task, compact all zones so that a page of requested
2522 * order is allocatable.
2523 */
2524 int zoneid;
2525 struct zone *zone;
2526 struct compact_control cc = {
2527 .order = pgdat->kcompactd_max_order,
2528 .search_order = pgdat->kcompactd_max_order,
2529 .total_migrate_scanned = 0,
2530 .total_free_scanned = 0,
2531 .classzone_idx = pgdat->kcompactd_classzone_idx,
2532 .mode = MIGRATE_SYNC_LIGHT,
2533 .ignore_skip_hint = false,
2534 .gfp_mask = GFP_KERNEL,
2535 };
2536 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2537 cc.classzone_idx);
2538 count_compact_event(KCOMPACTD_WAKE);
2539
2540 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2541 int status;
2542
2543 zone = &pgdat->node_zones[zoneid];
2544 if (!populated_zone(zone))
2545 continue;
2546
2547 if (compaction_deferred(zone, cc.order))
2548 continue;
2549
2550 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2551 COMPACT_CONTINUE)
2552 continue;
2553
2554 cc.nr_freepages = 0;
2555 cc.nr_migratepages = 0;
2556 cc.total_migrate_scanned = 0;
2557 cc.total_free_scanned = 0;
2558 cc.zone = zone;
2559 INIT_LIST_HEAD(&cc.freepages);
2560 INIT_LIST_HEAD(&cc.migratepages);
2561
2562 if (kthread_should_stop())
2563 return;
2564 status = compact_zone(&cc, NULL);
2565
2566 if (status == COMPACT_SUCCESS) {
2567 compaction_defer_reset(zone, cc.order, false);
2568 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2569 /*
2570 * Buddy pages may become stranded on pcps that could
2571 * otherwise coalesce on the zone's free area for
2572 * order >= cc.order. This is ratelimited by the
2573 * upcoming deferral.
2574 */
2575 drain_all_pages(zone);
2576
2577 /*
2578 * We use sync migration mode here, so we defer like
2579 * sync direct compaction does.
2580 */
2581 defer_compaction(zone, cc.order);
2582 }
2583
2584 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2585 cc.total_migrate_scanned);
2586 count_compact_events(KCOMPACTD_FREE_SCANNED,
2587 cc.total_free_scanned);
2588
2589 VM_BUG_ON(!list_empty(&cc.freepages));
2590 VM_BUG_ON(!list_empty(&cc.migratepages));
2591 }
2592
2593 /*
2594 * Regardless of success, we are done until woken up next. But remember
2595 * the requested order/classzone_idx in case it was higher/tighter than
2596 * our current ones
2597 */
2598 if (pgdat->kcompactd_max_order <= cc.order)
2599 pgdat->kcompactd_max_order = 0;
2600 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2601 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2602 }
2603
2604 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2605 {
2606 if (!order)
2607 return;
2608
2609 if (pgdat->kcompactd_max_order < order)
2610 pgdat->kcompactd_max_order = order;
2611
2612 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2613 pgdat->kcompactd_classzone_idx = classzone_idx;
2614
2615 /*
2616 * Pairs with implicit barrier in wait_event_freezable()
2617 * such that wakeups are not missed.
2618 */
2619 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2620 return;
2621
2622 if (!kcompactd_node_suitable(pgdat))
2623 return;
2624
2625 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2626 classzone_idx);
2627 wake_up_interruptible(&pgdat->kcompactd_wait);
2628 }
2629
2630 /*
2631 * The background compaction daemon, started as a kernel thread
2632 * from the init process.
2633 */
2634 static int kcompactd(void *p)
2635 {
2636 pg_data_t *pgdat = (pg_data_t*)p;
2637 struct task_struct *tsk = current;
2638
2639 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2640
2641 if (!cpumask_empty(cpumask))
2642 set_cpus_allowed_ptr(tsk, cpumask);
2643
2644 set_freezable();
2645
2646 pgdat->kcompactd_max_order = 0;
2647 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2648
2649 while (!kthread_should_stop()) {
2650 unsigned long pflags;
2651
2652 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2653 wait_event_freezable(pgdat->kcompactd_wait,
2654 kcompactd_work_requested(pgdat));
2655
2656 psi_memstall_enter(&pflags);
2657 kcompactd_do_work(pgdat);
2658 psi_memstall_leave(&pflags);
2659 }
2660
2661 return 0;
2662 }
2663
2664 /*
2665 * This kcompactd start function will be called by init and node-hot-add.
2666 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2667 */
2668 int kcompactd_run(int nid)
2669 {
2670 pg_data_t *pgdat = NODE_DATA(nid);
2671 int ret = 0;
2672
2673 if (pgdat->kcompactd)
2674 return 0;
2675
2676 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2677 if (IS_ERR(pgdat->kcompactd)) {
2678 pr_err("Failed to start kcompactd on node %d\n", nid);
2679 ret = PTR_ERR(pgdat->kcompactd);
2680 pgdat->kcompactd = NULL;
2681 }
2682 return ret;
2683 }
2684
2685 /*
2686 * Called by memory hotplug when all memory in a node is offlined. Caller must
2687 * hold mem_hotplug_begin/end().
2688 */
2689 void kcompactd_stop(int nid)
2690 {
2691 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2692
2693 if (kcompactd) {
2694 kthread_stop(kcompactd);
2695 NODE_DATA(nid)->kcompactd = NULL;
2696 }
2697 }
2698
2699 /*
2700 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2701 * not required for correctness. So if the last cpu in a node goes
2702 * away, we get changed to run anywhere: as the first one comes back,
2703 * restore their cpu bindings.
2704 */
2705 static int kcompactd_cpu_online(unsigned int cpu)
2706 {
2707 int nid;
2708
2709 for_each_node_state(nid, N_MEMORY) {
2710 pg_data_t *pgdat = NODE_DATA(nid);
2711 const struct cpumask *mask;
2712
2713 mask = cpumask_of_node(pgdat->node_id);
2714
2715 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2716 /* One of our CPUs online: restore mask */
2717 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2718 }
2719 return 0;
2720 }
2721
2722 static int __init kcompactd_init(void)
2723 {
2724 int nid;
2725 int ret;
2726
2727 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2728 "mm/compaction:online",
2729 kcompactd_cpu_online, NULL);
2730 if (ret < 0) {
2731 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2732 return ret;
2733 }
2734
2735 for_each_node_state(nid, N_MEMORY)
2736 kcompactd_run(nid);
2737 return 0;
2738 }
2739 subsys_initcall(kcompactd_init)
2740
2741 #endif /* CONFIG_COMPACTION */