]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/compaction.c
dt-bindings: usb: tegra-xudc: Remove extraneous PHYs
[thirdparty/linux.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
76 list_del(&page->lru);
77 __free_page(page);
78 if (pfn > high_pfn)
79 high_pfn = pfn;
80 }
81
82 return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(&page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
96
97 post_alloc_hook(page, order, __GFP_MOVABLE);
98 if (order)
99 split_page(page, order);
100
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
103 page++;
104 }
105 }
106
107 list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 const struct movable_operations *mops;
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
117 return false;
118
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
122
123 return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
140 */
141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
176 if (++zone->compact_considered >= defer_limit) {
177 zone->compact_considered = defer_limit;
178 return false;
179 }
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184 }
185
186 /*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
191 void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193 {
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217 {
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 zone->compact_cached_free_pfn =
229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 /*
233 * Compound pages of >= pageblock_order should consistently be skipped until
234 * released. It is always pointless to compact pages of such order (if they are
235 * migratable), and the pageblocks they occupy cannot contain any free pages.
236 */
237 static bool pageblock_skip_persistent(struct page *page)
238 {
239 if (!PageCompound(page))
240 return false;
241
242 page = compound_head(page);
243
244 if (compound_order(page) >= pageblock_order)
245 return true;
246
247 return false;
248 }
249
250 static bool
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252 bool check_target)
253 {
254 struct page *page = pfn_to_online_page(pfn);
255 struct page *block_page;
256 struct page *end_page;
257 unsigned long block_pfn;
258
259 if (!page)
260 return false;
261 if (zone != page_zone(page))
262 return false;
263 if (pageblock_skip_persistent(page))
264 return false;
265
266 /*
267 * If skip is already cleared do no further checking once the
268 * restart points have been set.
269 */
270 if (check_source && check_target && !get_pageblock_skip(page))
271 return true;
272
273 /*
274 * If clearing skip for the target scanner, do not select a
275 * non-movable pageblock as the starting point.
276 */
277 if (!check_source && check_target &&
278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279 return false;
280
281 /* Ensure the start of the pageblock or zone is online and valid */
282 block_pfn = pageblock_start_pfn(pfn);
283 block_pfn = max(block_pfn, zone->zone_start_pfn);
284 block_page = pfn_to_online_page(block_pfn);
285 if (block_page) {
286 page = block_page;
287 pfn = block_pfn;
288 }
289
290 /* Ensure the end of the pageblock or zone is online and valid */
291 block_pfn = pageblock_end_pfn(pfn) - 1;
292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 end_page = pfn_to_online_page(block_pfn);
294 if (!end_page)
295 return false;
296
297 /*
298 * Only clear the hint if a sample indicates there is either a
299 * free page or an LRU page in the block. One or other condition
300 * is necessary for the block to be a migration source/target.
301 */
302 do {
303 if (check_source && PageLRU(page)) {
304 clear_pageblock_skip(page);
305 return true;
306 }
307
308 if (check_target && PageBuddy(page)) {
309 clear_pageblock_skip(page);
310 return true;
311 }
312
313 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314 } while (page <= end_page);
315
316 return false;
317 }
318
319 /*
320 * This function is called to clear all cached information on pageblocks that
321 * should be skipped for page isolation when the migrate and free page scanner
322 * meet.
323 */
324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326 unsigned long migrate_pfn = zone->zone_start_pfn;
327 unsigned long free_pfn = zone_end_pfn(zone) - 1;
328 unsigned long reset_migrate = free_pfn;
329 unsigned long reset_free = migrate_pfn;
330 bool source_set = false;
331 bool free_set = false;
332
333 if (!zone->compact_blockskip_flush)
334 return;
335
336 zone->compact_blockskip_flush = false;
337
338 /*
339 * Walk the zone and update pageblock skip information. Source looks
340 * for PageLRU while target looks for PageBuddy. When the scanner
341 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 * is suitable as both source and target.
343 */
344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 free_pfn -= pageblock_nr_pages) {
346 cond_resched();
347
348 /* Update the migrate PFN */
349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 migrate_pfn < reset_migrate) {
351 source_set = true;
352 reset_migrate = migrate_pfn;
353 zone->compact_init_migrate_pfn = reset_migrate;
354 zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 zone->compact_cached_migrate_pfn[1] = reset_migrate;
356 }
357
358 /* Update the free PFN */
359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 free_pfn > reset_free) {
361 free_set = true;
362 reset_free = free_pfn;
363 zone->compact_init_free_pfn = reset_free;
364 zone->compact_cached_free_pfn = reset_free;
365 }
366 }
367
368 /* Leave no distance if no suitable block was reset */
369 if (reset_migrate >= reset_free) {
370 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 zone->compact_cached_free_pfn = free_pfn;
373 }
374 }
375
376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378 int zoneid;
379
380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 struct zone *zone = &pgdat->node_zones[zoneid];
382 if (!populated_zone(zone))
383 continue;
384
385 /* Only flush if a full compaction finished recently */
386 if (zone->compact_blockskip_flush)
387 __reset_isolation_suitable(zone);
388 }
389 }
390
391 /*
392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393 * locks are not required for read/writers. Returns true if it was already set.
394 */
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
396 unsigned long pfn)
397 {
398 bool skip;
399
400 /* Do no update if skip hint is being ignored */
401 if (cc->ignore_skip_hint)
402 return false;
403
404 if (!pageblock_aligned(pfn))
405 return false;
406
407 skip = get_pageblock_skip(page);
408 if (!skip && !cc->no_set_skip_hint)
409 set_pageblock_skip(page);
410
411 return skip;
412 }
413
414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
415 {
416 struct zone *zone = cc->zone;
417
418 pfn = pageblock_end_pfn(pfn);
419
420 /* Set for isolation rather than compaction */
421 if (cc->no_set_skip_hint)
422 return;
423
424 if (pfn > zone->compact_cached_migrate_pfn[0])
425 zone->compact_cached_migrate_pfn[0] = pfn;
426 if (cc->mode != MIGRATE_ASYNC &&
427 pfn > zone->compact_cached_migrate_pfn[1])
428 zone->compact_cached_migrate_pfn[1] = pfn;
429 }
430
431 /*
432 * If no pages were isolated then mark this pageblock to be skipped in the
433 * future. The information is later cleared by __reset_isolation_suitable().
434 */
435 static void update_pageblock_skip(struct compact_control *cc,
436 struct page *page, unsigned long pfn)
437 {
438 struct zone *zone = cc->zone;
439
440 if (cc->no_set_skip_hint)
441 return;
442
443 if (!page)
444 return;
445
446 set_pageblock_skip(page);
447
448 /* Update where async and sync compaction should restart */
449 if (pfn < zone->compact_cached_free_pfn)
450 zone->compact_cached_free_pfn = pfn;
451 }
452 #else
453 static inline bool isolation_suitable(struct compact_control *cc,
454 struct page *page)
455 {
456 return true;
457 }
458
459 static inline bool pageblock_skip_persistent(struct page *page)
460 {
461 return false;
462 }
463
464 static inline void update_pageblock_skip(struct compact_control *cc,
465 struct page *page, unsigned long pfn)
466 {
467 }
468
469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
470 {
471 }
472
473 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
474 unsigned long pfn)
475 {
476 return false;
477 }
478 #endif /* CONFIG_COMPACTION */
479
480 /*
481 * Compaction requires the taking of some coarse locks that are potentially
482 * very heavily contended. For async compaction, trylock and record if the
483 * lock is contended. The lock will still be acquired but compaction will
484 * abort when the current block is finished regardless of success rate.
485 * Sync compaction acquires the lock.
486 *
487 * Always returns true which makes it easier to track lock state in callers.
488 */
489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
490 struct compact_control *cc)
491 __acquires(lock)
492 {
493 /* Track if the lock is contended in async mode */
494 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495 if (spin_trylock_irqsave(lock, *flags))
496 return true;
497
498 cc->contended = true;
499 }
500
501 spin_lock_irqsave(lock, *flags);
502 return true;
503 }
504
505 /*
506 * Compaction requires the taking of some coarse locks that are potentially
507 * very heavily contended. The lock should be periodically unlocked to avoid
508 * having disabled IRQs for a long time, even when there is nobody waiting on
509 * the lock. It might also be that allowing the IRQs will result in
510 * need_resched() becoming true. If scheduling is needed, compaction schedules.
511 * Either compaction type will also abort if a fatal signal is pending.
512 * In either case if the lock was locked, it is dropped and not regained.
513 *
514 * Returns true if compaction should abort due to fatal signal pending.
515 * Returns false when compaction can continue.
516 */
517 static bool compact_unlock_should_abort(spinlock_t *lock,
518 unsigned long flags, bool *locked, struct compact_control *cc)
519 {
520 if (*locked) {
521 spin_unlock_irqrestore(lock, flags);
522 *locked = false;
523 }
524
525 if (fatal_signal_pending(current)) {
526 cc->contended = true;
527 return true;
528 }
529
530 cond_resched();
531
532 return false;
533 }
534
535 /*
536 * Isolate free pages onto a private freelist. If @strict is true, will abort
537 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538 * (even though it may still end up isolating some pages).
539 */
540 static unsigned long isolate_freepages_block(struct compact_control *cc,
541 unsigned long *start_pfn,
542 unsigned long end_pfn,
543 struct list_head *freelist,
544 unsigned int stride,
545 bool strict)
546 {
547 int nr_scanned = 0, total_isolated = 0;
548 struct page *cursor;
549 unsigned long flags = 0;
550 bool locked = false;
551 unsigned long blockpfn = *start_pfn;
552 unsigned int order;
553
554 /* Strict mode is for isolation, speed is secondary */
555 if (strict)
556 stride = 1;
557
558 cursor = pfn_to_page(blockpfn);
559
560 /* Isolate free pages. */
561 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
562 int isolated;
563 struct page *page = cursor;
564
565 /*
566 * Periodically drop the lock (if held) regardless of its
567 * contention, to give chance to IRQs. Abort if fatal signal
568 * pending.
569 */
570 if (!(blockpfn % COMPACT_CLUSTER_MAX)
571 && compact_unlock_should_abort(&cc->zone->lock, flags,
572 &locked, cc))
573 break;
574
575 nr_scanned++;
576
577 /*
578 * For compound pages such as THP and hugetlbfs, we can save
579 * potentially a lot of iterations if we skip them at once.
580 * The check is racy, but we can consider only valid values
581 * and the only danger is skipping too much.
582 */
583 if (PageCompound(page)) {
584 const unsigned int order = compound_order(page);
585
586 if (likely(order <= MAX_ORDER)) {
587 blockpfn += (1UL << order) - 1;
588 cursor += (1UL << order) - 1;
589 nr_scanned += (1UL << order) - 1;
590 }
591 goto isolate_fail;
592 }
593
594 if (!PageBuddy(page))
595 goto isolate_fail;
596
597 /* If we already hold the lock, we can skip some rechecking. */
598 if (!locked) {
599 locked = compact_lock_irqsave(&cc->zone->lock,
600 &flags, cc);
601
602 /* Recheck this is a buddy page under lock */
603 if (!PageBuddy(page))
604 goto isolate_fail;
605 }
606
607 /* Found a free page, will break it into order-0 pages */
608 order = buddy_order(page);
609 isolated = __isolate_free_page(page, order);
610 if (!isolated)
611 break;
612 set_page_private(page, order);
613
614 nr_scanned += isolated - 1;
615 total_isolated += isolated;
616 cc->nr_freepages += isolated;
617 list_add_tail(&page->lru, freelist);
618
619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 blockpfn += isolated;
621 break;
622 }
623 /* Advance to the end of split page */
624 blockpfn += isolated - 1;
625 cursor += isolated - 1;
626 continue;
627
628 isolate_fail:
629 if (strict)
630 break;
631 else
632 continue;
633
634 }
635
636 if (locked)
637 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
639 /*
640 * There is a tiny chance that we have read bogus compound_order(),
641 * so be careful to not go outside of the pageblock.
642 */
643 if (unlikely(blockpfn > end_pfn))
644 blockpfn = end_pfn;
645
646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 nr_scanned, total_isolated);
648
649 /* Record how far we have got within the block */
650 *start_pfn = blockpfn;
651
652 /*
653 * If strict isolation is requested by CMA then check that all the
654 * pages requested were isolated. If there were any failures, 0 is
655 * returned and CMA will fail.
656 */
657 if (strict && blockpfn < end_pfn)
658 total_isolated = 0;
659
660 cc->total_free_scanned += nr_scanned;
661 if (total_isolated)
662 count_compact_events(COMPACTISOLATED, total_isolated);
663 return total_isolated;
664 }
665
666 /**
667 * isolate_freepages_range() - isolate free pages.
668 * @cc: Compaction control structure.
669 * @start_pfn: The first PFN to start isolating.
670 * @end_pfn: The one-past-last PFN.
671 *
672 * Non-free pages, invalid PFNs, or zone boundaries within the
673 * [start_pfn, end_pfn) range are considered errors, cause function to
674 * undo its actions and return zero.
675 *
676 * Otherwise, function returns one-past-the-last PFN of isolated page
677 * (which may be greater then end_pfn if end fell in a middle of
678 * a free page).
679 */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682 unsigned long start_pfn, unsigned long end_pfn)
683 {
684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685 LIST_HEAD(freelist);
686
687 pfn = start_pfn;
688 block_start_pfn = pageblock_start_pfn(pfn);
689 if (block_start_pfn < cc->zone->zone_start_pfn)
690 block_start_pfn = cc->zone->zone_start_pfn;
691 block_end_pfn = pageblock_end_pfn(pfn);
692
693 for (; pfn < end_pfn; pfn += isolated,
694 block_start_pfn = block_end_pfn,
695 block_end_pfn += pageblock_nr_pages) {
696 /* Protect pfn from changing by isolate_freepages_block */
697 unsigned long isolate_start_pfn = pfn;
698
699 block_end_pfn = min(block_end_pfn, end_pfn);
700
701 /*
702 * pfn could pass the block_end_pfn if isolated freepage
703 * is more than pageblock order. In this case, we adjust
704 * scanning range to right one.
705 */
706 if (pfn >= block_end_pfn) {
707 block_start_pfn = pageblock_start_pfn(pfn);
708 block_end_pfn = pageblock_end_pfn(pfn);
709 block_end_pfn = min(block_end_pfn, end_pfn);
710 }
711
712 if (!pageblock_pfn_to_page(block_start_pfn,
713 block_end_pfn, cc->zone))
714 break;
715
716 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717 block_end_pfn, &freelist, 0, true);
718
719 /*
720 * In strict mode, isolate_freepages_block() returns 0 if
721 * there are any holes in the block (ie. invalid PFNs or
722 * non-free pages).
723 */
724 if (!isolated)
725 break;
726
727 /*
728 * If we managed to isolate pages, it is always (1 << n) *
729 * pageblock_nr_pages for some non-negative n. (Max order
730 * page may span two pageblocks).
731 */
732 }
733
734 /* __isolate_free_page() does not map the pages */
735 split_map_pages(&freelist);
736
737 if (pfn < end_pfn) {
738 /* Loop terminated early, cleanup. */
739 release_freepages(&freelist);
740 return 0;
741 }
742
743 /* We don't use freelists for anything. */
744 return pfn;
745 }
746
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750 bool too_many;
751
752 unsigned long active, inactive, isolated;
753
754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 node_page_state(pgdat, NR_INACTIVE_ANON);
756 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 node_page_state(pgdat, NR_ACTIVE_ANON);
758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 node_page_state(pgdat, NR_ISOLATED_ANON);
760
761 too_many = isolated > (inactive + active) / 2;
762 if (!too_many)
763 wake_throttle_isolated(pgdat);
764
765 return too_many;
766 }
767
768 /**
769 * isolate_migratepages_block() - isolate all migrate-able pages within
770 * a single pageblock
771 * @cc: Compaction control structure.
772 * @low_pfn: The first PFN to isolate
773 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
774 * @mode: Isolation mode to be used.
775 *
776 * Isolate all pages that can be migrated from the range specified by
777 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
779 * -ENOMEM in case we could not allocate a page, or 0.
780 * cc->migrate_pfn will contain the next pfn to scan.
781 *
782 * The pages are isolated on cc->migratepages list (not required to be empty),
783 * and cc->nr_migratepages is updated accordingly.
784 */
785 static int
786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
787 unsigned long end_pfn, isolate_mode_t mode)
788 {
789 pg_data_t *pgdat = cc->zone->zone_pgdat;
790 unsigned long nr_scanned = 0, nr_isolated = 0;
791 struct lruvec *lruvec;
792 unsigned long flags = 0;
793 struct lruvec *locked = NULL;
794 struct page *page = NULL, *valid_page = NULL;
795 struct address_space *mapping;
796 unsigned long start_pfn = low_pfn;
797 bool skip_on_failure = false;
798 unsigned long next_skip_pfn = 0;
799 bool skip_updated = false;
800 int ret = 0;
801
802 cc->migrate_pfn = low_pfn;
803
804 /*
805 * Ensure that there are not too many pages isolated from the LRU
806 * list by either parallel reclaimers or compaction. If there are,
807 * delay for some time until fewer pages are isolated
808 */
809 while (unlikely(too_many_isolated(pgdat))) {
810 /* stop isolation if there are still pages not migrated */
811 if (cc->nr_migratepages)
812 return -EAGAIN;
813
814 /* async migration should just abort */
815 if (cc->mode == MIGRATE_ASYNC)
816 return -EAGAIN;
817
818 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
819
820 if (fatal_signal_pending(current))
821 return -EINTR;
822 }
823
824 cond_resched();
825
826 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
827 skip_on_failure = true;
828 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
829 }
830
831 /* Time to isolate some pages for migration */
832 for (; low_pfn < end_pfn; low_pfn++) {
833
834 if (skip_on_failure && low_pfn >= next_skip_pfn) {
835 /*
836 * We have isolated all migration candidates in the
837 * previous order-aligned block, and did not skip it due
838 * to failure. We should migrate the pages now and
839 * hopefully succeed compaction.
840 */
841 if (nr_isolated)
842 break;
843
844 /*
845 * We failed to isolate in the previous order-aligned
846 * block. Set the new boundary to the end of the
847 * current block. Note we can't simply increase
848 * next_skip_pfn by 1 << order, as low_pfn might have
849 * been incremented by a higher number due to skipping
850 * a compound or a high-order buddy page in the
851 * previous loop iteration.
852 */
853 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
854 }
855
856 /*
857 * Periodically drop the lock (if held) regardless of its
858 * contention, to give chance to IRQs. Abort completely if
859 * a fatal signal is pending.
860 */
861 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
862 if (locked) {
863 unlock_page_lruvec_irqrestore(locked, flags);
864 locked = NULL;
865 }
866
867 if (fatal_signal_pending(current)) {
868 cc->contended = true;
869 ret = -EINTR;
870
871 goto fatal_pending;
872 }
873
874 cond_resched();
875 }
876
877 nr_scanned++;
878
879 page = pfn_to_page(low_pfn);
880
881 /*
882 * Check if the pageblock has already been marked skipped.
883 * Only the aligned PFN is checked as the caller isolates
884 * COMPACT_CLUSTER_MAX at a time so the second call must
885 * not falsely conclude that the block should be skipped.
886 */
887 if (!valid_page && pageblock_aligned(low_pfn)) {
888 if (!isolation_suitable(cc, page)) {
889 low_pfn = end_pfn;
890 page = NULL;
891 goto isolate_abort;
892 }
893 valid_page = page;
894 }
895
896 if (PageHuge(page) && cc->alloc_contig) {
897 if (locked) {
898 unlock_page_lruvec_irqrestore(locked, flags);
899 locked = NULL;
900 }
901
902 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
903
904 /*
905 * Fail isolation in case isolate_or_dissolve_huge_page()
906 * reports an error. In case of -ENOMEM, abort right away.
907 */
908 if (ret < 0) {
909 /* Do not report -EBUSY down the chain */
910 if (ret == -EBUSY)
911 ret = 0;
912 low_pfn += compound_nr(page) - 1;
913 nr_scanned += compound_nr(page) - 1;
914 goto isolate_fail;
915 }
916
917 if (PageHuge(page)) {
918 /*
919 * Hugepage was successfully isolated and placed
920 * on the cc->migratepages list.
921 */
922 low_pfn += compound_nr(page) - 1;
923 goto isolate_success_no_list;
924 }
925
926 /*
927 * Ok, the hugepage was dissolved. Now these pages are
928 * Buddy and cannot be re-allocated because they are
929 * isolated. Fall-through as the check below handles
930 * Buddy pages.
931 */
932 }
933
934 /*
935 * Skip if free. We read page order here without zone lock
936 * which is generally unsafe, but the race window is small and
937 * the worst thing that can happen is that we skip some
938 * potential isolation targets.
939 */
940 if (PageBuddy(page)) {
941 unsigned long freepage_order = buddy_order_unsafe(page);
942
943 /*
944 * Without lock, we cannot be sure that what we got is
945 * a valid page order. Consider only values in the
946 * valid order range to prevent low_pfn overflow.
947 */
948 if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
949 low_pfn += (1UL << freepage_order) - 1;
950 nr_scanned += (1UL << freepage_order) - 1;
951 }
952 continue;
953 }
954
955 /*
956 * Regardless of being on LRU, compound pages such as THP and
957 * hugetlbfs are not to be compacted unless we are attempting
958 * an allocation much larger than the huge page size (eg CMA).
959 * We can potentially save a lot of iterations if we skip them
960 * at once. The check is racy, but we can consider only valid
961 * values and the only danger is skipping too much.
962 */
963 if (PageCompound(page) && !cc->alloc_contig) {
964 const unsigned int order = compound_order(page);
965
966 if (likely(order <= MAX_ORDER)) {
967 low_pfn += (1UL << order) - 1;
968 nr_scanned += (1UL << order) - 1;
969 }
970 goto isolate_fail;
971 }
972
973 /*
974 * Check may be lockless but that's ok as we recheck later.
975 * It's possible to migrate LRU and non-lru movable pages.
976 * Skip any other type of page
977 */
978 if (!PageLRU(page)) {
979 /*
980 * __PageMovable can return false positive so we need
981 * to verify it under page_lock.
982 */
983 if (unlikely(__PageMovable(page)) &&
984 !PageIsolated(page)) {
985 if (locked) {
986 unlock_page_lruvec_irqrestore(locked, flags);
987 locked = NULL;
988 }
989
990 if (isolate_movable_page(page, mode))
991 goto isolate_success;
992 }
993
994 goto isolate_fail;
995 }
996
997 /*
998 * Be careful not to clear PageLRU until after we're
999 * sure the page is not being freed elsewhere -- the
1000 * page release code relies on it.
1001 */
1002 if (unlikely(!get_page_unless_zero(page)))
1003 goto isolate_fail;
1004
1005 /*
1006 * Migration will fail if an anonymous page is pinned in memory,
1007 * so avoid taking lru_lock and isolating it unnecessarily in an
1008 * admittedly racy check.
1009 */
1010 mapping = page_mapping(page);
1011 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1012 goto isolate_fail_put;
1013
1014 /*
1015 * Only allow to migrate anonymous pages in GFP_NOFS context
1016 * because those do not depend on fs locks.
1017 */
1018 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1019 goto isolate_fail_put;
1020
1021 /* Only take pages on LRU: a check now makes later tests safe */
1022 if (!PageLRU(page))
1023 goto isolate_fail_put;
1024
1025 /* Compaction might skip unevictable pages but CMA takes them */
1026 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1027 goto isolate_fail_put;
1028
1029 /*
1030 * To minimise LRU disruption, the caller can indicate with
1031 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1032 * it will be able to migrate without blocking - clean pages
1033 * for the most part. PageWriteback would require blocking.
1034 */
1035 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1036 goto isolate_fail_put;
1037
1038 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1039 bool migrate_dirty;
1040
1041 /*
1042 * Only pages without mappings or that have a
1043 * ->migrate_folio callback are possible to migrate
1044 * without blocking. However, we can be racing with
1045 * truncation so it's necessary to lock the page
1046 * to stabilise the mapping as truncation holds
1047 * the page lock until after the page is removed
1048 * from the page cache.
1049 */
1050 if (!trylock_page(page))
1051 goto isolate_fail_put;
1052
1053 mapping = page_mapping(page);
1054 migrate_dirty = !mapping ||
1055 mapping->a_ops->migrate_folio;
1056 unlock_page(page);
1057 if (!migrate_dirty)
1058 goto isolate_fail_put;
1059 }
1060
1061 /* Try isolate the page */
1062 if (!TestClearPageLRU(page))
1063 goto isolate_fail_put;
1064
1065 lruvec = folio_lruvec(page_folio(page));
1066
1067 /* If we already hold the lock, we can skip some rechecking */
1068 if (lruvec != locked) {
1069 if (locked)
1070 unlock_page_lruvec_irqrestore(locked, flags);
1071
1072 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1073 locked = lruvec;
1074
1075 lruvec_memcg_debug(lruvec, page_folio(page));
1076
1077 /* Try get exclusive access under lock */
1078 if (!skip_updated) {
1079 skip_updated = true;
1080 if (test_and_set_skip(cc, page, low_pfn))
1081 goto isolate_abort;
1082 }
1083
1084 /*
1085 * Page become compound since the non-locked check,
1086 * and it's on LRU. It can only be a THP so the order
1087 * is safe to read and it's 0 for tail pages.
1088 */
1089 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1090 low_pfn += compound_nr(page) - 1;
1091 nr_scanned += compound_nr(page) - 1;
1092 SetPageLRU(page);
1093 goto isolate_fail_put;
1094 }
1095 }
1096
1097 /* The whole page is taken off the LRU; skip the tail pages. */
1098 if (PageCompound(page))
1099 low_pfn += compound_nr(page) - 1;
1100
1101 /* Successfully isolated */
1102 del_page_from_lru_list(page, lruvec);
1103 mod_node_page_state(page_pgdat(page),
1104 NR_ISOLATED_ANON + page_is_file_lru(page),
1105 thp_nr_pages(page));
1106
1107 isolate_success:
1108 list_add(&page->lru, &cc->migratepages);
1109 isolate_success_no_list:
1110 cc->nr_migratepages += compound_nr(page);
1111 nr_isolated += compound_nr(page);
1112 nr_scanned += compound_nr(page) - 1;
1113
1114 /*
1115 * Avoid isolating too much unless this block is being
1116 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1117 * or a lock is contended. For contention, isolate quickly to
1118 * potentially remove one source of contention.
1119 */
1120 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1121 !cc->finish_pageblock && !cc->contended) {
1122 ++low_pfn;
1123 break;
1124 }
1125
1126 continue;
1127
1128 isolate_fail_put:
1129 /* Avoid potential deadlock in freeing page under lru_lock */
1130 if (locked) {
1131 unlock_page_lruvec_irqrestore(locked, flags);
1132 locked = NULL;
1133 }
1134 put_page(page);
1135
1136 isolate_fail:
1137 if (!skip_on_failure && ret != -ENOMEM)
1138 continue;
1139
1140 /*
1141 * We have isolated some pages, but then failed. Release them
1142 * instead of migrating, as we cannot form the cc->order buddy
1143 * page anyway.
1144 */
1145 if (nr_isolated) {
1146 if (locked) {
1147 unlock_page_lruvec_irqrestore(locked, flags);
1148 locked = NULL;
1149 }
1150 putback_movable_pages(&cc->migratepages);
1151 cc->nr_migratepages = 0;
1152 nr_isolated = 0;
1153 }
1154
1155 if (low_pfn < next_skip_pfn) {
1156 low_pfn = next_skip_pfn - 1;
1157 /*
1158 * The check near the loop beginning would have updated
1159 * next_skip_pfn too, but this is a bit simpler.
1160 */
1161 next_skip_pfn += 1UL << cc->order;
1162 }
1163
1164 if (ret == -ENOMEM)
1165 break;
1166 }
1167
1168 /*
1169 * The PageBuddy() check could have potentially brought us outside
1170 * the range to be scanned.
1171 */
1172 if (unlikely(low_pfn > end_pfn))
1173 low_pfn = end_pfn;
1174
1175 page = NULL;
1176
1177 isolate_abort:
1178 if (locked)
1179 unlock_page_lruvec_irqrestore(locked, flags);
1180 if (page) {
1181 SetPageLRU(page);
1182 put_page(page);
1183 }
1184
1185 /*
1186 * Update the cached scanner pfn once the pageblock has been scanned.
1187 * Pages will either be migrated in which case there is no point
1188 * scanning in the near future or migration failed in which case the
1189 * failure reason may persist. The block is marked for skipping if
1190 * there were no pages isolated in the block or if the block is
1191 * rescanned twice in a row.
1192 */
1193 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1194 if (valid_page && !skip_updated)
1195 set_pageblock_skip(valid_page);
1196 update_cached_migrate(cc, low_pfn);
1197 }
1198
1199 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1200 nr_scanned, nr_isolated);
1201
1202 fatal_pending:
1203 cc->total_migrate_scanned += nr_scanned;
1204 if (nr_isolated)
1205 count_compact_events(COMPACTISOLATED, nr_isolated);
1206
1207 cc->migrate_pfn = low_pfn;
1208
1209 return ret;
1210 }
1211
1212 /**
1213 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1214 * @cc: Compaction control structure.
1215 * @start_pfn: The first PFN to start isolating.
1216 * @end_pfn: The one-past-last PFN.
1217 *
1218 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1219 * in case we could not allocate a page, or 0.
1220 */
1221 int
1222 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1223 unsigned long end_pfn)
1224 {
1225 unsigned long pfn, block_start_pfn, block_end_pfn;
1226 int ret = 0;
1227
1228 /* Scan block by block. First and last block may be incomplete */
1229 pfn = start_pfn;
1230 block_start_pfn = pageblock_start_pfn(pfn);
1231 if (block_start_pfn < cc->zone->zone_start_pfn)
1232 block_start_pfn = cc->zone->zone_start_pfn;
1233 block_end_pfn = pageblock_end_pfn(pfn);
1234
1235 for (; pfn < end_pfn; pfn = block_end_pfn,
1236 block_start_pfn = block_end_pfn,
1237 block_end_pfn += pageblock_nr_pages) {
1238
1239 block_end_pfn = min(block_end_pfn, end_pfn);
1240
1241 if (!pageblock_pfn_to_page(block_start_pfn,
1242 block_end_pfn, cc->zone))
1243 continue;
1244
1245 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1246 ISOLATE_UNEVICTABLE);
1247
1248 if (ret)
1249 break;
1250
1251 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1252 break;
1253 }
1254
1255 return ret;
1256 }
1257
1258 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1259 #ifdef CONFIG_COMPACTION
1260
1261 static bool suitable_migration_source(struct compact_control *cc,
1262 struct page *page)
1263 {
1264 int block_mt;
1265
1266 if (pageblock_skip_persistent(page))
1267 return false;
1268
1269 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1270 return true;
1271
1272 block_mt = get_pageblock_migratetype(page);
1273
1274 if (cc->migratetype == MIGRATE_MOVABLE)
1275 return is_migrate_movable(block_mt);
1276 else
1277 return block_mt == cc->migratetype;
1278 }
1279
1280 /* Returns true if the page is within a block suitable for migration to */
1281 static bool suitable_migration_target(struct compact_control *cc,
1282 struct page *page)
1283 {
1284 /* If the page is a large free page, then disallow migration */
1285 if (PageBuddy(page)) {
1286 /*
1287 * We are checking page_order without zone->lock taken. But
1288 * the only small danger is that we skip a potentially suitable
1289 * pageblock, so it's not worth to check order for valid range.
1290 */
1291 if (buddy_order_unsafe(page) >= pageblock_order)
1292 return false;
1293 }
1294
1295 if (cc->ignore_block_suitable)
1296 return true;
1297
1298 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1299 if (is_migrate_movable(get_pageblock_migratetype(page)))
1300 return true;
1301
1302 /* Otherwise skip the block */
1303 return false;
1304 }
1305
1306 static inline unsigned int
1307 freelist_scan_limit(struct compact_control *cc)
1308 {
1309 unsigned short shift = BITS_PER_LONG - 1;
1310
1311 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1312 }
1313
1314 /*
1315 * Test whether the free scanner has reached the same or lower pageblock than
1316 * the migration scanner, and compaction should thus terminate.
1317 */
1318 static inline bool compact_scanners_met(struct compact_control *cc)
1319 {
1320 return (cc->free_pfn >> pageblock_order)
1321 <= (cc->migrate_pfn >> pageblock_order);
1322 }
1323
1324 /*
1325 * Used when scanning for a suitable migration target which scans freelists
1326 * in reverse. Reorders the list such as the unscanned pages are scanned
1327 * first on the next iteration of the free scanner
1328 */
1329 static void
1330 move_freelist_head(struct list_head *freelist, struct page *freepage)
1331 {
1332 LIST_HEAD(sublist);
1333
1334 if (!list_is_last(freelist, &freepage->lru)) {
1335 list_cut_before(&sublist, freelist, &freepage->lru);
1336 list_splice_tail(&sublist, freelist);
1337 }
1338 }
1339
1340 /*
1341 * Similar to move_freelist_head except used by the migration scanner
1342 * when scanning forward. It's possible for these list operations to
1343 * move against each other if they search the free list exactly in
1344 * lockstep.
1345 */
1346 static void
1347 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1348 {
1349 LIST_HEAD(sublist);
1350
1351 if (!list_is_first(freelist, &freepage->lru)) {
1352 list_cut_position(&sublist, freelist, &freepage->lru);
1353 list_splice_tail(&sublist, freelist);
1354 }
1355 }
1356
1357 static void
1358 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1359 {
1360 unsigned long start_pfn, end_pfn;
1361 struct page *page;
1362
1363 /* Do not search around if there are enough pages already */
1364 if (cc->nr_freepages >= cc->nr_migratepages)
1365 return;
1366
1367 /* Minimise scanning during async compaction */
1368 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1369 return;
1370
1371 /* Pageblock boundaries */
1372 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1373 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1374
1375 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1376 if (!page)
1377 return;
1378
1379 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1380
1381 /* Skip this pageblock in the future as it's full or nearly full */
1382 if (cc->nr_freepages < cc->nr_migratepages)
1383 set_pageblock_skip(page);
1384
1385 return;
1386 }
1387
1388 /* Search orders in round-robin fashion */
1389 static int next_search_order(struct compact_control *cc, int order)
1390 {
1391 order--;
1392 if (order < 0)
1393 order = cc->order - 1;
1394
1395 /* Search wrapped around? */
1396 if (order == cc->search_order) {
1397 cc->search_order--;
1398 if (cc->search_order < 0)
1399 cc->search_order = cc->order - 1;
1400 return -1;
1401 }
1402
1403 return order;
1404 }
1405
1406 static unsigned long
1407 fast_isolate_freepages(struct compact_control *cc)
1408 {
1409 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1410 unsigned int nr_scanned = 0;
1411 unsigned long low_pfn, min_pfn, highest = 0;
1412 unsigned long nr_isolated = 0;
1413 unsigned long distance;
1414 struct page *page = NULL;
1415 bool scan_start = false;
1416 int order;
1417
1418 /* Full compaction passes in a negative order */
1419 if (cc->order <= 0)
1420 return cc->free_pfn;
1421
1422 /*
1423 * If starting the scan, use a deeper search and use the highest
1424 * PFN found if a suitable one is not found.
1425 */
1426 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1427 limit = pageblock_nr_pages >> 1;
1428 scan_start = true;
1429 }
1430
1431 /*
1432 * Preferred point is in the top quarter of the scan space but take
1433 * a pfn from the top half if the search is problematic.
1434 */
1435 distance = (cc->free_pfn - cc->migrate_pfn);
1436 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1437 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1438
1439 if (WARN_ON_ONCE(min_pfn > low_pfn))
1440 low_pfn = min_pfn;
1441
1442 /*
1443 * Search starts from the last successful isolation order or the next
1444 * order to search after a previous failure
1445 */
1446 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1447
1448 for (order = cc->search_order;
1449 !page && order >= 0;
1450 order = next_search_order(cc, order)) {
1451 struct free_area *area = &cc->zone->free_area[order];
1452 struct list_head *freelist;
1453 struct page *freepage;
1454 unsigned long flags;
1455 unsigned int order_scanned = 0;
1456 unsigned long high_pfn = 0;
1457
1458 if (!area->nr_free)
1459 continue;
1460
1461 spin_lock_irqsave(&cc->zone->lock, flags);
1462 freelist = &area->free_list[MIGRATE_MOVABLE];
1463 list_for_each_entry_reverse(freepage, freelist, lru) {
1464 unsigned long pfn;
1465
1466 order_scanned++;
1467 nr_scanned++;
1468 pfn = page_to_pfn(freepage);
1469
1470 if (pfn >= highest)
1471 highest = max(pageblock_start_pfn(pfn),
1472 cc->zone->zone_start_pfn);
1473
1474 if (pfn >= low_pfn) {
1475 cc->fast_search_fail = 0;
1476 cc->search_order = order;
1477 page = freepage;
1478 break;
1479 }
1480
1481 if (pfn >= min_pfn && pfn > high_pfn) {
1482 high_pfn = pfn;
1483
1484 /* Shorten the scan if a candidate is found */
1485 limit >>= 1;
1486 }
1487
1488 if (order_scanned >= limit)
1489 break;
1490 }
1491
1492 /* Use a minimum pfn if a preferred one was not found */
1493 if (!page && high_pfn) {
1494 page = pfn_to_page(high_pfn);
1495
1496 /* Update freepage for the list reorder below */
1497 freepage = page;
1498 }
1499
1500 /* Reorder to so a future search skips recent pages */
1501 move_freelist_head(freelist, freepage);
1502
1503 /* Isolate the page if available */
1504 if (page) {
1505 if (__isolate_free_page(page, order)) {
1506 set_page_private(page, order);
1507 nr_isolated = 1 << order;
1508 nr_scanned += nr_isolated - 1;
1509 cc->nr_freepages += nr_isolated;
1510 list_add_tail(&page->lru, &cc->freepages);
1511 count_compact_events(COMPACTISOLATED, nr_isolated);
1512 } else {
1513 /* If isolation fails, abort the search */
1514 order = cc->search_order + 1;
1515 page = NULL;
1516 }
1517 }
1518
1519 spin_unlock_irqrestore(&cc->zone->lock, flags);
1520
1521 /*
1522 * Smaller scan on next order so the total scan is related
1523 * to freelist_scan_limit.
1524 */
1525 if (order_scanned >= limit)
1526 limit = max(1U, limit >> 1);
1527 }
1528
1529 if (!page) {
1530 cc->fast_search_fail++;
1531 if (scan_start) {
1532 /*
1533 * Use the highest PFN found above min. If one was
1534 * not found, be pessimistic for direct compaction
1535 * and use the min mark.
1536 */
1537 if (highest >= min_pfn) {
1538 page = pfn_to_page(highest);
1539 cc->free_pfn = highest;
1540 } else {
1541 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1542 page = pageblock_pfn_to_page(min_pfn,
1543 min(pageblock_end_pfn(min_pfn),
1544 zone_end_pfn(cc->zone)),
1545 cc->zone);
1546 cc->free_pfn = min_pfn;
1547 }
1548 }
1549 }
1550 }
1551
1552 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1553 highest -= pageblock_nr_pages;
1554 cc->zone->compact_cached_free_pfn = highest;
1555 }
1556
1557 cc->total_free_scanned += nr_scanned;
1558 if (!page)
1559 return cc->free_pfn;
1560
1561 low_pfn = page_to_pfn(page);
1562 fast_isolate_around(cc, low_pfn);
1563 return low_pfn;
1564 }
1565
1566 /*
1567 * Based on information in the current compact_control, find blocks
1568 * suitable for isolating free pages from and then isolate them.
1569 */
1570 static void isolate_freepages(struct compact_control *cc)
1571 {
1572 struct zone *zone = cc->zone;
1573 struct page *page;
1574 unsigned long block_start_pfn; /* start of current pageblock */
1575 unsigned long isolate_start_pfn; /* exact pfn we start at */
1576 unsigned long block_end_pfn; /* end of current pageblock */
1577 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1578 struct list_head *freelist = &cc->freepages;
1579 unsigned int stride;
1580
1581 /* Try a small search of the free lists for a candidate */
1582 fast_isolate_freepages(cc);
1583 if (cc->nr_freepages)
1584 goto splitmap;
1585
1586 /*
1587 * Initialise the free scanner. The starting point is where we last
1588 * successfully isolated from, zone-cached value, or the end of the
1589 * zone when isolating for the first time. For looping we also need
1590 * this pfn aligned down to the pageblock boundary, because we do
1591 * block_start_pfn -= pageblock_nr_pages in the for loop.
1592 * For ending point, take care when isolating in last pageblock of a
1593 * zone which ends in the middle of a pageblock.
1594 * The low boundary is the end of the pageblock the migration scanner
1595 * is using.
1596 */
1597 isolate_start_pfn = cc->free_pfn;
1598 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1599 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1600 zone_end_pfn(zone));
1601 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1602 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1603
1604 /*
1605 * Isolate free pages until enough are available to migrate the
1606 * pages on cc->migratepages. We stop searching if the migrate
1607 * and free page scanners meet or enough free pages are isolated.
1608 */
1609 for (; block_start_pfn >= low_pfn;
1610 block_end_pfn = block_start_pfn,
1611 block_start_pfn -= pageblock_nr_pages,
1612 isolate_start_pfn = block_start_pfn) {
1613 unsigned long nr_isolated;
1614
1615 /*
1616 * This can iterate a massively long zone without finding any
1617 * suitable migration targets, so periodically check resched.
1618 */
1619 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1620 cond_resched();
1621
1622 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1623 zone);
1624 if (!page)
1625 continue;
1626
1627 /* Check the block is suitable for migration */
1628 if (!suitable_migration_target(cc, page))
1629 continue;
1630
1631 /* If isolation recently failed, do not retry */
1632 if (!isolation_suitable(cc, page))
1633 continue;
1634
1635 /* Found a block suitable for isolating free pages from. */
1636 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1637 block_end_pfn, freelist, stride, false);
1638
1639 /* Update the skip hint if the full pageblock was scanned */
1640 if (isolate_start_pfn == block_end_pfn)
1641 update_pageblock_skip(cc, page, block_start_pfn);
1642
1643 /* Are enough freepages isolated? */
1644 if (cc->nr_freepages >= cc->nr_migratepages) {
1645 if (isolate_start_pfn >= block_end_pfn) {
1646 /*
1647 * Restart at previous pageblock if more
1648 * freepages can be isolated next time.
1649 */
1650 isolate_start_pfn =
1651 block_start_pfn - pageblock_nr_pages;
1652 }
1653 break;
1654 } else if (isolate_start_pfn < block_end_pfn) {
1655 /*
1656 * If isolation failed early, do not continue
1657 * needlessly.
1658 */
1659 break;
1660 }
1661
1662 /* Adjust stride depending on isolation */
1663 if (nr_isolated) {
1664 stride = 1;
1665 continue;
1666 }
1667 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1668 }
1669
1670 /*
1671 * Record where the free scanner will restart next time. Either we
1672 * broke from the loop and set isolate_start_pfn based on the last
1673 * call to isolate_freepages_block(), or we met the migration scanner
1674 * and the loop terminated due to isolate_start_pfn < low_pfn
1675 */
1676 cc->free_pfn = isolate_start_pfn;
1677
1678 splitmap:
1679 /* __isolate_free_page() does not map the pages */
1680 split_map_pages(freelist);
1681 }
1682
1683 /*
1684 * This is a migrate-callback that "allocates" freepages by taking pages
1685 * from the isolated freelists in the block we are migrating to.
1686 */
1687 static struct page *compaction_alloc(struct page *migratepage,
1688 unsigned long data)
1689 {
1690 struct compact_control *cc = (struct compact_control *)data;
1691 struct page *freepage;
1692
1693 if (list_empty(&cc->freepages)) {
1694 isolate_freepages(cc);
1695
1696 if (list_empty(&cc->freepages))
1697 return NULL;
1698 }
1699
1700 freepage = list_entry(cc->freepages.next, struct page, lru);
1701 list_del(&freepage->lru);
1702 cc->nr_freepages--;
1703
1704 return freepage;
1705 }
1706
1707 /*
1708 * This is a migrate-callback that "frees" freepages back to the isolated
1709 * freelist. All pages on the freelist are from the same zone, so there is no
1710 * special handling needed for NUMA.
1711 */
1712 static void compaction_free(struct page *page, unsigned long data)
1713 {
1714 struct compact_control *cc = (struct compact_control *)data;
1715
1716 list_add(&page->lru, &cc->freepages);
1717 cc->nr_freepages++;
1718 }
1719
1720 /* possible outcome of isolate_migratepages */
1721 typedef enum {
1722 ISOLATE_ABORT, /* Abort compaction now */
1723 ISOLATE_NONE, /* No pages isolated, continue scanning */
1724 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1725 } isolate_migrate_t;
1726
1727 /*
1728 * Allow userspace to control policy on scanning the unevictable LRU for
1729 * compactable pages.
1730 */
1731 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1732 /*
1733 * Tunable for proactive compaction. It determines how
1734 * aggressively the kernel should compact memory in the
1735 * background. It takes values in the range [0, 100].
1736 */
1737 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1738 static int sysctl_extfrag_threshold = 500;
1739
1740 static inline void
1741 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1742 {
1743 if (cc->fast_start_pfn == ULONG_MAX)
1744 return;
1745
1746 if (!cc->fast_start_pfn)
1747 cc->fast_start_pfn = pfn;
1748
1749 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1750 }
1751
1752 static inline unsigned long
1753 reinit_migrate_pfn(struct compact_control *cc)
1754 {
1755 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1756 return cc->migrate_pfn;
1757
1758 cc->migrate_pfn = cc->fast_start_pfn;
1759 cc->fast_start_pfn = ULONG_MAX;
1760
1761 return cc->migrate_pfn;
1762 }
1763
1764 /*
1765 * Briefly search the free lists for a migration source that already has
1766 * some free pages to reduce the number of pages that need migration
1767 * before a pageblock is free.
1768 */
1769 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1770 {
1771 unsigned int limit = freelist_scan_limit(cc);
1772 unsigned int nr_scanned = 0;
1773 unsigned long distance;
1774 unsigned long pfn = cc->migrate_pfn;
1775 unsigned long high_pfn;
1776 int order;
1777 bool found_block = false;
1778
1779 /* Skip hints are relied on to avoid repeats on the fast search */
1780 if (cc->ignore_skip_hint)
1781 return pfn;
1782
1783 /*
1784 * If the pageblock should be finished then do not select a different
1785 * pageblock.
1786 */
1787 if (cc->finish_pageblock)
1788 return pfn;
1789
1790 /*
1791 * If the migrate_pfn is not at the start of a zone or the start
1792 * of a pageblock then assume this is a continuation of a previous
1793 * scan restarted due to COMPACT_CLUSTER_MAX.
1794 */
1795 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1796 return pfn;
1797
1798 /*
1799 * For smaller orders, just linearly scan as the number of pages
1800 * to migrate should be relatively small and does not necessarily
1801 * justify freeing up a large block for a small allocation.
1802 */
1803 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1804 return pfn;
1805
1806 /*
1807 * Only allow kcompactd and direct requests for movable pages to
1808 * quickly clear out a MOVABLE pageblock for allocation. This
1809 * reduces the risk that a large movable pageblock is freed for
1810 * an unmovable/reclaimable small allocation.
1811 */
1812 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1813 return pfn;
1814
1815 /*
1816 * When starting the migration scanner, pick any pageblock within the
1817 * first half of the search space. Otherwise try and pick a pageblock
1818 * within the first eighth to reduce the chances that a migration
1819 * target later becomes a source.
1820 */
1821 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1822 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1823 distance >>= 2;
1824 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1825
1826 for (order = cc->order - 1;
1827 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1828 order--) {
1829 struct free_area *area = &cc->zone->free_area[order];
1830 struct list_head *freelist;
1831 unsigned long flags;
1832 struct page *freepage;
1833
1834 if (!area->nr_free)
1835 continue;
1836
1837 spin_lock_irqsave(&cc->zone->lock, flags);
1838 freelist = &area->free_list[MIGRATE_MOVABLE];
1839 list_for_each_entry(freepage, freelist, lru) {
1840 unsigned long free_pfn;
1841
1842 if (nr_scanned++ >= limit) {
1843 move_freelist_tail(freelist, freepage);
1844 break;
1845 }
1846
1847 free_pfn = page_to_pfn(freepage);
1848 if (free_pfn < high_pfn) {
1849 /*
1850 * Avoid if skipped recently. Ideally it would
1851 * move to the tail but even safe iteration of
1852 * the list assumes an entry is deleted, not
1853 * reordered.
1854 */
1855 if (get_pageblock_skip(freepage))
1856 continue;
1857
1858 /* Reorder to so a future search skips recent pages */
1859 move_freelist_tail(freelist, freepage);
1860
1861 update_fast_start_pfn(cc, free_pfn);
1862 pfn = pageblock_start_pfn(free_pfn);
1863 if (pfn < cc->zone->zone_start_pfn)
1864 pfn = cc->zone->zone_start_pfn;
1865 cc->fast_search_fail = 0;
1866 found_block = true;
1867 set_pageblock_skip(freepage);
1868 break;
1869 }
1870 }
1871 spin_unlock_irqrestore(&cc->zone->lock, flags);
1872 }
1873
1874 cc->total_migrate_scanned += nr_scanned;
1875
1876 /*
1877 * If fast scanning failed then use a cached entry for a page block
1878 * that had free pages as the basis for starting a linear scan.
1879 */
1880 if (!found_block) {
1881 cc->fast_search_fail++;
1882 pfn = reinit_migrate_pfn(cc);
1883 }
1884 return pfn;
1885 }
1886
1887 /*
1888 * Isolate all pages that can be migrated from the first suitable block,
1889 * starting at the block pointed to by the migrate scanner pfn within
1890 * compact_control.
1891 */
1892 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1893 {
1894 unsigned long block_start_pfn;
1895 unsigned long block_end_pfn;
1896 unsigned long low_pfn;
1897 struct page *page;
1898 const isolate_mode_t isolate_mode =
1899 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1900 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1901 bool fast_find_block;
1902
1903 /*
1904 * Start at where we last stopped, or beginning of the zone as
1905 * initialized by compact_zone(). The first failure will use
1906 * the lowest PFN as the starting point for linear scanning.
1907 */
1908 low_pfn = fast_find_migrateblock(cc);
1909 block_start_pfn = pageblock_start_pfn(low_pfn);
1910 if (block_start_pfn < cc->zone->zone_start_pfn)
1911 block_start_pfn = cc->zone->zone_start_pfn;
1912
1913 /*
1914 * fast_find_migrateblock marks a pageblock skipped so to avoid
1915 * the isolation_suitable check below, check whether the fast
1916 * search was successful.
1917 */
1918 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1919
1920 /* Only scan within a pageblock boundary */
1921 block_end_pfn = pageblock_end_pfn(low_pfn);
1922
1923 /*
1924 * Iterate over whole pageblocks until we find the first suitable.
1925 * Do not cross the free scanner.
1926 */
1927 for (; block_end_pfn <= cc->free_pfn;
1928 fast_find_block = false,
1929 cc->migrate_pfn = low_pfn = block_end_pfn,
1930 block_start_pfn = block_end_pfn,
1931 block_end_pfn += pageblock_nr_pages) {
1932
1933 /*
1934 * This can potentially iterate a massively long zone with
1935 * many pageblocks unsuitable, so periodically check if we
1936 * need to schedule.
1937 */
1938 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1939 cond_resched();
1940
1941 page = pageblock_pfn_to_page(block_start_pfn,
1942 block_end_pfn, cc->zone);
1943 if (!page)
1944 continue;
1945
1946 /*
1947 * If isolation recently failed, do not retry. Only check the
1948 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1949 * to be visited multiple times. Assume skip was checked
1950 * before making it "skip" so other compaction instances do
1951 * not scan the same block.
1952 */
1953 if (pageblock_aligned(low_pfn) &&
1954 !fast_find_block && !isolation_suitable(cc, page))
1955 continue;
1956
1957 /*
1958 * For async direct compaction, only scan the pageblocks of the
1959 * same migratetype without huge pages. Async direct compaction
1960 * is optimistic to see if the minimum amount of work satisfies
1961 * the allocation. The cached PFN is updated as it's possible
1962 * that all remaining blocks between source and target are
1963 * unsuitable and the compaction scanners fail to meet.
1964 */
1965 if (!suitable_migration_source(cc, page)) {
1966 update_cached_migrate(cc, block_end_pfn);
1967 continue;
1968 }
1969
1970 /* Perform the isolation */
1971 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1972 isolate_mode))
1973 return ISOLATE_ABORT;
1974
1975 /*
1976 * Either we isolated something and proceed with migration. Or
1977 * we failed and compact_zone should decide if we should
1978 * continue or not.
1979 */
1980 break;
1981 }
1982
1983 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1984 }
1985
1986 /*
1987 * order == -1 is expected when compacting via
1988 * /proc/sys/vm/compact_memory
1989 */
1990 static inline bool is_via_compact_memory(int order)
1991 {
1992 return order == -1;
1993 }
1994
1995 /*
1996 * Determine whether kswapd is (or recently was!) running on this node.
1997 *
1998 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1999 * zero it.
2000 */
2001 static bool kswapd_is_running(pg_data_t *pgdat)
2002 {
2003 bool running;
2004
2005 pgdat_kswapd_lock(pgdat);
2006 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2007 pgdat_kswapd_unlock(pgdat);
2008
2009 return running;
2010 }
2011
2012 /*
2013 * A zone's fragmentation score is the external fragmentation wrt to the
2014 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2015 */
2016 static unsigned int fragmentation_score_zone(struct zone *zone)
2017 {
2018 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2019 }
2020
2021 /*
2022 * A weighted zone's fragmentation score is the external fragmentation
2023 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2024 * returns a value in the range [0, 100].
2025 *
2026 * The scaling factor ensures that proactive compaction focuses on larger
2027 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2028 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2029 * and thus never exceeds the high threshold for proactive compaction.
2030 */
2031 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2032 {
2033 unsigned long score;
2034
2035 score = zone->present_pages * fragmentation_score_zone(zone);
2036 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2037 }
2038
2039 /*
2040 * The per-node proactive (background) compaction process is started by its
2041 * corresponding kcompactd thread when the node's fragmentation score
2042 * exceeds the high threshold. The compaction process remains active till
2043 * the node's score falls below the low threshold, or one of the back-off
2044 * conditions is met.
2045 */
2046 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2047 {
2048 unsigned int score = 0;
2049 int zoneid;
2050
2051 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2052 struct zone *zone;
2053
2054 zone = &pgdat->node_zones[zoneid];
2055 if (!populated_zone(zone))
2056 continue;
2057 score += fragmentation_score_zone_weighted(zone);
2058 }
2059
2060 return score;
2061 }
2062
2063 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2064 {
2065 unsigned int wmark_low;
2066
2067 /*
2068 * Cap the low watermark to avoid excessive compaction
2069 * activity in case a user sets the proactiveness tunable
2070 * close to 100 (maximum).
2071 */
2072 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2073 return low ? wmark_low : min(wmark_low + 10, 100U);
2074 }
2075
2076 static bool should_proactive_compact_node(pg_data_t *pgdat)
2077 {
2078 int wmark_high;
2079
2080 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2081 return false;
2082
2083 wmark_high = fragmentation_score_wmark(pgdat, false);
2084 return fragmentation_score_node(pgdat) > wmark_high;
2085 }
2086
2087 static enum compact_result __compact_finished(struct compact_control *cc)
2088 {
2089 unsigned int order;
2090 const int migratetype = cc->migratetype;
2091 int ret;
2092
2093 /* Compaction run completes if the migrate and free scanner meet */
2094 if (compact_scanners_met(cc)) {
2095 /* Let the next compaction start anew. */
2096 reset_cached_positions(cc->zone);
2097
2098 /*
2099 * Mark that the PG_migrate_skip information should be cleared
2100 * by kswapd when it goes to sleep. kcompactd does not set the
2101 * flag itself as the decision to be clear should be directly
2102 * based on an allocation request.
2103 */
2104 if (cc->direct_compaction)
2105 cc->zone->compact_blockskip_flush = true;
2106
2107 if (cc->whole_zone)
2108 return COMPACT_COMPLETE;
2109 else
2110 return COMPACT_PARTIAL_SKIPPED;
2111 }
2112
2113 if (cc->proactive_compaction) {
2114 int score, wmark_low;
2115 pg_data_t *pgdat;
2116
2117 pgdat = cc->zone->zone_pgdat;
2118 if (kswapd_is_running(pgdat))
2119 return COMPACT_PARTIAL_SKIPPED;
2120
2121 score = fragmentation_score_zone(cc->zone);
2122 wmark_low = fragmentation_score_wmark(pgdat, true);
2123
2124 if (score > wmark_low)
2125 ret = COMPACT_CONTINUE;
2126 else
2127 ret = COMPACT_SUCCESS;
2128
2129 goto out;
2130 }
2131
2132 if (is_via_compact_memory(cc->order))
2133 return COMPACT_CONTINUE;
2134
2135 /*
2136 * Always finish scanning a pageblock to reduce the possibility of
2137 * fallbacks in the future. This is particularly important when
2138 * migration source is unmovable/reclaimable but it's not worth
2139 * special casing.
2140 */
2141 if (!pageblock_aligned(cc->migrate_pfn))
2142 return COMPACT_CONTINUE;
2143
2144 /* Direct compactor: Is a suitable page free? */
2145 ret = COMPACT_NO_SUITABLE_PAGE;
2146 for (order = cc->order; order <= MAX_ORDER; order++) {
2147 struct free_area *area = &cc->zone->free_area[order];
2148 bool can_steal;
2149
2150 /* Job done if page is free of the right migratetype */
2151 if (!free_area_empty(area, migratetype))
2152 return COMPACT_SUCCESS;
2153
2154 #ifdef CONFIG_CMA
2155 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2156 if (migratetype == MIGRATE_MOVABLE &&
2157 !free_area_empty(area, MIGRATE_CMA))
2158 return COMPACT_SUCCESS;
2159 #endif
2160 /*
2161 * Job done if allocation would steal freepages from
2162 * other migratetype buddy lists.
2163 */
2164 if (find_suitable_fallback(area, order, migratetype,
2165 true, &can_steal) != -1)
2166 /*
2167 * Movable pages are OK in any pageblock. If we are
2168 * stealing for a non-movable allocation, make sure
2169 * we finish compacting the current pageblock first
2170 * (which is assured by the above migrate_pfn align
2171 * check) so it is as free as possible and we won't
2172 * have to steal another one soon.
2173 */
2174 return COMPACT_SUCCESS;
2175 }
2176
2177 out:
2178 if (cc->contended || fatal_signal_pending(current))
2179 ret = COMPACT_CONTENDED;
2180
2181 return ret;
2182 }
2183
2184 static enum compact_result compact_finished(struct compact_control *cc)
2185 {
2186 int ret;
2187
2188 ret = __compact_finished(cc);
2189 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2190 if (ret == COMPACT_NO_SUITABLE_PAGE)
2191 ret = COMPACT_CONTINUE;
2192
2193 return ret;
2194 }
2195
2196 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2197 unsigned int alloc_flags,
2198 int highest_zoneidx,
2199 unsigned long wmark_target)
2200 {
2201 unsigned long watermark;
2202
2203 if (is_via_compact_memory(order))
2204 return COMPACT_CONTINUE;
2205
2206 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2207 /*
2208 * If watermarks for high-order allocation are already met, there
2209 * should be no need for compaction at all.
2210 */
2211 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2212 alloc_flags))
2213 return COMPACT_SUCCESS;
2214
2215 /*
2216 * Watermarks for order-0 must be met for compaction to be able to
2217 * isolate free pages for migration targets. This means that the
2218 * watermark and alloc_flags have to match, or be more pessimistic than
2219 * the check in __isolate_free_page(). We don't use the direct
2220 * compactor's alloc_flags, as they are not relevant for freepage
2221 * isolation. We however do use the direct compactor's highest_zoneidx
2222 * to skip over zones where lowmem reserves would prevent allocation
2223 * even if compaction succeeds.
2224 * For costly orders, we require low watermark instead of min for
2225 * compaction to proceed to increase its chances.
2226 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2227 * suitable migration targets
2228 */
2229 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2230 low_wmark_pages(zone) : min_wmark_pages(zone);
2231 watermark += compact_gap(order);
2232 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2233 ALLOC_CMA, wmark_target))
2234 return COMPACT_SKIPPED;
2235
2236 return COMPACT_CONTINUE;
2237 }
2238
2239 /*
2240 * compaction_suitable: Is this suitable to run compaction on this zone now?
2241 * Returns
2242 * COMPACT_SKIPPED - If there are too few free pages for compaction
2243 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2244 * COMPACT_CONTINUE - If compaction should run now
2245 */
2246 enum compact_result compaction_suitable(struct zone *zone, int order,
2247 unsigned int alloc_flags,
2248 int highest_zoneidx)
2249 {
2250 enum compact_result ret;
2251 int fragindex;
2252
2253 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2254 zone_page_state(zone, NR_FREE_PAGES));
2255 /*
2256 * fragmentation index determines if allocation failures are due to
2257 * low memory or external fragmentation
2258 *
2259 * index of -1000 would imply allocations might succeed depending on
2260 * watermarks, but we already failed the high-order watermark check
2261 * index towards 0 implies failure is due to lack of memory
2262 * index towards 1000 implies failure is due to fragmentation
2263 *
2264 * Only compact if a failure would be due to fragmentation. Also
2265 * ignore fragindex for non-costly orders where the alternative to
2266 * a successful reclaim/compaction is OOM. Fragindex and the
2267 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2268 * excessive compaction for costly orders, but it should not be at the
2269 * expense of system stability.
2270 */
2271 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2272 fragindex = fragmentation_index(zone, order);
2273 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2274 ret = COMPACT_NOT_SUITABLE_ZONE;
2275 }
2276
2277 trace_mm_compaction_suitable(zone, order, ret);
2278 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2279 ret = COMPACT_SKIPPED;
2280
2281 return ret;
2282 }
2283
2284 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2285 int alloc_flags)
2286 {
2287 struct zone *zone;
2288 struct zoneref *z;
2289
2290 /*
2291 * Make sure at least one zone would pass __compaction_suitable if we continue
2292 * retrying the reclaim.
2293 */
2294 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2295 ac->highest_zoneidx, ac->nodemask) {
2296 unsigned long available;
2297 enum compact_result compact_result;
2298
2299 /*
2300 * Do not consider all the reclaimable memory because we do not
2301 * want to trash just for a single high order allocation which
2302 * is even not guaranteed to appear even if __compaction_suitable
2303 * is happy about the watermark check.
2304 */
2305 available = zone_reclaimable_pages(zone) / order;
2306 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2307 compact_result = __compaction_suitable(zone, order, alloc_flags,
2308 ac->highest_zoneidx, available);
2309 if (compact_result == COMPACT_CONTINUE)
2310 return true;
2311 }
2312
2313 return false;
2314 }
2315
2316 static enum compact_result
2317 compact_zone(struct compact_control *cc, struct capture_control *capc)
2318 {
2319 enum compact_result ret;
2320 unsigned long start_pfn = cc->zone->zone_start_pfn;
2321 unsigned long end_pfn = zone_end_pfn(cc->zone);
2322 unsigned long last_migrated_pfn;
2323 const bool sync = cc->mode != MIGRATE_ASYNC;
2324 bool update_cached;
2325 unsigned int nr_succeeded = 0;
2326
2327 /*
2328 * These counters track activities during zone compaction. Initialize
2329 * them before compacting a new zone.
2330 */
2331 cc->total_migrate_scanned = 0;
2332 cc->total_free_scanned = 0;
2333 cc->nr_migratepages = 0;
2334 cc->nr_freepages = 0;
2335 INIT_LIST_HEAD(&cc->freepages);
2336 INIT_LIST_HEAD(&cc->migratepages);
2337
2338 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2339 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2340 cc->highest_zoneidx);
2341 /* Compaction is likely to fail */
2342 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2343 return ret;
2344
2345 /*
2346 * Clear pageblock skip if there were failures recently and compaction
2347 * is about to be retried after being deferred.
2348 */
2349 if (compaction_restarting(cc->zone, cc->order))
2350 __reset_isolation_suitable(cc->zone);
2351
2352 /*
2353 * Setup to move all movable pages to the end of the zone. Used cached
2354 * information on where the scanners should start (unless we explicitly
2355 * want to compact the whole zone), but check that it is initialised
2356 * by ensuring the values are within zone boundaries.
2357 */
2358 cc->fast_start_pfn = 0;
2359 if (cc->whole_zone) {
2360 cc->migrate_pfn = start_pfn;
2361 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2362 } else {
2363 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2364 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2365 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2366 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2367 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2368 }
2369 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2370 cc->migrate_pfn = start_pfn;
2371 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2372 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2373 }
2374
2375 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2376 cc->whole_zone = true;
2377 }
2378
2379 last_migrated_pfn = 0;
2380
2381 /*
2382 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2383 * the basis that some migrations will fail in ASYNC mode. However,
2384 * if the cached PFNs match and pageblocks are skipped due to having
2385 * no isolation candidates, then the sync state does not matter.
2386 * Until a pageblock with isolation candidates is found, keep the
2387 * cached PFNs in sync to avoid revisiting the same blocks.
2388 */
2389 update_cached = !sync &&
2390 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2391
2392 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2393
2394 /* lru_add_drain_all could be expensive with involving other CPUs */
2395 lru_add_drain();
2396
2397 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2398 int err;
2399 unsigned long iteration_start_pfn = cc->migrate_pfn;
2400
2401 /*
2402 * Avoid multiple rescans of the same pageblock which can
2403 * happen if a page cannot be isolated (dirty/writeback in
2404 * async mode) or if the migrated pages are being allocated
2405 * before the pageblock is cleared. The first rescan will
2406 * capture the entire pageblock for migration. If it fails,
2407 * it'll be marked skip and scanning will proceed as normal.
2408 */
2409 cc->finish_pageblock = false;
2410 if (pageblock_start_pfn(last_migrated_pfn) ==
2411 pageblock_start_pfn(iteration_start_pfn)) {
2412 cc->finish_pageblock = true;
2413 }
2414
2415 rescan:
2416 switch (isolate_migratepages(cc)) {
2417 case ISOLATE_ABORT:
2418 ret = COMPACT_CONTENDED;
2419 putback_movable_pages(&cc->migratepages);
2420 cc->nr_migratepages = 0;
2421 goto out;
2422 case ISOLATE_NONE:
2423 if (update_cached) {
2424 cc->zone->compact_cached_migrate_pfn[1] =
2425 cc->zone->compact_cached_migrate_pfn[0];
2426 }
2427
2428 /*
2429 * We haven't isolated and migrated anything, but
2430 * there might still be unflushed migrations from
2431 * previous cc->order aligned block.
2432 */
2433 goto check_drain;
2434 case ISOLATE_SUCCESS:
2435 update_cached = false;
2436 last_migrated_pfn = iteration_start_pfn;
2437 }
2438
2439 err = migrate_pages(&cc->migratepages, compaction_alloc,
2440 compaction_free, (unsigned long)cc, cc->mode,
2441 MR_COMPACTION, &nr_succeeded);
2442
2443 trace_mm_compaction_migratepages(cc, nr_succeeded);
2444
2445 /* All pages were either migrated or will be released */
2446 cc->nr_migratepages = 0;
2447 if (err) {
2448 putback_movable_pages(&cc->migratepages);
2449 /*
2450 * migrate_pages() may return -ENOMEM when scanners meet
2451 * and we want compact_finished() to detect it
2452 */
2453 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2454 ret = COMPACT_CONTENDED;
2455 goto out;
2456 }
2457 /*
2458 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2459 * within the current order-aligned block, scan the
2460 * remainder of the pageblock. This will mark the
2461 * pageblock "skip" to avoid rescanning in the near
2462 * future. This will isolate more pages than necessary
2463 * for the request but avoid loops due to
2464 * fast_find_migrateblock revisiting blocks that were
2465 * recently partially scanned.
2466 */
2467 if (cc->direct_compaction && !cc->finish_pageblock &&
2468 (cc->mode < MIGRATE_SYNC)) {
2469 cc->finish_pageblock = true;
2470
2471 /*
2472 * Draining pcplists does not help THP if
2473 * any page failed to migrate. Even after
2474 * drain, the pageblock will not be free.
2475 */
2476 if (cc->order == COMPACTION_HPAGE_ORDER)
2477 last_migrated_pfn = 0;
2478
2479 goto rescan;
2480 }
2481 }
2482
2483 /* Stop if a page has been captured */
2484 if (capc && capc->page) {
2485 ret = COMPACT_SUCCESS;
2486 break;
2487 }
2488
2489 check_drain:
2490 /*
2491 * Has the migration scanner moved away from the previous
2492 * cc->order aligned block where we migrated from? If yes,
2493 * flush the pages that were freed, so that they can merge and
2494 * compact_finished() can detect immediately if allocation
2495 * would succeed.
2496 */
2497 if (cc->order > 0 && last_migrated_pfn) {
2498 unsigned long current_block_start =
2499 block_start_pfn(cc->migrate_pfn, cc->order);
2500
2501 if (last_migrated_pfn < current_block_start) {
2502 lru_add_drain_cpu_zone(cc->zone);
2503 /* No more flushing until we migrate again */
2504 last_migrated_pfn = 0;
2505 }
2506 }
2507 }
2508
2509 out:
2510 /*
2511 * Release free pages and update where the free scanner should restart,
2512 * so we don't leave any returned pages behind in the next attempt.
2513 */
2514 if (cc->nr_freepages > 0) {
2515 unsigned long free_pfn = release_freepages(&cc->freepages);
2516
2517 cc->nr_freepages = 0;
2518 VM_BUG_ON(free_pfn == 0);
2519 /* The cached pfn is always the first in a pageblock */
2520 free_pfn = pageblock_start_pfn(free_pfn);
2521 /*
2522 * Only go back, not forward. The cached pfn might have been
2523 * already reset to zone end in compact_finished()
2524 */
2525 if (free_pfn > cc->zone->compact_cached_free_pfn)
2526 cc->zone->compact_cached_free_pfn = free_pfn;
2527 }
2528
2529 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2530 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2531
2532 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2533
2534 VM_BUG_ON(!list_empty(&cc->freepages));
2535 VM_BUG_ON(!list_empty(&cc->migratepages));
2536
2537 return ret;
2538 }
2539
2540 static enum compact_result compact_zone_order(struct zone *zone, int order,
2541 gfp_t gfp_mask, enum compact_priority prio,
2542 unsigned int alloc_flags, int highest_zoneidx,
2543 struct page **capture)
2544 {
2545 enum compact_result ret;
2546 struct compact_control cc = {
2547 .order = order,
2548 .search_order = order,
2549 .gfp_mask = gfp_mask,
2550 .zone = zone,
2551 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2552 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2553 .alloc_flags = alloc_flags,
2554 .highest_zoneidx = highest_zoneidx,
2555 .direct_compaction = true,
2556 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2557 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2558 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2559 };
2560 struct capture_control capc = {
2561 .cc = &cc,
2562 .page = NULL,
2563 };
2564
2565 /*
2566 * Make sure the structs are really initialized before we expose the
2567 * capture control, in case we are interrupted and the interrupt handler
2568 * frees a page.
2569 */
2570 barrier();
2571 WRITE_ONCE(current->capture_control, &capc);
2572
2573 ret = compact_zone(&cc, &capc);
2574
2575 /*
2576 * Make sure we hide capture control first before we read the captured
2577 * page pointer, otherwise an interrupt could free and capture a page
2578 * and we would leak it.
2579 */
2580 WRITE_ONCE(current->capture_control, NULL);
2581 *capture = READ_ONCE(capc.page);
2582 /*
2583 * Technically, it is also possible that compaction is skipped but
2584 * the page is still captured out of luck(IRQ came and freed the page).
2585 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2586 * the COMPACT[STALL|FAIL] when compaction is skipped.
2587 */
2588 if (*capture)
2589 ret = COMPACT_SUCCESS;
2590
2591 return ret;
2592 }
2593
2594 /**
2595 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2596 * @gfp_mask: The GFP mask of the current allocation
2597 * @order: The order of the current allocation
2598 * @alloc_flags: The allocation flags of the current allocation
2599 * @ac: The context of current allocation
2600 * @prio: Determines how hard direct compaction should try to succeed
2601 * @capture: Pointer to free page created by compaction will be stored here
2602 *
2603 * This is the main entry point for direct page compaction.
2604 */
2605 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2606 unsigned int alloc_flags, const struct alloc_context *ac,
2607 enum compact_priority prio, struct page **capture)
2608 {
2609 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2610 struct zoneref *z;
2611 struct zone *zone;
2612 enum compact_result rc = COMPACT_SKIPPED;
2613
2614 /*
2615 * Check if the GFP flags allow compaction - GFP_NOIO is really
2616 * tricky context because the migration might require IO
2617 */
2618 if (!may_perform_io)
2619 return COMPACT_SKIPPED;
2620
2621 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2622
2623 /* Compact each zone in the list */
2624 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2625 ac->highest_zoneidx, ac->nodemask) {
2626 enum compact_result status;
2627
2628 if (prio > MIN_COMPACT_PRIORITY
2629 && compaction_deferred(zone, order)) {
2630 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2631 continue;
2632 }
2633
2634 status = compact_zone_order(zone, order, gfp_mask, prio,
2635 alloc_flags, ac->highest_zoneidx, capture);
2636 rc = max(status, rc);
2637
2638 /* The allocation should succeed, stop compacting */
2639 if (status == COMPACT_SUCCESS) {
2640 /*
2641 * We think the allocation will succeed in this zone,
2642 * but it is not certain, hence the false. The caller
2643 * will repeat this with true if allocation indeed
2644 * succeeds in this zone.
2645 */
2646 compaction_defer_reset(zone, order, false);
2647
2648 break;
2649 }
2650
2651 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2652 status == COMPACT_PARTIAL_SKIPPED))
2653 /*
2654 * We think that allocation won't succeed in this zone
2655 * so we defer compaction there. If it ends up
2656 * succeeding after all, it will be reset.
2657 */
2658 defer_compaction(zone, order);
2659
2660 /*
2661 * We might have stopped compacting due to need_resched() in
2662 * async compaction, or due to a fatal signal detected. In that
2663 * case do not try further zones
2664 */
2665 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2666 || fatal_signal_pending(current))
2667 break;
2668 }
2669
2670 return rc;
2671 }
2672
2673 /*
2674 * Compact all zones within a node till each zone's fragmentation score
2675 * reaches within proactive compaction thresholds (as determined by the
2676 * proactiveness tunable).
2677 *
2678 * It is possible that the function returns before reaching score targets
2679 * due to various back-off conditions, such as, contention on per-node or
2680 * per-zone locks.
2681 */
2682 static void proactive_compact_node(pg_data_t *pgdat)
2683 {
2684 int zoneid;
2685 struct zone *zone;
2686 struct compact_control cc = {
2687 .order = -1,
2688 .mode = MIGRATE_SYNC_LIGHT,
2689 .ignore_skip_hint = true,
2690 .whole_zone = true,
2691 .gfp_mask = GFP_KERNEL,
2692 .proactive_compaction = true,
2693 };
2694
2695 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2696 zone = &pgdat->node_zones[zoneid];
2697 if (!populated_zone(zone))
2698 continue;
2699
2700 cc.zone = zone;
2701
2702 compact_zone(&cc, NULL);
2703
2704 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2705 cc.total_migrate_scanned);
2706 count_compact_events(KCOMPACTD_FREE_SCANNED,
2707 cc.total_free_scanned);
2708 }
2709 }
2710
2711 /* Compact all zones within a node */
2712 static void compact_node(int nid)
2713 {
2714 pg_data_t *pgdat = NODE_DATA(nid);
2715 int zoneid;
2716 struct zone *zone;
2717 struct compact_control cc = {
2718 .order = -1,
2719 .mode = MIGRATE_SYNC,
2720 .ignore_skip_hint = true,
2721 .whole_zone = true,
2722 .gfp_mask = GFP_KERNEL,
2723 };
2724
2725
2726 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2727
2728 zone = &pgdat->node_zones[zoneid];
2729 if (!populated_zone(zone))
2730 continue;
2731
2732 cc.zone = zone;
2733
2734 compact_zone(&cc, NULL);
2735 }
2736 }
2737
2738 /* Compact all nodes in the system */
2739 static void compact_nodes(void)
2740 {
2741 int nid;
2742
2743 /* Flush pending updates to the LRU lists */
2744 lru_add_drain_all();
2745
2746 for_each_online_node(nid)
2747 compact_node(nid);
2748 }
2749
2750 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2751 void *buffer, size_t *length, loff_t *ppos)
2752 {
2753 int rc, nid;
2754
2755 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2756 if (rc)
2757 return rc;
2758
2759 if (write && sysctl_compaction_proactiveness) {
2760 for_each_online_node(nid) {
2761 pg_data_t *pgdat = NODE_DATA(nid);
2762
2763 if (pgdat->proactive_compact_trigger)
2764 continue;
2765
2766 pgdat->proactive_compact_trigger = true;
2767 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2768 pgdat->nr_zones - 1);
2769 wake_up_interruptible(&pgdat->kcompactd_wait);
2770 }
2771 }
2772
2773 return 0;
2774 }
2775
2776 /*
2777 * This is the entry point for compacting all nodes via
2778 * /proc/sys/vm/compact_memory
2779 */
2780 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2781 void *buffer, size_t *length, loff_t *ppos)
2782 {
2783 if (write)
2784 compact_nodes();
2785
2786 return 0;
2787 }
2788
2789 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2790 static ssize_t compact_store(struct device *dev,
2791 struct device_attribute *attr,
2792 const char *buf, size_t count)
2793 {
2794 int nid = dev->id;
2795
2796 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2797 /* Flush pending updates to the LRU lists */
2798 lru_add_drain_all();
2799
2800 compact_node(nid);
2801 }
2802
2803 return count;
2804 }
2805 static DEVICE_ATTR_WO(compact);
2806
2807 int compaction_register_node(struct node *node)
2808 {
2809 return device_create_file(&node->dev, &dev_attr_compact);
2810 }
2811
2812 void compaction_unregister_node(struct node *node)
2813 {
2814 return device_remove_file(&node->dev, &dev_attr_compact);
2815 }
2816 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2817
2818 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2819 {
2820 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2821 pgdat->proactive_compact_trigger;
2822 }
2823
2824 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2825 {
2826 int zoneid;
2827 struct zone *zone;
2828 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2829
2830 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2831 zone = &pgdat->node_zones[zoneid];
2832
2833 if (!populated_zone(zone))
2834 continue;
2835
2836 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2837 highest_zoneidx) == COMPACT_CONTINUE)
2838 return true;
2839 }
2840
2841 return false;
2842 }
2843
2844 static void kcompactd_do_work(pg_data_t *pgdat)
2845 {
2846 /*
2847 * With no special task, compact all zones so that a page of requested
2848 * order is allocatable.
2849 */
2850 int zoneid;
2851 struct zone *zone;
2852 struct compact_control cc = {
2853 .order = pgdat->kcompactd_max_order,
2854 .search_order = pgdat->kcompactd_max_order,
2855 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2856 .mode = MIGRATE_SYNC_LIGHT,
2857 .ignore_skip_hint = false,
2858 .gfp_mask = GFP_KERNEL,
2859 };
2860 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2861 cc.highest_zoneidx);
2862 count_compact_event(KCOMPACTD_WAKE);
2863
2864 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2865 int status;
2866
2867 zone = &pgdat->node_zones[zoneid];
2868 if (!populated_zone(zone))
2869 continue;
2870
2871 if (compaction_deferred(zone, cc.order))
2872 continue;
2873
2874 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2875 COMPACT_CONTINUE)
2876 continue;
2877
2878 if (kthread_should_stop())
2879 return;
2880
2881 cc.zone = zone;
2882 status = compact_zone(&cc, NULL);
2883
2884 if (status == COMPACT_SUCCESS) {
2885 compaction_defer_reset(zone, cc.order, false);
2886 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2887 /*
2888 * Buddy pages may become stranded on pcps that could
2889 * otherwise coalesce on the zone's free area for
2890 * order >= cc.order. This is ratelimited by the
2891 * upcoming deferral.
2892 */
2893 drain_all_pages(zone);
2894
2895 /*
2896 * We use sync migration mode here, so we defer like
2897 * sync direct compaction does.
2898 */
2899 defer_compaction(zone, cc.order);
2900 }
2901
2902 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2903 cc.total_migrate_scanned);
2904 count_compact_events(KCOMPACTD_FREE_SCANNED,
2905 cc.total_free_scanned);
2906 }
2907
2908 /*
2909 * Regardless of success, we are done until woken up next. But remember
2910 * the requested order/highest_zoneidx in case it was higher/tighter
2911 * than our current ones
2912 */
2913 if (pgdat->kcompactd_max_order <= cc.order)
2914 pgdat->kcompactd_max_order = 0;
2915 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2916 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2917 }
2918
2919 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2920 {
2921 if (!order)
2922 return;
2923
2924 if (pgdat->kcompactd_max_order < order)
2925 pgdat->kcompactd_max_order = order;
2926
2927 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2928 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2929
2930 /*
2931 * Pairs with implicit barrier in wait_event_freezable()
2932 * such that wakeups are not missed.
2933 */
2934 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2935 return;
2936
2937 if (!kcompactd_node_suitable(pgdat))
2938 return;
2939
2940 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2941 highest_zoneidx);
2942 wake_up_interruptible(&pgdat->kcompactd_wait);
2943 }
2944
2945 /*
2946 * The background compaction daemon, started as a kernel thread
2947 * from the init process.
2948 */
2949 static int kcompactd(void *p)
2950 {
2951 pg_data_t *pgdat = (pg_data_t *)p;
2952 struct task_struct *tsk = current;
2953 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2954 long timeout = default_timeout;
2955
2956 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2957
2958 if (!cpumask_empty(cpumask))
2959 set_cpus_allowed_ptr(tsk, cpumask);
2960
2961 set_freezable();
2962
2963 pgdat->kcompactd_max_order = 0;
2964 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2965
2966 while (!kthread_should_stop()) {
2967 unsigned long pflags;
2968
2969 /*
2970 * Avoid the unnecessary wakeup for proactive compaction
2971 * when it is disabled.
2972 */
2973 if (!sysctl_compaction_proactiveness)
2974 timeout = MAX_SCHEDULE_TIMEOUT;
2975 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2976 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2977 kcompactd_work_requested(pgdat), timeout) &&
2978 !pgdat->proactive_compact_trigger) {
2979
2980 psi_memstall_enter(&pflags);
2981 kcompactd_do_work(pgdat);
2982 psi_memstall_leave(&pflags);
2983 /*
2984 * Reset the timeout value. The defer timeout from
2985 * proactive compaction is lost here but that is fine
2986 * as the condition of the zone changing substantionally
2987 * then carrying on with the previous defer interval is
2988 * not useful.
2989 */
2990 timeout = default_timeout;
2991 continue;
2992 }
2993
2994 /*
2995 * Start the proactive work with default timeout. Based
2996 * on the fragmentation score, this timeout is updated.
2997 */
2998 timeout = default_timeout;
2999 if (should_proactive_compact_node(pgdat)) {
3000 unsigned int prev_score, score;
3001
3002 prev_score = fragmentation_score_node(pgdat);
3003 proactive_compact_node(pgdat);
3004 score = fragmentation_score_node(pgdat);
3005 /*
3006 * Defer proactive compaction if the fragmentation
3007 * score did not go down i.e. no progress made.
3008 */
3009 if (unlikely(score >= prev_score))
3010 timeout =
3011 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3012 }
3013 if (unlikely(pgdat->proactive_compact_trigger))
3014 pgdat->proactive_compact_trigger = false;
3015 }
3016
3017 return 0;
3018 }
3019
3020 /*
3021 * This kcompactd start function will be called by init and node-hot-add.
3022 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3023 */
3024 void kcompactd_run(int nid)
3025 {
3026 pg_data_t *pgdat = NODE_DATA(nid);
3027
3028 if (pgdat->kcompactd)
3029 return;
3030
3031 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3032 if (IS_ERR(pgdat->kcompactd)) {
3033 pr_err("Failed to start kcompactd on node %d\n", nid);
3034 pgdat->kcompactd = NULL;
3035 }
3036 }
3037
3038 /*
3039 * Called by memory hotplug when all memory in a node is offlined. Caller must
3040 * be holding mem_hotplug_begin/done().
3041 */
3042 void kcompactd_stop(int nid)
3043 {
3044 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3045
3046 if (kcompactd) {
3047 kthread_stop(kcompactd);
3048 NODE_DATA(nid)->kcompactd = NULL;
3049 }
3050 }
3051
3052 /*
3053 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3054 * not required for correctness. So if the last cpu in a node goes
3055 * away, we get changed to run anywhere: as the first one comes back,
3056 * restore their cpu bindings.
3057 */
3058 static int kcompactd_cpu_online(unsigned int cpu)
3059 {
3060 int nid;
3061
3062 for_each_node_state(nid, N_MEMORY) {
3063 pg_data_t *pgdat = NODE_DATA(nid);
3064 const struct cpumask *mask;
3065
3066 mask = cpumask_of_node(pgdat->node_id);
3067
3068 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3069 /* One of our CPUs online: restore mask */
3070 if (pgdat->kcompactd)
3071 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3072 }
3073 return 0;
3074 }
3075
3076 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3077 int write, void *buffer, size_t *lenp, loff_t *ppos)
3078 {
3079 int ret, old;
3080
3081 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3082 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3083
3084 old = *(int *)table->data;
3085 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3086 if (ret)
3087 return ret;
3088 if (old != *(int *)table->data)
3089 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3090 table->procname, current->comm,
3091 task_pid_nr(current));
3092 return ret;
3093 }
3094
3095 static struct ctl_table vm_compaction[] = {
3096 {
3097 .procname = "compact_memory",
3098 .data = NULL,
3099 .maxlen = sizeof(int),
3100 .mode = 0200,
3101 .proc_handler = sysctl_compaction_handler,
3102 },
3103 {
3104 .procname = "compaction_proactiveness",
3105 .data = &sysctl_compaction_proactiveness,
3106 .maxlen = sizeof(sysctl_compaction_proactiveness),
3107 .mode = 0644,
3108 .proc_handler = compaction_proactiveness_sysctl_handler,
3109 .extra1 = SYSCTL_ZERO,
3110 .extra2 = SYSCTL_ONE_HUNDRED,
3111 },
3112 {
3113 .procname = "extfrag_threshold",
3114 .data = &sysctl_extfrag_threshold,
3115 .maxlen = sizeof(int),
3116 .mode = 0644,
3117 .proc_handler = proc_dointvec_minmax,
3118 .extra1 = SYSCTL_ZERO,
3119 .extra2 = SYSCTL_ONE_THOUSAND,
3120 },
3121 {
3122 .procname = "compact_unevictable_allowed",
3123 .data = &sysctl_compact_unevictable_allowed,
3124 .maxlen = sizeof(int),
3125 .mode = 0644,
3126 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3127 .extra1 = SYSCTL_ZERO,
3128 .extra2 = SYSCTL_ONE,
3129 },
3130 { }
3131 };
3132
3133 static int __init kcompactd_init(void)
3134 {
3135 int nid;
3136 int ret;
3137
3138 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3139 "mm/compaction:online",
3140 kcompactd_cpu_online, NULL);
3141 if (ret < 0) {
3142 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3143 return ret;
3144 }
3145
3146 for_each_node_state(nid, N_MEMORY)
3147 kcompactd_run(nid);
3148 register_sysctl_init("vm", vm_compaction);
3149 return 0;
3150 }
3151 subsys_initcall(kcompactd_init)
3152
3153 #endif /* CONFIG_COMPACTION */