]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/compaction.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[thirdparty/kernel/linux.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 /*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
78 list_del(&page->lru);
79 __free_page(page);
80 if (pfn > high_pfn)
81 high_pfn = pfn;
82 }
83
84 return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
98
99 post_alloc_hook(page, order, __GFP_MOVABLE);
100 if (order)
101 split_page(page, order);
102
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
107 }
108
109 list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140 VM_BUG_ON_PAGE(!PageLocked(page), page);
141 VM_BUG_ON_PAGE(!PageMovable(page), page);
142 /*
143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 * flag so that VM can catch up released page by driver after isolation.
145 * With it, VM migration doesn't try to put it back.
146 */
147 page->mapping = (void *)((unsigned long)page->mapping &
148 PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154
155 /*
156 * Compaction is deferred when compaction fails to result in a page
157 * allocation success. 1 << compact_defer_shift, compactions are skipped up
158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159 */
160 static void defer_compaction(struct zone *zone, int order)
161 {
162 zone->compact_considered = 0;
163 zone->compact_defer_shift++;
164
165 if (order < zone->compact_order_failed)
166 zone->compact_order_failed = order;
167
168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171 trace_mm_compaction_defer_compaction(zone, order);
172 }
173
174 /* Returns true if compaction should be skipped this time */
175 static bool compaction_deferred(struct zone *zone, int order)
176 {
177 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179 if (order < zone->compact_order_failed)
180 return false;
181
182 /* Avoid possible overflow */
183 if (++zone->compact_considered >= defer_limit) {
184 zone->compact_considered = defer_limit;
185 return false;
186 }
187
188 trace_mm_compaction_deferred(zone, order);
189
190 return true;
191 }
192
193 /*
194 * Update defer tracking counters after successful compaction of given order,
195 * which means an allocation either succeeded (alloc_success == true) or is
196 * expected to succeed.
197 */
198 void compaction_defer_reset(struct zone *zone, int order,
199 bool alloc_success)
200 {
201 if (alloc_success) {
202 zone->compact_considered = 0;
203 zone->compact_defer_shift = 0;
204 }
205 if (order >= zone->compact_order_failed)
206 zone->compact_order_failed = order + 1;
207
208 trace_mm_compaction_defer_reset(zone, order);
209 }
210
211 /* Returns true if restarting compaction after many failures */
212 static bool compaction_restarting(struct zone *zone, int order)
213 {
214 if (order < zone->compact_order_failed)
215 return false;
216
217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223 struct page *page)
224 {
225 if (cc->ignore_skip_hint)
226 return true;
227
228 return !get_pageblock_skip(page);
229 }
230
231 static void reset_cached_positions(struct zone *zone)
232 {
233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 zone->compact_cached_free_pfn =
236 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238
239 /*
240 * Compound pages of >= pageblock_order should consistently be skipped until
241 * released. It is always pointless to compact pages of such order (if they are
242 * migratable), and the pageblocks they occupy cannot contain any free pages.
243 */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 if (!PageCompound(page))
247 return false;
248
249 page = compound_head(page);
250
251 if (compound_order(page) >= pageblock_order)
252 return true;
253
254 return false;
255 }
256
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 bool check_target)
260 {
261 struct page *page = pfn_to_online_page(pfn);
262 struct page *block_page;
263 struct page *end_page;
264 unsigned long block_pfn;
265
266 if (!page)
267 return false;
268 if (zone != page_zone(page))
269 return false;
270 if (pageblock_skip_persistent(page))
271 return false;
272
273 /*
274 * If skip is already cleared do no further checking once the
275 * restart points have been set.
276 */
277 if (check_source && check_target && !get_pageblock_skip(page))
278 return true;
279
280 /*
281 * If clearing skip for the target scanner, do not select a
282 * non-movable pageblock as the starting point.
283 */
284 if (!check_source && check_target &&
285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 return false;
287
288 /* Ensure the start of the pageblock or zone is online and valid */
289 block_pfn = pageblock_start_pfn(pfn);
290 block_pfn = max(block_pfn, zone->zone_start_pfn);
291 block_page = pfn_to_online_page(block_pfn);
292 if (block_page) {
293 page = block_page;
294 pfn = block_pfn;
295 }
296
297 /* Ensure the end of the pageblock or zone is online and valid */
298 block_pfn = pageblock_end_pfn(pfn) - 1;
299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 end_page = pfn_to_online_page(block_pfn);
301 if (!end_page)
302 return false;
303
304 /*
305 * Only clear the hint if a sample indicates there is either a
306 * free page or an LRU page in the block. One or other condition
307 * is necessary for the block to be a migration source/target.
308 */
309 do {
310 if (pfn_valid_within(pfn)) {
311 if (check_source && PageLRU(page)) {
312 clear_pageblock_skip(page);
313 return true;
314 }
315
316 if (check_target && PageBuddy(page)) {
317 clear_pageblock_skip(page);
318 return true;
319 }
320 }
321
322 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 } while (page <= end_page);
325
326 return false;
327 }
328
329 /*
330 * This function is called to clear all cached information on pageblocks that
331 * should be skipped for page isolation when the migrate and free page scanner
332 * meet.
333 */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 unsigned long migrate_pfn = zone->zone_start_pfn;
337 unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 unsigned long reset_migrate = free_pfn;
339 unsigned long reset_free = migrate_pfn;
340 bool source_set = false;
341 bool free_set = false;
342
343 if (!zone->compact_blockskip_flush)
344 return;
345
346 zone->compact_blockskip_flush = false;
347
348 /*
349 * Walk the zone and update pageblock skip information. Source looks
350 * for PageLRU while target looks for PageBuddy. When the scanner
351 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 * is suitable as both source and target.
353 */
354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 free_pfn -= pageblock_nr_pages) {
356 cond_resched();
357
358 /* Update the migrate PFN */
359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 migrate_pfn < reset_migrate) {
361 source_set = true;
362 reset_migrate = migrate_pfn;
363 zone->compact_init_migrate_pfn = reset_migrate;
364 zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 }
367
368 /* Update the free PFN */
369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 free_pfn > reset_free) {
371 free_set = true;
372 reset_free = free_pfn;
373 zone->compact_init_free_pfn = reset_free;
374 zone->compact_cached_free_pfn = reset_free;
375 }
376 }
377
378 /* Leave no distance if no suitable block was reset */
379 if (reset_migrate >= reset_free) {
380 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 zone->compact_cached_free_pfn = free_pfn;
383 }
384 }
385
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 int zoneid;
389
390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 struct zone *zone = &pgdat->node_zones[zoneid];
392 if (!populated_zone(zone))
393 continue;
394
395 /* Only flush if a full compaction finished recently */
396 if (zone->compact_blockskip_flush)
397 __reset_isolation_suitable(zone);
398 }
399 }
400
401 /*
402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403 * locks are not required for read/writers. Returns true if it was already set.
404 */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 unsigned long pfn)
407 {
408 bool skip;
409
410 /* Do no update if skip hint is being ignored */
411 if (cc->ignore_skip_hint)
412 return false;
413
414 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 return false;
416
417 skip = get_pageblock_skip(page);
418 if (!skip && !cc->no_set_skip_hint)
419 set_pageblock_skip(page);
420
421 return skip;
422 }
423
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 struct zone *zone = cc->zone;
427
428 pfn = pageblock_end_pfn(pfn);
429
430 /* Set for isolation rather than compaction */
431 if (cc->no_set_skip_hint)
432 return;
433
434 if (pfn > zone->compact_cached_migrate_pfn[0])
435 zone->compact_cached_migrate_pfn[0] = pfn;
436 if (cc->mode != MIGRATE_ASYNC &&
437 pfn > zone->compact_cached_migrate_pfn[1])
438 zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440
441 /*
442 * If no pages were isolated then mark this pageblock to be skipped in the
443 * future. The information is later cleared by __reset_isolation_suitable().
444 */
445 static void update_pageblock_skip(struct compact_control *cc,
446 struct page *page, unsigned long pfn)
447 {
448 struct zone *zone = cc->zone;
449
450 if (cc->no_set_skip_hint)
451 return;
452
453 if (!page)
454 return;
455
456 set_pageblock_skip(page);
457
458 /* Update where async and sync compaction should restart */
459 if (pfn < zone->compact_cached_free_pfn)
460 zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464 struct page *page)
465 {
466 return true;
467 }
468
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 return false;
472 }
473
474 static inline void update_pageblock_skip(struct compact_control *cc,
475 struct page *page, unsigned long pfn)
476 {
477 }
478
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 unsigned long pfn)
485 {
486 return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489
490 /*
491 * Compaction requires the taking of some coarse locks that are potentially
492 * very heavily contended. For async compaction, trylock and record if the
493 * lock is contended. The lock will still be acquired but compaction will
494 * abort when the current block is finished regardless of success rate.
495 * Sync compaction acquires the lock.
496 *
497 * Always returns true which makes it easier to track lock state in callers.
498 */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 struct compact_control *cc)
501 __acquires(lock)
502 {
503 /* Track if the lock is contended in async mode */
504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 if (spin_trylock_irqsave(lock, *flags))
506 return true;
507
508 cc->contended = true;
509 }
510
511 spin_lock_irqsave(lock, *flags);
512 return true;
513 }
514
515 /*
516 * Compaction requires the taking of some coarse locks that are potentially
517 * very heavily contended. The lock should be periodically unlocked to avoid
518 * having disabled IRQs for a long time, even when there is nobody waiting on
519 * the lock. It might also be that allowing the IRQs will result in
520 * need_resched() becoming true. If scheduling is needed, async compaction
521 * aborts. Sync compaction schedules.
522 * Either compaction type will also abort if a fatal signal is pending.
523 * In either case if the lock was locked, it is dropped and not regained.
524 *
525 * Returns true if compaction should abort due to fatal signal pending, or
526 * async compaction due to need_resched()
527 * Returns false when compaction can continue (sync compaction might have
528 * scheduled)
529 */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 if (*locked) {
534 spin_unlock_irqrestore(lock, flags);
535 *locked = false;
536 }
537
538 if (fatal_signal_pending(current)) {
539 cc->contended = true;
540 return true;
541 }
542
543 cond_resched();
544
545 return false;
546 }
547
548 /*
549 * Isolate free pages onto a private freelist. If @strict is true, will abort
550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551 * (even though it may still end up isolating some pages).
552 */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 unsigned long *start_pfn,
555 unsigned long end_pfn,
556 struct list_head *freelist,
557 unsigned int stride,
558 bool strict)
559 {
560 int nr_scanned = 0, total_isolated = 0;
561 struct page *cursor;
562 unsigned long flags = 0;
563 bool locked = false;
564 unsigned long blockpfn = *start_pfn;
565 unsigned int order;
566
567 /* Strict mode is for isolation, speed is secondary */
568 if (strict)
569 stride = 1;
570
571 cursor = pfn_to_page(blockpfn);
572
573 /* Isolate free pages. */
574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 int isolated;
576 struct page *page = cursor;
577
578 /*
579 * Periodically drop the lock (if held) regardless of its
580 * contention, to give chance to IRQs. Abort if fatal signal
581 * pending or async compaction detects need_resched()
582 */
583 if (!(blockpfn % SWAP_CLUSTER_MAX)
584 && compact_unlock_should_abort(&cc->zone->lock, flags,
585 &locked, cc))
586 break;
587
588 nr_scanned++;
589 if (!pfn_valid_within(blockpfn))
590 goto isolate_fail;
591
592 /*
593 * For compound pages such as THP and hugetlbfs, we can save
594 * potentially a lot of iterations if we skip them at once.
595 * The check is racy, but we can consider only valid values
596 * and the only danger is skipping too much.
597 */
598 if (PageCompound(page)) {
599 const unsigned int order = compound_order(page);
600
601 if (likely(order < MAX_ORDER)) {
602 blockpfn += (1UL << order) - 1;
603 cursor += (1UL << order) - 1;
604 }
605 goto isolate_fail;
606 }
607
608 if (!PageBuddy(page))
609 goto isolate_fail;
610
611 /*
612 * If we already hold the lock, we can skip some rechecking.
613 * Note that if we hold the lock now, checked_pageblock was
614 * already set in some previous iteration (or strict is true),
615 * so it is correct to skip the suitable migration target
616 * recheck as well.
617 */
618 if (!locked) {
619 locked = compact_lock_irqsave(&cc->zone->lock,
620 &flags, cc);
621
622 /* Recheck this is a buddy page under lock */
623 if (!PageBuddy(page))
624 goto isolate_fail;
625 }
626
627 /* Found a free page, will break it into order-0 pages */
628 order = buddy_order(page);
629 isolated = __isolate_free_page(page, order);
630 if (!isolated)
631 break;
632 set_page_private(page, order);
633
634 total_isolated += isolated;
635 cc->nr_freepages += isolated;
636 list_add_tail(&page->lru, freelist);
637
638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 blockpfn += isolated;
640 break;
641 }
642 /* Advance to the end of split page */
643 blockpfn += isolated - 1;
644 cursor += isolated - 1;
645 continue;
646
647 isolate_fail:
648 if (strict)
649 break;
650 else
651 continue;
652
653 }
654
655 if (locked)
656 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658 /*
659 * There is a tiny chance that we have read bogus compound_order(),
660 * so be careful to not go outside of the pageblock.
661 */
662 if (unlikely(blockpfn > end_pfn))
663 blockpfn = end_pfn;
664
665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 nr_scanned, total_isolated);
667
668 /* Record how far we have got within the block */
669 *start_pfn = blockpfn;
670
671 /*
672 * If strict isolation is requested by CMA then check that all the
673 * pages requested were isolated. If there were any failures, 0 is
674 * returned and CMA will fail.
675 */
676 if (strict && blockpfn < end_pfn)
677 total_isolated = 0;
678
679 cc->total_free_scanned += nr_scanned;
680 if (total_isolated)
681 count_compact_events(COMPACTISOLATED, total_isolated);
682 return total_isolated;
683 }
684
685 /**
686 * isolate_freepages_range() - isolate free pages.
687 * @cc: Compaction control structure.
688 * @start_pfn: The first PFN to start isolating.
689 * @end_pfn: The one-past-last PFN.
690 *
691 * Non-free pages, invalid PFNs, or zone boundaries within the
692 * [start_pfn, end_pfn) range are considered errors, cause function to
693 * undo its actions and return zero.
694 *
695 * Otherwise, function returns one-past-the-last PFN of isolated page
696 * (which may be greater then end_pfn if end fell in a middle of
697 * a free page).
698 */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701 unsigned long start_pfn, unsigned long end_pfn)
702 {
703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 LIST_HEAD(freelist);
705
706 pfn = start_pfn;
707 block_start_pfn = pageblock_start_pfn(pfn);
708 if (block_start_pfn < cc->zone->zone_start_pfn)
709 block_start_pfn = cc->zone->zone_start_pfn;
710 block_end_pfn = pageblock_end_pfn(pfn);
711
712 for (; pfn < end_pfn; pfn += isolated,
713 block_start_pfn = block_end_pfn,
714 block_end_pfn += pageblock_nr_pages) {
715 /* Protect pfn from changing by isolate_freepages_block */
716 unsigned long isolate_start_pfn = pfn;
717
718 block_end_pfn = min(block_end_pfn, end_pfn);
719
720 /*
721 * pfn could pass the block_end_pfn if isolated freepage
722 * is more than pageblock order. In this case, we adjust
723 * scanning range to right one.
724 */
725 if (pfn >= block_end_pfn) {
726 block_start_pfn = pageblock_start_pfn(pfn);
727 block_end_pfn = pageblock_end_pfn(pfn);
728 block_end_pfn = min(block_end_pfn, end_pfn);
729 }
730
731 if (!pageblock_pfn_to_page(block_start_pfn,
732 block_end_pfn, cc->zone))
733 break;
734
735 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 block_end_pfn, &freelist, 0, true);
737
738 /*
739 * In strict mode, isolate_freepages_block() returns 0 if
740 * there are any holes in the block (ie. invalid PFNs or
741 * non-free pages).
742 */
743 if (!isolated)
744 break;
745
746 /*
747 * If we managed to isolate pages, it is always (1 << n) *
748 * pageblock_nr_pages for some non-negative n. (Max order
749 * page may span two pageblocks).
750 */
751 }
752
753 /* __isolate_free_page() does not map the pages */
754 split_map_pages(&freelist);
755
756 if (pfn < end_pfn) {
757 /* Loop terminated early, cleanup. */
758 release_freepages(&freelist);
759 return 0;
760 }
761
762 /* We don't use freelists for anything. */
763 return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769 unsigned long active, inactive, isolated;
770
771 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772 node_page_state(pgdat, NR_INACTIVE_ANON);
773 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774 node_page_state(pgdat, NR_ACTIVE_ANON);
775 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776 node_page_state(pgdat, NR_ISOLATED_ANON);
777
778 return isolated > (inactive + active) / 2;
779 }
780
781 /**
782 * isolate_migratepages_block() - isolate all migrate-able pages within
783 * a single pageblock
784 * @cc: Compaction control structure.
785 * @low_pfn: The first PFN to isolate
786 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
787 * @isolate_mode: Isolation mode to be used.
788 *
789 * Isolate all pages that can be migrated from the range specified by
790 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791 * Returns zero if there is a fatal signal pending, otherwise PFN of the
792 * first page that was not scanned (which may be both less, equal to or more
793 * than end_pfn).
794 *
795 * The pages are isolated on cc->migratepages list (not required to be empty),
796 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797 * is neither read nor updated.
798 */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801 unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803 pg_data_t *pgdat = cc->zone->zone_pgdat;
804 unsigned long nr_scanned = 0, nr_isolated = 0;
805 struct lruvec *lruvec;
806 unsigned long flags = 0;
807 struct lruvec *locked = NULL;
808 struct page *page = NULL, *valid_page = NULL;
809 unsigned long start_pfn = low_pfn;
810 bool skip_on_failure = false;
811 unsigned long next_skip_pfn = 0;
812 bool skip_updated = false;
813
814 /*
815 * Ensure that there are not too many pages isolated from the LRU
816 * list by either parallel reclaimers or compaction. If there are,
817 * delay for some time until fewer pages are isolated
818 */
819 while (unlikely(too_many_isolated(pgdat))) {
820 /* stop isolation if there are still pages not migrated */
821 if (cc->nr_migratepages)
822 return 0;
823
824 /* async migration should just abort */
825 if (cc->mode == MIGRATE_ASYNC)
826 return 0;
827
828 congestion_wait(BLK_RW_ASYNC, HZ/10);
829
830 if (fatal_signal_pending(current))
831 return 0;
832 }
833
834 cond_resched();
835
836 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837 skip_on_failure = true;
838 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839 }
840
841 /* Time to isolate some pages for migration */
842 for (; low_pfn < end_pfn; low_pfn++) {
843
844 if (skip_on_failure && low_pfn >= next_skip_pfn) {
845 /*
846 * We have isolated all migration candidates in the
847 * previous order-aligned block, and did not skip it due
848 * to failure. We should migrate the pages now and
849 * hopefully succeed compaction.
850 */
851 if (nr_isolated)
852 break;
853
854 /*
855 * We failed to isolate in the previous order-aligned
856 * block. Set the new boundary to the end of the
857 * current block. Note we can't simply increase
858 * next_skip_pfn by 1 << order, as low_pfn might have
859 * been incremented by a higher number due to skipping
860 * a compound or a high-order buddy page in the
861 * previous loop iteration.
862 */
863 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864 }
865
866 /*
867 * Periodically drop the lock (if held) regardless of its
868 * contention, to give chance to IRQs. Abort completely if
869 * a fatal signal is pending.
870 */
871 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
872 if (locked) {
873 unlock_page_lruvec_irqrestore(locked, flags);
874 locked = NULL;
875 }
876
877 if (fatal_signal_pending(current)) {
878 cc->contended = true;
879
880 low_pfn = 0;
881 goto fatal_pending;
882 }
883
884 cond_resched();
885 }
886
887 if (!pfn_valid_within(low_pfn))
888 goto isolate_fail;
889 nr_scanned++;
890
891 page = pfn_to_page(low_pfn);
892
893 /*
894 * Check if the pageblock has already been marked skipped.
895 * Only the aligned PFN is checked as the caller isolates
896 * COMPACT_CLUSTER_MAX at a time so the second call must
897 * not falsely conclude that the block should be skipped.
898 */
899 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
900 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
901 low_pfn = end_pfn;
902 page = NULL;
903 goto isolate_abort;
904 }
905 valid_page = page;
906 }
907
908 /*
909 * Skip if free. We read page order here without zone lock
910 * which is generally unsafe, but the race window is small and
911 * the worst thing that can happen is that we skip some
912 * potential isolation targets.
913 */
914 if (PageBuddy(page)) {
915 unsigned long freepage_order = buddy_order_unsafe(page);
916
917 /*
918 * Without lock, we cannot be sure that what we got is
919 * a valid page order. Consider only values in the
920 * valid order range to prevent low_pfn overflow.
921 */
922 if (freepage_order > 0 && freepage_order < MAX_ORDER)
923 low_pfn += (1UL << freepage_order) - 1;
924 continue;
925 }
926
927 /*
928 * Regardless of being on LRU, compound pages such as THP and
929 * hugetlbfs are not to be compacted unless we are attempting
930 * an allocation much larger than the huge page size (eg CMA).
931 * We can potentially save a lot of iterations if we skip them
932 * at once. The check is racy, but we can consider only valid
933 * values and the only danger is skipping too much.
934 */
935 if (PageCompound(page) && !cc->alloc_contig) {
936 const unsigned int order = compound_order(page);
937
938 if (likely(order < MAX_ORDER))
939 low_pfn += (1UL << order) - 1;
940 goto isolate_fail;
941 }
942
943 /*
944 * Check may be lockless but that's ok as we recheck later.
945 * It's possible to migrate LRU and non-lru movable pages.
946 * Skip any other type of page
947 */
948 if (!PageLRU(page)) {
949 /*
950 * __PageMovable can return false positive so we need
951 * to verify it under page_lock.
952 */
953 if (unlikely(__PageMovable(page)) &&
954 !PageIsolated(page)) {
955 if (locked) {
956 unlock_page_lruvec_irqrestore(locked, flags);
957 locked = NULL;
958 }
959
960 if (!isolate_movable_page(page, isolate_mode))
961 goto isolate_success;
962 }
963
964 goto isolate_fail;
965 }
966
967 /*
968 * Migration will fail if an anonymous page is pinned in memory,
969 * so avoid taking lru_lock and isolating it unnecessarily in an
970 * admittedly racy check.
971 */
972 if (!page_mapping(page) &&
973 page_count(page) > page_mapcount(page))
974 goto isolate_fail;
975
976 /*
977 * Only allow to migrate anonymous pages in GFP_NOFS context
978 * because those do not depend on fs locks.
979 */
980 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
981 goto isolate_fail;
982
983 /*
984 * Be careful not to clear PageLRU until after we're
985 * sure the page is not being freed elsewhere -- the
986 * page release code relies on it.
987 */
988 if (unlikely(!get_page_unless_zero(page)))
989 goto isolate_fail;
990
991 if (__isolate_lru_page_prepare(page, isolate_mode) != 0)
992 goto isolate_fail_put;
993
994 /* Try isolate the page */
995 if (!TestClearPageLRU(page))
996 goto isolate_fail_put;
997
998 rcu_read_lock();
999 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1000
1001 /* If we already hold the lock, we can skip some rechecking */
1002 if (lruvec != locked) {
1003 if (locked)
1004 unlock_page_lruvec_irqrestore(locked, flags);
1005
1006 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1007 locked = lruvec;
1008 rcu_read_unlock();
1009
1010 lruvec_memcg_debug(lruvec, page);
1011
1012 /* Try get exclusive access under lock */
1013 if (!skip_updated) {
1014 skip_updated = true;
1015 if (test_and_set_skip(cc, page, low_pfn))
1016 goto isolate_abort;
1017 }
1018
1019 /*
1020 * Page become compound since the non-locked check,
1021 * and it's on LRU. It can only be a THP so the order
1022 * is safe to read and it's 0 for tail pages.
1023 */
1024 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1025 low_pfn += compound_nr(page) - 1;
1026 SetPageLRU(page);
1027 goto isolate_fail_put;
1028 }
1029 } else
1030 rcu_read_unlock();
1031
1032 /* The whole page is taken off the LRU; skip the tail pages. */
1033 if (PageCompound(page))
1034 low_pfn += compound_nr(page) - 1;
1035
1036 /* Successfully isolated */
1037 del_page_from_lru_list(page, lruvec, page_lru(page));
1038 mod_node_page_state(page_pgdat(page),
1039 NR_ISOLATED_ANON + page_is_file_lru(page),
1040 thp_nr_pages(page));
1041
1042 isolate_success:
1043 list_add(&page->lru, &cc->migratepages);
1044 cc->nr_migratepages += compound_nr(page);
1045 nr_isolated += compound_nr(page);
1046
1047 /*
1048 * Avoid isolating too much unless this block is being
1049 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1050 * or a lock is contended. For contention, isolate quickly to
1051 * potentially remove one source of contention.
1052 */
1053 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1054 !cc->rescan && !cc->contended) {
1055 ++low_pfn;
1056 break;
1057 }
1058
1059 continue;
1060
1061 isolate_fail_put:
1062 /* Avoid potential deadlock in freeing page under lru_lock */
1063 if (locked) {
1064 unlock_page_lruvec_irqrestore(locked, flags);
1065 locked = NULL;
1066 }
1067 put_page(page);
1068
1069 isolate_fail:
1070 if (!skip_on_failure)
1071 continue;
1072
1073 /*
1074 * We have isolated some pages, but then failed. Release them
1075 * instead of migrating, as we cannot form the cc->order buddy
1076 * page anyway.
1077 */
1078 if (nr_isolated) {
1079 if (locked) {
1080 unlock_page_lruvec_irqrestore(locked, flags);
1081 locked = NULL;
1082 }
1083 putback_movable_pages(&cc->migratepages);
1084 cc->nr_migratepages = 0;
1085 nr_isolated = 0;
1086 }
1087
1088 if (low_pfn < next_skip_pfn) {
1089 low_pfn = next_skip_pfn - 1;
1090 /*
1091 * The check near the loop beginning would have updated
1092 * next_skip_pfn too, but this is a bit simpler.
1093 */
1094 next_skip_pfn += 1UL << cc->order;
1095 }
1096 }
1097
1098 /*
1099 * The PageBuddy() check could have potentially brought us outside
1100 * the range to be scanned.
1101 */
1102 if (unlikely(low_pfn > end_pfn))
1103 low_pfn = end_pfn;
1104
1105 page = NULL;
1106
1107 isolate_abort:
1108 if (locked)
1109 unlock_page_lruvec_irqrestore(locked, flags);
1110 if (page) {
1111 SetPageLRU(page);
1112 put_page(page);
1113 }
1114
1115 /*
1116 * Updated the cached scanner pfn once the pageblock has been scanned
1117 * Pages will either be migrated in which case there is no point
1118 * scanning in the near future or migration failed in which case the
1119 * failure reason may persist. The block is marked for skipping if
1120 * there were no pages isolated in the block or if the block is
1121 * rescanned twice in a row.
1122 */
1123 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1124 if (valid_page && !skip_updated)
1125 set_pageblock_skip(valid_page);
1126 update_cached_migrate(cc, low_pfn);
1127 }
1128
1129 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1130 nr_scanned, nr_isolated);
1131
1132 fatal_pending:
1133 cc->total_migrate_scanned += nr_scanned;
1134 if (nr_isolated)
1135 count_compact_events(COMPACTISOLATED, nr_isolated);
1136
1137 return low_pfn;
1138 }
1139
1140 /**
1141 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1142 * @cc: Compaction control structure.
1143 * @start_pfn: The first PFN to start isolating.
1144 * @end_pfn: The one-past-last PFN.
1145 *
1146 * Returns zero if isolation fails fatally due to e.g. pending signal.
1147 * Otherwise, function returns one-past-the-last PFN of isolated page
1148 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1149 */
1150 unsigned long
1151 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1152 unsigned long end_pfn)
1153 {
1154 unsigned long pfn, block_start_pfn, block_end_pfn;
1155
1156 /* Scan block by block. First and last block may be incomplete */
1157 pfn = start_pfn;
1158 block_start_pfn = pageblock_start_pfn(pfn);
1159 if (block_start_pfn < cc->zone->zone_start_pfn)
1160 block_start_pfn = cc->zone->zone_start_pfn;
1161 block_end_pfn = pageblock_end_pfn(pfn);
1162
1163 for (; pfn < end_pfn; pfn = block_end_pfn,
1164 block_start_pfn = block_end_pfn,
1165 block_end_pfn += pageblock_nr_pages) {
1166
1167 block_end_pfn = min(block_end_pfn, end_pfn);
1168
1169 if (!pageblock_pfn_to_page(block_start_pfn,
1170 block_end_pfn, cc->zone))
1171 continue;
1172
1173 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1174 ISOLATE_UNEVICTABLE);
1175
1176 if (!pfn)
1177 break;
1178
1179 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1180 break;
1181 }
1182
1183 return pfn;
1184 }
1185
1186 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1187 #ifdef CONFIG_COMPACTION
1188
1189 static bool suitable_migration_source(struct compact_control *cc,
1190 struct page *page)
1191 {
1192 int block_mt;
1193
1194 if (pageblock_skip_persistent(page))
1195 return false;
1196
1197 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1198 return true;
1199
1200 block_mt = get_pageblock_migratetype(page);
1201
1202 if (cc->migratetype == MIGRATE_MOVABLE)
1203 return is_migrate_movable(block_mt);
1204 else
1205 return block_mt == cc->migratetype;
1206 }
1207
1208 /* Returns true if the page is within a block suitable for migration to */
1209 static bool suitable_migration_target(struct compact_control *cc,
1210 struct page *page)
1211 {
1212 /* If the page is a large free page, then disallow migration */
1213 if (PageBuddy(page)) {
1214 /*
1215 * We are checking page_order without zone->lock taken. But
1216 * the only small danger is that we skip a potentially suitable
1217 * pageblock, so it's not worth to check order for valid range.
1218 */
1219 if (buddy_order_unsafe(page) >= pageblock_order)
1220 return false;
1221 }
1222
1223 if (cc->ignore_block_suitable)
1224 return true;
1225
1226 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1227 if (is_migrate_movable(get_pageblock_migratetype(page)))
1228 return true;
1229
1230 /* Otherwise skip the block */
1231 return false;
1232 }
1233
1234 static inline unsigned int
1235 freelist_scan_limit(struct compact_control *cc)
1236 {
1237 unsigned short shift = BITS_PER_LONG - 1;
1238
1239 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1240 }
1241
1242 /*
1243 * Test whether the free scanner has reached the same or lower pageblock than
1244 * the migration scanner, and compaction should thus terminate.
1245 */
1246 static inline bool compact_scanners_met(struct compact_control *cc)
1247 {
1248 return (cc->free_pfn >> pageblock_order)
1249 <= (cc->migrate_pfn >> pageblock_order);
1250 }
1251
1252 /*
1253 * Used when scanning for a suitable migration target which scans freelists
1254 * in reverse. Reorders the list such as the unscanned pages are scanned
1255 * first on the next iteration of the free scanner
1256 */
1257 static void
1258 move_freelist_head(struct list_head *freelist, struct page *freepage)
1259 {
1260 LIST_HEAD(sublist);
1261
1262 if (!list_is_last(freelist, &freepage->lru)) {
1263 list_cut_before(&sublist, freelist, &freepage->lru);
1264 if (!list_empty(&sublist))
1265 list_splice_tail(&sublist, freelist);
1266 }
1267 }
1268
1269 /*
1270 * Similar to move_freelist_head except used by the migration scanner
1271 * when scanning forward. It's possible for these list operations to
1272 * move against each other if they search the free list exactly in
1273 * lockstep.
1274 */
1275 static void
1276 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1277 {
1278 LIST_HEAD(sublist);
1279
1280 if (!list_is_first(freelist, &freepage->lru)) {
1281 list_cut_position(&sublist, freelist, &freepage->lru);
1282 if (!list_empty(&sublist))
1283 list_splice_tail(&sublist, freelist);
1284 }
1285 }
1286
1287 static void
1288 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1289 {
1290 unsigned long start_pfn, end_pfn;
1291 struct page *page = pfn_to_page(pfn);
1292
1293 /* Do not search around if there are enough pages already */
1294 if (cc->nr_freepages >= cc->nr_migratepages)
1295 return;
1296
1297 /* Minimise scanning during async compaction */
1298 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1299 return;
1300
1301 /* Pageblock boundaries */
1302 start_pfn = pageblock_start_pfn(pfn);
1303 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1304
1305 /* Scan before */
1306 if (start_pfn != pfn) {
1307 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1308 if (cc->nr_freepages >= cc->nr_migratepages)
1309 return;
1310 }
1311
1312 /* Scan after */
1313 start_pfn = pfn + nr_isolated;
1314 if (start_pfn < end_pfn)
1315 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1316
1317 /* Skip this pageblock in the future as it's full or nearly full */
1318 if (cc->nr_freepages < cc->nr_migratepages)
1319 set_pageblock_skip(page);
1320 }
1321
1322 /* Search orders in round-robin fashion */
1323 static int next_search_order(struct compact_control *cc, int order)
1324 {
1325 order--;
1326 if (order < 0)
1327 order = cc->order - 1;
1328
1329 /* Search wrapped around? */
1330 if (order == cc->search_order) {
1331 cc->search_order--;
1332 if (cc->search_order < 0)
1333 cc->search_order = cc->order - 1;
1334 return -1;
1335 }
1336
1337 return order;
1338 }
1339
1340 static unsigned long
1341 fast_isolate_freepages(struct compact_control *cc)
1342 {
1343 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1344 unsigned int nr_scanned = 0;
1345 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1346 unsigned long nr_isolated = 0;
1347 unsigned long distance;
1348 struct page *page = NULL;
1349 bool scan_start = false;
1350 int order;
1351
1352 /* Full compaction passes in a negative order */
1353 if (cc->order <= 0)
1354 return cc->free_pfn;
1355
1356 /*
1357 * If starting the scan, use a deeper search and use the highest
1358 * PFN found if a suitable one is not found.
1359 */
1360 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1361 limit = pageblock_nr_pages >> 1;
1362 scan_start = true;
1363 }
1364
1365 /*
1366 * Preferred point is in the top quarter of the scan space but take
1367 * a pfn from the top half if the search is problematic.
1368 */
1369 distance = (cc->free_pfn - cc->migrate_pfn);
1370 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1371 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1372
1373 if (WARN_ON_ONCE(min_pfn > low_pfn))
1374 low_pfn = min_pfn;
1375
1376 /*
1377 * Search starts from the last successful isolation order or the next
1378 * order to search after a previous failure
1379 */
1380 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1381
1382 for (order = cc->search_order;
1383 !page && order >= 0;
1384 order = next_search_order(cc, order)) {
1385 struct free_area *area = &cc->zone->free_area[order];
1386 struct list_head *freelist;
1387 struct page *freepage;
1388 unsigned long flags;
1389 unsigned int order_scanned = 0;
1390
1391 if (!area->nr_free)
1392 continue;
1393
1394 spin_lock_irqsave(&cc->zone->lock, flags);
1395 freelist = &area->free_list[MIGRATE_MOVABLE];
1396 list_for_each_entry_reverse(freepage, freelist, lru) {
1397 unsigned long pfn;
1398
1399 order_scanned++;
1400 nr_scanned++;
1401 pfn = page_to_pfn(freepage);
1402
1403 if (pfn >= highest)
1404 highest = pageblock_start_pfn(pfn);
1405
1406 if (pfn >= low_pfn) {
1407 cc->fast_search_fail = 0;
1408 cc->search_order = order;
1409 page = freepage;
1410 break;
1411 }
1412
1413 if (pfn >= min_pfn && pfn > high_pfn) {
1414 high_pfn = pfn;
1415
1416 /* Shorten the scan if a candidate is found */
1417 limit >>= 1;
1418 }
1419
1420 if (order_scanned >= limit)
1421 break;
1422 }
1423
1424 /* Use a minimum pfn if a preferred one was not found */
1425 if (!page && high_pfn) {
1426 page = pfn_to_page(high_pfn);
1427
1428 /* Update freepage for the list reorder below */
1429 freepage = page;
1430 }
1431
1432 /* Reorder to so a future search skips recent pages */
1433 move_freelist_head(freelist, freepage);
1434
1435 /* Isolate the page if available */
1436 if (page) {
1437 if (__isolate_free_page(page, order)) {
1438 set_page_private(page, order);
1439 nr_isolated = 1 << order;
1440 cc->nr_freepages += nr_isolated;
1441 list_add_tail(&page->lru, &cc->freepages);
1442 count_compact_events(COMPACTISOLATED, nr_isolated);
1443 } else {
1444 /* If isolation fails, abort the search */
1445 order = cc->search_order + 1;
1446 page = NULL;
1447 }
1448 }
1449
1450 spin_unlock_irqrestore(&cc->zone->lock, flags);
1451
1452 /*
1453 * Smaller scan on next order so the total scan ig related
1454 * to freelist_scan_limit.
1455 */
1456 if (order_scanned >= limit)
1457 limit = min(1U, limit >> 1);
1458 }
1459
1460 if (!page) {
1461 cc->fast_search_fail++;
1462 if (scan_start) {
1463 /*
1464 * Use the highest PFN found above min. If one was
1465 * not found, be pessimistic for direct compaction
1466 * and use the min mark.
1467 */
1468 if (highest) {
1469 page = pfn_to_page(highest);
1470 cc->free_pfn = highest;
1471 } else {
1472 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1473 page = pageblock_pfn_to_page(min_pfn,
1474 pageblock_end_pfn(min_pfn),
1475 cc->zone);
1476 cc->free_pfn = min_pfn;
1477 }
1478 }
1479 }
1480 }
1481
1482 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1483 highest -= pageblock_nr_pages;
1484 cc->zone->compact_cached_free_pfn = highest;
1485 }
1486
1487 cc->total_free_scanned += nr_scanned;
1488 if (!page)
1489 return cc->free_pfn;
1490
1491 low_pfn = page_to_pfn(page);
1492 fast_isolate_around(cc, low_pfn, nr_isolated);
1493 return low_pfn;
1494 }
1495
1496 /*
1497 * Based on information in the current compact_control, find blocks
1498 * suitable for isolating free pages from and then isolate them.
1499 */
1500 static void isolate_freepages(struct compact_control *cc)
1501 {
1502 struct zone *zone = cc->zone;
1503 struct page *page;
1504 unsigned long block_start_pfn; /* start of current pageblock */
1505 unsigned long isolate_start_pfn; /* exact pfn we start at */
1506 unsigned long block_end_pfn; /* end of current pageblock */
1507 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1508 struct list_head *freelist = &cc->freepages;
1509 unsigned int stride;
1510
1511 /* Try a small search of the free lists for a candidate */
1512 isolate_start_pfn = fast_isolate_freepages(cc);
1513 if (cc->nr_freepages)
1514 goto splitmap;
1515
1516 /*
1517 * Initialise the free scanner. The starting point is where we last
1518 * successfully isolated from, zone-cached value, or the end of the
1519 * zone when isolating for the first time. For looping we also need
1520 * this pfn aligned down to the pageblock boundary, because we do
1521 * block_start_pfn -= pageblock_nr_pages in the for loop.
1522 * For ending point, take care when isolating in last pageblock of a
1523 * zone which ends in the middle of a pageblock.
1524 * The low boundary is the end of the pageblock the migration scanner
1525 * is using.
1526 */
1527 isolate_start_pfn = cc->free_pfn;
1528 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1529 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1530 zone_end_pfn(zone));
1531 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1532 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1533
1534 /*
1535 * Isolate free pages until enough are available to migrate the
1536 * pages on cc->migratepages. We stop searching if the migrate
1537 * and free page scanners meet or enough free pages are isolated.
1538 */
1539 for (; block_start_pfn >= low_pfn;
1540 block_end_pfn = block_start_pfn,
1541 block_start_pfn -= pageblock_nr_pages,
1542 isolate_start_pfn = block_start_pfn) {
1543 unsigned long nr_isolated;
1544
1545 /*
1546 * This can iterate a massively long zone without finding any
1547 * suitable migration targets, so periodically check resched.
1548 */
1549 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1550 cond_resched();
1551
1552 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1553 zone);
1554 if (!page)
1555 continue;
1556
1557 /* Check the block is suitable for migration */
1558 if (!suitable_migration_target(cc, page))
1559 continue;
1560
1561 /* If isolation recently failed, do not retry */
1562 if (!isolation_suitable(cc, page))
1563 continue;
1564
1565 /* Found a block suitable for isolating free pages from. */
1566 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1567 block_end_pfn, freelist, stride, false);
1568
1569 /* Update the skip hint if the full pageblock was scanned */
1570 if (isolate_start_pfn == block_end_pfn)
1571 update_pageblock_skip(cc, page, block_start_pfn);
1572
1573 /* Are enough freepages isolated? */
1574 if (cc->nr_freepages >= cc->nr_migratepages) {
1575 if (isolate_start_pfn >= block_end_pfn) {
1576 /*
1577 * Restart at previous pageblock if more
1578 * freepages can be isolated next time.
1579 */
1580 isolate_start_pfn =
1581 block_start_pfn - pageblock_nr_pages;
1582 }
1583 break;
1584 } else if (isolate_start_pfn < block_end_pfn) {
1585 /*
1586 * If isolation failed early, do not continue
1587 * needlessly.
1588 */
1589 break;
1590 }
1591
1592 /* Adjust stride depending on isolation */
1593 if (nr_isolated) {
1594 stride = 1;
1595 continue;
1596 }
1597 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1598 }
1599
1600 /*
1601 * Record where the free scanner will restart next time. Either we
1602 * broke from the loop and set isolate_start_pfn based on the last
1603 * call to isolate_freepages_block(), or we met the migration scanner
1604 * and the loop terminated due to isolate_start_pfn < low_pfn
1605 */
1606 cc->free_pfn = isolate_start_pfn;
1607
1608 splitmap:
1609 /* __isolate_free_page() does not map the pages */
1610 split_map_pages(freelist);
1611 }
1612
1613 /*
1614 * This is a migrate-callback that "allocates" freepages by taking pages
1615 * from the isolated freelists in the block we are migrating to.
1616 */
1617 static struct page *compaction_alloc(struct page *migratepage,
1618 unsigned long data)
1619 {
1620 struct compact_control *cc = (struct compact_control *)data;
1621 struct page *freepage;
1622
1623 if (list_empty(&cc->freepages)) {
1624 isolate_freepages(cc);
1625
1626 if (list_empty(&cc->freepages))
1627 return NULL;
1628 }
1629
1630 freepage = list_entry(cc->freepages.next, struct page, lru);
1631 list_del(&freepage->lru);
1632 cc->nr_freepages--;
1633
1634 return freepage;
1635 }
1636
1637 /*
1638 * This is a migrate-callback that "frees" freepages back to the isolated
1639 * freelist. All pages on the freelist are from the same zone, so there is no
1640 * special handling needed for NUMA.
1641 */
1642 static void compaction_free(struct page *page, unsigned long data)
1643 {
1644 struct compact_control *cc = (struct compact_control *)data;
1645
1646 list_add(&page->lru, &cc->freepages);
1647 cc->nr_freepages++;
1648 }
1649
1650 /* possible outcome of isolate_migratepages */
1651 typedef enum {
1652 ISOLATE_ABORT, /* Abort compaction now */
1653 ISOLATE_NONE, /* No pages isolated, continue scanning */
1654 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1655 } isolate_migrate_t;
1656
1657 /*
1658 * Allow userspace to control policy on scanning the unevictable LRU for
1659 * compactable pages.
1660 */
1661 #ifdef CONFIG_PREEMPT_RT
1662 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1663 #else
1664 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1665 #endif
1666
1667 static inline void
1668 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1669 {
1670 if (cc->fast_start_pfn == ULONG_MAX)
1671 return;
1672
1673 if (!cc->fast_start_pfn)
1674 cc->fast_start_pfn = pfn;
1675
1676 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1677 }
1678
1679 static inline unsigned long
1680 reinit_migrate_pfn(struct compact_control *cc)
1681 {
1682 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1683 return cc->migrate_pfn;
1684
1685 cc->migrate_pfn = cc->fast_start_pfn;
1686 cc->fast_start_pfn = ULONG_MAX;
1687
1688 return cc->migrate_pfn;
1689 }
1690
1691 /*
1692 * Briefly search the free lists for a migration source that already has
1693 * some free pages to reduce the number of pages that need migration
1694 * before a pageblock is free.
1695 */
1696 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1697 {
1698 unsigned int limit = freelist_scan_limit(cc);
1699 unsigned int nr_scanned = 0;
1700 unsigned long distance;
1701 unsigned long pfn = cc->migrate_pfn;
1702 unsigned long high_pfn;
1703 int order;
1704
1705 /* Skip hints are relied on to avoid repeats on the fast search */
1706 if (cc->ignore_skip_hint)
1707 return pfn;
1708
1709 /*
1710 * If the migrate_pfn is not at the start of a zone or the start
1711 * of a pageblock then assume this is a continuation of a previous
1712 * scan restarted due to COMPACT_CLUSTER_MAX.
1713 */
1714 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1715 return pfn;
1716
1717 /*
1718 * For smaller orders, just linearly scan as the number of pages
1719 * to migrate should be relatively small and does not necessarily
1720 * justify freeing up a large block for a small allocation.
1721 */
1722 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1723 return pfn;
1724
1725 /*
1726 * Only allow kcompactd and direct requests for movable pages to
1727 * quickly clear out a MOVABLE pageblock for allocation. This
1728 * reduces the risk that a large movable pageblock is freed for
1729 * an unmovable/reclaimable small allocation.
1730 */
1731 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1732 return pfn;
1733
1734 /*
1735 * When starting the migration scanner, pick any pageblock within the
1736 * first half of the search space. Otherwise try and pick a pageblock
1737 * within the first eighth to reduce the chances that a migration
1738 * target later becomes a source.
1739 */
1740 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1741 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1742 distance >>= 2;
1743 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1744
1745 for (order = cc->order - 1;
1746 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1747 order--) {
1748 struct free_area *area = &cc->zone->free_area[order];
1749 struct list_head *freelist;
1750 unsigned long flags;
1751 struct page *freepage;
1752
1753 if (!area->nr_free)
1754 continue;
1755
1756 spin_lock_irqsave(&cc->zone->lock, flags);
1757 freelist = &area->free_list[MIGRATE_MOVABLE];
1758 list_for_each_entry(freepage, freelist, lru) {
1759 unsigned long free_pfn;
1760
1761 nr_scanned++;
1762 free_pfn = page_to_pfn(freepage);
1763 if (free_pfn < high_pfn) {
1764 /*
1765 * Avoid if skipped recently. Ideally it would
1766 * move to the tail but even safe iteration of
1767 * the list assumes an entry is deleted, not
1768 * reordered.
1769 */
1770 if (get_pageblock_skip(freepage)) {
1771 if (list_is_last(freelist, &freepage->lru))
1772 break;
1773
1774 continue;
1775 }
1776
1777 /* Reorder to so a future search skips recent pages */
1778 move_freelist_tail(freelist, freepage);
1779
1780 update_fast_start_pfn(cc, free_pfn);
1781 pfn = pageblock_start_pfn(free_pfn);
1782 cc->fast_search_fail = 0;
1783 set_pageblock_skip(freepage);
1784 break;
1785 }
1786
1787 if (nr_scanned >= limit) {
1788 cc->fast_search_fail++;
1789 move_freelist_tail(freelist, freepage);
1790 break;
1791 }
1792 }
1793 spin_unlock_irqrestore(&cc->zone->lock, flags);
1794 }
1795
1796 cc->total_migrate_scanned += nr_scanned;
1797
1798 /*
1799 * If fast scanning failed then use a cached entry for a page block
1800 * that had free pages as the basis for starting a linear scan.
1801 */
1802 if (pfn == cc->migrate_pfn)
1803 pfn = reinit_migrate_pfn(cc);
1804
1805 return pfn;
1806 }
1807
1808 /*
1809 * Isolate all pages that can be migrated from the first suitable block,
1810 * starting at the block pointed to by the migrate scanner pfn within
1811 * compact_control.
1812 */
1813 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1814 {
1815 unsigned long block_start_pfn;
1816 unsigned long block_end_pfn;
1817 unsigned long low_pfn;
1818 struct page *page;
1819 const isolate_mode_t isolate_mode =
1820 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1821 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1822 bool fast_find_block;
1823
1824 /*
1825 * Start at where we last stopped, or beginning of the zone as
1826 * initialized by compact_zone(). The first failure will use
1827 * the lowest PFN as the starting point for linear scanning.
1828 */
1829 low_pfn = fast_find_migrateblock(cc);
1830 block_start_pfn = pageblock_start_pfn(low_pfn);
1831 if (block_start_pfn < cc->zone->zone_start_pfn)
1832 block_start_pfn = cc->zone->zone_start_pfn;
1833
1834 /*
1835 * fast_find_migrateblock marks a pageblock skipped so to avoid
1836 * the isolation_suitable check below, check whether the fast
1837 * search was successful.
1838 */
1839 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1840
1841 /* Only scan within a pageblock boundary */
1842 block_end_pfn = pageblock_end_pfn(low_pfn);
1843
1844 /*
1845 * Iterate over whole pageblocks until we find the first suitable.
1846 * Do not cross the free scanner.
1847 */
1848 for (; block_end_pfn <= cc->free_pfn;
1849 fast_find_block = false,
1850 low_pfn = block_end_pfn,
1851 block_start_pfn = block_end_pfn,
1852 block_end_pfn += pageblock_nr_pages) {
1853
1854 /*
1855 * This can potentially iterate a massively long zone with
1856 * many pageblocks unsuitable, so periodically check if we
1857 * need to schedule.
1858 */
1859 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1860 cond_resched();
1861
1862 page = pageblock_pfn_to_page(block_start_pfn,
1863 block_end_pfn, cc->zone);
1864 if (!page)
1865 continue;
1866
1867 /*
1868 * If isolation recently failed, do not retry. Only check the
1869 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1870 * to be visited multiple times. Assume skip was checked
1871 * before making it "skip" so other compaction instances do
1872 * not scan the same block.
1873 */
1874 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1875 !fast_find_block && !isolation_suitable(cc, page))
1876 continue;
1877
1878 /*
1879 * For async compaction, also only scan in MOVABLE blocks
1880 * without huge pages. Async compaction is optimistic to see
1881 * if the minimum amount of work satisfies the allocation.
1882 * The cached PFN is updated as it's possible that all
1883 * remaining blocks between source and target are unsuitable
1884 * and the compaction scanners fail to meet.
1885 */
1886 if (!suitable_migration_source(cc, page)) {
1887 update_cached_migrate(cc, block_end_pfn);
1888 continue;
1889 }
1890
1891 /* Perform the isolation */
1892 low_pfn = isolate_migratepages_block(cc, low_pfn,
1893 block_end_pfn, isolate_mode);
1894
1895 if (!low_pfn)
1896 return ISOLATE_ABORT;
1897
1898 /*
1899 * Either we isolated something and proceed with migration. Or
1900 * we failed and compact_zone should decide if we should
1901 * continue or not.
1902 */
1903 break;
1904 }
1905
1906 /* Record where migration scanner will be restarted. */
1907 cc->migrate_pfn = low_pfn;
1908
1909 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1910 }
1911
1912 /*
1913 * order == -1 is expected when compacting via
1914 * /proc/sys/vm/compact_memory
1915 */
1916 static inline bool is_via_compact_memory(int order)
1917 {
1918 return order == -1;
1919 }
1920
1921 static bool kswapd_is_running(pg_data_t *pgdat)
1922 {
1923 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1924 }
1925
1926 /*
1927 * A zone's fragmentation score is the external fragmentation wrt to the
1928 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1929 * in the range [0, 100].
1930 *
1931 * The scaling factor ensures that proactive compaction focuses on larger
1932 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1933 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1934 * and thus never exceeds the high threshold for proactive compaction.
1935 */
1936 static unsigned int fragmentation_score_zone(struct zone *zone)
1937 {
1938 unsigned long score;
1939
1940 score = zone->present_pages *
1941 extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1942 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1943 }
1944
1945 /*
1946 * The per-node proactive (background) compaction process is started by its
1947 * corresponding kcompactd thread when the node's fragmentation score
1948 * exceeds the high threshold. The compaction process remains active till
1949 * the node's score falls below the low threshold, or one of the back-off
1950 * conditions is met.
1951 */
1952 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1953 {
1954 unsigned int score = 0;
1955 int zoneid;
1956
1957 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1958 struct zone *zone;
1959
1960 zone = &pgdat->node_zones[zoneid];
1961 score += fragmentation_score_zone(zone);
1962 }
1963
1964 return score;
1965 }
1966
1967 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1968 {
1969 unsigned int wmark_low;
1970
1971 /*
1972 * Cap the low watermak to avoid excessive compaction
1973 * activity in case a user sets the proactivess tunable
1974 * close to 100 (maximum).
1975 */
1976 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1977 return low ? wmark_low : min(wmark_low + 10, 100U);
1978 }
1979
1980 static bool should_proactive_compact_node(pg_data_t *pgdat)
1981 {
1982 int wmark_high;
1983
1984 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1985 return false;
1986
1987 wmark_high = fragmentation_score_wmark(pgdat, false);
1988 return fragmentation_score_node(pgdat) > wmark_high;
1989 }
1990
1991 static enum compact_result __compact_finished(struct compact_control *cc)
1992 {
1993 unsigned int order;
1994 const int migratetype = cc->migratetype;
1995 int ret;
1996
1997 /* Compaction run completes if the migrate and free scanner meet */
1998 if (compact_scanners_met(cc)) {
1999 /* Let the next compaction start anew. */
2000 reset_cached_positions(cc->zone);
2001
2002 /*
2003 * Mark that the PG_migrate_skip information should be cleared
2004 * by kswapd when it goes to sleep. kcompactd does not set the
2005 * flag itself as the decision to be clear should be directly
2006 * based on an allocation request.
2007 */
2008 if (cc->direct_compaction)
2009 cc->zone->compact_blockskip_flush = true;
2010
2011 if (cc->whole_zone)
2012 return COMPACT_COMPLETE;
2013 else
2014 return COMPACT_PARTIAL_SKIPPED;
2015 }
2016
2017 if (cc->proactive_compaction) {
2018 int score, wmark_low;
2019 pg_data_t *pgdat;
2020
2021 pgdat = cc->zone->zone_pgdat;
2022 if (kswapd_is_running(pgdat))
2023 return COMPACT_PARTIAL_SKIPPED;
2024
2025 score = fragmentation_score_zone(cc->zone);
2026 wmark_low = fragmentation_score_wmark(pgdat, true);
2027
2028 if (score > wmark_low)
2029 ret = COMPACT_CONTINUE;
2030 else
2031 ret = COMPACT_SUCCESS;
2032
2033 goto out;
2034 }
2035
2036 if (is_via_compact_memory(cc->order))
2037 return COMPACT_CONTINUE;
2038
2039 /*
2040 * Always finish scanning a pageblock to reduce the possibility of
2041 * fallbacks in the future. This is particularly important when
2042 * migration source is unmovable/reclaimable but it's not worth
2043 * special casing.
2044 */
2045 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2046 return COMPACT_CONTINUE;
2047
2048 /* Direct compactor: Is a suitable page free? */
2049 ret = COMPACT_NO_SUITABLE_PAGE;
2050 for (order = cc->order; order < MAX_ORDER; order++) {
2051 struct free_area *area = &cc->zone->free_area[order];
2052 bool can_steal;
2053
2054 /* Job done if page is free of the right migratetype */
2055 if (!free_area_empty(area, migratetype))
2056 return COMPACT_SUCCESS;
2057
2058 #ifdef CONFIG_CMA
2059 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2060 if (migratetype == MIGRATE_MOVABLE &&
2061 !free_area_empty(area, MIGRATE_CMA))
2062 return COMPACT_SUCCESS;
2063 #endif
2064 /*
2065 * Job done if allocation would steal freepages from
2066 * other migratetype buddy lists.
2067 */
2068 if (find_suitable_fallback(area, order, migratetype,
2069 true, &can_steal) != -1) {
2070
2071 /* movable pages are OK in any pageblock */
2072 if (migratetype == MIGRATE_MOVABLE)
2073 return COMPACT_SUCCESS;
2074
2075 /*
2076 * We are stealing for a non-movable allocation. Make
2077 * sure we finish compacting the current pageblock
2078 * first so it is as free as possible and we won't
2079 * have to steal another one soon. This only applies
2080 * to sync compaction, as async compaction operates
2081 * on pageblocks of the same migratetype.
2082 */
2083 if (cc->mode == MIGRATE_ASYNC ||
2084 IS_ALIGNED(cc->migrate_pfn,
2085 pageblock_nr_pages)) {
2086 return COMPACT_SUCCESS;
2087 }
2088
2089 ret = COMPACT_CONTINUE;
2090 break;
2091 }
2092 }
2093
2094 out:
2095 if (cc->contended || fatal_signal_pending(current))
2096 ret = COMPACT_CONTENDED;
2097
2098 return ret;
2099 }
2100
2101 static enum compact_result compact_finished(struct compact_control *cc)
2102 {
2103 int ret;
2104
2105 ret = __compact_finished(cc);
2106 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2107 if (ret == COMPACT_NO_SUITABLE_PAGE)
2108 ret = COMPACT_CONTINUE;
2109
2110 return ret;
2111 }
2112
2113 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2114 unsigned int alloc_flags,
2115 int highest_zoneidx,
2116 unsigned long wmark_target)
2117 {
2118 unsigned long watermark;
2119
2120 if (is_via_compact_memory(order))
2121 return COMPACT_CONTINUE;
2122
2123 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2124 /*
2125 * If watermarks for high-order allocation are already met, there
2126 * should be no need for compaction at all.
2127 */
2128 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2129 alloc_flags))
2130 return COMPACT_SUCCESS;
2131
2132 /*
2133 * Watermarks for order-0 must be met for compaction to be able to
2134 * isolate free pages for migration targets. This means that the
2135 * watermark and alloc_flags have to match, or be more pessimistic than
2136 * the check in __isolate_free_page(). We don't use the direct
2137 * compactor's alloc_flags, as they are not relevant for freepage
2138 * isolation. We however do use the direct compactor's highest_zoneidx
2139 * to skip over zones where lowmem reserves would prevent allocation
2140 * even if compaction succeeds.
2141 * For costly orders, we require low watermark instead of min for
2142 * compaction to proceed to increase its chances.
2143 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2144 * suitable migration targets
2145 */
2146 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2147 low_wmark_pages(zone) : min_wmark_pages(zone);
2148 watermark += compact_gap(order);
2149 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2150 ALLOC_CMA, wmark_target))
2151 return COMPACT_SKIPPED;
2152
2153 return COMPACT_CONTINUE;
2154 }
2155
2156 /*
2157 * compaction_suitable: Is this suitable to run compaction on this zone now?
2158 * Returns
2159 * COMPACT_SKIPPED - If there are too few free pages for compaction
2160 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2161 * COMPACT_CONTINUE - If compaction should run now
2162 */
2163 enum compact_result compaction_suitable(struct zone *zone, int order,
2164 unsigned int alloc_flags,
2165 int highest_zoneidx)
2166 {
2167 enum compact_result ret;
2168 int fragindex;
2169
2170 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2171 zone_page_state(zone, NR_FREE_PAGES));
2172 /*
2173 * fragmentation index determines if allocation failures are due to
2174 * low memory or external fragmentation
2175 *
2176 * index of -1000 would imply allocations might succeed depending on
2177 * watermarks, but we already failed the high-order watermark check
2178 * index towards 0 implies failure is due to lack of memory
2179 * index towards 1000 implies failure is due to fragmentation
2180 *
2181 * Only compact if a failure would be due to fragmentation. Also
2182 * ignore fragindex for non-costly orders where the alternative to
2183 * a successful reclaim/compaction is OOM. Fragindex and the
2184 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2185 * excessive compaction for costly orders, but it should not be at the
2186 * expense of system stability.
2187 */
2188 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2189 fragindex = fragmentation_index(zone, order);
2190 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2191 ret = COMPACT_NOT_SUITABLE_ZONE;
2192 }
2193
2194 trace_mm_compaction_suitable(zone, order, ret);
2195 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2196 ret = COMPACT_SKIPPED;
2197
2198 return ret;
2199 }
2200
2201 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2202 int alloc_flags)
2203 {
2204 struct zone *zone;
2205 struct zoneref *z;
2206
2207 /*
2208 * Make sure at least one zone would pass __compaction_suitable if we continue
2209 * retrying the reclaim.
2210 */
2211 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2212 ac->highest_zoneidx, ac->nodemask) {
2213 unsigned long available;
2214 enum compact_result compact_result;
2215
2216 /*
2217 * Do not consider all the reclaimable memory because we do not
2218 * want to trash just for a single high order allocation which
2219 * is even not guaranteed to appear even if __compaction_suitable
2220 * is happy about the watermark check.
2221 */
2222 available = zone_reclaimable_pages(zone) / order;
2223 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2224 compact_result = __compaction_suitable(zone, order, alloc_flags,
2225 ac->highest_zoneidx, available);
2226 if (compact_result != COMPACT_SKIPPED)
2227 return true;
2228 }
2229
2230 return false;
2231 }
2232
2233 static enum compact_result
2234 compact_zone(struct compact_control *cc, struct capture_control *capc)
2235 {
2236 enum compact_result ret;
2237 unsigned long start_pfn = cc->zone->zone_start_pfn;
2238 unsigned long end_pfn = zone_end_pfn(cc->zone);
2239 unsigned long last_migrated_pfn;
2240 const bool sync = cc->mode != MIGRATE_ASYNC;
2241 bool update_cached;
2242
2243 /*
2244 * These counters track activities during zone compaction. Initialize
2245 * them before compacting a new zone.
2246 */
2247 cc->total_migrate_scanned = 0;
2248 cc->total_free_scanned = 0;
2249 cc->nr_migratepages = 0;
2250 cc->nr_freepages = 0;
2251 INIT_LIST_HEAD(&cc->freepages);
2252 INIT_LIST_HEAD(&cc->migratepages);
2253
2254 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2255 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2256 cc->highest_zoneidx);
2257 /* Compaction is likely to fail */
2258 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2259 return ret;
2260
2261 /* huh, compaction_suitable is returning something unexpected */
2262 VM_BUG_ON(ret != COMPACT_CONTINUE);
2263
2264 /*
2265 * Clear pageblock skip if there were failures recently and compaction
2266 * is about to be retried after being deferred.
2267 */
2268 if (compaction_restarting(cc->zone, cc->order))
2269 __reset_isolation_suitable(cc->zone);
2270
2271 /*
2272 * Setup to move all movable pages to the end of the zone. Used cached
2273 * information on where the scanners should start (unless we explicitly
2274 * want to compact the whole zone), but check that it is initialised
2275 * by ensuring the values are within zone boundaries.
2276 */
2277 cc->fast_start_pfn = 0;
2278 if (cc->whole_zone) {
2279 cc->migrate_pfn = start_pfn;
2280 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2281 } else {
2282 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2283 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2284 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2285 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2286 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2287 }
2288 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2289 cc->migrate_pfn = start_pfn;
2290 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2291 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2292 }
2293
2294 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2295 cc->whole_zone = true;
2296 }
2297
2298 last_migrated_pfn = 0;
2299
2300 /*
2301 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2302 * the basis that some migrations will fail in ASYNC mode. However,
2303 * if the cached PFNs match and pageblocks are skipped due to having
2304 * no isolation candidates, then the sync state does not matter.
2305 * Until a pageblock with isolation candidates is found, keep the
2306 * cached PFNs in sync to avoid revisiting the same blocks.
2307 */
2308 update_cached = !sync &&
2309 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2310
2311 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2312 cc->free_pfn, end_pfn, sync);
2313
2314 migrate_prep_local();
2315
2316 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2317 int err;
2318 unsigned long iteration_start_pfn = cc->migrate_pfn;
2319
2320 /*
2321 * Avoid multiple rescans which can happen if a page cannot be
2322 * isolated (dirty/writeback in async mode) or if the migrated
2323 * pages are being allocated before the pageblock is cleared.
2324 * The first rescan will capture the entire pageblock for
2325 * migration. If it fails, it'll be marked skip and scanning
2326 * will proceed as normal.
2327 */
2328 cc->rescan = false;
2329 if (pageblock_start_pfn(last_migrated_pfn) ==
2330 pageblock_start_pfn(iteration_start_pfn)) {
2331 cc->rescan = true;
2332 }
2333
2334 switch (isolate_migratepages(cc)) {
2335 case ISOLATE_ABORT:
2336 ret = COMPACT_CONTENDED;
2337 putback_movable_pages(&cc->migratepages);
2338 cc->nr_migratepages = 0;
2339 goto out;
2340 case ISOLATE_NONE:
2341 if (update_cached) {
2342 cc->zone->compact_cached_migrate_pfn[1] =
2343 cc->zone->compact_cached_migrate_pfn[0];
2344 }
2345
2346 /*
2347 * We haven't isolated and migrated anything, but
2348 * there might still be unflushed migrations from
2349 * previous cc->order aligned block.
2350 */
2351 goto check_drain;
2352 case ISOLATE_SUCCESS:
2353 update_cached = false;
2354 last_migrated_pfn = iteration_start_pfn;
2355 }
2356
2357 err = migrate_pages(&cc->migratepages, compaction_alloc,
2358 compaction_free, (unsigned long)cc, cc->mode,
2359 MR_COMPACTION);
2360
2361 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2362 &cc->migratepages);
2363
2364 /* All pages were either migrated or will be released */
2365 cc->nr_migratepages = 0;
2366 if (err) {
2367 putback_movable_pages(&cc->migratepages);
2368 /*
2369 * migrate_pages() may return -ENOMEM when scanners meet
2370 * and we want compact_finished() to detect it
2371 */
2372 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2373 ret = COMPACT_CONTENDED;
2374 goto out;
2375 }
2376 /*
2377 * We failed to migrate at least one page in the current
2378 * order-aligned block, so skip the rest of it.
2379 */
2380 if (cc->direct_compaction &&
2381 (cc->mode == MIGRATE_ASYNC)) {
2382 cc->migrate_pfn = block_end_pfn(
2383 cc->migrate_pfn - 1, cc->order);
2384 /* Draining pcplists is useless in this case */
2385 last_migrated_pfn = 0;
2386 }
2387 }
2388
2389 check_drain:
2390 /*
2391 * Has the migration scanner moved away from the previous
2392 * cc->order aligned block where we migrated from? If yes,
2393 * flush the pages that were freed, so that they can merge and
2394 * compact_finished() can detect immediately if allocation
2395 * would succeed.
2396 */
2397 if (cc->order > 0 && last_migrated_pfn) {
2398 unsigned long current_block_start =
2399 block_start_pfn(cc->migrate_pfn, cc->order);
2400
2401 if (last_migrated_pfn < current_block_start) {
2402 lru_add_drain_cpu_zone(cc->zone);
2403 /* No more flushing until we migrate again */
2404 last_migrated_pfn = 0;
2405 }
2406 }
2407
2408 /* Stop if a page has been captured */
2409 if (capc && capc->page) {
2410 ret = COMPACT_SUCCESS;
2411 break;
2412 }
2413 }
2414
2415 out:
2416 /*
2417 * Release free pages and update where the free scanner should restart,
2418 * so we don't leave any returned pages behind in the next attempt.
2419 */
2420 if (cc->nr_freepages > 0) {
2421 unsigned long free_pfn = release_freepages(&cc->freepages);
2422
2423 cc->nr_freepages = 0;
2424 VM_BUG_ON(free_pfn == 0);
2425 /* The cached pfn is always the first in a pageblock */
2426 free_pfn = pageblock_start_pfn(free_pfn);
2427 /*
2428 * Only go back, not forward. The cached pfn might have been
2429 * already reset to zone end in compact_finished()
2430 */
2431 if (free_pfn > cc->zone->compact_cached_free_pfn)
2432 cc->zone->compact_cached_free_pfn = free_pfn;
2433 }
2434
2435 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2436 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2437
2438 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2439 cc->free_pfn, end_pfn, sync, ret);
2440
2441 return ret;
2442 }
2443
2444 static enum compact_result compact_zone_order(struct zone *zone, int order,
2445 gfp_t gfp_mask, enum compact_priority prio,
2446 unsigned int alloc_flags, int highest_zoneidx,
2447 struct page **capture)
2448 {
2449 enum compact_result ret;
2450 struct compact_control cc = {
2451 .order = order,
2452 .search_order = order,
2453 .gfp_mask = gfp_mask,
2454 .zone = zone,
2455 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2456 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2457 .alloc_flags = alloc_flags,
2458 .highest_zoneidx = highest_zoneidx,
2459 .direct_compaction = true,
2460 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2461 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2462 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2463 };
2464 struct capture_control capc = {
2465 .cc = &cc,
2466 .page = NULL,
2467 };
2468
2469 /*
2470 * Make sure the structs are really initialized before we expose the
2471 * capture control, in case we are interrupted and the interrupt handler
2472 * frees a page.
2473 */
2474 barrier();
2475 WRITE_ONCE(current->capture_control, &capc);
2476
2477 ret = compact_zone(&cc, &capc);
2478
2479 VM_BUG_ON(!list_empty(&cc.freepages));
2480 VM_BUG_ON(!list_empty(&cc.migratepages));
2481
2482 /*
2483 * Make sure we hide capture control first before we read the captured
2484 * page pointer, otherwise an interrupt could free and capture a page
2485 * and we would leak it.
2486 */
2487 WRITE_ONCE(current->capture_control, NULL);
2488 *capture = READ_ONCE(capc.page);
2489
2490 return ret;
2491 }
2492
2493 int sysctl_extfrag_threshold = 500;
2494
2495 /**
2496 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2497 * @gfp_mask: The GFP mask of the current allocation
2498 * @order: The order of the current allocation
2499 * @alloc_flags: The allocation flags of the current allocation
2500 * @ac: The context of current allocation
2501 * @prio: Determines how hard direct compaction should try to succeed
2502 * @capture: Pointer to free page created by compaction will be stored here
2503 *
2504 * This is the main entry point for direct page compaction.
2505 */
2506 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2507 unsigned int alloc_flags, const struct alloc_context *ac,
2508 enum compact_priority prio, struct page **capture)
2509 {
2510 int may_perform_io = gfp_mask & __GFP_IO;
2511 struct zoneref *z;
2512 struct zone *zone;
2513 enum compact_result rc = COMPACT_SKIPPED;
2514
2515 /*
2516 * Check if the GFP flags allow compaction - GFP_NOIO is really
2517 * tricky context because the migration might require IO
2518 */
2519 if (!may_perform_io)
2520 return COMPACT_SKIPPED;
2521
2522 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2523
2524 /* Compact each zone in the list */
2525 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2526 ac->highest_zoneidx, ac->nodemask) {
2527 enum compact_result status;
2528
2529 if (prio > MIN_COMPACT_PRIORITY
2530 && compaction_deferred(zone, order)) {
2531 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2532 continue;
2533 }
2534
2535 status = compact_zone_order(zone, order, gfp_mask, prio,
2536 alloc_flags, ac->highest_zoneidx, capture);
2537 rc = max(status, rc);
2538
2539 /* The allocation should succeed, stop compacting */
2540 if (status == COMPACT_SUCCESS) {
2541 /*
2542 * We think the allocation will succeed in this zone,
2543 * but it is not certain, hence the false. The caller
2544 * will repeat this with true if allocation indeed
2545 * succeeds in this zone.
2546 */
2547 compaction_defer_reset(zone, order, false);
2548
2549 break;
2550 }
2551
2552 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2553 status == COMPACT_PARTIAL_SKIPPED))
2554 /*
2555 * We think that allocation won't succeed in this zone
2556 * so we defer compaction there. If it ends up
2557 * succeeding after all, it will be reset.
2558 */
2559 defer_compaction(zone, order);
2560
2561 /*
2562 * We might have stopped compacting due to need_resched() in
2563 * async compaction, or due to a fatal signal detected. In that
2564 * case do not try further zones
2565 */
2566 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2567 || fatal_signal_pending(current))
2568 break;
2569 }
2570
2571 return rc;
2572 }
2573
2574 /*
2575 * Compact all zones within a node till each zone's fragmentation score
2576 * reaches within proactive compaction thresholds (as determined by the
2577 * proactiveness tunable).
2578 *
2579 * It is possible that the function returns before reaching score targets
2580 * due to various back-off conditions, such as, contention on per-node or
2581 * per-zone locks.
2582 */
2583 static void proactive_compact_node(pg_data_t *pgdat)
2584 {
2585 int zoneid;
2586 struct zone *zone;
2587 struct compact_control cc = {
2588 .order = -1,
2589 .mode = MIGRATE_SYNC_LIGHT,
2590 .ignore_skip_hint = true,
2591 .whole_zone = true,
2592 .gfp_mask = GFP_KERNEL,
2593 .proactive_compaction = true,
2594 };
2595
2596 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2597 zone = &pgdat->node_zones[zoneid];
2598 if (!populated_zone(zone))
2599 continue;
2600
2601 cc.zone = zone;
2602
2603 compact_zone(&cc, NULL);
2604
2605 VM_BUG_ON(!list_empty(&cc.freepages));
2606 VM_BUG_ON(!list_empty(&cc.migratepages));
2607 }
2608 }
2609
2610 /* Compact all zones within a node */
2611 static void compact_node(int nid)
2612 {
2613 pg_data_t *pgdat = NODE_DATA(nid);
2614 int zoneid;
2615 struct zone *zone;
2616 struct compact_control cc = {
2617 .order = -1,
2618 .mode = MIGRATE_SYNC,
2619 .ignore_skip_hint = true,
2620 .whole_zone = true,
2621 .gfp_mask = GFP_KERNEL,
2622 };
2623
2624
2625 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2626
2627 zone = &pgdat->node_zones[zoneid];
2628 if (!populated_zone(zone))
2629 continue;
2630
2631 cc.zone = zone;
2632
2633 compact_zone(&cc, NULL);
2634
2635 VM_BUG_ON(!list_empty(&cc.freepages));
2636 VM_BUG_ON(!list_empty(&cc.migratepages));
2637 }
2638 }
2639
2640 /* Compact all nodes in the system */
2641 static void compact_nodes(void)
2642 {
2643 int nid;
2644
2645 /* Flush pending updates to the LRU lists */
2646 lru_add_drain_all();
2647
2648 for_each_online_node(nid)
2649 compact_node(nid);
2650 }
2651
2652 /* The written value is actually unused, all memory is compacted */
2653 int sysctl_compact_memory;
2654
2655 /*
2656 * Tunable for proactive compaction. It determines how
2657 * aggressively the kernel should compact memory in the
2658 * background. It takes values in the range [0, 100].
2659 */
2660 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2661
2662 /*
2663 * This is the entry point for compacting all nodes via
2664 * /proc/sys/vm/compact_memory
2665 */
2666 int sysctl_compaction_handler(struct ctl_table *table, int write,
2667 void *buffer, size_t *length, loff_t *ppos)
2668 {
2669 if (write)
2670 compact_nodes();
2671
2672 return 0;
2673 }
2674
2675 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2676 static ssize_t sysfs_compact_node(struct device *dev,
2677 struct device_attribute *attr,
2678 const char *buf, size_t count)
2679 {
2680 int nid = dev->id;
2681
2682 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2683 /* Flush pending updates to the LRU lists */
2684 lru_add_drain_all();
2685
2686 compact_node(nid);
2687 }
2688
2689 return count;
2690 }
2691 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2692
2693 int compaction_register_node(struct node *node)
2694 {
2695 return device_create_file(&node->dev, &dev_attr_compact);
2696 }
2697
2698 void compaction_unregister_node(struct node *node)
2699 {
2700 return device_remove_file(&node->dev, &dev_attr_compact);
2701 }
2702 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2703
2704 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2705 {
2706 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2707 }
2708
2709 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2710 {
2711 int zoneid;
2712 struct zone *zone;
2713 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2714
2715 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2716 zone = &pgdat->node_zones[zoneid];
2717
2718 if (!populated_zone(zone))
2719 continue;
2720
2721 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2722 highest_zoneidx) == COMPACT_CONTINUE)
2723 return true;
2724 }
2725
2726 return false;
2727 }
2728
2729 static void kcompactd_do_work(pg_data_t *pgdat)
2730 {
2731 /*
2732 * With no special task, compact all zones so that a page of requested
2733 * order is allocatable.
2734 */
2735 int zoneid;
2736 struct zone *zone;
2737 struct compact_control cc = {
2738 .order = pgdat->kcompactd_max_order,
2739 .search_order = pgdat->kcompactd_max_order,
2740 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2741 .mode = MIGRATE_SYNC_LIGHT,
2742 .ignore_skip_hint = false,
2743 .gfp_mask = GFP_KERNEL,
2744 };
2745 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2746 cc.highest_zoneidx);
2747 count_compact_event(KCOMPACTD_WAKE);
2748
2749 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2750 int status;
2751
2752 zone = &pgdat->node_zones[zoneid];
2753 if (!populated_zone(zone))
2754 continue;
2755
2756 if (compaction_deferred(zone, cc.order))
2757 continue;
2758
2759 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2760 COMPACT_CONTINUE)
2761 continue;
2762
2763 if (kthread_should_stop())
2764 return;
2765
2766 cc.zone = zone;
2767 status = compact_zone(&cc, NULL);
2768
2769 if (status == COMPACT_SUCCESS) {
2770 compaction_defer_reset(zone, cc.order, false);
2771 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2772 /*
2773 * Buddy pages may become stranded on pcps that could
2774 * otherwise coalesce on the zone's free area for
2775 * order >= cc.order. This is ratelimited by the
2776 * upcoming deferral.
2777 */
2778 drain_all_pages(zone);
2779
2780 /*
2781 * We use sync migration mode here, so we defer like
2782 * sync direct compaction does.
2783 */
2784 defer_compaction(zone, cc.order);
2785 }
2786
2787 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2788 cc.total_migrate_scanned);
2789 count_compact_events(KCOMPACTD_FREE_SCANNED,
2790 cc.total_free_scanned);
2791
2792 VM_BUG_ON(!list_empty(&cc.freepages));
2793 VM_BUG_ON(!list_empty(&cc.migratepages));
2794 }
2795
2796 /*
2797 * Regardless of success, we are done until woken up next. But remember
2798 * the requested order/highest_zoneidx in case it was higher/tighter
2799 * than our current ones
2800 */
2801 if (pgdat->kcompactd_max_order <= cc.order)
2802 pgdat->kcompactd_max_order = 0;
2803 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2804 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2805 }
2806
2807 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2808 {
2809 if (!order)
2810 return;
2811
2812 if (pgdat->kcompactd_max_order < order)
2813 pgdat->kcompactd_max_order = order;
2814
2815 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2816 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2817
2818 /*
2819 * Pairs with implicit barrier in wait_event_freezable()
2820 * such that wakeups are not missed.
2821 */
2822 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2823 return;
2824
2825 if (!kcompactd_node_suitable(pgdat))
2826 return;
2827
2828 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2829 highest_zoneidx);
2830 wake_up_interruptible(&pgdat->kcompactd_wait);
2831 }
2832
2833 /*
2834 * The background compaction daemon, started as a kernel thread
2835 * from the init process.
2836 */
2837 static int kcompactd(void *p)
2838 {
2839 pg_data_t *pgdat = (pg_data_t*)p;
2840 struct task_struct *tsk = current;
2841 unsigned int proactive_defer = 0;
2842
2843 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2844
2845 if (!cpumask_empty(cpumask))
2846 set_cpus_allowed_ptr(tsk, cpumask);
2847
2848 set_freezable();
2849
2850 pgdat->kcompactd_max_order = 0;
2851 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2852
2853 while (!kthread_should_stop()) {
2854 unsigned long pflags;
2855
2856 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2857 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2858 kcompactd_work_requested(pgdat),
2859 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2860
2861 psi_memstall_enter(&pflags);
2862 kcompactd_do_work(pgdat);
2863 psi_memstall_leave(&pflags);
2864 continue;
2865 }
2866
2867 /* kcompactd wait timeout */
2868 if (should_proactive_compact_node(pgdat)) {
2869 unsigned int prev_score, score;
2870
2871 if (proactive_defer) {
2872 proactive_defer--;
2873 continue;
2874 }
2875 prev_score = fragmentation_score_node(pgdat);
2876 proactive_compact_node(pgdat);
2877 score = fragmentation_score_node(pgdat);
2878 /*
2879 * Defer proactive compaction if the fragmentation
2880 * score did not go down i.e. no progress made.
2881 */
2882 proactive_defer = score < prev_score ?
2883 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2884 }
2885 }
2886
2887 return 0;
2888 }
2889
2890 /*
2891 * This kcompactd start function will be called by init and node-hot-add.
2892 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2893 */
2894 int kcompactd_run(int nid)
2895 {
2896 pg_data_t *pgdat = NODE_DATA(nid);
2897 int ret = 0;
2898
2899 if (pgdat->kcompactd)
2900 return 0;
2901
2902 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2903 if (IS_ERR(pgdat->kcompactd)) {
2904 pr_err("Failed to start kcompactd on node %d\n", nid);
2905 ret = PTR_ERR(pgdat->kcompactd);
2906 pgdat->kcompactd = NULL;
2907 }
2908 return ret;
2909 }
2910
2911 /*
2912 * Called by memory hotplug when all memory in a node is offlined. Caller must
2913 * hold mem_hotplug_begin/end().
2914 */
2915 void kcompactd_stop(int nid)
2916 {
2917 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2918
2919 if (kcompactd) {
2920 kthread_stop(kcompactd);
2921 NODE_DATA(nid)->kcompactd = NULL;
2922 }
2923 }
2924
2925 /*
2926 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2927 * not required for correctness. So if the last cpu in a node goes
2928 * away, we get changed to run anywhere: as the first one comes back,
2929 * restore their cpu bindings.
2930 */
2931 static int kcompactd_cpu_online(unsigned int cpu)
2932 {
2933 int nid;
2934
2935 for_each_node_state(nid, N_MEMORY) {
2936 pg_data_t *pgdat = NODE_DATA(nid);
2937 const struct cpumask *mask;
2938
2939 mask = cpumask_of_node(pgdat->node_id);
2940
2941 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2942 /* One of our CPUs online: restore mask */
2943 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2944 }
2945 return 0;
2946 }
2947
2948 static int __init kcompactd_init(void)
2949 {
2950 int nid;
2951 int ret;
2952
2953 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2954 "mm/compaction:online",
2955 kcompactd_cpu_online, NULL);
2956 if (ret < 0) {
2957 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2958 return ret;
2959 }
2960
2961 for_each_node_state(nid, N_MEMORY)
2962 kcompactd_run(nid);
2963 return 0;
2964 }
2965 subsys_initcall(kcompactd_init)
2966
2967 #endif /* CONFIG_COMPACTION */