]>
git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/dmapool.c
4 * Copyright 2001 David Brownell
5 * Copyright 2007 Intel Corporation
6 * Author: Matthew Wilcox <willy@linux.intel.com>
8 * This software may be redistributed and/or modified under the terms of
9 * the GNU General Public License ("GPL") version 2 as published by the
10 * Free Software Foundation.
12 * This allocator returns small blocks of a given size which are DMA-able by
13 * the given device. It uses the dma_alloc_coherent page allocator to get
14 * new pages, then splits them up into blocks of the required size.
15 * Many older drivers still have their own code to do this.
17 * The current design of this allocator is fairly simple. The pool is
18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19 * allocated pages. Each page in the page_list is split into blocks of at
20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
21 * list of free blocks within the page. Used blocks aren't tracked, but we
22 * keep a count of how many are currently allocated from each page.
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/export.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/stat.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/types.h>
39 #include <linux/wait.h>
41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42 #define DMAPOOL_DEBUG 1
45 struct dma_pool
{ /* the pool */
46 struct list_head page_list
;
53 struct list_head pools
;
56 struct dma_page
{ /* cacheable header for 'allocation' bytes */
57 struct list_head page_list
;
64 static DEFINE_MUTEX(pools_lock
);
65 static DEFINE_MUTEX(pools_reg_lock
);
68 show_pools(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
73 struct dma_page
*page
;
74 struct dma_pool
*pool
;
79 temp
= scnprintf(next
, size
, "poolinfo - 0.1\n");
83 mutex_lock(&pools_lock
);
84 list_for_each_entry(pool
, &dev
->dma_pools
, pools
) {
88 spin_lock_irq(&pool
->lock
);
89 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
91 blocks
+= page
->in_use
;
93 spin_unlock_irq(&pool
->lock
);
95 /* per-pool info, no real statistics yet */
96 temp
= scnprintf(next
, size
, "%-16s %4u %4zu %4zu %2u\n",
98 pages
* (pool
->allocation
/ pool
->size
),
103 mutex_unlock(&pools_lock
);
105 return PAGE_SIZE
- size
;
108 static DEVICE_ATTR(pools
, 0444, show_pools
, NULL
);
111 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
112 * @name: name of pool, for diagnostics
113 * @dev: device that will be doing the DMA
114 * @size: size of the blocks in this pool.
115 * @align: alignment requirement for blocks; must be a power of two
116 * @boundary: returned blocks won't cross this power of two boundary
117 * Context: not in_interrupt()
119 * Given one of these pools, dma_pool_alloc()
120 * may be used to allocate memory. Such memory will all have "consistent"
121 * DMA mappings, accessible by the device and its driver without using
122 * cache flushing primitives. The actual size of blocks allocated may be
123 * larger than requested because of alignment.
125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
126 * cross that size boundary. This is useful for devices which have
127 * addressing restrictions on individual DMA transfers, such as not crossing
128 * boundaries of 4KBytes.
130 * Return: a dma allocation pool with the requested characteristics, or
131 * %NULL if one can't be created.
133 struct dma_pool
*dma_pool_create(const char *name
, struct device
*dev
,
134 size_t size
, size_t align
, size_t boundary
)
136 struct dma_pool
*retval
;
142 else if (align
& (align
- 1))
150 if ((size
% align
) != 0)
151 size
= ALIGN(size
, align
);
153 allocation
= max_t(size_t, size
, PAGE_SIZE
);
156 boundary
= allocation
;
157 else if ((boundary
< size
) || (boundary
& (boundary
- 1)))
160 retval
= kmalloc_node(sizeof(*retval
), GFP_KERNEL
, dev_to_node(dev
));
164 strlcpy(retval
->name
, name
, sizeof(retval
->name
));
168 INIT_LIST_HEAD(&retval
->page_list
);
169 spin_lock_init(&retval
->lock
);
171 retval
->boundary
= boundary
;
172 retval
->allocation
= allocation
;
174 INIT_LIST_HEAD(&retval
->pools
);
177 * pools_lock ensures that the ->dma_pools list does not get corrupted.
178 * pools_reg_lock ensures that there is not a race between
179 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
180 * when the first invocation of dma_pool_create() failed on
181 * device_create_file() and the second assumes that it has been done (I
182 * know it is a short window).
184 mutex_lock(&pools_reg_lock
);
185 mutex_lock(&pools_lock
);
186 if (list_empty(&dev
->dma_pools
))
188 list_add(&retval
->pools
, &dev
->dma_pools
);
189 mutex_unlock(&pools_lock
);
193 err
= device_create_file(dev
, &dev_attr_pools
);
195 mutex_lock(&pools_lock
);
196 list_del(&retval
->pools
);
197 mutex_unlock(&pools_lock
);
198 mutex_unlock(&pools_reg_lock
);
203 mutex_unlock(&pools_reg_lock
);
206 EXPORT_SYMBOL(dma_pool_create
);
208 static void pool_initialise_page(struct dma_pool
*pool
, struct dma_page
*page
)
210 unsigned int offset
= 0;
211 unsigned int next_boundary
= pool
->boundary
;
214 unsigned int next
= offset
+ pool
->size
;
215 if (unlikely((next
+ pool
->size
) >= next_boundary
)) {
216 next
= next_boundary
;
217 next_boundary
+= pool
->boundary
;
219 *(int *)(page
->vaddr
+ offset
) = next
;
221 } while (offset
< pool
->allocation
);
224 static struct dma_page
*pool_alloc_page(struct dma_pool
*pool
, gfp_t mem_flags
)
226 struct dma_page
*page
;
228 page
= kmalloc(sizeof(*page
), mem_flags
);
231 page
->vaddr
= dma_alloc_coherent(pool
->dev
, pool
->allocation
,
232 &page
->dma
, mem_flags
);
235 memset(page
->vaddr
, POOL_POISON_FREED
, pool
->allocation
);
237 pool_initialise_page(pool
, page
);
247 static inline bool is_page_busy(struct dma_page
*page
)
249 return page
->in_use
!= 0;
252 static void pool_free_page(struct dma_pool
*pool
, struct dma_page
*page
)
254 dma_addr_t dma
= page
->dma
;
257 memset(page
->vaddr
, POOL_POISON_FREED
, pool
->allocation
);
259 dma_free_coherent(pool
->dev
, pool
->allocation
, page
->vaddr
, dma
);
260 list_del(&page
->page_list
);
265 * dma_pool_destroy - destroys a pool of dma memory blocks.
266 * @pool: dma pool that will be destroyed
267 * Context: !in_interrupt()
269 * Caller guarantees that no more memory from the pool is in use,
270 * and that nothing will try to use the pool after this call.
272 void dma_pool_destroy(struct dma_pool
*pool
)
279 mutex_lock(&pools_reg_lock
);
280 mutex_lock(&pools_lock
);
281 list_del(&pool
->pools
);
282 if (pool
->dev
&& list_empty(&pool
->dev
->dma_pools
))
284 mutex_unlock(&pools_lock
);
286 device_remove_file(pool
->dev
, &dev_attr_pools
);
287 mutex_unlock(&pools_reg_lock
);
289 while (!list_empty(&pool
->page_list
)) {
290 struct dma_page
*page
;
291 page
= list_entry(pool
->page_list
.next
,
292 struct dma_page
, page_list
);
293 if (is_page_busy(page
)) {
296 "dma_pool_destroy %s, %p busy\n",
297 pool
->name
, page
->vaddr
);
299 pr_err("dma_pool_destroy %s, %p busy\n",
300 pool
->name
, page
->vaddr
);
301 /* leak the still-in-use consistent memory */
302 list_del(&page
->page_list
);
305 pool_free_page(pool
, page
);
310 EXPORT_SYMBOL(dma_pool_destroy
);
313 * dma_pool_alloc - get a block of consistent memory
314 * @pool: dma pool that will produce the block
315 * @mem_flags: GFP_* bitmask
316 * @handle: pointer to dma address of block
318 * Return: the kernel virtual address of a currently unused block,
319 * and reports its dma address through the handle.
320 * If such a memory block can't be allocated, %NULL is returned.
322 void *dma_pool_alloc(struct dma_pool
*pool
, gfp_t mem_flags
,
326 struct dma_page
*page
;
330 might_sleep_if(gfpflags_allow_blocking(mem_flags
));
332 spin_lock_irqsave(&pool
->lock
, flags
);
333 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
334 if (page
->offset
< pool
->allocation
)
338 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
339 spin_unlock_irqrestore(&pool
->lock
, flags
);
341 page
= pool_alloc_page(pool
, mem_flags
& (~__GFP_ZERO
));
345 spin_lock_irqsave(&pool
->lock
, flags
);
347 list_add(&page
->page_list
, &pool
->page_list
);
350 offset
= page
->offset
;
351 page
->offset
= *(int *)(page
->vaddr
+ offset
);
352 retval
= offset
+ page
->vaddr
;
353 *handle
= offset
+ page
->dma
;
358 /* page->offset is stored in first 4 bytes */
359 for (i
= sizeof(page
->offset
); i
< pool
->size
; i
++) {
360 if (data
[i
] == POOL_POISON_FREED
)
364 "dma_pool_alloc %s, %p (corrupted)\n",
367 pr_err("dma_pool_alloc %s, %p (corrupted)\n",
371 * Dump the first 4 bytes even if they are not
374 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1,
375 data
, pool
->size
, 1);
379 if (!(mem_flags
& __GFP_ZERO
))
380 memset(retval
, POOL_POISON_ALLOCATED
, pool
->size
);
382 spin_unlock_irqrestore(&pool
->lock
, flags
);
384 if (mem_flags
& __GFP_ZERO
)
385 memset(retval
, 0, pool
->size
);
389 EXPORT_SYMBOL(dma_pool_alloc
);
391 static struct dma_page
*pool_find_page(struct dma_pool
*pool
, dma_addr_t dma
)
393 struct dma_page
*page
;
395 list_for_each_entry(page
, &pool
->page_list
, page_list
) {
398 if ((dma
- page
->dma
) < pool
->allocation
)
405 * dma_pool_free - put block back into dma pool
406 * @pool: the dma pool holding the block
407 * @vaddr: virtual address of block
408 * @dma: dma address of block
410 * Caller promises neither device nor driver will again touch this block
411 * unless it is first re-allocated.
413 void dma_pool_free(struct dma_pool
*pool
, void *vaddr
, dma_addr_t dma
)
415 struct dma_page
*page
;
419 spin_lock_irqsave(&pool
->lock
, flags
);
420 page
= pool_find_page(pool
, dma
);
422 spin_unlock_irqrestore(&pool
->lock
, flags
);
425 "dma_pool_free %s, %p/%lx (bad dma)\n",
426 pool
->name
, vaddr
, (unsigned long)dma
);
428 pr_err("dma_pool_free %s, %p/%lx (bad dma)\n",
429 pool
->name
, vaddr
, (unsigned long)dma
);
433 offset
= vaddr
- page
->vaddr
;
435 if ((dma
- page
->dma
) != offset
) {
436 spin_unlock_irqrestore(&pool
->lock
, flags
);
439 "dma_pool_free %s, %p (bad vaddr)/%pad\n",
440 pool
->name
, vaddr
, &dma
);
442 pr_err("dma_pool_free %s, %p (bad vaddr)/%pad\n",
443 pool
->name
, vaddr
, &dma
);
447 unsigned int chain
= page
->offset
;
448 while (chain
< pool
->allocation
) {
449 if (chain
!= offset
) {
450 chain
= *(int *)(page
->vaddr
+ chain
);
453 spin_unlock_irqrestore(&pool
->lock
, flags
);
455 dev_err(pool
->dev
, "dma_pool_free %s, dma %pad already free\n",
458 pr_err("dma_pool_free %s, dma %pad already free\n",
463 memset(vaddr
, POOL_POISON_FREED
, pool
->size
);
467 *(int *)vaddr
= page
->offset
;
468 page
->offset
= offset
;
470 * Resist a temptation to do
471 * if (!is_page_busy(page)) pool_free_page(pool, page);
472 * Better have a few empty pages hang around.
474 spin_unlock_irqrestore(&pool
->lock
, flags
);
476 EXPORT_SYMBOL(dma_pool_free
);
481 static void dmam_pool_release(struct device
*dev
, void *res
)
483 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
485 dma_pool_destroy(pool
);
488 static int dmam_pool_match(struct device
*dev
, void *res
, void *match_data
)
490 return *(struct dma_pool
**)res
== match_data
;
494 * dmam_pool_create - Managed dma_pool_create()
495 * @name: name of pool, for diagnostics
496 * @dev: device that will be doing the DMA
497 * @size: size of the blocks in this pool.
498 * @align: alignment requirement for blocks; must be a power of two
499 * @allocation: returned blocks won't cross this boundary (or zero)
501 * Managed dma_pool_create(). DMA pool created with this function is
502 * automatically destroyed on driver detach.
504 * Return: a managed dma allocation pool with the requested
505 * characteristics, or %NULL if one can't be created.
507 struct dma_pool
*dmam_pool_create(const char *name
, struct device
*dev
,
508 size_t size
, size_t align
, size_t allocation
)
510 struct dma_pool
**ptr
, *pool
;
512 ptr
= devres_alloc(dmam_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
516 pool
= *ptr
= dma_pool_create(name
, dev
, size
, align
, allocation
);
518 devres_add(dev
, ptr
);
524 EXPORT_SYMBOL(dmam_pool_create
);
527 * dmam_pool_destroy - Managed dma_pool_destroy()
528 * @pool: dma pool that will be destroyed
530 * Managed dma_pool_destroy().
532 void dmam_pool_destroy(struct dma_pool
*pool
)
534 struct device
*dev
= pool
->dev
;
536 WARN_ON(devres_release(dev
, dmam_pool_release
, dmam_pool_match
, pool
));
538 EXPORT_SYMBOL(dmam_pool_destroy
);