]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/filemap.c
tracing: Fix very unlikely race of registering two stat tracers
[thirdparty/kernel/stable.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_mutex
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 */
110
111 static int page_cache_tree_insert(struct address_space *mapping,
112 struct page *page, void **shadowp)
113 {
114 struct radix_tree_node *node;
115 void **slot;
116 int error;
117
118 error = __radix_tree_create(&mapping->page_tree, page->index,
119 &node, &slot);
120 if (error)
121 return error;
122 if (*slot) {
123 void *p;
124
125 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
126 if (!radix_tree_exceptional_entry(p))
127 return -EEXIST;
128 if (shadowp)
129 *shadowp = p;
130 mapping->nrshadows--;
131 if (node)
132 workingset_node_shadows_dec(node);
133 }
134 radix_tree_replace_slot(slot, page);
135 mapping->nrpages++;
136 if (node) {
137 workingset_node_pages_inc(node);
138 /*
139 * Don't track node that contains actual pages.
140 *
141 * Avoid acquiring the list_lru lock if already
142 * untracked. The list_empty() test is safe as
143 * node->private_list is protected by
144 * mapping->tree_lock.
145 */
146 if (!list_empty(&node->private_list))
147 list_lru_del(&workingset_shadow_nodes,
148 &node->private_list);
149 }
150 return 0;
151 }
152
153 static void page_cache_tree_delete(struct address_space *mapping,
154 struct page *page, void *shadow)
155 {
156 struct radix_tree_node *node;
157 unsigned long index;
158 unsigned int offset;
159 unsigned int tag;
160 void **slot;
161
162 VM_BUG_ON(!PageLocked(page));
163
164 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
165
166 /*
167 * We need a node to properly account shadow
168 * entries. Don't plant any without. XXX
169 */
170 if (!node)
171 shadow = NULL;
172
173 if (shadow) {
174 mapping->nrshadows++;
175 /*
176 * Make sure the nrshadows update is committed before
177 * the nrpages update so that final truncate racing
178 * with reclaim does not see both counters 0 at the
179 * same time and miss a shadow entry.
180 */
181 smp_wmb();
182 }
183 mapping->nrpages--;
184
185 if (!node) {
186 /* Clear direct pointer tags in root node */
187 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
188 radix_tree_replace_slot(slot, shadow);
189 return;
190 }
191
192 /* Clear tree tags for the removed page */
193 index = page->index;
194 offset = index & RADIX_TREE_MAP_MASK;
195 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
196 if (test_bit(offset, node->tags[tag]))
197 radix_tree_tag_clear(&mapping->page_tree, index, tag);
198 }
199
200 /* Delete page, swap shadow entry */
201 radix_tree_replace_slot(slot, shadow);
202 workingset_node_pages_dec(node);
203 if (shadow)
204 workingset_node_shadows_inc(node);
205 else
206 if (__radix_tree_delete_node(&mapping->page_tree, node))
207 return;
208
209 /*
210 * Track node that only contains shadow entries.
211 *
212 * Avoid acquiring the list_lru lock if already tracked. The
213 * list_empty() test is safe as node->private_list is
214 * protected by mapping->tree_lock.
215 */
216 if (!workingset_node_pages(node) &&
217 list_empty(&node->private_list)) {
218 node->private_data = mapping;
219 list_lru_add(&workingset_shadow_nodes, &node->private_list);
220 }
221 }
222
223 /*
224 * Delete a page from the page cache and free it. Caller has to make
225 * sure the page is locked and that nobody else uses it - or that usage
226 * is safe. The caller must hold the mapping's tree_lock.
227 */
228 void __delete_from_page_cache(struct page *page, void *shadow)
229 {
230 struct address_space *mapping = page->mapping;
231
232 trace_mm_filemap_delete_from_page_cache(page);
233 /*
234 * if we're uptodate, flush out into the cleancache, otherwise
235 * invalidate any existing cleancache entries. We can't leave
236 * stale data around in the cleancache once our page is gone
237 */
238 if (PageUptodate(page) && PageMappedToDisk(page))
239 cleancache_put_page(page);
240 else
241 cleancache_invalidate_page(mapping, page);
242
243 page_cache_tree_delete(mapping, page, shadow);
244
245 page->mapping = NULL;
246 /* Leave page->index set: truncation lookup relies upon it */
247
248 __dec_zone_page_state(page, NR_FILE_PAGES);
249 if (PageSwapBacked(page))
250 __dec_zone_page_state(page, NR_SHMEM);
251 BUG_ON(page_mapped(page));
252
253 /*
254 * Some filesystems seem to re-dirty the page even after
255 * the VM has canceled the dirty bit (eg ext3 journaling).
256 *
257 * Fix it up by doing a final dirty accounting check after
258 * having removed the page entirely.
259 */
260 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
261 dec_zone_page_state(page, NR_FILE_DIRTY);
262 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
263 }
264 }
265
266 /**
267 * delete_from_page_cache - delete page from page cache
268 * @page: the page which the kernel is trying to remove from page cache
269 *
270 * This must be called only on pages that have been verified to be in the page
271 * cache and locked. It will never put the page into the free list, the caller
272 * has a reference on the page.
273 */
274 void delete_from_page_cache(struct page *page)
275 {
276 struct address_space *mapping = page->mapping;
277 void (*freepage)(struct page *);
278
279 BUG_ON(!PageLocked(page));
280
281 freepage = mapping->a_ops->freepage;
282 spin_lock_irq(&mapping->tree_lock);
283 __delete_from_page_cache(page, NULL);
284 spin_unlock_irq(&mapping->tree_lock);
285 mem_cgroup_uncharge_cache_page(page);
286
287 if (freepage)
288 freepage(page);
289 page_cache_release(page);
290 }
291 EXPORT_SYMBOL(delete_from_page_cache);
292
293 static int sleep_on_page(void *word)
294 {
295 io_schedule();
296 return 0;
297 }
298
299 static int sleep_on_page_killable(void *word)
300 {
301 sleep_on_page(word);
302 return fatal_signal_pending(current) ? -EINTR : 0;
303 }
304
305 static int filemap_check_errors(struct address_space *mapping)
306 {
307 int ret = 0;
308 /* Check for outstanding write errors */
309 if (test_bit(AS_ENOSPC, &mapping->flags) &&
310 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
311 ret = -ENOSPC;
312 if (test_bit(AS_EIO, &mapping->flags) &&
313 test_and_clear_bit(AS_EIO, &mapping->flags))
314 ret = -EIO;
315 return ret;
316 }
317
318 /**
319 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
320 * @mapping: address space structure to write
321 * @start: offset in bytes where the range starts
322 * @end: offset in bytes where the range ends (inclusive)
323 * @sync_mode: enable synchronous operation
324 *
325 * Start writeback against all of a mapping's dirty pages that lie
326 * within the byte offsets <start, end> inclusive.
327 *
328 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
329 * opposed to a regular memory cleansing writeback. The difference between
330 * these two operations is that if a dirty page/buffer is encountered, it must
331 * be waited upon, and not just skipped over.
332 */
333 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
334 loff_t end, int sync_mode)
335 {
336 int ret;
337 struct writeback_control wbc = {
338 .sync_mode = sync_mode,
339 .nr_to_write = LONG_MAX,
340 .range_start = start,
341 .range_end = end,
342 };
343
344 if (!mapping_cap_writeback_dirty(mapping))
345 return 0;
346
347 ret = do_writepages(mapping, &wbc);
348 return ret;
349 }
350
351 static inline int __filemap_fdatawrite(struct address_space *mapping,
352 int sync_mode)
353 {
354 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
355 }
356
357 int filemap_fdatawrite(struct address_space *mapping)
358 {
359 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
360 }
361 EXPORT_SYMBOL(filemap_fdatawrite);
362
363 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
364 loff_t end)
365 {
366 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
367 }
368 EXPORT_SYMBOL(filemap_fdatawrite_range);
369
370 /**
371 * filemap_flush - mostly a non-blocking flush
372 * @mapping: target address_space
373 *
374 * This is a mostly non-blocking flush. Not suitable for data-integrity
375 * purposes - I/O may not be started against all dirty pages.
376 */
377 int filemap_flush(struct address_space *mapping)
378 {
379 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
380 }
381 EXPORT_SYMBOL(filemap_flush);
382
383 /**
384 * filemap_fdatawait_range - wait for writeback to complete
385 * @mapping: address space structure to wait for
386 * @start_byte: offset in bytes where the range starts
387 * @end_byte: offset in bytes where the range ends (inclusive)
388 *
389 * Walk the list of under-writeback pages of the given address space
390 * in the given range and wait for all of them.
391 */
392 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
393 loff_t end_byte)
394 {
395 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
396 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
397 struct pagevec pvec;
398 int nr_pages;
399 int ret2, ret = 0;
400
401 if (end_byte < start_byte)
402 goto out;
403
404 pagevec_init(&pvec, 0);
405 while ((index <= end) &&
406 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
407 PAGECACHE_TAG_WRITEBACK,
408 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
409 unsigned i;
410
411 for (i = 0; i < nr_pages; i++) {
412 struct page *page = pvec.pages[i];
413
414 /* until radix tree lookup accepts end_index */
415 if (page->index > end)
416 continue;
417
418 wait_on_page_writeback(page);
419 if (TestClearPageError(page))
420 ret = -EIO;
421 }
422 pagevec_release(&pvec);
423 cond_resched();
424 }
425 out:
426 ret2 = filemap_check_errors(mapping);
427 if (!ret)
428 ret = ret2;
429
430 return ret;
431 }
432 EXPORT_SYMBOL(filemap_fdatawait_range);
433
434 /**
435 * filemap_fdatawait - wait for all under-writeback pages to complete
436 * @mapping: address space structure to wait for
437 *
438 * Walk the list of under-writeback pages of the given address space
439 * and wait for all of them.
440 */
441 int filemap_fdatawait(struct address_space *mapping)
442 {
443 loff_t i_size = i_size_read(mapping->host);
444
445 if (i_size == 0)
446 return 0;
447
448 return filemap_fdatawait_range(mapping, 0, i_size - 1);
449 }
450 EXPORT_SYMBOL(filemap_fdatawait);
451
452 int filemap_write_and_wait(struct address_space *mapping)
453 {
454 int err = 0;
455
456 if (mapping->nrpages) {
457 err = filemap_fdatawrite(mapping);
458 /*
459 * Even if the above returned error, the pages may be
460 * written partially (e.g. -ENOSPC), so we wait for it.
461 * But the -EIO is special case, it may indicate the worst
462 * thing (e.g. bug) happened, so we avoid waiting for it.
463 */
464 if (err != -EIO) {
465 int err2 = filemap_fdatawait(mapping);
466 if (!err)
467 err = err2;
468 }
469 } else {
470 err = filemap_check_errors(mapping);
471 }
472 return err;
473 }
474 EXPORT_SYMBOL(filemap_write_and_wait);
475
476 /**
477 * filemap_write_and_wait_range - write out & wait on a file range
478 * @mapping: the address_space for the pages
479 * @lstart: offset in bytes where the range starts
480 * @lend: offset in bytes where the range ends (inclusive)
481 *
482 * Write out and wait upon file offsets lstart->lend, inclusive.
483 *
484 * Note that `lend' is inclusive (describes the last byte to be written) so
485 * that this function can be used to write to the very end-of-file (end = -1).
486 */
487 int filemap_write_and_wait_range(struct address_space *mapping,
488 loff_t lstart, loff_t lend)
489 {
490 int err = 0;
491
492 if (mapping->nrpages) {
493 err = __filemap_fdatawrite_range(mapping, lstart, lend,
494 WB_SYNC_ALL);
495 /* See comment of filemap_write_and_wait() */
496 if (err != -EIO) {
497 int err2 = filemap_fdatawait_range(mapping,
498 lstart, lend);
499 if (!err)
500 err = err2;
501 }
502 } else {
503 err = filemap_check_errors(mapping);
504 }
505 return err;
506 }
507 EXPORT_SYMBOL(filemap_write_and_wait_range);
508
509 /**
510 * replace_page_cache_page - replace a pagecache page with a new one
511 * @old: page to be replaced
512 * @new: page to replace with
513 * @gfp_mask: allocation mode
514 *
515 * This function replaces a page in the pagecache with a new one. On
516 * success it acquires the pagecache reference for the new page and
517 * drops it for the old page. Both the old and new pages must be
518 * locked. This function does not add the new page to the LRU, the
519 * caller must do that.
520 *
521 * The remove + add is atomic. The only way this function can fail is
522 * memory allocation failure.
523 */
524 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
525 {
526 int error;
527
528 VM_BUG_ON_PAGE(!PageLocked(old), old);
529 VM_BUG_ON_PAGE(!PageLocked(new), new);
530 VM_BUG_ON_PAGE(new->mapping, new);
531
532 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
533 if (!error) {
534 struct address_space *mapping = old->mapping;
535 void (*freepage)(struct page *);
536
537 pgoff_t offset = old->index;
538 freepage = mapping->a_ops->freepage;
539
540 page_cache_get(new);
541 new->mapping = mapping;
542 new->index = offset;
543
544 spin_lock_irq(&mapping->tree_lock);
545 __delete_from_page_cache(old, NULL);
546 error = page_cache_tree_insert(mapping, new, NULL);
547 BUG_ON(error);
548 __inc_zone_page_state(new, NR_FILE_PAGES);
549 if (PageSwapBacked(new))
550 __inc_zone_page_state(new, NR_SHMEM);
551 spin_unlock_irq(&mapping->tree_lock);
552 /* mem_cgroup codes must not be called under tree_lock */
553 mem_cgroup_replace_page_cache(old, new);
554 radix_tree_preload_end();
555 if (freepage)
556 freepage(old);
557 page_cache_release(old);
558 }
559
560 return error;
561 }
562 EXPORT_SYMBOL_GPL(replace_page_cache_page);
563
564 static int __add_to_page_cache_locked(struct page *page,
565 struct address_space *mapping,
566 pgoff_t offset, gfp_t gfp_mask,
567 void **shadowp)
568 {
569 int error;
570
571 VM_BUG_ON_PAGE(!PageLocked(page), page);
572 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
573
574 error = mem_cgroup_charge_file(page, current->mm,
575 gfp_mask & GFP_RECLAIM_MASK);
576 if (error)
577 return error;
578
579 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
580 if (error) {
581 mem_cgroup_uncharge_cache_page(page);
582 return error;
583 }
584
585 page_cache_get(page);
586 page->mapping = mapping;
587 page->index = offset;
588
589 spin_lock_irq(&mapping->tree_lock);
590 error = page_cache_tree_insert(mapping, page, shadowp);
591 radix_tree_preload_end();
592 if (unlikely(error))
593 goto err_insert;
594 __inc_zone_page_state(page, NR_FILE_PAGES);
595 spin_unlock_irq(&mapping->tree_lock);
596 trace_mm_filemap_add_to_page_cache(page);
597 return 0;
598 err_insert:
599 page->mapping = NULL;
600 /* Leave page->index set: truncation relies upon it */
601 spin_unlock_irq(&mapping->tree_lock);
602 mem_cgroup_uncharge_cache_page(page);
603 page_cache_release(page);
604 return error;
605 }
606
607 /**
608 * add_to_page_cache_locked - add a locked page to the pagecache
609 * @page: page to add
610 * @mapping: the page's address_space
611 * @offset: page index
612 * @gfp_mask: page allocation mode
613 *
614 * This function is used to add a page to the pagecache. It must be locked.
615 * This function does not add the page to the LRU. The caller must do that.
616 */
617 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
618 pgoff_t offset, gfp_t gfp_mask)
619 {
620 return __add_to_page_cache_locked(page, mapping, offset,
621 gfp_mask, NULL);
622 }
623 EXPORT_SYMBOL(add_to_page_cache_locked);
624
625 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
626 pgoff_t offset, gfp_t gfp_mask)
627 {
628 void *shadow = NULL;
629 int ret;
630
631 __set_page_locked(page);
632 ret = __add_to_page_cache_locked(page, mapping, offset,
633 gfp_mask, &shadow);
634 if (unlikely(ret))
635 __clear_page_locked(page);
636 else {
637 /*
638 * The page might have been evicted from cache only
639 * recently, in which case it should be activated like
640 * any other repeatedly accessed page.
641 */
642 if (shadow && workingset_refault(shadow)) {
643 SetPageActive(page);
644 workingset_activation(page);
645 } else
646 ClearPageActive(page);
647 lru_cache_add(page);
648 }
649 return ret;
650 }
651 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
652
653 #ifdef CONFIG_NUMA
654 struct page *__page_cache_alloc(gfp_t gfp)
655 {
656 int n;
657 struct page *page;
658
659 if (cpuset_do_page_mem_spread()) {
660 unsigned int cpuset_mems_cookie;
661 do {
662 cpuset_mems_cookie = read_mems_allowed_begin();
663 n = cpuset_mem_spread_node();
664 page = alloc_pages_exact_node(n, gfp, 0);
665 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
666
667 return page;
668 }
669 return alloc_pages(gfp, 0);
670 }
671 EXPORT_SYMBOL(__page_cache_alloc);
672 #endif
673
674 /*
675 * In order to wait for pages to become available there must be
676 * waitqueues associated with pages. By using a hash table of
677 * waitqueues where the bucket discipline is to maintain all
678 * waiters on the same queue and wake all when any of the pages
679 * become available, and for the woken contexts to check to be
680 * sure the appropriate page became available, this saves space
681 * at a cost of "thundering herd" phenomena during rare hash
682 * collisions.
683 */
684 static wait_queue_head_t *page_waitqueue(struct page *page)
685 {
686 const struct zone *zone = page_zone(page);
687
688 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
689 }
690
691 static inline void wake_up_page(struct page *page, int bit)
692 {
693 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
694 }
695
696 void wait_on_page_bit(struct page *page, int bit_nr)
697 {
698 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
699
700 if (test_bit(bit_nr, &page->flags))
701 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
702 TASK_UNINTERRUPTIBLE);
703 }
704 EXPORT_SYMBOL(wait_on_page_bit);
705
706 int wait_on_page_bit_killable(struct page *page, int bit_nr)
707 {
708 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
709
710 if (!test_bit(bit_nr, &page->flags))
711 return 0;
712
713 return __wait_on_bit(page_waitqueue(page), &wait,
714 sleep_on_page_killable, TASK_KILLABLE);
715 }
716
717 /**
718 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
719 * @page: Page defining the wait queue of interest
720 * @waiter: Waiter to add to the queue
721 *
722 * Add an arbitrary @waiter to the wait queue for the nominated @page.
723 */
724 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
725 {
726 wait_queue_head_t *q = page_waitqueue(page);
727 unsigned long flags;
728
729 spin_lock_irqsave(&q->lock, flags);
730 __add_wait_queue(q, waiter);
731 spin_unlock_irqrestore(&q->lock, flags);
732 }
733 EXPORT_SYMBOL_GPL(add_page_wait_queue);
734
735 /**
736 * unlock_page - unlock a locked page
737 * @page: the page
738 *
739 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
740 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
741 * mechananism between PageLocked pages and PageWriteback pages is shared.
742 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
743 *
744 * The mb is necessary to enforce ordering between the clear_bit and the read
745 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
746 */
747 void unlock_page(struct page *page)
748 {
749 VM_BUG_ON_PAGE(!PageLocked(page), page);
750 clear_bit_unlock(PG_locked, &page->flags);
751 smp_mb__after_atomic();
752 wake_up_page(page, PG_locked);
753 }
754 EXPORT_SYMBOL(unlock_page);
755
756 /**
757 * end_page_writeback - end writeback against a page
758 * @page: the page
759 */
760 void end_page_writeback(struct page *page)
761 {
762 /*
763 * TestClearPageReclaim could be used here but it is an atomic
764 * operation and overkill in this particular case. Failing to
765 * shuffle a page marked for immediate reclaim is too mild to
766 * justify taking an atomic operation penalty at the end of
767 * ever page writeback.
768 */
769 if (PageReclaim(page)) {
770 ClearPageReclaim(page);
771 rotate_reclaimable_page(page);
772 }
773
774 if (!test_clear_page_writeback(page))
775 BUG();
776
777 smp_mb__after_atomic();
778 wake_up_page(page, PG_writeback);
779 }
780 EXPORT_SYMBOL(end_page_writeback);
781
782 /*
783 * After completing I/O on a page, call this routine to update the page
784 * flags appropriately
785 */
786 void page_endio(struct page *page, int rw, int err)
787 {
788 if (rw == READ) {
789 if (!err) {
790 SetPageUptodate(page);
791 } else {
792 ClearPageUptodate(page);
793 SetPageError(page);
794 }
795 unlock_page(page);
796 } else { /* rw == WRITE */
797 if (err) {
798 struct address_space *mapping;
799
800 SetPageError(page);
801 mapping = page_mapping(page);
802 if (mapping)
803 mapping_set_error(mapping, err);
804 }
805 end_page_writeback(page);
806 }
807 }
808 EXPORT_SYMBOL_GPL(page_endio);
809
810 /**
811 * __lock_page - get a lock on the page, assuming we need to sleep to get it
812 * @page: the page to lock
813 */
814 void __lock_page(struct page *page)
815 {
816 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
817
818 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
819 TASK_UNINTERRUPTIBLE);
820 }
821 EXPORT_SYMBOL(__lock_page);
822
823 int __lock_page_killable(struct page *page)
824 {
825 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
826
827 return __wait_on_bit_lock(page_waitqueue(page), &wait,
828 sleep_on_page_killable, TASK_KILLABLE);
829 }
830 EXPORT_SYMBOL_GPL(__lock_page_killable);
831
832 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
833 unsigned int flags)
834 {
835 if (flags & FAULT_FLAG_ALLOW_RETRY) {
836 /*
837 * CAUTION! In this case, mmap_sem is not released
838 * even though return 0.
839 */
840 if (flags & FAULT_FLAG_RETRY_NOWAIT)
841 return 0;
842
843 up_read(&mm->mmap_sem);
844 if (flags & FAULT_FLAG_KILLABLE)
845 wait_on_page_locked_killable(page);
846 else
847 wait_on_page_locked(page);
848 return 0;
849 } else {
850 if (flags & FAULT_FLAG_KILLABLE) {
851 int ret;
852
853 ret = __lock_page_killable(page);
854 if (ret) {
855 up_read(&mm->mmap_sem);
856 return 0;
857 }
858 } else
859 __lock_page(page);
860 return 1;
861 }
862 }
863
864 /**
865 * page_cache_next_hole - find the next hole (not-present entry)
866 * @mapping: mapping
867 * @index: index
868 * @max_scan: maximum range to search
869 *
870 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
871 * lowest indexed hole.
872 *
873 * Returns: the index of the hole if found, otherwise returns an index
874 * outside of the set specified (in which case 'return - index >=
875 * max_scan' will be true). In rare cases of index wrap-around, 0 will
876 * be returned.
877 *
878 * page_cache_next_hole may be called under rcu_read_lock. However,
879 * like radix_tree_gang_lookup, this will not atomically search a
880 * snapshot of the tree at a single point in time. For example, if a
881 * hole is created at index 5, then subsequently a hole is created at
882 * index 10, page_cache_next_hole covering both indexes may return 10
883 * if called under rcu_read_lock.
884 */
885 pgoff_t page_cache_next_hole(struct address_space *mapping,
886 pgoff_t index, unsigned long max_scan)
887 {
888 unsigned long i;
889
890 for (i = 0; i < max_scan; i++) {
891 struct page *page;
892
893 page = radix_tree_lookup(&mapping->page_tree, index);
894 if (!page || radix_tree_exceptional_entry(page))
895 break;
896 index++;
897 if (index == 0)
898 break;
899 }
900
901 return index;
902 }
903 EXPORT_SYMBOL(page_cache_next_hole);
904
905 /**
906 * page_cache_prev_hole - find the prev hole (not-present entry)
907 * @mapping: mapping
908 * @index: index
909 * @max_scan: maximum range to search
910 *
911 * Search backwards in the range [max(index-max_scan+1, 0), index] for
912 * the first hole.
913 *
914 * Returns: the index of the hole if found, otherwise returns an index
915 * outside of the set specified (in which case 'index - return >=
916 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
917 * will be returned.
918 *
919 * page_cache_prev_hole may be called under rcu_read_lock. However,
920 * like radix_tree_gang_lookup, this will not atomically search a
921 * snapshot of the tree at a single point in time. For example, if a
922 * hole is created at index 10, then subsequently a hole is created at
923 * index 5, page_cache_prev_hole covering both indexes may return 5 if
924 * called under rcu_read_lock.
925 */
926 pgoff_t page_cache_prev_hole(struct address_space *mapping,
927 pgoff_t index, unsigned long max_scan)
928 {
929 unsigned long i;
930
931 for (i = 0; i < max_scan; i++) {
932 struct page *page;
933
934 page = radix_tree_lookup(&mapping->page_tree, index);
935 if (!page || radix_tree_exceptional_entry(page))
936 break;
937 index--;
938 if (index == ULONG_MAX)
939 break;
940 }
941
942 return index;
943 }
944 EXPORT_SYMBOL(page_cache_prev_hole);
945
946 /**
947 * find_get_entry - find and get a page cache entry
948 * @mapping: the address_space to search
949 * @offset: the page cache index
950 *
951 * Looks up the page cache slot at @mapping & @offset. If there is a
952 * page cache page, it is returned with an increased refcount.
953 *
954 * If the slot holds a shadow entry of a previously evicted page, or a
955 * swap entry from shmem/tmpfs, it is returned.
956 *
957 * Otherwise, %NULL is returned.
958 */
959 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
960 {
961 void **pagep;
962 struct page *page;
963
964 rcu_read_lock();
965 repeat:
966 page = NULL;
967 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
968 if (pagep) {
969 page = radix_tree_deref_slot(pagep);
970 if (unlikely(!page))
971 goto out;
972 if (radix_tree_exception(page)) {
973 if (radix_tree_deref_retry(page))
974 goto repeat;
975 /*
976 * A shadow entry of a recently evicted page,
977 * or a swap entry from shmem/tmpfs. Return
978 * it without attempting to raise page count.
979 */
980 goto out;
981 }
982 if (!page_cache_get_speculative(page))
983 goto repeat;
984
985 /*
986 * Has the page moved?
987 * This is part of the lockless pagecache protocol. See
988 * include/linux/pagemap.h for details.
989 */
990 if (unlikely(page != *pagep)) {
991 page_cache_release(page);
992 goto repeat;
993 }
994 }
995 out:
996 rcu_read_unlock();
997
998 return page;
999 }
1000 EXPORT_SYMBOL(find_get_entry);
1001
1002 /**
1003 * find_lock_entry - locate, pin and lock a page cache entry
1004 * @mapping: the address_space to search
1005 * @offset: the page cache index
1006 *
1007 * Looks up the page cache slot at @mapping & @offset. If there is a
1008 * page cache page, it is returned locked and with an increased
1009 * refcount.
1010 *
1011 * If the slot holds a shadow entry of a previously evicted page, or a
1012 * swap entry from shmem/tmpfs, it is returned.
1013 *
1014 * Otherwise, %NULL is returned.
1015 *
1016 * find_lock_entry() may sleep.
1017 */
1018 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1019 {
1020 struct page *page;
1021
1022 repeat:
1023 page = find_get_entry(mapping, offset);
1024 if (page && !radix_tree_exception(page)) {
1025 lock_page(page);
1026 /* Has the page been truncated? */
1027 if (unlikely(page->mapping != mapping)) {
1028 unlock_page(page);
1029 page_cache_release(page);
1030 goto repeat;
1031 }
1032 VM_BUG_ON_PAGE(page->index != offset, page);
1033 }
1034 return page;
1035 }
1036 EXPORT_SYMBOL(find_lock_entry);
1037
1038 /**
1039 * pagecache_get_page - find and get a page reference
1040 * @mapping: the address_space to search
1041 * @offset: the page index
1042 * @fgp_flags: PCG flags
1043 * @gfp_mask: gfp mask to use for the page cache data page allocation
1044 *
1045 * Looks up the page cache slot at @mapping & @offset.
1046 *
1047 * PCG flags modify how the page is returned.
1048 *
1049 * FGP_ACCESSED: the page will be marked accessed
1050 * FGP_LOCK: Page is return locked
1051 * FGP_CREAT: If page is not present then a new page is allocated using
1052 * @gfp_mask and added to the page cache and the VM's LRU
1053 * list. The page is returned locked and with an increased
1054 * refcount. Otherwise, %NULL is returned.
1055 *
1056 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1057 * if the GFP flags specified for FGP_CREAT are atomic.
1058 *
1059 * If there is a page cache page, it is returned with an increased refcount.
1060 */
1061 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1062 int fgp_flags, gfp_t gfp_mask)
1063 {
1064 struct page *page;
1065
1066 repeat:
1067 page = find_get_entry(mapping, offset);
1068 if (radix_tree_exceptional_entry(page))
1069 page = NULL;
1070 if (!page)
1071 goto no_page;
1072
1073 if (fgp_flags & FGP_LOCK) {
1074 if (fgp_flags & FGP_NOWAIT) {
1075 if (!trylock_page(page)) {
1076 page_cache_release(page);
1077 return NULL;
1078 }
1079 } else {
1080 lock_page(page);
1081 }
1082
1083 /* Has the page been truncated? */
1084 if (unlikely(page->mapping != mapping)) {
1085 unlock_page(page);
1086 page_cache_release(page);
1087 goto repeat;
1088 }
1089 VM_BUG_ON_PAGE(page->index != offset, page);
1090 }
1091
1092 if (page && (fgp_flags & FGP_ACCESSED))
1093 mark_page_accessed(page);
1094
1095 no_page:
1096 if (!page && (fgp_flags & FGP_CREAT)) {
1097 int err;
1098 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1099 gfp_mask |= __GFP_WRITE;
1100 if (fgp_flags & FGP_NOFS)
1101 gfp_mask &= ~__GFP_FS;
1102
1103 page = __page_cache_alloc(gfp_mask);
1104 if (!page)
1105 return NULL;
1106
1107 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1108 fgp_flags |= FGP_LOCK;
1109
1110 /* Init accessed so avoit atomic mark_page_accessed later */
1111 if (fgp_flags & FGP_ACCESSED)
1112 init_page_accessed(page);
1113
1114 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1115 if (unlikely(err)) {
1116 page_cache_release(page);
1117 page = NULL;
1118 if (err == -EEXIST)
1119 goto repeat;
1120 }
1121 }
1122
1123 return page;
1124 }
1125 EXPORT_SYMBOL(pagecache_get_page);
1126
1127 /**
1128 * find_get_entries - gang pagecache lookup
1129 * @mapping: The address_space to search
1130 * @start: The starting page cache index
1131 * @nr_entries: The maximum number of entries
1132 * @entries: Where the resulting entries are placed
1133 * @indices: The cache indices corresponding to the entries in @entries
1134 *
1135 * find_get_entries() will search for and return a group of up to
1136 * @nr_entries entries in the mapping. The entries are placed at
1137 * @entries. find_get_entries() takes a reference against any actual
1138 * pages it returns.
1139 *
1140 * The search returns a group of mapping-contiguous page cache entries
1141 * with ascending indexes. There may be holes in the indices due to
1142 * not-present pages.
1143 *
1144 * Any shadow entries of evicted pages, or swap entries from
1145 * shmem/tmpfs, are included in the returned array.
1146 *
1147 * find_get_entries() returns the number of pages and shadow entries
1148 * which were found.
1149 */
1150 unsigned find_get_entries(struct address_space *mapping,
1151 pgoff_t start, unsigned int nr_entries,
1152 struct page **entries, pgoff_t *indices)
1153 {
1154 void **slot;
1155 unsigned int ret = 0;
1156 struct radix_tree_iter iter;
1157
1158 if (!nr_entries)
1159 return 0;
1160
1161 rcu_read_lock();
1162 restart:
1163 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1164 struct page *page;
1165 repeat:
1166 page = radix_tree_deref_slot(slot);
1167 if (unlikely(!page))
1168 continue;
1169 if (radix_tree_exception(page)) {
1170 if (radix_tree_deref_retry(page))
1171 goto restart;
1172 /*
1173 * A shadow entry of a recently evicted page,
1174 * or a swap entry from shmem/tmpfs. Return
1175 * it without attempting to raise page count.
1176 */
1177 goto export;
1178 }
1179 if (!page_cache_get_speculative(page))
1180 goto repeat;
1181
1182 /* Has the page moved? */
1183 if (unlikely(page != *slot)) {
1184 page_cache_release(page);
1185 goto repeat;
1186 }
1187 export:
1188 indices[ret] = iter.index;
1189 entries[ret] = page;
1190 if (++ret == nr_entries)
1191 break;
1192 }
1193 rcu_read_unlock();
1194 return ret;
1195 }
1196
1197 /**
1198 * find_get_pages - gang pagecache lookup
1199 * @mapping: The address_space to search
1200 * @start: The starting page index
1201 * @nr_pages: The maximum number of pages
1202 * @pages: Where the resulting pages are placed
1203 *
1204 * find_get_pages() will search for and return a group of up to
1205 * @nr_pages pages in the mapping. The pages are placed at @pages.
1206 * find_get_pages() takes a reference against the returned pages.
1207 *
1208 * The search returns a group of mapping-contiguous pages with ascending
1209 * indexes. There may be holes in the indices due to not-present pages.
1210 *
1211 * find_get_pages() returns the number of pages which were found.
1212 */
1213 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1214 unsigned int nr_pages, struct page **pages)
1215 {
1216 struct radix_tree_iter iter;
1217 void **slot;
1218 unsigned ret = 0;
1219
1220 if (unlikely(!nr_pages))
1221 return 0;
1222
1223 rcu_read_lock();
1224 restart:
1225 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1226 struct page *page;
1227 repeat:
1228 page = radix_tree_deref_slot(slot);
1229 if (unlikely(!page))
1230 continue;
1231
1232 if (radix_tree_exception(page)) {
1233 if (radix_tree_deref_retry(page)) {
1234 /*
1235 * Transient condition which can only trigger
1236 * when entry at index 0 moves out of or back
1237 * to root: none yet gotten, safe to restart.
1238 */
1239 WARN_ON(iter.index);
1240 goto restart;
1241 }
1242 /*
1243 * A shadow entry of a recently evicted page,
1244 * or a swap entry from shmem/tmpfs. Skip
1245 * over it.
1246 */
1247 continue;
1248 }
1249
1250 if (!page_cache_get_speculative(page))
1251 goto repeat;
1252
1253 /* Has the page moved? */
1254 if (unlikely(page != *slot)) {
1255 page_cache_release(page);
1256 goto repeat;
1257 }
1258
1259 pages[ret] = page;
1260 if (++ret == nr_pages)
1261 break;
1262 }
1263
1264 rcu_read_unlock();
1265 return ret;
1266 }
1267
1268 /**
1269 * find_get_pages_contig - gang contiguous pagecache lookup
1270 * @mapping: The address_space to search
1271 * @index: The starting page index
1272 * @nr_pages: The maximum number of pages
1273 * @pages: Where the resulting pages are placed
1274 *
1275 * find_get_pages_contig() works exactly like find_get_pages(), except
1276 * that the returned number of pages are guaranteed to be contiguous.
1277 *
1278 * find_get_pages_contig() returns the number of pages which were found.
1279 */
1280 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1281 unsigned int nr_pages, struct page **pages)
1282 {
1283 struct radix_tree_iter iter;
1284 void **slot;
1285 unsigned int ret = 0;
1286
1287 if (unlikely(!nr_pages))
1288 return 0;
1289
1290 rcu_read_lock();
1291 restart:
1292 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1293 struct page *page;
1294 repeat:
1295 page = radix_tree_deref_slot(slot);
1296 /* The hole, there no reason to continue */
1297 if (unlikely(!page))
1298 break;
1299
1300 if (radix_tree_exception(page)) {
1301 if (radix_tree_deref_retry(page)) {
1302 /*
1303 * Transient condition which can only trigger
1304 * when entry at index 0 moves out of or back
1305 * to root: none yet gotten, safe to restart.
1306 */
1307 goto restart;
1308 }
1309 /*
1310 * A shadow entry of a recently evicted page,
1311 * or a swap entry from shmem/tmpfs. Stop
1312 * looking for contiguous pages.
1313 */
1314 break;
1315 }
1316
1317 if (!page_cache_get_speculative(page))
1318 goto repeat;
1319
1320 /* Has the page moved? */
1321 if (unlikely(page != *slot)) {
1322 page_cache_release(page);
1323 goto repeat;
1324 }
1325
1326 /*
1327 * must check mapping and index after taking the ref.
1328 * otherwise we can get both false positives and false
1329 * negatives, which is just confusing to the caller.
1330 */
1331 if (page->mapping == NULL || page->index != iter.index) {
1332 page_cache_release(page);
1333 break;
1334 }
1335
1336 pages[ret] = page;
1337 if (++ret == nr_pages)
1338 break;
1339 }
1340 rcu_read_unlock();
1341 return ret;
1342 }
1343 EXPORT_SYMBOL(find_get_pages_contig);
1344
1345 /**
1346 * find_get_pages_tag - find and return pages that match @tag
1347 * @mapping: the address_space to search
1348 * @index: the starting page index
1349 * @tag: the tag index
1350 * @nr_pages: the maximum number of pages
1351 * @pages: where the resulting pages are placed
1352 *
1353 * Like find_get_pages, except we only return pages which are tagged with
1354 * @tag. We update @index to index the next page for the traversal.
1355 */
1356 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1357 int tag, unsigned int nr_pages, struct page **pages)
1358 {
1359 struct radix_tree_iter iter;
1360 void **slot;
1361 unsigned ret = 0;
1362
1363 if (unlikely(!nr_pages))
1364 return 0;
1365
1366 rcu_read_lock();
1367 restart:
1368 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1369 &iter, *index, tag) {
1370 struct page *page;
1371 repeat:
1372 page = radix_tree_deref_slot(slot);
1373 if (unlikely(!page))
1374 continue;
1375
1376 if (radix_tree_exception(page)) {
1377 if (radix_tree_deref_retry(page)) {
1378 /*
1379 * Transient condition which can only trigger
1380 * when entry at index 0 moves out of or back
1381 * to root: none yet gotten, safe to restart.
1382 */
1383 goto restart;
1384 }
1385 /*
1386 * A shadow entry of a recently evicted page.
1387 *
1388 * Those entries should never be tagged, but
1389 * this tree walk is lockless and the tags are
1390 * looked up in bulk, one radix tree node at a
1391 * time, so there is a sizable window for page
1392 * reclaim to evict a page we saw tagged.
1393 *
1394 * Skip over it.
1395 */
1396 continue;
1397 }
1398
1399 if (!page_cache_get_speculative(page))
1400 goto repeat;
1401
1402 /* Has the page moved? */
1403 if (unlikely(page != *slot)) {
1404 page_cache_release(page);
1405 goto repeat;
1406 }
1407
1408 pages[ret] = page;
1409 if (++ret == nr_pages)
1410 break;
1411 }
1412
1413 rcu_read_unlock();
1414
1415 if (ret)
1416 *index = pages[ret - 1]->index + 1;
1417
1418 return ret;
1419 }
1420 EXPORT_SYMBOL(find_get_pages_tag);
1421
1422 /*
1423 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1424 * a _large_ part of the i/o request. Imagine the worst scenario:
1425 *
1426 * ---R__________________________________________B__________
1427 * ^ reading here ^ bad block(assume 4k)
1428 *
1429 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1430 * => failing the whole request => read(R) => read(R+1) =>
1431 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1432 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1433 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1434 *
1435 * It is going insane. Fix it by quickly scaling down the readahead size.
1436 */
1437 static void shrink_readahead_size_eio(struct file *filp,
1438 struct file_ra_state *ra)
1439 {
1440 ra->ra_pages /= 4;
1441 }
1442
1443 /**
1444 * do_generic_file_read - generic file read routine
1445 * @filp: the file to read
1446 * @ppos: current file position
1447 * @iter: data destination
1448 * @written: already copied
1449 *
1450 * This is a generic file read routine, and uses the
1451 * mapping->a_ops->readpage() function for the actual low-level stuff.
1452 *
1453 * This is really ugly. But the goto's actually try to clarify some
1454 * of the logic when it comes to error handling etc.
1455 */
1456 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1457 struct iov_iter *iter, ssize_t written)
1458 {
1459 struct address_space *mapping = filp->f_mapping;
1460 struct inode *inode = mapping->host;
1461 struct file_ra_state *ra = &filp->f_ra;
1462 pgoff_t index;
1463 pgoff_t last_index;
1464 pgoff_t prev_index;
1465 unsigned long offset; /* offset into pagecache page */
1466 unsigned int prev_offset;
1467 int error = 0;
1468
1469 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1470 return 0;
1471 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1472
1473 index = *ppos >> PAGE_CACHE_SHIFT;
1474 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1475 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1476 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1477 offset = *ppos & ~PAGE_CACHE_MASK;
1478
1479 for (;;) {
1480 struct page *page;
1481 pgoff_t end_index;
1482 loff_t isize;
1483 unsigned long nr, ret;
1484
1485 cond_resched();
1486 find_page:
1487 if (fatal_signal_pending(current)) {
1488 error = -EINTR;
1489 goto out;
1490 }
1491
1492 page = find_get_page(mapping, index);
1493 if (!page) {
1494 page_cache_sync_readahead(mapping,
1495 ra, filp,
1496 index, last_index - index);
1497 page = find_get_page(mapping, index);
1498 if (unlikely(page == NULL))
1499 goto no_cached_page;
1500 }
1501 if (PageReadahead(page)) {
1502 page_cache_async_readahead(mapping,
1503 ra, filp, page,
1504 index, last_index - index);
1505 }
1506 if (!PageUptodate(page)) {
1507 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1508 !mapping->a_ops->is_partially_uptodate)
1509 goto page_not_up_to_date;
1510 if (!trylock_page(page))
1511 goto page_not_up_to_date;
1512 /* Did it get truncated before we got the lock? */
1513 if (!page->mapping)
1514 goto page_not_up_to_date_locked;
1515 if (!mapping->a_ops->is_partially_uptodate(page,
1516 offset, iter->count))
1517 goto page_not_up_to_date_locked;
1518 unlock_page(page);
1519 }
1520 page_ok:
1521 /*
1522 * i_size must be checked after we know the page is Uptodate.
1523 *
1524 * Checking i_size after the check allows us to calculate
1525 * the correct value for "nr", which means the zero-filled
1526 * part of the page is not copied back to userspace (unless
1527 * another truncate extends the file - this is desired though).
1528 */
1529
1530 isize = i_size_read(inode);
1531 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1532 if (unlikely(!isize || index > end_index)) {
1533 page_cache_release(page);
1534 goto out;
1535 }
1536
1537 /* nr is the maximum number of bytes to copy from this page */
1538 nr = PAGE_CACHE_SIZE;
1539 if (index == end_index) {
1540 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1541 if (nr <= offset) {
1542 page_cache_release(page);
1543 goto out;
1544 }
1545 }
1546 nr = nr - offset;
1547
1548 /* If users can be writing to this page using arbitrary
1549 * virtual addresses, take care about potential aliasing
1550 * before reading the page on the kernel side.
1551 */
1552 if (mapping_writably_mapped(mapping))
1553 flush_dcache_page(page);
1554
1555 /*
1556 * When a sequential read accesses a page several times,
1557 * only mark it as accessed the first time.
1558 */
1559 if (prev_index != index || offset != prev_offset)
1560 mark_page_accessed(page);
1561 prev_index = index;
1562
1563 /*
1564 * Ok, we have the page, and it's up-to-date, so
1565 * now we can copy it to user space...
1566 */
1567
1568 ret = copy_page_to_iter(page, offset, nr, iter);
1569 offset += ret;
1570 index += offset >> PAGE_CACHE_SHIFT;
1571 offset &= ~PAGE_CACHE_MASK;
1572 prev_offset = offset;
1573
1574 page_cache_release(page);
1575 written += ret;
1576 if (!iov_iter_count(iter))
1577 goto out;
1578 if (ret < nr) {
1579 error = -EFAULT;
1580 goto out;
1581 }
1582 continue;
1583
1584 page_not_up_to_date:
1585 /* Get exclusive access to the page ... */
1586 error = lock_page_killable(page);
1587 if (unlikely(error))
1588 goto readpage_error;
1589
1590 page_not_up_to_date_locked:
1591 /* Did it get truncated before we got the lock? */
1592 if (!page->mapping) {
1593 unlock_page(page);
1594 page_cache_release(page);
1595 continue;
1596 }
1597
1598 /* Did somebody else fill it already? */
1599 if (PageUptodate(page)) {
1600 unlock_page(page);
1601 goto page_ok;
1602 }
1603
1604 readpage:
1605 /*
1606 * A previous I/O error may have been due to temporary
1607 * failures, eg. multipath errors.
1608 * PG_error will be set again if readpage fails.
1609 */
1610 ClearPageError(page);
1611 /* Start the actual read. The read will unlock the page. */
1612 error = mapping->a_ops->readpage(filp, page);
1613
1614 if (unlikely(error)) {
1615 if (error == AOP_TRUNCATED_PAGE) {
1616 page_cache_release(page);
1617 error = 0;
1618 goto find_page;
1619 }
1620 goto readpage_error;
1621 }
1622
1623 if (!PageUptodate(page)) {
1624 error = lock_page_killable(page);
1625 if (unlikely(error))
1626 goto readpage_error;
1627 if (!PageUptodate(page)) {
1628 if (page->mapping == NULL) {
1629 /*
1630 * invalidate_mapping_pages got it
1631 */
1632 unlock_page(page);
1633 page_cache_release(page);
1634 goto find_page;
1635 }
1636 unlock_page(page);
1637 shrink_readahead_size_eio(filp, ra);
1638 error = -EIO;
1639 goto readpage_error;
1640 }
1641 unlock_page(page);
1642 }
1643
1644 goto page_ok;
1645
1646 readpage_error:
1647 /* UHHUH! A synchronous read error occurred. Report it */
1648 page_cache_release(page);
1649 goto out;
1650
1651 no_cached_page:
1652 /*
1653 * Ok, it wasn't cached, so we need to create a new
1654 * page..
1655 */
1656 page = page_cache_alloc_cold(mapping);
1657 if (!page) {
1658 error = -ENOMEM;
1659 goto out;
1660 }
1661 error = add_to_page_cache_lru(page, mapping,
1662 index, GFP_KERNEL);
1663 if (error) {
1664 page_cache_release(page);
1665 if (error == -EEXIST) {
1666 error = 0;
1667 goto find_page;
1668 }
1669 goto out;
1670 }
1671 goto readpage;
1672 }
1673
1674 out:
1675 ra->prev_pos = prev_index;
1676 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1677 ra->prev_pos |= prev_offset;
1678
1679 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1680 file_accessed(filp);
1681 return written ? written : error;
1682 }
1683
1684 /**
1685 * generic_file_read_iter - generic filesystem read routine
1686 * @iocb: kernel I/O control block
1687 * @iter: destination for the data read
1688 *
1689 * This is the "read_iter()" routine for all filesystems
1690 * that can use the page cache directly.
1691 */
1692 ssize_t
1693 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1694 {
1695 struct file *file = iocb->ki_filp;
1696 ssize_t retval = 0;
1697 loff_t *ppos = &iocb->ki_pos;
1698 loff_t pos = *ppos;
1699
1700 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1701 if (file->f_flags & O_DIRECT) {
1702 struct address_space *mapping = file->f_mapping;
1703 struct inode *inode = mapping->host;
1704 size_t count = iov_iter_count(iter);
1705 loff_t size;
1706
1707 if (!count)
1708 goto out; /* skip atime */
1709 size = i_size_read(inode);
1710 retval = filemap_write_and_wait_range(mapping, pos,
1711 pos + count - 1);
1712 if (!retval) {
1713 struct iov_iter data = *iter;
1714 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1715 }
1716
1717 if (retval > 0) {
1718 *ppos = pos + retval;
1719 iov_iter_advance(iter, retval);
1720 }
1721
1722 /*
1723 * Btrfs can have a short DIO read if we encounter
1724 * compressed extents, so if there was an error, or if
1725 * we've already read everything we wanted to, or if
1726 * there was a short read because we hit EOF, go ahead
1727 * and return. Otherwise fallthrough to buffered io for
1728 * the rest of the read.
1729 */
1730 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1731 file_accessed(file);
1732 goto out;
1733 }
1734 }
1735
1736 retval = do_generic_file_read(file, ppos, iter, retval);
1737 out:
1738 return retval;
1739 }
1740 EXPORT_SYMBOL(generic_file_read_iter);
1741
1742 #ifdef CONFIG_MMU
1743 /**
1744 * page_cache_read - adds requested page to the page cache if not already there
1745 * @file: file to read
1746 * @offset: page index
1747 *
1748 * This adds the requested page to the page cache if it isn't already there,
1749 * and schedules an I/O to read in its contents from disk.
1750 */
1751 static int page_cache_read(struct file *file, pgoff_t offset)
1752 {
1753 struct address_space *mapping = file->f_mapping;
1754 struct page *page;
1755 int ret;
1756
1757 do {
1758 page = page_cache_alloc_cold(mapping);
1759 if (!page)
1760 return -ENOMEM;
1761
1762 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1763 if (ret == 0)
1764 ret = mapping->a_ops->readpage(file, page);
1765 else if (ret == -EEXIST)
1766 ret = 0; /* losing race to add is OK */
1767
1768 page_cache_release(page);
1769
1770 } while (ret == AOP_TRUNCATED_PAGE);
1771
1772 return ret;
1773 }
1774
1775 #define MMAP_LOTSAMISS (100)
1776
1777 /*
1778 * Synchronous readahead happens when we don't even find
1779 * a page in the page cache at all.
1780 */
1781 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1782 struct file_ra_state *ra,
1783 struct file *file,
1784 pgoff_t offset)
1785 {
1786 unsigned long ra_pages;
1787 struct address_space *mapping = file->f_mapping;
1788
1789 /* If we don't want any read-ahead, don't bother */
1790 if (vma->vm_flags & VM_RAND_READ)
1791 return;
1792 if (!ra->ra_pages)
1793 return;
1794
1795 if (vma->vm_flags & VM_SEQ_READ) {
1796 page_cache_sync_readahead(mapping, ra, file, offset,
1797 ra->ra_pages);
1798 return;
1799 }
1800
1801 /* Avoid banging the cache line if not needed */
1802 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1803 ra->mmap_miss++;
1804
1805 /*
1806 * Do we miss much more than hit in this file? If so,
1807 * stop bothering with read-ahead. It will only hurt.
1808 */
1809 if (ra->mmap_miss > MMAP_LOTSAMISS)
1810 return;
1811
1812 /*
1813 * mmap read-around
1814 */
1815 ra_pages = max_sane_readahead(ra->ra_pages);
1816 ra->start = max_t(long, 0, offset - ra_pages / 2);
1817 ra->size = ra_pages;
1818 ra->async_size = ra_pages / 4;
1819 ra_submit(ra, mapping, file);
1820 }
1821
1822 /*
1823 * Asynchronous readahead happens when we find the page and PG_readahead,
1824 * so we want to possibly extend the readahead further..
1825 */
1826 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1827 struct file_ra_state *ra,
1828 struct file *file,
1829 struct page *page,
1830 pgoff_t offset)
1831 {
1832 struct address_space *mapping = file->f_mapping;
1833
1834 /* If we don't want any read-ahead, don't bother */
1835 if (vma->vm_flags & VM_RAND_READ)
1836 return;
1837 if (ra->mmap_miss > 0)
1838 ra->mmap_miss--;
1839 if (PageReadahead(page))
1840 page_cache_async_readahead(mapping, ra, file,
1841 page, offset, ra->ra_pages);
1842 }
1843
1844 /**
1845 * filemap_fault - read in file data for page fault handling
1846 * @vma: vma in which the fault was taken
1847 * @vmf: struct vm_fault containing details of the fault
1848 *
1849 * filemap_fault() is invoked via the vma operations vector for a
1850 * mapped memory region to read in file data during a page fault.
1851 *
1852 * The goto's are kind of ugly, but this streamlines the normal case of having
1853 * it in the page cache, and handles the special cases reasonably without
1854 * having a lot of duplicated code.
1855 */
1856 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1857 {
1858 int error;
1859 struct file *file = vma->vm_file;
1860 struct address_space *mapping = file->f_mapping;
1861 struct file_ra_state *ra = &file->f_ra;
1862 struct inode *inode = mapping->host;
1863 pgoff_t offset = vmf->pgoff;
1864 struct page *page;
1865 loff_t size;
1866 int ret = 0;
1867
1868 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1869 if (offset >= size >> PAGE_CACHE_SHIFT)
1870 return VM_FAULT_SIGBUS;
1871
1872 /*
1873 * Do we have something in the page cache already?
1874 */
1875 page = find_get_page(mapping, offset);
1876 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1877 /*
1878 * We found the page, so try async readahead before
1879 * waiting for the lock.
1880 */
1881 do_async_mmap_readahead(vma, ra, file, page, offset);
1882 } else if (!page) {
1883 /* No page in the page cache at all */
1884 do_sync_mmap_readahead(vma, ra, file, offset);
1885 count_vm_event(PGMAJFAULT);
1886 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1887 ret = VM_FAULT_MAJOR;
1888 retry_find:
1889 page = find_get_page(mapping, offset);
1890 if (!page)
1891 goto no_cached_page;
1892 }
1893
1894 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1895 page_cache_release(page);
1896 return ret | VM_FAULT_RETRY;
1897 }
1898
1899 /* Did it get truncated? */
1900 if (unlikely(page->mapping != mapping)) {
1901 unlock_page(page);
1902 put_page(page);
1903 goto retry_find;
1904 }
1905 VM_BUG_ON_PAGE(page->index != offset, page);
1906
1907 /*
1908 * We have a locked page in the page cache, now we need to check
1909 * that it's up-to-date. If not, it is going to be due to an error.
1910 */
1911 if (unlikely(!PageUptodate(page)))
1912 goto page_not_uptodate;
1913
1914 /*
1915 * Found the page and have a reference on it.
1916 * We must recheck i_size under page lock.
1917 */
1918 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1919 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1920 unlock_page(page);
1921 page_cache_release(page);
1922 return VM_FAULT_SIGBUS;
1923 }
1924
1925 vmf->page = page;
1926 return ret | VM_FAULT_LOCKED;
1927
1928 no_cached_page:
1929 /*
1930 * We're only likely to ever get here if MADV_RANDOM is in
1931 * effect.
1932 */
1933 error = page_cache_read(file, offset);
1934
1935 /*
1936 * The page we want has now been added to the page cache.
1937 * In the unlikely event that someone removed it in the
1938 * meantime, we'll just come back here and read it again.
1939 */
1940 if (error >= 0)
1941 goto retry_find;
1942
1943 /*
1944 * An error return from page_cache_read can result if the
1945 * system is low on memory, or a problem occurs while trying
1946 * to schedule I/O.
1947 */
1948 if (error == -ENOMEM)
1949 return VM_FAULT_OOM;
1950 return VM_FAULT_SIGBUS;
1951
1952 page_not_uptodate:
1953 /*
1954 * Umm, take care of errors if the page isn't up-to-date.
1955 * Try to re-read it _once_. We do this synchronously,
1956 * because there really aren't any performance issues here
1957 * and we need to check for errors.
1958 */
1959 ClearPageError(page);
1960 error = mapping->a_ops->readpage(file, page);
1961 if (!error) {
1962 wait_on_page_locked(page);
1963 if (!PageUptodate(page))
1964 error = -EIO;
1965 }
1966 page_cache_release(page);
1967
1968 if (!error || error == AOP_TRUNCATED_PAGE)
1969 goto retry_find;
1970
1971 /* Things didn't work out. Return zero to tell the mm layer so. */
1972 shrink_readahead_size_eio(file, ra);
1973 return VM_FAULT_SIGBUS;
1974 }
1975 EXPORT_SYMBOL(filemap_fault);
1976
1977 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1978 {
1979 struct radix_tree_iter iter;
1980 void **slot;
1981 struct file *file = vma->vm_file;
1982 struct address_space *mapping = file->f_mapping;
1983 loff_t size;
1984 struct page *page;
1985 unsigned long address = (unsigned long) vmf->virtual_address;
1986 unsigned long addr;
1987 pte_t *pte;
1988
1989 rcu_read_lock();
1990 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1991 if (iter.index > vmf->max_pgoff)
1992 break;
1993 repeat:
1994 page = radix_tree_deref_slot(slot);
1995 if (unlikely(!page))
1996 goto next;
1997 if (radix_tree_exception(page)) {
1998 if (radix_tree_deref_retry(page))
1999 break;
2000 else
2001 goto next;
2002 }
2003
2004 if (!page_cache_get_speculative(page))
2005 goto repeat;
2006
2007 /* Has the page moved? */
2008 if (unlikely(page != *slot)) {
2009 page_cache_release(page);
2010 goto repeat;
2011 }
2012
2013 if (!PageUptodate(page) ||
2014 PageReadahead(page) ||
2015 PageHWPoison(page))
2016 goto skip;
2017 if (!trylock_page(page))
2018 goto skip;
2019
2020 if (page->mapping != mapping || !PageUptodate(page))
2021 goto unlock;
2022
2023 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2024 if (page->index >= size >> PAGE_CACHE_SHIFT)
2025 goto unlock;
2026
2027 pte = vmf->pte + page->index - vmf->pgoff;
2028 if (!pte_none(*pte))
2029 goto unlock;
2030
2031 if (file->f_ra.mmap_miss > 0)
2032 file->f_ra.mmap_miss--;
2033 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2034 do_set_pte(vma, addr, page, pte, false, false);
2035 unlock_page(page);
2036 goto next;
2037 unlock:
2038 unlock_page(page);
2039 skip:
2040 page_cache_release(page);
2041 next:
2042 if (iter.index == vmf->max_pgoff)
2043 break;
2044 }
2045 rcu_read_unlock();
2046 }
2047 EXPORT_SYMBOL(filemap_map_pages);
2048
2049 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2050 {
2051 struct page *page = vmf->page;
2052 struct inode *inode = file_inode(vma->vm_file);
2053 int ret = VM_FAULT_LOCKED;
2054
2055 sb_start_pagefault(inode->i_sb);
2056 file_update_time(vma->vm_file);
2057 lock_page(page);
2058 if (page->mapping != inode->i_mapping) {
2059 unlock_page(page);
2060 ret = VM_FAULT_NOPAGE;
2061 goto out;
2062 }
2063 /*
2064 * We mark the page dirty already here so that when freeze is in
2065 * progress, we are guaranteed that writeback during freezing will
2066 * see the dirty page and writeprotect it again.
2067 */
2068 set_page_dirty(page);
2069 wait_for_stable_page(page);
2070 out:
2071 sb_end_pagefault(inode->i_sb);
2072 return ret;
2073 }
2074 EXPORT_SYMBOL(filemap_page_mkwrite);
2075
2076 const struct vm_operations_struct generic_file_vm_ops = {
2077 .fault = filemap_fault,
2078 .map_pages = filemap_map_pages,
2079 .page_mkwrite = filemap_page_mkwrite,
2080 };
2081
2082 /* This is used for a general mmap of a disk file */
2083
2084 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2085 {
2086 struct address_space *mapping = file->f_mapping;
2087
2088 if (!mapping->a_ops->readpage)
2089 return -ENOEXEC;
2090 file_accessed(file);
2091 vma->vm_ops = &generic_file_vm_ops;
2092 return 0;
2093 }
2094
2095 /*
2096 * This is for filesystems which do not implement ->writepage.
2097 */
2098 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2099 {
2100 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2101 return -EINVAL;
2102 return generic_file_mmap(file, vma);
2103 }
2104 #else
2105 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2106 {
2107 return -ENOSYS;
2108 }
2109 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2110 {
2111 return -ENOSYS;
2112 }
2113 #endif /* CONFIG_MMU */
2114
2115 EXPORT_SYMBOL(generic_file_mmap);
2116 EXPORT_SYMBOL(generic_file_readonly_mmap);
2117
2118 static struct page *wait_on_page_read(struct page *page)
2119 {
2120 if (!IS_ERR(page)) {
2121 wait_on_page_locked(page);
2122 if (!PageUptodate(page)) {
2123 page_cache_release(page);
2124 page = ERR_PTR(-EIO);
2125 }
2126 }
2127 return page;
2128 }
2129
2130 static struct page *__read_cache_page(struct address_space *mapping,
2131 pgoff_t index,
2132 int (*filler)(void *, struct page *),
2133 void *data,
2134 gfp_t gfp)
2135 {
2136 struct page *page;
2137 int err;
2138 repeat:
2139 page = find_get_page(mapping, index);
2140 if (!page) {
2141 page = __page_cache_alloc(gfp | __GFP_COLD);
2142 if (!page)
2143 return ERR_PTR(-ENOMEM);
2144 err = add_to_page_cache_lru(page, mapping, index, gfp);
2145 if (unlikely(err)) {
2146 page_cache_release(page);
2147 if (err == -EEXIST)
2148 goto repeat;
2149 /* Presumably ENOMEM for radix tree node */
2150 return ERR_PTR(err);
2151 }
2152 err = filler(data, page);
2153 if (err < 0) {
2154 page_cache_release(page);
2155 page = ERR_PTR(err);
2156 } else {
2157 page = wait_on_page_read(page);
2158 }
2159 }
2160 return page;
2161 }
2162
2163 static struct page *do_read_cache_page(struct address_space *mapping,
2164 pgoff_t index,
2165 int (*filler)(void *, struct page *),
2166 void *data,
2167 gfp_t gfp)
2168
2169 {
2170 struct page *page;
2171 int err;
2172
2173 retry:
2174 page = __read_cache_page(mapping, index, filler, data, gfp);
2175 if (IS_ERR(page))
2176 return page;
2177 if (PageUptodate(page))
2178 goto out;
2179
2180 lock_page(page);
2181 if (!page->mapping) {
2182 unlock_page(page);
2183 page_cache_release(page);
2184 goto retry;
2185 }
2186 if (PageUptodate(page)) {
2187 unlock_page(page);
2188 goto out;
2189 }
2190 err = filler(data, page);
2191 if (err < 0) {
2192 page_cache_release(page);
2193 return ERR_PTR(err);
2194 } else {
2195 page = wait_on_page_read(page);
2196 if (IS_ERR(page))
2197 return page;
2198 }
2199 out:
2200 mark_page_accessed(page);
2201 return page;
2202 }
2203
2204 /**
2205 * read_cache_page - read into page cache, fill it if needed
2206 * @mapping: the page's address_space
2207 * @index: the page index
2208 * @filler: function to perform the read
2209 * @data: first arg to filler(data, page) function, often left as NULL
2210 *
2211 * Read into the page cache. If a page already exists, and PageUptodate() is
2212 * not set, try to fill the page and wait for it to become unlocked.
2213 *
2214 * If the page does not get brought uptodate, return -EIO.
2215 */
2216 struct page *read_cache_page(struct address_space *mapping,
2217 pgoff_t index,
2218 int (*filler)(void *, struct page *),
2219 void *data)
2220 {
2221 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2222 }
2223 EXPORT_SYMBOL(read_cache_page);
2224
2225 /**
2226 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2227 * @mapping: the page's address_space
2228 * @index: the page index
2229 * @gfp: the page allocator flags to use if allocating
2230 *
2231 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2232 * any new page allocations done using the specified allocation flags.
2233 *
2234 * If the page does not get brought uptodate, return -EIO.
2235 */
2236 struct page *read_cache_page_gfp(struct address_space *mapping,
2237 pgoff_t index,
2238 gfp_t gfp)
2239 {
2240 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2241
2242 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2243 }
2244 EXPORT_SYMBOL(read_cache_page_gfp);
2245
2246 /*
2247 * Performs necessary checks before doing a write
2248 *
2249 * Can adjust writing position or amount of bytes to write.
2250 * Returns appropriate error code that caller should return or
2251 * zero in case that write should be allowed.
2252 */
2253 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2254 {
2255 struct inode *inode = file->f_mapping->host;
2256 unsigned long limit = rlimit(RLIMIT_FSIZE);
2257
2258 if (unlikely(*pos < 0))
2259 return -EINVAL;
2260
2261 if (!isblk) {
2262 /* FIXME: this is for backwards compatibility with 2.4 */
2263 if (file->f_flags & O_APPEND)
2264 *pos = i_size_read(inode);
2265
2266 if (limit != RLIM_INFINITY) {
2267 if (*pos >= limit) {
2268 send_sig(SIGXFSZ, current, 0);
2269 return -EFBIG;
2270 }
2271 if (*count > limit - (typeof(limit))*pos) {
2272 *count = limit - (typeof(limit))*pos;
2273 }
2274 }
2275 }
2276
2277 /*
2278 * LFS rule
2279 */
2280 if (unlikely(*pos + *count > MAX_NON_LFS &&
2281 !(file->f_flags & O_LARGEFILE))) {
2282 if (*pos >= MAX_NON_LFS) {
2283 return -EFBIG;
2284 }
2285 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2286 *count = MAX_NON_LFS - (unsigned long)*pos;
2287 }
2288 }
2289
2290 /*
2291 * Are we about to exceed the fs block limit ?
2292 *
2293 * If we have written data it becomes a short write. If we have
2294 * exceeded without writing data we send a signal and return EFBIG.
2295 * Linus frestrict idea will clean these up nicely..
2296 */
2297 if (likely(!isblk)) {
2298 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2299 if (*count || *pos > inode->i_sb->s_maxbytes) {
2300 return -EFBIG;
2301 }
2302 /* zero-length writes at ->s_maxbytes are OK */
2303 }
2304
2305 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2306 *count = inode->i_sb->s_maxbytes - *pos;
2307 } else {
2308 #ifdef CONFIG_BLOCK
2309 loff_t isize;
2310 if (bdev_read_only(I_BDEV(inode)))
2311 return -EPERM;
2312 isize = i_size_read(inode);
2313 if (*pos >= isize) {
2314 if (*count || *pos > isize)
2315 return -ENOSPC;
2316 }
2317
2318 if (*pos + *count > isize)
2319 *count = isize - *pos;
2320 #else
2321 return -EPERM;
2322 #endif
2323 }
2324 return 0;
2325 }
2326 EXPORT_SYMBOL(generic_write_checks);
2327
2328 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2329 loff_t pos, unsigned len, unsigned flags,
2330 struct page **pagep, void **fsdata)
2331 {
2332 const struct address_space_operations *aops = mapping->a_ops;
2333
2334 return aops->write_begin(file, mapping, pos, len, flags,
2335 pagep, fsdata);
2336 }
2337 EXPORT_SYMBOL(pagecache_write_begin);
2338
2339 int pagecache_write_end(struct file *file, struct address_space *mapping,
2340 loff_t pos, unsigned len, unsigned copied,
2341 struct page *page, void *fsdata)
2342 {
2343 const struct address_space_operations *aops = mapping->a_ops;
2344
2345 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2346 }
2347 EXPORT_SYMBOL(pagecache_write_end);
2348
2349 ssize_t
2350 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2351 {
2352 struct file *file = iocb->ki_filp;
2353 struct address_space *mapping = file->f_mapping;
2354 struct inode *inode = mapping->host;
2355 ssize_t written;
2356 size_t write_len;
2357 pgoff_t end;
2358 struct iov_iter data;
2359
2360 write_len = iov_iter_count(from);
2361 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2362
2363 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2364 if (written)
2365 goto out;
2366
2367 /*
2368 * After a write we want buffered reads to be sure to go to disk to get
2369 * the new data. We invalidate clean cached page from the region we're
2370 * about to write. We do this *before* the write so that we can return
2371 * without clobbering -EIOCBQUEUED from ->direct_IO().
2372 */
2373 if (mapping->nrpages) {
2374 written = invalidate_inode_pages2_range(mapping,
2375 pos >> PAGE_CACHE_SHIFT, end);
2376 /*
2377 * If a page can not be invalidated, return 0 to fall back
2378 * to buffered write.
2379 */
2380 if (written) {
2381 if (written == -EBUSY)
2382 return 0;
2383 goto out;
2384 }
2385 }
2386
2387 data = *from;
2388 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2389
2390 /*
2391 * Finally, try again to invalidate clean pages which might have been
2392 * cached by non-direct readahead, or faulted in by get_user_pages()
2393 * if the source of the write was an mmap'ed region of the file
2394 * we're writing. Either one is a pretty crazy thing to do,
2395 * so we don't support it 100%. If this invalidation
2396 * fails, tough, the write still worked...
2397 */
2398 if (mapping->nrpages) {
2399 invalidate_inode_pages2_range(mapping,
2400 pos >> PAGE_CACHE_SHIFT, end);
2401 }
2402
2403 if (written > 0) {
2404 pos += written;
2405 iov_iter_advance(from, written);
2406 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2407 i_size_write(inode, pos);
2408 mark_inode_dirty(inode);
2409 }
2410 iocb->ki_pos = pos;
2411 }
2412 out:
2413 return written;
2414 }
2415 EXPORT_SYMBOL(generic_file_direct_write);
2416
2417 /*
2418 * Find or create a page at the given pagecache position. Return the locked
2419 * page. This function is specifically for buffered writes.
2420 */
2421 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2422 pgoff_t index, unsigned flags)
2423 {
2424 struct page *page;
2425 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2426
2427 if (flags & AOP_FLAG_NOFS)
2428 fgp_flags |= FGP_NOFS;
2429
2430 page = pagecache_get_page(mapping, index, fgp_flags,
2431 mapping_gfp_mask(mapping));
2432 if (page)
2433 wait_for_stable_page(page);
2434
2435 return page;
2436 }
2437 EXPORT_SYMBOL(grab_cache_page_write_begin);
2438
2439 ssize_t generic_perform_write(struct file *file,
2440 struct iov_iter *i, loff_t pos)
2441 {
2442 struct address_space *mapping = file->f_mapping;
2443 const struct address_space_operations *a_ops = mapping->a_ops;
2444 long status = 0;
2445 ssize_t written = 0;
2446 unsigned int flags = 0;
2447
2448 /*
2449 * Copies from kernel address space cannot fail (NFSD is a big user).
2450 */
2451 if (segment_eq(get_fs(), KERNEL_DS))
2452 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2453
2454 do {
2455 struct page *page;
2456 unsigned long offset; /* Offset into pagecache page */
2457 unsigned long bytes; /* Bytes to write to page */
2458 size_t copied; /* Bytes copied from user */
2459 void *fsdata;
2460
2461 offset = (pos & (PAGE_CACHE_SIZE - 1));
2462 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2463 iov_iter_count(i));
2464
2465 again:
2466 /*
2467 * Bring in the user page that we will copy from _first_.
2468 * Otherwise there's a nasty deadlock on copying from the
2469 * same page as we're writing to, without it being marked
2470 * up-to-date.
2471 *
2472 * Not only is this an optimisation, but it is also required
2473 * to check that the address is actually valid, when atomic
2474 * usercopies are used, below.
2475 */
2476 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2477 status = -EFAULT;
2478 break;
2479 }
2480
2481 if (fatal_signal_pending(current)) {
2482 status = -EINTR;
2483 break;
2484 }
2485
2486 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2487 &page, &fsdata);
2488 if (unlikely(status < 0))
2489 break;
2490
2491 if (mapping_writably_mapped(mapping))
2492 flush_dcache_page(page);
2493
2494 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2495 flush_dcache_page(page);
2496
2497 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2498 page, fsdata);
2499 if (unlikely(status < 0))
2500 break;
2501 copied = status;
2502
2503 cond_resched();
2504
2505 iov_iter_advance(i, copied);
2506 if (unlikely(copied == 0)) {
2507 /*
2508 * If we were unable to copy any data at all, we must
2509 * fall back to a single segment length write.
2510 *
2511 * If we didn't fallback here, we could livelock
2512 * because not all segments in the iov can be copied at
2513 * once without a pagefault.
2514 */
2515 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2516 iov_iter_single_seg_count(i));
2517 goto again;
2518 }
2519 pos += copied;
2520 written += copied;
2521
2522 balance_dirty_pages_ratelimited(mapping);
2523 } while (iov_iter_count(i));
2524
2525 return written ? written : status;
2526 }
2527 EXPORT_SYMBOL(generic_perform_write);
2528
2529 /**
2530 * __generic_file_write_iter - write data to a file
2531 * @iocb: IO state structure (file, offset, etc.)
2532 * @from: iov_iter with data to write
2533 *
2534 * This function does all the work needed for actually writing data to a
2535 * file. It does all basic checks, removes SUID from the file, updates
2536 * modification times and calls proper subroutines depending on whether we
2537 * do direct IO or a standard buffered write.
2538 *
2539 * It expects i_mutex to be grabbed unless we work on a block device or similar
2540 * object which does not need locking at all.
2541 *
2542 * This function does *not* take care of syncing data in case of O_SYNC write.
2543 * A caller has to handle it. This is mainly due to the fact that we want to
2544 * avoid syncing under i_mutex.
2545 */
2546 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2547 {
2548 struct file *file = iocb->ki_filp;
2549 struct address_space * mapping = file->f_mapping;
2550 struct inode *inode = mapping->host;
2551 loff_t pos = iocb->ki_pos;
2552 ssize_t written = 0;
2553 ssize_t err;
2554 ssize_t status;
2555 size_t count = iov_iter_count(from);
2556
2557 /* We can write back this queue in page reclaim */
2558 current->backing_dev_info = mapping->backing_dev_info;
2559 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2560 if (err)
2561 goto out;
2562
2563 if (count == 0)
2564 goto out;
2565
2566 iov_iter_truncate(from, count);
2567
2568 err = file_remove_suid(file);
2569 if (err)
2570 goto out;
2571
2572 err = file_update_time(file);
2573 if (err)
2574 goto out;
2575
2576 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2577 if (unlikely(file->f_flags & O_DIRECT)) {
2578 loff_t endbyte;
2579
2580 written = generic_file_direct_write(iocb, from, pos);
2581 if (written < 0 || written == count)
2582 goto out;
2583
2584 /*
2585 * direct-io write to a hole: fall through to buffered I/O
2586 * for completing the rest of the request.
2587 */
2588 pos += written;
2589 count -= written;
2590
2591 status = generic_perform_write(file, from, pos);
2592 /*
2593 * If generic_perform_write() returned a synchronous error
2594 * then we want to return the number of bytes which were
2595 * direct-written, or the error code if that was zero. Note
2596 * that this differs from normal direct-io semantics, which
2597 * will return -EFOO even if some bytes were written.
2598 */
2599 if (unlikely(status < 0)) {
2600 err = status;
2601 goto out;
2602 }
2603 iocb->ki_pos = pos + status;
2604 /*
2605 * We need to ensure that the page cache pages are written to
2606 * disk and invalidated to preserve the expected O_DIRECT
2607 * semantics.
2608 */
2609 endbyte = pos + status - 1;
2610 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2611 if (err == 0) {
2612 written += status;
2613 invalidate_mapping_pages(mapping,
2614 pos >> PAGE_CACHE_SHIFT,
2615 endbyte >> PAGE_CACHE_SHIFT);
2616 } else {
2617 /*
2618 * We don't know how much we wrote, so just return
2619 * the number of bytes which were direct-written
2620 */
2621 }
2622 } else {
2623 written = generic_perform_write(file, from, pos);
2624 if (likely(written >= 0))
2625 iocb->ki_pos = pos + written;
2626 }
2627 out:
2628 current->backing_dev_info = NULL;
2629 return written ? written : err;
2630 }
2631 EXPORT_SYMBOL(__generic_file_write_iter);
2632
2633 /**
2634 * generic_file_write_iter - write data to a file
2635 * @iocb: IO state structure
2636 * @from: iov_iter with data to write
2637 *
2638 * This is a wrapper around __generic_file_write_iter() to be used by most
2639 * filesystems. It takes care of syncing the file in case of O_SYNC file
2640 * and acquires i_mutex as needed.
2641 */
2642 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2643 {
2644 struct file *file = iocb->ki_filp;
2645 struct inode *inode = file->f_mapping->host;
2646 ssize_t ret;
2647
2648 mutex_lock(&inode->i_mutex);
2649 ret = __generic_file_write_iter(iocb, from);
2650 mutex_unlock(&inode->i_mutex);
2651
2652 if (ret > 0) {
2653 ssize_t err;
2654
2655 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2656 if (err < 0)
2657 ret = err;
2658 }
2659 return ret;
2660 }
2661 EXPORT_SYMBOL(generic_file_write_iter);
2662
2663 /**
2664 * try_to_release_page() - release old fs-specific metadata on a page
2665 *
2666 * @page: the page which the kernel is trying to free
2667 * @gfp_mask: memory allocation flags (and I/O mode)
2668 *
2669 * The address_space is to try to release any data against the page
2670 * (presumably at page->private). If the release was successful, return `1'.
2671 * Otherwise return zero.
2672 *
2673 * This may also be called if PG_fscache is set on a page, indicating that the
2674 * page is known to the local caching routines.
2675 *
2676 * The @gfp_mask argument specifies whether I/O may be performed to release
2677 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2678 *
2679 */
2680 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2681 {
2682 struct address_space * const mapping = page->mapping;
2683
2684 BUG_ON(!PageLocked(page));
2685 if (PageWriteback(page))
2686 return 0;
2687
2688 if (mapping && mapping->a_ops->releasepage)
2689 return mapping->a_ops->releasepage(page, gfp_mask);
2690 return try_to_free_buffers(page);
2691 }
2692
2693 EXPORT_SYMBOL(try_to_release_page);