]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/filemap.c
MAINTAINERS: create an entry for exportfs
[thirdparty/kernel/linux.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
50 #include "internal.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
54
55 /*
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59
60 #include <asm/mman.h>
61
62 #include "swap.h"
63
64 /*
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
66 * though.
67 *
68 * Shared mappings now work. 15.8.1995 Bruno.
69 *
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72 *
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 */
75
76 /*
77 * Lock ordering:
78 *
79 * ->i_mmap_rwsem (truncate_pagecache)
80 * ->private_lock (__free_pte->block_dirty_folio)
81 * ->swap_lock (exclusive_swap_page, others)
82 * ->i_pages lock
83 *
84 * ->i_rwsem
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
87 *
88 * ->mmap_lock
89 * ->i_mmap_rwsem
90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
92 *
93 * ->mmap_lock
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
96 *
97 * ->i_rwsem (generic_perform_write)
98 * ->mmap_lock (fault_in_readable->do_page_fault)
99 *
100 * bdi->wb.list_lock
101 * sb_lock (fs/fs-writeback.c)
102 * ->i_pages lock (__sync_single_inode)
103 *
104 * ->i_mmap_rwsem
105 * ->anon_vma.lock (vma_merge)
106 *
107 * ->anon_vma.lock
108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
109 *
110 * ->page_table_lock or pte_lock
111 * ->swap_lock (try_to_unmap_one)
112 * ->private_lock (try_to_unmap_one)
113 * ->i_pages lock (try_to_unmap_one)
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
116 * ->private_lock (page_remove_rmap->set_page_dirty)
117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
123 * ->private_lock (zap_pte_range->block_dirty_folio)
124 */
125
126 static void page_cache_delete(struct address_space *mapping,
127 struct folio *folio, void *shadow)
128 {
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
131
132 mapping_set_update(&xas, mapping);
133
134 /* hugetlb pages are represented by a single entry in the xarray */
135 if (!folio_test_hugetlb(folio)) {
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
138 }
139
140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
144
145 folio->mapping = NULL;
146 /* Leave page->index set: truncation lookup relies upon it */
147 mapping->nrpages -= nr;
148 }
149
150 static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
152 {
153 long nr;
154
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = page_mapcount(&folio->page);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 page_mapcount_reset(&folio->page);
174 folio_ref_sub(folio, mapcount);
175 }
176 }
177 }
178
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
181 return;
182
183 nr = folio_nr_pages(folio);
184
185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 filemap_nr_thps_dec(mapping);
193 }
194
195 /*
196 * At this point folio must be either written or cleaned by
197 * truncate. Dirty folio here signals a bug and loss of
198 * unwritten data - on ordinary filesystems.
199 *
200 * But it's harmless on in-memory filesystems like tmpfs; and can
201 * occur when a driver which did get_user_pages() sets page dirty
202 * before putting it, while the inode is being finally evicted.
203 *
204 * Below fixes dirty accounting after removing the folio entirely
205 * but leaves the dirty flag set: it has no effect for truncated
206 * folio and anyway will be cleared before returning folio to
207 * buddy allocator.
208 */
209 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 mapping_can_writeback(mapping)))
211 folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 }
213
214 /*
215 * Delete a page from the page cache and free it. Caller has to make
216 * sure the page is locked and that nobody else uses it - or that usage
217 * is safe. The caller must hold the i_pages lock.
218 */
219 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 {
221 struct address_space *mapping = folio->mapping;
222
223 trace_mm_filemap_delete_from_page_cache(folio);
224 filemap_unaccount_folio(mapping, folio);
225 page_cache_delete(mapping, folio, shadow);
226 }
227
228 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 {
230 void (*free_folio)(struct folio *);
231 int refs = 1;
232
233 free_folio = mapping->a_ops->free_folio;
234 if (free_folio)
235 free_folio(folio);
236
237 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 refs = folio_nr_pages(folio);
239 folio_put_refs(folio, refs);
240 }
241
242 /**
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
245 *
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
249 */
250 void filemap_remove_folio(struct folio *folio)
251 {
252 struct address_space *mapping = folio->mapping;
253
254 BUG_ON(!folio_test_locked(folio));
255 spin_lock(&mapping->host->i_lock);
256 xa_lock_irq(&mapping->i_pages);
257 __filemap_remove_folio(folio, NULL);
258 xa_unlock_irq(&mapping->i_pages);
259 if (mapping_shrinkable(mapping))
260 inode_add_lru(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
262
263 filemap_free_folio(mapping, folio);
264 }
265
266 /*
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
270 *
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
276 *
277 * The function expects the i_pages lock to be held.
278 */
279 static void page_cache_delete_batch(struct address_space *mapping,
280 struct folio_batch *fbatch)
281 {
282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 long total_pages = 0;
284 int i = 0;
285 struct folio *folio;
286
287 mapping_set_update(&xas, mapping);
288 xas_for_each(&xas, folio, ULONG_MAX) {
289 if (i >= folio_batch_count(fbatch))
290 break;
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
293 if (xa_is_value(folio))
294 continue;
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
302 if (folio != fbatch->folios[i]) {
303 VM_BUG_ON_FOLIO(folio->index >
304 fbatch->folios[i]->index, folio);
305 continue;
306 }
307
308 WARN_ON_ONCE(!folio_test_locked(folio));
309
310 folio->mapping = NULL;
311 /* Leave folio->index set: truncation lookup relies on it */
312
313 i++;
314 xas_store(&xas, NULL);
315 total_pages += folio_nr_pages(folio);
316 }
317 mapping->nrpages -= total_pages;
318 }
319
320 void delete_from_page_cache_batch(struct address_space *mapping,
321 struct folio_batch *fbatch)
322 {
323 int i;
324
325 if (!folio_batch_count(fbatch))
326 return;
327
328 spin_lock(&mapping->host->i_lock);
329 xa_lock_irq(&mapping->i_pages);
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
332
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
335 }
336 page_cache_delete_batch(mapping, fbatch);
337 xa_unlock_irq(&mapping->i_pages);
338 if (mapping_shrinkable(mapping))
339 inode_add_lru(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
341
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368 }
369
370 /**
371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372 * @mapping: address space structure to write
373 * @wbc: the writeback_control controlling the writeout
374 *
375 * Call writepages on the mapping using the provided wbc to control the
376 * writeout.
377 *
378 * Return: %0 on success, negative error code otherwise.
379 */
380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 struct writeback_control *wbc)
382 {
383 int ret;
384
385 if (!mapping_can_writeback(mapping) ||
386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 ret = do_writepages(mapping, wbc);
391 wbc_detach_inode(wbc);
392 return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395
396 /**
397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398 * @mapping: address space structure to write
399 * @start: offset in bytes where the range starts
400 * @end: offset in bytes where the range ends (inclusive)
401 * @sync_mode: enable synchronous operation
402 *
403 * Start writeback against all of a mapping's dirty pages that lie
404 * within the byte offsets <start, end> inclusive.
405 *
406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407 * opposed to a regular memory cleansing writeback. The difference between
408 * these two operations is that if a dirty page/buffer is encountered, it must
409 * be waited upon, and not just skipped over.
410 *
411 * Return: %0 on success, negative error code otherwise.
412 */
413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 loff_t end, int sync_mode)
415 {
416 struct writeback_control wbc = {
417 .sync_mode = sync_mode,
418 .nr_to_write = LONG_MAX,
419 .range_start = start,
420 .range_end = end,
421 };
422
423 return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct folio *folio;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 folio = xas_find(&xas, max);
485 if (xas_retry(&xas, folio))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(folio))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return folio != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct folio_batch fbatch;
509 unsigned nr_folios;
510
511 folio_batch_init(&fbatch);
512
513 while (index <= end) {
514 unsigned i;
515
516 nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 PAGECACHE_TAG_WRITEBACK, &fbatch);
518
519 if (!nr_folios)
520 break;
521
522 for (i = 0; i < nr_folios; i++) {
523 struct folio *folio = fbatch.folios[i];
524
525 folio_wait_writeback(folio);
526 folio_clear_error(folio);
527 }
528 folio_batch_release(&fbatch);
529 cond_resched();
530 }
531 }
532
533 /**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
546 *
547 * Return: error status of the address space.
548 */
549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551 {
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
554 }
555 EXPORT_SYMBOL(filemap_fdatawait_range);
556
557 /**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573 {
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576 }
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
579 /**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 */
595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 {
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601 }
602 EXPORT_SYMBOL(file_fdatawait_range);
603
604 /**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
615 *
616 * Return: error status of the address space.
617 */
618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 {
620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 return filemap_check_and_keep_errors(mapping);
622 }
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624
625 /* Returns true if writeback might be needed or already in progress. */
626 static bool mapping_needs_writeback(struct address_space *mapping)
627 {
628 return mapping->nrpages;
629 }
630
631 bool filemap_range_has_writeback(struct address_space *mapping,
632 loff_t start_byte, loff_t end_byte)
633 {
634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 pgoff_t max = end_byte >> PAGE_SHIFT;
636 struct folio *folio;
637
638 if (end_byte < start_byte)
639 return false;
640
641 rcu_read_lock();
642 xas_for_each(&xas, folio, max) {
643 if (xas_retry(&xas, folio))
644 continue;
645 if (xa_is_value(folio))
646 continue;
647 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 folio_test_writeback(folio))
649 break;
650 }
651 rcu_read_unlock();
652 return folio != NULL;
653 }
654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655
656 /**
657 * filemap_write_and_wait_range - write out & wait on a file range
658 * @mapping: the address_space for the pages
659 * @lstart: offset in bytes where the range starts
660 * @lend: offset in bytes where the range ends (inclusive)
661 *
662 * Write out and wait upon file offsets lstart->lend, inclusive.
663 *
664 * Note that @lend is inclusive (describes the last byte to be written) so
665 * that this function can be used to write to the very end-of-file (end = -1).
666 *
667 * Return: error status of the address space.
668 */
669 int filemap_write_and_wait_range(struct address_space *mapping,
670 loff_t lstart, loff_t lend)
671 {
672 int err = 0, err2;
673
674 if (lend < lstart)
675 return 0;
676
677 if (mapping_needs_writeback(mapping)) {
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
680 /*
681 * Even if the above returned error, the pages may be
682 * written partially (e.g. -ENOSPC), so we wait for it.
683 * But the -EIO is special case, it may indicate the worst
684 * thing (e.g. bug) happened, so we avoid waiting for it.
685 */
686 if (err != -EIO)
687 __filemap_fdatawait_range(mapping, lstart, lend);
688 }
689 err2 = filemap_check_errors(mapping);
690 if (!err)
691 err = err2;
692 return err;
693 }
694 EXPORT_SYMBOL(filemap_write_and_wait_range);
695
696 void __filemap_set_wb_err(struct address_space *mapping, int err)
697 {
698 errseq_t eseq = errseq_set(&mapping->wb_err, err);
699
700 trace_filemap_set_wb_err(mapping, eseq);
701 }
702 EXPORT_SYMBOL(__filemap_set_wb_err);
703
704 /**
705 * file_check_and_advance_wb_err - report wb error (if any) that was previously
706 * and advance wb_err to current one
707 * @file: struct file on which the error is being reported
708 *
709 * When userland calls fsync (or something like nfsd does the equivalent), we
710 * want to report any writeback errors that occurred since the last fsync (or
711 * since the file was opened if there haven't been any).
712 *
713 * Grab the wb_err from the mapping. If it matches what we have in the file,
714 * then just quickly return 0. The file is all caught up.
715 *
716 * If it doesn't match, then take the mapping value, set the "seen" flag in
717 * it and try to swap it into place. If it works, or another task beat us
718 * to it with the new value, then update the f_wb_err and return the error
719 * portion. The error at this point must be reported via proper channels
720 * (a'la fsync, or NFS COMMIT operation, etc.).
721 *
722 * While we handle mapping->wb_err with atomic operations, the f_wb_err
723 * value is protected by the f_lock since we must ensure that it reflects
724 * the latest value swapped in for this file descriptor.
725 *
726 * Return: %0 on success, negative error code otherwise.
727 */
728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
752 return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756 /**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
769 *
770 * Return: %0 on success, negative error code otherwise.
771 */
772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773 {
774 int err = 0, err2;
775 struct address_space *mapping = file->f_mapping;
776
777 if (lend < lstart)
778 return 0;
779
780 if (mapping_needs_writeback(mapping)) {
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791 }
792 EXPORT_SYMBOL(file_write_and_wait_range);
793
794 /**
795 * replace_page_cache_folio - replace a pagecache folio with a new one
796 * @old: folio to be replaced
797 * @new: folio to replace with
798 *
799 * This function replaces a folio in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new folio and
801 * drops it for the old folio. Both the old and new folios must be
802 * locked. This function does not add the new folio to the LRU, the
803 * caller must do that.
804 *
805 * The remove + add is atomic. This function cannot fail.
806 */
807 void replace_page_cache_folio(struct folio *old, struct folio *new)
808 {
809 struct address_space *mapping = old->mapping;
810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
813
814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 VM_BUG_ON_FOLIO(new->mapping, new);
817
818 folio_get(new);
819 new->mapping = mapping;
820 new->index = offset;
821
822 mem_cgroup_migrate(old, new);
823
824 xas_lock_irq(&xas);
825 xas_store(&xas, new);
826
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
829 if (!folio_test_hugetlb(old))
830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 if (!folio_test_hugetlb(new))
832 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 if (folio_test_swapbacked(old))
834 __lruvec_stat_sub_folio(old, NR_SHMEM);
835 if (folio_test_swapbacked(new))
836 __lruvec_stat_add_folio(new, NR_SHMEM);
837 xas_unlock_irq(&xas);
838 if (free_folio)
839 free_folio(old);
840 folio_put(old);
841 }
842 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
843
844 noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 {
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
849 bool charged = false;
850 long nr = 1;
851
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 mapping_set_update(&xas, mapping);
855
856 if (!huge) {
857 int error = mem_cgroup_charge(folio, NULL, gfp);
858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 if (error)
860 return error;
861 charged = true;
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
864 }
865
866 gfp &= GFP_RECLAIM_MASK;
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
870
871 do {
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
874
875 if (order > folio_order(folio))
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 order, gfp);
878 xas_lock_irq(&xas);
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 }
886
887 if (old) {
888 if (shadowp)
889 *shadowp = old;
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
892 if (order > folio_order(folio)) {
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
895 xas_split(&xas, old, order);
896 xas_reset(&xas);
897 }
898 }
899
900 xas_store(&xas, folio);
901 if (xas_error(&xas))
902 goto unlock;
903
904 mapping->nrpages += nr;
905
906 /* hugetlb pages do not participate in page cache accounting */
907 if (!huge) {
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
911 NR_FILE_THPS, nr);
912 }
913 unlock:
914 xas_unlock_irq(&xas);
915 } while (xas_nomem(&xas, gfp));
916
917 if (xas_error(&xas))
918 goto error;
919
920 trace_mm_filemap_add_to_page_cache(folio);
921 return 0;
922 error:
923 if (charged)
924 mem_cgroup_uncharge(folio);
925 folio->mapping = NULL;
926 /* Leave page->index set: truncation relies upon it */
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
929 }
930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931
932 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
933 pgoff_t index, gfp_t gfp)
934 {
935 void *shadow = NULL;
936 int ret;
937
938 __folio_set_locked(folio);
939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
940 if (unlikely(ret))
941 __folio_clear_locked(folio);
942 else {
943 /*
944 * The folio might have been evicted from cache only
945 * recently, in which case it should be activated like
946 * any other repeatedly accessed folio.
947 * The exception is folios getting rewritten; evicting other
948 * data from the working set, only to cache data that will
949 * get overwritten with something else, is a waste of memory.
950 */
951 WARN_ON_ONCE(folio_test_active(folio));
952 if (!(gfp & __GFP_WRITE) && shadow)
953 workingset_refault(folio, shadow);
954 folio_add_lru(folio);
955 }
956 return ret;
957 }
958 EXPORT_SYMBOL_GPL(filemap_add_folio);
959
960 #ifdef CONFIG_NUMA
961 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
962 {
963 int n;
964 struct folio *folio;
965
966 if (cpuset_do_page_mem_spread()) {
967 unsigned int cpuset_mems_cookie;
968 do {
969 cpuset_mems_cookie = read_mems_allowed_begin();
970 n = cpuset_mem_spread_node();
971 folio = __folio_alloc_node(gfp, order, n);
972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
973
974 return folio;
975 }
976 return folio_alloc(gfp, order);
977 }
978 EXPORT_SYMBOL(filemap_alloc_folio);
979 #endif
980
981 /*
982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
983 *
984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
985 *
986 * @mapping1: the first mapping to lock
987 * @mapping2: the second mapping to lock
988 */
989 void filemap_invalidate_lock_two(struct address_space *mapping1,
990 struct address_space *mapping2)
991 {
992 if (mapping1 > mapping2)
993 swap(mapping1, mapping2);
994 if (mapping1)
995 down_write(&mapping1->invalidate_lock);
996 if (mapping2 && mapping1 != mapping2)
997 down_write_nested(&mapping2->invalidate_lock, 1);
998 }
999 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000
1001 /*
1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1003 *
1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1005 *
1006 * @mapping1: the first mapping to unlock
1007 * @mapping2: the second mapping to unlock
1008 */
1009 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1011 {
1012 if (mapping1)
1013 up_write(&mapping1->invalidate_lock);
1014 if (mapping2 && mapping1 != mapping2)
1015 up_write(&mapping2->invalidate_lock);
1016 }
1017 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018
1019 /*
1020 * In order to wait for pages to become available there must be
1021 * waitqueues associated with pages. By using a hash table of
1022 * waitqueues where the bucket discipline is to maintain all
1023 * waiters on the same queue and wake all when any of the pages
1024 * become available, and for the woken contexts to check to be
1025 * sure the appropriate page became available, this saves space
1026 * at a cost of "thundering herd" phenomena during rare hash
1027 * collisions.
1028 */
1029 #define PAGE_WAIT_TABLE_BITS 8
1030 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1031 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1032
1033 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1034 {
1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1036 }
1037
1038 void __init pagecache_init(void)
1039 {
1040 int i;
1041
1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1043 init_waitqueue_head(&folio_wait_table[i]);
1044
1045 page_writeback_init();
1046 }
1047
1048 /*
1049 * The page wait code treats the "wait->flags" somewhat unusually, because
1050 * we have multiple different kinds of waits, not just the usual "exclusive"
1051 * one.
1052 *
1053 * We have:
1054 *
1055 * (a) no special bits set:
1056 *
1057 * We're just waiting for the bit to be released, and when a waker
1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1059 * and remove it from the wait queue.
1060 *
1061 * Simple and straightforward.
1062 *
1063 * (b) WQ_FLAG_EXCLUSIVE:
1064 *
1065 * The waiter is waiting to get the lock, and only one waiter should
1066 * be woken up to avoid any thundering herd behavior. We'll set the
1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1068 *
1069 * This is the traditional exclusive wait.
1070 *
1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1072 *
1073 * The waiter is waiting to get the bit, and additionally wants the
1074 * lock to be transferred to it for fair lock behavior. If the lock
1075 * cannot be taken, we stop walking the wait queue without waking
1076 * the waiter.
1077 *
1078 * This is the "fair lock handoff" case, and in addition to setting
1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1080 * that it now has the lock.
1081 */
1082 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1083 {
1084 unsigned int flags;
1085 struct wait_page_key *key = arg;
1086 struct wait_page_queue *wait_page
1087 = container_of(wait, struct wait_page_queue, wait);
1088
1089 if (!wake_page_match(wait_page, key))
1090 return 0;
1091
1092 /*
1093 * If it's a lock handoff wait, we get the bit for it, and
1094 * stop walking (and do not wake it up) if we can't.
1095 */
1096 flags = wait->flags;
1097 if (flags & WQ_FLAG_EXCLUSIVE) {
1098 if (test_bit(key->bit_nr, &key->folio->flags))
1099 return -1;
1100 if (flags & WQ_FLAG_CUSTOM) {
1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1102 return -1;
1103 flags |= WQ_FLAG_DONE;
1104 }
1105 }
1106
1107 /*
1108 * We are holding the wait-queue lock, but the waiter that
1109 * is waiting for this will be checking the flags without
1110 * any locking.
1111 *
1112 * So update the flags atomically, and wake up the waiter
1113 * afterwards to avoid any races. This store-release pairs
1114 * with the load-acquire in folio_wait_bit_common().
1115 */
1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1117 wake_up_state(wait->private, mode);
1118
1119 /*
1120 * Ok, we have successfully done what we're waiting for,
1121 * and we can unconditionally remove the wait entry.
1122 *
1123 * Note that this pairs with the "finish_wait()" in the
1124 * waiter, and has to be the absolute last thing we do.
1125 * After this list_del_init(&wait->entry) the wait entry
1126 * might be de-allocated and the process might even have
1127 * exited.
1128 */
1129 list_del_init_careful(&wait->entry);
1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1131 }
1132
1133 static void folio_wake_bit(struct folio *folio, int bit_nr)
1134 {
1135 wait_queue_head_t *q = folio_waitqueue(folio);
1136 struct wait_page_key key;
1137 unsigned long flags;
1138 wait_queue_entry_t bookmark;
1139
1140 key.folio = folio;
1141 key.bit_nr = bit_nr;
1142 key.page_match = 0;
1143
1144 bookmark.flags = 0;
1145 bookmark.private = NULL;
1146 bookmark.func = NULL;
1147 INIT_LIST_HEAD(&bookmark.entry);
1148
1149 spin_lock_irqsave(&q->lock, flags);
1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1151
1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1153 /*
1154 * Take a breather from holding the lock,
1155 * allow pages that finish wake up asynchronously
1156 * to acquire the lock and remove themselves
1157 * from wait queue
1158 */
1159 spin_unlock_irqrestore(&q->lock, flags);
1160 cpu_relax();
1161 spin_lock_irqsave(&q->lock, flags);
1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1163 }
1164
1165 /*
1166 * It's possible to miss clearing waiters here, when we woke our page
1167 * waiters, but the hashed waitqueue has waiters for other pages on it.
1168 * That's okay, it's a rare case. The next waker will clear it.
1169 *
1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1171 * other), the flag may be cleared in the course of freeing the page;
1172 * but that is not required for correctness.
1173 */
1174 if (!waitqueue_active(q) || !key.page_match)
1175 folio_clear_waiters(folio);
1176
1177 spin_unlock_irqrestore(&q->lock, flags);
1178 }
1179
1180 static void folio_wake(struct folio *folio, int bit)
1181 {
1182 if (!folio_test_waiters(folio))
1183 return;
1184 folio_wake_bit(folio, bit);
1185 }
1186
1187 /*
1188 * A choice of three behaviors for folio_wait_bit_common():
1189 */
1190 enum behavior {
1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1192 * __folio_lock() waiting on then setting PG_locked.
1193 */
1194 SHARED, /* Hold ref to page and check the bit when woken, like
1195 * folio_wait_writeback() waiting on PG_writeback.
1196 */
1197 DROP, /* Drop ref to page before wait, no check when woken,
1198 * like folio_put_wait_locked() on PG_locked.
1199 */
1200 };
1201
1202 /*
1203 * Attempt to check (or get) the folio flag, and mark us done
1204 * if successful.
1205 */
1206 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1207 struct wait_queue_entry *wait)
1208 {
1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1210 if (test_and_set_bit(bit_nr, &folio->flags))
1211 return false;
1212 } else if (test_bit(bit_nr, &folio->flags))
1213 return false;
1214
1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1216 return true;
1217 }
1218
1219 /* How many times do we accept lock stealing from under a waiter? */
1220 int sysctl_page_lock_unfairness = 5;
1221
1222 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1223 int state, enum behavior behavior)
1224 {
1225 wait_queue_head_t *q = folio_waitqueue(folio);
1226 int unfairness = sysctl_page_lock_unfairness;
1227 struct wait_page_queue wait_page;
1228 wait_queue_entry_t *wait = &wait_page.wait;
1229 bool thrashing = false;
1230 unsigned long pflags;
1231 bool in_thrashing;
1232
1233 if (bit_nr == PG_locked &&
1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1235 delayacct_thrashing_start(&in_thrashing);
1236 psi_memstall_enter(&pflags);
1237 thrashing = true;
1238 }
1239
1240 init_wait(wait);
1241 wait->func = wake_page_function;
1242 wait_page.folio = folio;
1243 wait_page.bit_nr = bit_nr;
1244
1245 repeat:
1246 wait->flags = 0;
1247 if (behavior == EXCLUSIVE) {
1248 wait->flags = WQ_FLAG_EXCLUSIVE;
1249 if (--unfairness < 0)
1250 wait->flags |= WQ_FLAG_CUSTOM;
1251 }
1252
1253 /*
1254 * Do one last check whether we can get the
1255 * page bit synchronously.
1256 *
1257 * Do the folio_set_waiters() marking before that
1258 * to let any waker we _just_ missed know they
1259 * need to wake us up (otherwise they'll never
1260 * even go to the slow case that looks at the
1261 * page queue), and add ourselves to the wait
1262 * queue if we need to sleep.
1263 *
1264 * This part needs to be done under the queue
1265 * lock to avoid races.
1266 */
1267 spin_lock_irq(&q->lock);
1268 folio_set_waiters(folio);
1269 if (!folio_trylock_flag(folio, bit_nr, wait))
1270 __add_wait_queue_entry_tail(q, wait);
1271 spin_unlock_irq(&q->lock);
1272
1273 /*
1274 * From now on, all the logic will be based on
1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276 * see whether the page bit testing has already
1277 * been done by the wake function.
1278 *
1279 * We can drop our reference to the folio.
1280 */
1281 if (behavior == DROP)
1282 folio_put(folio);
1283
1284 /*
1285 * Note that until the "finish_wait()", or until
1286 * we see the WQ_FLAG_WOKEN flag, we need to
1287 * be very careful with the 'wait->flags', because
1288 * we may race with a waker that sets them.
1289 */
1290 for (;;) {
1291 unsigned int flags;
1292
1293 set_current_state(state);
1294
1295 /* Loop until we've been woken or interrupted */
1296 flags = smp_load_acquire(&wait->flags);
1297 if (!(flags & WQ_FLAG_WOKEN)) {
1298 if (signal_pending_state(state, current))
1299 break;
1300
1301 io_schedule();
1302 continue;
1303 }
1304
1305 /* If we were non-exclusive, we're done */
1306 if (behavior != EXCLUSIVE)
1307 break;
1308
1309 /* If the waker got the lock for us, we're done */
1310 if (flags & WQ_FLAG_DONE)
1311 break;
1312
1313 /*
1314 * Otherwise, if we're getting the lock, we need to
1315 * try to get it ourselves.
1316 *
1317 * And if that fails, we'll have to retry this all.
1318 */
1319 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1320 goto repeat;
1321
1322 wait->flags |= WQ_FLAG_DONE;
1323 break;
1324 }
1325
1326 /*
1327 * If a signal happened, this 'finish_wait()' may remove the last
1328 * waiter from the wait-queues, but the folio waiters bit will remain
1329 * set. That's ok. The next wakeup will take care of it, and trying
1330 * to do it here would be difficult and prone to races.
1331 */
1332 finish_wait(q, wait);
1333
1334 if (thrashing) {
1335 delayacct_thrashing_end(&in_thrashing);
1336 psi_memstall_leave(&pflags);
1337 }
1338
1339 /*
1340 * NOTE! The wait->flags weren't stable until we've done the
1341 * 'finish_wait()', and we could have exited the loop above due
1342 * to a signal, and had a wakeup event happen after the signal
1343 * test but before the 'finish_wait()'.
1344 *
1345 * So only after the finish_wait() can we reliably determine
1346 * if we got woken up or not, so we can now figure out the final
1347 * return value based on that state without races.
1348 *
1349 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1350 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1351 */
1352 if (behavior == EXCLUSIVE)
1353 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1354
1355 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1356 }
1357
1358 #ifdef CONFIG_MIGRATION
1359 /**
1360 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1361 * @entry: migration swap entry.
1362 * @ptl: already locked ptl. This function will drop the lock.
1363 *
1364 * Wait for a migration entry referencing the given page to be removed. This is
1365 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1366 * this can be called without taking a reference on the page. Instead this
1367 * should be called while holding the ptl for the migration entry referencing
1368 * the page.
1369 *
1370 * Returns after unlocking the ptl.
1371 *
1372 * This follows the same logic as folio_wait_bit_common() so see the comments
1373 * there.
1374 */
1375 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1376 __releases(ptl)
1377 {
1378 struct wait_page_queue wait_page;
1379 wait_queue_entry_t *wait = &wait_page.wait;
1380 bool thrashing = false;
1381 unsigned long pflags;
1382 bool in_thrashing;
1383 wait_queue_head_t *q;
1384 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1385
1386 q = folio_waitqueue(folio);
1387 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1388 delayacct_thrashing_start(&in_thrashing);
1389 psi_memstall_enter(&pflags);
1390 thrashing = true;
1391 }
1392
1393 init_wait(wait);
1394 wait->func = wake_page_function;
1395 wait_page.folio = folio;
1396 wait_page.bit_nr = PG_locked;
1397 wait->flags = 0;
1398
1399 spin_lock_irq(&q->lock);
1400 folio_set_waiters(folio);
1401 if (!folio_trylock_flag(folio, PG_locked, wait))
1402 __add_wait_queue_entry_tail(q, wait);
1403 spin_unlock_irq(&q->lock);
1404
1405 /*
1406 * If a migration entry exists for the page the migration path must hold
1407 * a valid reference to the page, and it must take the ptl to remove the
1408 * migration entry. So the page is valid until the ptl is dropped.
1409 */
1410 spin_unlock(ptl);
1411
1412 for (;;) {
1413 unsigned int flags;
1414
1415 set_current_state(TASK_UNINTERRUPTIBLE);
1416
1417 /* Loop until we've been woken or interrupted */
1418 flags = smp_load_acquire(&wait->flags);
1419 if (!(flags & WQ_FLAG_WOKEN)) {
1420 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1421 break;
1422
1423 io_schedule();
1424 continue;
1425 }
1426 break;
1427 }
1428
1429 finish_wait(q, wait);
1430
1431 if (thrashing) {
1432 delayacct_thrashing_end(&in_thrashing);
1433 psi_memstall_leave(&pflags);
1434 }
1435 }
1436 #endif
1437
1438 void folio_wait_bit(struct folio *folio, int bit_nr)
1439 {
1440 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1441 }
1442 EXPORT_SYMBOL(folio_wait_bit);
1443
1444 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1445 {
1446 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1447 }
1448 EXPORT_SYMBOL(folio_wait_bit_killable);
1449
1450 /**
1451 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1452 * @folio: The folio to wait for.
1453 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1454 *
1455 * The caller should hold a reference on @folio. They expect the page to
1456 * become unlocked relatively soon, but do not wish to hold up migration
1457 * (for example) by holding the reference while waiting for the folio to
1458 * come unlocked. After this function returns, the caller should not
1459 * dereference @folio.
1460 *
1461 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1462 */
1463 static int folio_put_wait_locked(struct folio *folio, int state)
1464 {
1465 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1466 }
1467
1468 /**
1469 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1470 * @folio: Folio defining the wait queue of interest
1471 * @waiter: Waiter to add to the queue
1472 *
1473 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1474 */
1475 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1476 {
1477 wait_queue_head_t *q = folio_waitqueue(folio);
1478 unsigned long flags;
1479
1480 spin_lock_irqsave(&q->lock, flags);
1481 __add_wait_queue_entry_tail(q, waiter);
1482 folio_set_waiters(folio);
1483 spin_unlock_irqrestore(&q->lock, flags);
1484 }
1485 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1486
1487 #ifndef clear_bit_unlock_is_negative_byte
1488
1489 /*
1490 * PG_waiters is the high bit in the same byte as PG_lock.
1491 *
1492 * On x86 (and on many other architectures), we can clear PG_lock and
1493 * test the sign bit at the same time. But if the architecture does
1494 * not support that special operation, we just do this all by hand
1495 * instead.
1496 *
1497 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1498 * being cleared, but a memory barrier should be unnecessary since it is
1499 * in the same byte as PG_locked.
1500 */
1501 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1502 {
1503 clear_bit_unlock(nr, mem);
1504 /* smp_mb__after_atomic(); */
1505 return test_bit(PG_waiters, mem);
1506 }
1507
1508 #endif
1509
1510 /**
1511 * folio_unlock - Unlock a locked folio.
1512 * @folio: The folio.
1513 *
1514 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1515 *
1516 * Context: May be called from interrupt or process context. May not be
1517 * called from NMI context.
1518 */
1519 void folio_unlock(struct folio *folio)
1520 {
1521 /* Bit 7 allows x86 to check the byte's sign bit */
1522 BUILD_BUG_ON(PG_waiters != 7);
1523 BUILD_BUG_ON(PG_locked > 7);
1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1526 folio_wake_bit(folio, PG_locked);
1527 }
1528 EXPORT_SYMBOL(folio_unlock);
1529
1530 /**
1531 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1532 * @folio: The folio.
1533 *
1534 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1535 * it. The folio reference held for PG_private_2 being set is released.
1536 *
1537 * This is, for example, used when a netfs folio is being written to a local
1538 * disk cache, thereby allowing writes to the cache for the same folio to be
1539 * serialised.
1540 */
1541 void folio_end_private_2(struct folio *folio)
1542 {
1543 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1544 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1545 folio_wake_bit(folio, PG_private_2);
1546 folio_put(folio);
1547 }
1548 EXPORT_SYMBOL(folio_end_private_2);
1549
1550 /**
1551 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1552 * @folio: The folio to wait on.
1553 *
1554 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1555 */
1556 void folio_wait_private_2(struct folio *folio)
1557 {
1558 while (folio_test_private_2(folio))
1559 folio_wait_bit(folio, PG_private_2);
1560 }
1561 EXPORT_SYMBOL(folio_wait_private_2);
1562
1563 /**
1564 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1565 * @folio: The folio to wait on.
1566 *
1567 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1568 * fatal signal is received by the calling task.
1569 *
1570 * Return:
1571 * - 0 if successful.
1572 * - -EINTR if a fatal signal was encountered.
1573 */
1574 int folio_wait_private_2_killable(struct folio *folio)
1575 {
1576 int ret = 0;
1577
1578 while (folio_test_private_2(folio)) {
1579 ret = folio_wait_bit_killable(folio, PG_private_2);
1580 if (ret < 0)
1581 break;
1582 }
1583
1584 return ret;
1585 }
1586 EXPORT_SYMBOL(folio_wait_private_2_killable);
1587
1588 /**
1589 * folio_end_writeback - End writeback against a folio.
1590 * @folio: The folio.
1591 */
1592 void folio_end_writeback(struct folio *folio)
1593 {
1594 /*
1595 * folio_test_clear_reclaim() could be used here but it is an
1596 * atomic operation and overkill in this particular case. Failing
1597 * to shuffle a folio marked for immediate reclaim is too mild
1598 * a gain to justify taking an atomic operation penalty at the
1599 * end of every folio writeback.
1600 */
1601 if (folio_test_reclaim(folio)) {
1602 folio_clear_reclaim(folio);
1603 folio_rotate_reclaimable(folio);
1604 }
1605
1606 /*
1607 * Writeback does not hold a folio reference of its own, relying
1608 * on truncation to wait for the clearing of PG_writeback.
1609 * But here we must make sure that the folio is not freed and
1610 * reused before the folio_wake().
1611 */
1612 folio_get(folio);
1613 if (!__folio_end_writeback(folio))
1614 BUG();
1615
1616 smp_mb__after_atomic();
1617 folio_wake(folio, PG_writeback);
1618 acct_reclaim_writeback(folio);
1619 folio_put(folio);
1620 }
1621 EXPORT_SYMBOL(folio_end_writeback);
1622
1623 /**
1624 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1625 * @folio: The folio to lock
1626 */
1627 void __folio_lock(struct folio *folio)
1628 {
1629 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1630 EXCLUSIVE);
1631 }
1632 EXPORT_SYMBOL(__folio_lock);
1633
1634 int __folio_lock_killable(struct folio *folio)
1635 {
1636 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1637 EXCLUSIVE);
1638 }
1639 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1640
1641 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1642 {
1643 struct wait_queue_head *q = folio_waitqueue(folio);
1644 int ret = 0;
1645
1646 wait->folio = folio;
1647 wait->bit_nr = PG_locked;
1648
1649 spin_lock_irq(&q->lock);
1650 __add_wait_queue_entry_tail(q, &wait->wait);
1651 folio_set_waiters(folio);
1652 ret = !folio_trylock(folio);
1653 /*
1654 * If we were successful now, we know we're still on the
1655 * waitqueue as we're still under the lock. This means it's
1656 * safe to remove and return success, we know the callback
1657 * isn't going to trigger.
1658 */
1659 if (!ret)
1660 __remove_wait_queue(q, &wait->wait);
1661 else
1662 ret = -EIOCBQUEUED;
1663 spin_unlock_irq(&q->lock);
1664 return ret;
1665 }
1666
1667 /*
1668 * Return values:
1669 * 0 - folio is locked.
1670 * non-zero - folio is not locked.
1671 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1672 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1673 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1674 *
1675 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1676 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1677 */
1678 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1679 {
1680 unsigned int flags = vmf->flags;
1681
1682 if (fault_flag_allow_retry_first(flags)) {
1683 /*
1684 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1685 * released even though returning VM_FAULT_RETRY.
1686 */
1687 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1688 return VM_FAULT_RETRY;
1689
1690 release_fault_lock(vmf);
1691 if (flags & FAULT_FLAG_KILLABLE)
1692 folio_wait_locked_killable(folio);
1693 else
1694 folio_wait_locked(folio);
1695 return VM_FAULT_RETRY;
1696 }
1697 if (flags & FAULT_FLAG_KILLABLE) {
1698 bool ret;
1699
1700 ret = __folio_lock_killable(folio);
1701 if (ret) {
1702 release_fault_lock(vmf);
1703 return VM_FAULT_RETRY;
1704 }
1705 } else {
1706 __folio_lock(folio);
1707 }
1708
1709 return 0;
1710 }
1711
1712 /**
1713 * page_cache_next_miss() - Find the next gap in the page cache.
1714 * @mapping: Mapping.
1715 * @index: Index.
1716 * @max_scan: Maximum range to search.
1717 *
1718 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1719 * gap with the lowest index.
1720 *
1721 * This function may be called under the rcu_read_lock. However, this will
1722 * not atomically search a snapshot of the cache at a single point in time.
1723 * For example, if a gap is created at index 5, then subsequently a gap is
1724 * created at index 10, page_cache_next_miss covering both indices may
1725 * return 10 if called under the rcu_read_lock.
1726 *
1727 * Return: The index of the gap if found, otherwise an index outside the
1728 * range specified (in which case 'return - index >= max_scan' will be true).
1729 * In the rare case of index wrap-around, 0 will be returned.
1730 */
1731 pgoff_t page_cache_next_miss(struct address_space *mapping,
1732 pgoff_t index, unsigned long max_scan)
1733 {
1734 XA_STATE(xas, &mapping->i_pages, index);
1735
1736 while (max_scan--) {
1737 void *entry = xas_next(&xas);
1738 if (!entry || xa_is_value(entry))
1739 break;
1740 if (xas.xa_index == 0)
1741 break;
1742 }
1743
1744 return xas.xa_index;
1745 }
1746 EXPORT_SYMBOL(page_cache_next_miss);
1747
1748 /**
1749 * page_cache_prev_miss() - Find the previous gap in the page cache.
1750 * @mapping: Mapping.
1751 * @index: Index.
1752 * @max_scan: Maximum range to search.
1753 *
1754 * Search the range [max(index - max_scan + 1, 0), index] for the
1755 * gap with the highest index.
1756 *
1757 * This function may be called under the rcu_read_lock. However, this will
1758 * not atomically search a snapshot of the cache at a single point in time.
1759 * For example, if a gap is created at index 10, then subsequently a gap is
1760 * created at index 5, page_cache_prev_miss() covering both indices may
1761 * return 5 if called under the rcu_read_lock.
1762 *
1763 * Return: The index of the gap if found, otherwise an index outside the
1764 * range specified (in which case 'index - return >= max_scan' will be true).
1765 * In the rare case of wrap-around, ULONG_MAX will be returned.
1766 */
1767 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1768 pgoff_t index, unsigned long max_scan)
1769 {
1770 XA_STATE(xas, &mapping->i_pages, index);
1771
1772 while (max_scan--) {
1773 void *entry = xas_prev(&xas);
1774 if (!entry || xa_is_value(entry))
1775 break;
1776 if (xas.xa_index == ULONG_MAX)
1777 break;
1778 }
1779
1780 return xas.xa_index;
1781 }
1782 EXPORT_SYMBOL(page_cache_prev_miss);
1783
1784 /*
1785 * Lockless page cache protocol:
1786 * On the lookup side:
1787 * 1. Load the folio from i_pages
1788 * 2. Increment the refcount if it's not zero
1789 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1790 *
1791 * On the removal side:
1792 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1793 * B. Remove the page from i_pages
1794 * C. Return the page to the page allocator
1795 *
1796 * This means that any page may have its reference count temporarily
1797 * increased by a speculative page cache (or fast GUP) lookup as it can
1798 * be allocated by another user before the RCU grace period expires.
1799 * Because the refcount temporarily acquired here may end up being the
1800 * last refcount on the page, any page allocation must be freeable by
1801 * folio_put().
1802 */
1803
1804 /*
1805 * filemap_get_entry - Get a page cache entry.
1806 * @mapping: the address_space to search
1807 * @index: The page cache index.
1808 *
1809 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1810 * it is returned with an increased refcount. If it is a shadow entry
1811 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1812 * it is returned without further action.
1813 *
1814 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1815 */
1816 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1817 {
1818 XA_STATE(xas, &mapping->i_pages, index);
1819 struct folio *folio;
1820
1821 rcu_read_lock();
1822 repeat:
1823 xas_reset(&xas);
1824 folio = xas_load(&xas);
1825 if (xas_retry(&xas, folio))
1826 goto repeat;
1827 /*
1828 * A shadow entry of a recently evicted page, or a swap entry from
1829 * shmem/tmpfs. Return it without attempting to raise page count.
1830 */
1831 if (!folio || xa_is_value(folio))
1832 goto out;
1833
1834 if (!folio_try_get_rcu(folio))
1835 goto repeat;
1836
1837 if (unlikely(folio != xas_reload(&xas))) {
1838 folio_put(folio);
1839 goto repeat;
1840 }
1841 out:
1842 rcu_read_unlock();
1843
1844 return folio;
1845 }
1846
1847 /**
1848 * __filemap_get_folio - Find and get a reference to a folio.
1849 * @mapping: The address_space to search.
1850 * @index: The page index.
1851 * @fgp_flags: %FGP flags modify how the folio is returned.
1852 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1853 *
1854 * Looks up the page cache entry at @mapping & @index.
1855 *
1856 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1857 * if the %GFP flags specified for %FGP_CREAT are atomic.
1858 *
1859 * If this function returns a folio, it is returned with an increased refcount.
1860 *
1861 * Return: The found folio or an ERR_PTR() otherwise.
1862 */
1863 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1864 fgf_t fgp_flags, gfp_t gfp)
1865 {
1866 struct folio *folio;
1867
1868 repeat:
1869 folio = filemap_get_entry(mapping, index);
1870 if (xa_is_value(folio))
1871 folio = NULL;
1872 if (!folio)
1873 goto no_page;
1874
1875 if (fgp_flags & FGP_LOCK) {
1876 if (fgp_flags & FGP_NOWAIT) {
1877 if (!folio_trylock(folio)) {
1878 folio_put(folio);
1879 return ERR_PTR(-EAGAIN);
1880 }
1881 } else {
1882 folio_lock(folio);
1883 }
1884
1885 /* Has the page been truncated? */
1886 if (unlikely(folio->mapping != mapping)) {
1887 folio_unlock(folio);
1888 folio_put(folio);
1889 goto repeat;
1890 }
1891 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1892 }
1893
1894 if (fgp_flags & FGP_ACCESSED)
1895 folio_mark_accessed(folio);
1896 else if (fgp_flags & FGP_WRITE) {
1897 /* Clear idle flag for buffer write */
1898 if (folio_test_idle(folio))
1899 folio_clear_idle(folio);
1900 }
1901
1902 if (fgp_flags & FGP_STABLE)
1903 folio_wait_stable(folio);
1904 no_page:
1905 if (!folio && (fgp_flags & FGP_CREAT)) {
1906 unsigned order = FGF_GET_ORDER(fgp_flags);
1907 int err;
1908
1909 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1910 gfp |= __GFP_WRITE;
1911 if (fgp_flags & FGP_NOFS)
1912 gfp &= ~__GFP_FS;
1913 if (fgp_flags & FGP_NOWAIT) {
1914 gfp &= ~GFP_KERNEL;
1915 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1916 }
1917 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1918 fgp_flags |= FGP_LOCK;
1919
1920 if (!mapping_large_folio_support(mapping))
1921 order = 0;
1922 if (order > MAX_PAGECACHE_ORDER)
1923 order = MAX_PAGECACHE_ORDER;
1924 /* If we're not aligned, allocate a smaller folio */
1925 if (index & ((1UL << order) - 1))
1926 order = __ffs(index);
1927
1928 do {
1929 gfp_t alloc_gfp = gfp;
1930
1931 err = -ENOMEM;
1932 if (order == 1)
1933 order = 0;
1934 if (order > 0)
1935 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1936 folio = filemap_alloc_folio(alloc_gfp, order);
1937 if (!folio)
1938 continue;
1939
1940 /* Init accessed so avoid atomic mark_page_accessed later */
1941 if (fgp_flags & FGP_ACCESSED)
1942 __folio_set_referenced(folio);
1943
1944 err = filemap_add_folio(mapping, folio, index, gfp);
1945 if (!err)
1946 break;
1947 folio_put(folio);
1948 folio = NULL;
1949 } while (order-- > 0);
1950
1951 if (err == -EEXIST)
1952 goto repeat;
1953 if (err)
1954 return ERR_PTR(err);
1955 /*
1956 * filemap_add_folio locks the page, and for mmap
1957 * we expect an unlocked page.
1958 */
1959 if (folio && (fgp_flags & FGP_FOR_MMAP))
1960 folio_unlock(folio);
1961 }
1962
1963 if (!folio)
1964 return ERR_PTR(-ENOENT);
1965 return folio;
1966 }
1967 EXPORT_SYMBOL(__filemap_get_folio);
1968
1969 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1970 xa_mark_t mark)
1971 {
1972 struct folio *folio;
1973
1974 retry:
1975 if (mark == XA_PRESENT)
1976 folio = xas_find(xas, max);
1977 else
1978 folio = xas_find_marked(xas, max, mark);
1979
1980 if (xas_retry(xas, folio))
1981 goto retry;
1982 /*
1983 * A shadow entry of a recently evicted page, a swap
1984 * entry from shmem/tmpfs or a DAX entry. Return it
1985 * without attempting to raise page count.
1986 */
1987 if (!folio || xa_is_value(folio))
1988 return folio;
1989
1990 if (!folio_try_get_rcu(folio))
1991 goto reset;
1992
1993 if (unlikely(folio != xas_reload(xas))) {
1994 folio_put(folio);
1995 goto reset;
1996 }
1997
1998 return folio;
1999 reset:
2000 xas_reset(xas);
2001 goto retry;
2002 }
2003
2004 /**
2005 * find_get_entries - gang pagecache lookup
2006 * @mapping: The address_space to search
2007 * @start: The starting page cache index
2008 * @end: The final page index (inclusive).
2009 * @fbatch: Where the resulting entries are placed.
2010 * @indices: The cache indices corresponding to the entries in @entries
2011 *
2012 * find_get_entries() will search for and return a batch of entries in
2013 * the mapping. The entries are placed in @fbatch. find_get_entries()
2014 * takes a reference on any actual folios it returns.
2015 *
2016 * The entries have ascending indexes. The indices may not be consecutive
2017 * due to not-present entries or large folios.
2018 *
2019 * Any shadow entries of evicted folios, or swap entries from
2020 * shmem/tmpfs, are included in the returned array.
2021 *
2022 * Return: The number of entries which were found.
2023 */
2024 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2025 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2026 {
2027 XA_STATE(xas, &mapping->i_pages, *start);
2028 struct folio *folio;
2029
2030 rcu_read_lock();
2031 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2032 indices[fbatch->nr] = xas.xa_index;
2033 if (!folio_batch_add(fbatch, folio))
2034 break;
2035 }
2036 rcu_read_unlock();
2037
2038 if (folio_batch_count(fbatch)) {
2039 unsigned long nr = 1;
2040 int idx = folio_batch_count(fbatch) - 1;
2041
2042 folio = fbatch->folios[idx];
2043 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2044 nr = folio_nr_pages(folio);
2045 *start = indices[idx] + nr;
2046 }
2047 return folio_batch_count(fbatch);
2048 }
2049
2050 /**
2051 * find_lock_entries - Find a batch of pagecache entries.
2052 * @mapping: The address_space to search.
2053 * @start: The starting page cache index.
2054 * @end: The final page index (inclusive).
2055 * @fbatch: Where the resulting entries are placed.
2056 * @indices: The cache indices of the entries in @fbatch.
2057 *
2058 * find_lock_entries() will return a batch of entries from @mapping.
2059 * Swap, shadow and DAX entries are included. Folios are returned
2060 * locked and with an incremented refcount. Folios which are locked
2061 * by somebody else or under writeback are skipped. Folios which are
2062 * partially outside the range are not returned.
2063 *
2064 * The entries have ascending indexes. The indices may not be consecutive
2065 * due to not-present entries, large folios, folios which could not be
2066 * locked or folios under writeback.
2067 *
2068 * Return: The number of entries which were found.
2069 */
2070 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2071 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2072 {
2073 XA_STATE(xas, &mapping->i_pages, *start);
2074 struct folio *folio;
2075
2076 rcu_read_lock();
2077 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2078 if (!xa_is_value(folio)) {
2079 if (folio->index < *start)
2080 goto put;
2081 if (folio_next_index(folio) - 1 > end)
2082 goto put;
2083 if (!folio_trylock(folio))
2084 goto put;
2085 if (folio->mapping != mapping ||
2086 folio_test_writeback(folio))
2087 goto unlock;
2088 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2089 folio);
2090 }
2091 indices[fbatch->nr] = xas.xa_index;
2092 if (!folio_batch_add(fbatch, folio))
2093 break;
2094 continue;
2095 unlock:
2096 folio_unlock(folio);
2097 put:
2098 folio_put(folio);
2099 }
2100 rcu_read_unlock();
2101
2102 if (folio_batch_count(fbatch)) {
2103 unsigned long nr = 1;
2104 int idx = folio_batch_count(fbatch) - 1;
2105
2106 folio = fbatch->folios[idx];
2107 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2108 nr = folio_nr_pages(folio);
2109 *start = indices[idx] + nr;
2110 }
2111 return folio_batch_count(fbatch);
2112 }
2113
2114 /**
2115 * filemap_get_folios - Get a batch of folios
2116 * @mapping: The address_space to search
2117 * @start: The starting page index
2118 * @end: The final page index (inclusive)
2119 * @fbatch: The batch to fill.
2120 *
2121 * Search for and return a batch of folios in the mapping starting at
2122 * index @start and up to index @end (inclusive). The folios are returned
2123 * in @fbatch with an elevated reference count.
2124 *
2125 * The first folio may start before @start; if it does, it will contain
2126 * @start. The final folio may extend beyond @end; if it does, it will
2127 * contain @end. The folios have ascending indices. There may be gaps
2128 * between the folios if there are indices which have no folio in the
2129 * page cache. If folios are added to or removed from the page cache
2130 * while this is running, they may or may not be found by this call.
2131 *
2132 * Return: The number of folios which were found.
2133 * We also update @start to index the next folio for the traversal.
2134 */
2135 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2136 pgoff_t end, struct folio_batch *fbatch)
2137 {
2138 XA_STATE(xas, &mapping->i_pages, *start);
2139 struct folio *folio;
2140
2141 rcu_read_lock();
2142 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2143 /* Skip over shadow, swap and DAX entries */
2144 if (xa_is_value(folio))
2145 continue;
2146 if (!folio_batch_add(fbatch, folio)) {
2147 unsigned long nr = folio_nr_pages(folio);
2148
2149 if (folio_test_hugetlb(folio))
2150 nr = 1;
2151 *start = folio->index + nr;
2152 goto out;
2153 }
2154 }
2155
2156 /*
2157 * We come here when there is no page beyond @end. We take care to not
2158 * overflow the index @start as it confuses some of the callers. This
2159 * breaks the iteration when there is a page at index -1 but that is
2160 * already broken anyway.
2161 */
2162 if (end == (pgoff_t)-1)
2163 *start = (pgoff_t)-1;
2164 else
2165 *start = end + 1;
2166 out:
2167 rcu_read_unlock();
2168
2169 return folio_batch_count(fbatch);
2170 }
2171 EXPORT_SYMBOL(filemap_get_folios);
2172
2173 /**
2174 * filemap_get_folios_contig - Get a batch of contiguous folios
2175 * @mapping: The address_space to search
2176 * @start: The starting page index
2177 * @end: The final page index (inclusive)
2178 * @fbatch: The batch to fill
2179 *
2180 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2181 * except the returned folios are guaranteed to be contiguous. This may
2182 * not return all contiguous folios if the batch gets filled up.
2183 *
2184 * Return: The number of folios found.
2185 * Also update @start to be positioned for traversal of the next folio.
2186 */
2187
2188 unsigned filemap_get_folios_contig(struct address_space *mapping,
2189 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2190 {
2191 XA_STATE(xas, &mapping->i_pages, *start);
2192 unsigned long nr;
2193 struct folio *folio;
2194
2195 rcu_read_lock();
2196
2197 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2198 folio = xas_next(&xas)) {
2199 if (xas_retry(&xas, folio))
2200 continue;
2201 /*
2202 * If the entry has been swapped out, we can stop looking.
2203 * No current caller is looking for DAX entries.
2204 */
2205 if (xa_is_value(folio))
2206 goto update_start;
2207
2208 if (!folio_try_get_rcu(folio))
2209 goto retry;
2210
2211 if (unlikely(folio != xas_reload(&xas)))
2212 goto put_folio;
2213
2214 if (!folio_batch_add(fbatch, folio)) {
2215 nr = folio_nr_pages(folio);
2216
2217 if (folio_test_hugetlb(folio))
2218 nr = 1;
2219 *start = folio->index + nr;
2220 goto out;
2221 }
2222 continue;
2223 put_folio:
2224 folio_put(folio);
2225
2226 retry:
2227 xas_reset(&xas);
2228 }
2229
2230 update_start:
2231 nr = folio_batch_count(fbatch);
2232
2233 if (nr) {
2234 folio = fbatch->folios[nr - 1];
2235 if (folio_test_hugetlb(folio))
2236 *start = folio->index + 1;
2237 else
2238 *start = folio_next_index(folio);
2239 }
2240 out:
2241 rcu_read_unlock();
2242 return folio_batch_count(fbatch);
2243 }
2244 EXPORT_SYMBOL(filemap_get_folios_contig);
2245
2246 /**
2247 * filemap_get_folios_tag - Get a batch of folios matching @tag
2248 * @mapping: The address_space to search
2249 * @start: The starting page index
2250 * @end: The final page index (inclusive)
2251 * @tag: The tag index
2252 * @fbatch: The batch to fill
2253 *
2254 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2255 *
2256 * Return: The number of folios found.
2257 * Also update @start to index the next folio for traversal.
2258 */
2259 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2260 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2261 {
2262 XA_STATE(xas, &mapping->i_pages, *start);
2263 struct folio *folio;
2264
2265 rcu_read_lock();
2266 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2267 /*
2268 * Shadow entries should never be tagged, but this iteration
2269 * is lockless so there is a window for page reclaim to evict
2270 * a page we saw tagged. Skip over it.
2271 */
2272 if (xa_is_value(folio))
2273 continue;
2274 if (!folio_batch_add(fbatch, folio)) {
2275 unsigned long nr = folio_nr_pages(folio);
2276
2277 if (folio_test_hugetlb(folio))
2278 nr = 1;
2279 *start = folio->index + nr;
2280 goto out;
2281 }
2282 }
2283 /*
2284 * We come here when there is no page beyond @end. We take care to not
2285 * overflow the index @start as it confuses some of the callers. This
2286 * breaks the iteration when there is a page at index -1 but that is
2287 * already broke anyway.
2288 */
2289 if (end == (pgoff_t)-1)
2290 *start = (pgoff_t)-1;
2291 else
2292 *start = end + 1;
2293 out:
2294 rcu_read_unlock();
2295
2296 return folio_batch_count(fbatch);
2297 }
2298 EXPORT_SYMBOL(filemap_get_folios_tag);
2299
2300 /*
2301 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2302 * a _large_ part of the i/o request. Imagine the worst scenario:
2303 *
2304 * ---R__________________________________________B__________
2305 * ^ reading here ^ bad block(assume 4k)
2306 *
2307 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2308 * => failing the whole request => read(R) => read(R+1) =>
2309 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2310 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2311 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2312 *
2313 * It is going insane. Fix it by quickly scaling down the readahead size.
2314 */
2315 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2316 {
2317 ra->ra_pages /= 4;
2318 }
2319
2320 /*
2321 * filemap_get_read_batch - Get a batch of folios for read
2322 *
2323 * Get a batch of folios which represent a contiguous range of bytes in
2324 * the file. No exceptional entries will be returned. If @index is in
2325 * the middle of a folio, the entire folio will be returned. The last
2326 * folio in the batch may have the readahead flag set or the uptodate flag
2327 * clear so that the caller can take the appropriate action.
2328 */
2329 static void filemap_get_read_batch(struct address_space *mapping,
2330 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2331 {
2332 XA_STATE(xas, &mapping->i_pages, index);
2333 struct folio *folio;
2334
2335 rcu_read_lock();
2336 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2337 if (xas_retry(&xas, folio))
2338 continue;
2339 if (xas.xa_index > max || xa_is_value(folio))
2340 break;
2341 if (xa_is_sibling(folio))
2342 break;
2343 if (!folio_try_get_rcu(folio))
2344 goto retry;
2345
2346 if (unlikely(folio != xas_reload(&xas)))
2347 goto put_folio;
2348
2349 if (!folio_batch_add(fbatch, folio))
2350 break;
2351 if (!folio_test_uptodate(folio))
2352 break;
2353 if (folio_test_readahead(folio))
2354 break;
2355 xas_advance(&xas, folio_next_index(folio) - 1);
2356 continue;
2357 put_folio:
2358 folio_put(folio);
2359 retry:
2360 xas_reset(&xas);
2361 }
2362 rcu_read_unlock();
2363 }
2364
2365 static int filemap_read_folio(struct file *file, filler_t filler,
2366 struct folio *folio)
2367 {
2368 bool workingset = folio_test_workingset(folio);
2369 unsigned long pflags;
2370 int error;
2371
2372 /*
2373 * A previous I/O error may have been due to temporary failures,
2374 * eg. multipath errors. PG_error will be set again if read_folio
2375 * fails.
2376 */
2377 folio_clear_error(folio);
2378
2379 /* Start the actual read. The read will unlock the page. */
2380 if (unlikely(workingset))
2381 psi_memstall_enter(&pflags);
2382 error = filler(file, folio);
2383 if (unlikely(workingset))
2384 psi_memstall_leave(&pflags);
2385 if (error)
2386 return error;
2387
2388 error = folio_wait_locked_killable(folio);
2389 if (error)
2390 return error;
2391 if (folio_test_uptodate(folio))
2392 return 0;
2393 if (file)
2394 shrink_readahead_size_eio(&file->f_ra);
2395 return -EIO;
2396 }
2397
2398 static bool filemap_range_uptodate(struct address_space *mapping,
2399 loff_t pos, size_t count, struct folio *folio,
2400 bool need_uptodate)
2401 {
2402 if (folio_test_uptodate(folio))
2403 return true;
2404 /* pipes can't handle partially uptodate pages */
2405 if (need_uptodate)
2406 return false;
2407 if (!mapping->a_ops->is_partially_uptodate)
2408 return false;
2409 if (mapping->host->i_blkbits >= folio_shift(folio))
2410 return false;
2411
2412 if (folio_pos(folio) > pos) {
2413 count -= folio_pos(folio) - pos;
2414 pos = 0;
2415 } else {
2416 pos -= folio_pos(folio);
2417 }
2418
2419 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2420 }
2421
2422 static int filemap_update_page(struct kiocb *iocb,
2423 struct address_space *mapping, size_t count,
2424 struct folio *folio, bool need_uptodate)
2425 {
2426 int error;
2427
2428 if (iocb->ki_flags & IOCB_NOWAIT) {
2429 if (!filemap_invalidate_trylock_shared(mapping))
2430 return -EAGAIN;
2431 } else {
2432 filemap_invalidate_lock_shared(mapping);
2433 }
2434
2435 if (!folio_trylock(folio)) {
2436 error = -EAGAIN;
2437 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2438 goto unlock_mapping;
2439 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2440 filemap_invalidate_unlock_shared(mapping);
2441 /*
2442 * This is where we usually end up waiting for a
2443 * previously submitted readahead to finish.
2444 */
2445 folio_put_wait_locked(folio, TASK_KILLABLE);
2446 return AOP_TRUNCATED_PAGE;
2447 }
2448 error = __folio_lock_async(folio, iocb->ki_waitq);
2449 if (error)
2450 goto unlock_mapping;
2451 }
2452
2453 error = AOP_TRUNCATED_PAGE;
2454 if (!folio->mapping)
2455 goto unlock;
2456
2457 error = 0;
2458 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2459 need_uptodate))
2460 goto unlock;
2461
2462 error = -EAGAIN;
2463 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2464 goto unlock;
2465
2466 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2467 folio);
2468 goto unlock_mapping;
2469 unlock:
2470 folio_unlock(folio);
2471 unlock_mapping:
2472 filemap_invalidate_unlock_shared(mapping);
2473 if (error == AOP_TRUNCATED_PAGE)
2474 folio_put(folio);
2475 return error;
2476 }
2477
2478 static int filemap_create_folio(struct file *file,
2479 struct address_space *mapping, pgoff_t index,
2480 struct folio_batch *fbatch)
2481 {
2482 struct folio *folio;
2483 int error;
2484
2485 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2486 if (!folio)
2487 return -ENOMEM;
2488
2489 /*
2490 * Protect against truncate / hole punch. Grabbing invalidate_lock
2491 * here assures we cannot instantiate and bring uptodate new
2492 * pagecache folios after evicting page cache during truncate
2493 * and before actually freeing blocks. Note that we could
2494 * release invalidate_lock after inserting the folio into
2495 * the page cache as the locked folio would then be enough to
2496 * synchronize with hole punching. But there are code paths
2497 * such as filemap_update_page() filling in partially uptodate
2498 * pages or ->readahead() that need to hold invalidate_lock
2499 * while mapping blocks for IO so let's hold the lock here as
2500 * well to keep locking rules simple.
2501 */
2502 filemap_invalidate_lock_shared(mapping);
2503 error = filemap_add_folio(mapping, folio, index,
2504 mapping_gfp_constraint(mapping, GFP_KERNEL));
2505 if (error == -EEXIST)
2506 error = AOP_TRUNCATED_PAGE;
2507 if (error)
2508 goto error;
2509
2510 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2511 if (error)
2512 goto error;
2513
2514 filemap_invalidate_unlock_shared(mapping);
2515 folio_batch_add(fbatch, folio);
2516 return 0;
2517 error:
2518 filemap_invalidate_unlock_shared(mapping);
2519 folio_put(folio);
2520 return error;
2521 }
2522
2523 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2524 struct address_space *mapping, struct folio *folio,
2525 pgoff_t last_index)
2526 {
2527 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2528
2529 if (iocb->ki_flags & IOCB_NOIO)
2530 return -EAGAIN;
2531 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2532 return 0;
2533 }
2534
2535 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2536 struct folio_batch *fbatch, bool need_uptodate)
2537 {
2538 struct file *filp = iocb->ki_filp;
2539 struct address_space *mapping = filp->f_mapping;
2540 struct file_ra_state *ra = &filp->f_ra;
2541 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2542 pgoff_t last_index;
2543 struct folio *folio;
2544 int err = 0;
2545
2546 /* "last_index" is the index of the page beyond the end of the read */
2547 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2548 retry:
2549 if (fatal_signal_pending(current))
2550 return -EINTR;
2551
2552 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2553 if (!folio_batch_count(fbatch)) {
2554 if (iocb->ki_flags & IOCB_NOIO)
2555 return -EAGAIN;
2556 page_cache_sync_readahead(mapping, ra, filp, index,
2557 last_index - index);
2558 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2559 }
2560 if (!folio_batch_count(fbatch)) {
2561 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2562 return -EAGAIN;
2563 err = filemap_create_folio(filp, mapping,
2564 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2565 if (err == AOP_TRUNCATED_PAGE)
2566 goto retry;
2567 return err;
2568 }
2569
2570 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2571 if (folio_test_readahead(folio)) {
2572 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2573 if (err)
2574 goto err;
2575 }
2576 if (!folio_test_uptodate(folio)) {
2577 if ((iocb->ki_flags & IOCB_WAITQ) &&
2578 folio_batch_count(fbatch) > 1)
2579 iocb->ki_flags |= IOCB_NOWAIT;
2580 err = filemap_update_page(iocb, mapping, count, folio,
2581 need_uptodate);
2582 if (err)
2583 goto err;
2584 }
2585
2586 return 0;
2587 err:
2588 if (err < 0)
2589 folio_put(folio);
2590 if (likely(--fbatch->nr))
2591 return 0;
2592 if (err == AOP_TRUNCATED_PAGE)
2593 goto retry;
2594 return err;
2595 }
2596
2597 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2598 {
2599 unsigned int shift = folio_shift(folio);
2600
2601 return (pos1 >> shift == pos2 >> shift);
2602 }
2603
2604 /**
2605 * filemap_read - Read data from the page cache.
2606 * @iocb: The iocb to read.
2607 * @iter: Destination for the data.
2608 * @already_read: Number of bytes already read by the caller.
2609 *
2610 * Copies data from the page cache. If the data is not currently present,
2611 * uses the readahead and read_folio address_space operations to fetch it.
2612 *
2613 * Return: Total number of bytes copied, including those already read by
2614 * the caller. If an error happens before any bytes are copied, returns
2615 * a negative error number.
2616 */
2617 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2618 ssize_t already_read)
2619 {
2620 struct file *filp = iocb->ki_filp;
2621 struct file_ra_state *ra = &filp->f_ra;
2622 struct address_space *mapping = filp->f_mapping;
2623 struct inode *inode = mapping->host;
2624 struct folio_batch fbatch;
2625 int i, error = 0;
2626 bool writably_mapped;
2627 loff_t isize, end_offset;
2628 loff_t last_pos = ra->prev_pos;
2629
2630 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2631 return 0;
2632 if (unlikely(!iov_iter_count(iter)))
2633 return 0;
2634
2635 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2636 folio_batch_init(&fbatch);
2637
2638 do {
2639 cond_resched();
2640
2641 /*
2642 * If we've already successfully copied some data, then we
2643 * can no longer safely return -EIOCBQUEUED. Hence mark
2644 * an async read NOWAIT at that point.
2645 */
2646 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2647 iocb->ki_flags |= IOCB_NOWAIT;
2648
2649 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2650 break;
2651
2652 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2653 if (error < 0)
2654 break;
2655
2656 /*
2657 * i_size must be checked after we know the pages are Uptodate.
2658 *
2659 * Checking i_size after the check allows us to calculate
2660 * the correct value for "nr", which means the zero-filled
2661 * part of the page is not copied back to userspace (unless
2662 * another truncate extends the file - this is desired though).
2663 */
2664 isize = i_size_read(inode);
2665 if (unlikely(iocb->ki_pos >= isize))
2666 goto put_folios;
2667 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2668
2669 /*
2670 * Once we start copying data, we don't want to be touching any
2671 * cachelines that might be contended:
2672 */
2673 writably_mapped = mapping_writably_mapped(mapping);
2674
2675 /*
2676 * When a read accesses the same folio several times, only
2677 * mark it as accessed the first time.
2678 */
2679 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2680 fbatch.folios[0]))
2681 folio_mark_accessed(fbatch.folios[0]);
2682
2683 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2684 struct folio *folio = fbatch.folios[i];
2685 size_t fsize = folio_size(folio);
2686 size_t offset = iocb->ki_pos & (fsize - 1);
2687 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2688 fsize - offset);
2689 size_t copied;
2690
2691 if (end_offset < folio_pos(folio))
2692 break;
2693 if (i > 0)
2694 folio_mark_accessed(folio);
2695 /*
2696 * If users can be writing to this folio using arbitrary
2697 * virtual addresses, take care of potential aliasing
2698 * before reading the folio on the kernel side.
2699 */
2700 if (writably_mapped)
2701 flush_dcache_folio(folio);
2702
2703 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2704
2705 already_read += copied;
2706 iocb->ki_pos += copied;
2707 last_pos = iocb->ki_pos;
2708
2709 if (copied < bytes) {
2710 error = -EFAULT;
2711 break;
2712 }
2713 }
2714 put_folios:
2715 for (i = 0; i < folio_batch_count(&fbatch); i++)
2716 folio_put(fbatch.folios[i]);
2717 folio_batch_init(&fbatch);
2718 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2719
2720 file_accessed(filp);
2721 ra->prev_pos = last_pos;
2722 return already_read ? already_read : error;
2723 }
2724 EXPORT_SYMBOL_GPL(filemap_read);
2725
2726 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2727 {
2728 struct address_space *mapping = iocb->ki_filp->f_mapping;
2729 loff_t pos = iocb->ki_pos;
2730 loff_t end = pos + count - 1;
2731
2732 if (iocb->ki_flags & IOCB_NOWAIT) {
2733 if (filemap_range_needs_writeback(mapping, pos, end))
2734 return -EAGAIN;
2735 return 0;
2736 }
2737
2738 return filemap_write_and_wait_range(mapping, pos, end);
2739 }
2740
2741 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2742 {
2743 struct address_space *mapping = iocb->ki_filp->f_mapping;
2744 loff_t pos = iocb->ki_pos;
2745 loff_t end = pos + count - 1;
2746 int ret;
2747
2748 if (iocb->ki_flags & IOCB_NOWAIT) {
2749 /* we could block if there are any pages in the range */
2750 if (filemap_range_has_page(mapping, pos, end))
2751 return -EAGAIN;
2752 } else {
2753 ret = filemap_write_and_wait_range(mapping, pos, end);
2754 if (ret)
2755 return ret;
2756 }
2757
2758 /*
2759 * After a write we want buffered reads to be sure to go to disk to get
2760 * the new data. We invalidate clean cached page from the region we're
2761 * about to write. We do this *before* the write so that we can return
2762 * without clobbering -EIOCBQUEUED from ->direct_IO().
2763 */
2764 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2765 end >> PAGE_SHIFT);
2766 }
2767
2768 /**
2769 * generic_file_read_iter - generic filesystem read routine
2770 * @iocb: kernel I/O control block
2771 * @iter: destination for the data read
2772 *
2773 * This is the "read_iter()" routine for all filesystems
2774 * that can use the page cache directly.
2775 *
2776 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2777 * be returned when no data can be read without waiting for I/O requests
2778 * to complete; it doesn't prevent readahead.
2779 *
2780 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2781 * requests shall be made for the read or for readahead. When no data
2782 * can be read, -EAGAIN shall be returned. When readahead would be
2783 * triggered, a partial, possibly empty read shall be returned.
2784 *
2785 * Return:
2786 * * number of bytes copied, even for partial reads
2787 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2788 */
2789 ssize_t
2790 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2791 {
2792 size_t count = iov_iter_count(iter);
2793 ssize_t retval = 0;
2794
2795 if (!count)
2796 return 0; /* skip atime */
2797
2798 if (iocb->ki_flags & IOCB_DIRECT) {
2799 struct file *file = iocb->ki_filp;
2800 struct address_space *mapping = file->f_mapping;
2801 struct inode *inode = mapping->host;
2802
2803 retval = kiocb_write_and_wait(iocb, count);
2804 if (retval < 0)
2805 return retval;
2806 file_accessed(file);
2807
2808 retval = mapping->a_ops->direct_IO(iocb, iter);
2809 if (retval >= 0) {
2810 iocb->ki_pos += retval;
2811 count -= retval;
2812 }
2813 if (retval != -EIOCBQUEUED)
2814 iov_iter_revert(iter, count - iov_iter_count(iter));
2815
2816 /*
2817 * Btrfs can have a short DIO read if we encounter
2818 * compressed extents, so if there was an error, or if
2819 * we've already read everything we wanted to, or if
2820 * there was a short read because we hit EOF, go ahead
2821 * and return. Otherwise fallthrough to buffered io for
2822 * the rest of the read. Buffered reads will not work for
2823 * DAX files, so don't bother trying.
2824 */
2825 if (retval < 0 || !count || IS_DAX(inode))
2826 return retval;
2827 if (iocb->ki_pos >= i_size_read(inode))
2828 return retval;
2829 }
2830
2831 return filemap_read(iocb, iter, retval);
2832 }
2833 EXPORT_SYMBOL(generic_file_read_iter);
2834
2835 /*
2836 * Splice subpages from a folio into a pipe.
2837 */
2838 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2839 struct folio *folio, loff_t fpos, size_t size)
2840 {
2841 struct page *page;
2842 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2843
2844 page = folio_page(folio, offset / PAGE_SIZE);
2845 size = min(size, folio_size(folio) - offset);
2846 offset %= PAGE_SIZE;
2847
2848 while (spliced < size &&
2849 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2850 struct pipe_buffer *buf = pipe_head_buf(pipe);
2851 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2852
2853 *buf = (struct pipe_buffer) {
2854 .ops = &page_cache_pipe_buf_ops,
2855 .page = page,
2856 .offset = offset,
2857 .len = part,
2858 };
2859 folio_get(folio);
2860 pipe->head++;
2861 page++;
2862 spliced += part;
2863 offset = 0;
2864 }
2865
2866 return spliced;
2867 }
2868
2869 /**
2870 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2871 * @in: The file to read from
2872 * @ppos: Pointer to the file position to read from
2873 * @pipe: The pipe to splice into
2874 * @len: The amount to splice
2875 * @flags: The SPLICE_F_* flags
2876 *
2877 * This function gets folios from a file's pagecache and splices them into the
2878 * pipe. Readahead will be called as necessary to fill more folios. This may
2879 * be used for blockdevs also.
2880 *
2881 * Return: On success, the number of bytes read will be returned and *@ppos
2882 * will be updated if appropriate; 0 will be returned if there is no more data
2883 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2884 * other negative error code will be returned on error. A short read may occur
2885 * if the pipe has insufficient space, we reach the end of the data or we hit a
2886 * hole.
2887 */
2888 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2889 struct pipe_inode_info *pipe,
2890 size_t len, unsigned int flags)
2891 {
2892 struct folio_batch fbatch;
2893 struct kiocb iocb;
2894 size_t total_spliced = 0, used, npages;
2895 loff_t isize, end_offset;
2896 bool writably_mapped;
2897 int i, error = 0;
2898
2899 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2900 return 0;
2901
2902 init_sync_kiocb(&iocb, in);
2903 iocb.ki_pos = *ppos;
2904
2905 /* Work out how much data we can actually add into the pipe */
2906 used = pipe_occupancy(pipe->head, pipe->tail);
2907 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2908 len = min_t(size_t, len, npages * PAGE_SIZE);
2909
2910 folio_batch_init(&fbatch);
2911
2912 do {
2913 cond_resched();
2914
2915 if (*ppos >= i_size_read(in->f_mapping->host))
2916 break;
2917
2918 iocb.ki_pos = *ppos;
2919 error = filemap_get_pages(&iocb, len, &fbatch, true);
2920 if (error < 0)
2921 break;
2922
2923 /*
2924 * i_size must be checked after we know the pages are Uptodate.
2925 *
2926 * Checking i_size after the check allows us to calculate
2927 * the correct value for "nr", which means the zero-filled
2928 * part of the page is not copied back to userspace (unless
2929 * another truncate extends the file - this is desired though).
2930 */
2931 isize = i_size_read(in->f_mapping->host);
2932 if (unlikely(*ppos >= isize))
2933 break;
2934 end_offset = min_t(loff_t, isize, *ppos + len);
2935
2936 /*
2937 * Once we start copying data, we don't want to be touching any
2938 * cachelines that might be contended:
2939 */
2940 writably_mapped = mapping_writably_mapped(in->f_mapping);
2941
2942 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2943 struct folio *folio = fbatch.folios[i];
2944 size_t n;
2945
2946 if (folio_pos(folio) >= end_offset)
2947 goto out;
2948 folio_mark_accessed(folio);
2949
2950 /*
2951 * If users can be writing to this folio using arbitrary
2952 * virtual addresses, take care of potential aliasing
2953 * before reading the folio on the kernel side.
2954 */
2955 if (writably_mapped)
2956 flush_dcache_folio(folio);
2957
2958 n = min_t(loff_t, len, isize - *ppos);
2959 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2960 if (!n)
2961 goto out;
2962 len -= n;
2963 total_spliced += n;
2964 *ppos += n;
2965 in->f_ra.prev_pos = *ppos;
2966 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2967 goto out;
2968 }
2969
2970 folio_batch_release(&fbatch);
2971 } while (len);
2972
2973 out:
2974 folio_batch_release(&fbatch);
2975 file_accessed(in);
2976
2977 return total_spliced ? total_spliced : error;
2978 }
2979 EXPORT_SYMBOL(filemap_splice_read);
2980
2981 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2982 struct address_space *mapping, struct folio *folio,
2983 loff_t start, loff_t end, bool seek_data)
2984 {
2985 const struct address_space_operations *ops = mapping->a_ops;
2986 size_t offset, bsz = i_blocksize(mapping->host);
2987
2988 if (xa_is_value(folio) || folio_test_uptodate(folio))
2989 return seek_data ? start : end;
2990 if (!ops->is_partially_uptodate)
2991 return seek_data ? end : start;
2992
2993 xas_pause(xas);
2994 rcu_read_unlock();
2995 folio_lock(folio);
2996 if (unlikely(folio->mapping != mapping))
2997 goto unlock;
2998
2999 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3000
3001 do {
3002 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3003 seek_data)
3004 break;
3005 start = (start + bsz) & ~(bsz - 1);
3006 offset += bsz;
3007 } while (offset < folio_size(folio));
3008 unlock:
3009 folio_unlock(folio);
3010 rcu_read_lock();
3011 return start;
3012 }
3013
3014 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3015 {
3016 if (xa_is_value(folio))
3017 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3018 return folio_size(folio);
3019 }
3020
3021 /**
3022 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3023 * @mapping: Address space to search.
3024 * @start: First byte to consider.
3025 * @end: Limit of search (exclusive).
3026 * @whence: Either SEEK_HOLE or SEEK_DATA.
3027 *
3028 * If the page cache knows which blocks contain holes and which blocks
3029 * contain data, your filesystem can use this function to implement
3030 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3031 * entirely memory-based such as tmpfs, and filesystems which support
3032 * unwritten extents.
3033 *
3034 * Return: The requested offset on success, or -ENXIO if @whence specifies
3035 * SEEK_DATA and there is no data after @start. There is an implicit hole
3036 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3037 * and @end contain data.
3038 */
3039 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3040 loff_t end, int whence)
3041 {
3042 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3043 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3044 bool seek_data = (whence == SEEK_DATA);
3045 struct folio *folio;
3046
3047 if (end <= start)
3048 return -ENXIO;
3049
3050 rcu_read_lock();
3051 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3052 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3053 size_t seek_size;
3054
3055 if (start < pos) {
3056 if (!seek_data)
3057 goto unlock;
3058 start = pos;
3059 }
3060
3061 seek_size = seek_folio_size(&xas, folio);
3062 pos = round_up((u64)pos + 1, seek_size);
3063 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3064 seek_data);
3065 if (start < pos)
3066 goto unlock;
3067 if (start >= end)
3068 break;
3069 if (seek_size > PAGE_SIZE)
3070 xas_set(&xas, pos >> PAGE_SHIFT);
3071 if (!xa_is_value(folio))
3072 folio_put(folio);
3073 }
3074 if (seek_data)
3075 start = -ENXIO;
3076 unlock:
3077 rcu_read_unlock();
3078 if (folio && !xa_is_value(folio))
3079 folio_put(folio);
3080 if (start > end)
3081 return end;
3082 return start;
3083 }
3084
3085 #ifdef CONFIG_MMU
3086 #define MMAP_LOTSAMISS (100)
3087 /*
3088 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3089 * @vmf - the vm_fault for this fault.
3090 * @folio - the folio to lock.
3091 * @fpin - the pointer to the file we may pin (or is already pinned).
3092 *
3093 * This works similar to lock_folio_or_retry in that it can drop the
3094 * mmap_lock. It differs in that it actually returns the folio locked
3095 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3096 * to drop the mmap_lock then fpin will point to the pinned file and
3097 * needs to be fput()'ed at a later point.
3098 */
3099 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3100 struct file **fpin)
3101 {
3102 if (folio_trylock(folio))
3103 return 1;
3104
3105 /*
3106 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3107 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3108 * is supposed to work. We have way too many special cases..
3109 */
3110 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3111 return 0;
3112
3113 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3114 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3115 if (__folio_lock_killable(folio)) {
3116 /*
3117 * We didn't have the right flags to drop the mmap_lock,
3118 * but all fault_handlers only check for fatal signals
3119 * if we return VM_FAULT_RETRY, so we need to drop the
3120 * mmap_lock here and return 0 if we don't have a fpin.
3121 */
3122 if (*fpin == NULL)
3123 mmap_read_unlock(vmf->vma->vm_mm);
3124 return 0;
3125 }
3126 } else
3127 __folio_lock(folio);
3128
3129 return 1;
3130 }
3131
3132 /*
3133 * Synchronous readahead happens when we don't even find a page in the page
3134 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3135 * to drop the mmap sem we return the file that was pinned in order for us to do
3136 * that. If we didn't pin a file then we return NULL. The file that is
3137 * returned needs to be fput()'ed when we're done with it.
3138 */
3139 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3140 {
3141 struct file *file = vmf->vma->vm_file;
3142 struct file_ra_state *ra = &file->f_ra;
3143 struct address_space *mapping = file->f_mapping;
3144 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3145 struct file *fpin = NULL;
3146 unsigned long vm_flags = vmf->vma->vm_flags;
3147 unsigned int mmap_miss;
3148
3149 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3150 /* Use the readahead code, even if readahead is disabled */
3151 if (vm_flags & VM_HUGEPAGE) {
3152 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3153 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3154 ra->size = HPAGE_PMD_NR;
3155 /*
3156 * Fetch two PMD folios, so we get the chance to actually
3157 * readahead, unless we've been told not to.
3158 */
3159 if (!(vm_flags & VM_RAND_READ))
3160 ra->size *= 2;
3161 ra->async_size = HPAGE_PMD_NR;
3162 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3163 return fpin;
3164 }
3165 #endif
3166
3167 /* If we don't want any read-ahead, don't bother */
3168 if (vm_flags & VM_RAND_READ)
3169 return fpin;
3170 if (!ra->ra_pages)
3171 return fpin;
3172
3173 if (vm_flags & VM_SEQ_READ) {
3174 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3175 page_cache_sync_ra(&ractl, ra->ra_pages);
3176 return fpin;
3177 }
3178
3179 /* Avoid banging the cache line if not needed */
3180 mmap_miss = READ_ONCE(ra->mmap_miss);
3181 if (mmap_miss < MMAP_LOTSAMISS * 10)
3182 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3183
3184 /*
3185 * Do we miss much more than hit in this file? If so,
3186 * stop bothering with read-ahead. It will only hurt.
3187 */
3188 if (mmap_miss > MMAP_LOTSAMISS)
3189 return fpin;
3190
3191 /*
3192 * mmap read-around
3193 */
3194 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3195 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3196 ra->size = ra->ra_pages;
3197 ra->async_size = ra->ra_pages / 4;
3198 ractl._index = ra->start;
3199 page_cache_ra_order(&ractl, ra, 0);
3200 return fpin;
3201 }
3202
3203 /*
3204 * Asynchronous readahead happens when we find the page and PG_readahead,
3205 * so we want to possibly extend the readahead further. We return the file that
3206 * was pinned if we have to drop the mmap_lock in order to do IO.
3207 */
3208 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3209 struct folio *folio)
3210 {
3211 struct file *file = vmf->vma->vm_file;
3212 struct file_ra_state *ra = &file->f_ra;
3213 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3214 struct file *fpin = NULL;
3215 unsigned int mmap_miss;
3216
3217 /* If we don't want any read-ahead, don't bother */
3218 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3219 return fpin;
3220
3221 mmap_miss = READ_ONCE(ra->mmap_miss);
3222 if (mmap_miss)
3223 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3224
3225 if (folio_test_readahead(folio)) {
3226 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3227 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3228 }
3229 return fpin;
3230 }
3231
3232 /**
3233 * filemap_fault - read in file data for page fault handling
3234 * @vmf: struct vm_fault containing details of the fault
3235 *
3236 * filemap_fault() is invoked via the vma operations vector for a
3237 * mapped memory region to read in file data during a page fault.
3238 *
3239 * The goto's are kind of ugly, but this streamlines the normal case of having
3240 * it in the page cache, and handles the special cases reasonably without
3241 * having a lot of duplicated code.
3242 *
3243 * vma->vm_mm->mmap_lock must be held on entry.
3244 *
3245 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3246 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3247 *
3248 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3249 * has not been released.
3250 *
3251 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3252 *
3253 * Return: bitwise-OR of %VM_FAULT_ codes.
3254 */
3255 vm_fault_t filemap_fault(struct vm_fault *vmf)
3256 {
3257 int error;
3258 struct file *file = vmf->vma->vm_file;
3259 struct file *fpin = NULL;
3260 struct address_space *mapping = file->f_mapping;
3261 struct inode *inode = mapping->host;
3262 pgoff_t max_idx, index = vmf->pgoff;
3263 struct folio *folio;
3264 vm_fault_t ret = 0;
3265 bool mapping_locked = false;
3266
3267 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3268 if (unlikely(index >= max_idx))
3269 return VM_FAULT_SIGBUS;
3270
3271 /*
3272 * Do we have something in the page cache already?
3273 */
3274 folio = filemap_get_folio(mapping, index);
3275 if (likely(!IS_ERR(folio))) {
3276 /*
3277 * We found the page, so try async readahead before waiting for
3278 * the lock.
3279 */
3280 if (!(vmf->flags & FAULT_FLAG_TRIED))
3281 fpin = do_async_mmap_readahead(vmf, folio);
3282 if (unlikely(!folio_test_uptodate(folio))) {
3283 filemap_invalidate_lock_shared(mapping);
3284 mapping_locked = true;
3285 }
3286 } else {
3287 /* No page in the page cache at all */
3288 count_vm_event(PGMAJFAULT);
3289 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3290 ret = VM_FAULT_MAJOR;
3291 fpin = do_sync_mmap_readahead(vmf);
3292 retry_find:
3293 /*
3294 * See comment in filemap_create_folio() why we need
3295 * invalidate_lock
3296 */
3297 if (!mapping_locked) {
3298 filemap_invalidate_lock_shared(mapping);
3299 mapping_locked = true;
3300 }
3301 folio = __filemap_get_folio(mapping, index,
3302 FGP_CREAT|FGP_FOR_MMAP,
3303 vmf->gfp_mask);
3304 if (IS_ERR(folio)) {
3305 if (fpin)
3306 goto out_retry;
3307 filemap_invalidate_unlock_shared(mapping);
3308 return VM_FAULT_OOM;
3309 }
3310 }
3311
3312 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3313 goto out_retry;
3314
3315 /* Did it get truncated? */
3316 if (unlikely(folio->mapping != mapping)) {
3317 folio_unlock(folio);
3318 folio_put(folio);
3319 goto retry_find;
3320 }
3321 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3322
3323 /*
3324 * We have a locked page in the page cache, now we need to check
3325 * that it's up-to-date. If not, it is going to be due to an error.
3326 */
3327 if (unlikely(!folio_test_uptodate(folio))) {
3328 /*
3329 * The page was in cache and uptodate and now it is not.
3330 * Strange but possible since we didn't hold the page lock all
3331 * the time. Let's drop everything get the invalidate lock and
3332 * try again.
3333 */
3334 if (!mapping_locked) {
3335 folio_unlock(folio);
3336 folio_put(folio);
3337 goto retry_find;
3338 }
3339 goto page_not_uptodate;
3340 }
3341
3342 /*
3343 * We've made it this far and we had to drop our mmap_lock, now is the
3344 * time to return to the upper layer and have it re-find the vma and
3345 * redo the fault.
3346 */
3347 if (fpin) {
3348 folio_unlock(folio);
3349 goto out_retry;
3350 }
3351 if (mapping_locked)
3352 filemap_invalidate_unlock_shared(mapping);
3353
3354 /*
3355 * Found the page and have a reference on it.
3356 * We must recheck i_size under page lock.
3357 */
3358 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3359 if (unlikely(index >= max_idx)) {
3360 folio_unlock(folio);
3361 folio_put(folio);
3362 return VM_FAULT_SIGBUS;
3363 }
3364
3365 vmf->page = folio_file_page(folio, index);
3366 return ret | VM_FAULT_LOCKED;
3367
3368 page_not_uptodate:
3369 /*
3370 * Umm, take care of errors if the page isn't up-to-date.
3371 * Try to re-read it _once_. We do this synchronously,
3372 * because there really aren't any performance issues here
3373 * and we need to check for errors.
3374 */
3375 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3376 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3377 if (fpin)
3378 goto out_retry;
3379 folio_put(folio);
3380
3381 if (!error || error == AOP_TRUNCATED_PAGE)
3382 goto retry_find;
3383 filemap_invalidate_unlock_shared(mapping);
3384
3385 return VM_FAULT_SIGBUS;
3386
3387 out_retry:
3388 /*
3389 * We dropped the mmap_lock, we need to return to the fault handler to
3390 * re-find the vma and come back and find our hopefully still populated
3391 * page.
3392 */
3393 if (!IS_ERR(folio))
3394 folio_put(folio);
3395 if (mapping_locked)
3396 filemap_invalidate_unlock_shared(mapping);
3397 if (fpin)
3398 fput(fpin);
3399 return ret | VM_FAULT_RETRY;
3400 }
3401 EXPORT_SYMBOL(filemap_fault);
3402
3403 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3404 pgoff_t start)
3405 {
3406 struct mm_struct *mm = vmf->vma->vm_mm;
3407
3408 /* Huge page is mapped? No need to proceed. */
3409 if (pmd_trans_huge(*vmf->pmd)) {
3410 folio_unlock(folio);
3411 folio_put(folio);
3412 return true;
3413 }
3414
3415 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3416 struct page *page = folio_file_page(folio, start);
3417 vm_fault_t ret = do_set_pmd(vmf, page);
3418 if (!ret) {
3419 /* The page is mapped successfully, reference consumed. */
3420 folio_unlock(folio);
3421 return true;
3422 }
3423 }
3424
3425 if (pmd_none(*vmf->pmd))
3426 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3427
3428 return false;
3429 }
3430
3431 static struct folio *next_uptodate_folio(struct xa_state *xas,
3432 struct address_space *mapping, pgoff_t end_pgoff)
3433 {
3434 struct folio *folio = xas_next_entry(xas, end_pgoff);
3435 unsigned long max_idx;
3436
3437 do {
3438 if (!folio)
3439 return NULL;
3440 if (xas_retry(xas, folio))
3441 continue;
3442 if (xa_is_value(folio))
3443 continue;
3444 if (folio_test_locked(folio))
3445 continue;
3446 if (!folio_try_get_rcu(folio))
3447 continue;
3448 /* Has the page moved or been split? */
3449 if (unlikely(folio != xas_reload(xas)))
3450 goto skip;
3451 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3452 goto skip;
3453 if (!folio_trylock(folio))
3454 goto skip;
3455 if (folio->mapping != mapping)
3456 goto unlock;
3457 if (!folio_test_uptodate(folio))
3458 goto unlock;
3459 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3460 if (xas->xa_index >= max_idx)
3461 goto unlock;
3462 return folio;
3463 unlock:
3464 folio_unlock(folio);
3465 skip:
3466 folio_put(folio);
3467 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3468
3469 return NULL;
3470 }
3471
3472 /*
3473 * Map page range [start_page, start_page + nr_pages) of folio.
3474 * start_page is gotten from start by folio_page(folio, start)
3475 */
3476 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3477 struct folio *folio, unsigned long start,
3478 unsigned long addr, unsigned int nr_pages,
3479 unsigned int *mmap_miss)
3480 {
3481 vm_fault_t ret = 0;
3482 struct page *page = folio_page(folio, start);
3483 unsigned int count = 0;
3484 pte_t *old_ptep = vmf->pte;
3485
3486 do {
3487 if (PageHWPoison(page + count))
3488 goto skip;
3489
3490 (*mmap_miss)++;
3491
3492 /*
3493 * NOTE: If there're PTE markers, we'll leave them to be
3494 * handled in the specific fault path, and it'll prohibit the
3495 * fault-around logic.
3496 */
3497 if (!pte_none(vmf->pte[count]))
3498 goto skip;
3499
3500 count++;
3501 continue;
3502 skip:
3503 if (count) {
3504 set_pte_range(vmf, folio, page, count, addr);
3505 folio_ref_add(folio, count);
3506 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3507 ret = VM_FAULT_NOPAGE;
3508 }
3509
3510 count++;
3511 page += count;
3512 vmf->pte += count;
3513 addr += count * PAGE_SIZE;
3514 count = 0;
3515 } while (--nr_pages > 0);
3516
3517 if (count) {
3518 set_pte_range(vmf, folio, page, count, addr);
3519 folio_ref_add(folio, count);
3520 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3521 ret = VM_FAULT_NOPAGE;
3522 }
3523
3524 vmf->pte = old_ptep;
3525
3526 return ret;
3527 }
3528
3529 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3530 struct folio *folio, unsigned long addr,
3531 unsigned int *mmap_miss)
3532 {
3533 vm_fault_t ret = 0;
3534 struct page *page = &folio->page;
3535
3536 if (PageHWPoison(page))
3537 return ret;
3538
3539 (*mmap_miss)++;
3540
3541 /*
3542 * NOTE: If there're PTE markers, we'll leave them to be
3543 * handled in the specific fault path, and it'll prohibit
3544 * the fault-around logic.
3545 */
3546 if (!pte_none(ptep_get(vmf->pte)))
3547 return ret;
3548
3549 if (vmf->address == addr)
3550 ret = VM_FAULT_NOPAGE;
3551
3552 set_pte_range(vmf, folio, page, 1, addr);
3553 folio_ref_inc(folio);
3554
3555 return ret;
3556 }
3557
3558 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3559 pgoff_t start_pgoff, pgoff_t end_pgoff)
3560 {
3561 struct vm_area_struct *vma = vmf->vma;
3562 struct file *file = vma->vm_file;
3563 struct address_space *mapping = file->f_mapping;
3564 pgoff_t last_pgoff = start_pgoff;
3565 unsigned long addr;
3566 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3567 struct folio *folio;
3568 vm_fault_t ret = 0;
3569 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3570
3571 rcu_read_lock();
3572 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3573 if (!folio)
3574 goto out;
3575
3576 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3577 ret = VM_FAULT_NOPAGE;
3578 goto out;
3579 }
3580
3581 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3582 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3583 if (!vmf->pte) {
3584 folio_unlock(folio);
3585 folio_put(folio);
3586 goto out;
3587 }
3588 do {
3589 unsigned long end;
3590
3591 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3592 vmf->pte += xas.xa_index - last_pgoff;
3593 last_pgoff = xas.xa_index;
3594 end = folio->index + folio_nr_pages(folio) - 1;
3595 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3596
3597 if (!folio_test_large(folio))
3598 ret |= filemap_map_order0_folio(vmf,
3599 folio, addr, &mmap_miss);
3600 else
3601 ret |= filemap_map_folio_range(vmf, folio,
3602 xas.xa_index - folio->index, addr,
3603 nr_pages, &mmap_miss);
3604
3605 folio_unlock(folio);
3606 folio_put(folio);
3607 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3608 pte_unmap_unlock(vmf->pte, vmf->ptl);
3609 out:
3610 rcu_read_unlock();
3611
3612 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3613 if (mmap_miss >= mmap_miss_saved)
3614 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3615 else
3616 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3617
3618 return ret;
3619 }
3620 EXPORT_SYMBOL(filemap_map_pages);
3621
3622 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3623 {
3624 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3625 struct folio *folio = page_folio(vmf->page);
3626 vm_fault_t ret = VM_FAULT_LOCKED;
3627
3628 sb_start_pagefault(mapping->host->i_sb);
3629 file_update_time(vmf->vma->vm_file);
3630 folio_lock(folio);
3631 if (folio->mapping != mapping) {
3632 folio_unlock(folio);
3633 ret = VM_FAULT_NOPAGE;
3634 goto out;
3635 }
3636 /*
3637 * We mark the folio dirty already here so that when freeze is in
3638 * progress, we are guaranteed that writeback during freezing will
3639 * see the dirty folio and writeprotect it again.
3640 */
3641 folio_mark_dirty(folio);
3642 folio_wait_stable(folio);
3643 out:
3644 sb_end_pagefault(mapping->host->i_sb);
3645 return ret;
3646 }
3647
3648 const struct vm_operations_struct generic_file_vm_ops = {
3649 .fault = filemap_fault,
3650 .map_pages = filemap_map_pages,
3651 .page_mkwrite = filemap_page_mkwrite,
3652 };
3653
3654 /* This is used for a general mmap of a disk file */
3655
3656 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3657 {
3658 struct address_space *mapping = file->f_mapping;
3659
3660 if (!mapping->a_ops->read_folio)
3661 return -ENOEXEC;
3662 file_accessed(file);
3663 vma->vm_ops = &generic_file_vm_ops;
3664 return 0;
3665 }
3666
3667 /*
3668 * This is for filesystems which do not implement ->writepage.
3669 */
3670 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3671 {
3672 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3673 return -EINVAL;
3674 return generic_file_mmap(file, vma);
3675 }
3676 #else
3677 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3678 {
3679 return VM_FAULT_SIGBUS;
3680 }
3681 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3682 {
3683 return -ENOSYS;
3684 }
3685 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3686 {
3687 return -ENOSYS;
3688 }
3689 #endif /* CONFIG_MMU */
3690
3691 EXPORT_SYMBOL(filemap_page_mkwrite);
3692 EXPORT_SYMBOL(generic_file_mmap);
3693 EXPORT_SYMBOL(generic_file_readonly_mmap);
3694
3695 static struct folio *do_read_cache_folio(struct address_space *mapping,
3696 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3697 {
3698 struct folio *folio;
3699 int err;
3700
3701 if (!filler)
3702 filler = mapping->a_ops->read_folio;
3703 repeat:
3704 folio = filemap_get_folio(mapping, index);
3705 if (IS_ERR(folio)) {
3706 folio = filemap_alloc_folio(gfp, 0);
3707 if (!folio)
3708 return ERR_PTR(-ENOMEM);
3709 err = filemap_add_folio(mapping, folio, index, gfp);
3710 if (unlikely(err)) {
3711 folio_put(folio);
3712 if (err == -EEXIST)
3713 goto repeat;
3714 /* Presumably ENOMEM for xarray node */
3715 return ERR_PTR(err);
3716 }
3717
3718 goto filler;
3719 }
3720 if (folio_test_uptodate(folio))
3721 goto out;
3722
3723 if (!folio_trylock(folio)) {
3724 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3725 goto repeat;
3726 }
3727
3728 /* Folio was truncated from mapping */
3729 if (!folio->mapping) {
3730 folio_unlock(folio);
3731 folio_put(folio);
3732 goto repeat;
3733 }
3734
3735 /* Someone else locked and filled the page in a very small window */
3736 if (folio_test_uptodate(folio)) {
3737 folio_unlock(folio);
3738 goto out;
3739 }
3740
3741 filler:
3742 err = filemap_read_folio(file, filler, folio);
3743 if (err) {
3744 folio_put(folio);
3745 if (err == AOP_TRUNCATED_PAGE)
3746 goto repeat;
3747 return ERR_PTR(err);
3748 }
3749
3750 out:
3751 folio_mark_accessed(folio);
3752 return folio;
3753 }
3754
3755 /**
3756 * read_cache_folio - Read into page cache, fill it if needed.
3757 * @mapping: The address_space to read from.
3758 * @index: The index to read.
3759 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3760 * @file: Passed to filler function, may be NULL if not required.
3761 *
3762 * Read one page into the page cache. If it succeeds, the folio returned
3763 * will contain @index, but it may not be the first page of the folio.
3764 *
3765 * If the filler function returns an error, it will be returned to the
3766 * caller.
3767 *
3768 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3769 * Return: An uptodate folio on success, ERR_PTR() on failure.
3770 */
3771 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3772 filler_t filler, struct file *file)
3773 {
3774 return do_read_cache_folio(mapping, index, filler, file,
3775 mapping_gfp_mask(mapping));
3776 }
3777 EXPORT_SYMBOL(read_cache_folio);
3778
3779 /**
3780 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3781 * @mapping: The address_space for the folio.
3782 * @index: The index that the allocated folio will contain.
3783 * @gfp: The page allocator flags to use if allocating.
3784 *
3785 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3786 * any new memory allocations done using the specified allocation flags.
3787 *
3788 * The most likely error from this function is EIO, but ENOMEM is
3789 * possible and so is EINTR. If ->read_folio returns another error,
3790 * that will be returned to the caller.
3791 *
3792 * The function expects mapping->invalidate_lock to be already held.
3793 *
3794 * Return: Uptodate folio on success, ERR_PTR() on failure.
3795 */
3796 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3797 pgoff_t index, gfp_t gfp)
3798 {
3799 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3800 }
3801 EXPORT_SYMBOL(mapping_read_folio_gfp);
3802
3803 static struct page *do_read_cache_page(struct address_space *mapping,
3804 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3805 {
3806 struct folio *folio;
3807
3808 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3809 if (IS_ERR(folio))
3810 return &folio->page;
3811 return folio_file_page(folio, index);
3812 }
3813
3814 struct page *read_cache_page(struct address_space *mapping,
3815 pgoff_t index, filler_t *filler, struct file *file)
3816 {
3817 return do_read_cache_page(mapping, index, filler, file,
3818 mapping_gfp_mask(mapping));
3819 }
3820 EXPORT_SYMBOL(read_cache_page);
3821
3822 /**
3823 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3824 * @mapping: the page's address_space
3825 * @index: the page index
3826 * @gfp: the page allocator flags to use if allocating
3827 *
3828 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3829 * any new page allocations done using the specified allocation flags.
3830 *
3831 * If the page does not get brought uptodate, return -EIO.
3832 *
3833 * The function expects mapping->invalidate_lock to be already held.
3834 *
3835 * Return: up to date page on success, ERR_PTR() on failure.
3836 */
3837 struct page *read_cache_page_gfp(struct address_space *mapping,
3838 pgoff_t index,
3839 gfp_t gfp)
3840 {
3841 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3842 }
3843 EXPORT_SYMBOL(read_cache_page_gfp);
3844
3845 /*
3846 * Warn about a page cache invalidation failure during a direct I/O write.
3847 */
3848 static void dio_warn_stale_pagecache(struct file *filp)
3849 {
3850 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3851 char pathname[128];
3852 char *path;
3853
3854 errseq_set(&filp->f_mapping->wb_err, -EIO);
3855 if (__ratelimit(&_rs)) {
3856 path = file_path(filp, pathname, sizeof(pathname));
3857 if (IS_ERR(path))
3858 path = "(unknown)";
3859 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3860 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3861 current->comm);
3862 }
3863 }
3864
3865 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3866 {
3867 struct address_space *mapping = iocb->ki_filp->f_mapping;
3868
3869 if (mapping->nrpages &&
3870 invalidate_inode_pages2_range(mapping,
3871 iocb->ki_pos >> PAGE_SHIFT,
3872 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3873 dio_warn_stale_pagecache(iocb->ki_filp);
3874 }
3875
3876 ssize_t
3877 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3878 {
3879 struct address_space *mapping = iocb->ki_filp->f_mapping;
3880 size_t write_len = iov_iter_count(from);
3881 ssize_t written;
3882
3883 /*
3884 * If a page can not be invalidated, return 0 to fall back
3885 * to buffered write.
3886 */
3887 written = kiocb_invalidate_pages(iocb, write_len);
3888 if (written) {
3889 if (written == -EBUSY)
3890 return 0;
3891 return written;
3892 }
3893
3894 written = mapping->a_ops->direct_IO(iocb, from);
3895
3896 /*
3897 * Finally, try again to invalidate clean pages which might have been
3898 * cached by non-direct readahead, or faulted in by get_user_pages()
3899 * if the source of the write was an mmap'ed region of the file
3900 * we're writing. Either one is a pretty crazy thing to do,
3901 * so we don't support it 100%. If this invalidation
3902 * fails, tough, the write still worked...
3903 *
3904 * Most of the time we do not need this since dio_complete() will do
3905 * the invalidation for us. However there are some file systems that
3906 * do not end up with dio_complete() being called, so let's not break
3907 * them by removing it completely.
3908 *
3909 * Noticeable example is a blkdev_direct_IO().
3910 *
3911 * Skip invalidation for async writes or if mapping has no pages.
3912 */
3913 if (written > 0) {
3914 struct inode *inode = mapping->host;
3915 loff_t pos = iocb->ki_pos;
3916
3917 kiocb_invalidate_post_direct_write(iocb, written);
3918 pos += written;
3919 write_len -= written;
3920 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3921 i_size_write(inode, pos);
3922 mark_inode_dirty(inode);
3923 }
3924 iocb->ki_pos = pos;
3925 }
3926 if (written != -EIOCBQUEUED)
3927 iov_iter_revert(from, write_len - iov_iter_count(from));
3928 return written;
3929 }
3930 EXPORT_SYMBOL(generic_file_direct_write);
3931
3932 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3933 {
3934 struct file *file = iocb->ki_filp;
3935 loff_t pos = iocb->ki_pos;
3936 struct address_space *mapping = file->f_mapping;
3937 const struct address_space_operations *a_ops = mapping->a_ops;
3938 long status = 0;
3939 ssize_t written = 0;
3940
3941 do {
3942 struct page *page;
3943 unsigned long offset; /* Offset into pagecache page */
3944 unsigned long bytes; /* Bytes to write to page */
3945 size_t copied; /* Bytes copied from user */
3946 void *fsdata = NULL;
3947
3948 offset = (pos & (PAGE_SIZE - 1));
3949 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3950 iov_iter_count(i));
3951
3952 again:
3953 /*
3954 * Bring in the user page that we will copy from _first_.
3955 * Otherwise there's a nasty deadlock on copying from the
3956 * same page as we're writing to, without it being marked
3957 * up-to-date.
3958 */
3959 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3960 status = -EFAULT;
3961 break;
3962 }
3963
3964 if (fatal_signal_pending(current)) {
3965 status = -EINTR;
3966 break;
3967 }
3968
3969 status = a_ops->write_begin(file, mapping, pos, bytes,
3970 &page, &fsdata);
3971 if (unlikely(status < 0))
3972 break;
3973
3974 if (mapping_writably_mapped(mapping))
3975 flush_dcache_page(page);
3976
3977 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3978 flush_dcache_page(page);
3979
3980 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3981 page, fsdata);
3982 if (unlikely(status != copied)) {
3983 iov_iter_revert(i, copied - max(status, 0L));
3984 if (unlikely(status < 0))
3985 break;
3986 }
3987 cond_resched();
3988
3989 if (unlikely(status == 0)) {
3990 /*
3991 * A short copy made ->write_end() reject the
3992 * thing entirely. Might be memory poisoning
3993 * halfway through, might be a race with munmap,
3994 * might be severe memory pressure.
3995 */
3996 if (copied)
3997 bytes = copied;
3998 goto again;
3999 }
4000 pos += status;
4001 written += status;
4002
4003 balance_dirty_pages_ratelimited(mapping);
4004 } while (iov_iter_count(i));
4005
4006 if (!written)
4007 return status;
4008 iocb->ki_pos += written;
4009 return written;
4010 }
4011 EXPORT_SYMBOL(generic_perform_write);
4012
4013 /**
4014 * __generic_file_write_iter - write data to a file
4015 * @iocb: IO state structure (file, offset, etc.)
4016 * @from: iov_iter with data to write
4017 *
4018 * This function does all the work needed for actually writing data to a
4019 * file. It does all basic checks, removes SUID from the file, updates
4020 * modification times and calls proper subroutines depending on whether we
4021 * do direct IO or a standard buffered write.
4022 *
4023 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4024 * object which does not need locking at all.
4025 *
4026 * This function does *not* take care of syncing data in case of O_SYNC write.
4027 * A caller has to handle it. This is mainly due to the fact that we want to
4028 * avoid syncing under i_rwsem.
4029 *
4030 * Return:
4031 * * number of bytes written, even for truncated writes
4032 * * negative error code if no data has been written at all
4033 */
4034 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4035 {
4036 struct file *file = iocb->ki_filp;
4037 struct address_space *mapping = file->f_mapping;
4038 struct inode *inode = mapping->host;
4039 ssize_t ret;
4040
4041 ret = file_remove_privs(file);
4042 if (ret)
4043 return ret;
4044
4045 ret = file_update_time(file);
4046 if (ret)
4047 return ret;
4048
4049 if (iocb->ki_flags & IOCB_DIRECT) {
4050 ret = generic_file_direct_write(iocb, from);
4051 /*
4052 * If the write stopped short of completing, fall back to
4053 * buffered writes. Some filesystems do this for writes to
4054 * holes, for example. For DAX files, a buffered write will
4055 * not succeed (even if it did, DAX does not handle dirty
4056 * page-cache pages correctly).
4057 */
4058 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4059 return ret;
4060 return direct_write_fallback(iocb, from, ret,
4061 generic_perform_write(iocb, from));
4062 }
4063
4064 return generic_perform_write(iocb, from);
4065 }
4066 EXPORT_SYMBOL(__generic_file_write_iter);
4067
4068 /**
4069 * generic_file_write_iter - write data to a file
4070 * @iocb: IO state structure
4071 * @from: iov_iter with data to write
4072 *
4073 * This is a wrapper around __generic_file_write_iter() to be used by most
4074 * filesystems. It takes care of syncing the file in case of O_SYNC file
4075 * and acquires i_rwsem as needed.
4076 * Return:
4077 * * negative error code if no data has been written at all of
4078 * vfs_fsync_range() failed for a synchronous write
4079 * * number of bytes written, even for truncated writes
4080 */
4081 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4082 {
4083 struct file *file = iocb->ki_filp;
4084 struct inode *inode = file->f_mapping->host;
4085 ssize_t ret;
4086
4087 inode_lock(inode);
4088 ret = generic_write_checks(iocb, from);
4089 if (ret > 0)
4090 ret = __generic_file_write_iter(iocb, from);
4091 inode_unlock(inode);
4092
4093 if (ret > 0)
4094 ret = generic_write_sync(iocb, ret);
4095 return ret;
4096 }
4097 EXPORT_SYMBOL(generic_file_write_iter);
4098
4099 /**
4100 * filemap_release_folio() - Release fs-specific metadata on a folio.
4101 * @folio: The folio which the kernel is trying to free.
4102 * @gfp: Memory allocation flags (and I/O mode).
4103 *
4104 * The address_space is trying to release any data attached to a folio
4105 * (presumably at folio->private).
4106 *
4107 * This will also be called if the private_2 flag is set on a page,
4108 * indicating that the folio has other metadata associated with it.
4109 *
4110 * The @gfp argument specifies whether I/O may be performed to release
4111 * this page (__GFP_IO), and whether the call may block
4112 * (__GFP_RECLAIM & __GFP_FS).
4113 *
4114 * Return: %true if the release was successful, otherwise %false.
4115 */
4116 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4117 {
4118 struct address_space * const mapping = folio->mapping;
4119
4120 BUG_ON(!folio_test_locked(folio));
4121 if (!folio_needs_release(folio))
4122 return true;
4123 if (folio_test_writeback(folio))
4124 return false;
4125
4126 if (mapping && mapping->a_ops->release_folio)
4127 return mapping->a_ops->release_folio(folio, gfp);
4128 return try_to_free_buffers(folio);
4129 }
4130 EXPORT_SYMBOL(filemap_release_folio);
4131
4132 #ifdef CONFIG_CACHESTAT_SYSCALL
4133 /**
4134 * filemap_cachestat() - compute the page cache statistics of a mapping
4135 * @mapping: The mapping to compute the statistics for.
4136 * @first_index: The starting page cache index.
4137 * @last_index: The final page index (inclusive).
4138 * @cs: the cachestat struct to write the result to.
4139 *
4140 * This will query the page cache statistics of a mapping in the
4141 * page range of [first_index, last_index] (inclusive). The statistics
4142 * queried include: number of dirty pages, number of pages marked for
4143 * writeback, and the number of (recently) evicted pages.
4144 */
4145 static void filemap_cachestat(struct address_space *mapping,
4146 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4147 {
4148 XA_STATE(xas, &mapping->i_pages, first_index);
4149 struct folio *folio;
4150
4151 rcu_read_lock();
4152 xas_for_each(&xas, folio, last_index) {
4153 unsigned long nr_pages;
4154 pgoff_t folio_first_index, folio_last_index;
4155
4156 if (xas_retry(&xas, folio))
4157 continue;
4158
4159 if (xa_is_value(folio)) {
4160 /* page is evicted */
4161 void *shadow = (void *)folio;
4162 bool workingset; /* not used */
4163 int order = xa_get_order(xas.xa, xas.xa_index);
4164
4165 nr_pages = 1 << order;
4166 folio_first_index = round_down(xas.xa_index, 1 << order);
4167 folio_last_index = folio_first_index + nr_pages - 1;
4168
4169 /* Folios might straddle the range boundaries, only count covered pages */
4170 if (folio_first_index < first_index)
4171 nr_pages -= first_index - folio_first_index;
4172
4173 if (folio_last_index > last_index)
4174 nr_pages -= folio_last_index - last_index;
4175
4176 cs->nr_evicted += nr_pages;
4177
4178 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4179 if (shmem_mapping(mapping)) {
4180 /* shmem file - in swap cache */
4181 swp_entry_t swp = radix_to_swp_entry(folio);
4182
4183 shadow = get_shadow_from_swap_cache(swp);
4184 }
4185 #endif
4186 if (workingset_test_recent(shadow, true, &workingset))
4187 cs->nr_recently_evicted += nr_pages;
4188
4189 goto resched;
4190 }
4191
4192 nr_pages = folio_nr_pages(folio);
4193 folio_first_index = folio_pgoff(folio);
4194 folio_last_index = folio_first_index + nr_pages - 1;
4195
4196 /* Folios might straddle the range boundaries, only count covered pages */
4197 if (folio_first_index < first_index)
4198 nr_pages -= first_index - folio_first_index;
4199
4200 if (folio_last_index > last_index)
4201 nr_pages -= folio_last_index - last_index;
4202
4203 /* page is in cache */
4204 cs->nr_cache += nr_pages;
4205
4206 if (folio_test_dirty(folio))
4207 cs->nr_dirty += nr_pages;
4208
4209 if (folio_test_writeback(folio))
4210 cs->nr_writeback += nr_pages;
4211
4212 resched:
4213 if (need_resched()) {
4214 xas_pause(&xas);
4215 cond_resched_rcu();
4216 }
4217 }
4218 rcu_read_unlock();
4219 }
4220
4221 /*
4222 * The cachestat(2) system call.
4223 *
4224 * cachestat() returns the page cache statistics of a file in the
4225 * bytes range specified by `off` and `len`: number of cached pages,
4226 * number of dirty pages, number of pages marked for writeback,
4227 * number of evicted pages, and number of recently evicted pages.
4228 *
4229 * An evicted page is a page that is previously in the page cache
4230 * but has been evicted since. A page is recently evicted if its last
4231 * eviction was recent enough that its reentry to the cache would
4232 * indicate that it is actively being used by the system, and that
4233 * there is memory pressure on the system.
4234 *
4235 * `off` and `len` must be non-negative integers. If `len` > 0,
4236 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4237 * we will query in the range from `off` to the end of the file.
4238 *
4239 * The `flags` argument is unused for now, but is included for future
4240 * extensibility. User should pass 0 (i.e no flag specified).
4241 *
4242 * Currently, hugetlbfs is not supported.
4243 *
4244 * Because the status of a page can change after cachestat() checks it
4245 * but before it returns to the application, the returned values may
4246 * contain stale information.
4247 *
4248 * return values:
4249 * zero - success
4250 * -EFAULT - cstat or cstat_range points to an illegal address
4251 * -EINVAL - invalid flags
4252 * -EBADF - invalid file descriptor
4253 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4254 */
4255 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4256 struct cachestat_range __user *, cstat_range,
4257 struct cachestat __user *, cstat, unsigned int, flags)
4258 {
4259 struct fd f = fdget(fd);
4260 struct address_space *mapping;
4261 struct cachestat_range csr;
4262 struct cachestat cs;
4263 pgoff_t first_index, last_index;
4264
4265 if (!f.file)
4266 return -EBADF;
4267
4268 if (copy_from_user(&csr, cstat_range,
4269 sizeof(struct cachestat_range))) {
4270 fdput(f);
4271 return -EFAULT;
4272 }
4273
4274 /* hugetlbfs is not supported */
4275 if (is_file_hugepages(f.file)) {
4276 fdput(f);
4277 return -EOPNOTSUPP;
4278 }
4279
4280 if (flags != 0) {
4281 fdput(f);
4282 return -EINVAL;
4283 }
4284
4285 first_index = csr.off >> PAGE_SHIFT;
4286 last_index =
4287 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4288 memset(&cs, 0, sizeof(struct cachestat));
4289 mapping = f.file->f_mapping;
4290 filemap_cachestat(mapping, first_index, last_index, &cs);
4291 fdput(f);
4292
4293 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4294 return -EFAULT;
4295
4296 return 0;
4297 }
4298 #endif /* CONFIG_CACHESTAT_SYSCALL */