]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/filemap.c
callers of iov_copy_from_user_atomic() don't need pagecache_disable()
[people/arne_f/kernel.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60 /*
61 * Lock ordering:
62 *
63 * ->i_mmap_mutex (truncate_pagecache)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
67 *
68 * ->i_mutex
69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 *
71 * ->mmap_sem
72 * ->i_mmap_mutex
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 *
82 * bdi->wb.list_lock
83 * sb_lock (fs/fs-writeback.c)
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
86 * ->i_mmap_mutex
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 *
92 * ->page_table_lock or pte_lock
93 * ->swap_lock (try_to_unmap_one)
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
108 */
109
110 /*
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __delete_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 trace_mm_filemap_delete_from_page_cache(page);
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
128 cleancache_invalidate_page(mapping, page);
129
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
132 /* Leave page->index set: truncation lookup relies upon it */
133 mapping->nrpages--;
134 __dec_zone_page_state(page, NR_FILE_PAGES);
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
137 BUG_ON(page_mapped(page));
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
150 }
151
152 /**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160 void delete_from_page_cache(struct page *page)
161 {
162 struct address_space *mapping = page->mapping;
163 void (*freepage)(struct page *);
164
165 BUG_ON(!PageLocked(page));
166
167 freepage = mapping->a_ops->freepage;
168 spin_lock_irq(&mapping->tree_lock);
169 __delete_from_page_cache(page);
170 spin_unlock_irq(&mapping->tree_lock);
171 mem_cgroup_uncharge_cache_page(page);
172
173 if (freepage)
174 freepage(page);
175 page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181 io_schedule();
182 return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187 sleep_on_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_bit(AS_ENOSPC, &mapping->flags) &&
196 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
197 ret = -ENOSPC;
198 if (test_bit(AS_EIO, &mapping->flags) &&
199 test_and_clear_bit(AS_EIO, &mapping->flags))
200 ret = -EIO;
201 return ret;
202 }
203
204 /**
205 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
206 * @mapping: address space structure to write
207 * @start: offset in bytes where the range starts
208 * @end: offset in bytes where the range ends (inclusive)
209 * @sync_mode: enable synchronous operation
210 *
211 * Start writeback against all of a mapping's dirty pages that lie
212 * within the byte offsets <start, end> inclusive.
213 *
214 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
215 * opposed to a regular memory cleansing writeback. The difference between
216 * these two operations is that if a dirty page/buffer is encountered, it must
217 * be waited upon, and not just skipped over.
218 */
219 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
220 loff_t end, int sync_mode)
221 {
222 int ret;
223 struct writeback_control wbc = {
224 .sync_mode = sync_mode,
225 .nr_to_write = LONG_MAX,
226 .range_start = start,
227 .range_end = end,
228 };
229
230 if (!mapping_cap_writeback_dirty(mapping))
231 return 0;
232
233 ret = do_writepages(mapping, &wbc);
234 return ret;
235 }
236
237 static inline int __filemap_fdatawrite(struct address_space *mapping,
238 int sync_mode)
239 {
240 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
241 }
242
243 int filemap_fdatawrite(struct address_space *mapping)
244 {
245 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
246 }
247 EXPORT_SYMBOL(filemap_fdatawrite);
248
249 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
250 loff_t end)
251 {
252 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
253 }
254 EXPORT_SYMBOL(filemap_fdatawrite_range);
255
256 /**
257 * filemap_flush - mostly a non-blocking flush
258 * @mapping: target address_space
259 *
260 * This is a mostly non-blocking flush. Not suitable for data-integrity
261 * purposes - I/O may not be started against all dirty pages.
262 */
263 int filemap_flush(struct address_space *mapping)
264 {
265 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
266 }
267 EXPORT_SYMBOL(filemap_flush);
268
269 /**
270 * filemap_fdatawait_range - wait for writeback to complete
271 * @mapping: address space structure to wait for
272 * @start_byte: offset in bytes where the range starts
273 * @end_byte: offset in bytes where the range ends (inclusive)
274 *
275 * Walk the list of under-writeback pages of the given address space
276 * in the given range and wait for all of them.
277 */
278 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
279 loff_t end_byte)
280 {
281 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
282 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
283 struct pagevec pvec;
284 int nr_pages;
285 int ret2, ret = 0;
286
287 if (end_byte < start_byte)
288 goto out;
289
290 pagevec_init(&pvec, 0);
291 while ((index <= end) &&
292 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
293 PAGECACHE_TAG_WRITEBACK,
294 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
295 unsigned i;
296
297 for (i = 0; i < nr_pages; i++) {
298 struct page *page = pvec.pages[i];
299
300 /* until radix tree lookup accepts end_index */
301 if (page->index > end)
302 continue;
303
304 wait_on_page_writeback(page);
305 if (TestClearPageError(page))
306 ret = -EIO;
307 }
308 pagevec_release(&pvec);
309 cond_resched();
310 }
311 out:
312 ret2 = filemap_check_errors(mapping);
313 if (!ret)
314 ret = ret2;
315
316 return ret;
317 }
318 EXPORT_SYMBOL(filemap_fdatawait_range);
319
320 /**
321 * filemap_fdatawait - wait for all under-writeback pages to complete
322 * @mapping: address space structure to wait for
323 *
324 * Walk the list of under-writeback pages of the given address space
325 * and wait for all of them.
326 */
327 int filemap_fdatawait(struct address_space *mapping)
328 {
329 loff_t i_size = i_size_read(mapping->host);
330
331 if (i_size == 0)
332 return 0;
333
334 return filemap_fdatawait_range(mapping, 0, i_size - 1);
335 }
336 EXPORT_SYMBOL(filemap_fdatawait);
337
338 int filemap_write_and_wait(struct address_space *mapping)
339 {
340 int err = 0;
341
342 if (mapping->nrpages) {
343 err = filemap_fdatawrite(mapping);
344 /*
345 * Even if the above returned error, the pages may be
346 * written partially (e.g. -ENOSPC), so we wait for it.
347 * But the -EIO is special case, it may indicate the worst
348 * thing (e.g. bug) happened, so we avoid waiting for it.
349 */
350 if (err != -EIO) {
351 int err2 = filemap_fdatawait(mapping);
352 if (!err)
353 err = err2;
354 }
355 } else {
356 err = filemap_check_errors(mapping);
357 }
358 return err;
359 }
360 EXPORT_SYMBOL(filemap_write_and_wait);
361
362 /**
363 * filemap_write_and_wait_range - write out & wait on a file range
364 * @mapping: the address_space for the pages
365 * @lstart: offset in bytes where the range starts
366 * @lend: offset in bytes where the range ends (inclusive)
367 *
368 * Write out and wait upon file offsets lstart->lend, inclusive.
369 *
370 * Note that `lend' is inclusive (describes the last byte to be written) so
371 * that this function can be used to write to the very end-of-file (end = -1).
372 */
373 int filemap_write_and_wait_range(struct address_space *mapping,
374 loff_t lstart, loff_t lend)
375 {
376 int err = 0;
377
378 if (mapping->nrpages) {
379 err = __filemap_fdatawrite_range(mapping, lstart, lend,
380 WB_SYNC_ALL);
381 /* See comment of filemap_write_and_wait() */
382 if (err != -EIO) {
383 int err2 = filemap_fdatawait_range(mapping,
384 lstart, lend);
385 if (!err)
386 err = err2;
387 }
388 } else {
389 err = filemap_check_errors(mapping);
390 }
391 return err;
392 }
393 EXPORT_SYMBOL(filemap_write_and_wait_range);
394
395 /**
396 * replace_page_cache_page - replace a pagecache page with a new one
397 * @old: page to be replaced
398 * @new: page to replace with
399 * @gfp_mask: allocation mode
400 *
401 * This function replaces a page in the pagecache with a new one. On
402 * success it acquires the pagecache reference for the new page and
403 * drops it for the old page. Both the old and new pages must be
404 * locked. This function does not add the new page to the LRU, the
405 * caller must do that.
406 *
407 * The remove + add is atomic. The only way this function can fail is
408 * memory allocation failure.
409 */
410 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
411 {
412 int error;
413
414 VM_BUG_ON_PAGE(!PageLocked(old), old);
415 VM_BUG_ON_PAGE(!PageLocked(new), new);
416 VM_BUG_ON_PAGE(new->mapping, new);
417
418 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
419 if (!error) {
420 struct address_space *mapping = old->mapping;
421 void (*freepage)(struct page *);
422
423 pgoff_t offset = old->index;
424 freepage = mapping->a_ops->freepage;
425
426 page_cache_get(new);
427 new->mapping = mapping;
428 new->index = offset;
429
430 spin_lock_irq(&mapping->tree_lock);
431 __delete_from_page_cache(old);
432 error = radix_tree_insert(&mapping->page_tree, offset, new);
433 BUG_ON(error);
434 mapping->nrpages++;
435 __inc_zone_page_state(new, NR_FILE_PAGES);
436 if (PageSwapBacked(new))
437 __inc_zone_page_state(new, NR_SHMEM);
438 spin_unlock_irq(&mapping->tree_lock);
439 /* mem_cgroup codes must not be called under tree_lock */
440 mem_cgroup_replace_page_cache(old, new);
441 radix_tree_preload_end();
442 if (freepage)
443 freepage(old);
444 page_cache_release(old);
445 }
446
447 return error;
448 }
449 EXPORT_SYMBOL_GPL(replace_page_cache_page);
450
451 static int page_cache_tree_insert(struct address_space *mapping,
452 struct page *page)
453 {
454 void **slot;
455 int error;
456
457 slot = radix_tree_lookup_slot(&mapping->page_tree, page->index);
458 if (slot) {
459 void *p;
460
461 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
462 if (!radix_tree_exceptional_entry(p))
463 return -EEXIST;
464 radix_tree_replace_slot(slot, page);
465 mapping->nrpages++;
466 return 0;
467 }
468 error = radix_tree_insert(&mapping->page_tree, page->index, page);
469 if (!error)
470 mapping->nrpages++;
471 return error;
472 }
473
474 /**
475 * add_to_page_cache_locked - add a locked page to the pagecache
476 * @page: page to add
477 * @mapping: the page's address_space
478 * @offset: page index
479 * @gfp_mask: page allocation mode
480 *
481 * This function is used to add a page to the pagecache. It must be locked.
482 * This function does not add the page to the LRU. The caller must do that.
483 */
484 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
485 pgoff_t offset, gfp_t gfp_mask)
486 {
487 int error;
488
489 VM_BUG_ON_PAGE(!PageLocked(page), page);
490 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
491
492 error = mem_cgroup_cache_charge(page, current->mm,
493 gfp_mask & GFP_RECLAIM_MASK);
494 if (error)
495 return error;
496
497 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
498 if (error) {
499 mem_cgroup_uncharge_cache_page(page);
500 return error;
501 }
502
503 page_cache_get(page);
504 page->mapping = mapping;
505 page->index = offset;
506
507 spin_lock_irq(&mapping->tree_lock);
508 error = page_cache_tree_insert(mapping, page);
509 radix_tree_preload_end();
510 if (unlikely(error))
511 goto err_insert;
512 __inc_zone_page_state(page, NR_FILE_PAGES);
513 spin_unlock_irq(&mapping->tree_lock);
514 trace_mm_filemap_add_to_page_cache(page);
515 return 0;
516 err_insert:
517 page->mapping = NULL;
518 /* Leave page->index set: truncation relies upon it */
519 spin_unlock_irq(&mapping->tree_lock);
520 mem_cgroup_uncharge_cache_page(page);
521 page_cache_release(page);
522 return error;
523 }
524 EXPORT_SYMBOL(add_to_page_cache_locked);
525
526 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
527 pgoff_t offset, gfp_t gfp_mask)
528 {
529 int ret;
530
531 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
532 if (ret == 0)
533 lru_cache_add_file(page);
534 return ret;
535 }
536 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
537
538 #ifdef CONFIG_NUMA
539 struct page *__page_cache_alloc(gfp_t gfp)
540 {
541 int n;
542 struct page *page;
543
544 if (cpuset_do_page_mem_spread()) {
545 unsigned int cpuset_mems_cookie;
546 do {
547 cpuset_mems_cookie = read_mems_allowed_begin();
548 n = cpuset_mem_spread_node();
549 page = alloc_pages_exact_node(n, gfp, 0);
550 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
551
552 return page;
553 }
554 return alloc_pages(gfp, 0);
555 }
556 EXPORT_SYMBOL(__page_cache_alloc);
557 #endif
558
559 /*
560 * In order to wait for pages to become available there must be
561 * waitqueues associated with pages. By using a hash table of
562 * waitqueues where the bucket discipline is to maintain all
563 * waiters on the same queue and wake all when any of the pages
564 * become available, and for the woken contexts to check to be
565 * sure the appropriate page became available, this saves space
566 * at a cost of "thundering herd" phenomena during rare hash
567 * collisions.
568 */
569 static wait_queue_head_t *page_waitqueue(struct page *page)
570 {
571 const struct zone *zone = page_zone(page);
572
573 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
574 }
575
576 static inline void wake_up_page(struct page *page, int bit)
577 {
578 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
579 }
580
581 void wait_on_page_bit(struct page *page, int bit_nr)
582 {
583 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
584
585 if (test_bit(bit_nr, &page->flags))
586 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
587 TASK_UNINTERRUPTIBLE);
588 }
589 EXPORT_SYMBOL(wait_on_page_bit);
590
591 int wait_on_page_bit_killable(struct page *page, int bit_nr)
592 {
593 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
594
595 if (!test_bit(bit_nr, &page->flags))
596 return 0;
597
598 return __wait_on_bit(page_waitqueue(page), &wait,
599 sleep_on_page_killable, TASK_KILLABLE);
600 }
601
602 /**
603 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
604 * @page: Page defining the wait queue of interest
605 * @waiter: Waiter to add to the queue
606 *
607 * Add an arbitrary @waiter to the wait queue for the nominated @page.
608 */
609 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
610 {
611 wait_queue_head_t *q = page_waitqueue(page);
612 unsigned long flags;
613
614 spin_lock_irqsave(&q->lock, flags);
615 __add_wait_queue(q, waiter);
616 spin_unlock_irqrestore(&q->lock, flags);
617 }
618 EXPORT_SYMBOL_GPL(add_page_wait_queue);
619
620 /**
621 * unlock_page - unlock a locked page
622 * @page: the page
623 *
624 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
625 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
626 * mechananism between PageLocked pages and PageWriteback pages is shared.
627 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
628 *
629 * The mb is necessary to enforce ordering between the clear_bit and the read
630 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
631 */
632 void unlock_page(struct page *page)
633 {
634 VM_BUG_ON_PAGE(!PageLocked(page), page);
635 clear_bit_unlock(PG_locked, &page->flags);
636 smp_mb__after_clear_bit();
637 wake_up_page(page, PG_locked);
638 }
639 EXPORT_SYMBOL(unlock_page);
640
641 /**
642 * end_page_writeback - end writeback against a page
643 * @page: the page
644 */
645 void end_page_writeback(struct page *page)
646 {
647 if (TestClearPageReclaim(page))
648 rotate_reclaimable_page(page);
649
650 if (!test_clear_page_writeback(page))
651 BUG();
652
653 smp_mb__after_clear_bit();
654 wake_up_page(page, PG_writeback);
655 }
656 EXPORT_SYMBOL(end_page_writeback);
657
658 /**
659 * __lock_page - get a lock on the page, assuming we need to sleep to get it
660 * @page: the page to lock
661 */
662 void __lock_page(struct page *page)
663 {
664 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
665
666 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
667 TASK_UNINTERRUPTIBLE);
668 }
669 EXPORT_SYMBOL(__lock_page);
670
671 int __lock_page_killable(struct page *page)
672 {
673 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
674
675 return __wait_on_bit_lock(page_waitqueue(page), &wait,
676 sleep_on_page_killable, TASK_KILLABLE);
677 }
678 EXPORT_SYMBOL_GPL(__lock_page_killable);
679
680 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
681 unsigned int flags)
682 {
683 if (flags & FAULT_FLAG_ALLOW_RETRY) {
684 /*
685 * CAUTION! In this case, mmap_sem is not released
686 * even though return 0.
687 */
688 if (flags & FAULT_FLAG_RETRY_NOWAIT)
689 return 0;
690
691 up_read(&mm->mmap_sem);
692 if (flags & FAULT_FLAG_KILLABLE)
693 wait_on_page_locked_killable(page);
694 else
695 wait_on_page_locked(page);
696 return 0;
697 } else {
698 if (flags & FAULT_FLAG_KILLABLE) {
699 int ret;
700
701 ret = __lock_page_killable(page);
702 if (ret) {
703 up_read(&mm->mmap_sem);
704 return 0;
705 }
706 } else
707 __lock_page(page);
708 return 1;
709 }
710 }
711
712 /**
713 * page_cache_next_hole - find the next hole (not-present entry)
714 * @mapping: mapping
715 * @index: index
716 * @max_scan: maximum range to search
717 *
718 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
719 * lowest indexed hole.
720 *
721 * Returns: the index of the hole if found, otherwise returns an index
722 * outside of the set specified (in which case 'return - index >=
723 * max_scan' will be true). In rare cases of index wrap-around, 0 will
724 * be returned.
725 *
726 * page_cache_next_hole may be called under rcu_read_lock. However,
727 * like radix_tree_gang_lookup, this will not atomically search a
728 * snapshot of the tree at a single point in time. For example, if a
729 * hole is created at index 5, then subsequently a hole is created at
730 * index 10, page_cache_next_hole covering both indexes may return 10
731 * if called under rcu_read_lock.
732 */
733 pgoff_t page_cache_next_hole(struct address_space *mapping,
734 pgoff_t index, unsigned long max_scan)
735 {
736 unsigned long i;
737
738 for (i = 0; i < max_scan; i++) {
739 struct page *page;
740
741 page = radix_tree_lookup(&mapping->page_tree, index);
742 if (!page || radix_tree_exceptional_entry(page))
743 break;
744 index++;
745 if (index == 0)
746 break;
747 }
748
749 return index;
750 }
751 EXPORT_SYMBOL(page_cache_next_hole);
752
753 /**
754 * page_cache_prev_hole - find the prev hole (not-present entry)
755 * @mapping: mapping
756 * @index: index
757 * @max_scan: maximum range to search
758 *
759 * Search backwards in the range [max(index-max_scan+1, 0), index] for
760 * the first hole.
761 *
762 * Returns: the index of the hole if found, otherwise returns an index
763 * outside of the set specified (in which case 'index - return >=
764 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
765 * will be returned.
766 *
767 * page_cache_prev_hole may be called under rcu_read_lock. However,
768 * like radix_tree_gang_lookup, this will not atomically search a
769 * snapshot of the tree at a single point in time. For example, if a
770 * hole is created at index 10, then subsequently a hole is created at
771 * index 5, page_cache_prev_hole covering both indexes may return 5 if
772 * called under rcu_read_lock.
773 */
774 pgoff_t page_cache_prev_hole(struct address_space *mapping,
775 pgoff_t index, unsigned long max_scan)
776 {
777 unsigned long i;
778
779 for (i = 0; i < max_scan; i++) {
780 struct page *page;
781
782 page = radix_tree_lookup(&mapping->page_tree, index);
783 if (!page || radix_tree_exceptional_entry(page))
784 break;
785 index--;
786 if (index == ULONG_MAX)
787 break;
788 }
789
790 return index;
791 }
792 EXPORT_SYMBOL(page_cache_prev_hole);
793
794 /**
795 * find_get_entry - find and get a page cache entry
796 * @mapping: the address_space to search
797 * @offset: the page cache index
798 *
799 * Looks up the page cache slot at @mapping & @offset. If there is a
800 * page cache page, it is returned with an increased refcount.
801 *
802 * If the slot holds a shadow entry of a previously evicted page, it
803 * is returned.
804 *
805 * Otherwise, %NULL is returned.
806 */
807 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
808 {
809 void **pagep;
810 struct page *page;
811
812 rcu_read_lock();
813 repeat:
814 page = NULL;
815 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
816 if (pagep) {
817 page = radix_tree_deref_slot(pagep);
818 if (unlikely(!page))
819 goto out;
820 if (radix_tree_exception(page)) {
821 if (radix_tree_deref_retry(page))
822 goto repeat;
823 /*
824 * Otherwise, shmem/tmpfs must be storing a swap entry
825 * here as an exceptional entry: so return it without
826 * attempting to raise page count.
827 */
828 goto out;
829 }
830 if (!page_cache_get_speculative(page))
831 goto repeat;
832
833 /*
834 * Has the page moved?
835 * This is part of the lockless pagecache protocol. See
836 * include/linux/pagemap.h for details.
837 */
838 if (unlikely(page != *pagep)) {
839 page_cache_release(page);
840 goto repeat;
841 }
842 }
843 out:
844 rcu_read_unlock();
845
846 return page;
847 }
848 EXPORT_SYMBOL(find_get_entry);
849
850 /**
851 * find_get_page - find and get a page reference
852 * @mapping: the address_space to search
853 * @offset: the page index
854 *
855 * Looks up the page cache slot at @mapping & @offset. If there is a
856 * page cache page, it is returned with an increased refcount.
857 *
858 * Otherwise, %NULL is returned.
859 */
860 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
861 {
862 struct page *page = find_get_entry(mapping, offset);
863
864 if (radix_tree_exceptional_entry(page))
865 page = NULL;
866 return page;
867 }
868 EXPORT_SYMBOL(find_get_page);
869
870 /**
871 * find_lock_entry - locate, pin and lock a page cache entry
872 * @mapping: the address_space to search
873 * @offset: the page cache index
874 *
875 * Looks up the page cache slot at @mapping & @offset. If there is a
876 * page cache page, it is returned locked and with an increased
877 * refcount.
878 *
879 * If the slot holds a shadow entry of a previously evicted page, it
880 * is returned.
881 *
882 * Otherwise, %NULL is returned.
883 *
884 * find_lock_entry() may sleep.
885 */
886 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
887 {
888 struct page *page;
889
890 repeat:
891 page = find_get_entry(mapping, offset);
892 if (page && !radix_tree_exception(page)) {
893 lock_page(page);
894 /* Has the page been truncated? */
895 if (unlikely(page->mapping != mapping)) {
896 unlock_page(page);
897 page_cache_release(page);
898 goto repeat;
899 }
900 VM_BUG_ON_PAGE(page->index != offset, page);
901 }
902 return page;
903 }
904 EXPORT_SYMBOL(find_lock_entry);
905
906 /**
907 * find_lock_page - locate, pin and lock a pagecache page
908 * @mapping: the address_space to search
909 * @offset: the page index
910 *
911 * Looks up the page cache slot at @mapping & @offset. If there is a
912 * page cache page, it is returned locked and with an increased
913 * refcount.
914 *
915 * Otherwise, %NULL is returned.
916 *
917 * find_lock_page() may sleep.
918 */
919 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
920 {
921 struct page *page = find_lock_entry(mapping, offset);
922
923 if (radix_tree_exceptional_entry(page))
924 page = NULL;
925 return page;
926 }
927 EXPORT_SYMBOL(find_lock_page);
928
929 /**
930 * find_or_create_page - locate or add a pagecache page
931 * @mapping: the page's address_space
932 * @index: the page's index into the mapping
933 * @gfp_mask: page allocation mode
934 *
935 * Looks up the page cache slot at @mapping & @offset. If there is a
936 * page cache page, it is returned locked and with an increased
937 * refcount.
938 *
939 * If the page is not present, a new page is allocated using @gfp_mask
940 * and added to the page cache and the VM's LRU list. The page is
941 * returned locked and with an increased refcount.
942 *
943 * On memory exhaustion, %NULL is returned.
944 *
945 * find_or_create_page() may sleep, even if @gfp_flags specifies an
946 * atomic allocation!
947 */
948 struct page *find_or_create_page(struct address_space *mapping,
949 pgoff_t index, gfp_t gfp_mask)
950 {
951 struct page *page;
952 int err;
953 repeat:
954 page = find_lock_page(mapping, index);
955 if (!page) {
956 page = __page_cache_alloc(gfp_mask);
957 if (!page)
958 return NULL;
959 /*
960 * We want a regular kernel memory (not highmem or DMA etc)
961 * allocation for the radix tree nodes, but we need to honour
962 * the context-specific requirements the caller has asked for.
963 * GFP_RECLAIM_MASK collects those requirements.
964 */
965 err = add_to_page_cache_lru(page, mapping, index,
966 (gfp_mask & GFP_RECLAIM_MASK));
967 if (unlikely(err)) {
968 page_cache_release(page);
969 page = NULL;
970 if (err == -EEXIST)
971 goto repeat;
972 }
973 }
974 return page;
975 }
976 EXPORT_SYMBOL(find_or_create_page);
977
978 /**
979 * find_get_entries - gang pagecache lookup
980 * @mapping: The address_space to search
981 * @start: The starting page cache index
982 * @nr_entries: The maximum number of entries
983 * @entries: Where the resulting entries are placed
984 * @indices: The cache indices corresponding to the entries in @entries
985 *
986 * find_get_entries() will search for and return a group of up to
987 * @nr_entries entries in the mapping. The entries are placed at
988 * @entries. find_get_entries() takes a reference against any actual
989 * pages it returns.
990 *
991 * The search returns a group of mapping-contiguous page cache entries
992 * with ascending indexes. There may be holes in the indices due to
993 * not-present pages.
994 *
995 * Any shadow entries of evicted pages are included in the returned
996 * array.
997 *
998 * find_get_entries() returns the number of pages and shadow entries
999 * which were found.
1000 */
1001 unsigned find_get_entries(struct address_space *mapping,
1002 pgoff_t start, unsigned int nr_entries,
1003 struct page **entries, pgoff_t *indices)
1004 {
1005 void **slot;
1006 unsigned int ret = 0;
1007 struct radix_tree_iter iter;
1008
1009 if (!nr_entries)
1010 return 0;
1011
1012 rcu_read_lock();
1013 restart:
1014 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1015 struct page *page;
1016 repeat:
1017 page = radix_tree_deref_slot(slot);
1018 if (unlikely(!page))
1019 continue;
1020 if (radix_tree_exception(page)) {
1021 if (radix_tree_deref_retry(page))
1022 goto restart;
1023 /*
1024 * Otherwise, we must be storing a swap entry
1025 * here as an exceptional entry: so return it
1026 * without attempting to raise page count.
1027 */
1028 goto export;
1029 }
1030 if (!page_cache_get_speculative(page))
1031 goto repeat;
1032
1033 /* Has the page moved? */
1034 if (unlikely(page != *slot)) {
1035 page_cache_release(page);
1036 goto repeat;
1037 }
1038 export:
1039 indices[ret] = iter.index;
1040 entries[ret] = page;
1041 if (++ret == nr_entries)
1042 break;
1043 }
1044 rcu_read_unlock();
1045 return ret;
1046 }
1047
1048 /**
1049 * find_get_pages - gang pagecache lookup
1050 * @mapping: The address_space to search
1051 * @start: The starting page index
1052 * @nr_pages: The maximum number of pages
1053 * @pages: Where the resulting pages are placed
1054 *
1055 * find_get_pages() will search for and return a group of up to
1056 * @nr_pages pages in the mapping. The pages are placed at @pages.
1057 * find_get_pages() takes a reference against the returned pages.
1058 *
1059 * The search returns a group of mapping-contiguous pages with ascending
1060 * indexes. There may be holes in the indices due to not-present pages.
1061 *
1062 * find_get_pages() returns the number of pages which were found.
1063 */
1064 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1065 unsigned int nr_pages, struct page **pages)
1066 {
1067 struct radix_tree_iter iter;
1068 void **slot;
1069 unsigned ret = 0;
1070
1071 if (unlikely(!nr_pages))
1072 return 0;
1073
1074 rcu_read_lock();
1075 restart:
1076 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1077 struct page *page;
1078 repeat:
1079 page = radix_tree_deref_slot(slot);
1080 if (unlikely(!page))
1081 continue;
1082
1083 if (radix_tree_exception(page)) {
1084 if (radix_tree_deref_retry(page)) {
1085 /*
1086 * Transient condition which can only trigger
1087 * when entry at index 0 moves out of or back
1088 * to root: none yet gotten, safe to restart.
1089 */
1090 WARN_ON(iter.index);
1091 goto restart;
1092 }
1093 /*
1094 * Otherwise, shmem/tmpfs must be storing a swap entry
1095 * here as an exceptional entry: so skip over it -
1096 * we only reach this from invalidate_mapping_pages().
1097 */
1098 continue;
1099 }
1100
1101 if (!page_cache_get_speculative(page))
1102 goto repeat;
1103
1104 /* Has the page moved? */
1105 if (unlikely(page != *slot)) {
1106 page_cache_release(page);
1107 goto repeat;
1108 }
1109
1110 pages[ret] = page;
1111 if (++ret == nr_pages)
1112 break;
1113 }
1114
1115 rcu_read_unlock();
1116 return ret;
1117 }
1118
1119 /**
1120 * find_get_pages_contig - gang contiguous pagecache lookup
1121 * @mapping: The address_space to search
1122 * @index: The starting page index
1123 * @nr_pages: The maximum number of pages
1124 * @pages: Where the resulting pages are placed
1125 *
1126 * find_get_pages_contig() works exactly like find_get_pages(), except
1127 * that the returned number of pages are guaranteed to be contiguous.
1128 *
1129 * find_get_pages_contig() returns the number of pages which were found.
1130 */
1131 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1132 unsigned int nr_pages, struct page **pages)
1133 {
1134 struct radix_tree_iter iter;
1135 void **slot;
1136 unsigned int ret = 0;
1137
1138 if (unlikely(!nr_pages))
1139 return 0;
1140
1141 rcu_read_lock();
1142 restart:
1143 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1144 struct page *page;
1145 repeat:
1146 page = radix_tree_deref_slot(slot);
1147 /* The hole, there no reason to continue */
1148 if (unlikely(!page))
1149 break;
1150
1151 if (radix_tree_exception(page)) {
1152 if (radix_tree_deref_retry(page)) {
1153 /*
1154 * Transient condition which can only trigger
1155 * when entry at index 0 moves out of or back
1156 * to root: none yet gotten, safe to restart.
1157 */
1158 goto restart;
1159 }
1160 /*
1161 * Otherwise, shmem/tmpfs must be storing a swap entry
1162 * here as an exceptional entry: so stop looking for
1163 * contiguous pages.
1164 */
1165 break;
1166 }
1167
1168 if (!page_cache_get_speculative(page))
1169 goto repeat;
1170
1171 /* Has the page moved? */
1172 if (unlikely(page != *slot)) {
1173 page_cache_release(page);
1174 goto repeat;
1175 }
1176
1177 /*
1178 * must check mapping and index after taking the ref.
1179 * otherwise we can get both false positives and false
1180 * negatives, which is just confusing to the caller.
1181 */
1182 if (page->mapping == NULL || page->index != iter.index) {
1183 page_cache_release(page);
1184 break;
1185 }
1186
1187 pages[ret] = page;
1188 if (++ret == nr_pages)
1189 break;
1190 }
1191 rcu_read_unlock();
1192 return ret;
1193 }
1194 EXPORT_SYMBOL(find_get_pages_contig);
1195
1196 /**
1197 * find_get_pages_tag - find and return pages that match @tag
1198 * @mapping: the address_space to search
1199 * @index: the starting page index
1200 * @tag: the tag index
1201 * @nr_pages: the maximum number of pages
1202 * @pages: where the resulting pages are placed
1203 *
1204 * Like find_get_pages, except we only return pages which are tagged with
1205 * @tag. We update @index to index the next page for the traversal.
1206 */
1207 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1208 int tag, unsigned int nr_pages, struct page **pages)
1209 {
1210 struct radix_tree_iter iter;
1211 void **slot;
1212 unsigned ret = 0;
1213
1214 if (unlikely(!nr_pages))
1215 return 0;
1216
1217 rcu_read_lock();
1218 restart:
1219 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1220 &iter, *index, tag) {
1221 struct page *page;
1222 repeat:
1223 page = radix_tree_deref_slot(slot);
1224 if (unlikely(!page))
1225 continue;
1226
1227 if (radix_tree_exception(page)) {
1228 if (radix_tree_deref_retry(page)) {
1229 /*
1230 * Transient condition which can only trigger
1231 * when entry at index 0 moves out of or back
1232 * to root: none yet gotten, safe to restart.
1233 */
1234 goto restart;
1235 }
1236 /*
1237 * This function is never used on a shmem/tmpfs
1238 * mapping, so a swap entry won't be found here.
1239 */
1240 BUG();
1241 }
1242
1243 if (!page_cache_get_speculative(page))
1244 goto repeat;
1245
1246 /* Has the page moved? */
1247 if (unlikely(page != *slot)) {
1248 page_cache_release(page);
1249 goto repeat;
1250 }
1251
1252 pages[ret] = page;
1253 if (++ret == nr_pages)
1254 break;
1255 }
1256
1257 rcu_read_unlock();
1258
1259 if (ret)
1260 *index = pages[ret - 1]->index + 1;
1261
1262 return ret;
1263 }
1264 EXPORT_SYMBOL(find_get_pages_tag);
1265
1266 /**
1267 * grab_cache_page_nowait - returns locked page at given index in given cache
1268 * @mapping: target address_space
1269 * @index: the page index
1270 *
1271 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1272 * This is intended for speculative data generators, where the data can
1273 * be regenerated if the page couldn't be grabbed. This routine should
1274 * be safe to call while holding the lock for another page.
1275 *
1276 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1277 * and deadlock against the caller's locked page.
1278 */
1279 struct page *
1280 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1281 {
1282 struct page *page = find_get_page(mapping, index);
1283
1284 if (page) {
1285 if (trylock_page(page))
1286 return page;
1287 page_cache_release(page);
1288 return NULL;
1289 }
1290 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1291 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1292 page_cache_release(page);
1293 page = NULL;
1294 }
1295 return page;
1296 }
1297 EXPORT_SYMBOL(grab_cache_page_nowait);
1298
1299 /*
1300 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1301 * a _large_ part of the i/o request. Imagine the worst scenario:
1302 *
1303 * ---R__________________________________________B__________
1304 * ^ reading here ^ bad block(assume 4k)
1305 *
1306 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1307 * => failing the whole request => read(R) => read(R+1) =>
1308 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1309 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1310 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1311 *
1312 * It is going insane. Fix it by quickly scaling down the readahead size.
1313 */
1314 static void shrink_readahead_size_eio(struct file *filp,
1315 struct file_ra_state *ra)
1316 {
1317 ra->ra_pages /= 4;
1318 }
1319
1320 /**
1321 * do_generic_file_read - generic file read routine
1322 * @filp: the file to read
1323 * @ppos: current file position
1324 * @desc: read_descriptor
1325 *
1326 * This is a generic file read routine, and uses the
1327 * mapping->a_ops->readpage() function for the actual low-level stuff.
1328 *
1329 * This is really ugly. But the goto's actually try to clarify some
1330 * of the logic when it comes to error handling etc.
1331 */
1332 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1333 read_descriptor_t *desc)
1334 {
1335 struct address_space *mapping = filp->f_mapping;
1336 struct inode *inode = mapping->host;
1337 struct file_ra_state *ra = &filp->f_ra;
1338 pgoff_t index;
1339 pgoff_t last_index;
1340 pgoff_t prev_index;
1341 unsigned long offset; /* offset into pagecache page */
1342 unsigned int prev_offset;
1343 int error;
1344
1345 index = *ppos >> PAGE_CACHE_SHIFT;
1346 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1347 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1348 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1349 offset = *ppos & ~PAGE_CACHE_MASK;
1350
1351 for (;;) {
1352 struct page *page;
1353 pgoff_t end_index;
1354 loff_t isize;
1355 unsigned long nr, ret;
1356
1357 cond_resched();
1358 find_page:
1359 page = find_get_page(mapping, index);
1360 if (!page) {
1361 page_cache_sync_readahead(mapping,
1362 ra, filp,
1363 index, last_index - index);
1364 page = find_get_page(mapping, index);
1365 if (unlikely(page == NULL))
1366 goto no_cached_page;
1367 }
1368 if (PageReadahead(page)) {
1369 page_cache_async_readahead(mapping,
1370 ra, filp, page,
1371 index, last_index - index);
1372 }
1373 if (!PageUptodate(page)) {
1374 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1375 !mapping->a_ops->is_partially_uptodate)
1376 goto page_not_up_to_date;
1377 if (!trylock_page(page))
1378 goto page_not_up_to_date;
1379 /* Did it get truncated before we got the lock? */
1380 if (!page->mapping)
1381 goto page_not_up_to_date_locked;
1382 if (!mapping->a_ops->is_partially_uptodate(page,
1383 desc, offset))
1384 goto page_not_up_to_date_locked;
1385 unlock_page(page);
1386 }
1387 page_ok:
1388 /*
1389 * i_size must be checked after we know the page is Uptodate.
1390 *
1391 * Checking i_size after the check allows us to calculate
1392 * the correct value for "nr", which means the zero-filled
1393 * part of the page is not copied back to userspace (unless
1394 * another truncate extends the file - this is desired though).
1395 */
1396
1397 isize = i_size_read(inode);
1398 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1399 if (unlikely(!isize || index > end_index)) {
1400 page_cache_release(page);
1401 goto out;
1402 }
1403
1404 /* nr is the maximum number of bytes to copy from this page */
1405 nr = PAGE_CACHE_SIZE;
1406 if (index == end_index) {
1407 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1408 if (nr <= offset) {
1409 page_cache_release(page);
1410 goto out;
1411 }
1412 }
1413 nr = nr - offset;
1414
1415 /* If users can be writing to this page using arbitrary
1416 * virtual addresses, take care about potential aliasing
1417 * before reading the page on the kernel side.
1418 */
1419 if (mapping_writably_mapped(mapping))
1420 flush_dcache_page(page);
1421
1422 /*
1423 * When a sequential read accesses a page several times,
1424 * only mark it as accessed the first time.
1425 */
1426 if (prev_index != index || offset != prev_offset)
1427 mark_page_accessed(page);
1428 prev_index = index;
1429
1430 /*
1431 * Ok, we have the page, and it's up-to-date, so
1432 * now we can copy it to user space...
1433 *
1434 * The file_read_actor routine returns how many bytes were
1435 * actually used..
1436 * NOTE! This may not be the same as how much of a user buffer
1437 * we filled up (we may be padding etc), so we can only update
1438 * "pos" here (the actor routine has to update the user buffer
1439 * pointers and the remaining count).
1440 */
1441 ret = file_read_actor(desc, page, offset, nr);
1442 offset += ret;
1443 index += offset >> PAGE_CACHE_SHIFT;
1444 offset &= ~PAGE_CACHE_MASK;
1445 prev_offset = offset;
1446
1447 page_cache_release(page);
1448 if (ret == nr && desc->count)
1449 continue;
1450 goto out;
1451
1452 page_not_up_to_date:
1453 /* Get exclusive access to the page ... */
1454 error = lock_page_killable(page);
1455 if (unlikely(error))
1456 goto readpage_error;
1457
1458 page_not_up_to_date_locked:
1459 /* Did it get truncated before we got the lock? */
1460 if (!page->mapping) {
1461 unlock_page(page);
1462 page_cache_release(page);
1463 continue;
1464 }
1465
1466 /* Did somebody else fill it already? */
1467 if (PageUptodate(page)) {
1468 unlock_page(page);
1469 goto page_ok;
1470 }
1471
1472 readpage:
1473 /*
1474 * A previous I/O error may have been due to temporary
1475 * failures, eg. multipath errors.
1476 * PG_error will be set again if readpage fails.
1477 */
1478 ClearPageError(page);
1479 /* Start the actual read. The read will unlock the page. */
1480 error = mapping->a_ops->readpage(filp, page);
1481
1482 if (unlikely(error)) {
1483 if (error == AOP_TRUNCATED_PAGE) {
1484 page_cache_release(page);
1485 goto find_page;
1486 }
1487 goto readpage_error;
1488 }
1489
1490 if (!PageUptodate(page)) {
1491 error = lock_page_killable(page);
1492 if (unlikely(error))
1493 goto readpage_error;
1494 if (!PageUptodate(page)) {
1495 if (page->mapping == NULL) {
1496 /*
1497 * invalidate_mapping_pages got it
1498 */
1499 unlock_page(page);
1500 page_cache_release(page);
1501 goto find_page;
1502 }
1503 unlock_page(page);
1504 shrink_readahead_size_eio(filp, ra);
1505 error = -EIO;
1506 goto readpage_error;
1507 }
1508 unlock_page(page);
1509 }
1510
1511 goto page_ok;
1512
1513 readpage_error:
1514 /* UHHUH! A synchronous read error occurred. Report it */
1515 desc->error = error;
1516 page_cache_release(page);
1517 goto out;
1518
1519 no_cached_page:
1520 /*
1521 * Ok, it wasn't cached, so we need to create a new
1522 * page..
1523 */
1524 page = page_cache_alloc_cold(mapping);
1525 if (!page) {
1526 desc->error = -ENOMEM;
1527 goto out;
1528 }
1529 error = add_to_page_cache_lru(page, mapping,
1530 index, GFP_KERNEL);
1531 if (error) {
1532 page_cache_release(page);
1533 if (error == -EEXIST)
1534 goto find_page;
1535 desc->error = error;
1536 goto out;
1537 }
1538 goto readpage;
1539 }
1540
1541 out:
1542 ra->prev_pos = prev_index;
1543 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1544 ra->prev_pos |= prev_offset;
1545
1546 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1547 file_accessed(filp);
1548 }
1549
1550 int file_read_actor(read_descriptor_t *desc, struct page *page,
1551 unsigned long offset, unsigned long size)
1552 {
1553 char *kaddr;
1554 unsigned long left, count = desc->count;
1555
1556 if (size > count)
1557 size = count;
1558
1559 /*
1560 * Faults on the destination of a read are common, so do it before
1561 * taking the kmap.
1562 */
1563 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1564 kaddr = kmap_atomic(page);
1565 left = __copy_to_user_inatomic(desc->arg.buf,
1566 kaddr + offset, size);
1567 kunmap_atomic(kaddr);
1568 if (left == 0)
1569 goto success;
1570 }
1571
1572 /* Do it the slow way */
1573 kaddr = kmap(page);
1574 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1575 kunmap(page);
1576
1577 if (left) {
1578 size -= left;
1579 desc->error = -EFAULT;
1580 }
1581 success:
1582 desc->count = count - size;
1583 desc->written += size;
1584 desc->arg.buf += size;
1585 return size;
1586 }
1587
1588 /*
1589 * Performs necessary checks before doing a write
1590 * @iov: io vector request
1591 * @nr_segs: number of segments in the iovec
1592 * @count: number of bytes to write
1593 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1594 *
1595 * Adjust number of segments and amount of bytes to write (nr_segs should be
1596 * properly initialized first). Returns appropriate error code that caller
1597 * should return or zero in case that write should be allowed.
1598 */
1599 int generic_segment_checks(const struct iovec *iov,
1600 unsigned long *nr_segs, size_t *count, int access_flags)
1601 {
1602 unsigned long seg;
1603 size_t cnt = 0;
1604 for (seg = 0; seg < *nr_segs; seg++) {
1605 const struct iovec *iv = &iov[seg];
1606
1607 /*
1608 * If any segment has a negative length, or the cumulative
1609 * length ever wraps negative then return -EINVAL.
1610 */
1611 cnt += iv->iov_len;
1612 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1613 return -EINVAL;
1614 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1615 continue;
1616 if (seg == 0)
1617 return -EFAULT;
1618 *nr_segs = seg;
1619 cnt -= iv->iov_len; /* This segment is no good */
1620 break;
1621 }
1622 *count = cnt;
1623 return 0;
1624 }
1625 EXPORT_SYMBOL(generic_segment_checks);
1626
1627 /**
1628 * generic_file_aio_read - generic filesystem read routine
1629 * @iocb: kernel I/O control block
1630 * @iov: io vector request
1631 * @nr_segs: number of segments in the iovec
1632 * @pos: current file position
1633 *
1634 * This is the "read()" routine for all filesystems
1635 * that can use the page cache directly.
1636 */
1637 ssize_t
1638 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1639 unsigned long nr_segs, loff_t pos)
1640 {
1641 struct file *filp = iocb->ki_filp;
1642 ssize_t retval;
1643 unsigned long seg = 0;
1644 size_t count;
1645 loff_t *ppos = &iocb->ki_pos;
1646
1647 count = 0;
1648 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1649 if (retval)
1650 return retval;
1651
1652 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1653 if (filp->f_flags & O_DIRECT) {
1654 loff_t size;
1655 struct address_space *mapping;
1656 struct inode *inode;
1657
1658 mapping = filp->f_mapping;
1659 inode = mapping->host;
1660 if (!count)
1661 goto out; /* skip atime */
1662 size = i_size_read(inode);
1663 retval = filemap_write_and_wait_range(mapping, pos,
1664 pos + iov_length(iov, nr_segs) - 1);
1665 if (!retval) {
1666 retval = mapping->a_ops->direct_IO(READ, iocb,
1667 iov, pos, nr_segs);
1668 }
1669 if (retval > 0) {
1670 *ppos = pos + retval;
1671 count -= retval;
1672 }
1673
1674 /*
1675 * Btrfs can have a short DIO read if we encounter
1676 * compressed extents, so if there was an error, or if
1677 * we've already read everything we wanted to, or if
1678 * there was a short read because we hit EOF, go ahead
1679 * and return. Otherwise fallthrough to buffered io for
1680 * the rest of the read.
1681 */
1682 if (retval < 0 || !count || *ppos >= size) {
1683 file_accessed(filp);
1684 goto out;
1685 }
1686 }
1687
1688 count = retval;
1689 for (seg = 0; seg < nr_segs; seg++) {
1690 read_descriptor_t desc;
1691 loff_t offset = 0;
1692
1693 /*
1694 * If we did a short DIO read we need to skip the section of the
1695 * iov that we've already read data into.
1696 */
1697 if (count) {
1698 if (count > iov[seg].iov_len) {
1699 count -= iov[seg].iov_len;
1700 continue;
1701 }
1702 offset = count;
1703 count = 0;
1704 }
1705
1706 desc.written = 0;
1707 desc.arg.buf = iov[seg].iov_base + offset;
1708 desc.count = iov[seg].iov_len - offset;
1709 if (desc.count == 0)
1710 continue;
1711 desc.error = 0;
1712 do_generic_file_read(filp, ppos, &desc);
1713 retval += desc.written;
1714 if (desc.error) {
1715 retval = retval ?: desc.error;
1716 break;
1717 }
1718 if (desc.count > 0)
1719 break;
1720 }
1721 out:
1722 return retval;
1723 }
1724 EXPORT_SYMBOL(generic_file_aio_read);
1725
1726 #ifdef CONFIG_MMU
1727 /**
1728 * page_cache_read - adds requested page to the page cache if not already there
1729 * @file: file to read
1730 * @offset: page index
1731 *
1732 * This adds the requested page to the page cache if it isn't already there,
1733 * and schedules an I/O to read in its contents from disk.
1734 */
1735 static int page_cache_read(struct file *file, pgoff_t offset)
1736 {
1737 struct address_space *mapping = file->f_mapping;
1738 struct page *page;
1739 int ret;
1740
1741 do {
1742 page = page_cache_alloc_cold(mapping);
1743 if (!page)
1744 return -ENOMEM;
1745
1746 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1747 if (ret == 0)
1748 ret = mapping->a_ops->readpage(file, page);
1749 else if (ret == -EEXIST)
1750 ret = 0; /* losing race to add is OK */
1751
1752 page_cache_release(page);
1753
1754 } while (ret == AOP_TRUNCATED_PAGE);
1755
1756 return ret;
1757 }
1758
1759 #define MMAP_LOTSAMISS (100)
1760
1761 /*
1762 * Synchronous readahead happens when we don't even find
1763 * a page in the page cache at all.
1764 */
1765 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1766 struct file_ra_state *ra,
1767 struct file *file,
1768 pgoff_t offset)
1769 {
1770 unsigned long ra_pages;
1771 struct address_space *mapping = file->f_mapping;
1772
1773 /* If we don't want any read-ahead, don't bother */
1774 if (vma->vm_flags & VM_RAND_READ)
1775 return;
1776 if (!ra->ra_pages)
1777 return;
1778
1779 if (vma->vm_flags & VM_SEQ_READ) {
1780 page_cache_sync_readahead(mapping, ra, file, offset,
1781 ra->ra_pages);
1782 return;
1783 }
1784
1785 /* Avoid banging the cache line if not needed */
1786 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1787 ra->mmap_miss++;
1788
1789 /*
1790 * Do we miss much more than hit in this file? If so,
1791 * stop bothering with read-ahead. It will only hurt.
1792 */
1793 if (ra->mmap_miss > MMAP_LOTSAMISS)
1794 return;
1795
1796 /*
1797 * mmap read-around
1798 */
1799 ra_pages = max_sane_readahead(ra->ra_pages);
1800 ra->start = max_t(long, 0, offset - ra_pages / 2);
1801 ra->size = ra_pages;
1802 ra->async_size = ra_pages / 4;
1803 ra_submit(ra, mapping, file);
1804 }
1805
1806 /*
1807 * Asynchronous readahead happens when we find the page and PG_readahead,
1808 * so we want to possibly extend the readahead further..
1809 */
1810 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1811 struct file_ra_state *ra,
1812 struct file *file,
1813 struct page *page,
1814 pgoff_t offset)
1815 {
1816 struct address_space *mapping = file->f_mapping;
1817
1818 /* If we don't want any read-ahead, don't bother */
1819 if (vma->vm_flags & VM_RAND_READ)
1820 return;
1821 if (ra->mmap_miss > 0)
1822 ra->mmap_miss--;
1823 if (PageReadahead(page))
1824 page_cache_async_readahead(mapping, ra, file,
1825 page, offset, ra->ra_pages);
1826 }
1827
1828 /**
1829 * filemap_fault - read in file data for page fault handling
1830 * @vma: vma in which the fault was taken
1831 * @vmf: struct vm_fault containing details of the fault
1832 *
1833 * filemap_fault() is invoked via the vma operations vector for a
1834 * mapped memory region to read in file data during a page fault.
1835 *
1836 * The goto's are kind of ugly, but this streamlines the normal case of having
1837 * it in the page cache, and handles the special cases reasonably without
1838 * having a lot of duplicated code.
1839 */
1840 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1841 {
1842 int error;
1843 struct file *file = vma->vm_file;
1844 struct address_space *mapping = file->f_mapping;
1845 struct file_ra_state *ra = &file->f_ra;
1846 struct inode *inode = mapping->host;
1847 pgoff_t offset = vmf->pgoff;
1848 struct page *page;
1849 pgoff_t size;
1850 int ret = 0;
1851
1852 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1853 if (offset >= size)
1854 return VM_FAULT_SIGBUS;
1855
1856 /*
1857 * Do we have something in the page cache already?
1858 */
1859 page = find_get_page(mapping, offset);
1860 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1861 /*
1862 * We found the page, so try async readahead before
1863 * waiting for the lock.
1864 */
1865 do_async_mmap_readahead(vma, ra, file, page, offset);
1866 } else if (!page) {
1867 /* No page in the page cache at all */
1868 do_sync_mmap_readahead(vma, ra, file, offset);
1869 count_vm_event(PGMAJFAULT);
1870 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1871 ret = VM_FAULT_MAJOR;
1872 retry_find:
1873 page = find_get_page(mapping, offset);
1874 if (!page)
1875 goto no_cached_page;
1876 }
1877
1878 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1879 page_cache_release(page);
1880 return ret | VM_FAULT_RETRY;
1881 }
1882
1883 /* Did it get truncated? */
1884 if (unlikely(page->mapping != mapping)) {
1885 unlock_page(page);
1886 put_page(page);
1887 goto retry_find;
1888 }
1889 VM_BUG_ON_PAGE(page->index != offset, page);
1890
1891 /*
1892 * We have a locked page in the page cache, now we need to check
1893 * that it's up-to-date. If not, it is going to be due to an error.
1894 */
1895 if (unlikely(!PageUptodate(page)))
1896 goto page_not_uptodate;
1897
1898 /*
1899 * Found the page and have a reference on it.
1900 * We must recheck i_size under page lock.
1901 */
1902 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1903 if (unlikely(offset >= size)) {
1904 unlock_page(page);
1905 page_cache_release(page);
1906 return VM_FAULT_SIGBUS;
1907 }
1908
1909 vmf->page = page;
1910 return ret | VM_FAULT_LOCKED;
1911
1912 no_cached_page:
1913 /*
1914 * We're only likely to ever get here if MADV_RANDOM is in
1915 * effect.
1916 */
1917 error = page_cache_read(file, offset);
1918
1919 /*
1920 * The page we want has now been added to the page cache.
1921 * In the unlikely event that someone removed it in the
1922 * meantime, we'll just come back here and read it again.
1923 */
1924 if (error >= 0)
1925 goto retry_find;
1926
1927 /*
1928 * An error return from page_cache_read can result if the
1929 * system is low on memory, or a problem occurs while trying
1930 * to schedule I/O.
1931 */
1932 if (error == -ENOMEM)
1933 return VM_FAULT_OOM;
1934 return VM_FAULT_SIGBUS;
1935
1936 page_not_uptodate:
1937 /*
1938 * Umm, take care of errors if the page isn't up-to-date.
1939 * Try to re-read it _once_. We do this synchronously,
1940 * because there really aren't any performance issues here
1941 * and we need to check for errors.
1942 */
1943 ClearPageError(page);
1944 error = mapping->a_ops->readpage(file, page);
1945 if (!error) {
1946 wait_on_page_locked(page);
1947 if (!PageUptodate(page))
1948 error = -EIO;
1949 }
1950 page_cache_release(page);
1951
1952 if (!error || error == AOP_TRUNCATED_PAGE)
1953 goto retry_find;
1954
1955 /* Things didn't work out. Return zero to tell the mm layer so. */
1956 shrink_readahead_size_eio(file, ra);
1957 return VM_FAULT_SIGBUS;
1958 }
1959 EXPORT_SYMBOL(filemap_fault);
1960
1961 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1962 {
1963 struct page *page = vmf->page;
1964 struct inode *inode = file_inode(vma->vm_file);
1965 int ret = VM_FAULT_LOCKED;
1966
1967 sb_start_pagefault(inode->i_sb);
1968 file_update_time(vma->vm_file);
1969 lock_page(page);
1970 if (page->mapping != inode->i_mapping) {
1971 unlock_page(page);
1972 ret = VM_FAULT_NOPAGE;
1973 goto out;
1974 }
1975 /*
1976 * We mark the page dirty already here so that when freeze is in
1977 * progress, we are guaranteed that writeback during freezing will
1978 * see the dirty page and writeprotect it again.
1979 */
1980 set_page_dirty(page);
1981 wait_for_stable_page(page);
1982 out:
1983 sb_end_pagefault(inode->i_sb);
1984 return ret;
1985 }
1986 EXPORT_SYMBOL(filemap_page_mkwrite);
1987
1988 const struct vm_operations_struct generic_file_vm_ops = {
1989 .fault = filemap_fault,
1990 .page_mkwrite = filemap_page_mkwrite,
1991 .remap_pages = generic_file_remap_pages,
1992 };
1993
1994 /* This is used for a general mmap of a disk file */
1995
1996 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1997 {
1998 struct address_space *mapping = file->f_mapping;
1999
2000 if (!mapping->a_ops->readpage)
2001 return -ENOEXEC;
2002 file_accessed(file);
2003 vma->vm_ops = &generic_file_vm_ops;
2004 return 0;
2005 }
2006
2007 /*
2008 * This is for filesystems which do not implement ->writepage.
2009 */
2010 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2011 {
2012 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2013 return -EINVAL;
2014 return generic_file_mmap(file, vma);
2015 }
2016 #else
2017 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2018 {
2019 return -ENOSYS;
2020 }
2021 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2022 {
2023 return -ENOSYS;
2024 }
2025 #endif /* CONFIG_MMU */
2026
2027 EXPORT_SYMBOL(generic_file_mmap);
2028 EXPORT_SYMBOL(generic_file_readonly_mmap);
2029
2030 static struct page *wait_on_page_read(struct page *page)
2031 {
2032 if (!IS_ERR(page)) {
2033 wait_on_page_locked(page);
2034 if (!PageUptodate(page)) {
2035 page_cache_release(page);
2036 page = ERR_PTR(-EIO);
2037 }
2038 }
2039 return page;
2040 }
2041
2042 static struct page *__read_cache_page(struct address_space *mapping,
2043 pgoff_t index,
2044 int (*filler)(void *, struct page *),
2045 void *data,
2046 gfp_t gfp)
2047 {
2048 struct page *page;
2049 int err;
2050 repeat:
2051 page = find_get_page(mapping, index);
2052 if (!page) {
2053 page = __page_cache_alloc(gfp | __GFP_COLD);
2054 if (!page)
2055 return ERR_PTR(-ENOMEM);
2056 err = add_to_page_cache_lru(page, mapping, index, gfp);
2057 if (unlikely(err)) {
2058 page_cache_release(page);
2059 if (err == -EEXIST)
2060 goto repeat;
2061 /* Presumably ENOMEM for radix tree node */
2062 return ERR_PTR(err);
2063 }
2064 err = filler(data, page);
2065 if (err < 0) {
2066 page_cache_release(page);
2067 page = ERR_PTR(err);
2068 } else {
2069 page = wait_on_page_read(page);
2070 }
2071 }
2072 return page;
2073 }
2074
2075 static struct page *do_read_cache_page(struct address_space *mapping,
2076 pgoff_t index,
2077 int (*filler)(void *, struct page *),
2078 void *data,
2079 gfp_t gfp)
2080
2081 {
2082 struct page *page;
2083 int err;
2084
2085 retry:
2086 page = __read_cache_page(mapping, index, filler, data, gfp);
2087 if (IS_ERR(page))
2088 return page;
2089 if (PageUptodate(page))
2090 goto out;
2091
2092 lock_page(page);
2093 if (!page->mapping) {
2094 unlock_page(page);
2095 page_cache_release(page);
2096 goto retry;
2097 }
2098 if (PageUptodate(page)) {
2099 unlock_page(page);
2100 goto out;
2101 }
2102 err = filler(data, page);
2103 if (err < 0) {
2104 page_cache_release(page);
2105 return ERR_PTR(err);
2106 } else {
2107 page = wait_on_page_read(page);
2108 if (IS_ERR(page))
2109 return page;
2110 }
2111 out:
2112 mark_page_accessed(page);
2113 return page;
2114 }
2115
2116 /**
2117 * read_cache_page - read into page cache, fill it if needed
2118 * @mapping: the page's address_space
2119 * @index: the page index
2120 * @filler: function to perform the read
2121 * @data: first arg to filler(data, page) function, often left as NULL
2122 *
2123 * Read into the page cache. If a page already exists, and PageUptodate() is
2124 * not set, try to fill the page and wait for it to become unlocked.
2125 *
2126 * If the page does not get brought uptodate, return -EIO.
2127 */
2128 struct page *read_cache_page(struct address_space *mapping,
2129 pgoff_t index,
2130 int (*filler)(void *, struct page *),
2131 void *data)
2132 {
2133 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2134 }
2135 EXPORT_SYMBOL(read_cache_page);
2136
2137 /**
2138 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2139 * @mapping: the page's address_space
2140 * @index: the page index
2141 * @gfp: the page allocator flags to use if allocating
2142 *
2143 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2144 * any new page allocations done using the specified allocation flags.
2145 *
2146 * If the page does not get brought uptodate, return -EIO.
2147 */
2148 struct page *read_cache_page_gfp(struct address_space *mapping,
2149 pgoff_t index,
2150 gfp_t gfp)
2151 {
2152 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2153
2154 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2155 }
2156 EXPORT_SYMBOL(read_cache_page_gfp);
2157
2158 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2159 const struct iovec *iov, size_t base, size_t bytes)
2160 {
2161 size_t copied = 0, left = 0;
2162
2163 while (bytes) {
2164 char __user *buf = iov->iov_base + base;
2165 int copy = min(bytes, iov->iov_len - base);
2166
2167 base = 0;
2168 left = __copy_from_user_inatomic(vaddr, buf, copy);
2169 copied += copy;
2170 bytes -= copy;
2171 vaddr += copy;
2172 iov++;
2173
2174 if (unlikely(left))
2175 break;
2176 }
2177 return copied - left;
2178 }
2179
2180 /*
2181 * Copy as much as we can into the page and return the number of bytes which
2182 * were successfully copied. If a fault is encountered then return the number of
2183 * bytes which were copied.
2184 */
2185 size_t iov_iter_copy_from_user_atomic(struct page *page,
2186 struct iov_iter *i, unsigned long offset, size_t bytes)
2187 {
2188 char *kaddr;
2189 size_t copied;
2190
2191 kaddr = kmap_atomic(page);
2192 if (likely(i->nr_segs == 1)) {
2193 int left;
2194 char __user *buf = i->iov->iov_base + i->iov_offset;
2195 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2196 copied = bytes - left;
2197 } else {
2198 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2199 i->iov, i->iov_offset, bytes);
2200 }
2201 kunmap_atomic(kaddr);
2202
2203 return copied;
2204 }
2205 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2206
2207 /*
2208 * This has the same sideeffects and return value as
2209 * iov_iter_copy_from_user_atomic().
2210 * The difference is that it attempts to resolve faults.
2211 * Page must not be locked.
2212 */
2213 size_t iov_iter_copy_from_user(struct page *page,
2214 struct iov_iter *i, unsigned long offset, size_t bytes)
2215 {
2216 char *kaddr;
2217 size_t copied;
2218
2219 kaddr = kmap(page);
2220 if (likely(i->nr_segs == 1)) {
2221 int left;
2222 char __user *buf = i->iov->iov_base + i->iov_offset;
2223 left = __copy_from_user(kaddr + offset, buf, bytes);
2224 copied = bytes - left;
2225 } else {
2226 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2227 i->iov, i->iov_offset, bytes);
2228 }
2229 kunmap(page);
2230 return copied;
2231 }
2232 EXPORT_SYMBOL(iov_iter_copy_from_user);
2233
2234 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2235 {
2236 BUG_ON(i->count < bytes);
2237
2238 if (likely(i->nr_segs == 1)) {
2239 i->iov_offset += bytes;
2240 i->count -= bytes;
2241 } else {
2242 const struct iovec *iov = i->iov;
2243 size_t base = i->iov_offset;
2244 unsigned long nr_segs = i->nr_segs;
2245
2246 /*
2247 * The !iov->iov_len check ensures we skip over unlikely
2248 * zero-length segments (without overruning the iovec).
2249 */
2250 while (bytes || unlikely(i->count && !iov->iov_len)) {
2251 int copy;
2252
2253 copy = min(bytes, iov->iov_len - base);
2254 BUG_ON(!i->count || i->count < copy);
2255 i->count -= copy;
2256 bytes -= copy;
2257 base += copy;
2258 if (iov->iov_len == base) {
2259 iov++;
2260 nr_segs--;
2261 base = 0;
2262 }
2263 }
2264 i->iov = iov;
2265 i->iov_offset = base;
2266 i->nr_segs = nr_segs;
2267 }
2268 }
2269 EXPORT_SYMBOL(iov_iter_advance);
2270
2271 /*
2272 * Fault in the first iovec of the given iov_iter, to a maximum length
2273 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2274 * accessed (ie. because it is an invalid address).
2275 *
2276 * writev-intensive code may want this to prefault several iovecs -- that
2277 * would be possible (callers must not rely on the fact that _only_ the
2278 * first iovec will be faulted with the current implementation).
2279 */
2280 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2281 {
2282 char __user *buf = i->iov->iov_base + i->iov_offset;
2283 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2284 return fault_in_pages_readable(buf, bytes);
2285 }
2286 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2287
2288 /*
2289 * Return the count of just the current iov_iter segment.
2290 */
2291 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2292 {
2293 const struct iovec *iov = i->iov;
2294 if (i->nr_segs == 1)
2295 return i->count;
2296 else
2297 return min(i->count, iov->iov_len - i->iov_offset);
2298 }
2299 EXPORT_SYMBOL(iov_iter_single_seg_count);
2300
2301 /*
2302 * Performs necessary checks before doing a write
2303 *
2304 * Can adjust writing position or amount of bytes to write.
2305 * Returns appropriate error code that caller should return or
2306 * zero in case that write should be allowed.
2307 */
2308 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2309 {
2310 struct inode *inode = file->f_mapping->host;
2311 unsigned long limit = rlimit(RLIMIT_FSIZE);
2312
2313 if (unlikely(*pos < 0))
2314 return -EINVAL;
2315
2316 if (!isblk) {
2317 /* FIXME: this is for backwards compatibility with 2.4 */
2318 if (file->f_flags & O_APPEND)
2319 *pos = i_size_read(inode);
2320
2321 if (limit != RLIM_INFINITY) {
2322 if (*pos >= limit) {
2323 send_sig(SIGXFSZ, current, 0);
2324 return -EFBIG;
2325 }
2326 if (*count > limit - (typeof(limit))*pos) {
2327 *count = limit - (typeof(limit))*pos;
2328 }
2329 }
2330 }
2331
2332 /*
2333 * LFS rule
2334 */
2335 if (unlikely(*pos + *count > MAX_NON_LFS &&
2336 !(file->f_flags & O_LARGEFILE))) {
2337 if (*pos >= MAX_NON_LFS) {
2338 return -EFBIG;
2339 }
2340 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2341 *count = MAX_NON_LFS - (unsigned long)*pos;
2342 }
2343 }
2344
2345 /*
2346 * Are we about to exceed the fs block limit ?
2347 *
2348 * If we have written data it becomes a short write. If we have
2349 * exceeded without writing data we send a signal and return EFBIG.
2350 * Linus frestrict idea will clean these up nicely..
2351 */
2352 if (likely(!isblk)) {
2353 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2354 if (*count || *pos > inode->i_sb->s_maxbytes) {
2355 return -EFBIG;
2356 }
2357 /* zero-length writes at ->s_maxbytes are OK */
2358 }
2359
2360 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2361 *count = inode->i_sb->s_maxbytes - *pos;
2362 } else {
2363 #ifdef CONFIG_BLOCK
2364 loff_t isize;
2365 if (bdev_read_only(I_BDEV(inode)))
2366 return -EPERM;
2367 isize = i_size_read(inode);
2368 if (*pos >= isize) {
2369 if (*count || *pos > isize)
2370 return -ENOSPC;
2371 }
2372
2373 if (*pos + *count > isize)
2374 *count = isize - *pos;
2375 #else
2376 return -EPERM;
2377 #endif
2378 }
2379 return 0;
2380 }
2381 EXPORT_SYMBOL(generic_write_checks);
2382
2383 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2384 loff_t pos, unsigned len, unsigned flags,
2385 struct page **pagep, void **fsdata)
2386 {
2387 const struct address_space_operations *aops = mapping->a_ops;
2388
2389 return aops->write_begin(file, mapping, pos, len, flags,
2390 pagep, fsdata);
2391 }
2392 EXPORT_SYMBOL(pagecache_write_begin);
2393
2394 int pagecache_write_end(struct file *file, struct address_space *mapping,
2395 loff_t pos, unsigned len, unsigned copied,
2396 struct page *page, void *fsdata)
2397 {
2398 const struct address_space_operations *aops = mapping->a_ops;
2399
2400 mark_page_accessed(page);
2401 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2402 }
2403 EXPORT_SYMBOL(pagecache_write_end);
2404
2405 ssize_t
2406 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2407 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2408 size_t count, size_t ocount)
2409 {
2410 struct file *file = iocb->ki_filp;
2411 struct address_space *mapping = file->f_mapping;
2412 struct inode *inode = mapping->host;
2413 ssize_t written;
2414 size_t write_len;
2415 pgoff_t end;
2416
2417 if (count != ocount)
2418 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2419
2420 write_len = iov_length(iov, *nr_segs);
2421 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2422
2423 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2424 if (written)
2425 goto out;
2426
2427 /*
2428 * After a write we want buffered reads to be sure to go to disk to get
2429 * the new data. We invalidate clean cached page from the region we're
2430 * about to write. We do this *before* the write so that we can return
2431 * without clobbering -EIOCBQUEUED from ->direct_IO().
2432 */
2433 if (mapping->nrpages) {
2434 written = invalidate_inode_pages2_range(mapping,
2435 pos >> PAGE_CACHE_SHIFT, end);
2436 /*
2437 * If a page can not be invalidated, return 0 to fall back
2438 * to buffered write.
2439 */
2440 if (written) {
2441 if (written == -EBUSY)
2442 return 0;
2443 goto out;
2444 }
2445 }
2446
2447 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2448
2449 /*
2450 * Finally, try again to invalidate clean pages which might have been
2451 * cached by non-direct readahead, or faulted in by get_user_pages()
2452 * if the source of the write was an mmap'ed region of the file
2453 * we're writing. Either one is a pretty crazy thing to do,
2454 * so we don't support it 100%. If this invalidation
2455 * fails, tough, the write still worked...
2456 */
2457 if (mapping->nrpages) {
2458 invalidate_inode_pages2_range(mapping,
2459 pos >> PAGE_CACHE_SHIFT, end);
2460 }
2461
2462 if (written > 0) {
2463 pos += written;
2464 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2465 i_size_write(inode, pos);
2466 mark_inode_dirty(inode);
2467 }
2468 *ppos = pos;
2469 }
2470 out:
2471 return written;
2472 }
2473 EXPORT_SYMBOL(generic_file_direct_write);
2474
2475 /*
2476 * Find or create a page at the given pagecache position. Return the locked
2477 * page. This function is specifically for buffered writes.
2478 */
2479 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2480 pgoff_t index, unsigned flags)
2481 {
2482 int status;
2483 gfp_t gfp_mask;
2484 struct page *page;
2485 gfp_t gfp_notmask = 0;
2486
2487 gfp_mask = mapping_gfp_mask(mapping);
2488 if (mapping_cap_account_dirty(mapping))
2489 gfp_mask |= __GFP_WRITE;
2490 if (flags & AOP_FLAG_NOFS)
2491 gfp_notmask = __GFP_FS;
2492 repeat:
2493 page = find_lock_page(mapping, index);
2494 if (page)
2495 goto found;
2496
2497 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2498 if (!page)
2499 return NULL;
2500 status = add_to_page_cache_lru(page, mapping, index,
2501 GFP_KERNEL & ~gfp_notmask);
2502 if (unlikely(status)) {
2503 page_cache_release(page);
2504 if (status == -EEXIST)
2505 goto repeat;
2506 return NULL;
2507 }
2508 found:
2509 wait_for_stable_page(page);
2510 return page;
2511 }
2512 EXPORT_SYMBOL(grab_cache_page_write_begin);
2513
2514 static ssize_t generic_perform_write(struct file *file,
2515 struct iov_iter *i, loff_t pos)
2516 {
2517 struct address_space *mapping = file->f_mapping;
2518 const struct address_space_operations *a_ops = mapping->a_ops;
2519 long status = 0;
2520 ssize_t written = 0;
2521 unsigned int flags = 0;
2522
2523 /*
2524 * Copies from kernel address space cannot fail (NFSD is a big user).
2525 */
2526 if (segment_eq(get_fs(), KERNEL_DS))
2527 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2528
2529 do {
2530 struct page *page;
2531 unsigned long offset; /* Offset into pagecache page */
2532 unsigned long bytes; /* Bytes to write to page */
2533 size_t copied; /* Bytes copied from user */
2534 void *fsdata;
2535
2536 offset = (pos & (PAGE_CACHE_SIZE - 1));
2537 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2538 iov_iter_count(i));
2539
2540 again:
2541 /*
2542 * Bring in the user page that we will copy from _first_.
2543 * Otherwise there's a nasty deadlock on copying from the
2544 * same page as we're writing to, without it being marked
2545 * up-to-date.
2546 *
2547 * Not only is this an optimisation, but it is also required
2548 * to check that the address is actually valid, when atomic
2549 * usercopies are used, below.
2550 */
2551 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2552 status = -EFAULT;
2553 break;
2554 }
2555
2556 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2557 &page, &fsdata);
2558 if (unlikely(status))
2559 break;
2560
2561 if (mapping_writably_mapped(mapping))
2562 flush_dcache_page(page);
2563
2564 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2565 flush_dcache_page(page);
2566
2567 mark_page_accessed(page);
2568 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2569 page, fsdata);
2570 if (unlikely(status < 0))
2571 break;
2572 copied = status;
2573
2574 cond_resched();
2575
2576 iov_iter_advance(i, copied);
2577 if (unlikely(copied == 0)) {
2578 /*
2579 * If we were unable to copy any data at all, we must
2580 * fall back to a single segment length write.
2581 *
2582 * If we didn't fallback here, we could livelock
2583 * because not all segments in the iov can be copied at
2584 * once without a pagefault.
2585 */
2586 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2587 iov_iter_single_seg_count(i));
2588 goto again;
2589 }
2590 pos += copied;
2591 written += copied;
2592
2593 balance_dirty_pages_ratelimited(mapping);
2594 if (fatal_signal_pending(current)) {
2595 status = -EINTR;
2596 break;
2597 }
2598 } while (iov_iter_count(i));
2599
2600 return written ? written : status;
2601 }
2602
2603 ssize_t
2604 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2605 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2606 size_t count, ssize_t written)
2607 {
2608 struct file *file = iocb->ki_filp;
2609 ssize_t status;
2610 struct iov_iter i;
2611
2612 iov_iter_init(&i, iov, nr_segs, count, written);
2613 status = generic_perform_write(file, &i, pos);
2614
2615 if (likely(status >= 0)) {
2616 written += status;
2617 *ppos = pos + status;
2618 }
2619
2620 return written ? written : status;
2621 }
2622 EXPORT_SYMBOL(generic_file_buffered_write);
2623
2624 /**
2625 * __generic_file_aio_write - write data to a file
2626 * @iocb: IO state structure (file, offset, etc.)
2627 * @iov: vector with data to write
2628 * @nr_segs: number of segments in the vector
2629 * @ppos: position where to write
2630 *
2631 * This function does all the work needed for actually writing data to a
2632 * file. It does all basic checks, removes SUID from the file, updates
2633 * modification times and calls proper subroutines depending on whether we
2634 * do direct IO or a standard buffered write.
2635 *
2636 * It expects i_mutex to be grabbed unless we work on a block device or similar
2637 * object which does not need locking at all.
2638 *
2639 * This function does *not* take care of syncing data in case of O_SYNC write.
2640 * A caller has to handle it. This is mainly due to the fact that we want to
2641 * avoid syncing under i_mutex.
2642 */
2643 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2644 unsigned long nr_segs, loff_t *ppos)
2645 {
2646 struct file *file = iocb->ki_filp;
2647 struct address_space * mapping = file->f_mapping;
2648 size_t ocount; /* original count */
2649 size_t count; /* after file limit checks */
2650 struct inode *inode = mapping->host;
2651 loff_t pos;
2652 ssize_t written;
2653 ssize_t err;
2654
2655 ocount = 0;
2656 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2657 if (err)
2658 return err;
2659
2660 count = ocount;
2661 pos = *ppos;
2662
2663 /* We can write back this queue in page reclaim */
2664 current->backing_dev_info = mapping->backing_dev_info;
2665 written = 0;
2666
2667 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2668 if (err)
2669 goto out;
2670
2671 if (count == 0)
2672 goto out;
2673
2674 err = file_remove_suid(file);
2675 if (err)
2676 goto out;
2677
2678 err = file_update_time(file);
2679 if (err)
2680 goto out;
2681
2682 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2683 if (unlikely(file->f_flags & O_DIRECT)) {
2684 loff_t endbyte;
2685 ssize_t written_buffered;
2686
2687 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2688 ppos, count, ocount);
2689 if (written < 0 || written == count)
2690 goto out;
2691 /*
2692 * direct-io write to a hole: fall through to buffered I/O
2693 * for completing the rest of the request.
2694 */
2695 pos += written;
2696 count -= written;
2697 written_buffered = generic_file_buffered_write(iocb, iov,
2698 nr_segs, pos, ppos, count,
2699 written);
2700 /*
2701 * If generic_file_buffered_write() retuned a synchronous error
2702 * then we want to return the number of bytes which were
2703 * direct-written, or the error code if that was zero. Note
2704 * that this differs from normal direct-io semantics, which
2705 * will return -EFOO even if some bytes were written.
2706 */
2707 if (written_buffered < 0) {
2708 err = written_buffered;
2709 goto out;
2710 }
2711
2712 /*
2713 * We need to ensure that the page cache pages are written to
2714 * disk and invalidated to preserve the expected O_DIRECT
2715 * semantics.
2716 */
2717 endbyte = pos + written_buffered - written - 1;
2718 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2719 if (err == 0) {
2720 written = written_buffered;
2721 invalidate_mapping_pages(mapping,
2722 pos >> PAGE_CACHE_SHIFT,
2723 endbyte >> PAGE_CACHE_SHIFT);
2724 } else {
2725 /*
2726 * We don't know how much we wrote, so just return
2727 * the number of bytes which were direct-written
2728 */
2729 }
2730 } else {
2731 written = generic_file_buffered_write(iocb, iov, nr_segs,
2732 pos, ppos, count, written);
2733 }
2734 out:
2735 current->backing_dev_info = NULL;
2736 return written ? written : err;
2737 }
2738 EXPORT_SYMBOL(__generic_file_aio_write);
2739
2740 /**
2741 * generic_file_aio_write - write data to a file
2742 * @iocb: IO state structure
2743 * @iov: vector with data to write
2744 * @nr_segs: number of segments in the vector
2745 * @pos: position in file where to write
2746 *
2747 * This is a wrapper around __generic_file_aio_write() to be used by most
2748 * filesystems. It takes care of syncing the file in case of O_SYNC file
2749 * and acquires i_mutex as needed.
2750 */
2751 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2752 unsigned long nr_segs, loff_t pos)
2753 {
2754 struct file *file = iocb->ki_filp;
2755 struct inode *inode = file->f_mapping->host;
2756 ssize_t ret;
2757
2758 BUG_ON(iocb->ki_pos != pos);
2759
2760 mutex_lock(&inode->i_mutex);
2761 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2762 mutex_unlock(&inode->i_mutex);
2763
2764 if (ret > 0) {
2765 ssize_t err;
2766
2767 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2768 if (err < 0)
2769 ret = err;
2770 }
2771 return ret;
2772 }
2773 EXPORT_SYMBOL(generic_file_aio_write);
2774
2775 /**
2776 * try_to_release_page() - release old fs-specific metadata on a page
2777 *
2778 * @page: the page which the kernel is trying to free
2779 * @gfp_mask: memory allocation flags (and I/O mode)
2780 *
2781 * The address_space is to try to release any data against the page
2782 * (presumably at page->private). If the release was successful, return `1'.
2783 * Otherwise return zero.
2784 *
2785 * This may also be called if PG_fscache is set on a page, indicating that the
2786 * page is known to the local caching routines.
2787 *
2788 * The @gfp_mask argument specifies whether I/O may be performed to release
2789 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2790 *
2791 */
2792 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2793 {
2794 struct address_space * const mapping = page->mapping;
2795
2796 BUG_ON(!PageLocked(page));
2797 if (PageWriteback(page))
2798 return 0;
2799
2800 if (mapping && mapping->a_ops->releasepage)
2801 return mapping->a_ops->releasepage(page, gfp_mask);
2802 return try_to_free_buffers(page);
2803 }
2804
2805 EXPORT_SYMBOL(try_to_release_page);