]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/filemap.c
Merge tag 'pm-6.4-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[thirdparty/linux.git] / mm / filemap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/mman.h>
26 #include <linux/pagemap.h>
27 #include <linux/file.h>
28 #include <linux/uio.h>
29 #include <linux/error-injection.h>
30 #include <linux/hash.h>
31 #include <linux/writeback.h>
32 #include <linux/backing-dev.h>
33 #include <linux/pagevec.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/rmap.h>
40 #include <linux/delayacct.h>
41 #include <linux/psi.h>
42 #include <linux/ramfs.h>
43 #include <linux/page_idle.h>
44 #include <linux/migrate.h>
45 #include <linux/pipe_fs_i.h>
46 #include <linux/splice.h>
47 #include <asm/pgalloc.h>
48 #include <asm/tlbflush.h>
49 #include "internal.h"
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/filemap.h>
53
54 /*
55 * FIXME: remove all knowledge of the buffer layer from the core VM
56 */
57 #include <linux/buffer_head.h> /* for try_to_free_buffers */
58
59 #include <asm/mman.h>
60
61 /*
62 * Shared mappings implemented 30.11.1994. It's not fully working yet,
63 * though.
64 *
65 * Shared mappings now work. 15.8.1995 Bruno.
66 *
67 * finished 'unifying' the page and buffer cache and SMP-threaded the
68 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
69 *
70 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
71 */
72
73 /*
74 * Lock ordering:
75 *
76 * ->i_mmap_rwsem (truncate_pagecache)
77 * ->private_lock (__free_pte->block_dirty_folio)
78 * ->swap_lock (exclusive_swap_page, others)
79 * ->i_pages lock
80 *
81 * ->i_rwsem
82 * ->invalidate_lock (acquired by fs in truncate path)
83 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
84 *
85 * ->mmap_lock
86 * ->i_mmap_rwsem
87 * ->page_table_lock or pte_lock (various, mainly in memory.c)
88 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
89 *
90 * ->mmap_lock
91 * ->invalidate_lock (filemap_fault)
92 * ->lock_page (filemap_fault, access_process_vm)
93 *
94 * ->i_rwsem (generic_perform_write)
95 * ->mmap_lock (fault_in_readable->do_page_fault)
96 *
97 * bdi->wb.list_lock
98 * sb_lock (fs/fs-writeback.c)
99 * ->i_pages lock (__sync_single_inode)
100 *
101 * ->i_mmap_rwsem
102 * ->anon_vma.lock (vma_merge)
103 *
104 * ->anon_vma.lock
105 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
106 *
107 * ->page_table_lock or pte_lock
108 * ->swap_lock (try_to_unmap_one)
109 * ->private_lock (try_to_unmap_one)
110 * ->i_pages lock (try_to_unmap_one)
111 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
112 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
113 * ->private_lock (page_remove_rmap->set_page_dirty)
114 * ->i_pages lock (page_remove_rmap->set_page_dirty)
115 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
116 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
117 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
118 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
119 * ->inode->i_lock (zap_pte_range->set_page_dirty)
120 * ->private_lock (zap_pte_range->block_dirty_folio)
121 *
122 * ->i_mmap_rwsem
123 * ->tasklist_lock (memory_failure, collect_procs_ao)
124 */
125
126 static void page_cache_delete(struct address_space *mapping,
127 struct folio *folio, void *shadow)
128 {
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
131
132 mapping_set_update(&xas, mapping);
133
134 /* hugetlb pages are represented by a single entry in the xarray */
135 if (!folio_test_hugetlb(folio)) {
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
138 }
139
140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
141
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
144
145 folio->mapping = NULL;
146 /* Leave page->index set: truncation lookup relies upon it */
147 mapping->nrpages -= nr;
148 }
149
150 static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
152 {
153 long nr;
154
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = page_mapcount(&folio->page);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 page_mapcount_reset(&folio->page);
174 folio_ref_sub(folio, mapcount);
175 }
176 }
177 }
178
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
181 return;
182
183 nr = folio_nr_pages(folio);
184
185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
192 filemap_nr_thps_dec(mapping);
193 }
194
195 /*
196 * At this point folio must be either written or cleaned by
197 * truncate. Dirty folio here signals a bug and loss of
198 * unwritten data - on ordinary filesystems.
199 *
200 * But it's harmless on in-memory filesystems like tmpfs; and can
201 * occur when a driver which did get_user_pages() sets page dirty
202 * before putting it, while the inode is being finally evicted.
203 *
204 * Below fixes dirty accounting after removing the folio entirely
205 * but leaves the dirty flag set: it has no effect for truncated
206 * folio and anyway will be cleared before returning folio to
207 * buddy allocator.
208 */
209 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 mapping_can_writeback(mapping)))
211 folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 }
213
214 /*
215 * Delete a page from the page cache and free it. Caller has to make
216 * sure the page is locked and that nobody else uses it - or that usage
217 * is safe. The caller must hold the i_pages lock.
218 */
219 void __filemap_remove_folio(struct folio *folio, void *shadow)
220 {
221 struct address_space *mapping = folio->mapping;
222
223 trace_mm_filemap_delete_from_page_cache(folio);
224 filemap_unaccount_folio(mapping, folio);
225 page_cache_delete(mapping, folio, shadow);
226 }
227
228 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
229 {
230 void (*free_folio)(struct folio *);
231 int refs = 1;
232
233 free_folio = mapping->a_ops->free_folio;
234 if (free_folio)
235 free_folio(folio);
236
237 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 refs = folio_nr_pages(folio);
239 folio_put_refs(folio, refs);
240 }
241
242 /**
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
245 *
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
249 */
250 void filemap_remove_folio(struct folio *folio)
251 {
252 struct address_space *mapping = folio->mapping;
253
254 BUG_ON(!folio_test_locked(folio));
255 spin_lock(&mapping->host->i_lock);
256 xa_lock_irq(&mapping->i_pages);
257 __filemap_remove_folio(folio, NULL);
258 xa_unlock_irq(&mapping->i_pages);
259 if (mapping_shrinkable(mapping))
260 inode_add_lru(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
262
263 filemap_free_folio(mapping, folio);
264 }
265
266 /*
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
270 *
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
276 *
277 * The function expects the i_pages lock to be held.
278 */
279 static void page_cache_delete_batch(struct address_space *mapping,
280 struct folio_batch *fbatch)
281 {
282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
283 long total_pages = 0;
284 int i = 0;
285 struct folio *folio;
286
287 mapping_set_update(&xas, mapping);
288 xas_for_each(&xas, folio, ULONG_MAX) {
289 if (i >= folio_batch_count(fbatch))
290 break;
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
293 if (xa_is_value(folio))
294 continue;
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
302 if (folio != fbatch->folios[i]) {
303 VM_BUG_ON_FOLIO(folio->index >
304 fbatch->folios[i]->index, folio);
305 continue;
306 }
307
308 WARN_ON_ONCE(!folio_test_locked(folio));
309
310 folio->mapping = NULL;
311 /* Leave folio->index set: truncation lookup relies on it */
312
313 i++;
314 xas_store(&xas, NULL);
315 total_pages += folio_nr_pages(folio);
316 }
317 mapping->nrpages -= total_pages;
318 }
319
320 void delete_from_page_cache_batch(struct address_space *mapping,
321 struct folio_batch *fbatch)
322 {
323 int i;
324
325 if (!folio_batch_count(fbatch))
326 return;
327
328 spin_lock(&mapping->host->i_lock);
329 xa_lock_irq(&mapping->i_pages);
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
332
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
335 }
336 page_cache_delete_batch(mapping, fbatch);
337 xa_unlock_irq(&mapping->i_pages);
338 if (mapping_shrinkable(mapping))
339 inode_add_lru(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
341
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
344 }
345
346 int filemap_check_errors(struct address_space *mapping)
347 {
348 int ret = 0;
349 /* Check for outstanding write errors */
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
352 ret = -ENOSPC;
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
355 ret = -EIO;
356 return ret;
357 }
358 EXPORT_SYMBOL(filemap_check_errors);
359
360 static int filemap_check_and_keep_errors(struct address_space *mapping)
361 {
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368 }
369
370 /**
371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372 * @mapping: address space structure to write
373 * @wbc: the writeback_control controlling the writeout
374 *
375 * Call writepages on the mapping using the provided wbc to control the
376 * writeout.
377 *
378 * Return: %0 on success, negative error code otherwise.
379 */
380 int filemap_fdatawrite_wbc(struct address_space *mapping,
381 struct writeback_control *wbc)
382 {
383 int ret;
384
385 if (!mapping_can_writeback(mapping) ||
386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 ret = do_writepages(mapping, wbc);
391 wbc_detach_inode(wbc);
392 return ret;
393 }
394 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395
396 /**
397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
398 * @mapping: address space structure to write
399 * @start: offset in bytes where the range starts
400 * @end: offset in bytes where the range ends (inclusive)
401 * @sync_mode: enable synchronous operation
402 *
403 * Start writeback against all of a mapping's dirty pages that lie
404 * within the byte offsets <start, end> inclusive.
405 *
406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
407 * opposed to a regular memory cleansing writeback. The difference between
408 * these two operations is that if a dirty page/buffer is encountered, it must
409 * be waited upon, and not just skipped over.
410 *
411 * Return: %0 on success, negative error code otherwise.
412 */
413 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 loff_t end, int sync_mode)
415 {
416 struct writeback_control wbc = {
417 .sync_mode = sync_mode,
418 .nr_to_write = LONG_MAX,
419 .range_start = start,
420 .range_end = end,
421 };
422
423 return filemap_fdatawrite_wbc(mapping, &wbc);
424 }
425
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428 {
429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 loff_t end)
440 {
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444
445 /**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
451 *
452 * Return: %0 on success, negative error code otherwise.
453 */
454 int filemap_flush(struct address_space *mapping)
455 {
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459
460 /**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
471 */
472 bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474 {
475 struct folio *folio;
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
478
479 if (end_byte < start_byte)
480 return false;
481
482 rcu_read_lock();
483 for (;;) {
484 folio = xas_find(&xas, max);
485 if (xas_retry(&xas, folio))
486 continue;
487 /* Shadow entries don't count */
488 if (xa_is_value(folio))
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
498
499 return folio != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 loff_t start_byte, loff_t end_byte)
505 {
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
508 struct folio_batch fbatch;
509 unsigned nr_folios;
510
511 folio_batch_init(&fbatch);
512
513 while (index <= end) {
514 unsigned i;
515
516 nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 PAGECACHE_TAG_WRITEBACK, &fbatch);
518
519 if (!nr_folios)
520 break;
521
522 for (i = 0; i < nr_folios; i++) {
523 struct folio *folio = fbatch.folios[i];
524
525 folio_wait_writeback(folio);
526 folio_clear_error(folio);
527 }
528 folio_batch_release(&fbatch);
529 cond_resched();
530 }
531 }
532
533 /**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
546 *
547 * Return: error status of the address space.
548 */
549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551 {
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
554 }
555 EXPORT_SYMBOL(filemap_fdatawait_range);
556
557 /**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573 {
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576 }
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
579 /**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 */
595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 {
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601 }
602 EXPORT_SYMBOL(file_fdatawait_range);
603
604 /**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
615 *
616 * Return: error status of the address space.
617 */
618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 {
620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 return filemap_check_and_keep_errors(mapping);
622 }
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624
625 /* Returns true if writeback might be needed or already in progress. */
626 static bool mapping_needs_writeback(struct address_space *mapping)
627 {
628 return mapping->nrpages;
629 }
630
631 bool filemap_range_has_writeback(struct address_space *mapping,
632 loff_t start_byte, loff_t end_byte)
633 {
634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 pgoff_t max = end_byte >> PAGE_SHIFT;
636 struct folio *folio;
637
638 if (end_byte < start_byte)
639 return false;
640
641 rcu_read_lock();
642 xas_for_each(&xas, folio, max) {
643 if (xas_retry(&xas, folio))
644 continue;
645 if (xa_is_value(folio))
646 continue;
647 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 folio_test_writeback(folio))
649 break;
650 }
651 rcu_read_unlock();
652 return folio != NULL;
653 }
654 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
655
656 /**
657 * filemap_write_and_wait_range - write out & wait on a file range
658 * @mapping: the address_space for the pages
659 * @lstart: offset in bytes where the range starts
660 * @lend: offset in bytes where the range ends (inclusive)
661 *
662 * Write out and wait upon file offsets lstart->lend, inclusive.
663 *
664 * Note that @lend is inclusive (describes the last byte to be written) so
665 * that this function can be used to write to the very end-of-file (end = -1).
666 *
667 * Return: error status of the address space.
668 */
669 int filemap_write_and_wait_range(struct address_space *mapping,
670 loff_t lstart, loff_t lend)
671 {
672 int err = 0, err2;
673
674 if (lend < lstart)
675 return 0;
676
677 if (mapping_needs_writeback(mapping)) {
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
680 /*
681 * Even if the above returned error, the pages may be
682 * written partially (e.g. -ENOSPC), so we wait for it.
683 * But the -EIO is special case, it may indicate the worst
684 * thing (e.g. bug) happened, so we avoid waiting for it.
685 */
686 if (err != -EIO)
687 __filemap_fdatawait_range(mapping, lstart, lend);
688 }
689 err2 = filemap_check_errors(mapping);
690 if (!err)
691 err = err2;
692 return err;
693 }
694 EXPORT_SYMBOL(filemap_write_and_wait_range);
695
696 void __filemap_set_wb_err(struct address_space *mapping, int err)
697 {
698 errseq_t eseq = errseq_set(&mapping->wb_err, err);
699
700 trace_filemap_set_wb_err(mapping, eseq);
701 }
702 EXPORT_SYMBOL(__filemap_set_wb_err);
703
704 /**
705 * file_check_and_advance_wb_err - report wb error (if any) that was previously
706 * and advance wb_err to current one
707 * @file: struct file on which the error is being reported
708 *
709 * When userland calls fsync (or something like nfsd does the equivalent), we
710 * want to report any writeback errors that occurred since the last fsync (or
711 * since the file was opened if there haven't been any).
712 *
713 * Grab the wb_err from the mapping. If it matches what we have in the file,
714 * then just quickly return 0. The file is all caught up.
715 *
716 * If it doesn't match, then take the mapping value, set the "seen" flag in
717 * it and try to swap it into place. If it works, or another task beat us
718 * to it with the new value, then update the f_wb_err and return the error
719 * portion. The error at this point must be reported via proper channels
720 * (a'la fsync, or NFS COMMIT operation, etc.).
721 *
722 * While we handle mapping->wb_err with atomic operations, the f_wb_err
723 * value is protected by the f_lock since we must ensure that it reflects
724 * the latest value swapped in for this file descriptor.
725 *
726 * Return: %0 on success, negative error code otherwise.
727 */
728 int file_check_and_advance_wb_err(struct file *file)
729 {
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
752 return err;
753 }
754 EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756 /**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
769 *
770 * Return: %0 on success, negative error code otherwise.
771 */
772 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773 {
774 int err = 0, err2;
775 struct address_space *mapping = file->f_mapping;
776
777 if (lend < lstart)
778 return 0;
779
780 if (mapping_needs_writeback(mapping)) {
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791 }
792 EXPORT_SYMBOL(file_write_and_wait_range);
793
794 /**
795 * replace_page_cache_folio - replace a pagecache folio with a new one
796 * @old: folio to be replaced
797 * @new: folio to replace with
798 *
799 * This function replaces a folio in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new folio and
801 * drops it for the old folio. Both the old and new folios must be
802 * locked. This function does not add the new folio to the LRU, the
803 * caller must do that.
804 *
805 * The remove + add is atomic. This function cannot fail.
806 */
807 void replace_page_cache_folio(struct folio *old, struct folio *new)
808 {
809 struct address_space *mapping = old->mapping;
810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
813
814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 VM_BUG_ON_FOLIO(new->mapping, new);
817
818 folio_get(new);
819 new->mapping = mapping;
820 new->index = offset;
821
822 mem_cgroup_migrate(old, new);
823
824 xas_lock_irq(&xas);
825 xas_store(&xas, new);
826
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
829 if (!folio_test_hugetlb(old))
830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 if (!folio_test_hugetlb(new))
832 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 if (folio_test_swapbacked(old))
834 __lruvec_stat_sub_folio(old, NR_SHMEM);
835 if (folio_test_swapbacked(new))
836 __lruvec_stat_add_folio(new, NR_SHMEM);
837 xas_unlock_irq(&xas);
838 if (free_folio)
839 free_folio(old);
840 folio_put(old);
841 }
842 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
843
844 noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
846 {
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
849 bool charged = false;
850 long nr = 1;
851
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
854 mapping_set_update(&xas, mapping);
855
856 if (!huge) {
857 int error = mem_cgroup_charge(folio, NULL, gfp);
858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
859 if (error)
860 return error;
861 charged = true;
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
864 }
865
866 gfp &= GFP_RECLAIM_MASK;
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
870
871 do {
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
874
875 if (order > folio_order(folio))
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 order, gfp);
878 xas_lock_irq(&xas);
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 }
886
887 if (old) {
888 if (shadowp)
889 *shadowp = old;
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
892 if (order > folio_order(folio)) {
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
895 xas_split(&xas, old, order);
896 xas_reset(&xas);
897 }
898 }
899
900 xas_store(&xas, folio);
901 if (xas_error(&xas))
902 goto unlock;
903
904 mapping->nrpages += nr;
905
906 /* hugetlb pages do not participate in page cache accounting */
907 if (!huge) {
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
911 NR_FILE_THPS, nr);
912 }
913 unlock:
914 xas_unlock_irq(&xas);
915 } while (xas_nomem(&xas, gfp));
916
917 if (xas_error(&xas))
918 goto error;
919
920 trace_mm_filemap_add_to_page_cache(folio);
921 return 0;
922 error:
923 if (charged)
924 mem_cgroup_uncharge(folio);
925 folio->mapping = NULL;
926 /* Leave page->index set: truncation relies upon it */
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
929 }
930 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
931
932 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
933 pgoff_t index, gfp_t gfp)
934 {
935 void *shadow = NULL;
936 int ret;
937
938 __folio_set_locked(folio);
939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
940 if (unlikely(ret))
941 __folio_clear_locked(folio);
942 else {
943 /*
944 * The folio might have been evicted from cache only
945 * recently, in which case it should be activated like
946 * any other repeatedly accessed folio.
947 * The exception is folios getting rewritten; evicting other
948 * data from the working set, only to cache data that will
949 * get overwritten with something else, is a waste of memory.
950 */
951 WARN_ON_ONCE(folio_test_active(folio));
952 if (!(gfp & __GFP_WRITE) && shadow)
953 workingset_refault(folio, shadow);
954 folio_add_lru(folio);
955 }
956 return ret;
957 }
958 EXPORT_SYMBOL_GPL(filemap_add_folio);
959
960 #ifdef CONFIG_NUMA
961 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
962 {
963 int n;
964 struct folio *folio;
965
966 if (cpuset_do_page_mem_spread()) {
967 unsigned int cpuset_mems_cookie;
968 do {
969 cpuset_mems_cookie = read_mems_allowed_begin();
970 n = cpuset_mem_spread_node();
971 folio = __folio_alloc_node(gfp, order, n);
972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
973
974 return folio;
975 }
976 return folio_alloc(gfp, order);
977 }
978 EXPORT_SYMBOL(filemap_alloc_folio);
979 #endif
980
981 /*
982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
983 *
984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
985 *
986 * @mapping1: the first mapping to lock
987 * @mapping2: the second mapping to lock
988 */
989 void filemap_invalidate_lock_two(struct address_space *mapping1,
990 struct address_space *mapping2)
991 {
992 if (mapping1 > mapping2)
993 swap(mapping1, mapping2);
994 if (mapping1)
995 down_write(&mapping1->invalidate_lock);
996 if (mapping2 && mapping1 != mapping2)
997 down_write_nested(&mapping2->invalidate_lock, 1);
998 }
999 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000
1001 /*
1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1003 *
1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1005 *
1006 * @mapping1: the first mapping to unlock
1007 * @mapping2: the second mapping to unlock
1008 */
1009 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1011 {
1012 if (mapping1)
1013 up_write(&mapping1->invalidate_lock);
1014 if (mapping2 && mapping1 != mapping2)
1015 up_write(&mapping2->invalidate_lock);
1016 }
1017 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018
1019 /*
1020 * In order to wait for pages to become available there must be
1021 * waitqueues associated with pages. By using a hash table of
1022 * waitqueues where the bucket discipline is to maintain all
1023 * waiters on the same queue and wake all when any of the pages
1024 * become available, and for the woken contexts to check to be
1025 * sure the appropriate page became available, this saves space
1026 * at a cost of "thundering herd" phenomena during rare hash
1027 * collisions.
1028 */
1029 #define PAGE_WAIT_TABLE_BITS 8
1030 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1031 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1032
1033 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1034 {
1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1036 }
1037
1038 void __init pagecache_init(void)
1039 {
1040 int i;
1041
1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1043 init_waitqueue_head(&folio_wait_table[i]);
1044
1045 page_writeback_init();
1046 }
1047
1048 /*
1049 * The page wait code treats the "wait->flags" somewhat unusually, because
1050 * we have multiple different kinds of waits, not just the usual "exclusive"
1051 * one.
1052 *
1053 * We have:
1054 *
1055 * (a) no special bits set:
1056 *
1057 * We're just waiting for the bit to be released, and when a waker
1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1059 * and remove it from the wait queue.
1060 *
1061 * Simple and straightforward.
1062 *
1063 * (b) WQ_FLAG_EXCLUSIVE:
1064 *
1065 * The waiter is waiting to get the lock, and only one waiter should
1066 * be woken up to avoid any thundering herd behavior. We'll set the
1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1068 *
1069 * This is the traditional exclusive wait.
1070 *
1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1072 *
1073 * The waiter is waiting to get the bit, and additionally wants the
1074 * lock to be transferred to it for fair lock behavior. If the lock
1075 * cannot be taken, we stop walking the wait queue without waking
1076 * the waiter.
1077 *
1078 * This is the "fair lock handoff" case, and in addition to setting
1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1080 * that it now has the lock.
1081 */
1082 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1083 {
1084 unsigned int flags;
1085 struct wait_page_key *key = arg;
1086 struct wait_page_queue *wait_page
1087 = container_of(wait, struct wait_page_queue, wait);
1088
1089 if (!wake_page_match(wait_page, key))
1090 return 0;
1091
1092 /*
1093 * If it's a lock handoff wait, we get the bit for it, and
1094 * stop walking (and do not wake it up) if we can't.
1095 */
1096 flags = wait->flags;
1097 if (flags & WQ_FLAG_EXCLUSIVE) {
1098 if (test_bit(key->bit_nr, &key->folio->flags))
1099 return -1;
1100 if (flags & WQ_FLAG_CUSTOM) {
1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1102 return -1;
1103 flags |= WQ_FLAG_DONE;
1104 }
1105 }
1106
1107 /*
1108 * We are holding the wait-queue lock, but the waiter that
1109 * is waiting for this will be checking the flags without
1110 * any locking.
1111 *
1112 * So update the flags atomically, and wake up the waiter
1113 * afterwards to avoid any races. This store-release pairs
1114 * with the load-acquire in folio_wait_bit_common().
1115 */
1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1117 wake_up_state(wait->private, mode);
1118
1119 /*
1120 * Ok, we have successfully done what we're waiting for,
1121 * and we can unconditionally remove the wait entry.
1122 *
1123 * Note that this pairs with the "finish_wait()" in the
1124 * waiter, and has to be the absolute last thing we do.
1125 * After this list_del_init(&wait->entry) the wait entry
1126 * might be de-allocated and the process might even have
1127 * exited.
1128 */
1129 list_del_init_careful(&wait->entry);
1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1131 }
1132
1133 static void folio_wake_bit(struct folio *folio, int bit_nr)
1134 {
1135 wait_queue_head_t *q = folio_waitqueue(folio);
1136 struct wait_page_key key;
1137 unsigned long flags;
1138 wait_queue_entry_t bookmark;
1139
1140 key.folio = folio;
1141 key.bit_nr = bit_nr;
1142 key.page_match = 0;
1143
1144 bookmark.flags = 0;
1145 bookmark.private = NULL;
1146 bookmark.func = NULL;
1147 INIT_LIST_HEAD(&bookmark.entry);
1148
1149 spin_lock_irqsave(&q->lock, flags);
1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1151
1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1153 /*
1154 * Take a breather from holding the lock,
1155 * allow pages that finish wake up asynchronously
1156 * to acquire the lock and remove themselves
1157 * from wait queue
1158 */
1159 spin_unlock_irqrestore(&q->lock, flags);
1160 cpu_relax();
1161 spin_lock_irqsave(&q->lock, flags);
1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1163 }
1164
1165 /*
1166 * It's possible to miss clearing waiters here, when we woke our page
1167 * waiters, but the hashed waitqueue has waiters for other pages on it.
1168 * That's okay, it's a rare case. The next waker will clear it.
1169 *
1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1171 * other), the flag may be cleared in the course of freeing the page;
1172 * but that is not required for correctness.
1173 */
1174 if (!waitqueue_active(q) || !key.page_match)
1175 folio_clear_waiters(folio);
1176
1177 spin_unlock_irqrestore(&q->lock, flags);
1178 }
1179
1180 static void folio_wake(struct folio *folio, int bit)
1181 {
1182 if (!folio_test_waiters(folio))
1183 return;
1184 folio_wake_bit(folio, bit);
1185 }
1186
1187 /*
1188 * A choice of three behaviors for folio_wait_bit_common():
1189 */
1190 enum behavior {
1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1192 * __folio_lock() waiting on then setting PG_locked.
1193 */
1194 SHARED, /* Hold ref to page and check the bit when woken, like
1195 * folio_wait_writeback() waiting on PG_writeback.
1196 */
1197 DROP, /* Drop ref to page before wait, no check when woken,
1198 * like folio_put_wait_locked() on PG_locked.
1199 */
1200 };
1201
1202 /*
1203 * Attempt to check (or get) the folio flag, and mark us done
1204 * if successful.
1205 */
1206 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1207 struct wait_queue_entry *wait)
1208 {
1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1210 if (test_and_set_bit(bit_nr, &folio->flags))
1211 return false;
1212 } else if (test_bit(bit_nr, &folio->flags))
1213 return false;
1214
1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1216 return true;
1217 }
1218
1219 /* How many times do we accept lock stealing from under a waiter? */
1220 int sysctl_page_lock_unfairness = 5;
1221
1222 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1223 int state, enum behavior behavior)
1224 {
1225 wait_queue_head_t *q = folio_waitqueue(folio);
1226 int unfairness = sysctl_page_lock_unfairness;
1227 struct wait_page_queue wait_page;
1228 wait_queue_entry_t *wait = &wait_page.wait;
1229 bool thrashing = false;
1230 unsigned long pflags;
1231 bool in_thrashing;
1232
1233 if (bit_nr == PG_locked &&
1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1235 delayacct_thrashing_start(&in_thrashing);
1236 psi_memstall_enter(&pflags);
1237 thrashing = true;
1238 }
1239
1240 init_wait(wait);
1241 wait->func = wake_page_function;
1242 wait_page.folio = folio;
1243 wait_page.bit_nr = bit_nr;
1244
1245 repeat:
1246 wait->flags = 0;
1247 if (behavior == EXCLUSIVE) {
1248 wait->flags = WQ_FLAG_EXCLUSIVE;
1249 if (--unfairness < 0)
1250 wait->flags |= WQ_FLAG_CUSTOM;
1251 }
1252
1253 /*
1254 * Do one last check whether we can get the
1255 * page bit synchronously.
1256 *
1257 * Do the folio_set_waiters() marking before that
1258 * to let any waker we _just_ missed know they
1259 * need to wake us up (otherwise they'll never
1260 * even go to the slow case that looks at the
1261 * page queue), and add ourselves to the wait
1262 * queue if we need to sleep.
1263 *
1264 * This part needs to be done under the queue
1265 * lock to avoid races.
1266 */
1267 spin_lock_irq(&q->lock);
1268 folio_set_waiters(folio);
1269 if (!folio_trylock_flag(folio, bit_nr, wait))
1270 __add_wait_queue_entry_tail(q, wait);
1271 spin_unlock_irq(&q->lock);
1272
1273 /*
1274 * From now on, all the logic will be based on
1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276 * see whether the page bit testing has already
1277 * been done by the wake function.
1278 *
1279 * We can drop our reference to the folio.
1280 */
1281 if (behavior == DROP)
1282 folio_put(folio);
1283
1284 /*
1285 * Note that until the "finish_wait()", or until
1286 * we see the WQ_FLAG_WOKEN flag, we need to
1287 * be very careful with the 'wait->flags', because
1288 * we may race with a waker that sets them.
1289 */
1290 for (;;) {
1291 unsigned int flags;
1292
1293 set_current_state(state);
1294
1295 /* Loop until we've been woken or interrupted */
1296 flags = smp_load_acquire(&wait->flags);
1297 if (!(flags & WQ_FLAG_WOKEN)) {
1298 if (signal_pending_state(state, current))
1299 break;
1300
1301 io_schedule();
1302 continue;
1303 }
1304
1305 /* If we were non-exclusive, we're done */
1306 if (behavior != EXCLUSIVE)
1307 break;
1308
1309 /* If the waker got the lock for us, we're done */
1310 if (flags & WQ_FLAG_DONE)
1311 break;
1312
1313 /*
1314 * Otherwise, if we're getting the lock, we need to
1315 * try to get it ourselves.
1316 *
1317 * And if that fails, we'll have to retry this all.
1318 */
1319 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1320 goto repeat;
1321
1322 wait->flags |= WQ_FLAG_DONE;
1323 break;
1324 }
1325
1326 /*
1327 * If a signal happened, this 'finish_wait()' may remove the last
1328 * waiter from the wait-queues, but the folio waiters bit will remain
1329 * set. That's ok. The next wakeup will take care of it, and trying
1330 * to do it here would be difficult and prone to races.
1331 */
1332 finish_wait(q, wait);
1333
1334 if (thrashing) {
1335 delayacct_thrashing_end(&in_thrashing);
1336 psi_memstall_leave(&pflags);
1337 }
1338
1339 /*
1340 * NOTE! The wait->flags weren't stable until we've done the
1341 * 'finish_wait()', and we could have exited the loop above due
1342 * to a signal, and had a wakeup event happen after the signal
1343 * test but before the 'finish_wait()'.
1344 *
1345 * So only after the finish_wait() can we reliably determine
1346 * if we got woken up or not, so we can now figure out the final
1347 * return value based on that state without races.
1348 *
1349 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1350 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1351 */
1352 if (behavior == EXCLUSIVE)
1353 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1354
1355 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1356 }
1357
1358 #ifdef CONFIG_MIGRATION
1359 /**
1360 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1361 * @entry: migration swap entry.
1362 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1363 * for pte entries, pass NULL for pmd entries.
1364 * @ptl: already locked ptl. This function will drop the lock.
1365 *
1366 * Wait for a migration entry referencing the given page to be removed. This is
1367 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1368 * this can be called without taking a reference on the page. Instead this
1369 * should be called while holding the ptl for the migration entry referencing
1370 * the page.
1371 *
1372 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1373 *
1374 * This follows the same logic as folio_wait_bit_common() so see the comments
1375 * there.
1376 */
1377 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1378 spinlock_t *ptl)
1379 {
1380 struct wait_page_queue wait_page;
1381 wait_queue_entry_t *wait = &wait_page.wait;
1382 bool thrashing = false;
1383 unsigned long pflags;
1384 bool in_thrashing;
1385 wait_queue_head_t *q;
1386 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1387
1388 q = folio_waitqueue(folio);
1389 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1390 delayacct_thrashing_start(&in_thrashing);
1391 psi_memstall_enter(&pflags);
1392 thrashing = true;
1393 }
1394
1395 init_wait(wait);
1396 wait->func = wake_page_function;
1397 wait_page.folio = folio;
1398 wait_page.bit_nr = PG_locked;
1399 wait->flags = 0;
1400
1401 spin_lock_irq(&q->lock);
1402 folio_set_waiters(folio);
1403 if (!folio_trylock_flag(folio, PG_locked, wait))
1404 __add_wait_queue_entry_tail(q, wait);
1405 spin_unlock_irq(&q->lock);
1406
1407 /*
1408 * If a migration entry exists for the page the migration path must hold
1409 * a valid reference to the page, and it must take the ptl to remove the
1410 * migration entry. So the page is valid until the ptl is dropped.
1411 */
1412 if (ptep)
1413 pte_unmap_unlock(ptep, ptl);
1414 else
1415 spin_unlock(ptl);
1416
1417 for (;;) {
1418 unsigned int flags;
1419
1420 set_current_state(TASK_UNINTERRUPTIBLE);
1421
1422 /* Loop until we've been woken or interrupted */
1423 flags = smp_load_acquire(&wait->flags);
1424 if (!(flags & WQ_FLAG_WOKEN)) {
1425 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1426 break;
1427
1428 io_schedule();
1429 continue;
1430 }
1431 break;
1432 }
1433
1434 finish_wait(q, wait);
1435
1436 if (thrashing) {
1437 delayacct_thrashing_end(&in_thrashing);
1438 psi_memstall_leave(&pflags);
1439 }
1440 }
1441 #endif
1442
1443 void folio_wait_bit(struct folio *folio, int bit_nr)
1444 {
1445 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1446 }
1447 EXPORT_SYMBOL(folio_wait_bit);
1448
1449 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1450 {
1451 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1452 }
1453 EXPORT_SYMBOL(folio_wait_bit_killable);
1454
1455 /**
1456 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1457 * @folio: The folio to wait for.
1458 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1459 *
1460 * The caller should hold a reference on @folio. They expect the page to
1461 * become unlocked relatively soon, but do not wish to hold up migration
1462 * (for example) by holding the reference while waiting for the folio to
1463 * come unlocked. After this function returns, the caller should not
1464 * dereference @folio.
1465 *
1466 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1467 */
1468 static int folio_put_wait_locked(struct folio *folio, int state)
1469 {
1470 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1471 }
1472
1473 /**
1474 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1475 * @folio: Folio defining the wait queue of interest
1476 * @waiter: Waiter to add to the queue
1477 *
1478 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1479 */
1480 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1481 {
1482 wait_queue_head_t *q = folio_waitqueue(folio);
1483 unsigned long flags;
1484
1485 spin_lock_irqsave(&q->lock, flags);
1486 __add_wait_queue_entry_tail(q, waiter);
1487 folio_set_waiters(folio);
1488 spin_unlock_irqrestore(&q->lock, flags);
1489 }
1490 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1491
1492 #ifndef clear_bit_unlock_is_negative_byte
1493
1494 /*
1495 * PG_waiters is the high bit in the same byte as PG_lock.
1496 *
1497 * On x86 (and on many other architectures), we can clear PG_lock and
1498 * test the sign bit at the same time. But if the architecture does
1499 * not support that special operation, we just do this all by hand
1500 * instead.
1501 *
1502 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1503 * being cleared, but a memory barrier should be unnecessary since it is
1504 * in the same byte as PG_locked.
1505 */
1506 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1507 {
1508 clear_bit_unlock(nr, mem);
1509 /* smp_mb__after_atomic(); */
1510 return test_bit(PG_waiters, mem);
1511 }
1512
1513 #endif
1514
1515 /**
1516 * folio_unlock - Unlock a locked folio.
1517 * @folio: The folio.
1518 *
1519 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1520 *
1521 * Context: May be called from interrupt or process context. May not be
1522 * called from NMI context.
1523 */
1524 void folio_unlock(struct folio *folio)
1525 {
1526 /* Bit 7 allows x86 to check the byte's sign bit */
1527 BUILD_BUG_ON(PG_waiters != 7);
1528 BUILD_BUG_ON(PG_locked > 7);
1529 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1530 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1531 folio_wake_bit(folio, PG_locked);
1532 }
1533 EXPORT_SYMBOL(folio_unlock);
1534
1535 /**
1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537 * @folio: The folio.
1538 *
1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540 * it. The folio reference held for PG_private_2 being set is released.
1541 *
1542 * This is, for example, used when a netfs folio is being written to a local
1543 * disk cache, thereby allowing writes to the cache for the same folio to be
1544 * serialised.
1545 */
1546 void folio_end_private_2(struct folio *folio)
1547 {
1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550 folio_wake_bit(folio, PG_private_2);
1551 folio_put(folio);
1552 }
1553 EXPORT_SYMBOL(folio_end_private_2);
1554
1555 /**
1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
1558 *
1559 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1560 */
1561 void folio_wait_private_2(struct folio *folio)
1562 {
1563 while (folio_test_private_2(folio))
1564 folio_wait_bit(folio, PG_private_2);
1565 }
1566 EXPORT_SYMBOL(folio_wait_private_2);
1567
1568 /**
1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570 * @folio: The folio to wait on.
1571 *
1572 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1573 * fatal signal is received by the calling task.
1574 *
1575 * Return:
1576 * - 0 if successful.
1577 * - -EINTR if a fatal signal was encountered.
1578 */
1579 int folio_wait_private_2_killable(struct folio *folio)
1580 {
1581 int ret = 0;
1582
1583 while (folio_test_private_2(folio)) {
1584 ret = folio_wait_bit_killable(folio, PG_private_2);
1585 if (ret < 0)
1586 break;
1587 }
1588
1589 return ret;
1590 }
1591 EXPORT_SYMBOL(folio_wait_private_2_killable);
1592
1593 /**
1594 * folio_end_writeback - End writeback against a folio.
1595 * @folio: The folio.
1596 */
1597 void folio_end_writeback(struct folio *folio)
1598 {
1599 /*
1600 * folio_test_clear_reclaim() could be used here but it is an
1601 * atomic operation and overkill in this particular case. Failing
1602 * to shuffle a folio marked for immediate reclaim is too mild
1603 * a gain to justify taking an atomic operation penalty at the
1604 * end of every folio writeback.
1605 */
1606 if (folio_test_reclaim(folio)) {
1607 folio_clear_reclaim(folio);
1608 folio_rotate_reclaimable(folio);
1609 }
1610
1611 /*
1612 * Writeback does not hold a folio reference of its own, relying
1613 * on truncation to wait for the clearing of PG_writeback.
1614 * But here we must make sure that the folio is not freed and
1615 * reused before the folio_wake().
1616 */
1617 folio_get(folio);
1618 if (!__folio_end_writeback(folio))
1619 BUG();
1620
1621 smp_mb__after_atomic();
1622 folio_wake(folio, PG_writeback);
1623 acct_reclaim_writeback(folio);
1624 folio_put(folio);
1625 }
1626 EXPORT_SYMBOL(folio_end_writeback);
1627
1628 /*
1629 * After completing I/O on a page, call this routine to update the page
1630 * flags appropriately
1631 */
1632 void page_endio(struct page *page, bool is_write, int err)
1633 {
1634 struct folio *folio = page_folio(page);
1635
1636 if (!is_write) {
1637 if (!err) {
1638 folio_mark_uptodate(folio);
1639 } else {
1640 folio_clear_uptodate(folio);
1641 folio_set_error(folio);
1642 }
1643 folio_unlock(folio);
1644 } else {
1645 if (err) {
1646 struct address_space *mapping;
1647
1648 folio_set_error(folio);
1649 mapping = folio_mapping(folio);
1650 if (mapping)
1651 mapping_set_error(mapping, err);
1652 }
1653 folio_end_writeback(folio);
1654 }
1655 }
1656 EXPORT_SYMBOL_GPL(page_endio);
1657
1658 /**
1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660 * @folio: The folio to lock
1661 */
1662 void __folio_lock(struct folio *folio)
1663 {
1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1665 EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL(__folio_lock);
1668
1669 int __folio_lock_killable(struct folio *folio)
1670 {
1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1672 EXCLUSIVE);
1673 }
1674 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1675
1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1677 {
1678 struct wait_queue_head *q = folio_waitqueue(folio);
1679 int ret = 0;
1680
1681 wait->folio = folio;
1682 wait->bit_nr = PG_locked;
1683
1684 spin_lock_irq(&q->lock);
1685 __add_wait_queue_entry_tail(q, &wait->wait);
1686 folio_set_waiters(folio);
1687 ret = !folio_trylock(folio);
1688 /*
1689 * If we were successful now, we know we're still on the
1690 * waitqueue as we're still under the lock. This means it's
1691 * safe to remove and return success, we know the callback
1692 * isn't going to trigger.
1693 */
1694 if (!ret)
1695 __remove_wait_queue(q, &wait->wait);
1696 else
1697 ret = -EIOCBQUEUED;
1698 spin_unlock_irq(&q->lock);
1699 return ret;
1700 }
1701
1702 /*
1703 * Return values:
1704 * true - folio is locked; mmap_lock is still held.
1705 * false - folio is not locked.
1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1708 * which case mmap_lock is still held.
1709 *
1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1711 * with the folio locked and the mmap_lock unperturbed.
1712 */
1713 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1714 unsigned int flags)
1715 {
1716 if (fault_flag_allow_retry_first(flags)) {
1717 /*
1718 * CAUTION! In this case, mmap_lock is not released
1719 * even though return 0.
1720 */
1721 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1722 return false;
1723
1724 mmap_read_unlock(mm);
1725 if (flags & FAULT_FLAG_KILLABLE)
1726 folio_wait_locked_killable(folio);
1727 else
1728 folio_wait_locked(folio);
1729 return false;
1730 }
1731 if (flags & FAULT_FLAG_KILLABLE) {
1732 bool ret;
1733
1734 ret = __folio_lock_killable(folio);
1735 if (ret) {
1736 mmap_read_unlock(mm);
1737 return false;
1738 }
1739 } else {
1740 __folio_lock(folio);
1741 }
1742
1743 return true;
1744 }
1745
1746 /**
1747 * page_cache_next_miss() - Find the next gap in the page cache.
1748 * @mapping: Mapping.
1749 * @index: Index.
1750 * @max_scan: Maximum range to search.
1751 *
1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1753 * gap with the lowest index.
1754 *
1755 * This function may be called under the rcu_read_lock. However, this will
1756 * not atomically search a snapshot of the cache at a single point in time.
1757 * For example, if a gap is created at index 5, then subsequently a gap is
1758 * created at index 10, page_cache_next_miss covering both indices may
1759 * return 10 if called under the rcu_read_lock.
1760 *
1761 * Return: The index of the gap if found, otherwise an index outside the
1762 * range specified (in which case 'return - index >= max_scan' will be true).
1763 * In the rare case of index wrap-around, 0 will be returned.
1764 */
1765 pgoff_t page_cache_next_miss(struct address_space *mapping,
1766 pgoff_t index, unsigned long max_scan)
1767 {
1768 XA_STATE(xas, &mapping->i_pages, index);
1769
1770 while (max_scan--) {
1771 void *entry = xas_next(&xas);
1772 if (!entry || xa_is_value(entry))
1773 break;
1774 if (xas.xa_index == 0)
1775 break;
1776 }
1777
1778 return xas.xa_index;
1779 }
1780 EXPORT_SYMBOL(page_cache_next_miss);
1781
1782 /**
1783 * page_cache_prev_miss() - Find the previous gap in the page cache.
1784 * @mapping: Mapping.
1785 * @index: Index.
1786 * @max_scan: Maximum range to search.
1787 *
1788 * Search the range [max(index - max_scan + 1, 0), index] for the
1789 * gap with the highest index.
1790 *
1791 * This function may be called under the rcu_read_lock. However, this will
1792 * not atomically search a snapshot of the cache at a single point in time.
1793 * For example, if a gap is created at index 10, then subsequently a gap is
1794 * created at index 5, page_cache_prev_miss() covering both indices may
1795 * return 5 if called under the rcu_read_lock.
1796 *
1797 * Return: The index of the gap if found, otherwise an index outside the
1798 * range specified (in which case 'index - return >= max_scan' will be true).
1799 * In the rare case of wrap-around, ULONG_MAX will be returned.
1800 */
1801 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1802 pgoff_t index, unsigned long max_scan)
1803 {
1804 XA_STATE(xas, &mapping->i_pages, index);
1805
1806 while (max_scan--) {
1807 void *entry = xas_prev(&xas);
1808 if (!entry || xa_is_value(entry))
1809 break;
1810 if (xas.xa_index == ULONG_MAX)
1811 break;
1812 }
1813
1814 return xas.xa_index;
1815 }
1816 EXPORT_SYMBOL(page_cache_prev_miss);
1817
1818 /*
1819 * Lockless page cache protocol:
1820 * On the lookup side:
1821 * 1. Load the folio from i_pages
1822 * 2. Increment the refcount if it's not zero
1823 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1824 *
1825 * On the removal side:
1826 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1827 * B. Remove the page from i_pages
1828 * C. Return the page to the page allocator
1829 *
1830 * This means that any page may have its reference count temporarily
1831 * increased by a speculative page cache (or fast GUP) lookup as it can
1832 * be allocated by another user before the RCU grace period expires.
1833 * Because the refcount temporarily acquired here may end up being the
1834 * last refcount on the page, any page allocation must be freeable by
1835 * folio_put().
1836 */
1837
1838 /*
1839 * filemap_get_entry - Get a page cache entry.
1840 * @mapping: the address_space to search
1841 * @index: The page cache index.
1842 *
1843 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1844 * it is returned with an increased refcount. If it is a shadow entry
1845 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1846 * it is returned without further action.
1847 *
1848 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1849 */
1850 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1851 {
1852 XA_STATE(xas, &mapping->i_pages, index);
1853 struct folio *folio;
1854
1855 rcu_read_lock();
1856 repeat:
1857 xas_reset(&xas);
1858 folio = xas_load(&xas);
1859 if (xas_retry(&xas, folio))
1860 goto repeat;
1861 /*
1862 * A shadow entry of a recently evicted page, or a swap entry from
1863 * shmem/tmpfs. Return it without attempting to raise page count.
1864 */
1865 if (!folio || xa_is_value(folio))
1866 goto out;
1867
1868 if (!folio_try_get_rcu(folio))
1869 goto repeat;
1870
1871 if (unlikely(folio != xas_reload(&xas))) {
1872 folio_put(folio);
1873 goto repeat;
1874 }
1875 out:
1876 rcu_read_unlock();
1877
1878 return folio;
1879 }
1880
1881 /**
1882 * __filemap_get_folio - Find and get a reference to a folio.
1883 * @mapping: The address_space to search.
1884 * @index: The page index.
1885 * @fgp_flags: %FGP flags modify how the folio is returned.
1886 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1887 *
1888 * Looks up the page cache entry at @mapping & @index.
1889 *
1890 * @fgp_flags can be zero or more of these flags:
1891 *
1892 * * %FGP_ACCESSED - The folio will be marked accessed.
1893 * * %FGP_LOCK - The folio is returned locked.
1894 * * %FGP_CREAT - If no page is present then a new page is allocated using
1895 * @gfp and added to the page cache and the VM's LRU list.
1896 * The page is returned locked and with an increased refcount.
1897 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1898 * page is already in cache. If the page was allocated, unlock it before
1899 * returning so the caller can do the same dance.
1900 * * %FGP_WRITE - The page will be written to by the caller.
1901 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1902 * * %FGP_NOWAIT - Don't get blocked by page lock.
1903 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1904 *
1905 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1906 * if the %GFP flags specified for %FGP_CREAT are atomic.
1907 *
1908 * If there is a page cache page, it is returned with an increased refcount.
1909 *
1910 * Return: The found folio or an ERR_PTR() otherwise.
1911 */
1912 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1913 int fgp_flags, gfp_t gfp)
1914 {
1915 struct folio *folio;
1916
1917 repeat:
1918 folio = filemap_get_entry(mapping, index);
1919 if (xa_is_value(folio))
1920 folio = NULL;
1921 if (!folio)
1922 goto no_page;
1923
1924 if (fgp_flags & FGP_LOCK) {
1925 if (fgp_flags & FGP_NOWAIT) {
1926 if (!folio_trylock(folio)) {
1927 folio_put(folio);
1928 return ERR_PTR(-EAGAIN);
1929 }
1930 } else {
1931 folio_lock(folio);
1932 }
1933
1934 /* Has the page been truncated? */
1935 if (unlikely(folio->mapping != mapping)) {
1936 folio_unlock(folio);
1937 folio_put(folio);
1938 goto repeat;
1939 }
1940 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1941 }
1942
1943 if (fgp_flags & FGP_ACCESSED)
1944 folio_mark_accessed(folio);
1945 else if (fgp_flags & FGP_WRITE) {
1946 /* Clear idle flag for buffer write */
1947 if (folio_test_idle(folio))
1948 folio_clear_idle(folio);
1949 }
1950
1951 if (fgp_flags & FGP_STABLE)
1952 folio_wait_stable(folio);
1953 no_page:
1954 if (!folio && (fgp_flags & FGP_CREAT)) {
1955 int err;
1956 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1957 gfp |= __GFP_WRITE;
1958 if (fgp_flags & FGP_NOFS)
1959 gfp &= ~__GFP_FS;
1960 if (fgp_flags & FGP_NOWAIT) {
1961 gfp &= ~GFP_KERNEL;
1962 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1963 }
1964
1965 folio = filemap_alloc_folio(gfp, 0);
1966 if (!folio)
1967 return ERR_PTR(-ENOMEM);
1968
1969 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1970 fgp_flags |= FGP_LOCK;
1971
1972 /* Init accessed so avoid atomic mark_page_accessed later */
1973 if (fgp_flags & FGP_ACCESSED)
1974 __folio_set_referenced(folio);
1975
1976 err = filemap_add_folio(mapping, folio, index, gfp);
1977 if (unlikely(err)) {
1978 folio_put(folio);
1979 folio = NULL;
1980 if (err == -EEXIST)
1981 goto repeat;
1982 }
1983
1984 /*
1985 * filemap_add_folio locks the page, and for mmap
1986 * we expect an unlocked page.
1987 */
1988 if (folio && (fgp_flags & FGP_FOR_MMAP))
1989 folio_unlock(folio);
1990 }
1991
1992 if (!folio)
1993 return ERR_PTR(-ENOENT);
1994 return folio;
1995 }
1996 EXPORT_SYMBOL(__filemap_get_folio);
1997
1998 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1999 xa_mark_t mark)
2000 {
2001 struct folio *folio;
2002
2003 retry:
2004 if (mark == XA_PRESENT)
2005 folio = xas_find(xas, max);
2006 else
2007 folio = xas_find_marked(xas, max, mark);
2008
2009 if (xas_retry(xas, folio))
2010 goto retry;
2011 /*
2012 * A shadow entry of a recently evicted page, a swap
2013 * entry from shmem/tmpfs or a DAX entry. Return it
2014 * without attempting to raise page count.
2015 */
2016 if (!folio || xa_is_value(folio))
2017 return folio;
2018
2019 if (!folio_try_get_rcu(folio))
2020 goto reset;
2021
2022 if (unlikely(folio != xas_reload(xas))) {
2023 folio_put(folio);
2024 goto reset;
2025 }
2026
2027 return folio;
2028 reset:
2029 xas_reset(xas);
2030 goto retry;
2031 }
2032
2033 /**
2034 * find_get_entries - gang pagecache lookup
2035 * @mapping: The address_space to search
2036 * @start: The starting page cache index
2037 * @end: The final page index (inclusive).
2038 * @fbatch: Where the resulting entries are placed.
2039 * @indices: The cache indices corresponding to the entries in @entries
2040 *
2041 * find_get_entries() will search for and return a batch of entries in
2042 * the mapping. The entries are placed in @fbatch. find_get_entries()
2043 * takes a reference on any actual folios it returns.
2044 *
2045 * The entries have ascending indexes. The indices may not be consecutive
2046 * due to not-present entries or large folios.
2047 *
2048 * Any shadow entries of evicted folios, or swap entries from
2049 * shmem/tmpfs, are included in the returned array.
2050 *
2051 * Return: The number of entries which were found.
2052 */
2053 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2054 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2055 {
2056 XA_STATE(xas, &mapping->i_pages, *start);
2057 struct folio *folio;
2058
2059 rcu_read_lock();
2060 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2061 indices[fbatch->nr] = xas.xa_index;
2062 if (!folio_batch_add(fbatch, folio))
2063 break;
2064 }
2065 rcu_read_unlock();
2066
2067 if (folio_batch_count(fbatch)) {
2068 unsigned long nr = 1;
2069 int idx = folio_batch_count(fbatch) - 1;
2070
2071 folio = fbatch->folios[idx];
2072 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2073 nr = folio_nr_pages(folio);
2074 *start = indices[idx] + nr;
2075 }
2076 return folio_batch_count(fbatch);
2077 }
2078
2079 /**
2080 * find_lock_entries - Find a batch of pagecache entries.
2081 * @mapping: The address_space to search.
2082 * @start: The starting page cache index.
2083 * @end: The final page index (inclusive).
2084 * @fbatch: Where the resulting entries are placed.
2085 * @indices: The cache indices of the entries in @fbatch.
2086 *
2087 * find_lock_entries() will return a batch of entries from @mapping.
2088 * Swap, shadow and DAX entries are included. Folios are returned
2089 * locked and with an incremented refcount. Folios which are locked
2090 * by somebody else or under writeback are skipped. Folios which are
2091 * partially outside the range are not returned.
2092 *
2093 * The entries have ascending indexes. The indices may not be consecutive
2094 * due to not-present entries, large folios, folios which could not be
2095 * locked or folios under writeback.
2096 *
2097 * Return: The number of entries which were found.
2098 */
2099 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2100 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2101 {
2102 XA_STATE(xas, &mapping->i_pages, *start);
2103 struct folio *folio;
2104
2105 rcu_read_lock();
2106 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2107 if (!xa_is_value(folio)) {
2108 if (folio->index < *start)
2109 goto put;
2110 if (folio->index + folio_nr_pages(folio) - 1 > end)
2111 goto put;
2112 if (!folio_trylock(folio))
2113 goto put;
2114 if (folio->mapping != mapping ||
2115 folio_test_writeback(folio))
2116 goto unlock;
2117 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2118 folio);
2119 }
2120 indices[fbatch->nr] = xas.xa_index;
2121 if (!folio_batch_add(fbatch, folio))
2122 break;
2123 continue;
2124 unlock:
2125 folio_unlock(folio);
2126 put:
2127 folio_put(folio);
2128 }
2129 rcu_read_unlock();
2130
2131 if (folio_batch_count(fbatch)) {
2132 unsigned long nr = 1;
2133 int idx = folio_batch_count(fbatch) - 1;
2134
2135 folio = fbatch->folios[idx];
2136 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2137 nr = folio_nr_pages(folio);
2138 *start = indices[idx] + nr;
2139 }
2140 return folio_batch_count(fbatch);
2141 }
2142
2143 /**
2144 * filemap_get_folios - Get a batch of folios
2145 * @mapping: The address_space to search
2146 * @start: The starting page index
2147 * @end: The final page index (inclusive)
2148 * @fbatch: The batch to fill.
2149 *
2150 * Search for and return a batch of folios in the mapping starting at
2151 * index @start and up to index @end (inclusive). The folios are returned
2152 * in @fbatch with an elevated reference count.
2153 *
2154 * The first folio may start before @start; if it does, it will contain
2155 * @start. The final folio may extend beyond @end; if it does, it will
2156 * contain @end. The folios have ascending indices. There may be gaps
2157 * between the folios if there are indices which have no folio in the
2158 * page cache. If folios are added to or removed from the page cache
2159 * while this is running, they may or may not be found by this call.
2160 *
2161 * Return: The number of folios which were found.
2162 * We also update @start to index the next folio for the traversal.
2163 */
2164 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2165 pgoff_t end, struct folio_batch *fbatch)
2166 {
2167 XA_STATE(xas, &mapping->i_pages, *start);
2168 struct folio *folio;
2169
2170 rcu_read_lock();
2171 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2172 /* Skip over shadow, swap and DAX entries */
2173 if (xa_is_value(folio))
2174 continue;
2175 if (!folio_batch_add(fbatch, folio)) {
2176 unsigned long nr = folio_nr_pages(folio);
2177
2178 if (folio_test_hugetlb(folio))
2179 nr = 1;
2180 *start = folio->index + nr;
2181 goto out;
2182 }
2183 }
2184
2185 /*
2186 * We come here when there is no page beyond @end. We take care to not
2187 * overflow the index @start as it confuses some of the callers. This
2188 * breaks the iteration when there is a page at index -1 but that is
2189 * already broken anyway.
2190 */
2191 if (end == (pgoff_t)-1)
2192 *start = (pgoff_t)-1;
2193 else
2194 *start = end + 1;
2195 out:
2196 rcu_read_unlock();
2197
2198 return folio_batch_count(fbatch);
2199 }
2200 EXPORT_SYMBOL(filemap_get_folios);
2201
2202 static inline
2203 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2204 {
2205 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2206 return false;
2207 if (index >= max)
2208 return false;
2209 return index < folio->index + folio_nr_pages(folio) - 1;
2210 }
2211
2212 /**
2213 * filemap_get_folios_contig - Get a batch of contiguous folios
2214 * @mapping: The address_space to search
2215 * @start: The starting page index
2216 * @end: The final page index (inclusive)
2217 * @fbatch: The batch to fill
2218 *
2219 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2220 * except the returned folios are guaranteed to be contiguous. This may
2221 * not return all contiguous folios if the batch gets filled up.
2222 *
2223 * Return: The number of folios found.
2224 * Also update @start to be positioned for traversal of the next folio.
2225 */
2226
2227 unsigned filemap_get_folios_contig(struct address_space *mapping,
2228 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2229 {
2230 XA_STATE(xas, &mapping->i_pages, *start);
2231 unsigned long nr;
2232 struct folio *folio;
2233
2234 rcu_read_lock();
2235
2236 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2237 folio = xas_next(&xas)) {
2238 if (xas_retry(&xas, folio))
2239 continue;
2240 /*
2241 * If the entry has been swapped out, we can stop looking.
2242 * No current caller is looking for DAX entries.
2243 */
2244 if (xa_is_value(folio))
2245 goto update_start;
2246
2247 if (!folio_try_get_rcu(folio))
2248 goto retry;
2249
2250 if (unlikely(folio != xas_reload(&xas)))
2251 goto put_folio;
2252
2253 if (!folio_batch_add(fbatch, folio)) {
2254 nr = folio_nr_pages(folio);
2255
2256 if (folio_test_hugetlb(folio))
2257 nr = 1;
2258 *start = folio->index + nr;
2259 goto out;
2260 }
2261 continue;
2262 put_folio:
2263 folio_put(folio);
2264
2265 retry:
2266 xas_reset(&xas);
2267 }
2268
2269 update_start:
2270 nr = folio_batch_count(fbatch);
2271
2272 if (nr) {
2273 folio = fbatch->folios[nr - 1];
2274 if (folio_test_hugetlb(folio))
2275 *start = folio->index + 1;
2276 else
2277 *start = folio->index + folio_nr_pages(folio);
2278 }
2279 out:
2280 rcu_read_unlock();
2281 return folio_batch_count(fbatch);
2282 }
2283 EXPORT_SYMBOL(filemap_get_folios_contig);
2284
2285 /**
2286 * filemap_get_folios_tag - Get a batch of folios matching @tag
2287 * @mapping: The address_space to search
2288 * @start: The starting page index
2289 * @end: The final page index (inclusive)
2290 * @tag: The tag index
2291 * @fbatch: The batch to fill
2292 *
2293 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2294 *
2295 * Return: The number of folios found.
2296 * Also update @start to index the next folio for traversal.
2297 */
2298 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2299 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2300 {
2301 XA_STATE(xas, &mapping->i_pages, *start);
2302 struct folio *folio;
2303
2304 rcu_read_lock();
2305 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2306 /*
2307 * Shadow entries should never be tagged, but this iteration
2308 * is lockless so there is a window for page reclaim to evict
2309 * a page we saw tagged. Skip over it.
2310 */
2311 if (xa_is_value(folio))
2312 continue;
2313 if (!folio_batch_add(fbatch, folio)) {
2314 unsigned long nr = folio_nr_pages(folio);
2315
2316 if (folio_test_hugetlb(folio))
2317 nr = 1;
2318 *start = folio->index + nr;
2319 goto out;
2320 }
2321 }
2322 /*
2323 * We come here when there is no page beyond @end. We take care to not
2324 * overflow the index @start as it confuses some of the callers. This
2325 * breaks the iteration when there is a page at index -1 but that is
2326 * already broke anyway.
2327 */
2328 if (end == (pgoff_t)-1)
2329 *start = (pgoff_t)-1;
2330 else
2331 *start = end + 1;
2332 out:
2333 rcu_read_unlock();
2334
2335 return folio_batch_count(fbatch);
2336 }
2337 EXPORT_SYMBOL(filemap_get_folios_tag);
2338
2339 /*
2340 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2341 * a _large_ part of the i/o request. Imagine the worst scenario:
2342 *
2343 * ---R__________________________________________B__________
2344 * ^ reading here ^ bad block(assume 4k)
2345 *
2346 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2347 * => failing the whole request => read(R) => read(R+1) =>
2348 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2349 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2350 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2351 *
2352 * It is going insane. Fix it by quickly scaling down the readahead size.
2353 */
2354 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2355 {
2356 ra->ra_pages /= 4;
2357 }
2358
2359 /*
2360 * filemap_get_read_batch - Get a batch of folios for read
2361 *
2362 * Get a batch of folios which represent a contiguous range of bytes in
2363 * the file. No exceptional entries will be returned. If @index is in
2364 * the middle of a folio, the entire folio will be returned. The last
2365 * folio in the batch may have the readahead flag set or the uptodate flag
2366 * clear so that the caller can take the appropriate action.
2367 */
2368 static void filemap_get_read_batch(struct address_space *mapping,
2369 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2370 {
2371 XA_STATE(xas, &mapping->i_pages, index);
2372 struct folio *folio;
2373
2374 rcu_read_lock();
2375 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2376 if (xas_retry(&xas, folio))
2377 continue;
2378 if (xas.xa_index > max || xa_is_value(folio))
2379 break;
2380 if (xa_is_sibling(folio))
2381 break;
2382 if (!folio_try_get_rcu(folio))
2383 goto retry;
2384
2385 if (unlikely(folio != xas_reload(&xas)))
2386 goto put_folio;
2387
2388 if (!folio_batch_add(fbatch, folio))
2389 break;
2390 if (!folio_test_uptodate(folio))
2391 break;
2392 if (folio_test_readahead(folio))
2393 break;
2394 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2395 continue;
2396 put_folio:
2397 folio_put(folio);
2398 retry:
2399 xas_reset(&xas);
2400 }
2401 rcu_read_unlock();
2402 }
2403
2404 static int filemap_read_folio(struct file *file, filler_t filler,
2405 struct folio *folio)
2406 {
2407 bool workingset = folio_test_workingset(folio);
2408 unsigned long pflags;
2409 int error;
2410
2411 /*
2412 * A previous I/O error may have been due to temporary failures,
2413 * eg. multipath errors. PG_error will be set again if read_folio
2414 * fails.
2415 */
2416 folio_clear_error(folio);
2417
2418 /* Start the actual read. The read will unlock the page. */
2419 if (unlikely(workingset))
2420 psi_memstall_enter(&pflags);
2421 error = filler(file, folio);
2422 if (unlikely(workingset))
2423 psi_memstall_leave(&pflags);
2424 if (error)
2425 return error;
2426
2427 error = folio_wait_locked_killable(folio);
2428 if (error)
2429 return error;
2430 if (folio_test_uptodate(folio))
2431 return 0;
2432 if (file)
2433 shrink_readahead_size_eio(&file->f_ra);
2434 return -EIO;
2435 }
2436
2437 static bool filemap_range_uptodate(struct address_space *mapping,
2438 loff_t pos, size_t count, struct folio *folio,
2439 bool need_uptodate)
2440 {
2441 if (folio_test_uptodate(folio))
2442 return true;
2443 /* pipes can't handle partially uptodate pages */
2444 if (need_uptodate)
2445 return false;
2446 if (!mapping->a_ops->is_partially_uptodate)
2447 return false;
2448 if (mapping->host->i_blkbits >= folio_shift(folio))
2449 return false;
2450
2451 if (folio_pos(folio) > pos) {
2452 count -= folio_pos(folio) - pos;
2453 pos = 0;
2454 } else {
2455 pos -= folio_pos(folio);
2456 }
2457
2458 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2459 }
2460
2461 static int filemap_update_page(struct kiocb *iocb,
2462 struct address_space *mapping, size_t count,
2463 struct folio *folio, bool need_uptodate)
2464 {
2465 int error;
2466
2467 if (iocb->ki_flags & IOCB_NOWAIT) {
2468 if (!filemap_invalidate_trylock_shared(mapping))
2469 return -EAGAIN;
2470 } else {
2471 filemap_invalidate_lock_shared(mapping);
2472 }
2473
2474 if (!folio_trylock(folio)) {
2475 error = -EAGAIN;
2476 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2477 goto unlock_mapping;
2478 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2479 filemap_invalidate_unlock_shared(mapping);
2480 /*
2481 * This is where we usually end up waiting for a
2482 * previously submitted readahead to finish.
2483 */
2484 folio_put_wait_locked(folio, TASK_KILLABLE);
2485 return AOP_TRUNCATED_PAGE;
2486 }
2487 error = __folio_lock_async(folio, iocb->ki_waitq);
2488 if (error)
2489 goto unlock_mapping;
2490 }
2491
2492 error = AOP_TRUNCATED_PAGE;
2493 if (!folio->mapping)
2494 goto unlock;
2495
2496 error = 0;
2497 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2498 need_uptodate))
2499 goto unlock;
2500
2501 error = -EAGAIN;
2502 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2503 goto unlock;
2504
2505 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2506 folio);
2507 goto unlock_mapping;
2508 unlock:
2509 folio_unlock(folio);
2510 unlock_mapping:
2511 filemap_invalidate_unlock_shared(mapping);
2512 if (error == AOP_TRUNCATED_PAGE)
2513 folio_put(folio);
2514 return error;
2515 }
2516
2517 static int filemap_create_folio(struct file *file,
2518 struct address_space *mapping, pgoff_t index,
2519 struct folio_batch *fbatch)
2520 {
2521 struct folio *folio;
2522 int error;
2523
2524 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2525 if (!folio)
2526 return -ENOMEM;
2527
2528 /*
2529 * Protect against truncate / hole punch. Grabbing invalidate_lock
2530 * here assures we cannot instantiate and bring uptodate new
2531 * pagecache folios after evicting page cache during truncate
2532 * and before actually freeing blocks. Note that we could
2533 * release invalidate_lock after inserting the folio into
2534 * the page cache as the locked folio would then be enough to
2535 * synchronize with hole punching. But there are code paths
2536 * such as filemap_update_page() filling in partially uptodate
2537 * pages or ->readahead() that need to hold invalidate_lock
2538 * while mapping blocks for IO so let's hold the lock here as
2539 * well to keep locking rules simple.
2540 */
2541 filemap_invalidate_lock_shared(mapping);
2542 error = filemap_add_folio(mapping, folio, index,
2543 mapping_gfp_constraint(mapping, GFP_KERNEL));
2544 if (error == -EEXIST)
2545 error = AOP_TRUNCATED_PAGE;
2546 if (error)
2547 goto error;
2548
2549 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2550 if (error)
2551 goto error;
2552
2553 filemap_invalidate_unlock_shared(mapping);
2554 folio_batch_add(fbatch, folio);
2555 return 0;
2556 error:
2557 filemap_invalidate_unlock_shared(mapping);
2558 folio_put(folio);
2559 return error;
2560 }
2561
2562 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2563 struct address_space *mapping, struct folio *folio,
2564 pgoff_t last_index)
2565 {
2566 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2567
2568 if (iocb->ki_flags & IOCB_NOIO)
2569 return -EAGAIN;
2570 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2571 return 0;
2572 }
2573
2574 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2575 struct folio_batch *fbatch, bool need_uptodate)
2576 {
2577 struct file *filp = iocb->ki_filp;
2578 struct address_space *mapping = filp->f_mapping;
2579 struct file_ra_state *ra = &filp->f_ra;
2580 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2581 pgoff_t last_index;
2582 struct folio *folio;
2583 int err = 0;
2584
2585 /* "last_index" is the index of the page beyond the end of the read */
2586 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2587 retry:
2588 if (fatal_signal_pending(current))
2589 return -EINTR;
2590
2591 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2592 if (!folio_batch_count(fbatch)) {
2593 if (iocb->ki_flags & IOCB_NOIO)
2594 return -EAGAIN;
2595 page_cache_sync_readahead(mapping, ra, filp, index,
2596 last_index - index);
2597 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2598 }
2599 if (!folio_batch_count(fbatch)) {
2600 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2601 return -EAGAIN;
2602 err = filemap_create_folio(filp, mapping,
2603 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2604 if (err == AOP_TRUNCATED_PAGE)
2605 goto retry;
2606 return err;
2607 }
2608
2609 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2610 if (folio_test_readahead(folio)) {
2611 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2612 if (err)
2613 goto err;
2614 }
2615 if (!folio_test_uptodate(folio)) {
2616 if ((iocb->ki_flags & IOCB_WAITQ) &&
2617 folio_batch_count(fbatch) > 1)
2618 iocb->ki_flags |= IOCB_NOWAIT;
2619 err = filemap_update_page(iocb, mapping, count, folio,
2620 need_uptodate);
2621 if (err)
2622 goto err;
2623 }
2624
2625 return 0;
2626 err:
2627 if (err < 0)
2628 folio_put(folio);
2629 if (likely(--fbatch->nr))
2630 return 0;
2631 if (err == AOP_TRUNCATED_PAGE)
2632 goto retry;
2633 return err;
2634 }
2635
2636 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2637 {
2638 unsigned int shift = folio_shift(folio);
2639
2640 return (pos1 >> shift == pos2 >> shift);
2641 }
2642
2643 /**
2644 * filemap_read - Read data from the page cache.
2645 * @iocb: The iocb to read.
2646 * @iter: Destination for the data.
2647 * @already_read: Number of bytes already read by the caller.
2648 *
2649 * Copies data from the page cache. If the data is not currently present,
2650 * uses the readahead and read_folio address_space operations to fetch it.
2651 *
2652 * Return: Total number of bytes copied, including those already read by
2653 * the caller. If an error happens before any bytes are copied, returns
2654 * a negative error number.
2655 */
2656 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2657 ssize_t already_read)
2658 {
2659 struct file *filp = iocb->ki_filp;
2660 struct file_ra_state *ra = &filp->f_ra;
2661 struct address_space *mapping = filp->f_mapping;
2662 struct inode *inode = mapping->host;
2663 struct folio_batch fbatch;
2664 int i, error = 0;
2665 bool writably_mapped;
2666 loff_t isize, end_offset;
2667
2668 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2669 return 0;
2670 if (unlikely(!iov_iter_count(iter)))
2671 return 0;
2672
2673 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2674 folio_batch_init(&fbatch);
2675
2676 do {
2677 cond_resched();
2678
2679 /*
2680 * If we've already successfully copied some data, then we
2681 * can no longer safely return -EIOCBQUEUED. Hence mark
2682 * an async read NOWAIT at that point.
2683 */
2684 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2685 iocb->ki_flags |= IOCB_NOWAIT;
2686
2687 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2688 break;
2689
2690 error = filemap_get_pages(iocb, iter->count, &fbatch,
2691 iov_iter_is_pipe(iter));
2692 if (error < 0)
2693 break;
2694
2695 /*
2696 * i_size must be checked after we know the pages are Uptodate.
2697 *
2698 * Checking i_size after the check allows us to calculate
2699 * the correct value for "nr", which means the zero-filled
2700 * part of the page is not copied back to userspace (unless
2701 * another truncate extends the file - this is desired though).
2702 */
2703 isize = i_size_read(inode);
2704 if (unlikely(iocb->ki_pos >= isize))
2705 goto put_folios;
2706 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2707
2708 /*
2709 * Once we start copying data, we don't want to be touching any
2710 * cachelines that might be contended:
2711 */
2712 writably_mapped = mapping_writably_mapped(mapping);
2713
2714 /*
2715 * When a read accesses the same folio several times, only
2716 * mark it as accessed the first time.
2717 */
2718 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2719 fbatch.folios[0]))
2720 folio_mark_accessed(fbatch.folios[0]);
2721
2722 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2723 struct folio *folio = fbatch.folios[i];
2724 size_t fsize = folio_size(folio);
2725 size_t offset = iocb->ki_pos & (fsize - 1);
2726 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2727 fsize - offset);
2728 size_t copied;
2729
2730 if (end_offset < folio_pos(folio))
2731 break;
2732 if (i > 0)
2733 folio_mark_accessed(folio);
2734 /*
2735 * If users can be writing to this folio using arbitrary
2736 * virtual addresses, take care of potential aliasing
2737 * before reading the folio on the kernel side.
2738 */
2739 if (writably_mapped)
2740 flush_dcache_folio(folio);
2741
2742 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2743
2744 already_read += copied;
2745 iocb->ki_pos += copied;
2746 ra->prev_pos = iocb->ki_pos;
2747
2748 if (copied < bytes) {
2749 error = -EFAULT;
2750 break;
2751 }
2752 }
2753 put_folios:
2754 for (i = 0; i < folio_batch_count(&fbatch); i++)
2755 folio_put(fbatch.folios[i]);
2756 folio_batch_init(&fbatch);
2757 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2758
2759 file_accessed(filp);
2760
2761 return already_read ? already_read : error;
2762 }
2763 EXPORT_SYMBOL_GPL(filemap_read);
2764
2765 /**
2766 * generic_file_read_iter - generic filesystem read routine
2767 * @iocb: kernel I/O control block
2768 * @iter: destination for the data read
2769 *
2770 * This is the "read_iter()" routine for all filesystems
2771 * that can use the page cache directly.
2772 *
2773 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2774 * be returned when no data can be read without waiting for I/O requests
2775 * to complete; it doesn't prevent readahead.
2776 *
2777 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2778 * requests shall be made for the read or for readahead. When no data
2779 * can be read, -EAGAIN shall be returned. When readahead would be
2780 * triggered, a partial, possibly empty read shall be returned.
2781 *
2782 * Return:
2783 * * number of bytes copied, even for partial reads
2784 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2785 */
2786 ssize_t
2787 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2788 {
2789 size_t count = iov_iter_count(iter);
2790 ssize_t retval = 0;
2791
2792 if (!count)
2793 return 0; /* skip atime */
2794
2795 if (iocb->ki_flags & IOCB_DIRECT) {
2796 struct file *file = iocb->ki_filp;
2797 struct address_space *mapping = file->f_mapping;
2798 struct inode *inode = mapping->host;
2799
2800 if (iocb->ki_flags & IOCB_NOWAIT) {
2801 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2802 iocb->ki_pos + count - 1))
2803 return -EAGAIN;
2804 } else {
2805 retval = filemap_write_and_wait_range(mapping,
2806 iocb->ki_pos,
2807 iocb->ki_pos + count - 1);
2808 if (retval < 0)
2809 return retval;
2810 }
2811
2812 file_accessed(file);
2813
2814 retval = mapping->a_ops->direct_IO(iocb, iter);
2815 if (retval >= 0) {
2816 iocb->ki_pos += retval;
2817 count -= retval;
2818 }
2819 if (retval != -EIOCBQUEUED)
2820 iov_iter_revert(iter, count - iov_iter_count(iter));
2821
2822 /*
2823 * Btrfs can have a short DIO read if we encounter
2824 * compressed extents, so if there was an error, or if
2825 * we've already read everything we wanted to, or if
2826 * there was a short read because we hit EOF, go ahead
2827 * and return. Otherwise fallthrough to buffered io for
2828 * the rest of the read. Buffered reads will not work for
2829 * DAX files, so don't bother trying.
2830 */
2831 if (retval < 0 || !count || IS_DAX(inode))
2832 return retval;
2833 if (iocb->ki_pos >= i_size_read(inode))
2834 return retval;
2835 }
2836
2837 return filemap_read(iocb, iter, retval);
2838 }
2839 EXPORT_SYMBOL(generic_file_read_iter);
2840
2841 /*
2842 * Splice subpages from a folio into a pipe.
2843 */
2844 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2845 struct folio *folio, loff_t fpos, size_t size)
2846 {
2847 struct page *page;
2848 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2849
2850 page = folio_page(folio, offset / PAGE_SIZE);
2851 size = min(size, folio_size(folio) - offset);
2852 offset %= PAGE_SIZE;
2853
2854 while (spliced < size &&
2855 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2856 struct pipe_buffer *buf = pipe_head_buf(pipe);
2857 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2858
2859 *buf = (struct pipe_buffer) {
2860 .ops = &page_cache_pipe_buf_ops,
2861 .page = page,
2862 .offset = offset,
2863 .len = part,
2864 };
2865 folio_get(folio);
2866 pipe->head++;
2867 page++;
2868 spliced += part;
2869 offset = 0;
2870 }
2871
2872 return spliced;
2873 }
2874
2875 /*
2876 * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into
2877 * a pipe.
2878 */
2879 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2880 struct pipe_inode_info *pipe,
2881 size_t len, unsigned int flags)
2882 {
2883 struct folio_batch fbatch;
2884 struct kiocb iocb;
2885 size_t total_spliced = 0, used, npages;
2886 loff_t isize, end_offset;
2887 bool writably_mapped;
2888 int i, error = 0;
2889
2890 init_sync_kiocb(&iocb, in);
2891 iocb.ki_pos = *ppos;
2892
2893 /* Work out how much data we can actually add into the pipe */
2894 used = pipe_occupancy(pipe->head, pipe->tail);
2895 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2896 len = min_t(size_t, len, npages * PAGE_SIZE);
2897
2898 folio_batch_init(&fbatch);
2899
2900 do {
2901 cond_resched();
2902
2903 if (*ppos >= i_size_read(file_inode(in)))
2904 break;
2905
2906 iocb.ki_pos = *ppos;
2907 error = filemap_get_pages(&iocb, len, &fbatch, true);
2908 if (error < 0)
2909 break;
2910
2911 /*
2912 * i_size must be checked after we know the pages are Uptodate.
2913 *
2914 * Checking i_size after the check allows us to calculate
2915 * the correct value for "nr", which means the zero-filled
2916 * part of the page is not copied back to userspace (unless
2917 * another truncate extends the file - this is desired though).
2918 */
2919 isize = i_size_read(file_inode(in));
2920 if (unlikely(*ppos >= isize))
2921 break;
2922 end_offset = min_t(loff_t, isize, *ppos + len);
2923
2924 /*
2925 * Once we start copying data, we don't want to be touching any
2926 * cachelines that might be contended:
2927 */
2928 writably_mapped = mapping_writably_mapped(in->f_mapping);
2929
2930 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2931 struct folio *folio = fbatch.folios[i];
2932 size_t n;
2933
2934 if (folio_pos(folio) >= end_offset)
2935 goto out;
2936 folio_mark_accessed(folio);
2937
2938 /*
2939 * If users can be writing to this folio using arbitrary
2940 * virtual addresses, take care of potential aliasing
2941 * before reading the folio on the kernel side.
2942 */
2943 if (writably_mapped)
2944 flush_dcache_folio(folio);
2945
2946 n = min_t(loff_t, len, isize - *ppos);
2947 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2948 if (!n)
2949 goto out;
2950 len -= n;
2951 total_spliced += n;
2952 *ppos += n;
2953 in->f_ra.prev_pos = *ppos;
2954 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2955 goto out;
2956 }
2957
2958 folio_batch_release(&fbatch);
2959 } while (len);
2960
2961 out:
2962 folio_batch_release(&fbatch);
2963 file_accessed(in);
2964
2965 return total_spliced ? total_spliced : error;
2966 }
2967 EXPORT_SYMBOL(filemap_splice_read);
2968
2969 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2970 struct address_space *mapping, struct folio *folio,
2971 loff_t start, loff_t end, bool seek_data)
2972 {
2973 const struct address_space_operations *ops = mapping->a_ops;
2974 size_t offset, bsz = i_blocksize(mapping->host);
2975
2976 if (xa_is_value(folio) || folio_test_uptodate(folio))
2977 return seek_data ? start : end;
2978 if (!ops->is_partially_uptodate)
2979 return seek_data ? end : start;
2980
2981 xas_pause(xas);
2982 rcu_read_unlock();
2983 folio_lock(folio);
2984 if (unlikely(folio->mapping != mapping))
2985 goto unlock;
2986
2987 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2988
2989 do {
2990 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2991 seek_data)
2992 break;
2993 start = (start + bsz) & ~(bsz - 1);
2994 offset += bsz;
2995 } while (offset < folio_size(folio));
2996 unlock:
2997 folio_unlock(folio);
2998 rcu_read_lock();
2999 return start;
3000 }
3001
3002 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3003 {
3004 if (xa_is_value(folio))
3005 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3006 return folio_size(folio);
3007 }
3008
3009 /**
3010 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3011 * @mapping: Address space to search.
3012 * @start: First byte to consider.
3013 * @end: Limit of search (exclusive).
3014 * @whence: Either SEEK_HOLE or SEEK_DATA.
3015 *
3016 * If the page cache knows which blocks contain holes and which blocks
3017 * contain data, your filesystem can use this function to implement
3018 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3019 * entirely memory-based such as tmpfs, and filesystems which support
3020 * unwritten extents.
3021 *
3022 * Return: The requested offset on success, or -ENXIO if @whence specifies
3023 * SEEK_DATA and there is no data after @start. There is an implicit hole
3024 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3025 * and @end contain data.
3026 */
3027 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3028 loff_t end, int whence)
3029 {
3030 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3031 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3032 bool seek_data = (whence == SEEK_DATA);
3033 struct folio *folio;
3034
3035 if (end <= start)
3036 return -ENXIO;
3037
3038 rcu_read_lock();
3039 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3040 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3041 size_t seek_size;
3042
3043 if (start < pos) {
3044 if (!seek_data)
3045 goto unlock;
3046 start = pos;
3047 }
3048
3049 seek_size = seek_folio_size(&xas, folio);
3050 pos = round_up((u64)pos + 1, seek_size);
3051 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3052 seek_data);
3053 if (start < pos)
3054 goto unlock;
3055 if (start >= end)
3056 break;
3057 if (seek_size > PAGE_SIZE)
3058 xas_set(&xas, pos >> PAGE_SHIFT);
3059 if (!xa_is_value(folio))
3060 folio_put(folio);
3061 }
3062 if (seek_data)
3063 start = -ENXIO;
3064 unlock:
3065 rcu_read_unlock();
3066 if (folio && !xa_is_value(folio))
3067 folio_put(folio);
3068 if (start > end)
3069 return end;
3070 return start;
3071 }
3072
3073 #ifdef CONFIG_MMU
3074 #define MMAP_LOTSAMISS (100)
3075 /*
3076 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3077 * @vmf - the vm_fault for this fault.
3078 * @folio - the folio to lock.
3079 * @fpin - the pointer to the file we may pin (or is already pinned).
3080 *
3081 * This works similar to lock_folio_or_retry in that it can drop the
3082 * mmap_lock. It differs in that it actually returns the folio locked
3083 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3084 * to drop the mmap_lock then fpin will point to the pinned file and
3085 * needs to be fput()'ed at a later point.
3086 */
3087 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3088 struct file **fpin)
3089 {
3090 if (folio_trylock(folio))
3091 return 1;
3092
3093 /*
3094 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3095 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3096 * is supposed to work. We have way too many special cases..
3097 */
3098 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3099 return 0;
3100
3101 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3102 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3103 if (__folio_lock_killable(folio)) {
3104 /*
3105 * We didn't have the right flags to drop the mmap_lock,
3106 * but all fault_handlers only check for fatal signals
3107 * if we return VM_FAULT_RETRY, so we need to drop the
3108 * mmap_lock here and return 0 if we don't have a fpin.
3109 */
3110 if (*fpin == NULL)
3111 mmap_read_unlock(vmf->vma->vm_mm);
3112 return 0;
3113 }
3114 } else
3115 __folio_lock(folio);
3116
3117 return 1;
3118 }
3119
3120 /*
3121 * Synchronous readahead happens when we don't even find a page in the page
3122 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3123 * to drop the mmap sem we return the file that was pinned in order for us to do
3124 * that. If we didn't pin a file then we return NULL. The file that is
3125 * returned needs to be fput()'ed when we're done with it.
3126 */
3127 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3128 {
3129 struct file *file = vmf->vma->vm_file;
3130 struct file_ra_state *ra = &file->f_ra;
3131 struct address_space *mapping = file->f_mapping;
3132 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3133 struct file *fpin = NULL;
3134 unsigned long vm_flags = vmf->vma->vm_flags;
3135 unsigned int mmap_miss;
3136
3137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3138 /* Use the readahead code, even if readahead is disabled */
3139 if (vm_flags & VM_HUGEPAGE) {
3140 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3141 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3142 ra->size = HPAGE_PMD_NR;
3143 /*
3144 * Fetch two PMD folios, so we get the chance to actually
3145 * readahead, unless we've been told not to.
3146 */
3147 if (!(vm_flags & VM_RAND_READ))
3148 ra->size *= 2;
3149 ra->async_size = HPAGE_PMD_NR;
3150 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3151 return fpin;
3152 }
3153 #endif
3154
3155 /* If we don't want any read-ahead, don't bother */
3156 if (vm_flags & VM_RAND_READ)
3157 return fpin;
3158 if (!ra->ra_pages)
3159 return fpin;
3160
3161 if (vm_flags & VM_SEQ_READ) {
3162 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3163 page_cache_sync_ra(&ractl, ra->ra_pages);
3164 return fpin;
3165 }
3166
3167 /* Avoid banging the cache line if not needed */
3168 mmap_miss = READ_ONCE(ra->mmap_miss);
3169 if (mmap_miss < MMAP_LOTSAMISS * 10)
3170 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3171
3172 /*
3173 * Do we miss much more than hit in this file? If so,
3174 * stop bothering with read-ahead. It will only hurt.
3175 */
3176 if (mmap_miss > MMAP_LOTSAMISS)
3177 return fpin;
3178
3179 /*
3180 * mmap read-around
3181 */
3182 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3183 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3184 ra->size = ra->ra_pages;
3185 ra->async_size = ra->ra_pages / 4;
3186 ractl._index = ra->start;
3187 page_cache_ra_order(&ractl, ra, 0);
3188 return fpin;
3189 }
3190
3191 /*
3192 * Asynchronous readahead happens when we find the page and PG_readahead,
3193 * so we want to possibly extend the readahead further. We return the file that
3194 * was pinned if we have to drop the mmap_lock in order to do IO.
3195 */
3196 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3197 struct folio *folio)
3198 {
3199 struct file *file = vmf->vma->vm_file;
3200 struct file_ra_state *ra = &file->f_ra;
3201 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3202 struct file *fpin = NULL;
3203 unsigned int mmap_miss;
3204
3205 /* If we don't want any read-ahead, don't bother */
3206 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3207 return fpin;
3208
3209 mmap_miss = READ_ONCE(ra->mmap_miss);
3210 if (mmap_miss)
3211 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3212
3213 if (folio_test_readahead(folio)) {
3214 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3215 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3216 }
3217 return fpin;
3218 }
3219
3220 /**
3221 * filemap_fault - read in file data for page fault handling
3222 * @vmf: struct vm_fault containing details of the fault
3223 *
3224 * filemap_fault() is invoked via the vma operations vector for a
3225 * mapped memory region to read in file data during a page fault.
3226 *
3227 * The goto's are kind of ugly, but this streamlines the normal case of having
3228 * it in the page cache, and handles the special cases reasonably without
3229 * having a lot of duplicated code.
3230 *
3231 * vma->vm_mm->mmap_lock must be held on entry.
3232 *
3233 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3234 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3235 *
3236 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3237 * has not been released.
3238 *
3239 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3240 *
3241 * Return: bitwise-OR of %VM_FAULT_ codes.
3242 */
3243 vm_fault_t filemap_fault(struct vm_fault *vmf)
3244 {
3245 int error;
3246 struct file *file = vmf->vma->vm_file;
3247 struct file *fpin = NULL;
3248 struct address_space *mapping = file->f_mapping;
3249 struct inode *inode = mapping->host;
3250 pgoff_t max_idx, index = vmf->pgoff;
3251 struct folio *folio;
3252 vm_fault_t ret = 0;
3253 bool mapping_locked = false;
3254
3255 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3256 if (unlikely(index >= max_idx))
3257 return VM_FAULT_SIGBUS;
3258
3259 /*
3260 * Do we have something in the page cache already?
3261 */
3262 folio = filemap_get_folio(mapping, index);
3263 if (likely(!IS_ERR(folio))) {
3264 /*
3265 * We found the page, so try async readahead before waiting for
3266 * the lock.
3267 */
3268 if (!(vmf->flags & FAULT_FLAG_TRIED))
3269 fpin = do_async_mmap_readahead(vmf, folio);
3270 if (unlikely(!folio_test_uptodate(folio))) {
3271 filemap_invalidate_lock_shared(mapping);
3272 mapping_locked = true;
3273 }
3274 } else {
3275 /* No page in the page cache at all */
3276 count_vm_event(PGMAJFAULT);
3277 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3278 ret = VM_FAULT_MAJOR;
3279 fpin = do_sync_mmap_readahead(vmf);
3280 retry_find:
3281 /*
3282 * See comment in filemap_create_folio() why we need
3283 * invalidate_lock
3284 */
3285 if (!mapping_locked) {
3286 filemap_invalidate_lock_shared(mapping);
3287 mapping_locked = true;
3288 }
3289 folio = __filemap_get_folio(mapping, index,
3290 FGP_CREAT|FGP_FOR_MMAP,
3291 vmf->gfp_mask);
3292 if (IS_ERR(folio)) {
3293 if (fpin)
3294 goto out_retry;
3295 filemap_invalidate_unlock_shared(mapping);
3296 return VM_FAULT_OOM;
3297 }
3298 }
3299
3300 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3301 goto out_retry;
3302
3303 /* Did it get truncated? */
3304 if (unlikely(folio->mapping != mapping)) {
3305 folio_unlock(folio);
3306 folio_put(folio);
3307 goto retry_find;
3308 }
3309 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3310
3311 /*
3312 * We have a locked page in the page cache, now we need to check
3313 * that it's up-to-date. If not, it is going to be due to an error.
3314 */
3315 if (unlikely(!folio_test_uptodate(folio))) {
3316 /*
3317 * The page was in cache and uptodate and now it is not.
3318 * Strange but possible since we didn't hold the page lock all
3319 * the time. Let's drop everything get the invalidate lock and
3320 * try again.
3321 */
3322 if (!mapping_locked) {
3323 folio_unlock(folio);
3324 folio_put(folio);
3325 goto retry_find;
3326 }
3327 goto page_not_uptodate;
3328 }
3329
3330 /*
3331 * We've made it this far and we had to drop our mmap_lock, now is the
3332 * time to return to the upper layer and have it re-find the vma and
3333 * redo the fault.
3334 */
3335 if (fpin) {
3336 folio_unlock(folio);
3337 goto out_retry;
3338 }
3339 if (mapping_locked)
3340 filemap_invalidate_unlock_shared(mapping);
3341
3342 /*
3343 * Found the page and have a reference on it.
3344 * We must recheck i_size under page lock.
3345 */
3346 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3347 if (unlikely(index >= max_idx)) {
3348 folio_unlock(folio);
3349 folio_put(folio);
3350 return VM_FAULT_SIGBUS;
3351 }
3352
3353 vmf->page = folio_file_page(folio, index);
3354 return ret | VM_FAULT_LOCKED;
3355
3356 page_not_uptodate:
3357 /*
3358 * Umm, take care of errors if the page isn't up-to-date.
3359 * Try to re-read it _once_. We do this synchronously,
3360 * because there really aren't any performance issues here
3361 * and we need to check for errors.
3362 */
3363 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3364 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3365 if (fpin)
3366 goto out_retry;
3367 folio_put(folio);
3368
3369 if (!error || error == AOP_TRUNCATED_PAGE)
3370 goto retry_find;
3371 filemap_invalidate_unlock_shared(mapping);
3372
3373 return VM_FAULT_SIGBUS;
3374
3375 out_retry:
3376 /*
3377 * We dropped the mmap_lock, we need to return to the fault handler to
3378 * re-find the vma and come back and find our hopefully still populated
3379 * page.
3380 */
3381 if (folio)
3382 folio_put(folio);
3383 if (mapping_locked)
3384 filemap_invalidate_unlock_shared(mapping);
3385 if (fpin)
3386 fput(fpin);
3387 return ret | VM_FAULT_RETRY;
3388 }
3389 EXPORT_SYMBOL(filemap_fault);
3390
3391 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3392 pgoff_t start)
3393 {
3394 struct mm_struct *mm = vmf->vma->vm_mm;
3395
3396 /* Huge page is mapped? No need to proceed. */
3397 if (pmd_trans_huge(*vmf->pmd)) {
3398 folio_unlock(folio);
3399 folio_put(folio);
3400 return true;
3401 }
3402
3403 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3404 struct page *page = folio_file_page(folio, start);
3405 vm_fault_t ret = do_set_pmd(vmf, page);
3406 if (!ret) {
3407 /* The page is mapped successfully, reference consumed. */
3408 folio_unlock(folio);
3409 return true;
3410 }
3411 }
3412
3413 if (pmd_none(*vmf->pmd))
3414 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3415
3416 /* See comment in handle_pte_fault() */
3417 if (pmd_devmap_trans_unstable(vmf->pmd)) {
3418 folio_unlock(folio);
3419 folio_put(folio);
3420 return true;
3421 }
3422
3423 return false;
3424 }
3425
3426 static struct folio *next_uptodate_page(struct folio *folio,
3427 struct address_space *mapping,
3428 struct xa_state *xas, pgoff_t end_pgoff)
3429 {
3430 unsigned long max_idx;
3431
3432 do {
3433 if (!folio)
3434 return NULL;
3435 if (xas_retry(xas, folio))
3436 continue;
3437 if (xa_is_value(folio))
3438 continue;
3439 if (folio_test_locked(folio))
3440 continue;
3441 if (!folio_try_get_rcu(folio))
3442 continue;
3443 /* Has the page moved or been split? */
3444 if (unlikely(folio != xas_reload(xas)))
3445 goto skip;
3446 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3447 goto skip;
3448 if (!folio_trylock(folio))
3449 goto skip;
3450 if (folio->mapping != mapping)
3451 goto unlock;
3452 if (!folio_test_uptodate(folio))
3453 goto unlock;
3454 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3455 if (xas->xa_index >= max_idx)
3456 goto unlock;
3457 return folio;
3458 unlock:
3459 folio_unlock(folio);
3460 skip:
3461 folio_put(folio);
3462 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3463
3464 return NULL;
3465 }
3466
3467 static inline struct folio *first_map_page(struct address_space *mapping,
3468 struct xa_state *xas,
3469 pgoff_t end_pgoff)
3470 {
3471 return next_uptodate_page(xas_find(xas, end_pgoff),
3472 mapping, xas, end_pgoff);
3473 }
3474
3475 static inline struct folio *next_map_page(struct address_space *mapping,
3476 struct xa_state *xas,
3477 pgoff_t end_pgoff)
3478 {
3479 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3480 mapping, xas, end_pgoff);
3481 }
3482
3483 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3484 pgoff_t start_pgoff, pgoff_t end_pgoff)
3485 {
3486 struct vm_area_struct *vma = vmf->vma;
3487 struct file *file = vma->vm_file;
3488 struct address_space *mapping = file->f_mapping;
3489 pgoff_t last_pgoff = start_pgoff;
3490 unsigned long addr;
3491 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3492 struct folio *folio;
3493 struct page *page;
3494 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3495 vm_fault_t ret = 0;
3496
3497 rcu_read_lock();
3498 folio = first_map_page(mapping, &xas, end_pgoff);
3499 if (!folio)
3500 goto out;
3501
3502 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3503 ret = VM_FAULT_NOPAGE;
3504 goto out;
3505 }
3506
3507 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3508 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3509 do {
3510 again:
3511 page = folio_file_page(folio, xas.xa_index);
3512 if (PageHWPoison(page))
3513 goto unlock;
3514
3515 if (mmap_miss > 0)
3516 mmap_miss--;
3517
3518 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3519 vmf->pte += xas.xa_index - last_pgoff;
3520 last_pgoff = xas.xa_index;
3521
3522 /*
3523 * NOTE: If there're PTE markers, we'll leave them to be
3524 * handled in the specific fault path, and it'll prohibit the
3525 * fault-around logic.
3526 */
3527 if (!pte_none(*vmf->pte))
3528 goto unlock;
3529
3530 /* We're about to handle the fault */
3531 if (vmf->address == addr)
3532 ret = VM_FAULT_NOPAGE;
3533
3534 do_set_pte(vmf, page, addr);
3535 /* no need to invalidate: a not-present page won't be cached */
3536 update_mmu_cache(vma, addr, vmf->pte);
3537 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3538 xas.xa_index++;
3539 folio_ref_inc(folio);
3540 goto again;
3541 }
3542 folio_unlock(folio);
3543 continue;
3544 unlock:
3545 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3546 xas.xa_index++;
3547 goto again;
3548 }
3549 folio_unlock(folio);
3550 folio_put(folio);
3551 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3552 pte_unmap_unlock(vmf->pte, vmf->ptl);
3553 out:
3554 rcu_read_unlock();
3555 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3556 return ret;
3557 }
3558 EXPORT_SYMBOL(filemap_map_pages);
3559
3560 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3561 {
3562 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3563 struct folio *folio = page_folio(vmf->page);
3564 vm_fault_t ret = VM_FAULT_LOCKED;
3565
3566 sb_start_pagefault(mapping->host->i_sb);
3567 file_update_time(vmf->vma->vm_file);
3568 folio_lock(folio);
3569 if (folio->mapping != mapping) {
3570 folio_unlock(folio);
3571 ret = VM_FAULT_NOPAGE;
3572 goto out;
3573 }
3574 /*
3575 * We mark the folio dirty already here so that when freeze is in
3576 * progress, we are guaranteed that writeback during freezing will
3577 * see the dirty folio and writeprotect it again.
3578 */
3579 folio_mark_dirty(folio);
3580 folio_wait_stable(folio);
3581 out:
3582 sb_end_pagefault(mapping->host->i_sb);
3583 return ret;
3584 }
3585
3586 const struct vm_operations_struct generic_file_vm_ops = {
3587 .fault = filemap_fault,
3588 .map_pages = filemap_map_pages,
3589 .page_mkwrite = filemap_page_mkwrite,
3590 };
3591
3592 /* This is used for a general mmap of a disk file */
3593
3594 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3595 {
3596 struct address_space *mapping = file->f_mapping;
3597
3598 if (!mapping->a_ops->read_folio)
3599 return -ENOEXEC;
3600 file_accessed(file);
3601 vma->vm_ops = &generic_file_vm_ops;
3602 return 0;
3603 }
3604
3605 /*
3606 * This is for filesystems which do not implement ->writepage.
3607 */
3608 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3609 {
3610 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3611 return -EINVAL;
3612 return generic_file_mmap(file, vma);
3613 }
3614 #else
3615 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3616 {
3617 return VM_FAULT_SIGBUS;
3618 }
3619 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3620 {
3621 return -ENOSYS;
3622 }
3623 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3624 {
3625 return -ENOSYS;
3626 }
3627 #endif /* CONFIG_MMU */
3628
3629 EXPORT_SYMBOL(filemap_page_mkwrite);
3630 EXPORT_SYMBOL(generic_file_mmap);
3631 EXPORT_SYMBOL(generic_file_readonly_mmap);
3632
3633 static struct folio *do_read_cache_folio(struct address_space *mapping,
3634 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3635 {
3636 struct folio *folio;
3637 int err;
3638
3639 if (!filler)
3640 filler = mapping->a_ops->read_folio;
3641 repeat:
3642 folio = filemap_get_folio(mapping, index);
3643 if (IS_ERR(folio)) {
3644 folio = filemap_alloc_folio(gfp, 0);
3645 if (!folio)
3646 return ERR_PTR(-ENOMEM);
3647 err = filemap_add_folio(mapping, folio, index, gfp);
3648 if (unlikely(err)) {
3649 folio_put(folio);
3650 if (err == -EEXIST)
3651 goto repeat;
3652 /* Presumably ENOMEM for xarray node */
3653 return ERR_PTR(err);
3654 }
3655
3656 goto filler;
3657 }
3658 if (folio_test_uptodate(folio))
3659 goto out;
3660
3661 if (!folio_trylock(folio)) {
3662 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3663 goto repeat;
3664 }
3665
3666 /* Folio was truncated from mapping */
3667 if (!folio->mapping) {
3668 folio_unlock(folio);
3669 folio_put(folio);
3670 goto repeat;
3671 }
3672
3673 /* Someone else locked and filled the page in a very small window */
3674 if (folio_test_uptodate(folio)) {
3675 folio_unlock(folio);
3676 goto out;
3677 }
3678
3679 filler:
3680 err = filemap_read_folio(file, filler, folio);
3681 if (err) {
3682 folio_put(folio);
3683 if (err == AOP_TRUNCATED_PAGE)
3684 goto repeat;
3685 return ERR_PTR(err);
3686 }
3687
3688 out:
3689 folio_mark_accessed(folio);
3690 return folio;
3691 }
3692
3693 /**
3694 * read_cache_folio - Read into page cache, fill it if needed.
3695 * @mapping: The address_space to read from.
3696 * @index: The index to read.
3697 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3698 * @file: Passed to filler function, may be NULL if not required.
3699 *
3700 * Read one page into the page cache. If it succeeds, the folio returned
3701 * will contain @index, but it may not be the first page of the folio.
3702 *
3703 * If the filler function returns an error, it will be returned to the
3704 * caller.
3705 *
3706 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3707 * Return: An uptodate folio on success, ERR_PTR() on failure.
3708 */
3709 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3710 filler_t filler, struct file *file)
3711 {
3712 return do_read_cache_folio(mapping, index, filler, file,
3713 mapping_gfp_mask(mapping));
3714 }
3715 EXPORT_SYMBOL(read_cache_folio);
3716
3717 /**
3718 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3719 * @mapping: The address_space for the folio.
3720 * @index: The index that the allocated folio will contain.
3721 * @gfp: The page allocator flags to use if allocating.
3722 *
3723 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3724 * any new memory allocations done using the specified allocation flags.
3725 *
3726 * The most likely error from this function is EIO, but ENOMEM is
3727 * possible and so is EINTR. If ->read_folio returns another error,
3728 * that will be returned to the caller.
3729 *
3730 * The function expects mapping->invalidate_lock to be already held.
3731 *
3732 * Return: Uptodate folio on success, ERR_PTR() on failure.
3733 */
3734 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3735 pgoff_t index, gfp_t gfp)
3736 {
3737 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3738 }
3739 EXPORT_SYMBOL(mapping_read_folio_gfp);
3740
3741 static struct page *do_read_cache_page(struct address_space *mapping,
3742 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3743 {
3744 struct folio *folio;
3745
3746 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3747 if (IS_ERR(folio))
3748 return &folio->page;
3749 return folio_file_page(folio, index);
3750 }
3751
3752 struct page *read_cache_page(struct address_space *mapping,
3753 pgoff_t index, filler_t *filler, struct file *file)
3754 {
3755 return do_read_cache_page(mapping, index, filler, file,
3756 mapping_gfp_mask(mapping));
3757 }
3758 EXPORT_SYMBOL(read_cache_page);
3759
3760 /**
3761 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3762 * @mapping: the page's address_space
3763 * @index: the page index
3764 * @gfp: the page allocator flags to use if allocating
3765 *
3766 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3767 * any new page allocations done using the specified allocation flags.
3768 *
3769 * If the page does not get brought uptodate, return -EIO.
3770 *
3771 * The function expects mapping->invalidate_lock to be already held.
3772 *
3773 * Return: up to date page on success, ERR_PTR() on failure.
3774 */
3775 struct page *read_cache_page_gfp(struct address_space *mapping,
3776 pgoff_t index,
3777 gfp_t gfp)
3778 {
3779 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3780 }
3781 EXPORT_SYMBOL(read_cache_page_gfp);
3782
3783 /*
3784 * Warn about a page cache invalidation failure during a direct I/O write.
3785 */
3786 void dio_warn_stale_pagecache(struct file *filp)
3787 {
3788 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3789 char pathname[128];
3790 char *path;
3791
3792 errseq_set(&filp->f_mapping->wb_err, -EIO);
3793 if (__ratelimit(&_rs)) {
3794 path = file_path(filp, pathname, sizeof(pathname));
3795 if (IS_ERR(path))
3796 path = "(unknown)";
3797 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3798 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3799 current->comm);
3800 }
3801 }
3802
3803 ssize_t
3804 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3805 {
3806 struct file *file = iocb->ki_filp;
3807 struct address_space *mapping = file->f_mapping;
3808 struct inode *inode = mapping->host;
3809 loff_t pos = iocb->ki_pos;
3810 ssize_t written;
3811 size_t write_len;
3812 pgoff_t end;
3813
3814 write_len = iov_iter_count(from);
3815 end = (pos + write_len - 1) >> PAGE_SHIFT;
3816
3817 if (iocb->ki_flags & IOCB_NOWAIT) {
3818 /* If there are pages to writeback, return */
3819 if (filemap_range_has_page(file->f_mapping, pos,
3820 pos + write_len - 1))
3821 return -EAGAIN;
3822 } else {
3823 written = filemap_write_and_wait_range(mapping, pos,
3824 pos + write_len - 1);
3825 if (written)
3826 goto out;
3827 }
3828
3829 /*
3830 * After a write we want buffered reads to be sure to go to disk to get
3831 * the new data. We invalidate clean cached page from the region we're
3832 * about to write. We do this *before* the write so that we can return
3833 * without clobbering -EIOCBQUEUED from ->direct_IO().
3834 */
3835 written = invalidate_inode_pages2_range(mapping,
3836 pos >> PAGE_SHIFT, end);
3837 /*
3838 * If a page can not be invalidated, return 0 to fall back
3839 * to buffered write.
3840 */
3841 if (written) {
3842 if (written == -EBUSY)
3843 return 0;
3844 goto out;
3845 }
3846
3847 written = mapping->a_ops->direct_IO(iocb, from);
3848
3849 /*
3850 * Finally, try again to invalidate clean pages which might have been
3851 * cached by non-direct readahead, or faulted in by get_user_pages()
3852 * if the source of the write was an mmap'ed region of the file
3853 * we're writing. Either one is a pretty crazy thing to do,
3854 * so we don't support it 100%. If this invalidation
3855 * fails, tough, the write still worked...
3856 *
3857 * Most of the time we do not need this since dio_complete() will do
3858 * the invalidation for us. However there are some file systems that
3859 * do not end up with dio_complete() being called, so let's not break
3860 * them by removing it completely.
3861 *
3862 * Noticeable example is a blkdev_direct_IO().
3863 *
3864 * Skip invalidation for async writes or if mapping has no pages.
3865 */
3866 if (written > 0 && mapping->nrpages &&
3867 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3868 dio_warn_stale_pagecache(file);
3869
3870 if (written > 0) {
3871 pos += written;
3872 write_len -= written;
3873 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3874 i_size_write(inode, pos);
3875 mark_inode_dirty(inode);
3876 }
3877 iocb->ki_pos = pos;
3878 }
3879 if (written != -EIOCBQUEUED)
3880 iov_iter_revert(from, write_len - iov_iter_count(from));
3881 out:
3882 return written;
3883 }
3884 EXPORT_SYMBOL(generic_file_direct_write);
3885
3886 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3887 {
3888 struct file *file = iocb->ki_filp;
3889 loff_t pos = iocb->ki_pos;
3890 struct address_space *mapping = file->f_mapping;
3891 const struct address_space_operations *a_ops = mapping->a_ops;
3892 long status = 0;
3893 ssize_t written = 0;
3894
3895 do {
3896 struct page *page;
3897 unsigned long offset; /* Offset into pagecache page */
3898 unsigned long bytes; /* Bytes to write to page */
3899 size_t copied; /* Bytes copied from user */
3900 void *fsdata = NULL;
3901
3902 offset = (pos & (PAGE_SIZE - 1));
3903 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3904 iov_iter_count(i));
3905
3906 again:
3907 /*
3908 * Bring in the user page that we will copy from _first_.
3909 * Otherwise there's a nasty deadlock on copying from the
3910 * same page as we're writing to, without it being marked
3911 * up-to-date.
3912 */
3913 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3914 status = -EFAULT;
3915 break;
3916 }
3917
3918 if (fatal_signal_pending(current)) {
3919 status = -EINTR;
3920 break;
3921 }
3922
3923 status = a_ops->write_begin(file, mapping, pos, bytes,
3924 &page, &fsdata);
3925 if (unlikely(status < 0))
3926 break;
3927
3928 if (mapping_writably_mapped(mapping))
3929 flush_dcache_page(page);
3930
3931 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3932 flush_dcache_page(page);
3933
3934 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3935 page, fsdata);
3936 if (unlikely(status != copied)) {
3937 iov_iter_revert(i, copied - max(status, 0L));
3938 if (unlikely(status < 0))
3939 break;
3940 }
3941 cond_resched();
3942
3943 if (unlikely(status == 0)) {
3944 /*
3945 * A short copy made ->write_end() reject the
3946 * thing entirely. Might be memory poisoning
3947 * halfway through, might be a race with munmap,
3948 * might be severe memory pressure.
3949 */
3950 if (copied)
3951 bytes = copied;
3952 goto again;
3953 }
3954 pos += status;
3955 written += status;
3956
3957 balance_dirty_pages_ratelimited(mapping);
3958 } while (iov_iter_count(i));
3959
3960 return written ? written : status;
3961 }
3962 EXPORT_SYMBOL(generic_perform_write);
3963
3964 /**
3965 * __generic_file_write_iter - write data to a file
3966 * @iocb: IO state structure (file, offset, etc.)
3967 * @from: iov_iter with data to write
3968 *
3969 * This function does all the work needed for actually writing data to a
3970 * file. It does all basic checks, removes SUID from the file, updates
3971 * modification times and calls proper subroutines depending on whether we
3972 * do direct IO or a standard buffered write.
3973 *
3974 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3975 * object which does not need locking at all.
3976 *
3977 * This function does *not* take care of syncing data in case of O_SYNC write.
3978 * A caller has to handle it. This is mainly due to the fact that we want to
3979 * avoid syncing under i_rwsem.
3980 *
3981 * Return:
3982 * * number of bytes written, even for truncated writes
3983 * * negative error code if no data has been written at all
3984 */
3985 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3986 {
3987 struct file *file = iocb->ki_filp;
3988 struct address_space *mapping = file->f_mapping;
3989 struct inode *inode = mapping->host;
3990 ssize_t written = 0;
3991 ssize_t err;
3992 ssize_t status;
3993
3994 /* We can write back this queue in page reclaim */
3995 current->backing_dev_info = inode_to_bdi(inode);
3996 err = file_remove_privs(file);
3997 if (err)
3998 goto out;
3999
4000 err = file_update_time(file);
4001 if (err)
4002 goto out;
4003
4004 if (iocb->ki_flags & IOCB_DIRECT) {
4005 loff_t pos, endbyte;
4006
4007 written = generic_file_direct_write(iocb, from);
4008 /*
4009 * If the write stopped short of completing, fall back to
4010 * buffered writes. Some filesystems do this for writes to
4011 * holes, for example. For DAX files, a buffered write will
4012 * not succeed (even if it did, DAX does not handle dirty
4013 * page-cache pages correctly).
4014 */
4015 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
4016 goto out;
4017
4018 pos = iocb->ki_pos;
4019 status = generic_perform_write(iocb, from);
4020 /*
4021 * If generic_perform_write() returned a synchronous error
4022 * then we want to return the number of bytes which were
4023 * direct-written, or the error code if that was zero. Note
4024 * that this differs from normal direct-io semantics, which
4025 * will return -EFOO even if some bytes were written.
4026 */
4027 if (unlikely(status < 0)) {
4028 err = status;
4029 goto out;
4030 }
4031 /*
4032 * We need to ensure that the page cache pages are written to
4033 * disk and invalidated to preserve the expected O_DIRECT
4034 * semantics.
4035 */
4036 endbyte = pos + status - 1;
4037 err = filemap_write_and_wait_range(mapping, pos, endbyte);
4038 if (err == 0) {
4039 iocb->ki_pos = endbyte + 1;
4040 written += status;
4041 invalidate_mapping_pages(mapping,
4042 pos >> PAGE_SHIFT,
4043 endbyte >> PAGE_SHIFT);
4044 } else {
4045 /*
4046 * We don't know how much we wrote, so just return
4047 * the number of bytes which were direct-written
4048 */
4049 }
4050 } else {
4051 written = generic_perform_write(iocb, from);
4052 if (likely(written > 0))
4053 iocb->ki_pos += written;
4054 }
4055 out:
4056 current->backing_dev_info = NULL;
4057 return written ? written : err;
4058 }
4059 EXPORT_SYMBOL(__generic_file_write_iter);
4060
4061 /**
4062 * generic_file_write_iter - write data to a file
4063 * @iocb: IO state structure
4064 * @from: iov_iter with data to write
4065 *
4066 * This is a wrapper around __generic_file_write_iter() to be used by most
4067 * filesystems. It takes care of syncing the file in case of O_SYNC file
4068 * and acquires i_rwsem as needed.
4069 * Return:
4070 * * negative error code if no data has been written at all of
4071 * vfs_fsync_range() failed for a synchronous write
4072 * * number of bytes written, even for truncated writes
4073 */
4074 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4075 {
4076 struct file *file = iocb->ki_filp;
4077 struct inode *inode = file->f_mapping->host;
4078 ssize_t ret;
4079
4080 inode_lock(inode);
4081 ret = generic_write_checks(iocb, from);
4082 if (ret > 0)
4083 ret = __generic_file_write_iter(iocb, from);
4084 inode_unlock(inode);
4085
4086 if (ret > 0)
4087 ret = generic_write_sync(iocb, ret);
4088 return ret;
4089 }
4090 EXPORT_SYMBOL(generic_file_write_iter);
4091
4092 /**
4093 * filemap_release_folio() - Release fs-specific metadata on a folio.
4094 * @folio: The folio which the kernel is trying to free.
4095 * @gfp: Memory allocation flags (and I/O mode).
4096 *
4097 * The address_space is trying to release any data attached to a folio
4098 * (presumably at folio->private).
4099 *
4100 * This will also be called if the private_2 flag is set on a page,
4101 * indicating that the folio has other metadata associated with it.
4102 *
4103 * The @gfp argument specifies whether I/O may be performed to release
4104 * this page (__GFP_IO), and whether the call may block
4105 * (__GFP_RECLAIM & __GFP_FS).
4106 *
4107 * Return: %true if the release was successful, otherwise %false.
4108 */
4109 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4110 {
4111 struct address_space * const mapping = folio->mapping;
4112
4113 BUG_ON(!folio_test_locked(folio));
4114 if (folio_test_writeback(folio))
4115 return false;
4116
4117 if (mapping && mapping->a_ops->release_folio)
4118 return mapping->a_ops->release_folio(folio, gfp);
4119 return try_to_free_buffers(folio);
4120 }
4121 EXPORT_SYMBOL(filemap_release_folio);