]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/gup.c
Merge branch 'akpm' (patches from Andrew)
[thirdparty/linux.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38 }
39
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46 }
47
48 /*
49 * Return the compound head page with ref appropriately incremented,
50 * or NULL if that failed.
51 */
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
53 {
54 struct page *head = compound_head(page);
55
56 if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 return NULL;
58 if (unlikely(!page_cache_add_speculative(head, refs)))
59 return NULL;
60 return head;
61 }
62
63 /*
64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65 * flags-dependent amount.
66 *
67 * "grab" names in this file mean, "look at flags to decide whether to use
68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69 *
70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71 * same time. (That's true throughout the get_user_pages*() and
72 * pin_user_pages*() APIs.) Cases:
73 *
74 * FOLL_GET: page's refcount will be incremented by 1.
75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76 *
77 * Return: head page (with refcount appropriately incremented) for success, or
78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79 * considered failure, and furthermore, a likely bug in the caller, so a warning
80 * is also emitted.
81 */
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 int refs,
84 unsigned int flags)
85 {
86 if (flags & FOLL_GET)
87 return try_get_compound_head(page, refs);
88 else if (flags & FOLL_PIN) {
89 int orig_refs = refs;
90
91 /*
92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 * path, so fail and let the caller fall back to the slow path.
94 */
95 if (unlikely(flags & FOLL_LONGTERM) &&
96 is_migrate_cma_page(page))
97 return NULL;
98
99 /*
100 * When pinning a compound page of order > 1 (which is what
101 * hpage_pincount_available() checks for), use an exact count to
102 * track it, via hpage_pincount_add/_sub().
103 *
104 * However, be sure to *also* increment the normal page refcount
105 * field at least once, so that the page really is pinned.
106 */
107 if (!hpage_pincount_available(page))
108 refs *= GUP_PIN_COUNTING_BIAS;
109
110 page = try_get_compound_head(page, refs);
111 if (!page)
112 return NULL;
113
114 if (hpage_pincount_available(page))
115 hpage_pincount_add(page, refs);
116
117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 orig_refs);
119
120 return page;
121 }
122
123 WARN_ON_ONCE(1);
124 return NULL;
125 }
126
127 /**
128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129 *
130 * This might not do anything at all, depending on the flags argument.
131 *
132 * "grab" names in this file mean, "look at flags to decide whether to use
133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134 *
135 * @page: pointer to page to be grabbed
136 * @flags: gup flags: these are the FOLL_* flag values.
137 *
138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139 * time. Cases:
140 *
141 * FOLL_GET: page's refcount will be incremented by 1.
142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143 *
144 * Return: true for success, or if no action was required (if neither FOLL_PIN
145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146 * FOLL_PIN was set, but the page could not be grabbed.
147 */
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
149 {
150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151
152 if (flags & FOLL_GET)
153 return try_get_page(page);
154 else if (flags & FOLL_PIN) {
155 int refs = 1;
156
157 page = compound_head(page);
158
159 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 return false;
161
162 if (hpage_pincount_available(page))
163 hpage_pincount_add(page, 1);
164 else
165 refs = GUP_PIN_COUNTING_BIAS;
166
167 /*
168 * Similar to try_grab_compound_head(): even if using the
169 * hpage_pincount_add/_sub() routines, be sure to
170 * *also* increment the normal page refcount field at least
171 * once, so that the page really is pinned.
172 */
173 page_ref_add(page, refs);
174
175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
176 }
177
178 return true;
179 }
180
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
183 {
184 int count, refs = 1;
185
186 if (!page_is_devmap_managed(page))
187 return false;
188
189 if (hpage_pincount_available(page))
190 hpage_pincount_sub(page, 1);
191 else
192 refs = GUP_PIN_COUNTING_BIAS;
193
194 count = page_ref_sub_return(page, refs);
195
196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
197 /*
198 * devmap page refcounts are 1-based, rather than 0-based: if
199 * refcount is 1, then the page is free and the refcount is
200 * stable because nobody holds a reference on the page.
201 */
202 if (count == 1)
203 free_devmap_managed_page(page);
204 else if (!count)
205 __put_page(page);
206
207 return true;
208 }
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
211 {
212 return false;
213 }
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
215
216 /**
217 * unpin_user_page() - release a dma-pinned page
218 * @page: pointer to page to be released
219 *
220 * Pages that were pinned via pin_user_pages*() must be released via either
221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222 * that such pages can be separately tracked and uniquely handled. In
223 * particular, interactions with RDMA and filesystems need special handling.
224 */
225 void unpin_user_page(struct page *page)
226 {
227 int refs = 1;
228
229 page = compound_head(page);
230
231 /*
232 * For devmap managed pages we need to catch refcount transition from
233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 * page is free and we need to inform the device driver through
235 * callback. See include/linux/memremap.h and HMM for details.
236 */
237 if (__unpin_devmap_managed_user_page(page))
238 return;
239
240 if (hpage_pincount_available(page))
241 hpage_pincount_sub(page, 1);
242 else
243 refs = GUP_PIN_COUNTING_BIAS;
244
245 if (page_ref_sub_and_test(page, refs))
246 __put_page(page);
247
248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
249 }
250 EXPORT_SYMBOL(unpin_user_page);
251
252 /**
253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254 * @pages: array of pages to be maybe marked dirty, and definitely released.
255 * @npages: number of pages in the @pages array.
256 * @make_dirty: whether to mark the pages dirty
257 *
258 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259 * variants called on that page.
260 *
261 * For each page in the @pages array, make that page (or its head page, if a
262 * compound page) dirty, if @make_dirty is true, and if the page was previously
263 * listed as clean. In any case, releases all pages using unpin_user_page(),
264 * possibly via unpin_user_pages(), for the non-dirty case.
265 *
266 * Please see the unpin_user_page() documentation for details.
267 *
268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269 * required, then the caller should a) verify that this is really correct,
270 * because _lock() is usually required, and b) hand code it:
271 * set_page_dirty_lock(), unpin_user_page().
272 *
273 */
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 bool make_dirty)
276 {
277 unsigned long index;
278
279 /*
280 * TODO: this can be optimized for huge pages: if a series of pages is
281 * physically contiguous and part of the same compound page, then a
282 * single operation to the head page should suffice.
283 */
284
285 if (!make_dirty) {
286 unpin_user_pages(pages, npages);
287 return;
288 }
289
290 for (index = 0; index < npages; index++) {
291 struct page *page = compound_head(pages[index]);
292 /*
293 * Checking PageDirty at this point may race with
294 * clear_page_dirty_for_io(), but that's OK. Two key
295 * cases:
296 *
297 * 1) This code sees the page as already dirty, so it
298 * skips the call to set_page_dirty(). That could happen
299 * because clear_page_dirty_for_io() called
300 * page_mkclean(), followed by set_page_dirty().
301 * However, now the page is going to get written back,
302 * which meets the original intention of setting it
303 * dirty, so all is well: clear_page_dirty_for_io() goes
304 * on to call TestClearPageDirty(), and write the page
305 * back.
306 *
307 * 2) This code sees the page as clean, so it calls
308 * set_page_dirty(). The page stays dirty, despite being
309 * written back, so it gets written back again in the
310 * next writeback cycle. This is harmless.
311 */
312 if (!PageDirty(page))
313 set_page_dirty_lock(page);
314 unpin_user_page(page);
315 }
316 }
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
318
319 /**
320 * unpin_user_pages() - release an array of gup-pinned pages.
321 * @pages: array of pages to be marked dirty and released.
322 * @npages: number of pages in the @pages array.
323 *
324 * For each page in the @pages array, release the page using unpin_user_page().
325 *
326 * Please see the unpin_user_page() documentation for details.
327 */
328 void unpin_user_pages(struct page **pages, unsigned long npages)
329 {
330 unsigned long index;
331
332 /*
333 * TODO: this can be optimized for huge pages: if a series of pages is
334 * physically contiguous and part of the same compound page, then a
335 * single operation to the head page should suffice.
336 */
337 for (index = 0; index < npages; index++)
338 unpin_user_page(pages[index]);
339 }
340 EXPORT_SYMBOL(unpin_user_pages);
341
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 unsigned int flags)
345 {
346 /*
347 * When core dumping an enormous anonymous area that nobody
348 * has touched so far, we don't want to allocate unnecessary pages or
349 * page tables. Return error instead of NULL to skip handle_mm_fault,
350 * then get_dump_page() will return NULL to leave a hole in the dump.
351 * But we can only make this optimization where a hole would surely
352 * be zero-filled if handle_mm_fault() actually did handle it.
353 */
354 if ((flags & FOLL_DUMP) &&
355 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
356 return ERR_PTR(-EFAULT);
357 return NULL;
358 }
359
360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
361 pte_t *pte, unsigned int flags)
362 {
363 /* No page to get reference */
364 if (flags & FOLL_GET)
365 return -EFAULT;
366
367 if (flags & FOLL_TOUCH) {
368 pte_t entry = *pte;
369
370 if (flags & FOLL_WRITE)
371 entry = pte_mkdirty(entry);
372 entry = pte_mkyoung(entry);
373
374 if (!pte_same(*pte, entry)) {
375 set_pte_at(vma->vm_mm, address, pte, entry);
376 update_mmu_cache(vma, address, pte);
377 }
378 }
379
380 /* Proper page table entry exists, but no corresponding struct page */
381 return -EEXIST;
382 }
383
384 /*
385 * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
386 * but only after we've gone through a COW cycle and they are dirty.
387 */
388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
389 {
390 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
391 }
392
393 /*
394 * A (separate) COW fault might break the page the other way and
395 * get_user_pages() would return the page from what is now the wrong
396 * VM. So we need to force a COW break at GUP time even for reads.
397 */
398 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
399 {
400 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
401 }
402
403 static struct page *follow_page_pte(struct vm_area_struct *vma,
404 unsigned long address, pmd_t *pmd, unsigned int flags,
405 struct dev_pagemap **pgmap)
406 {
407 struct mm_struct *mm = vma->vm_mm;
408 struct page *page;
409 spinlock_t *ptl;
410 pte_t *ptep, pte;
411 int ret;
412
413 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
414 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
415 (FOLL_PIN | FOLL_GET)))
416 return ERR_PTR(-EINVAL);
417 retry:
418 if (unlikely(pmd_bad(*pmd)))
419 return no_page_table(vma, flags);
420
421 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
422 pte = *ptep;
423 if (!pte_present(pte)) {
424 swp_entry_t entry;
425 /*
426 * KSM's break_ksm() relies upon recognizing a ksm page
427 * even while it is being migrated, so for that case we
428 * need migration_entry_wait().
429 */
430 if (likely(!(flags & FOLL_MIGRATION)))
431 goto no_page;
432 if (pte_none(pte))
433 goto no_page;
434 entry = pte_to_swp_entry(pte);
435 if (!is_migration_entry(entry))
436 goto no_page;
437 pte_unmap_unlock(ptep, ptl);
438 migration_entry_wait(mm, pmd, address);
439 goto retry;
440 }
441 if ((flags & FOLL_NUMA) && pte_protnone(pte))
442 goto no_page;
443 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
444 pte_unmap_unlock(ptep, ptl);
445 return NULL;
446 }
447
448 page = vm_normal_page(vma, address, pte);
449 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
450 /*
451 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
452 * case since they are only valid while holding the pgmap
453 * reference.
454 */
455 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
456 if (*pgmap)
457 page = pte_page(pte);
458 else
459 goto no_page;
460 } else if (unlikely(!page)) {
461 if (flags & FOLL_DUMP) {
462 /* Avoid special (like zero) pages in core dumps */
463 page = ERR_PTR(-EFAULT);
464 goto out;
465 }
466
467 if (is_zero_pfn(pte_pfn(pte))) {
468 page = pte_page(pte);
469 } else {
470 ret = follow_pfn_pte(vma, address, ptep, flags);
471 page = ERR_PTR(ret);
472 goto out;
473 }
474 }
475
476 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
477 get_page(page);
478 pte_unmap_unlock(ptep, ptl);
479 lock_page(page);
480 ret = split_huge_page(page);
481 unlock_page(page);
482 put_page(page);
483 if (ret)
484 return ERR_PTR(ret);
485 goto retry;
486 }
487
488 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
489 if (unlikely(!try_grab_page(page, flags))) {
490 page = ERR_PTR(-ENOMEM);
491 goto out;
492 }
493 /*
494 * We need to make the page accessible if and only if we are going
495 * to access its content (the FOLL_PIN case). Please see
496 * Documentation/core-api/pin_user_pages.rst for details.
497 */
498 if (flags & FOLL_PIN) {
499 ret = arch_make_page_accessible(page);
500 if (ret) {
501 unpin_user_page(page);
502 page = ERR_PTR(ret);
503 goto out;
504 }
505 }
506 if (flags & FOLL_TOUCH) {
507 if ((flags & FOLL_WRITE) &&
508 !pte_dirty(pte) && !PageDirty(page))
509 set_page_dirty(page);
510 /*
511 * pte_mkyoung() would be more correct here, but atomic care
512 * is needed to avoid losing the dirty bit: it is easier to use
513 * mark_page_accessed().
514 */
515 mark_page_accessed(page);
516 }
517 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
518 /* Do not mlock pte-mapped THP */
519 if (PageTransCompound(page))
520 goto out;
521
522 /*
523 * The preliminary mapping check is mainly to avoid the
524 * pointless overhead of lock_page on the ZERO_PAGE
525 * which might bounce very badly if there is contention.
526 *
527 * If the page is already locked, we don't need to
528 * handle it now - vmscan will handle it later if and
529 * when it attempts to reclaim the page.
530 */
531 if (page->mapping && trylock_page(page)) {
532 lru_add_drain(); /* push cached pages to LRU */
533 /*
534 * Because we lock page here, and migration is
535 * blocked by the pte's page reference, and we
536 * know the page is still mapped, we don't even
537 * need to check for file-cache page truncation.
538 */
539 mlock_vma_page(page);
540 unlock_page(page);
541 }
542 }
543 out:
544 pte_unmap_unlock(ptep, ptl);
545 return page;
546 no_page:
547 pte_unmap_unlock(ptep, ptl);
548 if (!pte_none(pte))
549 return NULL;
550 return no_page_table(vma, flags);
551 }
552
553 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
554 unsigned long address, pud_t *pudp,
555 unsigned int flags,
556 struct follow_page_context *ctx)
557 {
558 pmd_t *pmd, pmdval;
559 spinlock_t *ptl;
560 struct page *page;
561 struct mm_struct *mm = vma->vm_mm;
562
563 pmd = pmd_offset(pudp, address);
564 /*
565 * The READ_ONCE() will stabilize the pmdval in a register or
566 * on the stack so that it will stop changing under the code.
567 */
568 pmdval = READ_ONCE(*pmd);
569 if (pmd_none(pmdval))
570 return no_page_table(vma, flags);
571 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
572 page = follow_huge_pmd(mm, address, pmd, flags);
573 if (page)
574 return page;
575 return no_page_table(vma, flags);
576 }
577 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
578 page = follow_huge_pd(vma, address,
579 __hugepd(pmd_val(pmdval)), flags,
580 PMD_SHIFT);
581 if (page)
582 return page;
583 return no_page_table(vma, flags);
584 }
585 retry:
586 if (!pmd_present(pmdval)) {
587 if (likely(!(flags & FOLL_MIGRATION)))
588 return no_page_table(vma, flags);
589 VM_BUG_ON(thp_migration_supported() &&
590 !is_pmd_migration_entry(pmdval));
591 if (is_pmd_migration_entry(pmdval))
592 pmd_migration_entry_wait(mm, pmd);
593 pmdval = READ_ONCE(*pmd);
594 /*
595 * MADV_DONTNEED may convert the pmd to null because
596 * mmap_sem is held in read mode
597 */
598 if (pmd_none(pmdval))
599 return no_page_table(vma, flags);
600 goto retry;
601 }
602 if (pmd_devmap(pmdval)) {
603 ptl = pmd_lock(mm, pmd);
604 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
605 spin_unlock(ptl);
606 if (page)
607 return page;
608 }
609 if (likely(!pmd_trans_huge(pmdval)))
610 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
611
612 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
613 return no_page_table(vma, flags);
614
615 retry_locked:
616 ptl = pmd_lock(mm, pmd);
617 if (unlikely(pmd_none(*pmd))) {
618 spin_unlock(ptl);
619 return no_page_table(vma, flags);
620 }
621 if (unlikely(!pmd_present(*pmd))) {
622 spin_unlock(ptl);
623 if (likely(!(flags & FOLL_MIGRATION)))
624 return no_page_table(vma, flags);
625 pmd_migration_entry_wait(mm, pmd);
626 goto retry_locked;
627 }
628 if (unlikely(!pmd_trans_huge(*pmd))) {
629 spin_unlock(ptl);
630 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
631 }
632 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
633 int ret;
634 page = pmd_page(*pmd);
635 if (is_huge_zero_page(page)) {
636 spin_unlock(ptl);
637 ret = 0;
638 split_huge_pmd(vma, pmd, address);
639 if (pmd_trans_unstable(pmd))
640 ret = -EBUSY;
641 } else if (flags & FOLL_SPLIT) {
642 if (unlikely(!try_get_page(page))) {
643 spin_unlock(ptl);
644 return ERR_PTR(-ENOMEM);
645 }
646 spin_unlock(ptl);
647 lock_page(page);
648 ret = split_huge_page(page);
649 unlock_page(page);
650 put_page(page);
651 if (pmd_none(*pmd))
652 return no_page_table(vma, flags);
653 } else { /* flags & FOLL_SPLIT_PMD */
654 spin_unlock(ptl);
655 split_huge_pmd(vma, pmd, address);
656 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
657 }
658
659 return ret ? ERR_PTR(ret) :
660 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
661 }
662 page = follow_trans_huge_pmd(vma, address, pmd, flags);
663 spin_unlock(ptl);
664 ctx->page_mask = HPAGE_PMD_NR - 1;
665 return page;
666 }
667
668 static struct page *follow_pud_mask(struct vm_area_struct *vma,
669 unsigned long address, p4d_t *p4dp,
670 unsigned int flags,
671 struct follow_page_context *ctx)
672 {
673 pud_t *pud;
674 spinlock_t *ptl;
675 struct page *page;
676 struct mm_struct *mm = vma->vm_mm;
677
678 pud = pud_offset(p4dp, address);
679 if (pud_none(*pud))
680 return no_page_table(vma, flags);
681 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
682 page = follow_huge_pud(mm, address, pud, flags);
683 if (page)
684 return page;
685 return no_page_table(vma, flags);
686 }
687 if (is_hugepd(__hugepd(pud_val(*pud)))) {
688 page = follow_huge_pd(vma, address,
689 __hugepd(pud_val(*pud)), flags,
690 PUD_SHIFT);
691 if (page)
692 return page;
693 return no_page_table(vma, flags);
694 }
695 if (pud_devmap(*pud)) {
696 ptl = pud_lock(mm, pud);
697 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
698 spin_unlock(ptl);
699 if (page)
700 return page;
701 }
702 if (unlikely(pud_bad(*pud)))
703 return no_page_table(vma, flags);
704
705 return follow_pmd_mask(vma, address, pud, flags, ctx);
706 }
707
708 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
709 unsigned long address, pgd_t *pgdp,
710 unsigned int flags,
711 struct follow_page_context *ctx)
712 {
713 p4d_t *p4d;
714 struct page *page;
715
716 p4d = p4d_offset(pgdp, address);
717 if (p4d_none(*p4d))
718 return no_page_table(vma, flags);
719 BUILD_BUG_ON(p4d_huge(*p4d));
720 if (unlikely(p4d_bad(*p4d)))
721 return no_page_table(vma, flags);
722
723 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
724 page = follow_huge_pd(vma, address,
725 __hugepd(p4d_val(*p4d)), flags,
726 P4D_SHIFT);
727 if (page)
728 return page;
729 return no_page_table(vma, flags);
730 }
731 return follow_pud_mask(vma, address, p4d, flags, ctx);
732 }
733
734 /**
735 * follow_page_mask - look up a page descriptor from a user-virtual address
736 * @vma: vm_area_struct mapping @address
737 * @address: virtual address to look up
738 * @flags: flags modifying lookup behaviour
739 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
740 * pointer to output page_mask
741 *
742 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
743 *
744 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
745 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
746 *
747 * On output, the @ctx->page_mask is set according to the size of the page.
748 *
749 * Return: the mapped (struct page *), %NULL if no mapping exists, or
750 * an error pointer if there is a mapping to something not represented
751 * by a page descriptor (see also vm_normal_page()).
752 */
753 static struct page *follow_page_mask(struct vm_area_struct *vma,
754 unsigned long address, unsigned int flags,
755 struct follow_page_context *ctx)
756 {
757 pgd_t *pgd;
758 struct page *page;
759 struct mm_struct *mm = vma->vm_mm;
760
761 ctx->page_mask = 0;
762
763 /* make this handle hugepd */
764 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
765 if (!IS_ERR(page)) {
766 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
767 return page;
768 }
769
770 pgd = pgd_offset(mm, address);
771
772 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
773 return no_page_table(vma, flags);
774
775 if (pgd_huge(*pgd)) {
776 page = follow_huge_pgd(mm, address, pgd, flags);
777 if (page)
778 return page;
779 return no_page_table(vma, flags);
780 }
781 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
782 page = follow_huge_pd(vma, address,
783 __hugepd(pgd_val(*pgd)), flags,
784 PGDIR_SHIFT);
785 if (page)
786 return page;
787 return no_page_table(vma, flags);
788 }
789
790 return follow_p4d_mask(vma, address, pgd, flags, ctx);
791 }
792
793 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
794 unsigned int foll_flags)
795 {
796 struct follow_page_context ctx = { NULL };
797 struct page *page;
798
799 page = follow_page_mask(vma, address, foll_flags, &ctx);
800 if (ctx.pgmap)
801 put_dev_pagemap(ctx.pgmap);
802 return page;
803 }
804
805 static int get_gate_page(struct mm_struct *mm, unsigned long address,
806 unsigned int gup_flags, struct vm_area_struct **vma,
807 struct page **page)
808 {
809 pgd_t *pgd;
810 p4d_t *p4d;
811 pud_t *pud;
812 pmd_t *pmd;
813 pte_t *pte;
814 int ret = -EFAULT;
815
816 /* user gate pages are read-only */
817 if (gup_flags & FOLL_WRITE)
818 return -EFAULT;
819 if (address > TASK_SIZE)
820 pgd = pgd_offset_k(address);
821 else
822 pgd = pgd_offset_gate(mm, address);
823 if (pgd_none(*pgd))
824 return -EFAULT;
825 p4d = p4d_offset(pgd, address);
826 if (p4d_none(*p4d))
827 return -EFAULT;
828 pud = pud_offset(p4d, address);
829 if (pud_none(*pud))
830 return -EFAULT;
831 pmd = pmd_offset(pud, address);
832 if (!pmd_present(*pmd))
833 return -EFAULT;
834 VM_BUG_ON(pmd_trans_huge(*pmd));
835 pte = pte_offset_map(pmd, address);
836 if (pte_none(*pte))
837 goto unmap;
838 *vma = get_gate_vma(mm);
839 if (!page)
840 goto out;
841 *page = vm_normal_page(*vma, address, *pte);
842 if (!*page) {
843 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
844 goto unmap;
845 *page = pte_page(*pte);
846 }
847 if (unlikely(!try_get_page(*page))) {
848 ret = -ENOMEM;
849 goto unmap;
850 }
851 out:
852 ret = 0;
853 unmap:
854 pte_unmap(pte);
855 return ret;
856 }
857
858 /*
859 * mmap_sem must be held on entry. If @locked != NULL and *@flags
860 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it
861 * is, *@locked will be set to 0 and -EBUSY returned.
862 */
863 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
864 unsigned long address, unsigned int *flags, int *locked)
865 {
866 unsigned int fault_flags = 0;
867 vm_fault_t ret;
868
869 /* mlock all present pages, but do not fault in new pages */
870 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
871 return -ENOENT;
872 if (*flags & FOLL_WRITE)
873 fault_flags |= FAULT_FLAG_WRITE;
874 if (*flags & FOLL_REMOTE)
875 fault_flags |= FAULT_FLAG_REMOTE;
876 if (locked)
877 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
878 if (*flags & FOLL_NOWAIT)
879 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
880 if (*flags & FOLL_TRIED) {
881 /*
882 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
883 * can co-exist
884 */
885 fault_flags |= FAULT_FLAG_TRIED;
886 }
887
888 ret = handle_mm_fault(vma, address, fault_flags);
889 if (ret & VM_FAULT_ERROR) {
890 int err = vm_fault_to_errno(ret, *flags);
891
892 if (err)
893 return err;
894 BUG();
895 }
896
897 if (tsk) {
898 if (ret & VM_FAULT_MAJOR)
899 tsk->maj_flt++;
900 else
901 tsk->min_flt++;
902 }
903
904 if (ret & VM_FAULT_RETRY) {
905 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
906 *locked = 0;
907 return -EBUSY;
908 }
909
910 /*
911 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
912 * necessary, even if maybe_mkwrite decided not to set pte_write. We
913 * can thus safely do subsequent page lookups as if they were reads.
914 * But only do so when looping for pte_write is futile: in some cases
915 * userspace may also be wanting to write to the gotten user page,
916 * which a read fault here might prevent (a readonly page might get
917 * reCOWed by userspace write).
918 */
919 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
920 *flags |= FOLL_COW;
921 return 0;
922 }
923
924 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
925 {
926 vm_flags_t vm_flags = vma->vm_flags;
927 int write = (gup_flags & FOLL_WRITE);
928 int foreign = (gup_flags & FOLL_REMOTE);
929
930 if (vm_flags & (VM_IO | VM_PFNMAP))
931 return -EFAULT;
932
933 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
934 return -EFAULT;
935
936 if (write) {
937 if (!(vm_flags & VM_WRITE)) {
938 if (!(gup_flags & FOLL_FORCE))
939 return -EFAULT;
940 /*
941 * We used to let the write,force case do COW in a
942 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
943 * set a breakpoint in a read-only mapping of an
944 * executable, without corrupting the file (yet only
945 * when that file had been opened for writing!).
946 * Anon pages in shared mappings are surprising: now
947 * just reject it.
948 */
949 if (!is_cow_mapping(vm_flags))
950 return -EFAULT;
951 }
952 } else if (!(vm_flags & VM_READ)) {
953 if (!(gup_flags & FOLL_FORCE))
954 return -EFAULT;
955 /*
956 * Is there actually any vma we can reach here which does not
957 * have VM_MAYREAD set?
958 */
959 if (!(vm_flags & VM_MAYREAD))
960 return -EFAULT;
961 }
962 /*
963 * gups are always data accesses, not instruction
964 * fetches, so execute=false here
965 */
966 if (!arch_vma_access_permitted(vma, write, false, foreign))
967 return -EFAULT;
968 return 0;
969 }
970
971 /**
972 * __get_user_pages() - pin user pages in memory
973 * @tsk: task_struct of target task
974 * @mm: mm_struct of target mm
975 * @start: starting user address
976 * @nr_pages: number of pages from start to pin
977 * @gup_flags: flags modifying pin behaviour
978 * @pages: array that receives pointers to the pages pinned.
979 * Should be at least nr_pages long. Or NULL, if caller
980 * only intends to ensure the pages are faulted in.
981 * @vmas: array of pointers to vmas corresponding to each page.
982 * Or NULL if the caller does not require them.
983 * @locked: whether we're still with the mmap_sem held
984 *
985 * Returns either number of pages pinned (which may be less than the
986 * number requested), or an error. Details about the return value:
987 *
988 * -- If nr_pages is 0, returns 0.
989 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
990 * -- If nr_pages is >0, and some pages were pinned, returns the number of
991 * pages pinned. Again, this may be less than nr_pages.
992 *
993 * The caller is responsible for releasing returned @pages, via put_page().
994 *
995 * @vmas are valid only as long as mmap_sem is held.
996 *
997 * Must be called with mmap_sem held. It may be released. See below.
998 *
999 * __get_user_pages walks a process's page tables and takes a reference to
1000 * each struct page that each user address corresponds to at a given
1001 * instant. That is, it takes the page that would be accessed if a user
1002 * thread accesses the given user virtual address at that instant.
1003 *
1004 * This does not guarantee that the page exists in the user mappings when
1005 * __get_user_pages returns, and there may even be a completely different
1006 * page there in some cases (eg. if mmapped pagecache has been invalidated
1007 * and subsequently re faulted). However it does guarantee that the page
1008 * won't be freed completely. And mostly callers simply care that the page
1009 * contains data that was valid *at some point in time*. Typically, an IO
1010 * or similar operation cannot guarantee anything stronger anyway because
1011 * locks can't be held over the syscall boundary.
1012 *
1013 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1014 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1015 * appropriate) must be called after the page is finished with, and
1016 * before put_page is called.
1017 *
1018 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1019 * released by an up_read(). That can happen if @gup_flags does not
1020 * have FOLL_NOWAIT.
1021 *
1022 * A caller using such a combination of @locked and @gup_flags
1023 * must therefore hold the mmap_sem for reading only, and recognize
1024 * when it's been released. Otherwise, it must be held for either
1025 * reading or writing and will not be released.
1026 *
1027 * In most cases, get_user_pages or get_user_pages_fast should be used
1028 * instead of __get_user_pages. __get_user_pages should be used only if
1029 * you need some special @gup_flags.
1030 */
1031 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1032 unsigned long start, unsigned long nr_pages,
1033 unsigned int gup_flags, struct page **pages,
1034 struct vm_area_struct **vmas, int *locked)
1035 {
1036 long ret = 0, i = 0;
1037 struct vm_area_struct *vma = NULL;
1038 struct follow_page_context ctx = { NULL };
1039
1040 if (!nr_pages)
1041 return 0;
1042
1043 start = untagged_addr(start);
1044
1045 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1046
1047 /*
1048 * If FOLL_FORCE is set then do not force a full fault as the hinting
1049 * fault information is unrelated to the reference behaviour of a task
1050 * using the address space
1051 */
1052 if (!(gup_flags & FOLL_FORCE))
1053 gup_flags |= FOLL_NUMA;
1054
1055 do {
1056 struct page *page;
1057 unsigned int foll_flags = gup_flags;
1058 unsigned int page_increm;
1059
1060 /* first iteration or cross vma bound */
1061 if (!vma || start >= vma->vm_end) {
1062 vma = find_extend_vma(mm, start);
1063 if (!vma && in_gate_area(mm, start)) {
1064 ret = get_gate_page(mm, start & PAGE_MASK,
1065 gup_flags, &vma,
1066 pages ? &pages[i] : NULL);
1067 if (ret)
1068 goto out;
1069 ctx.page_mask = 0;
1070 goto next_page;
1071 }
1072
1073 if (!vma || check_vma_flags(vma, gup_flags)) {
1074 ret = -EFAULT;
1075 goto out;
1076 }
1077 if (is_vm_hugetlb_page(vma)) {
1078 if (should_force_cow_break(vma, foll_flags))
1079 foll_flags |= FOLL_WRITE;
1080 i = follow_hugetlb_page(mm, vma, pages, vmas,
1081 &start, &nr_pages, i,
1082 foll_flags, locked);
1083 if (locked && *locked == 0) {
1084 /*
1085 * We've got a VM_FAULT_RETRY
1086 * and we've lost mmap_sem.
1087 * We must stop here.
1088 */
1089 BUG_ON(gup_flags & FOLL_NOWAIT);
1090 BUG_ON(ret != 0);
1091 goto out;
1092 }
1093 continue;
1094 }
1095 }
1096
1097 if (should_force_cow_break(vma, foll_flags))
1098 foll_flags |= FOLL_WRITE;
1099
1100 retry:
1101 /*
1102 * If we have a pending SIGKILL, don't keep faulting pages and
1103 * potentially allocating memory.
1104 */
1105 if (fatal_signal_pending(current)) {
1106 ret = -EINTR;
1107 goto out;
1108 }
1109 cond_resched();
1110
1111 page = follow_page_mask(vma, start, foll_flags, &ctx);
1112 if (!page) {
1113 ret = faultin_page(tsk, vma, start, &foll_flags,
1114 locked);
1115 switch (ret) {
1116 case 0:
1117 goto retry;
1118 case -EBUSY:
1119 ret = 0;
1120 fallthrough;
1121 case -EFAULT:
1122 case -ENOMEM:
1123 case -EHWPOISON:
1124 goto out;
1125 case -ENOENT:
1126 goto next_page;
1127 }
1128 BUG();
1129 } else if (PTR_ERR(page) == -EEXIST) {
1130 /*
1131 * Proper page table entry exists, but no corresponding
1132 * struct page.
1133 */
1134 goto next_page;
1135 } else if (IS_ERR(page)) {
1136 ret = PTR_ERR(page);
1137 goto out;
1138 }
1139 if (pages) {
1140 pages[i] = page;
1141 flush_anon_page(vma, page, start);
1142 flush_dcache_page(page);
1143 ctx.page_mask = 0;
1144 }
1145 next_page:
1146 if (vmas) {
1147 vmas[i] = vma;
1148 ctx.page_mask = 0;
1149 }
1150 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1151 if (page_increm > nr_pages)
1152 page_increm = nr_pages;
1153 i += page_increm;
1154 start += page_increm * PAGE_SIZE;
1155 nr_pages -= page_increm;
1156 } while (nr_pages);
1157 out:
1158 if (ctx.pgmap)
1159 put_dev_pagemap(ctx.pgmap);
1160 return i ? i : ret;
1161 }
1162
1163 static bool vma_permits_fault(struct vm_area_struct *vma,
1164 unsigned int fault_flags)
1165 {
1166 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1167 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1168 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1169
1170 if (!(vm_flags & vma->vm_flags))
1171 return false;
1172
1173 /*
1174 * The architecture might have a hardware protection
1175 * mechanism other than read/write that can deny access.
1176 *
1177 * gup always represents data access, not instruction
1178 * fetches, so execute=false here:
1179 */
1180 if (!arch_vma_access_permitted(vma, write, false, foreign))
1181 return false;
1182
1183 return true;
1184 }
1185
1186 /**
1187 * fixup_user_fault() - manually resolve a user page fault
1188 * @tsk: the task_struct to use for page fault accounting, or
1189 * NULL if faults are not to be recorded.
1190 * @mm: mm_struct of target mm
1191 * @address: user address
1192 * @fault_flags:flags to pass down to handle_mm_fault()
1193 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
1194 * does not allow retry. If NULL, the caller must guarantee
1195 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1196 *
1197 * This is meant to be called in the specific scenario where for locking reasons
1198 * we try to access user memory in atomic context (within a pagefault_disable()
1199 * section), this returns -EFAULT, and we want to resolve the user fault before
1200 * trying again.
1201 *
1202 * Typically this is meant to be used by the futex code.
1203 *
1204 * The main difference with get_user_pages() is that this function will
1205 * unconditionally call handle_mm_fault() which will in turn perform all the
1206 * necessary SW fixup of the dirty and young bits in the PTE, while
1207 * get_user_pages() only guarantees to update these in the struct page.
1208 *
1209 * This is important for some architectures where those bits also gate the
1210 * access permission to the page because they are maintained in software. On
1211 * such architectures, gup() will not be enough to make a subsequent access
1212 * succeed.
1213 *
1214 * This function will not return with an unlocked mmap_sem. So it has not the
1215 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1216 */
1217 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long address, unsigned int fault_flags,
1219 bool *unlocked)
1220 {
1221 struct vm_area_struct *vma;
1222 vm_fault_t ret, major = 0;
1223
1224 address = untagged_addr(address);
1225
1226 if (unlocked)
1227 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1228
1229 retry:
1230 vma = find_extend_vma(mm, address);
1231 if (!vma || address < vma->vm_start)
1232 return -EFAULT;
1233
1234 if (!vma_permits_fault(vma, fault_flags))
1235 return -EFAULT;
1236
1237 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1238 fatal_signal_pending(current))
1239 return -EINTR;
1240
1241 ret = handle_mm_fault(vma, address, fault_flags);
1242 major |= ret & VM_FAULT_MAJOR;
1243 if (ret & VM_FAULT_ERROR) {
1244 int err = vm_fault_to_errno(ret, 0);
1245
1246 if (err)
1247 return err;
1248 BUG();
1249 }
1250
1251 if (ret & VM_FAULT_RETRY) {
1252 down_read(&mm->mmap_sem);
1253 *unlocked = true;
1254 fault_flags |= FAULT_FLAG_TRIED;
1255 goto retry;
1256 }
1257
1258 if (tsk) {
1259 if (major)
1260 tsk->maj_flt++;
1261 else
1262 tsk->min_flt++;
1263 }
1264 return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(fixup_user_fault);
1267
1268 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1269 struct mm_struct *mm,
1270 unsigned long start,
1271 unsigned long nr_pages,
1272 struct page **pages,
1273 struct vm_area_struct **vmas,
1274 int *locked,
1275 unsigned int flags)
1276 {
1277 long ret, pages_done;
1278 bool lock_dropped;
1279
1280 if (locked) {
1281 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1282 BUG_ON(vmas);
1283 /* check caller initialized locked */
1284 BUG_ON(*locked != 1);
1285 }
1286
1287 /*
1288 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1289 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1290 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1291 * for FOLL_GET, not for the newer FOLL_PIN.
1292 *
1293 * FOLL_PIN always expects pages to be non-null, but no need to assert
1294 * that here, as any failures will be obvious enough.
1295 */
1296 if (pages && !(flags & FOLL_PIN))
1297 flags |= FOLL_GET;
1298
1299 pages_done = 0;
1300 lock_dropped = false;
1301 for (;;) {
1302 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1303 vmas, locked);
1304 if (!locked)
1305 /* VM_FAULT_RETRY couldn't trigger, bypass */
1306 return ret;
1307
1308 /* VM_FAULT_RETRY cannot return errors */
1309 if (!*locked) {
1310 BUG_ON(ret < 0);
1311 BUG_ON(ret >= nr_pages);
1312 }
1313
1314 if (ret > 0) {
1315 nr_pages -= ret;
1316 pages_done += ret;
1317 if (!nr_pages)
1318 break;
1319 }
1320 if (*locked) {
1321 /*
1322 * VM_FAULT_RETRY didn't trigger or it was a
1323 * FOLL_NOWAIT.
1324 */
1325 if (!pages_done)
1326 pages_done = ret;
1327 break;
1328 }
1329 /*
1330 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1331 * For the prefault case (!pages) we only update counts.
1332 */
1333 if (likely(pages))
1334 pages += ret;
1335 start += ret << PAGE_SHIFT;
1336 lock_dropped = true;
1337
1338 retry:
1339 /*
1340 * Repeat on the address that fired VM_FAULT_RETRY
1341 * with both FAULT_FLAG_ALLOW_RETRY and
1342 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1343 * by fatal signals, so we need to check it before we
1344 * start trying again otherwise it can loop forever.
1345 */
1346
1347 if (fatal_signal_pending(current)) {
1348 if (!pages_done)
1349 pages_done = -EINTR;
1350 break;
1351 }
1352
1353 ret = down_read_killable(&mm->mmap_sem);
1354 if (ret) {
1355 BUG_ON(ret > 0);
1356 if (!pages_done)
1357 pages_done = ret;
1358 break;
1359 }
1360
1361 *locked = 1;
1362 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1363 pages, NULL, locked);
1364 if (!*locked) {
1365 /* Continue to retry until we succeeded */
1366 BUG_ON(ret != 0);
1367 goto retry;
1368 }
1369 if (ret != 1) {
1370 BUG_ON(ret > 1);
1371 if (!pages_done)
1372 pages_done = ret;
1373 break;
1374 }
1375 nr_pages--;
1376 pages_done++;
1377 if (!nr_pages)
1378 break;
1379 if (likely(pages))
1380 pages++;
1381 start += PAGE_SIZE;
1382 }
1383 if (lock_dropped && *locked) {
1384 /*
1385 * We must let the caller know we temporarily dropped the lock
1386 * and so the critical section protected by it was lost.
1387 */
1388 up_read(&mm->mmap_sem);
1389 *locked = 0;
1390 }
1391 return pages_done;
1392 }
1393
1394 /**
1395 * populate_vma_page_range() - populate a range of pages in the vma.
1396 * @vma: target vma
1397 * @start: start address
1398 * @end: end address
1399 * @locked: whether the mmap_sem is still held
1400 *
1401 * This takes care of mlocking the pages too if VM_LOCKED is set.
1402 *
1403 * return 0 on success, negative error code on error.
1404 *
1405 * vma->vm_mm->mmap_sem must be held.
1406 *
1407 * If @locked is NULL, it may be held for read or write and will
1408 * be unperturbed.
1409 *
1410 * If @locked is non-NULL, it must held for read only and may be
1411 * released. If it's released, *@locked will be set to 0.
1412 */
1413 long populate_vma_page_range(struct vm_area_struct *vma,
1414 unsigned long start, unsigned long end, int *locked)
1415 {
1416 struct mm_struct *mm = vma->vm_mm;
1417 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1418 int gup_flags;
1419
1420 VM_BUG_ON(start & ~PAGE_MASK);
1421 VM_BUG_ON(end & ~PAGE_MASK);
1422 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1423 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1424 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1425
1426 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1427 if (vma->vm_flags & VM_LOCKONFAULT)
1428 gup_flags &= ~FOLL_POPULATE;
1429 /*
1430 * We want to touch writable mappings with a write fault in order
1431 * to break COW, except for shared mappings because these don't COW
1432 * and we would not want to dirty them for nothing.
1433 */
1434 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1435 gup_flags |= FOLL_WRITE;
1436
1437 /*
1438 * We want mlock to succeed for regions that have any permissions
1439 * other than PROT_NONE.
1440 */
1441 if (vma_is_accessible(vma))
1442 gup_flags |= FOLL_FORCE;
1443
1444 /*
1445 * We made sure addr is within a VMA, so the following will
1446 * not result in a stack expansion that recurses back here.
1447 */
1448 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1449 NULL, NULL, locked);
1450 }
1451
1452 /*
1453 * __mm_populate - populate and/or mlock pages within a range of address space.
1454 *
1455 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1456 * flags. VMAs must be already marked with the desired vm_flags, and
1457 * mmap_sem must not be held.
1458 */
1459 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1460 {
1461 struct mm_struct *mm = current->mm;
1462 unsigned long end, nstart, nend;
1463 struct vm_area_struct *vma = NULL;
1464 int locked = 0;
1465 long ret = 0;
1466
1467 end = start + len;
1468
1469 for (nstart = start; nstart < end; nstart = nend) {
1470 /*
1471 * We want to fault in pages for [nstart; end) address range.
1472 * Find first corresponding VMA.
1473 */
1474 if (!locked) {
1475 locked = 1;
1476 down_read(&mm->mmap_sem);
1477 vma = find_vma(mm, nstart);
1478 } else if (nstart >= vma->vm_end)
1479 vma = vma->vm_next;
1480 if (!vma || vma->vm_start >= end)
1481 break;
1482 /*
1483 * Set [nstart; nend) to intersection of desired address
1484 * range with the first VMA. Also, skip undesirable VMA types.
1485 */
1486 nend = min(end, vma->vm_end);
1487 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1488 continue;
1489 if (nstart < vma->vm_start)
1490 nstart = vma->vm_start;
1491 /*
1492 * Now fault in a range of pages. populate_vma_page_range()
1493 * double checks the vma flags, so that it won't mlock pages
1494 * if the vma was already munlocked.
1495 */
1496 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1497 if (ret < 0) {
1498 if (ignore_errors) {
1499 ret = 0;
1500 continue; /* continue at next VMA */
1501 }
1502 break;
1503 }
1504 nend = nstart + ret * PAGE_SIZE;
1505 ret = 0;
1506 }
1507 if (locked)
1508 up_read(&mm->mmap_sem);
1509 return ret; /* 0 or negative error code */
1510 }
1511
1512 /**
1513 * get_dump_page() - pin user page in memory while writing it to core dump
1514 * @addr: user address
1515 *
1516 * Returns struct page pointer of user page pinned for dump,
1517 * to be freed afterwards by put_page().
1518 *
1519 * Returns NULL on any kind of failure - a hole must then be inserted into
1520 * the corefile, to preserve alignment with its headers; and also returns
1521 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1522 * allowing a hole to be left in the corefile to save diskspace.
1523 *
1524 * Called without mmap_sem, but after all other threads have been killed.
1525 */
1526 #ifdef CONFIG_ELF_CORE
1527 struct page *get_dump_page(unsigned long addr)
1528 {
1529 struct vm_area_struct *vma;
1530 struct page *page;
1531
1532 if (__get_user_pages(current, current->mm, addr, 1,
1533 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1534 NULL) < 1)
1535 return NULL;
1536 flush_cache_page(vma, addr, page_to_pfn(page));
1537 return page;
1538 }
1539 #endif /* CONFIG_ELF_CORE */
1540 #else /* CONFIG_MMU */
1541 static long __get_user_pages_locked(struct task_struct *tsk,
1542 struct mm_struct *mm, unsigned long start,
1543 unsigned long nr_pages, struct page **pages,
1544 struct vm_area_struct **vmas, int *locked,
1545 unsigned int foll_flags)
1546 {
1547 struct vm_area_struct *vma;
1548 unsigned long vm_flags;
1549 int i;
1550
1551 /* calculate required read or write permissions.
1552 * If FOLL_FORCE is set, we only require the "MAY" flags.
1553 */
1554 vm_flags = (foll_flags & FOLL_WRITE) ?
1555 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1556 vm_flags &= (foll_flags & FOLL_FORCE) ?
1557 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1558
1559 for (i = 0; i < nr_pages; i++) {
1560 vma = find_vma(mm, start);
1561 if (!vma)
1562 goto finish_or_fault;
1563
1564 /* protect what we can, including chardevs */
1565 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1566 !(vm_flags & vma->vm_flags))
1567 goto finish_or_fault;
1568
1569 if (pages) {
1570 pages[i] = virt_to_page(start);
1571 if (pages[i])
1572 get_page(pages[i]);
1573 }
1574 if (vmas)
1575 vmas[i] = vma;
1576 start = (start + PAGE_SIZE) & PAGE_MASK;
1577 }
1578
1579 return i;
1580
1581 finish_or_fault:
1582 return i ? : -EFAULT;
1583 }
1584 #endif /* !CONFIG_MMU */
1585
1586 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1587 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1588 {
1589 long i;
1590 struct vm_area_struct *vma_prev = NULL;
1591
1592 for (i = 0; i < nr_pages; i++) {
1593 struct vm_area_struct *vma = vmas[i];
1594
1595 if (vma == vma_prev)
1596 continue;
1597
1598 vma_prev = vma;
1599
1600 if (vma_is_fsdax(vma))
1601 return true;
1602 }
1603 return false;
1604 }
1605
1606 #ifdef CONFIG_CMA
1607 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1608 {
1609 /*
1610 * We want to make sure we allocate the new page from the same node
1611 * as the source page.
1612 */
1613 int nid = page_to_nid(page);
1614 /*
1615 * Trying to allocate a page for migration. Ignore allocation
1616 * failure warnings. We don't force __GFP_THISNODE here because
1617 * this node here is the node where we have CMA reservation and
1618 * in some case these nodes will have really less non movable
1619 * allocation memory.
1620 */
1621 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1622
1623 if (PageHighMem(page))
1624 gfp_mask |= __GFP_HIGHMEM;
1625
1626 #ifdef CONFIG_HUGETLB_PAGE
1627 if (PageHuge(page)) {
1628 struct hstate *h = page_hstate(page);
1629 /*
1630 * We don't want to dequeue from the pool because pool pages will
1631 * mostly be from the CMA region.
1632 */
1633 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1634 }
1635 #endif
1636 if (PageTransHuge(page)) {
1637 struct page *thp;
1638 /*
1639 * ignore allocation failure warnings
1640 */
1641 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1642
1643 /*
1644 * Remove the movable mask so that we don't allocate from
1645 * CMA area again.
1646 */
1647 thp_gfpmask &= ~__GFP_MOVABLE;
1648 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1649 if (!thp)
1650 return NULL;
1651 prep_transhuge_page(thp);
1652 return thp;
1653 }
1654
1655 return __alloc_pages_node(nid, gfp_mask, 0);
1656 }
1657
1658 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1659 struct mm_struct *mm,
1660 unsigned long start,
1661 unsigned long nr_pages,
1662 struct page **pages,
1663 struct vm_area_struct **vmas,
1664 unsigned int gup_flags)
1665 {
1666 unsigned long i;
1667 unsigned long step;
1668 bool drain_allow = true;
1669 bool migrate_allow = true;
1670 LIST_HEAD(cma_page_list);
1671 long ret = nr_pages;
1672
1673 check_again:
1674 for (i = 0; i < nr_pages;) {
1675
1676 struct page *head = compound_head(pages[i]);
1677
1678 /*
1679 * gup may start from a tail page. Advance step by the left
1680 * part.
1681 */
1682 step = compound_nr(head) - (pages[i] - head);
1683 /*
1684 * If we get a page from the CMA zone, since we are going to
1685 * be pinning these entries, we might as well move them out
1686 * of the CMA zone if possible.
1687 */
1688 if (is_migrate_cma_page(head)) {
1689 if (PageHuge(head))
1690 isolate_huge_page(head, &cma_page_list);
1691 else {
1692 if (!PageLRU(head) && drain_allow) {
1693 lru_add_drain_all();
1694 drain_allow = false;
1695 }
1696
1697 if (!isolate_lru_page(head)) {
1698 list_add_tail(&head->lru, &cma_page_list);
1699 mod_node_page_state(page_pgdat(head),
1700 NR_ISOLATED_ANON +
1701 page_is_file_lru(head),
1702 hpage_nr_pages(head));
1703 }
1704 }
1705 }
1706
1707 i += step;
1708 }
1709
1710 if (!list_empty(&cma_page_list)) {
1711 /*
1712 * drop the above get_user_pages reference.
1713 */
1714 for (i = 0; i < nr_pages; i++)
1715 put_page(pages[i]);
1716
1717 if (migrate_pages(&cma_page_list, new_non_cma_page,
1718 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1719 /*
1720 * some of the pages failed migration. Do get_user_pages
1721 * without migration.
1722 */
1723 migrate_allow = false;
1724
1725 if (!list_empty(&cma_page_list))
1726 putback_movable_pages(&cma_page_list);
1727 }
1728 /*
1729 * We did migrate all the pages, Try to get the page references
1730 * again migrating any new CMA pages which we failed to isolate
1731 * earlier.
1732 */
1733 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1734 pages, vmas, NULL,
1735 gup_flags);
1736
1737 if ((ret > 0) && migrate_allow) {
1738 nr_pages = ret;
1739 drain_allow = true;
1740 goto check_again;
1741 }
1742 }
1743
1744 return ret;
1745 }
1746 #else
1747 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1748 struct mm_struct *mm,
1749 unsigned long start,
1750 unsigned long nr_pages,
1751 struct page **pages,
1752 struct vm_area_struct **vmas,
1753 unsigned int gup_flags)
1754 {
1755 return nr_pages;
1756 }
1757 #endif /* CONFIG_CMA */
1758
1759 /*
1760 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1761 * allows us to process the FOLL_LONGTERM flag.
1762 */
1763 static long __gup_longterm_locked(struct task_struct *tsk,
1764 struct mm_struct *mm,
1765 unsigned long start,
1766 unsigned long nr_pages,
1767 struct page **pages,
1768 struct vm_area_struct **vmas,
1769 unsigned int gup_flags)
1770 {
1771 struct vm_area_struct **vmas_tmp = vmas;
1772 unsigned long flags = 0;
1773 long rc, i;
1774
1775 if (gup_flags & FOLL_LONGTERM) {
1776 if (!pages)
1777 return -EINVAL;
1778
1779 if (!vmas_tmp) {
1780 vmas_tmp = kcalloc(nr_pages,
1781 sizeof(struct vm_area_struct *),
1782 GFP_KERNEL);
1783 if (!vmas_tmp)
1784 return -ENOMEM;
1785 }
1786 flags = memalloc_nocma_save();
1787 }
1788
1789 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1790 vmas_tmp, NULL, gup_flags);
1791
1792 if (gup_flags & FOLL_LONGTERM) {
1793 memalloc_nocma_restore(flags);
1794 if (rc < 0)
1795 goto out;
1796
1797 if (check_dax_vmas(vmas_tmp, rc)) {
1798 for (i = 0; i < rc; i++)
1799 put_page(pages[i]);
1800 rc = -EOPNOTSUPP;
1801 goto out;
1802 }
1803
1804 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1805 vmas_tmp, gup_flags);
1806 }
1807
1808 out:
1809 if (vmas_tmp != vmas)
1810 kfree(vmas_tmp);
1811 return rc;
1812 }
1813 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1814 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1815 struct mm_struct *mm,
1816 unsigned long start,
1817 unsigned long nr_pages,
1818 struct page **pages,
1819 struct vm_area_struct **vmas,
1820 unsigned int flags)
1821 {
1822 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1823 NULL, flags);
1824 }
1825 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1826
1827 #ifdef CONFIG_MMU
1828 static long __get_user_pages_remote(struct task_struct *tsk,
1829 struct mm_struct *mm,
1830 unsigned long start, unsigned long nr_pages,
1831 unsigned int gup_flags, struct page **pages,
1832 struct vm_area_struct **vmas, int *locked)
1833 {
1834 /*
1835 * Parts of FOLL_LONGTERM behavior are incompatible with
1836 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1837 * vmas. However, this only comes up if locked is set, and there are
1838 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1839 * allow what we can.
1840 */
1841 if (gup_flags & FOLL_LONGTERM) {
1842 if (WARN_ON_ONCE(locked))
1843 return -EINVAL;
1844 /*
1845 * This will check the vmas (even if our vmas arg is NULL)
1846 * and return -ENOTSUPP if DAX isn't allowed in this case:
1847 */
1848 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1849 vmas, gup_flags | FOLL_TOUCH |
1850 FOLL_REMOTE);
1851 }
1852
1853 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1854 locked,
1855 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1856 }
1857
1858 /**
1859 * get_user_pages_remote() - pin user pages in memory
1860 * @tsk: the task_struct to use for page fault accounting, or
1861 * NULL if faults are not to be recorded.
1862 * @mm: mm_struct of target mm
1863 * @start: starting user address
1864 * @nr_pages: number of pages from start to pin
1865 * @gup_flags: flags modifying lookup behaviour
1866 * @pages: array that receives pointers to the pages pinned.
1867 * Should be at least nr_pages long. Or NULL, if caller
1868 * only intends to ensure the pages are faulted in.
1869 * @vmas: array of pointers to vmas corresponding to each page.
1870 * Or NULL if the caller does not require them.
1871 * @locked: pointer to lock flag indicating whether lock is held and
1872 * subsequently whether VM_FAULT_RETRY functionality can be
1873 * utilised. Lock must initially be held.
1874 *
1875 * Returns either number of pages pinned (which may be less than the
1876 * number requested), or an error. Details about the return value:
1877 *
1878 * -- If nr_pages is 0, returns 0.
1879 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1880 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1881 * pages pinned. Again, this may be less than nr_pages.
1882 *
1883 * The caller is responsible for releasing returned @pages, via put_page().
1884 *
1885 * @vmas are valid only as long as mmap_sem is held.
1886 *
1887 * Must be called with mmap_sem held for read or write.
1888 *
1889 * get_user_pages_remote walks a process's page tables and takes a reference
1890 * to each struct page that each user address corresponds to at a given
1891 * instant. That is, it takes the page that would be accessed if a user
1892 * thread accesses the given user virtual address at that instant.
1893 *
1894 * This does not guarantee that the page exists in the user mappings when
1895 * get_user_pages_remote returns, and there may even be a completely different
1896 * page there in some cases (eg. if mmapped pagecache has been invalidated
1897 * and subsequently re faulted). However it does guarantee that the page
1898 * won't be freed completely. And mostly callers simply care that the page
1899 * contains data that was valid *at some point in time*. Typically, an IO
1900 * or similar operation cannot guarantee anything stronger anyway because
1901 * locks can't be held over the syscall boundary.
1902 *
1903 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1904 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1905 * be called after the page is finished with, and before put_page is called.
1906 *
1907 * get_user_pages_remote is typically used for fewer-copy IO operations,
1908 * to get a handle on the memory by some means other than accesses
1909 * via the user virtual addresses. The pages may be submitted for
1910 * DMA to devices or accessed via their kernel linear mapping (via the
1911 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1912 *
1913 * See also get_user_pages_fast, for performance critical applications.
1914 *
1915 * get_user_pages_remote should be phased out in favor of
1916 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1917 * should use get_user_pages_remote because it cannot pass
1918 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1919 */
1920 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1921 unsigned long start, unsigned long nr_pages,
1922 unsigned int gup_flags, struct page **pages,
1923 struct vm_area_struct **vmas, int *locked)
1924 {
1925 /*
1926 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1927 * never directly by the caller, so enforce that with an assertion:
1928 */
1929 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1930 return -EINVAL;
1931
1932 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1933 pages, vmas, locked);
1934 }
1935 EXPORT_SYMBOL(get_user_pages_remote);
1936
1937 #else /* CONFIG_MMU */
1938 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1939 unsigned long start, unsigned long nr_pages,
1940 unsigned int gup_flags, struct page **pages,
1941 struct vm_area_struct **vmas, int *locked)
1942 {
1943 return 0;
1944 }
1945
1946 static long __get_user_pages_remote(struct task_struct *tsk,
1947 struct mm_struct *mm,
1948 unsigned long start, unsigned long nr_pages,
1949 unsigned int gup_flags, struct page **pages,
1950 struct vm_area_struct **vmas, int *locked)
1951 {
1952 return 0;
1953 }
1954 #endif /* !CONFIG_MMU */
1955
1956 /**
1957 * get_user_pages() - pin user pages in memory
1958 * @start: starting user address
1959 * @nr_pages: number of pages from start to pin
1960 * @gup_flags: flags modifying lookup behaviour
1961 * @pages: array that receives pointers to the pages pinned.
1962 * Should be at least nr_pages long. Or NULL, if caller
1963 * only intends to ensure the pages are faulted in.
1964 * @vmas: array of pointers to vmas corresponding to each page.
1965 * Or NULL if the caller does not require them.
1966 *
1967 * This is the same as get_user_pages_remote(), just with a
1968 * less-flexible calling convention where we assume that the task
1969 * and mm being operated on are the current task's and don't allow
1970 * passing of a locked parameter. We also obviously don't pass
1971 * FOLL_REMOTE in here.
1972 */
1973 long get_user_pages(unsigned long start, unsigned long nr_pages,
1974 unsigned int gup_flags, struct page **pages,
1975 struct vm_area_struct **vmas)
1976 {
1977 /*
1978 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1979 * never directly by the caller, so enforce that with an assertion:
1980 */
1981 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1982 return -EINVAL;
1983
1984 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1985 pages, vmas, gup_flags | FOLL_TOUCH);
1986 }
1987 EXPORT_SYMBOL(get_user_pages);
1988
1989 /**
1990 * get_user_pages_locked() is suitable to replace the form:
1991 *
1992 * down_read(&mm->mmap_sem);
1993 * do_something()
1994 * get_user_pages(tsk, mm, ..., pages, NULL);
1995 * up_read(&mm->mmap_sem);
1996 *
1997 * to:
1998 *
1999 * int locked = 1;
2000 * down_read(&mm->mmap_sem);
2001 * do_something()
2002 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
2003 * if (locked)
2004 * up_read(&mm->mmap_sem);
2005 *
2006 * @start: starting user address
2007 * @nr_pages: number of pages from start to pin
2008 * @gup_flags: flags modifying lookup behaviour
2009 * @pages: array that receives pointers to the pages pinned.
2010 * Should be at least nr_pages long. Or NULL, if caller
2011 * only intends to ensure the pages are faulted in.
2012 * @locked: pointer to lock flag indicating whether lock is held and
2013 * subsequently whether VM_FAULT_RETRY functionality can be
2014 * utilised. Lock must initially be held.
2015 *
2016 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2017 * paths better by using either get_user_pages_locked() or
2018 * get_user_pages_unlocked().
2019 *
2020 */
2021 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2022 unsigned int gup_flags, struct page **pages,
2023 int *locked)
2024 {
2025 /*
2026 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2027 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2028 * vmas. As there are no users of this flag in this call we simply
2029 * disallow this option for now.
2030 */
2031 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2032 return -EINVAL;
2033
2034 return __get_user_pages_locked(current, current->mm, start, nr_pages,
2035 pages, NULL, locked,
2036 gup_flags | FOLL_TOUCH);
2037 }
2038 EXPORT_SYMBOL(get_user_pages_locked);
2039
2040 /*
2041 * get_user_pages_unlocked() is suitable to replace the form:
2042 *
2043 * down_read(&mm->mmap_sem);
2044 * get_user_pages(tsk, mm, ..., pages, NULL);
2045 * up_read(&mm->mmap_sem);
2046 *
2047 * with:
2048 *
2049 * get_user_pages_unlocked(tsk, mm, ..., pages);
2050 *
2051 * It is functionally equivalent to get_user_pages_fast so
2052 * get_user_pages_fast should be used instead if specific gup_flags
2053 * (e.g. FOLL_FORCE) are not required.
2054 */
2055 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2056 struct page **pages, unsigned int gup_flags)
2057 {
2058 struct mm_struct *mm = current->mm;
2059 int locked = 1;
2060 long ret;
2061
2062 /*
2063 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2064 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2065 * vmas. As there are no users of this flag in this call we simply
2066 * disallow this option for now.
2067 */
2068 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2069 return -EINVAL;
2070
2071 down_read(&mm->mmap_sem);
2072 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2073 &locked, gup_flags | FOLL_TOUCH);
2074 if (locked)
2075 up_read(&mm->mmap_sem);
2076 return ret;
2077 }
2078 EXPORT_SYMBOL(get_user_pages_unlocked);
2079
2080 /*
2081 * Fast GUP
2082 *
2083 * get_user_pages_fast attempts to pin user pages by walking the page
2084 * tables directly and avoids taking locks. Thus the walker needs to be
2085 * protected from page table pages being freed from under it, and should
2086 * block any THP splits.
2087 *
2088 * One way to achieve this is to have the walker disable interrupts, and
2089 * rely on IPIs from the TLB flushing code blocking before the page table
2090 * pages are freed. This is unsuitable for architectures that do not need
2091 * to broadcast an IPI when invalidating TLBs.
2092 *
2093 * Another way to achieve this is to batch up page table containing pages
2094 * belonging to more than one mm_user, then rcu_sched a callback to free those
2095 * pages. Disabling interrupts will allow the fast_gup walker to both block
2096 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2097 * (which is a relatively rare event). The code below adopts this strategy.
2098 *
2099 * Before activating this code, please be aware that the following assumptions
2100 * are currently made:
2101 *
2102 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2103 * free pages containing page tables or TLB flushing requires IPI broadcast.
2104 *
2105 * *) ptes can be read atomically by the architecture.
2106 *
2107 * *) access_ok is sufficient to validate userspace address ranges.
2108 *
2109 * The last two assumptions can be relaxed by the addition of helper functions.
2110 *
2111 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2112 */
2113 #ifdef CONFIG_HAVE_FAST_GUP
2114
2115 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2116 {
2117 if (flags & FOLL_PIN) {
2118 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2119 refs);
2120
2121 if (hpage_pincount_available(page))
2122 hpage_pincount_sub(page, refs);
2123 else
2124 refs *= GUP_PIN_COUNTING_BIAS;
2125 }
2126
2127 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2128 /*
2129 * Calling put_page() for each ref is unnecessarily slow. Only the last
2130 * ref needs a put_page().
2131 */
2132 if (refs > 1)
2133 page_ref_sub(page, refs - 1);
2134 put_page(page);
2135 }
2136
2137 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2138
2139 /*
2140 * WARNING: only to be used in the get_user_pages_fast() implementation.
2141 *
2142 * With get_user_pages_fast(), we walk down the pagetables without taking any
2143 * locks. For this we would like to load the pointers atomically, but sometimes
2144 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2145 * we do have is the guarantee that a PTE will only either go from not present
2146 * to present, or present to not present or both -- it will not switch to a
2147 * completely different present page without a TLB flush in between; something
2148 * that we are blocking by holding interrupts off.
2149 *
2150 * Setting ptes from not present to present goes:
2151 *
2152 * ptep->pte_high = h;
2153 * smp_wmb();
2154 * ptep->pte_low = l;
2155 *
2156 * And present to not present goes:
2157 *
2158 * ptep->pte_low = 0;
2159 * smp_wmb();
2160 * ptep->pte_high = 0;
2161 *
2162 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2163 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2164 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2165 * picked up a changed pte high. We might have gotten rubbish values from
2166 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2167 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2168 * operates on present ptes we're safe.
2169 */
2170 static inline pte_t gup_get_pte(pte_t *ptep)
2171 {
2172 pte_t pte;
2173
2174 do {
2175 pte.pte_low = ptep->pte_low;
2176 smp_rmb();
2177 pte.pte_high = ptep->pte_high;
2178 smp_rmb();
2179 } while (unlikely(pte.pte_low != ptep->pte_low));
2180
2181 return pte;
2182 }
2183 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2184 /*
2185 * We require that the PTE can be read atomically.
2186 */
2187 static inline pte_t gup_get_pte(pte_t *ptep)
2188 {
2189 return READ_ONCE(*ptep);
2190 }
2191 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2192
2193 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2194 unsigned int flags,
2195 struct page **pages)
2196 {
2197 while ((*nr) - nr_start) {
2198 struct page *page = pages[--(*nr)];
2199
2200 ClearPageReferenced(page);
2201 if (flags & FOLL_PIN)
2202 unpin_user_page(page);
2203 else
2204 put_page(page);
2205 }
2206 }
2207
2208 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2209 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2210 unsigned int flags, struct page **pages, int *nr)
2211 {
2212 struct dev_pagemap *pgmap = NULL;
2213 int nr_start = *nr, ret = 0;
2214 pte_t *ptep, *ptem;
2215
2216 ptem = ptep = pte_offset_map(&pmd, addr);
2217 do {
2218 pte_t pte = gup_get_pte(ptep);
2219 struct page *head, *page;
2220
2221 /*
2222 * Similar to the PMD case below, NUMA hinting must take slow
2223 * path using the pte_protnone check.
2224 */
2225 if (pte_protnone(pte))
2226 goto pte_unmap;
2227
2228 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2229 goto pte_unmap;
2230
2231 if (pte_devmap(pte)) {
2232 if (unlikely(flags & FOLL_LONGTERM))
2233 goto pte_unmap;
2234
2235 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2236 if (unlikely(!pgmap)) {
2237 undo_dev_pagemap(nr, nr_start, flags, pages);
2238 goto pte_unmap;
2239 }
2240 } else if (pte_special(pte))
2241 goto pte_unmap;
2242
2243 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2244 page = pte_page(pte);
2245
2246 head = try_grab_compound_head(page, 1, flags);
2247 if (!head)
2248 goto pte_unmap;
2249
2250 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2251 put_compound_head(head, 1, flags);
2252 goto pte_unmap;
2253 }
2254
2255 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2256
2257 /*
2258 * We need to make the page accessible if and only if we are
2259 * going to access its content (the FOLL_PIN case). Please
2260 * see Documentation/core-api/pin_user_pages.rst for
2261 * details.
2262 */
2263 if (flags & FOLL_PIN) {
2264 ret = arch_make_page_accessible(page);
2265 if (ret) {
2266 unpin_user_page(page);
2267 goto pte_unmap;
2268 }
2269 }
2270 SetPageReferenced(page);
2271 pages[*nr] = page;
2272 (*nr)++;
2273
2274 } while (ptep++, addr += PAGE_SIZE, addr != end);
2275
2276 ret = 1;
2277
2278 pte_unmap:
2279 if (pgmap)
2280 put_dev_pagemap(pgmap);
2281 pte_unmap(ptem);
2282 return ret;
2283 }
2284 #else
2285
2286 /*
2287 * If we can't determine whether or not a pte is special, then fail immediately
2288 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2289 * to be special.
2290 *
2291 * For a futex to be placed on a THP tail page, get_futex_key requires a
2292 * __get_user_pages_fast implementation that can pin pages. Thus it's still
2293 * useful to have gup_huge_pmd even if we can't operate on ptes.
2294 */
2295 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2296 unsigned int flags, struct page **pages, int *nr)
2297 {
2298 return 0;
2299 }
2300 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2301
2302 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2303 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2304 unsigned long end, unsigned int flags,
2305 struct page **pages, int *nr)
2306 {
2307 int nr_start = *nr;
2308 struct dev_pagemap *pgmap = NULL;
2309
2310 do {
2311 struct page *page = pfn_to_page(pfn);
2312
2313 pgmap = get_dev_pagemap(pfn, pgmap);
2314 if (unlikely(!pgmap)) {
2315 undo_dev_pagemap(nr, nr_start, flags, pages);
2316 return 0;
2317 }
2318 SetPageReferenced(page);
2319 pages[*nr] = page;
2320 if (unlikely(!try_grab_page(page, flags))) {
2321 undo_dev_pagemap(nr, nr_start, flags, pages);
2322 return 0;
2323 }
2324 (*nr)++;
2325 pfn++;
2326 } while (addr += PAGE_SIZE, addr != end);
2327
2328 if (pgmap)
2329 put_dev_pagemap(pgmap);
2330 return 1;
2331 }
2332
2333 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2334 unsigned long end, unsigned int flags,
2335 struct page **pages, int *nr)
2336 {
2337 unsigned long fault_pfn;
2338 int nr_start = *nr;
2339
2340 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2341 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2342 return 0;
2343
2344 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2345 undo_dev_pagemap(nr, nr_start, flags, pages);
2346 return 0;
2347 }
2348 return 1;
2349 }
2350
2351 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2352 unsigned long end, unsigned int flags,
2353 struct page **pages, int *nr)
2354 {
2355 unsigned long fault_pfn;
2356 int nr_start = *nr;
2357
2358 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2359 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2360 return 0;
2361
2362 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2363 undo_dev_pagemap(nr, nr_start, flags, pages);
2364 return 0;
2365 }
2366 return 1;
2367 }
2368 #else
2369 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2370 unsigned long end, unsigned int flags,
2371 struct page **pages, int *nr)
2372 {
2373 BUILD_BUG();
2374 return 0;
2375 }
2376
2377 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2378 unsigned long end, unsigned int flags,
2379 struct page **pages, int *nr)
2380 {
2381 BUILD_BUG();
2382 return 0;
2383 }
2384 #endif
2385
2386 static int record_subpages(struct page *page, unsigned long addr,
2387 unsigned long end, struct page **pages)
2388 {
2389 int nr;
2390
2391 for (nr = 0; addr != end; addr += PAGE_SIZE)
2392 pages[nr++] = page++;
2393
2394 return nr;
2395 }
2396
2397 #ifdef CONFIG_ARCH_HAS_HUGEPD
2398 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2399 unsigned long sz)
2400 {
2401 unsigned long __boundary = (addr + sz) & ~(sz-1);
2402 return (__boundary - 1 < end - 1) ? __boundary : end;
2403 }
2404
2405 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2406 unsigned long end, unsigned int flags,
2407 struct page **pages, int *nr)
2408 {
2409 unsigned long pte_end;
2410 struct page *head, *page;
2411 pte_t pte;
2412 int refs;
2413
2414 pte_end = (addr + sz) & ~(sz-1);
2415 if (pte_end < end)
2416 end = pte_end;
2417
2418 pte = READ_ONCE(*ptep);
2419
2420 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2421 return 0;
2422
2423 /* hugepages are never "special" */
2424 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2425
2426 head = pte_page(pte);
2427 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2428 refs = record_subpages(page, addr, end, pages + *nr);
2429
2430 head = try_grab_compound_head(head, refs, flags);
2431 if (!head)
2432 return 0;
2433
2434 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2435 put_compound_head(head, refs, flags);
2436 return 0;
2437 }
2438
2439 *nr += refs;
2440 SetPageReferenced(head);
2441 return 1;
2442 }
2443
2444 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2445 unsigned int pdshift, unsigned long end, unsigned int flags,
2446 struct page **pages, int *nr)
2447 {
2448 pte_t *ptep;
2449 unsigned long sz = 1UL << hugepd_shift(hugepd);
2450 unsigned long next;
2451
2452 ptep = hugepte_offset(hugepd, addr, pdshift);
2453 do {
2454 next = hugepte_addr_end(addr, end, sz);
2455 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2456 return 0;
2457 } while (ptep++, addr = next, addr != end);
2458
2459 return 1;
2460 }
2461 #else
2462 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2463 unsigned int pdshift, unsigned long end, unsigned int flags,
2464 struct page **pages, int *nr)
2465 {
2466 return 0;
2467 }
2468 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2469
2470 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2471 unsigned long end, unsigned int flags,
2472 struct page **pages, int *nr)
2473 {
2474 struct page *head, *page;
2475 int refs;
2476
2477 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2478 return 0;
2479
2480 if (pmd_devmap(orig)) {
2481 if (unlikely(flags & FOLL_LONGTERM))
2482 return 0;
2483 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2484 pages, nr);
2485 }
2486
2487 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2488 refs = record_subpages(page, addr, end, pages + *nr);
2489
2490 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2491 if (!head)
2492 return 0;
2493
2494 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2495 put_compound_head(head, refs, flags);
2496 return 0;
2497 }
2498
2499 *nr += refs;
2500 SetPageReferenced(head);
2501 return 1;
2502 }
2503
2504 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2505 unsigned long end, unsigned int flags,
2506 struct page **pages, int *nr)
2507 {
2508 struct page *head, *page;
2509 int refs;
2510
2511 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2512 return 0;
2513
2514 if (pud_devmap(orig)) {
2515 if (unlikely(flags & FOLL_LONGTERM))
2516 return 0;
2517 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2518 pages, nr);
2519 }
2520
2521 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2522 refs = record_subpages(page, addr, end, pages + *nr);
2523
2524 head = try_grab_compound_head(pud_page(orig), refs, flags);
2525 if (!head)
2526 return 0;
2527
2528 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2529 put_compound_head(head, refs, flags);
2530 return 0;
2531 }
2532
2533 *nr += refs;
2534 SetPageReferenced(head);
2535 return 1;
2536 }
2537
2538 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2539 unsigned long end, unsigned int flags,
2540 struct page **pages, int *nr)
2541 {
2542 int refs;
2543 struct page *head, *page;
2544
2545 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2546 return 0;
2547
2548 BUILD_BUG_ON(pgd_devmap(orig));
2549
2550 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2551 refs = record_subpages(page, addr, end, pages + *nr);
2552
2553 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2554 if (!head)
2555 return 0;
2556
2557 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2558 put_compound_head(head, refs, flags);
2559 return 0;
2560 }
2561
2562 *nr += refs;
2563 SetPageReferenced(head);
2564 return 1;
2565 }
2566
2567 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2568 unsigned int flags, struct page **pages, int *nr)
2569 {
2570 unsigned long next;
2571 pmd_t *pmdp;
2572
2573 pmdp = pmd_offset(&pud, addr);
2574 do {
2575 pmd_t pmd = READ_ONCE(*pmdp);
2576
2577 next = pmd_addr_end(addr, end);
2578 if (!pmd_present(pmd))
2579 return 0;
2580
2581 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2582 pmd_devmap(pmd))) {
2583 /*
2584 * NUMA hinting faults need to be handled in the GUP
2585 * slowpath for accounting purposes and so that they
2586 * can be serialised against THP migration.
2587 */
2588 if (pmd_protnone(pmd))
2589 return 0;
2590
2591 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2592 pages, nr))
2593 return 0;
2594
2595 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2596 /*
2597 * architecture have different format for hugetlbfs
2598 * pmd format and THP pmd format
2599 */
2600 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2601 PMD_SHIFT, next, flags, pages, nr))
2602 return 0;
2603 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2604 return 0;
2605 } while (pmdp++, addr = next, addr != end);
2606
2607 return 1;
2608 }
2609
2610 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2611 unsigned int flags, struct page **pages, int *nr)
2612 {
2613 unsigned long next;
2614 pud_t *pudp;
2615
2616 pudp = pud_offset(&p4d, addr);
2617 do {
2618 pud_t pud = READ_ONCE(*pudp);
2619
2620 next = pud_addr_end(addr, end);
2621 if (unlikely(!pud_present(pud)))
2622 return 0;
2623 if (unlikely(pud_huge(pud))) {
2624 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2625 pages, nr))
2626 return 0;
2627 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2628 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2629 PUD_SHIFT, next, flags, pages, nr))
2630 return 0;
2631 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2632 return 0;
2633 } while (pudp++, addr = next, addr != end);
2634
2635 return 1;
2636 }
2637
2638 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2639 unsigned int flags, struct page **pages, int *nr)
2640 {
2641 unsigned long next;
2642 p4d_t *p4dp;
2643
2644 p4dp = p4d_offset(&pgd, addr);
2645 do {
2646 p4d_t p4d = READ_ONCE(*p4dp);
2647
2648 next = p4d_addr_end(addr, end);
2649 if (p4d_none(p4d))
2650 return 0;
2651 BUILD_BUG_ON(p4d_huge(p4d));
2652 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2653 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2654 P4D_SHIFT, next, flags, pages, nr))
2655 return 0;
2656 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2657 return 0;
2658 } while (p4dp++, addr = next, addr != end);
2659
2660 return 1;
2661 }
2662
2663 static void gup_pgd_range(unsigned long addr, unsigned long end,
2664 unsigned int flags, struct page **pages, int *nr)
2665 {
2666 unsigned long next;
2667 pgd_t *pgdp;
2668
2669 pgdp = pgd_offset(current->mm, addr);
2670 do {
2671 pgd_t pgd = READ_ONCE(*pgdp);
2672
2673 next = pgd_addr_end(addr, end);
2674 if (pgd_none(pgd))
2675 return;
2676 if (unlikely(pgd_huge(pgd))) {
2677 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2678 pages, nr))
2679 return;
2680 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2681 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2682 PGDIR_SHIFT, next, flags, pages, nr))
2683 return;
2684 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2685 return;
2686 } while (pgdp++, addr = next, addr != end);
2687 }
2688 #else
2689 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2690 unsigned int flags, struct page **pages, int *nr)
2691 {
2692 }
2693 #endif /* CONFIG_HAVE_FAST_GUP */
2694
2695 #ifndef gup_fast_permitted
2696 /*
2697 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2698 * we need to fall back to the slow version:
2699 */
2700 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2701 {
2702 return true;
2703 }
2704 #endif
2705
2706 /*
2707 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2708 * the regular GUP.
2709 * Note a difference with get_user_pages_fast: this always returns the
2710 * number of pages pinned, 0 if no pages were pinned.
2711 *
2712 * If the architecture does not support this function, simply return with no
2713 * pages pinned.
2714 *
2715 * Careful, careful! COW breaking can go either way, so a non-write
2716 * access can get ambiguous page results. If you call this function without
2717 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2718 */
2719 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2720 struct page **pages)
2721 {
2722 unsigned long len, end;
2723 unsigned long flags;
2724 int nr_pinned = 0;
2725 /*
2726 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2727 * because gup fast is always a "pin with a +1 page refcount" request.
2728 */
2729 unsigned int gup_flags = FOLL_GET;
2730
2731 if (write)
2732 gup_flags |= FOLL_WRITE;
2733
2734 start = untagged_addr(start) & PAGE_MASK;
2735 len = (unsigned long) nr_pages << PAGE_SHIFT;
2736 end = start + len;
2737
2738 if (end <= start)
2739 return 0;
2740 if (unlikely(!access_ok((void __user *)start, len)))
2741 return 0;
2742
2743 /*
2744 * Disable interrupts. We use the nested form as we can already have
2745 * interrupts disabled by get_futex_key.
2746 *
2747 * With interrupts disabled, we block page table pages from being
2748 * freed from under us. See struct mmu_table_batch comments in
2749 * include/asm-generic/tlb.h for more details.
2750 *
2751 * We do not adopt an rcu_read_lock(.) here as we also want to
2752 * block IPIs that come from THPs splitting.
2753 *
2754 * NOTE! We allow read-only gup_fast() here, but you'd better be
2755 * careful about possible COW pages. You'll get _a_ COW page, but
2756 * not necessarily the one you intended to get depending on what
2757 * COW event happens after this. COW may break the page copy in a
2758 * random direction.
2759 */
2760
2761 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2762 gup_fast_permitted(start, end)) {
2763 local_irq_save(flags);
2764 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2765 local_irq_restore(flags);
2766 }
2767
2768 return nr_pinned;
2769 }
2770 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2771
2772 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2773 unsigned int gup_flags, struct page **pages)
2774 {
2775 int ret;
2776
2777 /*
2778 * FIXME: FOLL_LONGTERM does not work with
2779 * get_user_pages_unlocked() (see comments in that function)
2780 */
2781 if (gup_flags & FOLL_LONGTERM) {
2782 down_read(&current->mm->mmap_sem);
2783 ret = __gup_longterm_locked(current, current->mm,
2784 start, nr_pages,
2785 pages, NULL, gup_flags);
2786 up_read(&current->mm->mmap_sem);
2787 } else {
2788 ret = get_user_pages_unlocked(start, nr_pages,
2789 pages, gup_flags);
2790 }
2791
2792 return ret;
2793 }
2794
2795 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2796 unsigned int gup_flags,
2797 struct page **pages)
2798 {
2799 unsigned long addr, len, end;
2800 int nr_pinned = 0, ret = 0;
2801
2802 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2803 FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2804 return -EINVAL;
2805
2806 start = untagged_addr(start) & PAGE_MASK;
2807 addr = start;
2808 len = (unsigned long) nr_pages << PAGE_SHIFT;
2809 end = start + len;
2810
2811 if (end <= start)
2812 return 0;
2813 if (unlikely(!access_ok((void __user *)start, len)))
2814 return -EFAULT;
2815
2816 /*
2817 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2818 * because get_user_pages() may need to cause an early COW in
2819 * order to avoid confusing the normal COW routines. So only
2820 * targets that are already writable are safe to do by just
2821 * looking at the page tables.
2822 */
2823 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2824 gup_fast_permitted(start, end)) {
2825 local_irq_disable();
2826 gup_pgd_range(addr, end, gup_flags | FOLL_WRITE, pages, &nr_pinned);
2827 local_irq_enable();
2828 ret = nr_pinned;
2829 }
2830
2831 if (nr_pinned < nr_pages) {
2832 /* Try to get the remaining pages with get_user_pages */
2833 start += nr_pinned << PAGE_SHIFT;
2834 pages += nr_pinned;
2835
2836 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2837 gup_flags, pages);
2838
2839 /* Have to be a bit careful with return values */
2840 if (nr_pinned > 0) {
2841 if (ret < 0)
2842 ret = nr_pinned;
2843 else
2844 ret += nr_pinned;
2845 }
2846 }
2847
2848 return ret;
2849 }
2850
2851 /**
2852 * get_user_pages_fast() - pin user pages in memory
2853 * @start: starting user address
2854 * @nr_pages: number of pages from start to pin
2855 * @gup_flags: flags modifying pin behaviour
2856 * @pages: array that receives pointers to the pages pinned.
2857 * Should be at least nr_pages long.
2858 *
2859 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2860 * If not successful, it will fall back to taking the lock and
2861 * calling get_user_pages().
2862 *
2863 * Returns number of pages pinned. This may be fewer than the number requested.
2864 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2865 * -errno.
2866 */
2867 int get_user_pages_fast(unsigned long start, int nr_pages,
2868 unsigned int gup_flags, struct page **pages)
2869 {
2870 /*
2871 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2872 * never directly by the caller, so enforce that:
2873 */
2874 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2875 return -EINVAL;
2876
2877 /*
2878 * The caller may or may not have explicitly set FOLL_GET; either way is
2879 * OK. However, internally (within mm/gup.c), gup fast variants must set
2880 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2881 * request.
2882 */
2883 gup_flags |= FOLL_GET;
2884 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2885 }
2886 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2887
2888 /**
2889 * pin_user_pages_fast() - pin user pages in memory without taking locks
2890 *
2891 * @start: starting user address
2892 * @nr_pages: number of pages from start to pin
2893 * @gup_flags: flags modifying pin behaviour
2894 * @pages: array that receives pointers to the pages pinned.
2895 * Should be at least nr_pages long.
2896 *
2897 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2898 * get_user_pages_fast() for documentation on the function arguments, because
2899 * the arguments here are identical.
2900 *
2901 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2902 * see Documentation/core-api/pin_user_pages.rst for further details.
2903 *
2904 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2905 * is NOT intended for Case 2 (RDMA: long-term pins).
2906 */
2907 int pin_user_pages_fast(unsigned long start, int nr_pages,
2908 unsigned int gup_flags, struct page **pages)
2909 {
2910 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2911 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2912 return -EINVAL;
2913
2914 gup_flags |= FOLL_PIN;
2915 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2916 }
2917 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2918
2919 /**
2920 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2921 *
2922 * @tsk: the task_struct to use for page fault accounting, or
2923 * NULL if faults are not to be recorded.
2924 * @mm: mm_struct of target mm
2925 * @start: starting user address
2926 * @nr_pages: number of pages from start to pin
2927 * @gup_flags: flags modifying lookup behaviour
2928 * @pages: array that receives pointers to the pages pinned.
2929 * Should be at least nr_pages long. Or NULL, if caller
2930 * only intends to ensure the pages are faulted in.
2931 * @vmas: array of pointers to vmas corresponding to each page.
2932 * Or NULL if the caller does not require them.
2933 * @locked: pointer to lock flag indicating whether lock is held and
2934 * subsequently whether VM_FAULT_RETRY functionality can be
2935 * utilised. Lock must initially be held.
2936 *
2937 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2938 * get_user_pages_remote() for documentation on the function arguments, because
2939 * the arguments here are identical.
2940 *
2941 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2942 * see Documentation/core-api/pin_user_pages.rst for details.
2943 *
2944 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2945 * is NOT intended for Case 2 (RDMA: long-term pins).
2946 */
2947 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2948 unsigned long start, unsigned long nr_pages,
2949 unsigned int gup_flags, struct page **pages,
2950 struct vm_area_struct **vmas, int *locked)
2951 {
2952 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2953 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2954 return -EINVAL;
2955
2956 gup_flags |= FOLL_PIN;
2957 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2958 pages, vmas, locked);
2959 }
2960 EXPORT_SYMBOL(pin_user_pages_remote);
2961
2962 /**
2963 * pin_user_pages() - pin user pages in memory for use by other devices
2964 *
2965 * @start: starting user address
2966 * @nr_pages: number of pages from start to pin
2967 * @gup_flags: flags modifying lookup behaviour
2968 * @pages: array that receives pointers to the pages pinned.
2969 * Should be at least nr_pages long. Or NULL, if caller
2970 * only intends to ensure the pages are faulted in.
2971 * @vmas: array of pointers to vmas corresponding to each page.
2972 * Or NULL if the caller does not require them.
2973 *
2974 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2975 * FOLL_PIN is set.
2976 *
2977 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2978 * see Documentation/core-api/pin_user_pages.rst for details.
2979 *
2980 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It
2981 * is NOT intended for Case 2 (RDMA: long-term pins).
2982 */
2983 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2984 unsigned int gup_flags, struct page **pages,
2985 struct vm_area_struct **vmas)
2986 {
2987 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2988 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2989 return -EINVAL;
2990
2991 gup_flags |= FOLL_PIN;
2992 return __gup_longterm_locked(current, current->mm, start, nr_pages,
2993 pages, vmas, gup_flags);
2994 }
2995 EXPORT_SYMBOL(pin_user_pages);
2996
2997 /*
2998 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2999 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3000 * FOLL_PIN and rejects FOLL_GET.
3001 */
3002 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3003 struct page **pages, unsigned int gup_flags)
3004 {
3005 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3006 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3007 return -EINVAL;
3008
3009 gup_flags |= FOLL_PIN;
3010 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3011 }
3012 EXPORT_SYMBOL(pin_user_pages_unlocked);