]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/huge_memory.c
dt-bindings: usb: tegra-xudc: Remove extraneous PHYs
[thirdparty/linux.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48
49 /*
50 * By default, transparent hugepage support is disabled in order to avoid
51 * risking an increased memory footprint for applications that are not
52 * guaranteed to benefit from it. When transparent hugepage support is
53 * enabled, it is for all mappings, and khugepaged scans all mappings.
54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
55 * for all hugepage allocations.
56 */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67
68 static struct shrinker deferred_split_shrinker;
69
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 if (!vma->vm_mm) /* vdso */
78 return false;
79
80 /*
81 * Explicitly disabled through madvise or prctl, or some
82 * architectures may disable THP for some mappings, for
83 * example, s390 kvm.
84 * */
85 if ((vm_flags & VM_NOHUGEPAGE) ||
86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 return false;
88 /*
89 * If the hardware/firmware marked hugepage support disabled.
90 */
91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
92 return false;
93
94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 if (vma_is_dax(vma))
96 return in_pf;
97
98 /*
99 * Special VMA and hugetlb VMA.
100 * Must be checked after dax since some dax mappings may have
101 * VM_MIXEDMAP set.
102 */
103 if (vm_flags & VM_NO_KHUGEPAGED)
104 return false;
105
106 /*
107 * Check alignment for file vma and size for both file and anon vma.
108 *
109 * Skip the check for page fault. Huge fault does the check in fault
110 * handlers. And this check is not suitable for huge PUD fault.
111 */
112 if (!in_pf &&
113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 return false;
115
116 /*
117 * Enabled via shmem mount options or sysfs settings.
118 * Must be done before hugepage flags check since shmem has its
119 * own flags.
120 */
121 if (!in_pf && shmem_file(vma->vm_file))
122 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 !enforce_sysfs, vma->vm_mm, vm_flags);
124
125 /* Enforce sysfs THP requirements as necessary */
126 if (enforce_sysfs &&
127 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 !hugepage_flags_always())))
129 return false;
130
131 /* Only regular file is valid */
132 if (!in_pf && file_thp_enabled(vma))
133 return true;
134
135 if (!vma_is_anonymous(vma))
136 return false;
137
138 if (vma_is_temporary_stack(vma))
139 return false;
140
141 /*
142 * THPeligible bit of smaps should show 1 for proper VMAs even
143 * though anon_vma is not initialized yet.
144 *
145 * Allow page fault since anon_vma may be not initialized until
146 * the first page fault.
147 */
148 if (!vma->anon_vma)
149 return (smaps || in_pf);
150
151 return true;
152 }
153
154 static bool get_huge_zero_page(void)
155 {
156 struct page *zero_page;
157 retry:
158 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 return true;
160
161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 HPAGE_PMD_ORDER);
163 if (!zero_page) {
164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 return false;
166 }
167 preempt_disable();
168 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 preempt_enable();
170 __free_pages(zero_page, compound_order(zero_page));
171 goto retry;
172 }
173 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174
175 /* We take additional reference here. It will be put back by shrinker */
176 atomic_set(&huge_zero_refcount, 2);
177 preempt_enable();
178 count_vm_event(THP_ZERO_PAGE_ALLOC);
179 return true;
180 }
181
182 static void put_huge_zero_page(void)
183 {
184 /*
185 * Counter should never go to zero here. Only shrinker can put
186 * last reference.
187 */
188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 return READ_ONCE(huge_zero_page);
195
196 if (!get_huge_zero_page())
197 return NULL;
198
199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 put_huge_zero_page();
201
202 return READ_ONCE(huge_zero_page);
203 }
204
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 put_huge_zero_page();
209 }
210
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 struct shrink_control *sc)
213 {
214 /* we can free zero page only if last reference remains */
215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 struct shrink_control *sc)
220 {
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 WRITE_ONCE(huge_zero_pfn, ~0UL);
225 __free_pages(zero_page, compound_order(zero_page));
226 return HPAGE_PMD_NR;
227 }
228
229 return 0;
230 }
231
232 static struct shrinker huge_zero_page_shrinker = {
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
235 .seeks = DEFAULT_SEEKS,
236 };
237
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240 struct kobj_attribute *attr, char *buf)
241 {
242 const char *output;
243
244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 output = "[always] madvise never";
246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 &transparent_hugepage_flags))
248 output = "always [madvise] never";
249 else
250 output = "always madvise [never]";
251
252 return sysfs_emit(buf, "%s\n", output);
253 }
254
255 static ssize_t enabled_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
258 {
259 ssize_t ret = count;
260
261 if (sysfs_streq(buf, "always")) {
262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 } else if (sysfs_streq(buf, "madvise")) {
265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 } else if (sysfs_streq(buf, "never")) {
268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else
271 ret = -EINVAL;
272
273 if (ret > 0) {
274 int err = start_stop_khugepaged();
275 if (err)
276 ret = err;
277 }
278 return ret;
279 }
280
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf,
285 enum transparent_hugepage_flag flag)
286 {
287 return sysfs_emit(buf, "%d\n",
288 !!test_bit(flag, &transparent_hugepage_flags));
289 }
290
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 struct kobj_attribute *attr,
293 const char *buf, size_t count,
294 enum transparent_hugepage_flag flag)
295 {
296 unsigned long value;
297 int ret;
298
299 ret = kstrtoul(buf, 10, &value);
300 if (ret < 0)
301 return ret;
302 if (value > 1)
303 return -EINVAL;
304
305 if (value)
306 set_bit(flag, &transparent_hugepage_flags);
307 else
308 clear_bit(flag, &transparent_hugepage_flags);
309
310 return count;
311 }
312
313 static ssize_t defrag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf)
315 {
316 const char *output;
317
318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 &transparent_hugepage_flags))
320 output = "[always] defer defer+madvise madvise never";
321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 &transparent_hugepage_flags))
323 output = "always [defer] defer+madvise madvise never";
324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 &transparent_hugepage_flags))
326 output = "always defer [defer+madvise] madvise never";
327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 &transparent_hugepage_flags))
329 output = "always defer defer+madvise [madvise] never";
330 else
331 output = "always defer defer+madvise madvise [never]";
332
333 return sysfs_emit(buf, "%s\n", output);
334 }
335
336 static ssize_t defrag_store(struct kobject *kobj,
337 struct kobj_attribute *attr,
338 const char *buf, size_t count)
339 {
340 if (sysfs_streq(buf, "always")) {
341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 } else if (sysfs_streq(buf, "defer+madvise")) {
346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 } else if (sysfs_streq(buf, "defer")) {
351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 } else if (sysfs_streq(buf, "madvise")) {
356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 } else if (sysfs_streq(buf, "never")) {
361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 } else
366 return -EINVAL;
367
368 return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 struct kobj_attribute *attr, char *buf)
374 {
375 return single_hugepage_flag_show(kobj, attr, buf,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 return single_hugepage_flag_store(kobj, attr, buf, count,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 struct kobj_attribute *attr, char *buf)
388 {
389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 __ATTR_RO(hpage_pmd_size);
393
394 static struct attribute *hugepage_attr[] = {
395 &enabled_attr.attr,
396 &defrag_attr.attr,
397 &use_zero_page_attr.attr,
398 &hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 &shmem_enabled_attr.attr,
401 #endif
402 NULL,
403 };
404
405 static const struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
407 };
408
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 int err;
412
413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 if (unlikely(!*hugepage_kobj)) {
415 pr_err("failed to create transparent hugepage kobject\n");
416 return -ENOMEM;
417 }
418
419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 if (err) {
421 pr_err("failed to register transparent hugepage group\n");
422 goto delete_obj;
423 }
424
425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 if (err) {
427 pr_err("failed to register transparent hugepage group\n");
428 goto remove_hp_group;
429 }
430
431 return 0;
432
433 remove_hp_group:
434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 kobject_put(*hugepage_kobj);
437 return err;
438 }
439
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 return 0;
450 }
451
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456
457 static int __init hugepage_init(void)
458 {
459 int err;
460 struct kobject *hugepage_kobj;
461
462 if (!has_transparent_hugepage()) {
463 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
464 return -EINVAL;
465 }
466
467 /*
468 * hugepages can't be allocated by the buddy allocator
469 */
470 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
471 /*
472 * we use page->mapping and page->index in second tail page
473 * as list_head: assuming THP order >= 2
474 */
475 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
476
477 err = hugepage_init_sysfs(&hugepage_kobj);
478 if (err)
479 goto err_sysfs;
480
481 err = khugepaged_init();
482 if (err)
483 goto err_slab;
484
485 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
486 if (err)
487 goto err_hzp_shrinker;
488 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
489 if (err)
490 goto err_split_shrinker;
491
492 /*
493 * By default disable transparent hugepages on smaller systems,
494 * where the extra memory used could hurt more than TLB overhead
495 * is likely to save. The admin can still enable it through /sys.
496 */
497 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
498 transparent_hugepage_flags = 0;
499 return 0;
500 }
501
502 err = start_stop_khugepaged();
503 if (err)
504 goto err_khugepaged;
505
506 return 0;
507 err_khugepaged:
508 unregister_shrinker(&deferred_split_shrinker);
509 err_split_shrinker:
510 unregister_shrinker(&huge_zero_page_shrinker);
511 err_hzp_shrinker:
512 khugepaged_destroy();
513 err_slab:
514 hugepage_exit_sysfs(hugepage_kobj);
515 err_sysfs:
516 return err;
517 }
518 subsys_initcall(hugepage_init);
519
520 static int __init setup_transparent_hugepage(char *str)
521 {
522 int ret = 0;
523 if (!str)
524 goto out;
525 if (!strcmp(str, "always")) {
526 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
527 &transparent_hugepage_flags);
528 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
529 &transparent_hugepage_flags);
530 ret = 1;
531 } else if (!strcmp(str, "madvise")) {
532 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
533 &transparent_hugepage_flags);
534 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
535 &transparent_hugepage_flags);
536 ret = 1;
537 } else if (!strcmp(str, "never")) {
538 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
539 &transparent_hugepage_flags);
540 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
541 &transparent_hugepage_flags);
542 ret = 1;
543 }
544 out:
545 if (!ret)
546 pr_warn("transparent_hugepage= cannot parse, ignored\n");
547 return ret;
548 }
549 __setup("transparent_hugepage=", setup_transparent_hugepage);
550
551 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
552 {
553 if (likely(vma->vm_flags & VM_WRITE))
554 pmd = pmd_mkwrite(pmd);
555 return pmd;
556 }
557
558 #ifdef CONFIG_MEMCG
559 static inline
560 struct deferred_split *get_deferred_split_queue(struct folio *folio)
561 {
562 struct mem_cgroup *memcg = folio_memcg(folio);
563 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
564
565 if (memcg)
566 return &memcg->deferred_split_queue;
567 else
568 return &pgdat->deferred_split_queue;
569 }
570 #else
571 static inline
572 struct deferred_split *get_deferred_split_queue(struct folio *folio)
573 {
574 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
575
576 return &pgdat->deferred_split_queue;
577 }
578 #endif
579
580 void prep_transhuge_page(struct page *page)
581 {
582 struct folio *folio = (struct folio *)page;
583
584 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
585 INIT_LIST_HEAD(&folio->_deferred_list);
586 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
587 }
588
589 static inline bool is_transparent_hugepage(struct page *page)
590 {
591 struct folio *folio;
592
593 if (!PageCompound(page))
594 return false;
595
596 folio = page_folio(page);
597 return is_huge_zero_page(&folio->page) ||
598 folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
599 }
600
601 static unsigned long __thp_get_unmapped_area(struct file *filp,
602 unsigned long addr, unsigned long len,
603 loff_t off, unsigned long flags, unsigned long size)
604 {
605 loff_t off_end = off + len;
606 loff_t off_align = round_up(off, size);
607 unsigned long len_pad, ret;
608
609 if (off_end <= off_align || (off_end - off_align) < size)
610 return 0;
611
612 len_pad = len + size;
613 if (len_pad < len || (off + len_pad) < off)
614 return 0;
615
616 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
617 off >> PAGE_SHIFT, flags);
618
619 /*
620 * The failure might be due to length padding. The caller will retry
621 * without the padding.
622 */
623 if (IS_ERR_VALUE(ret))
624 return 0;
625
626 /*
627 * Do not try to align to THP boundary if allocation at the address
628 * hint succeeds.
629 */
630 if (ret == addr)
631 return addr;
632
633 ret += (off - ret) & (size - 1);
634 return ret;
635 }
636
637 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
638 unsigned long len, unsigned long pgoff, unsigned long flags)
639 {
640 unsigned long ret;
641 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
642
643 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
644 if (ret)
645 return ret;
646
647 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
648 }
649 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
650
651 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
652 struct page *page, gfp_t gfp)
653 {
654 struct vm_area_struct *vma = vmf->vma;
655 struct folio *folio = page_folio(page);
656 pgtable_t pgtable;
657 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 vm_fault_t ret = 0;
659
660 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
661
662 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
663 folio_put(folio);
664 count_vm_event(THP_FAULT_FALLBACK);
665 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 return VM_FAULT_FALLBACK;
667 }
668 folio_throttle_swaprate(folio, gfp);
669
670 pgtable = pte_alloc_one(vma->vm_mm);
671 if (unlikely(!pgtable)) {
672 ret = VM_FAULT_OOM;
673 goto release;
674 }
675
676 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 /*
678 * The memory barrier inside __folio_mark_uptodate makes sure that
679 * clear_huge_page writes become visible before the set_pmd_at()
680 * write.
681 */
682 __folio_mark_uptodate(folio);
683
684 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 if (unlikely(!pmd_none(*vmf->pmd))) {
686 goto unlock_release;
687 } else {
688 pmd_t entry;
689
690 ret = check_stable_address_space(vma->vm_mm);
691 if (ret)
692 goto unlock_release;
693
694 /* Deliver the page fault to userland */
695 if (userfaultfd_missing(vma)) {
696 spin_unlock(vmf->ptl);
697 folio_put(folio);
698 pte_free(vma->vm_mm, pgtable);
699 ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 return ret;
702 }
703
704 entry = mk_huge_pmd(page, vma->vm_page_prot);
705 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 folio_add_new_anon_rmap(folio, vma, haddr);
707 folio_add_lru_vma(folio, vma);
708 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 mm_inc_nr_ptes(vma->vm_mm);
713 spin_unlock(vmf->ptl);
714 count_vm_event(THP_FAULT_ALLOC);
715 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 }
717
718 return 0;
719 unlock_release:
720 spin_unlock(vmf->ptl);
721 release:
722 if (pgtable)
723 pte_free(vma->vm_mm, pgtable);
724 folio_put(folio);
725 return ret;
726
727 }
728
729 /*
730 * always: directly stall for all thp allocations
731 * defer: wake kswapd and fail if not immediately available
732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733 * fail if not immediately available
734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735 * available
736 * never: never stall for any thp allocation
737 */
738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739 {
740 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741
742 /* Always do synchronous compaction */
743 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745
746 /* Kick kcompactd and fail quickly */
747 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749
750 /* Synchronous compaction if madvised, otherwise kick kcompactd */
751 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 return GFP_TRANSHUGE_LIGHT |
753 (vma_madvised ? __GFP_DIRECT_RECLAIM :
754 __GFP_KSWAPD_RECLAIM);
755
756 /* Only do synchronous compaction if madvised */
757 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 return GFP_TRANSHUGE_LIGHT |
759 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760
761 return GFP_TRANSHUGE_LIGHT;
762 }
763
764 /* Caller must hold page table lock. */
765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 struct page *zero_page)
768 {
769 pmd_t entry;
770 if (!pmd_none(*pmd))
771 return;
772 entry = mk_pmd(zero_page, vma->vm_page_prot);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 mm_inc_nr_ptes(mm);
777 }
778
779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780 {
781 struct vm_area_struct *vma = vmf->vma;
782 gfp_t gfp;
783 struct folio *folio;
784 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785
786 if (!transhuge_vma_suitable(vma, haddr))
787 return VM_FAULT_FALLBACK;
788 if (unlikely(anon_vma_prepare(vma)))
789 return VM_FAULT_OOM;
790 khugepaged_enter_vma(vma, vma->vm_flags);
791
792 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 !mm_forbids_zeropage(vma->vm_mm) &&
794 transparent_hugepage_use_zero_page()) {
795 pgtable_t pgtable;
796 struct page *zero_page;
797 vm_fault_t ret;
798 pgtable = pte_alloc_one(vma->vm_mm);
799 if (unlikely(!pgtable))
800 return VM_FAULT_OOM;
801 zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 if (unlikely(!zero_page)) {
803 pte_free(vma->vm_mm, pgtable);
804 count_vm_event(THP_FAULT_FALLBACK);
805 return VM_FAULT_FALLBACK;
806 }
807 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 ret = 0;
809 if (pmd_none(*vmf->pmd)) {
810 ret = check_stable_address_space(vma->vm_mm);
811 if (ret) {
812 spin_unlock(vmf->ptl);
813 pte_free(vma->vm_mm, pgtable);
814 } else if (userfaultfd_missing(vma)) {
815 spin_unlock(vmf->ptl);
816 pte_free(vma->vm_mm, pgtable);
817 ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 } else {
820 set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 haddr, vmf->pmd, zero_page);
822 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 spin_unlock(vmf->ptl);
824 }
825 } else {
826 spin_unlock(vmf->ptl);
827 pte_free(vma->vm_mm, pgtable);
828 }
829 return ret;
830 }
831 gfp = vma_thp_gfp_mask(vma);
832 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 if (unlikely(!folio)) {
834 count_vm_event(THP_FAULT_FALLBACK);
835 return VM_FAULT_FALLBACK;
836 }
837 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838 }
839
840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 pgtable_t pgtable)
843 {
844 struct mm_struct *mm = vma->vm_mm;
845 pmd_t entry;
846 spinlock_t *ptl;
847
848 ptl = pmd_lock(mm, pmd);
849 if (!pmd_none(*pmd)) {
850 if (write) {
851 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 goto out_unlock;
854 }
855 entry = pmd_mkyoung(*pmd);
856 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 update_mmu_cache_pmd(vma, addr, pmd);
859 }
860
861 goto out_unlock;
862 }
863
864 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 if (pfn_t_devmap(pfn))
866 entry = pmd_mkdevmap(entry);
867 if (write) {
868 entry = pmd_mkyoung(pmd_mkdirty(entry));
869 entry = maybe_pmd_mkwrite(entry, vma);
870 }
871
872 if (pgtable) {
873 pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 mm_inc_nr_ptes(mm);
875 pgtable = NULL;
876 }
877
878 set_pmd_at(mm, addr, pmd, entry);
879 update_mmu_cache_pmd(vma, addr, pmd);
880
881 out_unlock:
882 spin_unlock(ptl);
883 if (pgtable)
884 pte_free(mm, pgtable);
885 }
886
887 /**
888 * vmf_insert_pfn_pmd - insert a pmd size pfn
889 * @vmf: Structure describing the fault
890 * @pfn: pfn to insert
891 * @write: whether it's a write fault
892 *
893 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
894 *
895 * Return: vm_fault_t value.
896 */
897 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
898 {
899 unsigned long addr = vmf->address & PMD_MASK;
900 struct vm_area_struct *vma = vmf->vma;
901 pgprot_t pgprot = vma->vm_page_prot;
902 pgtable_t pgtable = NULL;
903
904 /*
905 * If we had pmd_special, we could avoid all these restrictions,
906 * but we need to be consistent with PTEs and architectures that
907 * can't support a 'special' bit.
908 */
909 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
910 !pfn_t_devmap(pfn));
911 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
912 (VM_PFNMAP|VM_MIXEDMAP));
913 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
914
915 if (addr < vma->vm_start || addr >= vma->vm_end)
916 return VM_FAULT_SIGBUS;
917
918 if (arch_needs_pgtable_deposit()) {
919 pgtable = pte_alloc_one(vma->vm_mm);
920 if (!pgtable)
921 return VM_FAULT_OOM;
922 }
923
924 track_pfn_insert(vma, &pgprot, pfn);
925
926 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
927 return VM_FAULT_NOPAGE;
928 }
929 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
930
931 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
932 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
933 {
934 if (likely(vma->vm_flags & VM_WRITE))
935 pud = pud_mkwrite(pud);
936 return pud;
937 }
938
939 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
940 pud_t *pud, pfn_t pfn, bool write)
941 {
942 struct mm_struct *mm = vma->vm_mm;
943 pgprot_t prot = vma->vm_page_prot;
944 pud_t entry;
945 spinlock_t *ptl;
946
947 ptl = pud_lock(mm, pud);
948 if (!pud_none(*pud)) {
949 if (write) {
950 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
951 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
952 goto out_unlock;
953 }
954 entry = pud_mkyoung(*pud);
955 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
956 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
957 update_mmu_cache_pud(vma, addr, pud);
958 }
959 goto out_unlock;
960 }
961
962 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
963 if (pfn_t_devmap(pfn))
964 entry = pud_mkdevmap(entry);
965 if (write) {
966 entry = pud_mkyoung(pud_mkdirty(entry));
967 entry = maybe_pud_mkwrite(entry, vma);
968 }
969 set_pud_at(mm, addr, pud, entry);
970 update_mmu_cache_pud(vma, addr, pud);
971
972 out_unlock:
973 spin_unlock(ptl);
974 }
975
976 /**
977 * vmf_insert_pfn_pud - insert a pud size pfn
978 * @vmf: Structure describing the fault
979 * @pfn: pfn to insert
980 * @write: whether it's a write fault
981 *
982 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
983 *
984 * Return: vm_fault_t value.
985 */
986 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
987 {
988 unsigned long addr = vmf->address & PUD_MASK;
989 struct vm_area_struct *vma = vmf->vma;
990 pgprot_t pgprot = vma->vm_page_prot;
991
992 /*
993 * If we had pud_special, we could avoid all these restrictions,
994 * but we need to be consistent with PTEs and architectures that
995 * can't support a 'special' bit.
996 */
997 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
998 !pfn_t_devmap(pfn));
999 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1000 (VM_PFNMAP|VM_MIXEDMAP));
1001 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1002
1003 if (addr < vma->vm_start || addr >= vma->vm_end)
1004 return VM_FAULT_SIGBUS;
1005
1006 track_pfn_insert(vma, &pgprot, pfn);
1007
1008 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1009 return VM_FAULT_NOPAGE;
1010 }
1011 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1012 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1013
1014 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1015 pmd_t *pmd, bool write)
1016 {
1017 pmd_t _pmd;
1018
1019 _pmd = pmd_mkyoung(*pmd);
1020 if (write)
1021 _pmd = pmd_mkdirty(_pmd);
1022 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1023 pmd, _pmd, write))
1024 update_mmu_cache_pmd(vma, addr, pmd);
1025 }
1026
1027 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1028 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1029 {
1030 unsigned long pfn = pmd_pfn(*pmd);
1031 struct mm_struct *mm = vma->vm_mm;
1032 struct page *page;
1033 int ret;
1034
1035 assert_spin_locked(pmd_lockptr(mm, pmd));
1036
1037 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1038 return NULL;
1039
1040 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1041 /* pass */;
1042 else
1043 return NULL;
1044
1045 if (flags & FOLL_TOUCH)
1046 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1047
1048 /*
1049 * device mapped pages can only be returned if the
1050 * caller will manage the page reference count.
1051 */
1052 if (!(flags & (FOLL_GET | FOLL_PIN)))
1053 return ERR_PTR(-EEXIST);
1054
1055 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1056 *pgmap = get_dev_pagemap(pfn, *pgmap);
1057 if (!*pgmap)
1058 return ERR_PTR(-EFAULT);
1059 page = pfn_to_page(pfn);
1060 ret = try_grab_page(page, flags);
1061 if (ret)
1062 page = ERR_PTR(ret);
1063
1064 return page;
1065 }
1066
1067 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1068 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1069 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1070 {
1071 spinlock_t *dst_ptl, *src_ptl;
1072 struct page *src_page;
1073 pmd_t pmd;
1074 pgtable_t pgtable = NULL;
1075 int ret = -ENOMEM;
1076
1077 /* Skip if can be re-fill on fault */
1078 if (!vma_is_anonymous(dst_vma))
1079 return 0;
1080
1081 pgtable = pte_alloc_one(dst_mm);
1082 if (unlikely(!pgtable))
1083 goto out;
1084
1085 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1086 src_ptl = pmd_lockptr(src_mm, src_pmd);
1087 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1088
1089 ret = -EAGAIN;
1090 pmd = *src_pmd;
1091
1092 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1093 if (unlikely(is_swap_pmd(pmd))) {
1094 swp_entry_t entry = pmd_to_swp_entry(pmd);
1095
1096 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1097 if (!is_readable_migration_entry(entry)) {
1098 entry = make_readable_migration_entry(
1099 swp_offset(entry));
1100 pmd = swp_entry_to_pmd(entry);
1101 if (pmd_swp_soft_dirty(*src_pmd))
1102 pmd = pmd_swp_mksoft_dirty(pmd);
1103 if (pmd_swp_uffd_wp(*src_pmd))
1104 pmd = pmd_swp_mkuffd_wp(pmd);
1105 set_pmd_at(src_mm, addr, src_pmd, pmd);
1106 }
1107 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1108 mm_inc_nr_ptes(dst_mm);
1109 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1110 if (!userfaultfd_wp(dst_vma))
1111 pmd = pmd_swp_clear_uffd_wp(pmd);
1112 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1113 ret = 0;
1114 goto out_unlock;
1115 }
1116 #endif
1117
1118 if (unlikely(!pmd_trans_huge(pmd))) {
1119 pte_free(dst_mm, pgtable);
1120 goto out_unlock;
1121 }
1122 /*
1123 * When page table lock is held, the huge zero pmd should not be
1124 * under splitting since we don't split the page itself, only pmd to
1125 * a page table.
1126 */
1127 if (is_huge_zero_pmd(pmd)) {
1128 /*
1129 * get_huge_zero_page() will never allocate a new page here,
1130 * since we already have a zero page to copy. It just takes a
1131 * reference.
1132 */
1133 mm_get_huge_zero_page(dst_mm);
1134 goto out_zero_page;
1135 }
1136
1137 src_page = pmd_page(pmd);
1138 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1139
1140 get_page(src_page);
1141 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1142 /* Page maybe pinned: split and retry the fault on PTEs. */
1143 put_page(src_page);
1144 pte_free(dst_mm, pgtable);
1145 spin_unlock(src_ptl);
1146 spin_unlock(dst_ptl);
1147 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1148 return -EAGAIN;
1149 }
1150 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1151 out_zero_page:
1152 mm_inc_nr_ptes(dst_mm);
1153 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1154 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1155 if (!userfaultfd_wp(dst_vma))
1156 pmd = pmd_clear_uffd_wp(pmd);
1157 pmd = pmd_mkold(pmd_wrprotect(pmd));
1158 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1159
1160 ret = 0;
1161 out_unlock:
1162 spin_unlock(src_ptl);
1163 spin_unlock(dst_ptl);
1164 out:
1165 return ret;
1166 }
1167
1168 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1169 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1170 pud_t *pud, bool write)
1171 {
1172 pud_t _pud;
1173
1174 _pud = pud_mkyoung(*pud);
1175 if (write)
1176 _pud = pud_mkdirty(_pud);
1177 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1178 pud, _pud, write))
1179 update_mmu_cache_pud(vma, addr, pud);
1180 }
1181
1182 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1183 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1184 {
1185 unsigned long pfn = pud_pfn(*pud);
1186 struct mm_struct *mm = vma->vm_mm;
1187 struct page *page;
1188 int ret;
1189
1190 assert_spin_locked(pud_lockptr(mm, pud));
1191
1192 if (flags & FOLL_WRITE && !pud_write(*pud))
1193 return NULL;
1194
1195 if (pud_present(*pud) && pud_devmap(*pud))
1196 /* pass */;
1197 else
1198 return NULL;
1199
1200 if (flags & FOLL_TOUCH)
1201 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1202
1203 /*
1204 * device mapped pages can only be returned if the
1205 * caller will manage the page reference count.
1206 *
1207 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1208 */
1209 if (!(flags & (FOLL_GET | FOLL_PIN)))
1210 return ERR_PTR(-EEXIST);
1211
1212 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1213 *pgmap = get_dev_pagemap(pfn, *pgmap);
1214 if (!*pgmap)
1215 return ERR_PTR(-EFAULT);
1216 page = pfn_to_page(pfn);
1217
1218 ret = try_grab_page(page, flags);
1219 if (ret)
1220 page = ERR_PTR(ret);
1221
1222 return page;
1223 }
1224
1225 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1226 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1227 struct vm_area_struct *vma)
1228 {
1229 spinlock_t *dst_ptl, *src_ptl;
1230 pud_t pud;
1231 int ret;
1232
1233 dst_ptl = pud_lock(dst_mm, dst_pud);
1234 src_ptl = pud_lockptr(src_mm, src_pud);
1235 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1236
1237 ret = -EAGAIN;
1238 pud = *src_pud;
1239 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1240 goto out_unlock;
1241
1242 /*
1243 * When page table lock is held, the huge zero pud should not be
1244 * under splitting since we don't split the page itself, only pud to
1245 * a page table.
1246 */
1247 if (is_huge_zero_pud(pud)) {
1248 /* No huge zero pud yet */
1249 }
1250
1251 /*
1252 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1253 * and split if duplicating fails.
1254 */
1255 pudp_set_wrprotect(src_mm, addr, src_pud);
1256 pud = pud_mkold(pud_wrprotect(pud));
1257 set_pud_at(dst_mm, addr, dst_pud, pud);
1258
1259 ret = 0;
1260 out_unlock:
1261 spin_unlock(src_ptl);
1262 spin_unlock(dst_ptl);
1263 return ret;
1264 }
1265
1266 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1267 {
1268 bool write = vmf->flags & FAULT_FLAG_WRITE;
1269
1270 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1271 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1272 goto unlock;
1273
1274 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1275 unlock:
1276 spin_unlock(vmf->ptl);
1277 }
1278 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1279
1280 void huge_pmd_set_accessed(struct vm_fault *vmf)
1281 {
1282 bool write = vmf->flags & FAULT_FLAG_WRITE;
1283
1284 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1285 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1286 goto unlock;
1287
1288 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1289
1290 unlock:
1291 spin_unlock(vmf->ptl);
1292 }
1293
1294 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1295 {
1296 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1297 struct vm_area_struct *vma = vmf->vma;
1298 struct folio *folio;
1299 struct page *page;
1300 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1301 pmd_t orig_pmd = vmf->orig_pmd;
1302
1303 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1304 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1305
1306 if (is_huge_zero_pmd(orig_pmd))
1307 goto fallback;
1308
1309 spin_lock(vmf->ptl);
1310
1311 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312 spin_unlock(vmf->ptl);
1313 return 0;
1314 }
1315
1316 page = pmd_page(orig_pmd);
1317 folio = page_folio(page);
1318 VM_BUG_ON_PAGE(!PageHead(page), page);
1319
1320 /* Early check when only holding the PT lock. */
1321 if (PageAnonExclusive(page))
1322 goto reuse;
1323
1324 if (!folio_trylock(folio)) {
1325 folio_get(folio);
1326 spin_unlock(vmf->ptl);
1327 folio_lock(folio);
1328 spin_lock(vmf->ptl);
1329 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1330 spin_unlock(vmf->ptl);
1331 folio_unlock(folio);
1332 folio_put(folio);
1333 return 0;
1334 }
1335 folio_put(folio);
1336 }
1337
1338 /* Recheck after temporarily dropping the PT lock. */
1339 if (PageAnonExclusive(page)) {
1340 folio_unlock(folio);
1341 goto reuse;
1342 }
1343
1344 /*
1345 * See do_wp_page(): we can only reuse the folio exclusively if
1346 * there are no additional references. Note that we always drain
1347 * the LRU pagevecs immediately after adding a THP.
1348 */
1349 if (folio_ref_count(folio) >
1350 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1351 goto unlock_fallback;
1352 if (folio_test_swapcache(folio))
1353 folio_free_swap(folio);
1354 if (folio_ref_count(folio) == 1) {
1355 pmd_t entry;
1356
1357 page_move_anon_rmap(page, vma);
1358 folio_unlock(folio);
1359 reuse:
1360 if (unlikely(unshare)) {
1361 spin_unlock(vmf->ptl);
1362 return 0;
1363 }
1364 entry = pmd_mkyoung(orig_pmd);
1365 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1366 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1367 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1368 spin_unlock(vmf->ptl);
1369 return 0;
1370 }
1371
1372 unlock_fallback:
1373 folio_unlock(folio);
1374 spin_unlock(vmf->ptl);
1375 fallback:
1376 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1377 return VM_FAULT_FALLBACK;
1378 }
1379
1380 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1381 unsigned long addr, pmd_t pmd)
1382 {
1383 struct page *page;
1384
1385 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1386 return false;
1387
1388 /* Don't touch entries that are not even readable (NUMA hinting). */
1389 if (pmd_protnone(pmd))
1390 return false;
1391
1392 /* Do we need write faults for softdirty tracking? */
1393 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1394 return false;
1395
1396 /* Do we need write faults for uffd-wp tracking? */
1397 if (userfaultfd_huge_pmd_wp(vma, pmd))
1398 return false;
1399
1400 if (!(vma->vm_flags & VM_SHARED)) {
1401 /* See can_change_pte_writable(). */
1402 page = vm_normal_page_pmd(vma, addr, pmd);
1403 return page && PageAnon(page) && PageAnonExclusive(page);
1404 }
1405
1406 /* See can_change_pte_writable(). */
1407 return pmd_dirty(pmd);
1408 }
1409
1410 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1411 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1412 struct vm_area_struct *vma,
1413 unsigned int flags)
1414 {
1415 /* If the pmd is writable, we can write to the page. */
1416 if (pmd_write(pmd))
1417 return true;
1418
1419 /* Maybe FOLL_FORCE is set to override it? */
1420 if (!(flags & FOLL_FORCE))
1421 return false;
1422
1423 /* But FOLL_FORCE has no effect on shared mappings */
1424 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1425 return false;
1426
1427 /* ... or read-only private ones */
1428 if (!(vma->vm_flags & VM_MAYWRITE))
1429 return false;
1430
1431 /* ... or already writable ones that just need to take a write fault */
1432 if (vma->vm_flags & VM_WRITE)
1433 return false;
1434
1435 /*
1436 * See can_change_pte_writable(): we broke COW and could map the page
1437 * writable if we have an exclusive anonymous page ...
1438 */
1439 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1440 return false;
1441
1442 /* ... and a write-fault isn't required for other reasons. */
1443 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1444 return false;
1445 return !userfaultfd_huge_pmd_wp(vma, pmd);
1446 }
1447
1448 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1449 unsigned long addr,
1450 pmd_t *pmd,
1451 unsigned int flags)
1452 {
1453 struct mm_struct *mm = vma->vm_mm;
1454 struct page *page;
1455 int ret;
1456
1457 assert_spin_locked(pmd_lockptr(mm, pmd));
1458
1459 page = pmd_page(*pmd);
1460 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1461
1462 if ((flags & FOLL_WRITE) &&
1463 !can_follow_write_pmd(*pmd, page, vma, flags))
1464 return NULL;
1465
1466 /* Avoid dumping huge zero page */
1467 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1468 return ERR_PTR(-EFAULT);
1469
1470 /* Full NUMA hinting faults to serialise migration in fault paths */
1471 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1472 return NULL;
1473
1474 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1475 return ERR_PTR(-EMLINK);
1476
1477 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1478 !PageAnonExclusive(page), page);
1479
1480 ret = try_grab_page(page, flags);
1481 if (ret)
1482 return ERR_PTR(ret);
1483
1484 if (flags & FOLL_TOUCH)
1485 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1486
1487 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1488 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1489
1490 return page;
1491 }
1492
1493 /* NUMA hinting page fault entry point for trans huge pmds */
1494 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1495 {
1496 struct vm_area_struct *vma = vmf->vma;
1497 pmd_t oldpmd = vmf->orig_pmd;
1498 pmd_t pmd;
1499 struct page *page;
1500 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1501 int page_nid = NUMA_NO_NODE;
1502 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1503 bool migrated = false, writable = false;
1504 int flags = 0;
1505
1506 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1507 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1508 spin_unlock(vmf->ptl);
1509 goto out;
1510 }
1511
1512 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1513
1514 /*
1515 * Detect now whether the PMD could be writable; this information
1516 * is only valid while holding the PT lock.
1517 */
1518 writable = pmd_write(pmd);
1519 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1520 can_change_pmd_writable(vma, vmf->address, pmd))
1521 writable = true;
1522
1523 page = vm_normal_page_pmd(vma, haddr, pmd);
1524 if (!page)
1525 goto out_map;
1526
1527 /* See similar comment in do_numa_page for explanation */
1528 if (!writable)
1529 flags |= TNF_NO_GROUP;
1530
1531 page_nid = page_to_nid(page);
1532 /*
1533 * For memory tiering mode, cpupid of slow memory page is used
1534 * to record page access time. So use default value.
1535 */
1536 if (node_is_toptier(page_nid))
1537 last_cpupid = page_cpupid_last(page);
1538 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1539 &flags);
1540
1541 if (target_nid == NUMA_NO_NODE) {
1542 put_page(page);
1543 goto out_map;
1544 }
1545
1546 spin_unlock(vmf->ptl);
1547 writable = false;
1548
1549 migrated = migrate_misplaced_page(page, vma, target_nid);
1550 if (migrated) {
1551 flags |= TNF_MIGRATED;
1552 page_nid = target_nid;
1553 } else {
1554 flags |= TNF_MIGRATE_FAIL;
1555 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1556 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1557 spin_unlock(vmf->ptl);
1558 goto out;
1559 }
1560 goto out_map;
1561 }
1562
1563 out:
1564 if (page_nid != NUMA_NO_NODE)
1565 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1566 flags);
1567
1568 return 0;
1569
1570 out_map:
1571 /* Restore the PMD */
1572 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1573 pmd = pmd_mkyoung(pmd);
1574 if (writable)
1575 pmd = pmd_mkwrite(pmd);
1576 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1577 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1578 spin_unlock(vmf->ptl);
1579 goto out;
1580 }
1581
1582 /*
1583 * Return true if we do MADV_FREE successfully on entire pmd page.
1584 * Otherwise, return false.
1585 */
1586 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1587 pmd_t *pmd, unsigned long addr, unsigned long next)
1588 {
1589 spinlock_t *ptl;
1590 pmd_t orig_pmd;
1591 struct folio *folio;
1592 struct mm_struct *mm = tlb->mm;
1593 bool ret = false;
1594
1595 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1596
1597 ptl = pmd_trans_huge_lock(pmd, vma);
1598 if (!ptl)
1599 goto out_unlocked;
1600
1601 orig_pmd = *pmd;
1602 if (is_huge_zero_pmd(orig_pmd))
1603 goto out;
1604
1605 if (unlikely(!pmd_present(orig_pmd))) {
1606 VM_BUG_ON(thp_migration_supported() &&
1607 !is_pmd_migration_entry(orig_pmd));
1608 goto out;
1609 }
1610
1611 folio = pfn_folio(pmd_pfn(orig_pmd));
1612 /*
1613 * If other processes are mapping this folio, we couldn't discard
1614 * the folio unless they all do MADV_FREE so let's skip the folio.
1615 */
1616 if (folio_mapcount(folio) != 1)
1617 goto out;
1618
1619 if (!folio_trylock(folio))
1620 goto out;
1621
1622 /*
1623 * If user want to discard part-pages of THP, split it so MADV_FREE
1624 * will deactivate only them.
1625 */
1626 if (next - addr != HPAGE_PMD_SIZE) {
1627 folio_get(folio);
1628 spin_unlock(ptl);
1629 split_folio(folio);
1630 folio_unlock(folio);
1631 folio_put(folio);
1632 goto out_unlocked;
1633 }
1634
1635 if (folio_test_dirty(folio))
1636 folio_clear_dirty(folio);
1637 folio_unlock(folio);
1638
1639 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1640 pmdp_invalidate(vma, addr, pmd);
1641 orig_pmd = pmd_mkold(orig_pmd);
1642 orig_pmd = pmd_mkclean(orig_pmd);
1643
1644 set_pmd_at(mm, addr, pmd, orig_pmd);
1645 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1646 }
1647
1648 folio_mark_lazyfree(folio);
1649 ret = true;
1650 out:
1651 spin_unlock(ptl);
1652 out_unlocked:
1653 return ret;
1654 }
1655
1656 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1657 {
1658 pgtable_t pgtable;
1659
1660 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1661 pte_free(mm, pgtable);
1662 mm_dec_nr_ptes(mm);
1663 }
1664
1665 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1666 pmd_t *pmd, unsigned long addr)
1667 {
1668 pmd_t orig_pmd;
1669 spinlock_t *ptl;
1670
1671 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1672
1673 ptl = __pmd_trans_huge_lock(pmd, vma);
1674 if (!ptl)
1675 return 0;
1676 /*
1677 * For architectures like ppc64 we look at deposited pgtable
1678 * when calling pmdp_huge_get_and_clear. So do the
1679 * pgtable_trans_huge_withdraw after finishing pmdp related
1680 * operations.
1681 */
1682 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1683 tlb->fullmm);
1684 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1685 if (vma_is_special_huge(vma)) {
1686 if (arch_needs_pgtable_deposit())
1687 zap_deposited_table(tlb->mm, pmd);
1688 spin_unlock(ptl);
1689 } else if (is_huge_zero_pmd(orig_pmd)) {
1690 zap_deposited_table(tlb->mm, pmd);
1691 spin_unlock(ptl);
1692 } else {
1693 struct page *page = NULL;
1694 int flush_needed = 1;
1695
1696 if (pmd_present(orig_pmd)) {
1697 page = pmd_page(orig_pmd);
1698 page_remove_rmap(page, vma, true);
1699 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1700 VM_BUG_ON_PAGE(!PageHead(page), page);
1701 } else if (thp_migration_supported()) {
1702 swp_entry_t entry;
1703
1704 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1705 entry = pmd_to_swp_entry(orig_pmd);
1706 page = pfn_swap_entry_to_page(entry);
1707 flush_needed = 0;
1708 } else
1709 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1710
1711 if (PageAnon(page)) {
1712 zap_deposited_table(tlb->mm, pmd);
1713 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1714 } else {
1715 if (arch_needs_pgtable_deposit())
1716 zap_deposited_table(tlb->mm, pmd);
1717 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1718 }
1719
1720 spin_unlock(ptl);
1721 if (flush_needed)
1722 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1723 }
1724 return 1;
1725 }
1726
1727 #ifndef pmd_move_must_withdraw
1728 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1729 spinlock_t *old_pmd_ptl,
1730 struct vm_area_struct *vma)
1731 {
1732 /*
1733 * With split pmd lock we also need to move preallocated
1734 * PTE page table if new_pmd is on different PMD page table.
1735 *
1736 * We also don't deposit and withdraw tables for file pages.
1737 */
1738 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1739 }
1740 #endif
1741
1742 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1743 {
1744 #ifdef CONFIG_MEM_SOFT_DIRTY
1745 if (unlikely(is_pmd_migration_entry(pmd)))
1746 pmd = pmd_swp_mksoft_dirty(pmd);
1747 else if (pmd_present(pmd))
1748 pmd = pmd_mksoft_dirty(pmd);
1749 #endif
1750 return pmd;
1751 }
1752
1753 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1754 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1755 {
1756 spinlock_t *old_ptl, *new_ptl;
1757 pmd_t pmd;
1758 struct mm_struct *mm = vma->vm_mm;
1759 bool force_flush = false;
1760
1761 /*
1762 * The destination pmd shouldn't be established, free_pgtables()
1763 * should have release it.
1764 */
1765 if (WARN_ON(!pmd_none(*new_pmd))) {
1766 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1767 return false;
1768 }
1769
1770 /*
1771 * We don't have to worry about the ordering of src and dst
1772 * ptlocks because exclusive mmap_lock prevents deadlock.
1773 */
1774 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1775 if (old_ptl) {
1776 new_ptl = pmd_lockptr(mm, new_pmd);
1777 if (new_ptl != old_ptl)
1778 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1779 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1780 if (pmd_present(pmd))
1781 force_flush = true;
1782 VM_BUG_ON(!pmd_none(*new_pmd));
1783
1784 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1785 pgtable_t pgtable;
1786 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1787 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1788 }
1789 pmd = move_soft_dirty_pmd(pmd);
1790 set_pmd_at(mm, new_addr, new_pmd, pmd);
1791 if (force_flush)
1792 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1793 if (new_ptl != old_ptl)
1794 spin_unlock(new_ptl);
1795 spin_unlock(old_ptl);
1796 return true;
1797 }
1798 return false;
1799 }
1800
1801 /*
1802 * Returns
1803 * - 0 if PMD could not be locked
1804 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1805 * or if prot_numa but THP migration is not supported
1806 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1807 */
1808 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1809 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1810 unsigned long cp_flags)
1811 {
1812 struct mm_struct *mm = vma->vm_mm;
1813 spinlock_t *ptl;
1814 pmd_t oldpmd, entry;
1815 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1816 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1817 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1818 int ret = 1;
1819
1820 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1821
1822 if (prot_numa && !thp_migration_supported())
1823 return 1;
1824
1825 ptl = __pmd_trans_huge_lock(pmd, vma);
1826 if (!ptl)
1827 return 0;
1828
1829 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1830 if (is_swap_pmd(*pmd)) {
1831 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1832 struct page *page = pfn_swap_entry_to_page(entry);
1833 pmd_t newpmd;
1834
1835 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1836 if (is_writable_migration_entry(entry)) {
1837 /*
1838 * A protection check is difficult so
1839 * just be safe and disable write
1840 */
1841 if (PageAnon(page))
1842 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1843 else
1844 entry = make_readable_migration_entry(swp_offset(entry));
1845 newpmd = swp_entry_to_pmd(entry);
1846 if (pmd_swp_soft_dirty(*pmd))
1847 newpmd = pmd_swp_mksoft_dirty(newpmd);
1848 } else {
1849 newpmd = *pmd;
1850 }
1851
1852 if (uffd_wp)
1853 newpmd = pmd_swp_mkuffd_wp(newpmd);
1854 else if (uffd_wp_resolve)
1855 newpmd = pmd_swp_clear_uffd_wp(newpmd);
1856 if (!pmd_same(*pmd, newpmd))
1857 set_pmd_at(mm, addr, pmd, newpmd);
1858 goto unlock;
1859 }
1860 #endif
1861
1862 if (prot_numa) {
1863 struct page *page;
1864 bool toptier;
1865 /*
1866 * Avoid trapping faults against the zero page. The read-only
1867 * data is likely to be read-cached on the local CPU and
1868 * local/remote hits to the zero page are not interesting.
1869 */
1870 if (is_huge_zero_pmd(*pmd))
1871 goto unlock;
1872
1873 if (pmd_protnone(*pmd))
1874 goto unlock;
1875
1876 page = pmd_page(*pmd);
1877 toptier = node_is_toptier(page_to_nid(page));
1878 /*
1879 * Skip scanning top tier node if normal numa
1880 * balancing is disabled
1881 */
1882 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1883 toptier)
1884 goto unlock;
1885
1886 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1887 !toptier)
1888 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1889 }
1890 /*
1891 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1892 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1893 * which is also under mmap_read_lock(mm):
1894 *
1895 * CPU0: CPU1:
1896 * change_huge_pmd(prot_numa=1)
1897 * pmdp_huge_get_and_clear_notify()
1898 * madvise_dontneed()
1899 * zap_pmd_range()
1900 * pmd_trans_huge(*pmd) == 0 (without ptl)
1901 * // skip the pmd
1902 * set_pmd_at();
1903 * // pmd is re-established
1904 *
1905 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1906 * which may break userspace.
1907 *
1908 * pmdp_invalidate_ad() is required to make sure we don't miss
1909 * dirty/young flags set by hardware.
1910 */
1911 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1912
1913 entry = pmd_modify(oldpmd, newprot);
1914 if (uffd_wp)
1915 entry = pmd_mkuffd_wp(entry);
1916 else if (uffd_wp_resolve)
1917 /*
1918 * Leave the write bit to be handled by PF interrupt
1919 * handler, then things like COW could be properly
1920 * handled.
1921 */
1922 entry = pmd_clear_uffd_wp(entry);
1923
1924 /* See change_pte_range(). */
1925 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1926 can_change_pmd_writable(vma, addr, entry))
1927 entry = pmd_mkwrite(entry);
1928
1929 ret = HPAGE_PMD_NR;
1930 set_pmd_at(mm, addr, pmd, entry);
1931
1932 if (huge_pmd_needs_flush(oldpmd, entry))
1933 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1934 unlock:
1935 spin_unlock(ptl);
1936 return ret;
1937 }
1938
1939 /*
1940 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1941 *
1942 * Note that if it returns page table lock pointer, this routine returns without
1943 * unlocking page table lock. So callers must unlock it.
1944 */
1945 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1946 {
1947 spinlock_t *ptl;
1948 ptl = pmd_lock(vma->vm_mm, pmd);
1949 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1950 pmd_devmap(*pmd)))
1951 return ptl;
1952 spin_unlock(ptl);
1953 return NULL;
1954 }
1955
1956 /*
1957 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1958 *
1959 * Note that if it returns page table lock pointer, this routine returns without
1960 * unlocking page table lock. So callers must unlock it.
1961 */
1962 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1963 {
1964 spinlock_t *ptl;
1965
1966 ptl = pud_lock(vma->vm_mm, pud);
1967 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1968 return ptl;
1969 spin_unlock(ptl);
1970 return NULL;
1971 }
1972
1973 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1974 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1975 pud_t *pud, unsigned long addr)
1976 {
1977 spinlock_t *ptl;
1978
1979 ptl = __pud_trans_huge_lock(pud, vma);
1980 if (!ptl)
1981 return 0;
1982
1983 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1984 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1985 if (vma_is_special_huge(vma)) {
1986 spin_unlock(ptl);
1987 /* No zero page support yet */
1988 } else {
1989 /* No support for anonymous PUD pages yet */
1990 BUG();
1991 }
1992 return 1;
1993 }
1994
1995 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1996 unsigned long haddr)
1997 {
1998 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1999 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2000 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2001 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2002
2003 count_vm_event(THP_SPLIT_PUD);
2004
2005 pudp_huge_clear_flush_notify(vma, haddr, pud);
2006 }
2007
2008 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2009 unsigned long address)
2010 {
2011 spinlock_t *ptl;
2012 struct mmu_notifier_range range;
2013
2014 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2015 address & HPAGE_PUD_MASK,
2016 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2017 mmu_notifier_invalidate_range_start(&range);
2018 ptl = pud_lock(vma->vm_mm, pud);
2019 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2020 goto out;
2021 __split_huge_pud_locked(vma, pud, range.start);
2022
2023 out:
2024 spin_unlock(ptl);
2025 /*
2026 * No need to double call mmu_notifier->invalidate_range() callback as
2027 * the above pudp_huge_clear_flush_notify() did already call it.
2028 */
2029 mmu_notifier_invalidate_range_only_end(&range);
2030 }
2031 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2032
2033 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2034 unsigned long haddr, pmd_t *pmd)
2035 {
2036 struct mm_struct *mm = vma->vm_mm;
2037 pgtable_t pgtable;
2038 pmd_t _pmd, old_pmd;
2039 int i;
2040
2041 /*
2042 * Leave pmd empty until pte is filled note that it is fine to delay
2043 * notification until mmu_notifier_invalidate_range_end() as we are
2044 * replacing a zero pmd write protected page with a zero pte write
2045 * protected page.
2046 *
2047 * See Documentation/mm/mmu_notifier.rst
2048 */
2049 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2050
2051 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2052 pmd_populate(mm, &_pmd, pgtable);
2053
2054 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2055 pte_t *pte, entry;
2056 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2057 entry = pte_mkspecial(entry);
2058 if (pmd_uffd_wp(old_pmd))
2059 entry = pte_mkuffd_wp(entry);
2060 pte = pte_offset_map(&_pmd, haddr);
2061 VM_BUG_ON(!pte_none(*pte));
2062 set_pte_at(mm, haddr, pte, entry);
2063 pte_unmap(pte);
2064 }
2065 smp_wmb(); /* make pte visible before pmd */
2066 pmd_populate(mm, pmd, pgtable);
2067 }
2068
2069 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2070 unsigned long haddr, bool freeze)
2071 {
2072 struct mm_struct *mm = vma->vm_mm;
2073 struct page *page;
2074 pgtable_t pgtable;
2075 pmd_t old_pmd, _pmd;
2076 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2077 bool anon_exclusive = false, dirty = false;
2078 unsigned long addr;
2079 int i;
2080
2081 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2082 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2083 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2084 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2085 && !pmd_devmap(*pmd));
2086
2087 count_vm_event(THP_SPLIT_PMD);
2088
2089 if (!vma_is_anonymous(vma)) {
2090 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2091 /*
2092 * We are going to unmap this huge page. So
2093 * just go ahead and zap it
2094 */
2095 if (arch_needs_pgtable_deposit())
2096 zap_deposited_table(mm, pmd);
2097 if (vma_is_special_huge(vma))
2098 return;
2099 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2100 swp_entry_t entry;
2101
2102 entry = pmd_to_swp_entry(old_pmd);
2103 page = pfn_swap_entry_to_page(entry);
2104 } else {
2105 page = pmd_page(old_pmd);
2106 if (!PageDirty(page) && pmd_dirty(old_pmd))
2107 set_page_dirty(page);
2108 if (!PageReferenced(page) && pmd_young(old_pmd))
2109 SetPageReferenced(page);
2110 page_remove_rmap(page, vma, true);
2111 put_page(page);
2112 }
2113 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2114 return;
2115 }
2116
2117 if (is_huge_zero_pmd(*pmd)) {
2118 /*
2119 * FIXME: Do we want to invalidate secondary mmu by calling
2120 * mmu_notifier_invalidate_range() see comments below inside
2121 * __split_huge_pmd() ?
2122 *
2123 * We are going from a zero huge page write protected to zero
2124 * small page also write protected so it does not seems useful
2125 * to invalidate secondary mmu at this time.
2126 */
2127 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2128 }
2129
2130 /*
2131 * Up to this point the pmd is present and huge and userland has the
2132 * whole access to the hugepage during the split (which happens in
2133 * place). If we overwrite the pmd with the not-huge version pointing
2134 * to the pte here (which of course we could if all CPUs were bug
2135 * free), userland could trigger a small page size TLB miss on the
2136 * small sized TLB while the hugepage TLB entry is still established in
2137 * the huge TLB. Some CPU doesn't like that.
2138 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2139 * 383 on page 105. Intel should be safe but is also warns that it's
2140 * only safe if the permission and cache attributes of the two entries
2141 * loaded in the two TLB is identical (which should be the case here).
2142 * But it is generally safer to never allow small and huge TLB entries
2143 * for the same virtual address to be loaded simultaneously. So instead
2144 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2145 * current pmd notpresent (atomically because here the pmd_trans_huge
2146 * must remain set at all times on the pmd until the split is complete
2147 * for this pmd), then we flush the SMP TLB and finally we write the
2148 * non-huge version of the pmd entry with pmd_populate.
2149 */
2150 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2151
2152 pmd_migration = is_pmd_migration_entry(old_pmd);
2153 if (unlikely(pmd_migration)) {
2154 swp_entry_t entry;
2155
2156 entry = pmd_to_swp_entry(old_pmd);
2157 page = pfn_swap_entry_to_page(entry);
2158 write = is_writable_migration_entry(entry);
2159 if (PageAnon(page))
2160 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2161 young = is_migration_entry_young(entry);
2162 dirty = is_migration_entry_dirty(entry);
2163 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2164 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2165 } else {
2166 page = pmd_page(old_pmd);
2167 if (pmd_dirty(old_pmd)) {
2168 dirty = true;
2169 SetPageDirty(page);
2170 }
2171 write = pmd_write(old_pmd);
2172 young = pmd_young(old_pmd);
2173 soft_dirty = pmd_soft_dirty(old_pmd);
2174 uffd_wp = pmd_uffd_wp(old_pmd);
2175
2176 VM_BUG_ON_PAGE(!page_count(page), page);
2177
2178 /*
2179 * Without "freeze", we'll simply split the PMD, propagating the
2180 * PageAnonExclusive() flag for each PTE by setting it for
2181 * each subpage -- no need to (temporarily) clear.
2182 *
2183 * With "freeze" we want to replace mapped pages by
2184 * migration entries right away. This is only possible if we
2185 * managed to clear PageAnonExclusive() -- see
2186 * set_pmd_migration_entry().
2187 *
2188 * In case we cannot clear PageAnonExclusive(), split the PMD
2189 * only and let try_to_migrate_one() fail later.
2190 *
2191 * See page_try_share_anon_rmap(): invalidate PMD first.
2192 */
2193 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2194 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2195 freeze = false;
2196 if (!freeze)
2197 page_ref_add(page, HPAGE_PMD_NR - 1);
2198 }
2199
2200 /*
2201 * Withdraw the table only after we mark the pmd entry invalid.
2202 * This's critical for some architectures (Power).
2203 */
2204 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2205 pmd_populate(mm, &_pmd, pgtable);
2206
2207 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2208 pte_t entry, *pte;
2209 /*
2210 * Note that NUMA hinting access restrictions are not
2211 * transferred to avoid any possibility of altering
2212 * permissions across VMAs.
2213 */
2214 if (freeze || pmd_migration) {
2215 swp_entry_t swp_entry;
2216 if (write)
2217 swp_entry = make_writable_migration_entry(
2218 page_to_pfn(page + i));
2219 else if (anon_exclusive)
2220 swp_entry = make_readable_exclusive_migration_entry(
2221 page_to_pfn(page + i));
2222 else
2223 swp_entry = make_readable_migration_entry(
2224 page_to_pfn(page + i));
2225 if (young)
2226 swp_entry = make_migration_entry_young(swp_entry);
2227 if (dirty)
2228 swp_entry = make_migration_entry_dirty(swp_entry);
2229 entry = swp_entry_to_pte(swp_entry);
2230 if (soft_dirty)
2231 entry = pte_swp_mksoft_dirty(entry);
2232 if (uffd_wp)
2233 entry = pte_swp_mkuffd_wp(entry);
2234 } else {
2235 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2236 if (write)
2237 entry = pte_mkwrite(entry);
2238 if (anon_exclusive)
2239 SetPageAnonExclusive(page + i);
2240 if (!young)
2241 entry = pte_mkold(entry);
2242 /* NOTE: this may set soft-dirty too on some archs */
2243 if (dirty)
2244 entry = pte_mkdirty(entry);
2245 if (soft_dirty)
2246 entry = pte_mksoft_dirty(entry);
2247 if (uffd_wp)
2248 entry = pte_mkuffd_wp(entry);
2249 page_add_anon_rmap(page + i, vma, addr, false);
2250 }
2251 pte = pte_offset_map(&_pmd, addr);
2252 BUG_ON(!pte_none(*pte));
2253 set_pte_at(mm, addr, pte, entry);
2254 pte_unmap(pte);
2255 }
2256
2257 if (!pmd_migration)
2258 page_remove_rmap(page, vma, true);
2259 if (freeze)
2260 put_page(page);
2261
2262 smp_wmb(); /* make pte visible before pmd */
2263 pmd_populate(mm, pmd, pgtable);
2264 }
2265
2266 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2267 unsigned long address, bool freeze, struct folio *folio)
2268 {
2269 spinlock_t *ptl;
2270 struct mmu_notifier_range range;
2271
2272 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2273 address & HPAGE_PMD_MASK,
2274 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2275 mmu_notifier_invalidate_range_start(&range);
2276 ptl = pmd_lock(vma->vm_mm, pmd);
2277
2278 /*
2279 * If caller asks to setup a migration entry, we need a folio to check
2280 * pmd against. Otherwise we can end up replacing wrong folio.
2281 */
2282 VM_BUG_ON(freeze && !folio);
2283 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2284
2285 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2286 is_pmd_migration_entry(*pmd)) {
2287 /*
2288 * It's safe to call pmd_page when folio is set because it's
2289 * guaranteed that pmd is present.
2290 */
2291 if (folio && folio != page_folio(pmd_page(*pmd)))
2292 goto out;
2293 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2294 }
2295
2296 out:
2297 spin_unlock(ptl);
2298 /*
2299 * No need to double call mmu_notifier->invalidate_range() callback.
2300 * They are 3 cases to consider inside __split_huge_pmd_locked():
2301 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2302 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2303 * fault will trigger a flush_notify before pointing to a new page
2304 * (it is fine if the secondary mmu keeps pointing to the old zero
2305 * page in the meantime)
2306 * 3) Split a huge pmd into pte pointing to the same page. No need
2307 * to invalidate secondary tlb entry they are all still valid.
2308 * any further changes to individual pte will notify. So no need
2309 * to call mmu_notifier->invalidate_range()
2310 */
2311 mmu_notifier_invalidate_range_only_end(&range);
2312 }
2313
2314 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2315 bool freeze, struct folio *folio)
2316 {
2317 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2318
2319 if (!pmd)
2320 return;
2321
2322 __split_huge_pmd(vma, pmd, address, freeze, folio);
2323 }
2324
2325 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2326 {
2327 /*
2328 * If the new address isn't hpage aligned and it could previously
2329 * contain an hugepage: check if we need to split an huge pmd.
2330 */
2331 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2332 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2333 ALIGN(address, HPAGE_PMD_SIZE)))
2334 split_huge_pmd_address(vma, address, false, NULL);
2335 }
2336
2337 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2338 unsigned long start,
2339 unsigned long end,
2340 long adjust_next)
2341 {
2342 /* Check if we need to split start first. */
2343 split_huge_pmd_if_needed(vma, start);
2344
2345 /* Check if we need to split end next. */
2346 split_huge_pmd_if_needed(vma, end);
2347
2348 /*
2349 * If we're also updating the next vma vm_start,
2350 * check if we need to split it.
2351 */
2352 if (adjust_next > 0) {
2353 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2354 unsigned long nstart = next->vm_start;
2355 nstart += adjust_next;
2356 split_huge_pmd_if_needed(next, nstart);
2357 }
2358 }
2359
2360 static void unmap_folio(struct folio *folio)
2361 {
2362 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2363 TTU_SYNC;
2364
2365 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2366
2367 /*
2368 * Anon pages need migration entries to preserve them, but file
2369 * pages can simply be left unmapped, then faulted back on demand.
2370 * If that is ever changed (perhaps for mlock), update remap_page().
2371 */
2372 if (folio_test_anon(folio))
2373 try_to_migrate(folio, ttu_flags);
2374 else
2375 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2376 }
2377
2378 static void remap_page(struct folio *folio, unsigned long nr)
2379 {
2380 int i = 0;
2381
2382 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2383 if (!folio_test_anon(folio))
2384 return;
2385 for (;;) {
2386 remove_migration_ptes(folio, folio, true);
2387 i += folio_nr_pages(folio);
2388 if (i >= nr)
2389 break;
2390 folio = folio_next(folio);
2391 }
2392 }
2393
2394 static void lru_add_page_tail(struct page *head, struct page *tail,
2395 struct lruvec *lruvec, struct list_head *list)
2396 {
2397 VM_BUG_ON_PAGE(!PageHead(head), head);
2398 VM_BUG_ON_PAGE(PageCompound(tail), head);
2399 VM_BUG_ON_PAGE(PageLRU(tail), head);
2400 lockdep_assert_held(&lruvec->lru_lock);
2401
2402 if (list) {
2403 /* page reclaim is reclaiming a huge page */
2404 VM_WARN_ON(PageLRU(head));
2405 get_page(tail);
2406 list_add_tail(&tail->lru, list);
2407 } else {
2408 /* head is still on lru (and we have it frozen) */
2409 VM_WARN_ON(!PageLRU(head));
2410 if (PageUnevictable(tail))
2411 tail->mlock_count = 0;
2412 else
2413 list_add_tail(&tail->lru, &head->lru);
2414 SetPageLRU(tail);
2415 }
2416 }
2417
2418 static void __split_huge_page_tail(struct page *head, int tail,
2419 struct lruvec *lruvec, struct list_head *list)
2420 {
2421 struct page *page_tail = head + tail;
2422
2423 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2424
2425 /*
2426 * Clone page flags before unfreezing refcount.
2427 *
2428 * After successful get_page_unless_zero() might follow flags change,
2429 * for example lock_page() which set PG_waiters.
2430 *
2431 * Note that for mapped sub-pages of an anonymous THP,
2432 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2433 * the migration entry instead from where remap_page() will restore it.
2434 * We can still have PG_anon_exclusive set on effectively unmapped and
2435 * unreferenced sub-pages of an anonymous THP: we can simply drop
2436 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2437 */
2438 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2439 page_tail->flags |= (head->flags &
2440 ((1L << PG_referenced) |
2441 (1L << PG_swapbacked) |
2442 (1L << PG_swapcache) |
2443 (1L << PG_mlocked) |
2444 (1L << PG_uptodate) |
2445 (1L << PG_active) |
2446 (1L << PG_workingset) |
2447 (1L << PG_locked) |
2448 (1L << PG_unevictable) |
2449 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2450 (1L << PG_arch_2) |
2451 (1L << PG_arch_3) |
2452 #endif
2453 (1L << PG_dirty) |
2454 LRU_GEN_MASK | LRU_REFS_MASK));
2455
2456 /* ->mapping in first and second tail page is replaced by other uses */
2457 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2458 page_tail);
2459 page_tail->mapping = head->mapping;
2460 page_tail->index = head->index + tail;
2461
2462 /*
2463 * page->private should not be set in tail pages with the exception
2464 * of swap cache pages that store the swp_entry_t in tail pages.
2465 * Fix up and warn once if private is unexpectedly set.
2466 *
2467 * What of 32-bit systems, on which folio->_pincount overlays
2468 * head[1].private? No problem: THP_SWAP is not enabled on 32-bit, and
2469 * pincount must be 0 for folio_ref_freeze() to have succeeded.
2470 */
2471 if (!folio_test_swapcache(page_folio(head))) {
2472 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2473 page_tail->private = 0;
2474 }
2475
2476 /* Page flags must be visible before we make the page non-compound. */
2477 smp_wmb();
2478
2479 /*
2480 * Clear PageTail before unfreezing page refcount.
2481 *
2482 * After successful get_page_unless_zero() might follow put_page()
2483 * which needs correct compound_head().
2484 */
2485 clear_compound_head(page_tail);
2486
2487 /* Finally unfreeze refcount. Additional reference from page cache. */
2488 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2489 PageSwapCache(head)));
2490
2491 if (page_is_young(head))
2492 set_page_young(page_tail);
2493 if (page_is_idle(head))
2494 set_page_idle(page_tail);
2495
2496 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2497
2498 /*
2499 * always add to the tail because some iterators expect new
2500 * pages to show after the currently processed elements - e.g.
2501 * migrate_pages
2502 */
2503 lru_add_page_tail(head, page_tail, lruvec, list);
2504 }
2505
2506 static void __split_huge_page(struct page *page, struct list_head *list,
2507 pgoff_t end)
2508 {
2509 struct folio *folio = page_folio(page);
2510 struct page *head = &folio->page;
2511 struct lruvec *lruvec;
2512 struct address_space *swap_cache = NULL;
2513 unsigned long offset = 0;
2514 unsigned int nr = thp_nr_pages(head);
2515 int i;
2516
2517 /* complete memcg works before add pages to LRU */
2518 split_page_memcg(head, nr);
2519
2520 if (PageAnon(head) && PageSwapCache(head)) {
2521 swp_entry_t entry = { .val = page_private(head) };
2522
2523 offset = swp_offset(entry);
2524 swap_cache = swap_address_space(entry);
2525 xa_lock(&swap_cache->i_pages);
2526 }
2527
2528 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2529 lruvec = folio_lruvec_lock(folio);
2530
2531 ClearPageHasHWPoisoned(head);
2532
2533 for (i = nr - 1; i >= 1; i--) {
2534 __split_huge_page_tail(head, i, lruvec, list);
2535 /* Some pages can be beyond EOF: drop them from page cache */
2536 if (head[i].index >= end) {
2537 struct folio *tail = page_folio(head + i);
2538
2539 if (shmem_mapping(head->mapping))
2540 shmem_uncharge(head->mapping->host, 1);
2541 else if (folio_test_clear_dirty(tail))
2542 folio_account_cleaned(tail,
2543 inode_to_wb(folio->mapping->host));
2544 __filemap_remove_folio(tail, NULL);
2545 folio_put(tail);
2546 } else if (!PageAnon(page)) {
2547 __xa_store(&head->mapping->i_pages, head[i].index,
2548 head + i, 0);
2549 } else if (swap_cache) {
2550 __xa_store(&swap_cache->i_pages, offset + i,
2551 head + i, 0);
2552 }
2553 }
2554
2555 ClearPageCompound(head);
2556 unlock_page_lruvec(lruvec);
2557 /* Caller disabled irqs, so they are still disabled here */
2558
2559 split_page_owner(head, nr);
2560
2561 /* See comment in __split_huge_page_tail() */
2562 if (PageAnon(head)) {
2563 /* Additional pin to swap cache */
2564 if (PageSwapCache(head)) {
2565 page_ref_add(head, 2);
2566 xa_unlock(&swap_cache->i_pages);
2567 } else {
2568 page_ref_inc(head);
2569 }
2570 } else {
2571 /* Additional pin to page cache */
2572 page_ref_add(head, 2);
2573 xa_unlock(&head->mapping->i_pages);
2574 }
2575 local_irq_enable();
2576
2577 remap_page(folio, nr);
2578
2579 if (PageSwapCache(head)) {
2580 swp_entry_t entry = { .val = page_private(head) };
2581
2582 split_swap_cluster(entry);
2583 }
2584
2585 for (i = 0; i < nr; i++) {
2586 struct page *subpage = head + i;
2587 if (subpage == page)
2588 continue;
2589 unlock_page(subpage);
2590
2591 /*
2592 * Subpages may be freed if there wasn't any mapping
2593 * like if add_to_swap() is running on a lru page that
2594 * had its mapping zapped. And freeing these pages
2595 * requires taking the lru_lock so we do the put_page
2596 * of the tail pages after the split is complete.
2597 */
2598 free_page_and_swap_cache(subpage);
2599 }
2600 }
2601
2602 /* Racy check whether the huge page can be split */
2603 bool can_split_folio(struct folio *folio, int *pextra_pins)
2604 {
2605 int extra_pins;
2606
2607 /* Additional pins from page cache */
2608 if (folio_test_anon(folio))
2609 extra_pins = folio_test_swapcache(folio) ?
2610 folio_nr_pages(folio) : 0;
2611 else
2612 extra_pins = folio_nr_pages(folio);
2613 if (pextra_pins)
2614 *pextra_pins = extra_pins;
2615 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2616 }
2617
2618 /*
2619 * This function splits huge page into normal pages. @page can point to any
2620 * subpage of huge page to split. Split doesn't change the position of @page.
2621 *
2622 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2623 * The huge page must be locked.
2624 *
2625 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2626 *
2627 * Both head page and tail pages will inherit mapping, flags, and so on from
2628 * the hugepage.
2629 *
2630 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2631 * they are not mapped.
2632 *
2633 * Returns 0 if the hugepage is split successfully.
2634 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2635 * us.
2636 */
2637 int split_huge_page_to_list(struct page *page, struct list_head *list)
2638 {
2639 struct folio *folio = page_folio(page);
2640 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2641 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2642 struct anon_vma *anon_vma = NULL;
2643 struct address_space *mapping = NULL;
2644 int extra_pins, ret;
2645 pgoff_t end;
2646 bool is_hzp;
2647
2648 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2649 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2650
2651 is_hzp = is_huge_zero_page(&folio->page);
2652 if (is_hzp) {
2653 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2654 return -EBUSY;
2655 }
2656
2657 if (folio_test_writeback(folio))
2658 return -EBUSY;
2659
2660 if (folio_test_anon(folio)) {
2661 /*
2662 * The caller does not necessarily hold an mmap_lock that would
2663 * prevent the anon_vma disappearing so we first we take a
2664 * reference to it and then lock the anon_vma for write. This
2665 * is similar to folio_lock_anon_vma_read except the write lock
2666 * is taken to serialise against parallel split or collapse
2667 * operations.
2668 */
2669 anon_vma = folio_get_anon_vma(folio);
2670 if (!anon_vma) {
2671 ret = -EBUSY;
2672 goto out;
2673 }
2674 end = -1;
2675 mapping = NULL;
2676 anon_vma_lock_write(anon_vma);
2677 } else {
2678 gfp_t gfp;
2679
2680 mapping = folio->mapping;
2681
2682 /* Truncated ? */
2683 if (!mapping) {
2684 ret = -EBUSY;
2685 goto out;
2686 }
2687
2688 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2689 GFP_RECLAIM_MASK);
2690
2691 if (folio_test_private(folio) &&
2692 !filemap_release_folio(folio, gfp)) {
2693 ret = -EBUSY;
2694 goto out;
2695 }
2696
2697 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2698 if (xas_error(&xas)) {
2699 ret = xas_error(&xas);
2700 goto out;
2701 }
2702
2703 anon_vma = NULL;
2704 i_mmap_lock_read(mapping);
2705
2706 /*
2707 *__split_huge_page() may need to trim off pages beyond EOF:
2708 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2709 * which cannot be nested inside the page tree lock. So note
2710 * end now: i_size itself may be changed at any moment, but
2711 * folio lock is good enough to serialize the trimming.
2712 */
2713 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2714 if (shmem_mapping(mapping))
2715 end = shmem_fallocend(mapping->host, end);
2716 }
2717
2718 /*
2719 * Racy check if we can split the page, before unmap_folio() will
2720 * split PMDs
2721 */
2722 if (!can_split_folio(folio, &extra_pins)) {
2723 ret = -EAGAIN;
2724 goto out_unlock;
2725 }
2726
2727 unmap_folio(folio);
2728
2729 /* block interrupt reentry in xa_lock and spinlock */
2730 local_irq_disable();
2731 if (mapping) {
2732 /*
2733 * Check if the folio is present in page cache.
2734 * We assume all tail are present too, if folio is there.
2735 */
2736 xas_lock(&xas);
2737 xas_reset(&xas);
2738 if (xas_load(&xas) != folio)
2739 goto fail;
2740 }
2741
2742 /* Prevent deferred_split_scan() touching ->_refcount */
2743 spin_lock(&ds_queue->split_queue_lock);
2744 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2745 if (!list_empty(&folio->_deferred_list)) {
2746 ds_queue->split_queue_len--;
2747 list_del(&folio->_deferred_list);
2748 }
2749 spin_unlock(&ds_queue->split_queue_lock);
2750 if (mapping) {
2751 int nr = folio_nr_pages(folio);
2752
2753 xas_split(&xas, folio, folio_order(folio));
2754 if (folio_test_swapbacked(folio)) {
2755 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2756 -nr);
2757 } else {
2758 __lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2759 -nr);
2760 filemap_nr_thps_dec(mapping);
2761 }
2762 }
2763
2764 __split_huge_page(page, list, end);
2765 ret = 0;
2766 } else {
2767 spin_unlock(&ds_queue->split_queue_lock);
2768 fail:
2769 if (mapping)
2770 xas_unlock(&xas);
2771 local_irq_enable();
2772 remap_page(folio, folio_nr_pages(folio));
2773 ret = -EAGAIN;
2774 }
2775
2776 out_unlock:
2777 if (anon_vma) {
2778 anon_vma_unlock_write(anon_vma);
2779 put_anon_vma(anon_vma);
2780 }
2781 if (mapping)
2782 i_mmap_unlock_read(mapping);
2783 out:
2784 xas_destroy(&xas);
2785 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2786 return ret;
2787 }
2788
2789 void free_transhuge_page(struct page *page)
2790 {
2791 struct folio *folio = (struct folio *)page;
2792 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2793 unsigned long flags;
2794
2795 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2796 if (!list_empty(&folio->_deferred_list)) {
2797 ds_queue->split_queue_len--;
2798 list_del(&folio->_deferred_list);
2799 }
2800 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2801 free_compound_page(page);
2802 }
2803
2804 void deferred_split_folio(struct folio *folio)
2805 {
2806 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2807 #ifdef CONFIG_MEMCG
2808 struct mem_cgroup *memcg = folio_memcg(folio);
2809 #endif
2810 unsigned long flags;
2811
2812 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2813
2814 /*
2815 * The try_to_unmap() in page reclaim path might reach here too,
2816 * this may cause a race condition to corrupt deferred split queue.
2817 * And, if page reclaim is already handling the same folio, it is
2818 * unnecessary to handle it again in shrinker.
2819 *
2820 * Check the swapcache flag to determine if the folio is being
2821 * handled by page reclaim since THP swap would add the folio into
2822 * swap cache before calling try_to_unmap().
2823 */
2824 if (folio_test_swapcache(folio))
2825 return;
2826
2827 if (!list_empty(&folio->_deferred_list))
2828 return;
2829
2830 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2831 if (list_empty(&folio->_deferred_list)) {
2832 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2833 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2834 ds_queue->split_queue_len++;
2835 #ifdef CONFIG_MEMCG
2836 if (memcg)
2837 set_shrinker_bit(memcg, folio_nid(folio),
2838 deferred_split_shrinker.id);
2839 #endif
2840 }
2841 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2842 }
2843
2844 static unsigned long deferred_split_count(struct shrinker *shrink,
2845 struct shrink_control *sc)
2846 {
2847 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2848 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2849
2850 #ifdef CONFIG_MEMCG
2851 if (sc->memcg)
2852 ds_queue = &sc->memcg->deferred_split_queue;
2853 #endif
2854 return READ_ONCE(ds_queue->split_queue_len);
2855 }
2856
2857 static unsigned long deferred_split_scan(struct shrinker *shrink,
2858 struct shrink_control *sc)
2859 {
2860 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2861 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2862 unsigned long flags;
2863 LIST_HEAD(list);
2864 struct folio *folio, *next;
2865 int split = 0;
2866
2867 #ifdef CONFIG_MEMCG
2868 if (sc->memcg)
2869 ds_queue = &sc->memcg->deferred_split_queue;
2870 #endif
2871
2872 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2873 /* Take pin on all head pages to avoid freeing them under us */
2874 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2875 _deferred_list) {
2876 if (folio_try_get(folio)) {
2877 list_move(&folio->_deferred_list, &list);
2878 } else {
2879 /* We lost race with folio_put() */
2880 list_del_init(&folio->_deferred_list);
2881 ds_queue->split_queue_len--;
2882 }
2883 if (!--sc->nr_to_scan)
2884 break;
2885 }
2886 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2887
2888 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2889 if (!folio_trylock(folio))
2890 goto next;
2891 /* split_huge_page() removes page from list on success */
2892 if (!split_folio(folio))
2893 split++;
2894 folio_unlock(folio);
2895 next:
2896 folio_put(folio);
2897 }
2898
2899 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2900 list_splice_tail(&list, &ds_queue->split_queue);
2901 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2902
2903 /*
2904 * Stop shrinker if we didn't split any page, but the queue is empty.
2905 * This can happen if pages were freed under us.
2906 */
2907 if (!split && list_empty(&ds_queue->split_queue))
2908 return SHRINK_STOP;
2909 return split;
2910 }
2911
2912 static struct shrinker deferred_split_shrinker = {
2913 .count_objects = deferred_split_count,
2914 .scan_objects = deferred_split_scan,
2915 .seeks = DEFAULT_SEEKS,
2916 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2917 SHRINKER_NONSLAB,
2918 };
2919
2920 #ifdef CONFIG_DEBUG_FS
2921 static void split_huge_pages_all(void)
2922 {
2923 struct zone *zone;
2924 struct page *page;
2925 struct folio *folio;
2926 unsigned long pfn, max_zone_pfn;
2927 unsigned long total = 0, split = 0;
2928
2929 pr_debug("Split all THPs\n");
2930 for_each_zone(zone) {
2931 if (!managed_zone(zone))
2932 continue;
2933 max_zone_pfn = zone_end_pfn(zone);
2934 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2935 int nr_pages;
2936
2937 page = pfn_to_online_page(pfn);
2938 if (!page || PageTail(page))
2939 continue;
2940 folio = page_folio(page);
2941 if (!folio_try_get(folio))
2942 continue;
2943
2944 if (unlikely(page_folio(page) != folio))
2945 goto next;
2946
2947 if (zone != folio_zone(folio))
2948 goto next;
2949
2950 if (!folio_test_large(folio)
2951 || folio_test_hugetlb(folio)
2952 || !folio_test_lru(folio))
2953 goto next;
2954
2955 total++;
2956 folio_lock(folio);
2957 nr_pages = folio_nr_pages(folio);
2958 if (!split_folio(folio))
2959 split++;
2960 pfn += nr_pages - 1;
2961 folio_unlock(folio);
2962 next:
2963 folio_put(folio);
2964 cond_resched();
2965 }
2966 }
2967
2968 pr_debug("%lu of %lu THP split\n", split, total);
2969 }
2970
2971 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2972 {
2973 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2974 is_vm_hugetlb_page(vma);
2975 }
2976
2977 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2978 unsigned long vaddr_end)
2979 {
2980 int ret = 0;
2981 struct task_struct *task;
2982 struct mm_struct *mm;
2983 unsigned long total = 0, split = 0;
2984 unsigned long addr;
2985
2986 vaddr_start &= PAGE_MASK;
2987 vaddr_end &= PAGE_MASK;
2988
2989 /* Find the task_struct from pid */
2990 rcu_read_lock();
2991 task = find_task_by_vpid(pid);
2992 if (!task) {
2993 rcu_read_unlock();
2994 ret = -ESRCH;
2995 goto out;
2996 }
2997 get_task_struct(task);
2998 rcu_read_unlock();
2999
3000 /* Find the mm_struct */
3001 mm = get_task_mm(task);
3002 put_task_struct(task);
3003
3004 if (!mm) {
3005 ret = -EINVAL;
3006 goto out;
3007 }
3008
3009 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3010 pid, vaddr_start, vaddr_end);
3011
3012 mmap_read_lock(mm);
3013 /*
3014 * always increase addr by PAGE_SIZE, since we could have a PTE page
3015 * table filled with PTE-mapped THPs, each of which is distinct.
3016 */
3017 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3018 struct vm_area_struct *vma = vma_lookup(mm, addr);
3019 struct page *page;
3020
3021 if (!vma)
3022 break;
3023
3024 /* skip special VMA and hugetlb VMA */
3025 if (vma_not_suitable_for_thp_split(vma)) {
3026 addr = vma->vm_end;
3027 continue;
3028 }
3029
3030 /* FOLL_DUMP to ignore special (like zero) pages */
3031 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3032
3033 if (IS_ERR_OR_NULL(page))
3034 continue;
3035
3036 if (!is_transparent_hugepage(page))
3037 goto next;
3038
3039 total++;
3040 if (!can_split_folio(page_folio(page), NULL))
3041 goto next;
3042
3043 if (!trylock_page(page))
3044 goto next;
3045
3046 if (!split_huge_page(page))
3047 split++;
3048
3049 unlock_page(page);
3050 next:
3051 put_page(page);
3052 cond_resched();
3053 }
3054 mmap_read_unlock(mm);
3055 mmput(mm);
3056
3057 pr_debug("%lu of %lu THP split\n", split, total);
3058
3059 out:
3060 return ret;
3061 }
3062
3063 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3064 pgoff_t off_end)
3065 {
3066 struct filename *file;
3067 struct file *candidate;
3068 struct address_space *mapping;
3069 int ret = -EINVAL;
3070 pgoff_t index;
3071 int nr_pages = 1;
3072 unsigned long total = 0, split = 0;
3073
3074 file = getname_kernel(file_path);
3075 if (IS_ERR(file))
3076 return ret;
3077
3078 candidate = file_open_name(file, O_RDONLY, 0);
3079 if (IS_ERR(candidate))
3080 goto out;
3081
3082 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3083 file_path, off_start, off_end);
3084
3085 mapping = candidate->f_mapping;
3086
3087 for (index = off_start; index < off_end; index += nr_pages) {
3088 struct folio *folio = filemap_get_folio(mapping, index);
3089
3090 nr_pages = 1;
3091 if (IS_ERR(folio))
3092 continue;
3093
3094 if (!folio_test_large(folio))
3095 goto next;
3096
3097 total++;
3098 nr_pages = folio_nr_pages(folio);
3099
3100 if (!folio_trylock(folio))
3101 goto next;
3102
3103 if (!split_folio(folio))
3104 split++;
3105
3106 folio_unlock(folio);
3107 next:
3108 folio_put(folio);
3109 cond_resched();
3110 }
3111
3112 filp_close(candidate, NULL);
3113 ret = 0;
3114
3115 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3116 out:
3117 putname(file);
3118 return ret;
3119 }
3120
3121 #define MAX_INPUT_BUF_SZ 255
3122
3123 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3124 size_t count, loff_t *ppops)
3125 {
3126 static DEFINE_MUTEX(split_debug_mutex);
3127 ssize_t ret;
3128 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3129 char input_buf[MAX_INPUT_BUF_SZ];
3130 int pid;
3131 unsigned long vaddr_start, vaddr_end;
3132
3133 ret = mutex_lock_interruptible(&split_debug_mutex);
3134 if (ret)
3135 return ret;
3136
3137 ret = -EFAULT;
3138
3139 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3140 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3141 goto out;
3142
3143 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3144
3145 if (input_buf[0] == '/') {
3146 char *tok;
3147 char *buf = input_buf;
3148 char file_path[MAX_INPUT_BUF_SZ];
3149 pgoff_t off_start = 0, off_end = 0;
3150 size_t input_len = strlen(input_buf);
3151
3152 tok = strsep(&buf, ",");
3153 if (tok) {
3154 strcpy(file_path, tok);
3155 } else {
3156 ret = -EINVAL;
3157 goto out;
3158 }
3159
3160 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3161 if (ret != 2) {
3162 ret = -EINVAL;
3163 goto out;
3164 }
3165 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3166 if (!ret)
3167 ret = input_len;
3168
3169 goto out;
3170 }
3171
3172 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3173 if (ret == 1 && pid == 1) {
3174 split_huge_pages_all();
3175 ret = strlen(input_buf);
3176 goto out;
3177 } else if (ret != 3) {
3178 ret = -EINVAL;
3179 goto out;
3180 }
3181
3182 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3183 if (!ret)
3184 ret = strlen(input_buf);
3185 out:
3186 mutex_unlock(&split_debug_mutex);
3187 return ret;
3188
3189 }
3190
3191 static const struct file_operations split_huge_pages_fops = {
3192 .owner = THIS_MODULE,
3193 .write = split_huge_pages_write,
3194 .llseek = no_llseek,
3195 };
3196
3197 static int __init split_huge_pages_debugfs(void)
3198 {
3199 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3200 &split_huge_pages_fops);
3201 return 0;
3202 }
3203 late_initcall(split_huge_pages_debugfs);
3204 #endif
3205
3206 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3207 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3208 struct page *page)
3209 {
3210 struct vm_area_struct *vma = pvmw->vma;
3211 struct mm_struct *mm = vma->vm_mm;
3212 unsigned long address = pvmw->address;
3213 bool anon_exclusive;
3214 pmd_t pmdval;
3215 swp_entry_t entry;
3216 pmd_t pmdswp;
3217
3218 if (!(pvmw->pmd && !pvmw->pte))
3219 return 0;
3220
3221 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3222 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3223
3224 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3225 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3226 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3227 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3228 return -EBUSY;
3229 }
3230
3231 if (pmd_dirty(pmdval))
3232 set_page_dirty(page);
3233 if (pmd_write(pmdval))
3234 entry = make_writable_migration_entry(page_to_pfn(page));
3235 else if (anon_exclusive)
3236 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3237 else
3238 entry = make_readable_migration_entry(page_to_pfn(page));
3239 if (pmd_young(pmdval))
3240 entry = make_migration_entry_young(entry);
3241 if (pmd_dirty(pmdval))
3242 entry = make_migration_entry_dirty(entry);
3243 pmdswp = swp_entry_to_pmd(entry);
3244 if (pmd_soft_dirty(pmdval))
3245 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3246 if (pmd_uffd_wp(pmdval))
3247 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3248 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3249 page_remove_rmap(page, vma, true);
3250 put_page(page);
3251 trace_set_migration_pmd(address, pmd_val(pmdswp));
3252
3253 return 0;
3254 }
3255
3256 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3257 {
3258 struct vm_area_struct *vma = pvmw->vma;
3259 struct mm_struct *mm = vma->vm_mm;
3260 unsigned long address = pvmw->address;
3261 unsigned long haddr = address & HPAGE_PMD_MASK;
3262 pmd_t pmde;
3263 swp_entry_t entry;
3264
3265 if (!(pvmw->pmd && !pvmw->pte))
3266 return;
3267
3268 entry = pmd_to_swp_entry(*pvmw->pmd);
3269 get_page(new);
3270 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3271 if (pmd_swp_soft_dirty(*pvmw->pmd))
3272 pmde = pmd_mksoft_dirty(pmde);
3273 if (is_writable_migration_entry(entry))
3274 pmde = pmd_mkwrite(pmde);
3275 if (pmd_swp_uffd_wp(*pvmw->pmd))
3276 pmde = pmd_mkuffd_wp(pmde);
3277 if (!is_migration_entry_young(entry))
3278 pmde = pmd_mkold(pmde);
3279 /* NOTE: this may contain setting soft-dirty on some archs */
3280 if (PageDirty(new) && is_migration_entry_dirty(entry))
3281 pmde = pmd_mkdirty(pmde);
3282
3283 if (PageAnon(new)) {
3284 rmap_t rmap_flags = RMAP_COMPOUND;
3285
3286 if (!is_readable_migration_entry(entry))
3287 rmap_flags |= RMAP_EXCLUSIVE;
3288
3289 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3290 } else {
3291 page_add_file_rmap(new, vma, true);
3292 }
3293 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3294 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3295
3296 /* No need to invalidate - it was non-present before */
3297 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3298 trace_remove_migration_pmd(address, pmd_val(pmde));
3299 }
3300 #endif