]> git.ipfire.org Git - people/arne_f/kernel.git/blob - mm/huge_memory.c
Linux 4.14.168
[people/arne_f/kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/page_owner.h>
37
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41
42 /*
43 * By default transparent hugepage support is disabled in order that avoid
44 * to risk increase the memory footprint of applications without a guaranteed
45 * benefit. When transparent hugepage support is enabled, is for all mappings,
46 * and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
49 */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60
61 static struct shrinker deferred_split_shrinker;
62
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65
66 static struct page *get_huge_zero_page(void)
67 {
68 struct page *zero_page;
69 retry:
70 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
71 return READ_ONCE(huge_zero_page);
72
73 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
74 HPAGE_PMD_ORDER);
75 if (!zero_page) {
76 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
77 return NULL;
78 }
79 count_vm_event(THP_ZERO_PAGE_ALLOC);
80 preempt_disable();
81 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
82 preempt_enable();
83 __free_pages(zero_page, compound_order(zero_page));
84 goto retry;
85 }
86
87 /* We take additional reference here. It will be put back by shrinker */
88 atomic_set(&huge_zero_refcount, 2);
89 preempt_enable();
90 return READ_ONCE(huge_zero_page);
91 }
92
93 static void put_huge_zero_page(void)
94 {
95 /*
96 * Counter should never go to zero here. Only shrinker can put
97 * last reference.
98 */
99 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
100 }
101
102 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 {
104 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
105 return READ_ONCE(huge_zero_page);
106
107 if (!get_huge_zero_page())
108 return NULL;
109
110 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
111 put_huge_zero_page();
112
113 return READ_ONCE(huge_zero_page);
114 }
115
116 void mm_put_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 put_huge_zero_page();
120 }
121
122 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
123 struct shrink_control *sc)
124 {
125 /* we can free zero page only if last reference remains */
126 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
127 }
128
129 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
130 struct shrink_control *sc)
131 {
132 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
133 struct page *zero_page = xchg(&huge_zero_page, NULL);
134 BUG_ON(zero_page == NULL);
135 __free_pages(zero_page, compound_order(zero_page));
136 return HPAGE_PMD_NR;
137 }
138
139 return 0;
140 }
141
142 static struct shrinker huge_zero_page_shrinker = {
143 .count_objects = shrink_huge_zero_page_count,
144 .scan_objects = shrink_huge_zero_page_scan,
145 .seeks = DEFAULT_SEEKS,
146 };
147
148 #ifdef CONFIG_SYSFS
149 static ssize_t enabled_show(struct kobject *kobj,
150 struct kobj_attribute *attr, char *buf)
151 {
152 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
153 return sprintf(buf, "[always] madvise never\n");
154 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
155 return sprintf(buf, "always [madvise] never\n");
156 else
157 return sprintf(buf, "always madvise [never]\n");
158 }
159
160 static ssize_t enabled_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
163 {
164 ssize_t ret = count;
165
166 if (!memcmp("always", buf,
167 min(sizeof("always")-1, count))) {
168 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
169 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
170 } else if (!memcmp("madvise", buf,
171 min(sizeof("madvise")-1, count))) {
172 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
173 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
174 } else if (!memcmp("never", buf,
175 min(sizeof("never")-1, count))) {
176 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
177 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
178 } else
179 ret = -EINVAL;
180
181 if (ret > 0) {
182 int err = start_stop_khugepaged();
183 if (err)
184 ret = err;
185 }
186 return ret;
187 }
188 static struct kobj_attribute enabled_attr =
189 __ATTR(enabled, 0644, enabled_show, enabled_store);
190
191 ssize_t single_hugepage_flag_show(struct kobject *kobj,
192 struct kobj_attribute *attr, char *buf,
193 enum transparent_hugepage_flag flag)
194 {
195 return sprintf(buf, "%d\n",
196 !!test_bit(flag, &transparent_hugepage_flags));
197 }
198
199 ssize_t single_hugepage_flag_store(struct kobject *kobj,
200 struct kobj_attribute *attr,
201 const char *buf, size_t count,
202 enum transparent_hugepage_flag flag)
203 {
204 unsigned long value;
205 int ret;
206
207 ret = kstrtoul(buf, 10, &value);
208 if (ret < 0)
209 return ret;
210 if (value > 1)
211 return -EINVAL;
212
213 if (value)
214 set_bit(flag, &transparent_hugepage_flags);
215 else
216 clear_bit(flag, &transparent_hugepage_flags);
217
218 return count;
219 }
220
221 static ssize_t defrag_show(struct kobject *kobj,
222 struct kobj_attribute *attr, char *buf)
223 {
224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
225 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
227 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
228 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
229 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
230 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
231 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
232 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
233 }
234
235 static ssize_t defrag_store(struct kobject *kobj,
236 struct kobj_attribute *attr,
237 const char *buf, size_t count)
238 {
239 if (!memcmp("always", buf,
240 min(sizeof("always")-1, count))) {
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
244 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
245 } else if (!memcmp("defer+madvise", buf,
246 min(sizeof("defer+madvise")-1, count))) {
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
250 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
251 } else if (!memcmp("defer", buf,
252 min(sizeof("defer")-1, count))) {
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
256 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 } else if (!memcmp("madvise", buf,
258 min(sizeof("madvise")-1, count))) {
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 } else if (!memcmp("never", buf,
264 min(sizeof("never")-1, count))) {
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 } else
270 return -EINVAL;
271
272 return count;
273 }
274 static struct kobj_attribute defrag_attr =
275 __ATTR(defrag, 0644, defrag_show, defrag_store);
276
277 static ssize_t use_zero_page_show(struct kobject *kobj,
278 struct kobj_attribute *attr, char *buf)
279 {
280 return single_hugepage_flag_show(kobj, attr, buf,
281 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282 }
283 static ssize_t use_zero_page_store(struct kobject *kobj,
284 struct kobj_attribute *attr, const char *buf, size_t count)
285 {
286 return single_hugepage_flag_store(kobj, attr, buf, count,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static struct kobj_attribute use_zero_page_attr =
290 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291
292 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
293 struct kobj_attribute *attr, char *buf)
294 {
295 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296 }
297 static struct kobj_attribute hpage_pmd_size_attr =
298 __ATTR_RO(hpage_pmd_size);
299
300 #ifdef CONFIG_DEBUG_VM
301 static ssize_t debug_cow_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
303 {
304 return single_hugepage_flag_show(kobj, attr, buf,
305 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306 }
307 static ssize_t debug_cow_store(struct kobject *kobj,
308 struct kobj_attribute *attr,
309 const char *buf, size_t count)
310 {
311 return single_hugepage_flag_store(kobj, attr, buf, count,
312 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 }
314 static struct kobj_attribute debug_cow_attr =
315 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
316 #endif /* CONFIG_DEBUG_VM */
317
318 static struct attribute *hugepage_attr[] = {
319 &enabled_attr.attr,
320 &defrag_attr.attr,
321 &use_zero_page_attr.attr,
322 &hpage_pmd_size_attr.attr,
323 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
324 &shmem_enabled_attr.attr,
325 #endif
326 #ifdef CONFIG_DEBUG_VM
327 &debug_cow_attr.attr,
328 #endif
329 NULL,
330 };
331
332 static const struct attribute_group hugepage_attr_group = {
333 .attrs = hugepage_attr,
334 };
335
336 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 {
338 int err;
339
340 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
341 if (unlikely(!*hugepage_kobj)) {
342 pr_err("failed to create transparent hugepage kobject\n");
343 return -ENOMEM;
344 }
345
346 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
347 if (err) {
348 pr_err("failed to register transparent hugepage group\n");
349 goto delete_obj;
350 }
351
352 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
353 if (err) {
354 pr_err("failed to register transparent hugepage group\n");
355 goto remove_hp_group;
356 }
357
358 return 0;
359
360 remove_hp_group:
361 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
362 delete_obj:
363 kobject_put(*hugepage_kobj);
364 return err;
365 }
366
367 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 {
369 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
370 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
371 kobject_put(hugepage_kobj);
372 }
373 #else
374 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 {
376 return 0;
377 }
378
379 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380 {
381 }
382 #endif /* CONFIG_SYSFS */
383
384 static int __init hugepage_init(void)
385 {
386 int err;
387 struct kobject *hugepage_kobj;
388
389 if (!has_transparent_hugepage()) {
390 transparent_hugepage_flags = 0;
391 return -EINVAL;
392 }
393
394 /*
395 * hugepages can't be allocated by the buddy allocator
396 */
397 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 /*
399 * we use page->mapping and page->index in second tail page
400 * as list_head: assuming THP order >= 2
401 */
402 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403
404 err = hugepage_init_sysfs(&hugepage_kobj);
405 if (err)
406 goto err_sysfs;
407
408 err = khugepaged_init();
409 if (err)
410 goto err_slab;
411
412 err = register_shrinker(&huge_zero_page_shrinker);
413 if (err)
414 goto err_hzp_shrinker;
415 err = register_shrinker(&deferred_split_shrinker);
416 if (err)
417 goto err_split_shrinker;
418
419 /*
420 * By default disable transparent hugepages on smaller systems,
421 * where the extra memory used could hurt more than TLB overhead
422 * is likely to save. The admin can still enable it through /sys.
423 */
424 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
425 transparent_hugepage_flags = 0;
426 return 0;
427 }
428
429 err = start_stop_khugepaged();
430 if (err)
431 goto err_khugepaged;
432
433 return 0;
434 err_khugepaged:
435 unregister_shrinker(&deferred_split_shrinker);
436 err_split_shrinker:
437 unregister_shrinker(&huge_zero_page_shrinker);
438 err_hzp_shrinker:
439 khugepaged_destroy();
440 err_slab:
441 hugepage_exit_sysfs(hugepage_kobj);
442 err_sysfs:
443 return err;
444 }
445 subsys_initcall(hugepage_init);
446
447 static int __init setup_transparent_hugepage(char *str)
448 {
449 int ret = 0;
450 if (!str)
451 goto out;
452 if (!strcmp(str, "always")) {
453 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
454 &transparent_hugepage_flags);
455 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
456 &transparent_hugepage_flags);
457 ret = 1;
458 } else if (!strcmp(str, "madvise")) {
459 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "never")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 }
471 out:
472 if (!ret)
473 pr_warn("transparent_hugepage= cannot parse, ignored\n");
474 return ret;
475 }
476 __setup("transparent_hugepage=", setup_transparent_hugepage);
477
478 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479 {
480 if (likely(vma->vm_flags & VM_WRITE))
481 pmd = pmd_mkwrite(pmd);
482 return pmd;
483 }
484
485 static inline struct list_head *page_deferred_list(struct page *page)
486 {
487 /*
488 * ->lru in the tail pages is occupied by compound_head.
489 * Let's use ->mapping + ->index in the second tail page as list_head.
490 */
491 return (struct list_head *)&page[2].mapping;
492 }
493
494 void prep_transhuge_page(struct page *page)
495 {
496 /*
497 * we use page->mapping and page->indexlru in second tail page
498 * as list_head: assuming THP order >= 2
499 */
500
501 INIT_LIST_HEAD(page_deferred_list(page));
502 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
503 }
504
505 static unsigned long __thp_get_unmapped_area(struct file *filp,
506 unsigned long addr, unsigned long len,
507 loff_t off, unsigned long flags, unsigned long size)
508 {
509 loff_t off_end = off + len;
510 loff_t off_align = round_up(off, size);
511 unsigned long len_pad, ret;
512
513 if (off_end <= off_align || (off_end - off_align) < size)
514 return 0;
515
516 len_pad = len + size;
517 if (len_pad < len || (off + len_pad) < off)
518 return 0;
519
520 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
521 off >> PAGE_SHIFT, flags);
522
523 /*
524 * The failure might be due to length padding. The caller will retry
525 * without the padding.
526 */
527 if (IS_ERR_VALUE(ret))
528 return 0;
529
530 /*
531 * Do not try to align to THP boundary if allocation at the address
532 * hint succeeds.
533 */
534 if (ret == addr)
535 return addr;
536
537 ret += (off - ret) & (size - 1);
538 return ret;
539 }
540
541 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
542 unsigned long len, unsigned long pgoff, unsigned long flags)
543 {
544 unsigned long ret;
545 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
546
547 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
548 goto out;
549
550 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
551 if (ret)
552 return ret;
553 out:
554 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
555 }
556 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
557
558 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
559 gfp_t gfp)
560 {
561 struct vm_area_struct *vma = vmf->vma;
562 struct mem_cgroup *memcg;
563 pgtable_t pgtable;
564 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
565 int ret = 0;
566
567 VM_BUG_ON_PAGE(!PageCompound(page), page);
568
569 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
570 true)) {
571 put_page(page);
572 count_vm_event(THP_FAULT_FALLBACK);
573 return VM_FAULT_FALLBACK;
574 }
575
576 pgtable = pte_alloc_one(vma->vm_mm, haddr);
577 if (unlikely(!pgtable)) {
578 ret = VM_FAULT_OOM;
579 goto release;
580 }
581
582 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
583 /*
584 * The memory barrier inside __SetPageUptodate makes sure that
585 * clear_huge_page writes become visible before the set_pmd_at()
586 * write.
587 */
588 __SetPageUptodate(page);
589
590 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
591 if (unlikely(!pmd_none(*vmf->pmd))) {
592 goto unlock_release;
593 } else {
594 pmd_t entry;
595
596 ret = check_stable_address_space(vma->vm_mm);
597 if (ret)
598 goto unlock_release;
599
600 /* Deliver the page fault to userland */
601 if (userfaultfd_missing(vma)) {
602 int ret;
603
604 spin_unlock(vmf->ptl);
605 mem_cgroup_cancel_charge(page, memcg, true);
606 put_page(page);
607 pte_free(vma->vm_mm, pgtable);
608 ret = handle_userfault(vmf, VM_UFFD_MISSING);
609 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
610 return ret;
611 }
612
613 entry = mk_huge_pmd(page, vma->vm_page_prot);
614 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
615 page_add_new_anon_rmap(page, vma, haddr, true);
616 mem_cgroup_commit_charge(page, memcg, false, true);
617 lru_cache_add_active_or_unevictable(page, vma);
618 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
619 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
620 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
621 atomic_long_inc(&vma->vm_mm->nr_ptes);
622 spin_unlock(vmf->ptl);
623 count_vm_event(THP_FAULT_ALLOC);
624 }
625
626 return 0;
627 unlock_release:
628 spin_unlock(vmf->ptl);
629 release:
630 if (pgtable)
631 pte_free(vma->vm_mm, pgtable);
632 mem_cgroup_cancel_charge(page, memcg, true);
633 put_page(page);
634 return ret;
635
636 }
637
638 /*
639 * always: directly stall for all thp allocations
640 * defer: wake kswapd and fail if not immediately available
641 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
642 * fail if not immediately available
643 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
644 * available
645 * never: never stall for any thp allocation
646 */
647 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
648 {
649 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
650
651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
652 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
653 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
654 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
656 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
657 __GFP_KSWAPD_RECLAIM);
658 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
659 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
660 0);
661 return GFP_TRANSHUGE_LIGHT;
662 }
663
664 /* Caller must hold page table lock. */
665 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
666 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
667 struct page *zero_page)
668 {
669 pmd_t entry;
670 if (!pmd_none(*pmd))
671 return false;
672 entry = mk_pmd(zero_page, vma->vm_page_prot);
673 entry = pmd_mkhuge(entry);
674 if (pgtable)
675 pgtable_trans_huge_deposit(mm, pmd, pgtable);
676 set_pmd_at(mm, haddr, pmd, entry);
677 atomic_long_inc(&mm->nr_ptes);
678 return true;
679 }
680
681 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
682 {
683 struct vm_area_struct *vma = vmf->vma;
684 gfp_t gfp;
685 struct page *page;
686 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
687
688 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
689 return VM_FAULT_FALLBACK;
690 if (unlikely(anon_vma_prepare(vma)))
691 return VM_FAULT_OOM;
692 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
693 return VM_FAULT_OOM;
694 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
695 !mm_forbids_zeropage(vma->vm_mm) &&
696 transparent_hugepage_use_zero_page()) {
697 pgtable_t pgtable;
698 struct page *zero_page;
699 bool set;
700 int ret;
701 pgtable = pte_alloc_one(vma->vm_mm, haddr);
702 if (unlikely(!pgtable))
703 return VM_FAULT_OOM;
704 zero_page = mm_get_huge_zero_page(vma->vm_mm);
705 if (unlikely(!zero_page)) {
706 pte_free(vma->vm_mm, pgtable);
707 count_vm_event(THP_FAULT_FALLBACK);
708 return VM_FAULT_FALLBACK;
709 }
710 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
711 ret = 0;
712 set = false;
713 if (pmd_none(*vmf->pmd)) {
714 ret = check_stable_address_space(vma->vm_mm);
715 if (ret) {
716 spin_unlock(vmf->ptl);
717 } else if (userfaultfd_missing(vma)) {
718 spin_unlock(vmf->ptl);
719 ret = handle_userfault(vmf, VM_UFFD_MISSING);
720 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
721 } else {
722 set_huge_zero_page(pgtable, vma->vm_mm, vma,
723 haddr, vmf->pmd, zero_page);
724 spin_unlock(vmf->ptl);
725 set = true;
726 }
727 } else
728 spin_unlock(vmf->ptl);
729 if (!set)
730 pte_free(vma->vm_mm, pgtable);
731 return ret;
732 }
733 gfp = alloc_hugepage_direct_gfpmask(vma);
734 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
735 if (unlikely(!page)) {
736 count_vm_event(THP_FAULT_FALLBACK);
737 return VM_FAULT_FALLBACK;
738 }
739 prep_transhuge_page(page);
740 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
741 }
742
743 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
744 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
745 pgtable_t pgtable)
746 {
747 struct mm_struct *mm = vma->vm_mm;
748 pmd_t entry;
749 spinlock_t *ptl;
750
751 ptl = pmd_lock(mm, pmd);
752 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
753 if (pfn_t_devmap(pfn))
754 entry = pmd_mkdevmap(entry);
755 if (write) {
756 entry = pmd_mkyoung(pmd_mkdirty(entry));
757 entry = maybe_pmd_mkwrite(entry, vma);
758 }
759
760 if (pgtable) {
761 pgtable_trans_huge_deposit(mm, pmd, pgtable);
762 atomic_long_inc(&mm->nr_ptes);
763 }
764
765 set_pmd_at(mm, addr, pmd, entry);
766 update_mmu_cache_pmd(vma, addr, pmd);
767 spin_unlock(ptl);
768 }
769
770 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
771 pmd_t *pmd, pfn_t pfn, bool write)
772 {
773 pgprot_t pgprot = vma->vm_page_prot;
774 pgtable_t pgtable = NULL;
775 /*
776 * If we had pmd_special, we could avoid all these restrictions,
777 * but we need to be consistent with PTEs and architectures that
778 * can't support a 'special' bit.
779 */
780 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
781 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
782 (VM_PFNMAP|VM_MIXEDMAP));
783 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
784 BUG_ON(!pfn_t_devmap(pfn));
785
786 if (addr < vma->vm_start || addr >= vma->vm_end)
787 return VM_FAULT_SIGBUS;
788
789 if (arch_needs_pgtable_deposit()) {
790 pgtable = pte_alloc_one(vma->vm_mm, addr);
791 if (!pgtable)
792 return VM_FAULT_OOM;
793 }
794
795 track_pfn_insert(vma, &pgprot, pfn);
796
797 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
798 return VM_FAULT_NOPAGE;
799 }
800 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
801
802 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
803 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
804 {
805 if (likely(vma->vm_flags & VM_WRITE))
806 pud = pud_mkwrite(pud);
807 return pud;
808 }
809
810 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
811 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
812 {
813 struct mm_struct *mm = vma->vm_mm;
814 pud_t entry;
815 spinlock_t *ptl;
816
817 ptl = pud_lock(mm, pud);
818 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
819 if (pfn_t_devmap(pfn))
820 entry = pud_mkdevmap(entry);
821 if (write) {
822 entry = pud_mkyoung(pud_mkdirty(entry));
823 entry = maybe_pud_mkwrite(entry, vma);
824 }
825 set_pud_at(mm, addr, pud, entry);
826 update_mmu_cache_pud(vma, addr, pud);
827 spin_unlock(ptl);
828 }
829
830 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
831 pud_t *pud, pfn_t pfn, bool write)
832 {
833 pgprot_t pgprot = vma->vm_page_prot;
834 /*
835 * If we had pud_special, we could avoid all these restrictions,
836 * but we need to be consistent with PTEs and architectures that
837 * can't support a 'special' bit.
838 */
839 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
840 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
841 (VM_PFNMAP|VM_MIXEDMAP));
842 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
843 BUG_ON(!pfn_t_devmap(pfn));
844
845 if (addr < vma->vm_start || addr >= vma->vm_end)
846 return VM_FAULT_SIGBUS;
847
848 track_pfn_insert(vma, &pgprot, pfn);
849
850 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
851 return VM_FAULT_NOPAGE;
852 }
853 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
854 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
855
856 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
857 pmd_t *pmd, int flags)
858 {
859 pmd_t _pmd;
860
861 _pmd = pmd_mkyoung(*pmd);
862 if (flags & FOLL_WRITE)
863 _pmd = pmd_mkdirty(_pmd);
864 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
865 pmd, _pmd, flags & FOLL_WRITE))
866 update_mmu_cache_pmd(vma, addr, pmd);
867 }
868
869 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
870 pmd_t *pmd, int flags)
871 {
872 unsigned long pfn = pmd_pfn(*pmd);
873 struct mm_struct *mm = vma->vm_mm;
874 struct dev_pagemap *pgmap;
875 struct page *page;
876
877 assert_spin_locked(pmd_lockptr(mm, pmd));
878
879 /*
880 * When we COW a devmap PMD entry, we split it into PTEs, so we should
881 * not be in this function with `flags & FOLL_COW` set.
882 */
883 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
884
885 if (flags & FOLL_WRITE && !pmd_write(*pmd))
886 return NULL;
887
888 if (pmd_present(*pmd) && pmd_devmap(*pmd))
889 /* pass */;
890 else
891 return NULL;
892
893 if (flags & FOLL_TOUCH)
894 touch_pmd(vma, addr, pmd, flags);
895
896 /*
897 * device mapped pages can only be returned if the
898 * caller will manage the page reference count.
899 */
900 if (!(flags & FOLL_GET))
901 return ERR_PTR(-EEXIST);
902
903 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
904 pgmap = get_dev_pagemap(pfn, NULL);
905 if (!pgmap)
906 return ERR_PTR(-EFAULT);
907 page = pfn_to_page(pfn);
908 get_page(page);
909 put_dev_pagemap(pgmap);
910
911 return page;
912 }
913
914 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
916 struct vm_area_struct *vma)
917 {
918 spinlock_t *dst_ptl, *src_ptl;
919 struct page *src_page;
920 pmd_t pmd;
921 pgtable_t pgtable = NULL;
922 int ret = -ENOMEM;
923
924 /* Skip if can be re-fill on fault */
925 if (!vma_is_anonymous(vma))
926 return 0;
927
928 pgtable = pte_alloc_one(dst_mm, addr);
929 if (unlikely(!pgtable))
930 goto out;
931
932 dst_ptl = pmd_lock(dst_mm, dst_pmd);
933 src_ptl = pmd_lockptr(src_mm, src_pmd);
934 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
935
936 ret = -EAGAIN;
937 pmd = *src_pmd;
938
939 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
940 if (unlikely(is_swap_pmd(pmd))) {
941 swp_entry_t entry = pmd_to_swp_entry(pmd);
942
943 VM_BUG_ON(!is_pmd_migration_entry(pmd));
944 if (is_write_migration_entry(entry)) {
945 make_migration_entry_read(&entry);
946 pmd = swp_entry_to_pmd(entry);
947 if (pmd_swp_soft_dirty(*src_pmd))
948 pmd = pmd_swp_mksoft_dirty(pmd);
949 set_pmd_at(src_mm, addr, src_pmd, pmd);
950 }
951 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
952 atomic_long_inc(&dst_mm->nr_ptes);
953 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
954 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
955 ret = 0;
956 goto out_unlock;
957 }
958 #endif
959
960 if (unlikely(!pmd_trans_huge(pmd))) {
961 pte_free(dst_mm, pgtable);
962 goto out_unlock;
963 }
964 /*
965 * When page table lock is held, the huge zero pmd should not be
966 * under splitting since we don't split the page itself, only pmd to
967 * a page table.
968 */
969 if (is_huge_zero_pmd(pmd)) {
970 struct page *zero_page;
971 /*
972 * get_huge_zero_page() will never allocate a new page here,
973 * since we already have a zero page to copy. It just takes a
974 * reference.
975 */
976 zero_page = mm_get_huge_zero_page(dst_mm);
977 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
978 zero_page);
979 ret = 0;
980 goto out_unlock;
981 }
982
983 src_page = pmd_page(pmd);
984 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
985 get_page(src_page);
986 page_dup_rmap(src_page, true);
987 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
988 atomic_long_inc(&dst_mm->nr_ptes);
989 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
990
991 pmdp_set_wrprotect(src_mm, addr, src_pmd);
992 pmd = pmd_mkold(pmd_wrprotect(pmd));
993 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
994
995 ret = 0;
996 out_unlock:
997 spin_unlock(src_ptl);
998 spin_unlock(dst_ptl);
999 out:
1000 return ret;
1001 }
1002
1003 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1004 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1005 pud_t *pud, int flags)
1006 {
1007 pud_t _pud;
1008
1009 _pud = pud_mkyoung(*pud);
1010 if (flags & FOLL_WRITE)
1011 _pud = pud_mkdirty(_pud);
1012 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1013 pud, _pud, flags & FOLL_WRITE))
1014 update_mmu_cache_pud(vma, addr, pud);
1015 }
1016
1017 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1018 pud_t *pud, int flags)
1019 {
1020 unsigned long pfn = pud_pfn(*pud);
1021 struct mm_struct *mm = vma->vm_mm;
1022 struct dev_pagemap *pgmap;
1023 struct page *page;
1024
1025 assert_spin_locked(pud_lockptr(mm, pud));
1026
1027 if (flags & FOLL_WRITE && !pud_write(*pud))
1028 return NULL;
1029
1030 if (pud_present(*pud) && pud_devmap(*pud))
1031 /* pass */;
1032 else
1033 return NULL;
1034
1035 if (flags & FOLL_TOUCH)
1036 touch_pud(vma, addr, pud, flags);
1037
1038 /*
1039 * device mapped pages can only be returned if the
1040 * caller will manage the page reference count.
1041 */
1042 if (!(flags & FOLL_GET))
1043 return ERR_PTR(-EEXIST);
1044
1045 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1046 pgmap = get_dev_pagemap(pfn, NULL);
1047 if (!pgmap)
1048 return ERR_PTR(-EFAULT);
1049 page = pfn_to_page(pfn);
1050 get_page(page);
1051 put_dev_pagemap(pgmap);
1052
1053 return page;
1054 }
1055
1056 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1057 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1058 struct vm_area_struct *vma)
1059 {
1060 spinlock_t *dst_ptl, *src_ptl;
1061 pud_t pud;
1062 int ret;
1063
1064 dst_ptl = pud_lock(dst_mm, dst_pud);
1065 src_ptl = pud_lockptr(src_mm, src_pud);
1066 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1067
1068 ret = -EAGAIN;
1069 pud = *src_pud;
1070 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1071 goto out_unlock;
1072
1073 /*
1074 * When page table lock is held, the huge zero pud should not be
1075 * under splitting since we don't split the page itself, only pud to
1076 * a page table.
1077 */
1078 if (is_huge_zero_pud(pud)) {
1079 /* No huge zero pud yet */
1080 }
1081
1082 pudp_set_wrprotect(src_mm, addr, src_pud);
1083 pud = pud_mkold(pud_wrprotect(pud));
1084 set_pud_at(dst_mm, addr, dst_pud, pud);
1085
1086 ret = 0;
1087 out_unlock:
1088 spin_unlock(src_ptl);
1089 spin_unlock(dst_ptl);
1090 return ret;
1091 }
1092
1093 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1094 {
1095 pud_t entry;
1096 unsigned long haddr;
1097 bool write = vmf->flags & FAULT_FLAG_WRITE;
1098
1099 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1100 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1101 goto unlock;
1102
1103 entry = pud_mkyoung(orig_pud);
1104 if (write)
1105 entry = pud_mkdirty(entry);
1106 haddr = vmf->address & HPAGE_PUD_MASK;
1107 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1108 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1109
1110 unlock:
1111 spin_unlock(vmf->ptl);
1112 }
1113 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1114
1115 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1116 {
1117 pmd_t entry;
1118 unsigned long haddr;
1119 bool write = vmf->flags & FAULT_FLAG_WRITE;
1120
1121 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1122 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1123 goto unlock;
1124
1125 entry = pmd_mkyoung(orig_pmd);
1126 if (write)
1127 entry = pmd_mkdirty(entry);
1128 haddr = vmf->address & HPAGE_PMD_MASK;
1129 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1130 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1131
1132 unlock:
1133 spin_unlock(vmf->ptl);
1134 }
1135
1136 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1137 struct page *page)
1138 {
1139 struct vm_area_struct *vma = vmf->vma;
1140 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1141 struct mem_cgroup *memcg;
1142 pgtable_t pgtable;
1143 pmd_t _pmd;
1144 int ret = 0, i;
1145 struct page **pages;
1146 unsigned long mmun_start; /* For mmu_notifiers */
1147 unsigned long mmun_end; /* For mmu_notifiers */
1148
1149 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1150 GFP_KERNEL);
1151 if (unlikely(!pages)) {
1152 ret |= VM_FAULT_OOM;
1153 goto out;
1154 }
1155
1156 for (i = 0; i < HPAGE_PMD_NR; i++) {
1157 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1158 vmf->address, page_to_nid(page));
1159 if (unlikely(!pages[i] ||
1160 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1161 GFP_KERNEL, &memcg, false))) {
1162 if (pages[i])
1163 put_page(pages[i]);
1164 while (--i >= 0) {
1165 memcg = (void *)page_private(pages[i]);
1166 set_page_private(pages[i], 0);
1167 mem_cgroup_cancel_charge(pages[i], memcg,
1168 false);
1169 put_page(pages[i]);
1170 }
1171 kfree(pages);
1172 ret |= VM_FAULT_OOM;
1173 goto out;
1174 }
1175 set_page_private(pages[i], (unsigned long)memcg);
1176 }
1177
1178 for (i = 0; i < HPAGE_PMD_NR; i++) {
1179 copy_user_highpage(pages[i], page + i,
1180 haddr + PAGE_SIZE * i, vma);
1181 __SetPageUptodate(pages[i]);
1182 cond_resched();
1183 }
1184
1185 mmun_start = haddr;
1186 mmun_end = haddr + HPAGE_PMD_SIZE;
1187 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1188
1189 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1190 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1191 goto out_free_pages;
1192 VM_BUG_ON_PAGE(!PageHead(page), page);
1193
1194 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1195 /* leave pmd empty until pte is filled */
1196
1197 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1198 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1199
1200 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1201 pte_t entry;
1202 entry = mk_pte(pages[i], vma->vm_page_prot);
1203 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1204 memcg = (void *)page_private(pages[i]);
1205 set_page_private(pages[i], 0);
1206 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1207 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1208 lru_cache_add_active_or_unevictable(pages[i], vma);
1209 vmf->pte = pte_offset_map(&_pmd, haddr);
1210 VM_BUG_ON(!pte_none(*vmf->pte));
1211 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1212 pte_unmap(vmf->pte);
1213 }
1214 kfree(pages);
1215
1216 smp_wmb(); /* make pte visible before pmd */
1217 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1218 page_remove_rmap(page, true);
1219 spin_unlock(vmf->ptl);
1220
1221 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1222
1223 ret |= VM_FAULT_WRITE;
1224 put_page(page);
1225
1226 out:
1227 return ret;
1228
1229 out_free_pages:
1230 spin_unlock(vmf->ptl);
1231 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232 for (i = 0; i < HPAGE_PMD_NR; i++) {
1233 memcg = (void *)page_private(pages[i]);
1234 set_page_private(pages[i], 0);
1235 mem_cgroup_cancel_charge(pages[i], memcg, false);
1236 put_page(pages[i]);
1237 }
1238 kfree(pages);
1239 goto out;
1240 }
1241
1242 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1243 {
1244 struct vm_area_struct *vma = vmf->vma;
1245 struct page *page = NULL, *new_page;
1246 struct mem_cgroup *memcg;
1247 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248 unsigned long mmun_start; /* For mmu_notifiers */
1249 unsigned long mmun_end; /* For mmu_notifiers */
1250 gfp_t huge_gfp; /* for allocation and charge */
1251 int ret = 0;
1252
1253 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1255 if (is_huge_zero_pmd(orig_pmd))
1256 goto alloc;
1257 spin_lock(vmf->ptl);
1258 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259 goto out_unlock;
1260
1261 page = pmd_page(orig_pmd);
1262 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263 /*
1264 * We can only reuse the page if nobody else maps the huge page or it's
1265 * part.
1266 */
1267 if (!trylock_page(page)) {
1268 get_page(page);
1269 spin_unlock(vmf->ptl);
1270 lock_page(page);
1271 spin_lock(vmf->ptl);
1272 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273 unlock_page(page);
1274 put_page(page);
1275 goto out_unlock;
1276 }
1277 put_page(page);
1278 }
1279 if (reuse_swap_page(page, NULL)) {
1280 pmd_t entry;
1281 entry = pmd_mkyoung(orig_pmd);
1282 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1284 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285 ret |= VM_FAULT_WRITE;
1286 unlock_page(page);
1287 goto out_unlock;
1288 }
1289 unlock_page(page);
1290 get_page(page);
1291 spin_unlock(vmf->ptl);
1292 alloc:
1293 if (transparent_hugepage_enabled(vma) &&
1294 !transparent_hugepage_debug_cow()) {
1295 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297 } else
1298 new_page = NULL;
1299
1300 if (likely(new_page)) {
1301 prep_transhuge_page(new_page);
1302 } else {
1303 if (!page) {
1304 split_huge_pmd(vma, vmf->pmd, vmf->address);
1305 ret |= VM_FAULT_FALLBACK;
1306 } else {
1307 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308 if (ret & VM_FAULT_OOM) {
1309 split_huge_pmd(vma, vmf->pmd, vmf->address);
1310 ret |= VM_FAULT_FALLBACK;
1311 }
1312 put_page(page);
1313 }
1314 count_vm_event(THP_FAULT_FALLBACK);
1315 goto out;
1316 }
1317
1318 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319 huge_gfp | __GFP_NORETRY, &memcg, true))) {
1320 put_page(new_page);
1321 split_huge_pmd(vma, vmf->pmd, vmf->address);
1322 if (page)
1323 put_page(page);
1324 ret |= VM_FAULT_FALLBACK;
1325 count_vm_event(THP_FAULT_FALLBACK);
1326 goto out;
1327 }
1328
1329 count_vm_event(THP_FAULT_ALLOC);
1330
1331 if (!page)
1332 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333 else
1334 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335 __SetPageUptodate(new_page);
1336
1337 mmun_start = haddr;
1338 mmun_end = haddr + HPAGE_PMD_SIZE;
1339 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340
1341 spin_lock(vmf->ptl);
1342 if (page)
1343 put_page(page);
1344 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345 spin_unlock(vmf->ptl);
1346 mem_cgroup_cancel_charge(new_page, memcg, true);
1347 put_page(new_page);
1348 goto out_mn;
1349 } else {
1350 pmd_t entry;
1351 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354 page_add_new_anon_rmap(new_page, vma, haddr, true);
1355 mem_cgroup_commit_charge(new_page, memcg, false, true);
1356 lru_cache_add_active_or_unevictable(new_page, vma);
1357 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359 if (!page) {
1360 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361 } else {
1362 VM_BUG_ON_PAGE(!PageHead(page), page);
1363 page_remove_rmap(page, true);
1364 put_page(page);
1365 }
1366 ret |= VM_FAULT_WRITE;
1367 }
1368 spin_unlock(vmf->ptl);
1369 out_mn:
1370 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1371 out:
1372 return ret;
1373 out_unlock:
1374 spin_unlock(vmf->ptl);
1375 return ret;
1376 }
1377
1378 /*
1379 * FOLL_FORCE can write to even unwritable pmd's, but only
1380 * after we've gone through a COW cycle and they are dirty.
1381 */
1382 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1383 {
1384 return pmd_write(pmd) ||
1385 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1386 }
1387
1388 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1389 unsigned long addr,
1390 pmd_t *pmd,
1391 unsigned int flags)
1392 {
1393 struct mm_struct *mm = vma->vm_mm;
1394 struct page *page = NULL;
1395
1396 assert_spin_locked(pmd_lockptr(mm, pmd));
1397
1398 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1399 goto out;
1400
1401 /* Avoid dumping huge zero page */
1402 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1403 return ERR_PTR(-EFAULT);
1404
1405 /* Full NUMA hinting faults to serialise migration in fault paths */
1406 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1407 goto out;
1408
1409 page = pmd_page(*pmd);
1410 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1411 if (flags & FOLL_TOUCH)
1412 touch_pmd(vma, addr, pmd, flags);
1413 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1414 /*
1415 * We don't mlock() pte-mapped THPs. This way we can avoid
1416 * leaking mlocked pages into non-VM_LOCKED VMAs.
1417 *
1418 * For anon THP:
1419 *
1420 * In most cases the pmd is the only mapping of the page as we
1421 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1422 * writable private mappings in populate_vma_page_range().
1423 *
1424 * The only scenario when we have the page shared here is if we
1425 * mlocking read-only mapping shared over fork(). We skip
1426 * mlocking such pages.
1427 *
1428 * For file THP:
1429 *
1430 * We can expect PageDoubleMap() to be stable under page lock:
1431 * for file pages we set it in page_add_file_rmap(), which
1432 * requires page to be locked.
1433 */
1434
1435 if (PageAnon(page) && compound_mapcount(page) != 1)
1436 goto skip_mlock;
1437 if (PageDoubleMap(page) || !page->mapping)
1438 goto skip_mlock;
1439 if (!trylock_page(page))
1440 goto skip_mlock;
1441 lru_add_drain();
1442 if (page->mapping && !PageDoubleMap(page))
1443 mlock_vma_page(page);
1444 unlock_page(page);
1445 }
1446 skip_mlock:
1447 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1448 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1449 if (flags & FOLL_GET)
1450 get_page(page);
1451
1452 out:
1453 return page;
1454 }
1455
1456 /* NUMA hinting page fault entry point for trans huge pmds */
1457 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1458 {
1459 struct vm_area_struct *vma = vmf->vma;
1460 struct anon_vma *anon_vma = NULL;
1461 struct page *page;
1462 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1463 int page_nid = -1, this_nid = numa_node_id();
1464 int target_nid, last_cpupid = -1;
1465 bool page_locked;
1466 bool migrated = false;
1467 bool was_writable;
1468 int flags = 0;
1469
1470 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1471 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1472 goto out_unlock;
1473
1474 /*
1475 * If there are potential migrations, wait for completion and retry
1476 * without disrupting NUMA hinting information. Do not relock and
1477 * check_same as the page may no longer be mapped.
1478 */
1479 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1480 page = pmd_page(*vmf->pmd);
1481 if (!get_page_unless_zero(page))
1482 goto out_unlock;
1483 spin_unlock(vmf->ptl);
1484 wait_on_page_locked(page);
1485 put_page(page);
1486 goto out;
1487 }
1488
1489 page = pmd_page(pmd);
1490 BUG_ON(is_huge_zero_page(page));
1491 page_nid = page_to_nid(page);
1492 last_cpupid = page_cpupid_last(page);
1493 count_vm_numa_event(NUMA_HINT_FAULTS);
1494 if (page_nid == this_nid) {
1495 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1496 flags |= TNF_FAULT_LOCAL;
1497 }
1498
1499 /* See similar comment in do_numa_page for explanation */
1500 if (!pmd_savedwrite(pmd))
1501 flags |= TNF_NO_GROUP;
1502
1503 /*
1504 * Acquire the page lock to serialise THP migrations but avoid dropping
1505 * page_table_lock if at all possible
1506 */
1507 page_locked = trylock_page(page);
1508 target_nid = mpol_misplaced(page, vma, haddr);
1509 if (target_nid == -1) {
1510 /* If the page was locked, there are no parallel migrations */
1511 if (page_locked)
1512 goto clear_pmdnuma;
1513 }
1514
1515 /* Migration could have started since the pmd_trans_migrating check */
1516 if (!page_locked) {
1517 page_nid = -1;
1518 if (!get_page_unless_zero(page))
1519 goto out_unlock;
1520 spin_unlock(vmf->ptl);
1521 wait_on_page_locked(page);
1522 put_page(page);
1523 goto out;
1524 }
1525
1526 /*
1527 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1528 * to serialises splits
1529 */
1530 get_page(page);
1531 spin_unlock(vmf->ptl);
1532 anon_vma = page_lock_anon_vma_read(page);
1533
1534 /* Confirm the PMD did not change while page_table_lock was released */
1535 spin_lock(vmf->ptl);
1536 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1537 unlock_page(page);
1538 put_page(page);
1539 page_nid = -1;
1540 goto out_unlock;
1541 }
1542
1543 /* Bail if we fail to protect against THP splits for any reason */
1544 if (unlikely(!anon_vma)) {
1545 put_page(page);
1546 page_nid = -1;
1547 goto clear_pmdnuma;
1548 }
1549
1550 /*
1551 * Since we took the NUMA fault, we must have observed the !accessible
1552 * bit. Make sure all other CPUs agree with that, to avoid them
1553 * modifying the page we're about to migrate.
1554 *
1555 * Must be done under PTL such that we'll observe the relevant
1556 * inc_tlb_flush_pending().
1557 *
1558 * We are not sure a pending tlb flush here is for a huge page
1559 * mapping or not. Hence use the tlb range variant
1560 */
1561 if (mm_tlb_flush_pending(vma->vm_mm))
1562 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1563
1564 /*
1565 * Migrate the THP to the requested node, returns with page unlocked
1566 * and access rights restored.
1567 */
1568 spin_unlock(vmf->ptl);
1569
1570 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1571 vmf->pmd, pmd, vmf->address, page, target_nid);
1572 if (migrated) {
1573 flags |= TNF_MIGRATED;
1574 page_nid = target_nid;
1575 } else
1576 flags |= TNF_MIGRATE_FAIL;
1577
1578 goto out;
1579 clear_pmdnuma:
1580 BUG_ON(!PageLocked(page));
1581 was_writable = pmd_savedwrite(pmd);
1582 pmd = pmd_modify(pmd, vma->vm_page_prot);
1583 pmd = pmd_mkyoung(pmd);
1584 if (was_writable)
1585 pmd = pmd_mkwrite(pmd);
1586 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1587 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1588 unlock_page(page);
1589 out_unlock:
1590 spin_unlock(vmf->ptl);
1591
1592 out:
1593 if (anon_vma)
1594 page_unlock_anon_vma_read(anon_vma);
1595
1596 if (page_nid != -1)
1597 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1598 flags);
1599
1600 return 0;
1601 }
1602
1603 /*
1604 * Return true if we do MADV_FREE successfully on entire pmd page.
1605 * Otherwise, return false.
1606 */
1607 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1608 pmd_t *pmd, unsigned long addr, unsigned long next)
1609 {
1610 spinlock_t *ptl;
1611 pmd_t orig_pmd;
1612 struct page *page;
1613 struct mm_struct *mm = tlb->mm;
1614 bool ret = false;
1615
1616 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1617
1618 ptl = pmd_trans_huge_lock(pmd, vma);
1619 if (!ptl)
1620 goto out_unlocked;
1621
1622 orig_pmd = *pmd;
1623 if (is_huge_zero_pmd(orig_pmd))
1624 goto out;
1625
1626 if (unlikely(!pmd_present(orig_pmd))) {
1627 VM_BUG_ON(thp_migration_supported() &&
1628 !is_pmd_migration_entry(orig_pmd));
1629 goto out;
1630 }
1631
1632 page = pmd_page(orig_pmd);
1633 /*
1634 * If other processes are mapping this page, we couldn't discard
1635 * the page unless they all do MADV_FREE so let's skip the page.
1636 */
1637 if (page_mapcount(page) != 1)
1638 goto out;
1639
1640 if (!trylock_page(page))
1641 goto out;
1642
1643 /*
1644 * If user want to discard part-pages of THP, split it so MADV_FREE
1645 * will deactivate only them.
1646 */
1647 if (next - addr != HPAGE_PMD_SIZE) {
1648 get_page(page);
1649 spin_unlock(ptl);
1650 split_huge_page(page);
1651 unlock_page(page);
1652 put_page(page);
1653 goto out_unlocked;
1654 }
1655
1656 if (PageDirty(page))
1657 ClearPageDirty(page);
1658 unlock_page(page);
1659
1660 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1661 pmdp_invalidate(vma, addr, pmd);
1662 orig_pmd = pmd_mkold(orig_pmd);
1663 orig_pmd = pmd_mkclean(orig_pmd);
1664
1665 set_pmd_at(mm, addr, pmd, orig_pmd);
1666 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1667 }
1668
1669 mark_page_lazyfree(page);
1670 ret = true;
1671 out:
1672 spin_unlock(ptl);
1673 out_unlocked:
1674 return ret;
1675 }
1676
1677 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1678 {
1679 pgtable_t pgtable;
1680
1681 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1682 pte_free(mm, pgtable);
1683 atomic_long_dec(&mm->nr_ptes);
1684 }
1685
1686 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1687 pmd_t *pmd, unsigned long addr)
1688 {
1689 pmd_t orig_pmd;
1690 spinlock_t *ptl;
1691
1692 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1693
1694 ptl = __pmd_trans_huge_lock(pmd, vma);
1695 if (!ptl)
1696 return 0;
1697 /*
1698 * For architectures like ppc64 we look at deposited pgtable
1699 * when calling pmdp_huge_get_and_clear. So do the
1700 * pgtable_trans_huge_withdraw after finishing pmdp related
1701 * operations.
1702 */
1703 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1704 tlb->fullmm);
1705 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1706 if (vma_is_dax(vma)) {
1707 if (arch_needs_pgtable_deposit())
1708 zap_deposited_table(tlb->mm, pmd);
1709 spin_unlock(ptl);
1710 if (is_huge_zero_pmd(orig_pmd))
1711 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1712 } else if (is_huge_zero_pmd(orig_pmd)) {
1713 zap_deposited_table(tlb->mm, pmd);
1714 spin_unlock(ptl);
1715 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1716 } else {
1717 struct page *page = NULL;
1718 int flush_needed = 1;
1719
1720 if (pmd_present(orig_pmd)) {
1721 page = pmd_page(orig_pmd);
1722 page_remove_rmap(page, true);
1723 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1724 VM_BUG_ON_PAGE(!PageHead(page), page);
1725 } else if (thp_migration_supported()) {
1726 swp_entry_t entry;
1727
1728 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1729 entry = pmd_to_swp_entry(orig_pmd);
1730 page = pfn_to_page(swp_offset(entry));
1731 flush_needed = 0;
1732 } else
1733 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1734
1735 if (PageAnon(page)) {
1736 zap_deposited_table(tlb->mm, pmd);
1737 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1738 } else {
1739 if (arch_needs_pgtable_deposit())
1740 zap_deposited_table(tlb->mm, pmd);
1741 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1742 }
1743
1744 spin_unlock(ptl);
1745 if (flush_needed)
1746 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1747 }
1748 return 1;
1749 }
1750
1751 #ifndef pmd_move_must_withdraw
1752 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1753 spinlock_t *old_pmd_ptl,
1754 struct vm_area_struct *vma)
1755 {
1756 /*
1757 * With split pmd lock we also need to move preallocated
1758 * PTE page table if new_pmd is on different PMD page table.
1759 *
1760 * We also don't deposit and withdraw tables for file pages.
1761 */
1762 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1763 }
1764 #endif
1765
1766 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1767 {
1768 #ifdef CONFIG_MEM_SOFT_DIRTY
1769 if (unlikely(is_pmd_migration_entry(pmd)))
1770 pmd = pmd_swp_mksoft_dirty(pmd);
1771 else if (pmd_present(pmd))
1772 pmd = pmd_mksoft_dirty(pmd);
1773 #endif
1774 return pmd;
1775 }
1776
1777 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1778 unsigned long new_addr, unsigned long old_end,
1779 pmd_t *old_pmd, pmd_t *new_pmd)
1780 {
1781 spinlock_t *old_ptl, *new_ptl;
1782 pmd_t pmd;
1783 struct mm_struct *mm = vma->vm_mm;
1784 bool force_flush = false;
1785
1786 if ((old_addr & ~HPAGE_PMD_MASK) ||
1787 (new_addr & ~HPAGE_PMD_MASK) ||
1788 old_end - old_addr < HPAGE_PMD_SIZE)
1789 return false;
1790
1791 /*
1792 * The destination pmd shouldn't be established, free_pgtables()
1793 * should have release it.
1794 */
1795 if (WARN_ON(!pmd_none(*new_pmd))) {
1796 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1797 return false;
1798 }
1799
1800 /*
1801 * We don't have to worry about the ordering of src and dst
1802 * ptlocks because exclusive mmap_sem prevents deadlock.
1803 */
1804 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1805 if (old_ptl) {
1806 new_ptl = pmd_lockptr(mm, new_pmd);
1807 if (new_ptl != old_ptl)
1808 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1809 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1810 if (pmd_present(pmd))
1811 force_flush = true;
1812 VM_BUG_ON(!pmd_none(*new_pmd));
1813
1814 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1815 pgtable_t pgtable;
1816 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1817 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1818 }
1819 pmd = move_soft_dirty_pmd(pmd);
1820 set_pmd_at(mm, new_addr, new_pmd, pmd);
1821 if (force_flush)
1822 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1823 if (new_ptl != old_ptl)
1824 spin_unlock(new_ptl);
1825 spin_unlock(old_ptl);
1826 return true;
1827 }
1828 return false;
1829 }
1830
1831 /*
1832 * Returns
1833 * - 0 if PMD could not be locked
1834 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1835 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1836 */
1837 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1838 unsigned long addr, pgprot_t newprot, int prot_numa)
1839 {
1840 struct mm_struct *mm = vma->vm_mm;
1841 spinlock_t *ptl;
1842 pmd_t entry;
1843 bool preserve_write;
1844 int ret;
1845
1846 ptl = __pmd_trans_huge_lock(pmd, vma);
1847 if (!ptl)
1848 return 0;
1849
1850 preserve_write = prot_numa && pmd_write(*pmd);
1851 ret = 1;
1852
1853 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1854 if (is_swap_pmd(*pmd)) {
1855 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1856
1857 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1858 if (is_write_migration_entry(entry)) {
1859 pmd_t newpmd;
1860 /*
1861 * A protection check is difficult so
1862 * just be safe and disable write
1863 */
1864 make_migration_entry_read(&entry);
1865 newpmd = swp_entry_to_pmd(entry);
1866 if (pmd_swp_soft_dirty(*pmd))
1867 newpmd = pmd_swp_mksoft_dirty(newpmd);
1868 set_pmd_at(mm, addr, pmd, newpmd);
1869 }
1870 goto unlock;
1871 }
1872 #endif
1873
1874 /*
1875 * Avoid trapping faults against the zero page. The read-only
1876 * data is likely to be read-cached on the local CPU and
1877 * local/remote hits to the zero page are not interesting.
1878 */
1879 if (prot_numa && is_huge_zero_pmd(*pmd))
1880 goto unlock;
1881
1882 if (prot_numa && pmd_protnone(*pmd))
1883 goto unlock;
1884
1885 /*
1886 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1887 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1888 * which is also under down_read(mmap_sem):
1889 *
1890 * CPU0: CPU1:
1891 * change_huge_pmd(prot_numa=1)
1892 * pmdp_huge_get_and_clear_notify()
1893 * madvise_dontneed()
1894 * zap_pmd_range()
1895 * pmd_trans_huge(*pmd) == 0 (without ptl)
1896 * // skip the pmd
1897 * set_pmd_at();
1898 * // pmd is re-established
1899 *
1900 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1901 * which may break userspace.
1902 *
1903 * pmdp_invalidate() is required to make sure we don't miss
1904 * dirty/young flags set by hardware.
1905 */
1906 entry = *pmd;
1907 pmdp_invalidate(vma, addr, pmd);
1908
1909 /*
1910 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1911 * corrupt them.
1912 */
1913 if (pmd_dirty(*pmd))
1914 entry = pmd_mkdirty(entry);
1915 if (pmd_young(*pmd))
1916 entry = pmd_mkyoung(entry);
1917
1918 entry = pmd_modify(entry, newprot);
1919 if (preserve_write)
1920 entry = pmd_mk_savedwrite(entry);
1921 ret = HPAGE_PMD_NR;
1922 set_pmd_at(mm, addr, pmd, entry);
1923 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1924 unlock:
1925 spin_unlock(ptl);
1926 return ret;
1927 }
1928
1929 /*
1930 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1931 *
1932 * Note that if it returns page table lock pointer, this routine returns without
1933 * unlocking page table lock. So callers must unlock it.
1934 */
1935 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1936 {
1937 spinlock_t *ptl;
1938 ptl = pmd_lock(vma->vm_mm, pmd);
1939 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1940 pmd_devmap(*pmd)))
1941 return ptl;
1942 spin_unlock(ptl);
1943 return NULL;
1944 }
1945
1946 /*
1947 * Returns true if a given pud maps a thp, false otherwise.
1948 *
1949 * Note that if it returns true, this routine returns without unlocking page
1950 * table lock. So callers must unlock it.
1951 */
1952 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1953 {
1954 spinlock_t *ptl;
1955
1956 ptl = pud_lock(vma->vm_mm, pud);
1957 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1958 return ptl;
1959 spin_unlock(ptl);
1960 return NULL;
1961 }
1962
1963 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1964 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1965 pud_t *pud, unsigned long addr)
1966 {
1967 pud_t orig_pud;
1968 spinlock_t *ptl;
1969
1970 ptl = __pud_trans_huge_lock(pud, vma);
1971 if (!ptl)
1972 return 0;
1973 /*
1974 * For architectures like ppc64 we look at deposited pgtable
1975 * when calling pudp_huge_get_and_clear. So do the
1976 * pgtable_trans_huge_withdraw after finishing pudp related
1977 * operations.
1978 */
1979 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1980 tlb->fullmm);
1981 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1982 if (vma_is_dax(vma)) {
1983 spin_unlock(ptl);
1984 /* No zero page support yet */
1985 } else {
1986 /* No support for anonymous PUD pages yet */
1987 BUG();
1988 }
1989 return 1;
1990 }
1991
1992 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1993 unsigned long haddr)
1994 {
1995 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1996 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1997 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1998 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1999
2000 count_vm_event(THP_SPLIT_PUD);
2001
2002 pudp_huge_clear_flush_notify(vma, haddr, pud);
2003 }
2004
2005 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2006 unsigned long address)
2007 {
2008 spinlock_t *ptl;
2009 struct mm_struct *mm = vma->vm_mm;
2010 unsigned long haddr = address & HPAGE_PUD_MASK;
2011
2012 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2013 ptl = pud_lock(mm, pud);
2014 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2015 goto out;
2016 __split_huge_pud_locked(vma, pud, haddr);
2017
2018 out:
2019 spin_unlock(ptl);
2020 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2021 }
2022 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2023
2024 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2025 unsigned long haddr, pmd_t *pmd)
2026 {
2027 struct mm_struct *mm = vma->vm_mm;
2028 pgtable_t pgtable;
2029 pmd_t _pmd;
2030 int i;
2031
2032 /* leave pmd empty until pte is filled */
2033 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2034
2035 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2036 pmd_populate(mm, &_pmd, pgtable);
2037
2038 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2039 pte_t *pte, entry;
2040 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2041 entry = pte_mkspecial(entry);
2042 pte = pte_offset_map(&_pmd, haddr);
2043 VM_BUG_ON(!pte_none(*pte));
2044 set_pte_at(mm, haddr, pte, entry);
2045 pte_unmap(pte);
2046 }
2047 smp_wmb(); /* make pte visible before pmd */
2048 pmd_populate(mm, pmd, pgtable);
2049 }
2050
2051 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2052 unsigned long haddr, bool freeze)
2053 {
2054 struct mm_struct *mm = vma->vm_mm;
2055 struct page *page;
2056 pgtable_t pgtable;
2057 pmd_t _pmd;
2058 bool young, write, dirty, soft_dirty, pmd_migration = false;
2059 unsigned long addr;
2060 int i;
2061
2062 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2063 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2064 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2065 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2066 && !pmd_devmap(*pmd));
2067
2068 count_vm_event(THP_SPLIT_PMD);
2069
2070 if (!vma_is_anonymous(vma)) {
2071 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2072 /*
2073 * We are going to unmap this huge page. So
2074 * just go ahead and zap it
2075 */
2076 if (arch_needs_pgtable_deposit())
2077 zap_deposited_table(mm, pmd);
2078 if (vma_is_dax(vma))
2079 return;
2080 page = pmd_page(_pmd);
2081 if (!PageDirty(page) && pmd_dirty(_pmd))
2082 set_page_dirty(page);
2083 if (!PageReferenced(page) && pmd_young(_pmd))
2084 SetPageReferenced(page);
2085 page_remove_rmap(page, true);
2086 put_page(page);
2087 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2088 return;
2089 } else if (is_huge_zero_pmd(*pmd)) {
2090 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2091 }
2092
2093 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2094 pmd_migration = is_pmd_migration_entry(*pmd);
2095 if (pmd_migration) {
2096 swp_entry_t entry;
2097
2098 entry = pmd_to_swp_entry(*pmd);
2099 page = pfn_to_page(swp_offset(entry));
2100 } else
2101 #endif
2102 page = pmd_page(*pmd);
2103 VM_BUG_ON_PAGE(!page_count(page), page);
2104 page_ref_add(page, HPAGE_PMD_NR - 1);
2105 write = pmd_write(*pmd);
2106 young = pmd_young(*pmd);
2107 dirty = pmd_dirty(*pmd);
2108 soft_dirty = pmd_soft_dirty(*pmd);
2109
2110 pmdp_huge_split_prepare(vma, haddr, pmd);
2111 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2112 pmd_populate(mm, &_pmd, pgtable);
2113
2114 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2115 pte_t entry, *pte;
2116 /*
2117 * Note that NUMA hinting access restrictions are not
2118 * transferred to avoid any possibility of altering
2119 * permissions across VMAs.
2120 */
2121 if (freeze || pmd_migration) {
2122 swp_entry_t swp_entry;
2123 swp_entry = make_migration_entry(page + i, write);
2124 entry = swp_entry_to_pte(swp_entry);
2125 if (soft_dirty)
2126 entry = pte_swp_mksoft_dirty(entry);
2127 } else {
2128 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2129 entry = maybe_mkwrite(entry, vma);
2130 if (!write)
2131 entry = pte_wrprotect(entry);
2132 if (!young)
2133 entry = pte_mkold(entry);
2134 if (soft_dirty)
2135 entry = pte_mksoft_dirty(entry);
2136 }
2137 if (dirty)
2138 SetPageDirty(page + i);
2139 pte = pte_offset_map(&_pmd, addr);
2140 BUG_ON(!pte_none(*pte));
2141 set_pte_at(mm, addr, pte, entry);
2142 atomic_inc(&page[i]._mapcount);
2143 pte_unmap(pte);
2144 }
2145
2146 /*
2147 * Set PG_double_map before dropping compound_mapcount to avoid
2148 * false-negative page_mapped().
2149 */
2150 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2151 for (i = 0; i < HPAGE_PMD_NR; i++)
2152 atomic_inc(&page[i]._mapcount);
2153 }
2154
2155 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2156 /* Last compound_mapcount is gone. */
2157 __dec_node_page_state(page, NR_ANON_THPS);
2158 if (TestClearPageDoubleMap(page)) {
2159 /* No need in mapcount reference anymore */
2160 for (i = 0; i < HPAGE_PMD_NR; i++)
2161 atomic_dec(&page[i]._mapcount);
2162 }
2163 }
2164
2165 smp_wmb(); /* make pte visible before pmd */
2166 /*
2167 * Up to this point the pmd is present and huge and userland has the
2168 * whole access to the hugepage during the split (which happens in
2169 * place). If we overwrite the pmd with the not-huge version pointing
2170 * to the pte here (which of course we could if all CPUs were bug
2171 * free), userland could trigger a small page size TLB miss on the
2172 * small sized TLB while the hugepage TLB entry is still established in
2173 * the huge TLB. Some CPU doesn't like that.
2174 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2175 * 383 on page 93. Intel should be safe but is also warns that it's
2176 * only safe if the permission and cache attributes of the two entries
2177 * loaded in the two TLB is identical (which should be the case here).
2178 * But it is generally safer to never allow small and huge TLB entries
2179 * for the same virtual address to be loaded simultaneously. So instead
2180 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2181 * current pmd notpresent (atomically because here the pmd_trans_huge
2182 * and pmd_trans_splitting must remain set at all times on the pmd
2183 * until the split is complete for this pmd), then we flush the SMP TLB
2184 * and finally we write the non-huge version of the pmd entry with
2185 * pmd_populate.
2186 */
2187 pmdp_invalidate(vma, haddr, pmd);
2188 pmd_populate(mm, pmd, pgtable);
2189
2190 if (freeze) {
2191 for (i = 0; i < HPAGE_PMD_NR; i++) {
2192 page_remove_rmap(page + i, false);
2193 put_page(page + i);
2194 }
2195 }
2196 }
2197
2198 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2199 unsigned long address, bool freeze, struct page *page)
2200 {
2201 spinlock_t *ptl;
2202 struct mm_struct *mm = vma->vm_mm;
2203 unsigned long haddr = address & HPAGE_PMD_MASK;
2204
2205 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2206 ptl = pmd_lock(mm, pmd);
2207
2208 /*
2209 * If caller asks to setup a migration entries, we need a page to check
2210 * pmd against. Otherwise we can end up replacing wrong page.
2211 */
2212 VM_BUG_ON(freeze && !page);
2213 if (page && page != pmd_page(*pmd))
2214 goto out;
2215
2216 if (pmd_trans_huge(*pmd)) {
2217 page = pmd_page(*pmd);
2218 if (PageMlocked(page))
2219 clear_page_mlock(page);
2220 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2221 goto out;
2222 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2223 out:
2224 spin_unlock(ptl);
2225 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2226 }
2227
2228 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2229 bool freeze, struct page *page)
2230 {
2231 pgd_t *pgd;
2232 p4d_t *p4d;
2233 pud_t *pud;
2234 pmd_t *pmd;
2235
2236 pgd = pgd_offset(vma->vm_mm, address);
2237 if (!pgd_present(*pgd))
2238 return;
2239
2240 p4d = p4d_offset(pgd, address);
2241 if (!p4d_present(*p4d))
2242 return;
2243
2244 pud = pud_offset(p4d, address);
2245 if (!pud_present(*pud))
2246 return;
2247
2248 pmd = pmd_offset(pud, address);
2249
2250 __split_huge_pmd(vma, pmd, address, freeze, page);
2251 }
2252
2253 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2254 unsigned long start,
2255 unsigned long end,
2256 long adjust_next)
2257 {
2258 /*
2259 * If the new start address isn't hpage aligned and it could
2260 * previously contain an hugepage: check if we need to split
2261 * an huge pmd.
2262 */
2263 if (start & ~HPAGE_PMD_MASK &&
2264 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2265 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2266 split_huge_pmd_address(vma, start, false, NULL);
2267
2268 /*
2269 * If the new end address isn't hpage aligned and it could
2270 * previously contain an hugepage: check if we need to split
2271 * an huge pmd.
2272 */
2273 if (end & ~HPAGE_PMD_MASK &&
2274 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2275 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2276 split_huge_pmd_address(vma, end, false, NULL);
2277
2278 /*
2279 * If we're also updating the vma->vm_next->vm_start, if the new
2280 * vm_next->vm_start isn't page aligned and it could previously
2281 * contain an hugepage: check if we need to split an huge pmd.
2282 */
2283 if (adjust_next > 0) {
2284 struct vm_area_struct *next = vma->vm_next;
2285 unsigned long nstart = next->vm_start;
2286 nstart += adjust_next << PAGE_SHIFT;
2287 if (nstart & ~HPAGE_PMD_MASK &&
2288 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2289 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2290 split_huge_pmd_address(next, nstart, false, NULL);
2291 }
2292 }
2293
2294 static void unmap_page(struct page *page)
2295 {
2296 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2297 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2298 bool unmap_success;
2299
2300 VM_BUG_ON_PAGE(!PageHead(page), page);
2301
2302 if (PageAnon(page))
2303 ttu_flags |= TTU_SPLIT_FREEZE;
2304
2305 unmap_success = try_to_unmap(page, ttu_flags);
2306 VM_BUG_ON_PAGE(!unmap_success, page);
2307 }
2308
2309 static void remap_page(struct page *page)
2310 {
2311 int i;
2312 if (PageTransHuge(page)) {
2313 remove_migration_ptes(page, page, true);
2314 } else {
2315 for (i = 0; i < HPAGE_PMD_NR; i++)
2316 remove_migration_ptes(page + i, page + i, true);
2317 }
2318 }
2319
2320 static void __split_huge_page_tail(struct page *head, int tail,
2321 struct lruvec *lruvec, struct list_head *list)
2322 {
2323 struct page *page_tail = head + tail;
2324
2325 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2326
2327 /*
2328 * Clone page flags before unfreezing refcount.
2329 *
2330 * After successful get_page_unless_zero() might follow flags change,
2331 * for exmaple lock_page() which set PG_waiters.
2332 */
2333 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2334 page_tail->flags |= (head->flags &
2335 ((1L << PG_referenced) |
2336 (1L << PG_swapbacked) |
2337 (1L << PG_swapcache) |
2338 (1L << PG_mlocked) |
2339 (1L << PG_uptodate) |
2340 (1L << PG_active) |
2341 (1L << PG_locked) |
2342 (1L << PG_unevictable) |
2343 (1L << PG_dirty)));
2344
2345 /* ->mapping in first tail page is compound_mapcount */
2346 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2347 page_tail);
2348 page_tail->mapping = head->mapping;
2349 page_tail->index = head->index + tail;
2350
2351 /* Page flags must be visible before we make the page non-compound. */
2352 smp_wmb();
2353
2354 /*
2355 * Clear PageTail before unfreezing page refcount.
2356 *
2357 * After successful get_page_unless_zero() might follow put_page()
2358 * which needs correct compound_head().
2359 */
2360 clear_compound_head(page_tail);
2361
2362 /* Finally unfreeze refcount. Additional reference from page cache. */
2363 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2364 PageSwapCache(head)));
2365
2366 if (page_is_young(head))
2367 set_page_young(page_tail);
2368 if (page_is_idle(head))
2369 set_page_idle(page_tail);
2370
2371 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2372 lru_add_page_tail(head, page_tail, lruvec, list);
2373 }
2374
2375 static void __split_huge_page(struct page *page, struct list_head *list,
2376 pgoff_t end, unsigned long flags)
2377 {
2378 struct page *head = compound_head(page);
2379 struct zone *zone = page_zone(head);
2380 struct lruvec *lruvec;
2381 int i;
2382
2383 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2384
2385 /* complete memcg works before add pages to LRU */
2386 mem_cgroup_split_huge_fixup(head);
2387
2388 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2389 __split_huge_page_tail(head, i, lruvec, list);
2390 /* Some pages can be beyond i_size: drop them from page cache */
2391 if (head[i].index >= end) {
2392 ClearPageDirty(head + i);
2393 __delete_from_page_cache(head + i, NULL);
2394 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2395 shmem_uncharge(head->mapping->host, 1);
2396 put_page(head + i);
2397 }
2398 }
2399
2400 ClearPageCompound(head);
2401
2402 split_page_owner(head, HPAGE_PMD_ORDER);
2403
2404 /* See comment in __split_huge_page_tail() */
2405 if (PageAnon(head)) {
2406 /* Additional pin to radix tree of swap cache */
2407 if (PageSwapCache(head))
2408 page_ref_add(head, 2);
2409 else
2410 page_ref_inc(head);
2411 } else {
2412 /* Additional pin to radix tree */
2413 page_ref_add(head, 2);
2414 spin_unlock(&head->mapping->tree_lock);
2415 }
2416
2417 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2418
2419 remap_page(head);
2420
2421 for (i = 0; i < HPAGE_PMD_NR; i++) {
2422 struct page *subpage = head + i;
2423 if (subpage == page)
2424 continue;
2425 unlock_page(subpage);
2426
2427 /*
2428 * Subpages may be freed if there wasn't any mapping
2429 * like if add_to_swap() is running on a lru page that
2430 * had its mapping zapped. And freeing these pages
2431 * requires taking the lru_lock so we do the put_page
2432 * of the tail pages after the split is complete.
2433 */
2434 put_page(subpage);
2435 }
2436 }
2437
2438 int total_mapcount(struct page *page)
2439 {
2440 int i, compound, ret;
2441
2442 VM_BUG_ON_PAGE(PageTail(page), page);
2443
2444 if (likely(!PageCompound(page)))
2445 return atomic_read(&page->_mapcount) + 1;
2446
2447 compound = compound_mapcount(page);
2448 if (PageHuge(page))
2449 return compound;
2450 ret = compound;
2451 for (i = 0; i < HPAGE_PMD_NR; i++)
2452 ret += atomic_read(&page[i]._mapcount) + 1;
2453 /* File pages has compound_mapcount included in _mapcount */
2454 if (!PageAnon(page))
2455 return ret - compound * HPAGE_PMD_NR;
2456 if (PageDoubleMap(page))
2457 ret -= HPAGE_PMD_NR;
2458 return ret;
2459 }
2460
2461 /*
2462 * This calculates accurately how many mappings a transparent hugepage
2463 * has (unlike page_mapcount() which isn't fully accurate). This full
2464 * accuracy is primarily needed to know if copy-on-write faults can
2465 * reuse the page and change the mapping to read-write instead of
2466 * copying them. At the same time this returns the total_mapcount too.
2467 *
2468 * The function returns the highest mapcount any one of the subpages
2469 * has. If the return value is one, even if different processes are
2470 * mapping different subpages of the transparent hugepage, they can
2471 * all reuse it, because each process is reusing a different subpage.
2472 *
2473 * The total_mapcount is instead counting all virtual mappings of the
2474 * subpages. If the total_mapcount is equal to "one", it tells the
2475 * caller all mappings belong to the same "mm" and in turn the
2476 * anon_vma of the transparent hugepage can become the vma->anon_vma
2477 * local one as no other process may be mapping any of the subpages.
2478 *
2479 * It would be more accurate to replace page_mapcount() with
2480 * page_trans_huge_mapcount(), however we only use
2481 * page_trans_huge_mapcount() in the copy-on-write faults where we
2482 * need full accuracy to avoid breaking page pinning, because
2483 * page_trans_huge_mapcount() is slower than page_mapcount().
2484 */
2485 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2486 {
2487 int i, ret, _total_mapcount, mapcount;
2488
2489 /* hugetlbfs shouldn't call it */
2490 VM_BUG_ON_PAGE(PageHuge(page), page);
2491
2492 if (likely(!PageTransCompound(page))) {
2493 mapcount = atomic_read(&page->_mapcount) + 1;
2494 if (total_mapcount)
2495 *total_mapcount = mapcount;
2496 return mapcount;
2497 }
2498
2499 page = compound_head(page);
2500
2501 _total_mapcount = ret = 0;
2502 for (i = 0; i < HPAGE_PMD_NR; i++) {
2503 mapcount = atomic_read(&page[i]._mapcount) + 1;
2504 ret = max(ret, mapcount);
2505 _total_mapcount += mapcount;
2506 }
2507 if (PageDoubleMap(page)) {
2508 ret -= 1;
2509 _total_mapcount -= HPAGE_PMD_NR;
2510 }
2511 mapcount = compound_mapcount(page);
2512 ret += mapcount;
2513 _total_mapcount += mapcount;
2514 if (total_mapcount)
2515 *total_mapcount = _total_mapcount;
2516 return ret;
2517 }
2518
2519 /* Racy check whether the huge page can be split */
2520 bool can_split_huge_page(struct page *page, int *pextra_pins)
2521 {
2522 int extra_pins;
2523
2524 /* Additional pins from radix tree */
2525 if (PageAnon(page))
2526 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2527 else
2528 extra_pins = HPAGE_PMD_NR;
2529 if (pextra_pins)
2530 *pextra_pins = extra_pins;
2531 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2532 }
2533
2534 /*
2535 * This function splits huge page into normal pages. @page can point to any
2536 * subpage of huge page to split. Split doesn't change the position of @page.
2537 *
2538 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2539 * The huge page must be locked.
2540 *
2541 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2542 *
2543 * Both head page and tail pages will inherit mapping, flags, and so on from
2544 * the hugepage.
2545 *
2546 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2547 * they are not mapped.
2548 *
2549 * Returns 0 if the hugepage is split successfully.
2550 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2551 * us.
2552 */
2553 int split_huge_page_to_list(struct page *page, struct list_head *list)
2554 {
2555 struct page *head = compound_head(page);
2556 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2557 struct anon_vma *anon_vma = NULL;
2558 struct address_space *mapping = NULL;
2559 int count, mapcount, extra_pins, ret;
2560 bool mlocked;
2561 unsigned long flags;
2562 pgoff_t end;
2563
2564 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2565 VM_BUG_ON_PAGE(!PageLocked(page), page);
2566 VM_BUG_ON_PAGE(!PageCompound(page), page);
2567
2568 if (PageWriteback(page))
2569 return -EBUSY;
2570
2571 if (PageAnon(head)) {
2572 /*
2573 * The caller does not necessarily hold an mmap_sem that would
2574 * prevent the anon_vma disappearing so we first we take a
2575 * reference to it and then lock the anon_vma for write. This
2576 * is similar to page_lock_anon_vma_read except the write lock
2577 * is taken to serialise against parallel split or collapse
2578 * operations.
2579 */
2580 anon_vma = page_get_anon_vma(head);
2581 if (!anon_vma) {
2582 ret = -EBUSY;
2583 goto out;
2584 }
2585 end = -1;
2586 mapping = NULL;
2587 anon_vma_lock_write(anon_vma);
2588 } else {
2589 mapping = head->mapping;
2590
2591 /* Truncated ? */
2592 if (!mapping) {
2593 ret = -EBUSY;
2594 goto out;
2595 }
2596
2597 anon_vma = NULL;
2598 i_mmap_lock_read(mapping);
2599
2600 /*
2601 *__split_huge_page() may need to trim off pages beyond EOF:
2602 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2603 * which cannot be nested inside the page tree lock. So note
2604 * end now: i_size itself may be changed at any moment, but
2605 * head page lock is good enough to serialize the trimming.
2606 */
2607 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2608 }
2609
2610 /*
2611 * Racy check if we can split the page, before unmap_page() will
2612 * split PMDs
2613 */
2614 if (!can_split_huge_page(head, &extra_pins)) {
2615 ret = -EBUSY;
2616 goto out_unlock;
2617 }
2618
2619 mlocked = PageMlocked(page);
2620 unmap_page(head);
2621 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2622
2623 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2624 if (mlocked)
2625 lru_add_drain();
2626
2627 /* prevent PageLRU to go away from under us, and freeze lru stats */
2628 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2629
2630 if (mapping) {
2631 void **pslot;
2632
2633 spin_lock(&mapping->tree_lock);
2634 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2635 page_index(head));
2636 /*
2637 * Check if the head page is present in radix tree.
2638 * We assume all tail are present too, if head is there.
2639 */
2640 if (radix_tree_deref_slot_protected(pslot,
2641 &mapping->tree_lock) != head)
2642 goto fail;
2643 }
2644
2645 /* Prevent deferred_split_scan() touching ->_refcount */
2646 spin_lock(&pgdata->split_queue_lock);
2647 count = page_count(head);
2648 mapcount = total_mapcount(head);
2649 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2650 if (!list_empty(page_deferred_list(head))) {
2651 pgdata->split_queue_len--;
2652 list_del(page_deferred_list(head));
2653 }
2654 if (mapping)
2655 __dec_node_page_state(page, NR_SHMEM_THPS);
2656 spin_unlock(&pgdata->split_queue_lock);
2657 __split_huge_page(page, list, end, flags);
2658 if (PageSwapCache(head)) {
2659 swp_entry_t entry = { .val = page_private(head) };
2660
2661 ret = split_swap_cluster(entry);
2662 } else
2663 ret = 0;
2664 } else {
2665 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2666 pr_alert("total_mapcount: %u, page_count(): %u\n",
2667 mapcount, count);
2668 if (PageTail(page))
2669 dump_page(head, NULL);
2670 dump_page(page, "total_mapcount(head) > 0");
2671 BUG();
2672 }
2673 spin_unlock(&pgdata->split_queue_lock);
2674 fail: if (mapping)
2675 spin_unlock(&mapping->tree_lock);
2676 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2677 remap_page(head);
2678 ret = -EBUSY;
2679 }
2680
2681 out_unlock:
2682 if (anon_vma) {
2683 anon_vma_unlock_write(anon_vma);
2684 put_anon_vma(anon_vma);
2685 }
2686 if (mapping)
2687 i_mmap_unlock_read(mapping);
2688 out:
2689 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2690 return ret;
2691 }
2692
2693 void free_transhuge_page(struct page *page)
2694 {
2695 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2696 unsigned long flags;
2697
2698 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2699 if (!list_empty(page_deferred_list(page))) {
2700 pgdata->split_queue_len--;
2701 list_del(page_deferred_list(page));
2702 }
2703 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2704 free_compound_page(page);
2705 }
2706
2707 void deferred_split_huge_page(struct page *page)
2708 {
2709 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2710 unsigned long flags;
2711
2712 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2713
2714 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2715 if (list_empty(page_deferred_list(page))) {
2716 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2717 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2718 pgdata->split_queue_len++;
2719 }
2720 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2721 }
2722
2723 static unsigned long deferred_split_count(struct shrinker *shrink,
2724 struct shrink_control *sc)
2725 {
2726 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2727 return ACCESS_ONCE(pgdata->split_queue_len);
2728 }
2729
2730 static unsigned long deferred_split_scan(struct shrinker *shrink,
2731 struct shrink_control *sc)
2732 {
2733 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2734 unsigned long flags;
2735 LIST_HEAD(list), *pos, *next;
2736 struct page *page;
2737 int split = 0;
2738
2739 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2740 /* Take pin on all head pages to avoid freeing them under us */
2741 list_for_each_safe(pos, next, &pgdata->split_queue) {
2742 page = list_entry((void *)pos, struct page, mapping);
2743 page = compound_head(page);
2744 if (get_page_unless_zero(page)) {
2745 list_move(page_deferred_list(page), &list);
2746 } else {
2747 /* We lost race with put_compound_page() */
2748 list_del_init(page_deferred_list(page));
2749 pgdata->split_queue_len--;
2750 }
2751 if (!--sc->nr_to_scan)
2752 break;
2753 }
2754 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2755
2756 list_for_each_safe(pos, next, &list) {
2757 page = list_entry((void *)pos, struct page, mapping);
2758 if (!trylock_page(page))
2759 goto next;
2760 /* split_huge_page() removes page from list on success */
2761 if (!split_huge_page(page))
2762 split++;
2763 unlock_page(page);
2764 next:
2765 put_page(page);
2766 }
2767
2768 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2769 list_splice_tail(&list, &pgdata->split_queue);
2770 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2771
2772 /*
2773 * Stop shrinker if we didn't split any page, but the queue is empty.
2774 * This can happen if pages were freed under us.
2775 */
2776 if (!split && list_empty(&pgdata->split_queue))
2777 return SHRINK_STOP;
2778 return split;
2779 }
2780
2781 static struct shrinker deferred_split_shrinker = {
2782 .count_objects = deferred_split_count,
2783 .scan_objects = deferred_split_scan,
2784 .seeks = DEFAULT_SEEKS,
2785 .flags = SHRINKER_NUMA_AWARE,
2786 };
2787
2788 #ifdef CONFIG_DEBUG_FS
2789 static int split_huge_pages_set(void *data, u64 val)
2790 {
2791 struct zone *zone;
2792 struct page *page;
2793 unsigned long pfn, max_zone_pfn;
2794 unsigned long total = 0, split = 0;
2795
2796 if (val != 1)
2797 return -EINVAL;
2798
2799 for_each_populated_zone(zone) {
2800 max_zone_pfn = zone_end_pfn(zone);
2801 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2802 if (!pfn_valid(pfn))
2803 continue;
2804
2805 page = pfn_to_page(pfn);
2806 if (!get_page_unless_zero(page))
2807 continue;
2808
2809 if (zone != page_zone(page))
2810 goto next;
2811
2812 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2813 goto next;
2814
2815 total++;
2816 lock_page(page);
2817 if (!split_huge_page(page))
2818 split++;
2819 unlock_page(page);
2820 next:
2821 put_page(page);
2822 }
2823 }
2824
2825 pr_info("%lu of %lu THP split\n", split, total);
2826
2827 return 0;
2828 }
2829 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2830 "%llu\n");
2831
2832 static int __init split_huge_pages_debugfs(void)
2833 {
2834 void *ret;
2835
2836 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2837 &split_huge_pages_fops);
2838 if (!ret)
2839 pr_warn("Failed to create split_huge_pages in debugfs");
2840 return 0;
2841 }
2842 late_initcall(split_huge_pages_debugfs);
2843 #endif
2844
2845 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2846 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2847 struct page *page)
2848 {
2849 struct vm_area_struct *vma = pvmw->vma;
2850 struct mm_struct *mm = vma->vm_mm;
2851 unsigned long address = pvmw->address;
2852 pmd_t pmdval;
2853 swp_entry_t entry;
2854 pmd_t pmdswp;
2855
2856 if (!(pvmw->pmd && !pvmw->pte))
2857 return;
2858
2859 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2860 pmdval = *pvmw->pmd;
2861 pmdp_invalidate(vma, address, pvmw->pmd);
2862 if (pmd_dirty(pmdval))
2863 set_page_dirty(page);
2864 entry = make_migration_entry(page, pmd_write(pmdval));
2865 pmdswp = swp_entry_to_pmd(entry);
2866 if (pmd_soft_dirty(pmdval))
2867 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2868 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2869 page_remove_rmap(page, true);
2870 put_page(page);
2871 }
2872
2873 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2874 {
2875 struct vm_area_struct *vma = pvmw->vma;
2876 struct mm_struct *mm = vma->vm_mm;
2877 unsigned long address = pvmw->address;
2878 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2879 pmd_t pmde;
2880 swp_entry_t entry;
2881
2882 if (!(pvmw->pmd && !pvmw->pte))
2883 return;
2884
2885 entry = pmd_to_swp_entry(*pvmw->pmd);
2886 get_page(new);
2887 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2888 if (pmd_swp_soft_dirty(*pvmw->pmd))
2889 pmde = pmd_mksoft_dirty(pmde);
2890 if (is_write_migration_entry(entry))
2891 pmde = maybe_pmd_mkwrite(pmde, vma);
2892
2893 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2894 page_add_anon_rmap(new, vma, mmun_start, true);
2895 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2896 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2897 mlock_vma_page(new);
2898 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2899 }
2900 #endif