]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/huge_memory.c
Merge branch 'mediatek-drm-fixes-4.20' of https://github.com/ckhu-mediatek/linux...
[thirdparty/kernel/stable.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 static struct page *get_huge_zero_page(void)
66 {
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
90 }
91
92 static void put_huge_zero_page(void)
93 {
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113 }
114
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119 }
120
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
123 {
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130 {
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
136 }
137
138 return 0;
139 }
140
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
145 };
146
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150 {
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
157 }
158
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162 {
163 ssize_t ret = count;
164
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
179
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
184 }
185 return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193 {
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
196 }
197
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202 {
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
216
217 return count;
218 }
219
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222 {
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237 {
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278 {
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293 {
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302 {
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309 {
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
329 };
330
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
333 };
334
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 int err;
338
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
343 }
344
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
349 }
350
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
355 }
356
357 return 0;
358
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364 }
365
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 return 0;
376 }
377
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382
383 static int __init hugepage_init(void)
384 {
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
406
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
410
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
417
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
426 }
427
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
431
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
443 }
444 subsys_initcall(hugepage_init);
445
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482 }
483
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 /* ->lru in the tail pages is occupied by compound_head. */
487 return &page[2].deferred_list;
488 }
489
490 void prep_transhuge_page(struct page *page)
491 {
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503 {
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523 }
524
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527 {
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541 }
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
544 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 struct page *page, gfp_t gfp)
546 {
547 struct vm_area_struct *vma = vmf->vma;
548 struct mem_cgroup *memcg;
549 pgtable_t pgtable;
550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551 vm_fault_t ret = 0;
552
553 VM_BUG_ON_PAGE(!PageCompound(page), page);
554
555 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
560
561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 if (unlikely(!pgtable)) {
563 ret = VM_FAULT_OOM;
564 goto release;
565 }
566
567 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
573 __SetPageUptodate(page);
574
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
577 goto unlock_release;
578 } else {
579 pmd_t entry;
580
581 ret = check_stable_address_space(vma->vm_mm);
582 if (ret)
583 goto unlock_release;
584
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 vm_fault_t ret2;
588
589 spin_unlock(vmf->ptl);
590 mem_cgroup_cancel_charge(page, memcg, true);
591 put_page(page);
592 pte_free(vma->vm_mm, pgtable);
593 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 return ret2;
596 }
597
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 page_add_new_anon_rmap(page, vma, haddr, true);
601 mem_cgroup_commit_charge(page, memcg, false, true);
602 lru_cache_add_active_or_unevictable(page, vma);
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 mm_inc_nr_ptes(vma->vm_mm);
607 spin_unlock(vmf->ptl);
608 count_vm_event(THP_FAULT_ALLOC);
609 }
610
611 return 0;
612 unlock_release:
613 spin_unlock(vmf->ptl);
614 release:
615 if (pgtable)
616 pte_free(vma->vm_mm, pgtable);
617 mem_cgroup_cancel_charge(page, memcg, true);
618 put_page(page);
619 return ret;
620
621 }
622
623 /*
624 * always: directly stall for all thp allocations
625 * defer: wake kswapd and fail if not immediately available
626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627 * fail if not immediately available
628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629 * available
630 * never: never stall for any thp allocation
631 */
632 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
633 {
634 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
635
636 /* Always do synchronous compaction */
637 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
638 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
639
640 /* Kick kcompactd and fail quickly */
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643
644 /* Synchronous compaction if madvised, otherwise kick kcompactd */
645 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
646 return GFP_TRANSHUGE_LIGHT |
647 (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 __GFP_KSWAPD_RECLAIM);
649
650 /* Only do synchronous compaction if madvised */
651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
652 return GFP_TRANSHUGE_LIGHT |
653 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
654
655 return GFP_TRANSHUGE_LIGHT;
656 }
657
658 /* Caller must hold page table lock. */
659 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
660 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
661 struct page *zero_page)
662 {
663 pmd_t entry;
664 if (!pmd_none(*pmd))
665 return false;
666 entry = mk_pmd(zero_page, vma->vm_page_prot);
667 entry = pmd_mkhuge(entry);
668 if (pgtable)
669 pgtable_trans_huge_deposit(mm, pmd, pgtable);
670 set_pmd_at(mm, haddr, pmd, entry);
671 mm_inc_nr_ptes(mm);
672 return true;
673 }
674
675 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
676 {
677 struct vm_area_struct *vma = vmf->vma;
678 gfp_t gfp;
679 struct page *page;
680 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
681
682 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
683 return VM_FAULT_FALLBACK;
684 if (unlikely(anon_vma_prepare(vma)))
685 return VM_FAULT_OOM;
686 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
687 return VM_FAULT_OOM;
688 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
689 !mm_forbids_zeropage(vma->vm_mm) &&
690 transparent_hugepage_use_zero_page()) {
691 pgtable_t pgtable;
692 struct page *zero_page;
693 bool set;
694 vm_fault_t ret;
695 pgtable = pte_alloc_one(vma->vm_mm, haddr);
696 if (unlikely(!pgtable))
697 return VM_FAULT_OOM;
698 zero_page = mm_get_huge_zero_page(vma->vm_mm);
699 if (unlikely(!zero_page)) {
700 pte_free(vma->vm_mm, pgtable);
701 count_vm_event(THP_FAULT_FALLBACK);
702 return VM_FAULT_FALLBACK;
703 }
704 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
705 ret = 0;
706 set = false;
707 if (pmd_none(*vmf->pmd)) {
708 ret = check_stable_address_space(vma->vm_mm);
709 if (ret) {
710 spin_unlock(vmf->ptl);
711 } else if (userfaultfd_missing(vma)) {
712 spin_unlock(vmf->ptl);
713 ret = handle_userfault(vmf, VM_UFFD_MISSING);
714 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
715 } else {
716 set_huge_zero_page(pgtable, vma->vm_mm, vma,
717 haddr, vmf->pmd, zero_page);
718 spin_unlock(vmf->ptl);
719 set = true;
720 }
721 } else
722 spin_unlock(vmf->ptl);
723 if (!set)
724 pte_free(vma->vm_mm, pgtable);
725 return ret;
726 }
727 gfp = alloc_hugepage_direct_gfpmask(vma);
728 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
729 if (unlikely(!page)) {
730 count_vm_event(THP_FAULT_FALLBACK);
731 return VM_FAULT_FALLBACK;
732 }
733 prep_transhuge_page(page);
734 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
735 }
736
737 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
738 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
739 pgtable_t pgtable)
740 {
741 struct mm_struct *mm = vma->vm_mm;
742 pmd_t entry;
743 spinlock_t *ptl;
744
745 ptl = pmd_lock(mm, pmd);
746 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
747 if (pfn_t_devmap(pfn))
748 entry = pmd_mkdevmap(entry);
749 if (write) {
750 entry = pmd_mkyoung(pmd_mkdirty(entry));
751 entry = maybe_pmd_mkwrite(entry, vma);
752 }
753
754 if (pgtable) {
755 pgtable_trans_huge_deposit(mm, pmd, pgtable);
756 mm_inc_nr_ptes(mm);
757 }
758
759 set_pmd_at(mm, addr, pmd, entry);
760 update_mmu_cache_pmd(vma, addr, pmd);
761 spin_unlock(ptl);
762 }
763
764 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
765 pmd_t *pmd, pfn_t pfn, bool write)
766 {
767 pgprot_t pgprot = vma->vm_page_prot;
768 pgtable_t pgtable = NULL;
769 /*
770 * If we had pmd_special, we could avoid all these restrictions,
771 * but we need to be consistent with PTEs and architectures that
772 * can't support a 'special' bit.
773 */
774 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
775 !pfn_t_devmap(pfn));
776 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
777 (VM_PFNMAP|VM_MIXEDMAP));
778 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
779
780 if (addr < vma->vm_start || addr >= vma->vm_end)
781 return VM_FAULT_SIGBUS;
782
783 if (arch_needs_pgtable_deposit()) {
784 pgtable = pte_alloc_one(vma->vm_mm, addr);
785 if (!pgtable)
786 return VM_FAULT_OOM;
787 }
788
789 track_pfn_insert(vma, &pgprot, pfn);
790
791 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
792 return VM_FAULT_NOPAGE;
793 }
794 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
795
796 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
797 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
798 {
799 if (likely(vma->vm_flags & VM_WRITE))
800 pud = pud_mkwrite(pud);
801 return pud;
802 }
803
804 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
805 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
806 {
807 struct mm_struct *mm = vma->vm_mm;
808 pud_t entry;
809 spinlock_t *ptl;
810
811 ptl = pud_lock(mm, pud);
812 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
813 if (pfn_t_devmap(pfn))
814 entry = pud_mkdevmap(entry);
815 if (write) {
816 entry = pud_mkyoung(pud_mkdirty(entry));
817 entry = maybe_pud_mkwrite(entry, vma);
818 }
819 set_pud_at(mm, addr, pud, entry);
820 update_mmu_cache_pud(vma, addr, pud);
821 spin_unlock(ptl);
822 }
823
824 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
825 pud_t *pud, pfn_t pfn, bool write)
826 {
827 pgprot_t pgprot = vma->vm_page_prot;
828 /*
829 * If we had pud_special, we could avoid all these restrictions,
830 * but we need to be consistent with PTEs and architectures that
831 * can't support a 'special' bit.
832 */
833 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
834 !pfn_t_devmap(pfn));
835 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
836 (VM_PFNMAP|VM_MIXEDMAP));
837 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
838
839 if (addr < vma->vm_start || addr >= vma->vm_end)
840 return VM_FAULT_SIGBUS;
841
842 track_pfn_insert(vma, &pgprot, pfn);
843
844 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
845 return VM_FAULT_NOPAGE;
846 }
847 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
848 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
849
850 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
851 pmd_t *pmd, int flags)
852 {
853 pmd_t _pmd;
854
855 _pmd = pmd_mkyoung(*pmd);
856 if (flags & FOLL_WRITE)
857 _pmd = pmd_mkdirty(_pmd);
858 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
859 pmd, _pmd, flags & FOLL_WRITE))
860 update_mmu_cache_pmd(vma, addr, pmd);
861 }
862
863 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
864 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
865 {
866 unsigned long pfn = pmd_pfn(*pmd);
867 struct mm_struct *mm = vma->vm_mm;
868 struct page *page;
869
870 assert_spin_locked(pmd_lockptr(mm, pmd));
871
872 /*
873 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 * not be in this function with `flags & FOLL_COW` set.
875 */
876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877
878 if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 return NULL;
880
881 if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 /* pass */;
883 else
884 return NULL;
885
886 if (flags & FOLL_TOUCH)
887 touch_pmd(vma, addr, pmd, flags);
888
889 /*
890 * device mapped pages can only be returned if the
891 * caller will manage the page reference count.
892 */
893 if (!(flags & FOLL_GET))
894 return ERR_PTR(-EEXIST);
895
896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 *pgmap = get_dev_pagemap(pfn, *pgmap);
898 if (!*pgmap)
899 return ERR_PTR(-EFAULT);
900 page = pfn_to_page(pfn);
901 get_page(page);
902
903 return page;
904 }
905
906 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
908 struct vm_area_struct *vma)
909 {
910 spinlock_t *dst_ptl, *src_ptl;
911 struct page *src_page;
912 pmd_t pmd;
913 pgtable_t pgtable = NULL;
914 int ret = -ENOMEM;
915
916 /* Skip if can be re-fill on fault */
917 if (!vma_is_anonymous(vma))
918 return 0;
919
920 pgtable = pte_alloc_one(dst_mm, addr);
921 if (unlikely(!pgtable))
922 goto out;
923
924 dst_ptl = pmd_lock(dst_mm, dst_pmd);
925 src_ptl = pmd_lockptr(src_mm, src_pmd);
926 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
927
928 ret = -EAGAIN;
929 pmd = *src_pmd;
930
931 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
932 if (unlikely(is_swap_pmd(pmd))) {
933 swp_entry_t entry = pmd_to_swp_entry(pmd);
934
935 VM_BUG_ON(!is_pmd_migration_entry(pmd));
936 if (is_write_migration_entry(entry)) {
937 make_migration_entry_read(&entry);
938 pmd = swp_entry_to_pmd(entry);
939 if (pmd_swp_soft_dirty(*src_pmd))
940 pmd = pmd_swp_mksoft_dirty(pmd);
941 set_pmd_at(src_mm, addr, src_pmd, pmd);
942 }
943 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
944 mm_inc_nr_ptes(dst_mm);
945 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
946 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
947 ret = 0;
948 goto out_unlock;
949 }
950 #endif
951
952 if (unlikely(!pmd_trans_huge(pmd))) {
953 pte_free(dst_mm, pgtable);
954 goto out_unlock;
955 }
956 /*
957 * When page table lock is held, the huge zero pmd should not be
958 * under splitting since we don't split the page itself, only pmd to
959 * a page table.
960 */
961 if (is_huge_zero_pmd(pmd)) {
962 struct page *zero_page;
963 /*
964 * get_huge_zero_page() will never allocate a new page here,
965 * since we already have a zero page to copy. It just takes a
966 * reference.
967 */
968 zero_page = mm_get_huge_zero_page(dst_mm);
969 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
970 zero_page);
971 ret = 0;
972 goto out_unlock;
973 }
974
975 src_page = pmd_page(pmd);
976 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
977 get_page(src_page);
978 page_dup_rmap(src_page, true);
979 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
980 mm_inc_nr_ptes(dst_mm);
981 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
982
983 pmdp_set_wrprotect(src_mm, addr, src_pmd);
984 pmd = pmd_mkold(pmd_wrprotect(pmd));
985 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
986
987 ret = 0;
988 out_unlock:
989 spin_unlock(src_ptl);
990 spin_unlock(dst_ptl);
991 out:
992 return ret;
993 }
994
995 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
996 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
997 pud_t *pud, int flags)
998 {
999 pud_t _pud;
1000
1001 _pud = pud_mkyoung(*pud);
1002 if (flags & FOLL_WRITE)
1003 _pud = pud_mkdirty(_pud);
1004 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1005 pud, _pud, flags & FOLL_WRITE))
1006 update_mmu_cache_pud(vma, addr, pud);
1007 }
1008
1009 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1010 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1011 {
1012 unsigned long pfn = pud_pfn(*pud);
1013 struct mm_struct *mm = vma->vm_mm;
1014 struct page *page;
1015
1016 assert_spin_locked(pud_lockptr(mm, pud));
1017
1018 if (flags & FOLL_WRITE && !pud_write(*pud))
1019 return NULL;
1020
1021 if (pud_present(*pud) && pud_devmap(*pud))
1022 /* pass */;
1023 else
1024 return NULL;
1025
1026 if (flags & FOLL_TOUCH)
1027 touch_pud(vma, addr, pud, flags);
1028
1029 /*
1030 * device mapped pages can only be returned if the
1031 * caller will manage the page reference count.
1032 */
1033 if (!(flags & FOLL_GET))
1034 return ERR_PTR(-EEXIST);
1035
1036 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1037 *pgmap = get_dev_pagemap(pfn, *pgmap);
1038 if (!*pgmap)
1039 return ERR_PTR(-EFAULT);
1040 page = pfn_to_page(pfn);
1041 get_page(page);
1042
1043 return page;
1044 }
1045
1046 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1048 struct vm_area_struct *vma)
1049 {
1050 spinlock_t *dst_ptl, *src_ptl;
1051 pud_t pud;
1052 int ret;
1053
1054 dst_ptl = pud_lock(dst_mm, dst_pud);
1055 src_ptl = pud_lockptr(src_mm, src_pud);
1056 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1057
1058 ret = -EAGAIN;
1059 pud = *src_pud;
1060 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1061 goto out_unlock;
1062
1063 /*
1064 * When page table lock is held, the huge zero pud should not be
1065 * under splitting since we don't split the page itself, only pud to
1066 * a page table.
1067 */
1068 if (is_huge_zero_pud(pud)) {
1069 /* No huge zero pud yet */
1070 }
1071
1072 pudp_set_wrprotect(src_mm, addr, src_pud);
1073 pud = pud_mkold(pud_wrprotect(pud));
1074 set_pud_at(dst_mm, addr, dst_pud, pud);
1075
1076 ret = 0;
1077 out_unlock:
1078 spin_unlock(src_ptl);
1079 spin_unlock(dst_ptl);
1080 return ret;
1081 }
1082
1083 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1084 {
1085 pud_t entry;
1086 unsigned long haddr;
1087 bool write = vmf->flags & FAULT_FLAG_WRITE;
1088
1089 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1090 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1091 goto unlock;
1092
1093 entry = pud_mkyoung(orig_pud);
1094 if (write)
1095 entry = pud_mkdirty(entry);
1096 haddr = vmf->address & HPAGE_PUD_MASK;
1097 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1098 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1099
1100 unlock:
1101 spin_unlock(vmf->ptl);
1102 }
1103 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1104
1105 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1106 {
1107 pmd_t entry;
1108 unsigned long haddr;
1109 bool write = vmf->flags & FAULT_FLAG_WRITE;
1110
1111 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1112 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1113 goto unlock;
1114
1115 entry = pmd_mkyoung(orig_pmd);
1116 if (write)
1117 entry = pmd_mkdirty(entry);
1118 haddr = vmf->address & HPAGE_PMD_MASK;
1119 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1120 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1121
1122 unlock:
1123 spin_unlock(vmf->ptl);
1124 }
1125
1126 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1127 pmd_t orig_pmd, struct page *page)
1128 {
1129 struct vm_area_struct *vma = vmf->vma;
1130 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1131 struct mem_cgroup *memcg;
1132 pgtable_t pgtable;
1133 pmd_t _pmd;
1134 int i;
1135 vm_fault_t ret = 0;
1136 struct page **pages;
1137 unsigned long mmun_start; /* For mmu_notifiers */
1138 unsigned long mmun_end; /* For mmu_notifiers */
1139
1140 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1141 GFP_KERNEL);
1142 if (unlikely(!pages)) {
1143 ret |= VM_FAULT_OOM;
1144 goto out;
1145 }
1146
1147 for (i = 0; i < HPAGE_PMD_NR; i++) {
1148 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1149 vmf->address, page_to_nid(page));
1150 if (unlikely(!pages[i] ||
1151 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1152 GFP_KERNEL, &memcg, false))) {
1153 if (pages[i])
1154 put_page(pages[i]);
1155 while (--i >= 0) {
1156 memcg = (void *)page_private(pages[i]);
1157 set_page_private(pages[i], 0);
1158 mem_cgroup_cancel_charge(pages[i], memcg,
1159 false);
1160 put_page(pages[i]);
1161 }
1162 kfree(pages);
1163 ret |= VM_FAULT_OOM;
1164 goto out;
1165 }
1166 set_page_private(pages[i], (unsigned long)memcg);
1167 }
1168
1169 for (i = 0; i < HPAGE_PMD_NR; i++) {
1170 copy_user_highpage(pages[i], page + i,
1171 haddr + PAGE_SIZE * i, vma);
1172 __SetPageUptodate(pages[i]);
1173 cond_resched();
1174 }
1175
1176 mmun_start = haddr;
1177 mmun_end = haddr + HPAGE_PMD_SIZE;
1178 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1179
1180 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1181 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1182 goto out_free_pages;
1183 VM_BUG_ON_PAGE(!PageHead(page), page);
1184
1185 /*
1186 * Leave pmd empty until pte is filled note we must notify here as
1187 * concurrent CPU thread might write to new page before the call to
1188 * mmu_notifier_invalidate_range_end() happens which can lead to a
1189 * device seeing memory write in different order than CPU.
1190 *
1191 * See Documentation/vm/mmu_notifier.rst
1192 */
1193 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1194
1195 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1196 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1197
1198 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1199 pte_t entry;
1200 entry = mk_pte(pages[i], vma->vm_page_prot);
1201 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1202 memcg = (void *)page_private(pages[i]);
1203 set_page_private(pages[i], 0);
1204 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1205 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1206 lru_cache_add_active_or_unevictable(pages[i], vma);
1207 vmf->pte = pte_offset_map(&_pmd, haddr);
1208 VM_BUG_ON(!pte_none(*vmf->pte));
1209 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1210 pte_unmap(vmf->pte);
1211 }
1212 kfree(pages);
1213
1214 smp_wmb(); /* make pte visible before pmd */
1215 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1216 page_remove_rmap(page, true);
1217 spin_unlock(vmf->ptl);
1218
1219 /*
1220 * No need to double call mmu_notifier->invalidate_range() callback as
1221 * the above pmdp_huge_clear_flush_notify() did already call it.
1222 */
1223 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1224 mmun_end);
1225
1226 ret |= VM_FAULT_WRITE;
1227 put_page(page);
1228
1229 out:
1230 return ret;
1231
1232 out_free_pages:
1233 spin_unlock(vmf->ptl);
1234 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1235 for (i = 0; i < HPAGE_PMD_NR; i++) {
1236 memcg = (void *)page_private(pages[i]);
1237 set_page_private(pages[i], 0);
1238 mem_cgroup_cancel_charge(pages[i], memcg, false);
1239 put_page(pages[i]);
1240 }
1241 kfree(pages);
1242 goto out;
1243 }
1244
1245 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1246 {
1247 struct vm_area_struct *vma = vmf->vma;
1248 struct page *page = NULL, *new_page;
1249 struct mem_cgroup *memcg;
1250 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1251 unsigned long mmun_start; /* For mmu_notifiers */
1252 unsigned long mmun_end; /* For mmu_notifiers */
1253 gfp_t huge_gfp; /* for allocation and charge */
1254 vm_fault_t ret = 0;
1255
1256 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1257 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1258 if (is_huge_zero_pmd(orig_pmd))
1259 goto alloc;
1260 spin_lock(vmf->ptl);
1261 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1262 goto out_unlock;
1263
1264 page = pmd_page(orig_pmd);
1265 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1266 /*
1267 * We can only reuse the page if nobody else maps the huge page or it's
1268 * part.
1269 */
1270 if (!trylock_page(page)) {
1271 get_page(page);
1272 spin_unlock(vmf->ptl);
1273 lock_page(page);
1274 spin_lock(vmf->ptl);
1275 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1276 unlock_page(page);
1277 put_page(page);
1278 goto out_unlock;
1279 }
1280 put_page(page);
1281 }
1282 if (reuse_swap_page(page, NULL)) {
1283 pmd_t entry;
1284 entry = pmd_mkyoung(orig_pmd);
1285 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1286 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1287 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1288 ret |= VM_FAULT_WRITE;
1289 unlock_page(page);
1290 goto out_unlock;
1291 }
1292 unlock_page(page);
1293 get_page(page);
1294 spin_unlock(vmf->ptl);
1295 alloc:
1296 if (transparent_hugepage_enabled(vma) &&
1297 !transparent_hugepage_debug_cow()) {
1298 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1299 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1300 } else
1301 new_page = NULL;
1302
1303 if (likely(new_page)) {
1304 prep_transhuge_page(new_page);
1305 } else {
1306 if (!page) {
1307 split_huge_pmd(vma, vmf->pmd, vmf->address);
1308 ret |= VM_FAULT_FALLBACK;
1309 } else {
1310 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1311 if (ret & VM_FAULT_OOM) {
1312 split_huge_pmd(vma, vmf->pmd, vmf->address);
1313 ret |= VM_FAULT_FALLBACK;
1314 }
1315 put_page(page);
1316 }
1317 count_vm_event(THP_FAULT_FALLBACK);
1318 goto out;
1319 }
1320
1321 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1322 huge_gfp, &memcg, true))) {
1323 put_page(new_page);
1324 split_huge_pmd(vma, vmf->pmd, vmf->address);
1325 if (page)
1326 put_page(page);
1327 ret |= VM_FAULT_FALLBACK;
1328 count_vm_event(THP_FAULT_FALLBACK);
1329 goto out;
1330 }
1331
1332 count_vm_event(THP_FAULT_ALLOC);
1333
1334 if (!page)
1335 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1336 else
1337 copy_user_huge_page(new_page, page, vmf->address,
1338 vma, HPAGE_PMD_NR);
1339 __SetPageUptodate(new_page);
1340
1341 mmun_start = haddr;
1342 mmun_end = haddr + HPAGE_PMD_SIZE;
1343 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1344
1345 spin_lock(vmf->ptl);
1346 if (page)
1347 put_page(page);
1348 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1349 spin_unlock(vmf->ptl);
1350 mem_cgroup_cancel_charge(new_page, memcg, true);
1351 put_page(new_page);
1352 goto out_mn;
1353 } else {
1354 pmd_t entry;
1355 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1356 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1357 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1358 page_add_new_anon_rmap(new_page, vma, haddr, true);
1359 mem_cgroup_commit_charge(new_page, memcg, false, true);
1360 lru_cache_add_active_or_unevictable(new_page, vma);
1361 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1362 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1363 if (!page) {
1364 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1365 } else {
1366 VM_BUG_ON_PAGE(!PageHead(page), page);
1367 page_remove_rmap(page, true);
1368 put_page(page);
1369 }
1370 ret |= VM_FAULT_WRITE;
1371 }
1372 spin_unlock(vmf->ptl);
1373 out_mn:
1374 /*
1375 * No need to double call mmu_notifier->invalidate_range() callback as
1376 * the above pmdp_huge_clear_flush_notify() did already call it.
1377 */
1378 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1379 mmun_end);
1380 out:
1381 return ret;
1382 out_unlock:
1383 spin_unlock(vmf->ptl);
1384 return ret;
1385 }
1386
1387 /*
1388 * FOLL_FORCE can write to even unwritable pmd's, but only
1389 * after we've gone through a COW cycle and they are dirty.
1390 */
1391 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1392 {
1393 return pmd_write(pmd) ||
1394 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1395 }
1396
1397 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1398 unsigned long addr,
1399 pmd_t *pmd,
1400 unsigned int flags)
1401 {
1402 struct mm_struct *mm = vma->vm_mm;
1403 struct page *page = NULL;
1404
1405 assert_spin_locked(pmd_lockptr(mm, pmd));
1406
1407 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1408 goto out;
1409
1410 /* Avoid dumping huge zero page */
1411 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1412 return ERR_PTR(-EFAULT);
1413
1414 /* Full NUMA hinting faults to serialise migration in fault paths */
1415 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1416 goto out;
1417
1418 page = pmd_page(*pmd);
1419 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1420 if (flags & FOLL_TOUCH)
1421 touch_pmd(vma, addr, pmd, flags);
1422 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1423 /*
1424 * We don't mlock() pte-mapped THPs. This way we can avoid
1425 * leaking mlocked pages into non-VM_LOCKED VMAs.
1426 *
1427 * For anon THP:
1428 *
1429 * In most cases the pmd is the only mapping of the page as we
1430 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1431 * writable private mappings in populate_vma_page_range().
1432 *
1433 * The only scenario when we have the page shared here is if we
1434 * mlocking read-only mapping shared over fork(). We skip
1435 * mlocking such pages.
1436 *
1437 * For file THP:
1438 *
1439 * We can expect PageDoubleMap() to be stable under page lock:
1440 * for file pages we set it in page_add_file_rmap(), which
1441 * requires page to be locked.
1442 */
1443
1444 if (PageAnon(page) && compound_mapcount(page) != 1)
1445 goto skip_mlock;
1446 if (PageDoubleMap(page) || !page->mapping)
1447 goto skip_mlock;
1448 if (!trylock_page(page))
1449 goto skip_mlock;
1450 lru_add_drain();
1451 if (page->mapping && !PageDoubleMap(page))
1452 mlock_vma_page(page);
1453 unlock_page(page);
1454 }
1455 skip_mlock:
1456 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1457 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1458 if (flags & FOLL_GET)
1459 get_page(page);
1460
1461 out:
1462 return page;
1463 }
1464
1465 /* NUMA hinting page fault entry point for trans huge pmds */
1466 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1467 {
1468 struct vm_area_struct *vma = vmf->vma;
1469 struct anon_vma *anon_vma = NULL;
1470 struct page *page;
1471 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1472 int page_nid = -1, this_nid = numa_node_id();
1473 int target_nid, last_cpupid = -1;
1474 bool page_locked;
1475 bool migrated = false;
1476 bool was_writable;
1477 int flags = 0;
1478
1479 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1480 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1481 goto out_unlock;
1482
1483 /*
1484 * If there are potential migrations, wait for completion and retry
1485 * without disrupting NUMA hinting information. Do not relock and
1486 * check_same as the page may no longer be mapped.
1487 */
1488 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1489 page = pmd_page(*vmf->pmd);
1490 if (!get_page_unless_zero(page))
1491 goto out_unlock;
1492 spin_unlock(vmf->ptl);
1493 wait_on_page_locked(page);
1494 put_page(page);
1495 goto out;
1496 }
1497
1498 page = pmd_page(pmd);
1499 BUG_ON(is_huge_zero_page(page));
1500 page_nid = page_to_nid(page);
1501 last_cpupid = page_cpupid_last(page);
1502 count_vm_numa_event(NUMA_HINT_FAULTS);
1503 if (page_nid == this_nid) {
1504 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1505 flags |= TNF_FAULT_LOCAL;
1506 }
1507
1508 /* See similar comment in do_numa_page for explanation */
1509 if (!pmd_savedwrite(pmd))
1510 flags |= TNF_NO_GROUP;
1511
1512 /*
1513 * Acquire the page lock to serialise THP migrations but avoid dropping
1514 * page_table_lock if at all possible
1515 */
1516 page_locked = trylock_page(page);
1517 target_nid = mpol_misplaced(page, vma, haddr);
1518 if (target_nid == -1) {
1519 /* If the page was locked, there are no parallel migrations */
1520 if (page_locked)
1521 goto clear_pmdnuma;
1522 }
1523
1524 /* Migration could have started since the pmd_trans_migrating check */
1525 if (!page_locked) {
1526 page_nid = -1;
1527 if (!get_page_unless_zero(page))
1528 goto out_unlock;
1529 spin_unlock(vmf->ptl);
1530 wait_on_page_locked(page);
1531 put_page(page);
1532 goto out;
1533 }
1534
1535 /*
1536 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1537 * to serialises splits
1538 */
1539 get_page(page);
1540 spin_unlock(vmf->ptl);
1541 anon_vma = page_lock_anon_vma_read(page);
1542
1543 /* Confirm the PMD did not change while page_table_lock was released */
1544 spin_lock(vmf->ptl);
1545 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1546 unlock_page(page);
1547 put_page(page);
1548 page_nid = -1;
1549 goto out_unlock;
1550 }
1551
1552 /* Bail if we fail to protect against THP splits for any reason */
1553 if (unlikely(!anon_vma)) {
1554 put_page(page);
1555 page_nid = -1;
1556 goto clear_pmdnuma;
1557 }
1558
1559 /*
1560 * Since we took the NUMA fault, we must have observed the !accessible
1561 * bit. Make sure all other CPUs agree with that, to avoid them
1562 * modifying the page we're about to migrate.
1563 *
1564 * Must be done under PTL such that we'll observe the relevant
1565 * inc_tlb_flush_pending().
1566 *
1567 * We are not sure a pending tlb flush here is for a huge page
1568 * mapping or not. Hence use the tlb range variant
1569 */
1570 if (mm_tlb_flush_pending(vma->vm_mm)) {
1571 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1572 /*
1573 * change_huge_pmd() released the pmd lock before
1574 * invalidating the secondary MMUs sharing the primary
1575 * MMU pagetables (with ->invalidate_range()). The
1576 * mmu_notifier_invalidate_range_end() (which
1577 * internally calls ->invalidate_range()) in
1578 * change_pmd_range() will run after us, so we can't
1579 * rely on it here and we need an explicit invalidate.
1580 */
1581 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1582 haddr + HPAGE_PMD_SIZE);
1583 }
1584
1585 /*
1586 * Migrate the THP to the requested node, returns with page unlocked
1587 * and access rights restored.
1588 */
1589 spin_unlock(vmf->ptl);
1590
1591 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1592 vmf->pmd, pmd, vmf->address, page, target_nid);
1593 if (migrated) {
1594 flags |= TNF_MIGRATED;
1595 page_nid = target_nid;
1596 } else
1597 flags |= TNF_MIGRATE_FAIL;
1598
1599 goto out;
1600 clear_pmdnuma:
1601 BUG_ON(!PageLocked(page));
1602 was_writable = pmd_savedwrite(pmd);
1603 pmd = pmd_modify(pmd, vma->vm_page_prot);
1604 pmd = pmd_mkyoung(pmd);
1605 if (was_writable)
1606 pmd = pmd_mkwrite(pmd);
1607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1608 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1609 unlock_page(page);
1610 out_unlock:
1611 spin_unlock(vmf->ptl);
1612
1613 out:
1614 if (anon_vma)
1615 page_unlock_anon_vma_read(anon_vma);
1616
1617 if (page_nid != -1)
1618 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1619 flags);
1620
1621 return 0;
1622 }
1623
1624 /*
1625 * Return true if we do MADV_FREE successfully on entire pmd page.
1626 * Otherwise, return false.
1627 */
1628 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1629 pmd_t *pmd, unsigned long addr, unsigned long next)
1630 {
1631 spinlock_t *ptl;
1632 pmd_t orig_pmd;
1633 struct page *page;
1634 struct mm_struct *mm = tlb->mm;
1635 bool ret = false;
1636
1637 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1638
1639 ptl = pmd_trans_huge_lock(pmd, vma);
1640 if (!ptl)
1641 goto out_unlocked;
1642
1643 orig_pmd = *pmd;
1644 if (is_huge_zero_pmd(orig_pmd))
1645 goto out;
1646
1647 if (unlikely(!pmd_present(orig_pmd))) {
1648 VM_BUG_ON(thp_migration_supported() &&
1649 !is_pmd_migration_entry(orig_pmd));
1650 goto out;
1651 }
1652
1653 page = pmd_page(orig_pmd);
1654 /*
1655 * If other processes are mapping this page, we couldn't discard
1656 * the page unless they all do MADV_FREE so let's skip the page.
1657 */
1658 if (page_mapcount(page) != 1)
1659 goto out;
1660
1661 if (!trylock_page(page))
1662 goto out;
1663
1664 /*
1665 * If user want to discard part-pages of THP, split it so MADV_FREE
1666 * will deactivate only them.
1667 */
1668 if (next - addr != HPAGE_PMD_SIZE) {
1669 get_page(page);
1670 spin_unlock(ptl);
1671 split_huge_page(page);
1672 unlock_page(page);
1673 put_page(page);
1674 goto out_unlocked;
1675 }
1676
1677 if (PageDirty(page))
1678 ClearPageDirty(page);
1679 unlock_page(page);
1680
1681 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1682 pmdp_invalidate(vma, addr, pmd);
1683 orig_pmd = pmd_mkold(orig_pmd);
1684 orig_pmd = pmd_mkclean(orig_pmd);
1685
1686 set_pmd_at(mm, addr, pmd, orig_pmd);
1687 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1688 }
1689
1690 mark_page_lazyfree(page);
1691 ret = true;
1692 out:
1693 spin_unlock(ptl);
1694 out_unlocked:
1695 return ret;
1696 }
1697
1698 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1699 {
1700 pgtable_t pgtable;
1701
1702 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1703 pte_free(mm, pgtable);
1704 mm_dec_nr_ptes(mm);
1705 }
1706
1707 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1708 pmd_t *pmd, unsigned long addr)
1709 {
1710 pmd_t orig_pmd;
1711 spinlock_t *ptl;
1712
1713 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1714
1715 ptl = __pmd_trans_huge_lock(pmd, vma);
1716 if (!ptl)
1717 return 0;
1718 /*
1719 * For architectures like ppc64 we look at deposited pgtable
1720 * when calling pmdp_huge_get_and_clear. So do the
1721 * pgtable_trans_huge_withdraw after finishing pmdp related
1722 * operations.
1723 */
1724 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1725 tlb->fullmm);
1726 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1727 if (vma_is_dax(vma)) {
1728 if (arch_needs_pgtable_deposit())
1729 zap_deposited_table(tlb->mm, pmd);
1730 spin_unlock(ptl);
1731 if (is_huge_zero_pmd(orig_pmd))
1732 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1733 } else if (is_huge_zero_pmd(orig_pmd)) {
1734 zap_deposited_table(tlb->mm, pmd);
1735 spin_unlock(ptl);
1736 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1737 } else {
1738 struct page *page = NULL;
1739 int flush_needed = 1;
1740
1741 if (pmd_present(orig_pmd)) {
1742 page = pmd_page(orig_pmd);
1743 page_remove_rmap(page, true);
1744 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1745 VM_BUG_ON_PAGE(!PageHead(page), page);
1746 } else if (thp_migration_supported()) {
1747 swp_entry_t entry;
1748
1749 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1750 entry = pmd_to_swp_entry(orig_pmd);
1751 page = pfn_to_page(swp_offset(entry));
1752 flush_needed = 0;
1753 } else
1754 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1755
1756 if (PageAnon(page)) {
1757 zap_deposited_table(tlb->mm, pmd);
1758 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1759 } else {
1760 if (arch_needs_pgtable_deposit())
1761 zap_deposited_table(tlb->mm, pmd);
1762 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1763 }
1764
1765 spin_unlock(ptl);
1766 if (flush_needed)
1767 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1768 }
1769 return 1;
1770 }
1771
1772 #ifndef pmd_move_must_withdraw
1773 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1774 spinlock_t *old_pmd_ptl,
1775 struct vm_area_struct *vma)
1776 {
1777 /*
1778 * With split pmd lock we also need to move preallocated
1779 * PTE page table if new_pmd is on different PMD page table.
1780 *
1781 * We also don't deposit and withdraw tables for file pages.
1782 */
1783 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1784 }
1785 #endif
1786
1787 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1788 {
1789 #ifdef CONFIG_MEM_SOFT_DIRTY
1790 if (unlikely(is_pmd_migration_entry(pmd)))
1791 pmd = pmd_swp_mksoft_dirty(pmd);
1792 else if (pmd_present(pmd))
1793 pmd = pmd_mksoft_dirty(pmd);
1794 #endif
1795 return pmd;
1796 }
1797
1798 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1799 unsigned long new_addr, unsigned long old_end,
1800 pmd_t *old_pmd, pmd_t *new_pmd)
1801 {
1802 spinlock_t *old_ptl, *new_ptl;
1803 pmd_t pmd;
1804 struct mm_struct *mm = vma->vm_mm;
1805 bool force_flush = false;
1806
1807 if ((old_addr & ~HPAGE_PMD_MASK) ||
1808 (new_addr & ~HPAGE_PMD_MASK) ||
1809 old_end - old_addr < HPAGE_PMD_SIZE)
1810 return false;
1811
1812 /*
1813 * The destination pmd shouldn't be established, free_pgtables()
1814 * should have release it.
1815 */
1816 if (WARN_ON(!pmd_none(*new_pmd))) {
1817 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1818 return false;
1819 }
1820
1821 /*
1822 * We don't have to worry about the ordering of src and dst
1823 * ptlocks because exclusive mmap_sem prevents deadlock.
1824 */
1825 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1826 if (old_ptl) {
1827 new_ptl = pmd_lockptr(mm, new_pmd);
1828 if (new_ptl != old_ptl)
1829 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1830 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1831 if (pmd_present(pmd))
1832 force_flush = true;
1833 VM_BUG_ON(!pmd_none(*new_pmd));
1834
1835 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1836 pgtable_t pgtable;
1837 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1838 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1839 }
1840 pmd = move_soft_dirty_pmd(pmd);
1841 set_pmd_at(mm, new_addr, new_pmd, pmd);
1842 if (force_flush)
1843 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1844 if (new_ptl != old_ptl)
1845 spin_unlock(new_ptl);
1846 spin_unlock(old_ptl);
1847 return true;
1848 }
1849 return false;
1850 }
1851
1852 /*
1853 * Returns
1854 * - 0 if PMD could not be locked
1855 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1856 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1857 */
1858 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1859 unsigned long addr, pgprot_t newprot, int prot_numa)
1860 {
1861 struct mm_struct *mm = vma->vm_mm;
1862 spinlock_t *ptl;
1863 pmd_t entry;
1864 bool preserve_write;
1865 int ret;
1866
1867 ptl = __pmd_trans_huge_lock(pmd, vma);
1868 if (!ptl)
1869 return 0;
1870
1871 preserve_write = prot_numa && pmd_write(*pmd);
1872 ret = 1;
1873
1874 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1875 if (is_swap_pmd(*pmd)) {
1876 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1877
1878 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1879 if (is_write_migration_entry(entry)) {
1880 pmd_t newpmd;
1881 /*
1882 * A protection check is difficult so
1883 * just be safe and disable write
1884 */
1885 make_migration_entry_read(&entry);
1886 newpmd = swp_entry_to_pmd(entry);
1887 if (pmd_swp_soft_dirty(*pmd))
1888 newpmd = pmd_swp_mksoft_dirty(newpmd);
1889 set_pmd_at(mm, addr, pmd, newpmd);
1890 }
1891 goto unlock;
1892 }
1893 #endif
1894
1895 /*
1896 * Avoid trapping faults against the zero page. The read-only
1897 * data is likely to be read-cached on the local CPU and
1898 * local/remote hits to the zero page are not interesting.
1899 */
1900 if (prot_numa && is_huge_zero_pmd(*pmd))
1901 goto unlock;
1902
1903 if (prot_numa && pmd_protnone(*pmd))
1904 goto unlock;
1905
1906 /*
1907 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1908 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1909 * which is also under down_read(mmap_sem):
1910 *
1911 * CPU0: CPU1:
1912 * change_huge_pmd(prot_numa=1)
1913 * pmdp_huge_get_and_clear_notify()
1914 * madvise_dontneed()
1915 * zap_pmd_range()
1916 * pmd_trans_huge(*pmd) == 0 (without ptl)
1917 * // skip the pmd
1918 * set_pmd_at();
1919 * // pmd is re-established
1920 *
1921 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1922 * which may break userspace.
1923 *
1924 * pmdp_invalidate() is required to make sure we don't miss
1925 * dirty/young flags set by hardware.
1926 */
1927 entry = pmdp_invalidate(vma, addr, pmd);
1928
1929 entry = pmd_modify(entry, newprot);
1930 if (preserve_write)
1931 entry = pmd_mk_savedwrite(entry);
1932 ret = HPAGE_PMD_NR;
1933 set_pmd_at(mm, addr, pmd, entry);
1934 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1935 unlock:
1936 spin_unlock(ptl);
1937 return ret;
1938 }
1939
1940 /*
1941 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1942 *
1943 * Note that if it returns page table lock pointer, this routine returns without
1944 * unlocking page table lock. So callers must unlock it.
1945 */
1946 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1947 {
1948 spinlock_t *ptl;
1949 ptl = pmd_lock(vma->vm_mm, pmd);
1950 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1951 pmd_devmap(*pmd)))
1952 return ptl;
1953 spin_unlock(ptl);
1954 return NULL;
1955 }
1956
1957 /*
1958 * Returns true if a given pud maps a thp, false otherwise.
1959 *
1960 * Note that if it returns true, this routine returns without unlocking page
1961 * table lock. So callers must unlock it.
1962 */
1963 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1964 {
1965 spinlock_t *ptl;
1966
1967 ptl = pud_lock(vma->vm_mm, pud);
1968 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1969 return ptl;
1970 spin_unlock(ptl);
1971 return NULL;
1972 }
1973
1974 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1975 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1976 pud_t *pud, unsigned long addr)
1977 {
1978 pud_t orig_pud;
1979 spinlock_t *ptl;
1980
1981 ptl = __pud_trans_huge_lock(pud, vma);
1982 if (!ptl)
1983 return 0;
1984 /*
1985 * For architectures like ppc64 we look at deposited pgtable
1986 * when calling pudp_huge_get_and_clear. So do the
1987 * pgtable_trans_huge_withdraw after finishing pudp related
1988 * operations.
1989 */
1990 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1991 tlb->fullmm);
1992 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1993 if (vma_is_dax(vma)) {
1994 spin_unlock(ptl);
1995 /* No zero page support yet */
1996 } else {
1997 /* No support for anonymous PUD pages yet */
1998 BUG();
1999 }
2000 return 1;
2001 }
2002
2003 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2004 unsigned long haddr)
2005 {
2006 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2007 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2008 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2009 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2010
2011 count_vm_event(THP_SPLIT_PUD);
2012
2013 pudp_huge_clear_flush_notify(vma, haddr, pud);
2014 }
2015
2016 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2017 unsigned long address)
2018 {
2019 spinlock_t *ptl;
2020 struct mm_struct *mm = vma->vm_mm;
2021 unsigned long haddr = address & HPAGE_PUD_MASK;
2022
2023 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2024 ptl = pud_lock(mm, pud);
2025 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2026 goto out;
2027 __split_huge_pud_locked(vma, pud, haddr);
2028
2029 out:
2030 spin_unlock(ptl);
2031 /*
2032 * No need to double call mmu_notifier->invalidate_range() callback as
2033 * the above pudp_huge_clear_flush_notify() did already call it.
2034 */
2035 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2036 HPAGE_PUD_SIZE);
2037 }
2038 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2039
2040 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2041 unsigned long haddr, pmd_t *pmd)
2042 {
2043 struct mm_struct *mm = vma->vm_mm;
2044 pgtable_t pgtable;
2045 pmd_t _pmd;
2046 int i;
2047
2048 /*
2049 * Leave pmd empty until pte is filled note that it is fine to delay
2050 * notification until mmu_notifier_invalidate_range_end() as we are
2051 * replacing a zero pmd write protected page with a zero pte write
2052 * protected page.
2053 *
2054 * See Documentation/vm/mmu_notifier.rst
2055 */
2056 pmdp_huge_clear_flush(vma, haddr, pmd);
2057
2058 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2059 pmd_populate(mm, &_pmd, pgtable);
2060
2061 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2062 pte_t *pte, entry;
2063 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2064 entry = pte_mkspecial(entry);
2065 pte = pte_offset_map(&_pmd, haddr);
2066 VM_BUG_ON(!pte_none(*pte));
2067 set_pte_at(mm, haddr, pte, entry);
2068 pte_unmap(pte);
2069 }
2070 smp_wmb(); /* make pte visible before pmd */
2071 pmd_populate(mm, pmd, pgtable);
2072 }
2073
2074 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2075 unsigned long haddr, bool freeze)
2076 {
2077 struct mm_struct *mm = vma->vm_mm;
2078 struct page *page;
2079 pgtable_t pgtable;
2080 pmd_t old_pmd, _pmd;
2081 bool young, write, soft_dirty, pmd_migration = false;
2082 unsigned long addr;
2083 int i;
2084
2085 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2086 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2087 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2088 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2089 && !pmd_devmap(*pmd));
2090
2091 count_vm_event(THP_SPLIT_PMD);
2092
2093 if (!vma_is_anonymous(vma)) {
2094 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2095 /*
2096 * We are going to unmap this huge page. So
2097 * just go ahead and zap it
2098 */
2099 if (arch_needs_pgtable_deposit())
2100 zap_deposited_table(mm, pmd);
2101 if (vma_is_dax(vma))
2102 return;
2103 page = pmd_page(_pmd);
2104 if (!PageDirty(page) && pmd_dirty(_pmd))
2105 set_page_dirty(page);
2106 if (!PageReferenced(page) && pmd_young(_pmd))
2107 SetPageReferenced(page);
2108 page_remove_rmap(page, true);
2109 put_page(page);
2110 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2111 return;
2112 } else if (is_huge_zero_pmd(*pmd)) {
2113 /*
2114 * FIXME: Do we want to invalidate secondary mmu by calling
2115 * mmu_notifier_invalidate_range() see comments below inside
2116 * __split_huge_pmd() ?
2117 *
2118 * We are going from a zero huge page write protected to zero
2119 * small page also write protected so it does not seems useful
2120 * to invalidate secondary mmu at this time.
2121 */
2122 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2123 }
2124
2125 /*
2126 * Up to this point the pmd is present and huge and userland has the
2127 * whole access to the hugepage during the split (which happens in
2128 * place). If we overwrite the pmd with the not-huge version pointing
2129 * to the pte here (which of course we could if all CPUs were bug
2130 * free), userland could trigger a small page size TLB miss on the
2131 * small sized TLB while the hugepage TLB entry is still established in
2132 * the huge TLB. Some CPU doesn't like that.
2133 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2134 * 383 on page 93. Intel should be safe but is also warns that it's
2135 * only safe if the permission and cache attributes of the two entries
2136 * loaded in the two TLB is identical (which should be the case here).
2137 * But it is generally safer to never allow small and huge TLB entries
2138 * for the same virtual address to be loaded simultaneously. So instead
2139 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2140 * current pmd notpresent (atomically because here the pmd_trans_huge
2141 * must remain set at all times on the pmd until the split is complete
2142 * for this pmd), then we flush the SMP TLB and finally we write the
2143 * non-huge version of the pmd entry with pmd_populate.
2144 */
2145 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2146
2147 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2148 pmd_migration = is_pmd_migration_entry(old_pmd);
2149 if (pmd_migration) {
2150 swp_entry_t entry;
2151
2152 entry = pmd_to_swp_entry(old_pmd);
2153 page = pfn_to_page(swp_offset(entry));
2154 } else
2155 #endif
2156 page = pmd_page(old_pmd);
2157 VM_BUG_ON_PAGE(!page_count(page), page);
2158 page_ref_add(page, HPAGE_PMD_NR - 1);
2159 if (pmd_dirty(old_pmd))
2160 SetPageDirty(page);
2161 write = pmd_write(old_pmd);
2162 young = pmd_young(old_pmd);
2163 soft_dirty = pmd_soft_dirty(old_pmd);
2164
2165 /*
2166 * Withdraw the table only after we mark the pmd entry invalid.
2167 * This's critical for some architectures (Power).
2168 */
2169 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2170 pmd_populate(mm, &_pmd, pgtable);
2171
2172 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2173 pte_t entry, *pte;
2174 /*
2175 * Note that NUMA hinting access restrictions are not
2176 * transferred to avoid any possibility of altering
2177 * permissions across VMAs.
2178 */
2179 if (freeze || pmd_migration) {
2180 swp_entry_t swp_entry;
2181 swp_entry = make_migration_entry(page + i, write);
2182 entry = swp_entry_to_pte(swp_entry);
2183 if (soft_dirty)
2184 entry = pte_swp_mksoft_dirty(entry);
2185 } else {
2186 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2187 entry = maybe_mkwrite(entry, vma);
2188 if (!write)
2189 entry = pte_wrprotect(entry);
2190 if (!young)
2191 entry = pte_mkold(entry);
2192 if (soft_dirty)
2193 entry = pte_mksoft_dirty(entry);
2194 }
2195 pte = pte_offset_map(&_pmd, addr);
2196 BUG_ON(!pte_none(*pte));
2197 set_pte_at(mm, addr, pte, entry);
2198 atomic_inc(&page[i]._mapcount);
2199 pte_unmap(pte);
2200 }
2201
2202 /*
2203 * Set PG_double_map before dropping compound_mapcount to avoid
2204 * false-negative page_mapped().
2205 */
2206 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2207 for (i = 0; i < HPAGE_PMD_NR; i++)
2208 atomic_inc(&page[i]._mapcount);
2209 }
2210
2211 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2212 /* Last compound_mapcount is gone. */
2213 __dec_node_page_state(page, NR_ANON_THPS);
2214 if (TestClearPageDoubleMap(page)) {
2215 /* No need in mapcount reference anymore */
2216 for (i = 0; i < HPAGE_PMD_NR; i++)
2217 atomic_dec(&page[i]._mapcount);
2218 }
2219 }
2220
2221 smp_wmb(); /* make pte visible before pmd */
2222 pmd_populate(mm, pmd, pgtable);
2223
2224 if (freeze) {
2225 for (i = 0; i < HPAGE_PMD_NR; i++) {
2226 page_remove_rmap(page + i, false);
2227 put_page(page + i);
2228 }
2229 }
2230 }
2231
2232 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2233 unsigned long address, bool freeze, struct page *page)
2234 {
2235 spinlock_t *ptl;
2236 struct mm_struct *mm = vma->vm_mm;
2237 unsigned long haddr = address & HPAGE_PMD_MASK;
2238
2239 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2240 ptl = pmd_lock(mm, pmd);
2241
2242 /*
2243 * If caller asks to setup a migration entries, we need a page to check
2244 * pmd against. Otherwise we can end up replacing wrong page.
2245 */
2246 VM_BUG_ON(freeze && !page);
2247 if (page && page != pmd_page(*pmd))
2248 goto out;
2249
2250 if (pmd_trans_huge(*pmd)) {
2251 page = pmd_page(*pmd);
2252 if (PageMlocked(page))
2253 clear_page_mlock(page);
2254 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2255 goto out;
2256 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2257 out:
2258 spin_unlock(ptl);
2259 /*
2260 * No need to double call mmu_notifier->invalidate_range() callback.
2261 * They are 3 cases to consider inside __split_huge_pmd_locked():
2262 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2263 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2264 * fault will trigger a flush_notify before pointing to a new page
2265 * (it is fine if the secondary mmu keeps pointing to the old zero
2266 * page in the meantime)
2267 * 3) Split a huge pmd into pte pointing to the same page. No need
2268 * to invalidate secondary tlb entry they are all still valid.
2269 * any further changes to individual pte will notify. So no need
2270 * to call mmu_notifier->invalidate_range()
2271 */
2272 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2273 HPAGE_PMD_SIZE);
2274 }
2275
2276 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2277 bool freeze, struct page *page)
2278 {
2279 pgd_t *pgd;
2280 p4d_t *p4d;
2281 pud_t *pud;
2282 pmd_t *pmd;
2283
2284 pgd = pgd_offset(vma->vm_mm, address);
2285 if (!pgd_present(*pgd))
2286 return;
2287
2288 p4d = p4d_offset(pgd, address);
2289 if (!p4d_present(*p4d))
2290 return;
2291
2292 pud = pud_offset(p4d, address);
2293 if (!pud_present(*pud))
2294 return;
2295
2296 pmd = pmd_offset(pud, address);
2297
2298 __split_huge_pmd(vma, pmd, address, freeze, page);
2299 }
2300
2301 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2302 unsigned long start,
2303 unsigned long end,
2304 long adjust_next)
2305 {
2306 /*
2307 * If the new start address isn't hpage aligned and it could
2308 * previously contain an hugepage: check if we need to split
2309 * an huge pmd.
2310 */
2311 if (start & ~HPAGE_PMD_MASK &&
2312 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2313 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2314 split_huge_pmd_address(vma, start, false, NULL);
2315
2316 /*
2317 * If the new end address isn't hpage aligned and it could
2318 * previously contain an hugepage: check if we need to split
2319 * an huge pmd.
2320 */
2321 if (end & ~HPAGE_PMD_MASK &&
2322 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2323 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2324 split_huge_pmd_address(vma, end, false, NULL);
2325
2326 /*
2327 * If we're also updating the vma->vm_next->vm_start, if the new
2328 * vm_next->vm_start isn't page aligned and it could previously
2329 * contain an hugepage: check if we need to split an huge pmd.
2330 */
2331 if (adjust_next > 0) {
2332 struct vm_area_struct *next = vma->vm_next;
2333 unsigned long nstart = next->vm_start;
2334 nstart += adjust_next << PAGE_SHIFT;
2335 if (nstart & ~HPAGE_PMD_MASK &&
2336 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2337 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2338 split_huge_pmd_address(next, nstart, false, NULL);
2339 }
2340 }
2341
2342 static void unmap_page(struct page *page)
2343 {
2344 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2345 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2346 bool unmap_success;
2347
2348 VM_BUG_ON_PAGE(!PageHead(page), page);
2349
2350 if (PageAnon(page))
2351 ttu_flags |= TTU_SPLIT_FREEZE;
2352
2353 unmap_success = try_to_unmap(page, ttu_flags);
2354 VM_BUG_ON_PAGE(!unmap_success, page);
2355 }
2356
2357 static void remap_page(struct page *page)
2358 {
2359 int i;
2360 if (PageTransHuge(page)) {
2361 remove_migration_ptes(page, page, true);
2362 } else {
2363 for (i = 0; i < HPAGE_PMD_NR; i++)
2364 remove_migration_ptes(page + i, page + i, true);
2365 }
2366 }
2367
2368 static void __split_huge_page_tail(struct page *head, int tail,
2369 struct lruvec *lruvec, struct list_head *list)
2370 {
2371 struct page *page_tail = head + tail;
2372
2373 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2374
2375 /*
2376 * Clone page flags before unfreezing refcount.
2377 *
2378 * After successful get_page_unless_zero() might follow flags change,
2379 * for exmaple lock_page() which set PG_waiters.
2380 */
2381 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2382 page_tail->flags |= (head->flags &
2383 ((1L << PG_referenced) |
2384 (1L << PG_swapbacked) |
2385 (1L << PG_swapcache) |
2386 (1L << PG_mlocked) |
2387 (1L << PG_uptodate) |
2388 (1L << PG_active) |
2389 (1L << PG_workingset) |
2390 (1L << PG_locked) |
2391 (1L << PG_unevictable) |
2392 (1L << PG_dirty)));
2393
2394 /* ->mapping in first tail page is compound_mapcount */
2395 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2396 page_tail);
2397 page_tail->mapping = head->mapping;
2398 page_tail->index = head->index + tail;
2399
2400 /* Page flags must be visible before we make the page non-compound. */
2401 smp_wmb();
2402
2403 /*
2404 * Clear PageTail before unfreezing page refcount.
2405 *
2406 * After successful get_page_unless_zero() might follow put_page()
2407 * which needs correct compound_head().
2408 */
2409 clear_compound_head(page_tail);
2410
2411 /* Finally unfreeze refcount. Additional reference from page cache. */
2412 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2413 PageSwapCache(head)));
2414
2415 if (page_is_young(head))
2416 set_page_young(page_tail);
2417 if (page_is_idle(head))
2418 set_page_idle(page_tail);
2419
2420 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2421
2422 /*
2423 * always add to the tail because some iterators expect new
2424 * pages to show after the currently processed elements - e.g.
2425 * migrate_pages
2426 */
2427 lru_add_page_tail(head, page_tail, lruvec, list);
2428 }
2429
2430 static void __split_huge_page(struct page *page, struct list_head *list,
2431 pgoff_t end, unsigned long flags)
2432 {
2433 struct page *head = compound_head(page);
2434 struct zone *zone = page_zone(head);
2435 struct lruvec *lruvec;
2436 int i;
2437
2438 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2439
2440 /* complete memcg works before add pages to LRU */
2441 mem_cgroup_split_huge_fixup(head);
2442
2443 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2444 __split_huge_page_tail(head, i, lruvec, list);
2445 /* Some pages can be beyond i_size: drop them from page cache */
2446 if (head[i].index >= end) {
2447 ClearPageDirty(head + i);
2448 __delete_from_page_cache(head + i, NULL);
2449 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2450 shmem_uncharge(head->mapping->host, 1);
2451 put_page(head + i);
2452 }
2453 }
2454
2455 ClearPageCompound(head);
2456 /* See comment in __split_huge_page_tail() */
2457 if (PageAnon(head)) {
2458 /* Additional pin to swap cache */
2459 if (PageSwapCache(head))
2460 page_ref_add(head, 2);
2461 else
2462 page_ref_inc(head);
2463 } else {
2464 /* Additional pin to page cache */
2465 page_ref_add(head, 2);
2466 xa_unlock(&head->mapping->i_pages);
2467 }
2468
2469 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2470
2471 remap_page(head);
2472
2473 for (i = 0; i < HPAGE_PMD_NR; i++) {
2474 struct page *subpage = head + i;
2475 if (subpage == page)
2476 continue;
2477 unlock_page(subpage);
2478
2479 /*
2480 * Subpages may be freed if there wasn't any mapping
2481 * like if add_to_swap() is running on a lru page that
2482 * had its mapping zapped. And freeing these pages
2483 * requires taking the lru_lock so we do the put_page
2484 * of the tail pages after the split is complete.
2485 */
2486 put_page(subpage);
2487 }
2488 }
2489
2490 int total_mapcount(struct page *page)
2491 {
2492 int i, compound, ret;
2493
2494 VM_BUG_ON_PAGE(PageTail(page), page);
2495
2496 if (likely(!PageCompound(page)))
2497 return atomic_read(&page->_mapcount) + 1;
2498
2499 compound = compound_mapcount(page);
2500 if (PageHuge(page))
2501 return compound;
2502 ret = compound;
2503 for (i = 0; i < HPAGE_PMD_NR; i++)
2504 ret += atomic_read(&page[i]._mapcount) + 1;
2505 /* File pages has compound_mapcount included in _mapcount */
2506 if (!PageAnon(page))
2507 return ret - compound * HPAGE_PMD_NR;
2508 if (PageDoubleMap(page))
2509 ret -= HPAGE_PMD_NR;
2510 return ret;
2511 }
2512
2513 /*
2514 * This calculates accurately how many mappings a transparent hugepage
2515 * has (unlike page_mapcount() which isn't fully accurate). This full
2516 * accuracy is primarily needed to know if copy-on-write faults can
2517 * reuse the page and change the mapping to read-write instead of
2518 * copying them. At the same time this returns the total_mapcount too.
2519 *
2520 * The function returns the highest mapcount any one of the subpages
2521 * has. If the return value is one, even if different processes are
2522 * mapping different subpages of the transparent hugepage, they can
2523 * all reuse it, because each process is reusing a different subpage.
2524 *
2525 * The total_mapcount is instead counting all virtual mappings of the
2526 * subpages. If the total_mapcount is equal to "one", it tells the
2527 * caller all mappings belong to the same "mm" and in turn the
2528 * anon_vma of the transparent hugepage can become the vma->anon_vma
2529 * local one as no other process may be mapping any of the subpages.
2530 *
2531 * It would be more accurate to replace page_mapcount() with
2532 * page_trans_huge_mapcount(), however we only use
2533 * page_trans_huge_mapcount() in the copy-on-write faults where we
2534 * need full accuracy to avoid breaking page pinning, because
2535 * page_trans_huge_mapcount() is slower than page_mapcount().
2536 */
2537 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2538 {
2539 int i, ret, _total_mapcount, mapcount;
2540
2541 /* hugetlbfs shouldn't call it */
2542 VM_BUG_ON_PAGE(PageHuge(page), page);
2543
2544 if (likely(!PageTransCompound(page))) {
2545 mapcount = atomic_read(&page->_mapcount) + 1;
2546 if (total_mapcount)
2547 *total_mapcount = mapcount;
2548 return mapcount;
2549 }
2550
2551 page = compound_head(page);
2552
2553 _total_mapcount = ret = 0;
2554 for (i = 0; i < HPAGE_PMD_NR; i++) {
2555 mapcount = atomic_read(&page[i]._mapcount) + 1;
2556 ret = max(ret, mapcount);
2557 _total_mapcount += mapcount;
2558 }
2559 if (PageDoubleMap(page)) {
2560 ret -= 1;
2561 _total_mapcount -= HPAGE_PMD_NR;
2562 }
2563 mapcount = compound_mapcount(page);
2564 ret += mapcount;
2565 _total_mapcount += mapcount;
2566 if (total_mapcount)
2567 *total_mapcount = _total_mapcount;
2568 return ret;
2569 }
2570
2571 /* Racy check whether the huge page can be split */
2572 bool can_split_huge_page(struct page *page, int *pextra_pins)
2573 {
2574 int extra_pins;
2575
2576 /* Additional pins from page cache */
2577 if (PageAnon(page))
2578 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2579 else
2580 extra_pins = HPAGE_PMD_NR;
2581 if (pextra_pins)
2582 *pextra_pins = extra_pins;
2583 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2584 }
2585
2586 /*
2587 * This function splits huge page into normal pages. @page can point to any
2588 * subpage of huge page to split. Split doesn't change the position of @page.
2589 *
2590 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2591 * The huge page must be locked.
2592 *
2593 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2594 *
2595 * Both head page and tail pages will inherit mapping, flags, and so on from
2596 * the hugepage.
2597 *
2598 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2599 * they are not mapped.
2600 *
2601 * Returns 0 if the hugepage is split successfully.
2602 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2603 * us.
2604 */
2605 int split_huge_page_to_list(struct page *page, struct list_head *list)
2606 {
2607 struct page *head = compound_head(page);
2608 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2609 struct anon_vma *anon_vma = NULL;
2610 struct address_space *mapping = NULL;
2611 int count, mapcount, extra_pins, ret;
2612 bool mlocked;
2613 unsigned long flags;
2614 pgoff_t end;
2615
2616 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2617 VM_BUG_ON_PAGE(!PageLocked(page), page);
2618 VM_BUG_ON_PAGE(!PageCompound(page), page);
2619
2620 if (PageWriteback(page))
2621 return -EBUSY;
2622
2623 if (PageAnon(head)) {
2624 /*
2625 * The caller does not necessarily hold an mmap_sem that would
2626 * prevent the anon_vma disappearing so we first we take a
2627 * reference to it and then lock the anon_vma for write. This
2628 * is similar to page_lock_anon_vma_read except the write lock
2629 * is taken to serialise against parallel split or collapse
2630 * operations.
2631 */
2632 anon_vma = page_get_anon_vma(head);
2633 if (!anon_vma) {
2634 ret = -EBUSY;
2635 goto out;
2636 }
2637 end = -1;
2638 mapping = NULL;
2639 anon_vma_lock_write(anon_vma);
2640 } else {
2641 mapping = head->mapping;
2642
2643 /* Truncated ? */
2644 if (!mapping) {
2645 ret = -EBUSY;
2646 goto out;
2647 }
2648
2649 anon_vma = NULL;
2650 i_mmap_lock_read(mapping);
2651
2652 /*
2653 *__split_huge_page() may need to trim off pages beyond EOF:
2654 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2655 * which cannot be nested inside the page tree lock. So note
2656 * end now: i_size itself may be changed at any moment, but
2657 * head page lock is good enough to serialize the trimming.
2658 */
2659 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2660 }
2661
2662 /*
2663 * Racy check if we can split the page, before unmap_page() will
2664 * split PMDs
2665 */
2666 if (!can_split_huge_page(head, &extra_pins)) {
2667 ret = -EBUSY;
2668 goto out_unlock;
2669 }
2670
2671 mlocked = PageMlocked(page);
2672 unmap_page(head);
2673 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2674
2675 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2676 if (mlocked)
2677 lru_add_drain();
2678
2679 /* prevent PageLRU to go away from under us, and freeze lru stats */
2680 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2681
2682 if (mapping) {
2683 XA_STATE(xas, &mapping->i_pages, page_index(head));
2684
2685 /*
2686 * Check if the head page is present in page cache.
2687 * We assume all tail are present too, if head is there.
2688 */
2689 xa_lock(&mapping->i_pages);
2690 if (xas_load(&xas) != head)
2691 goto fail;
2692 }
2693
2694 /* Prevent deferred_split_scan() touching ->_refcount */
2695 spin_lock(&pgdata->split_queue_lock);
2696 count = page_count(head);
2697 mapcount = total_mapcount(head);
2698 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2699 if (!list_empty(page_deferred_list(head))) {
2700 pgdata->split_queue_len--;
2701 list_del(page_deferred_list(head));
2702 }
2703 if (mapping)
2704 __dec_node_page_state(page, NR_SHMEM_THPS);
2705 spin_unlock(&pgdata->split_queue_lock);
2706 __split_huge_page(page, list, end, flags);
2707 if (PageSwapCache(head)) {
2708 swp_entry_t entry = { .val = page_private(head) };
2709
2710 ret = split_swap_cluster(entry);
2711 } else
2712 ret = 0;
2713 } else {
2714 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2715 pr_alert("total_mapcount: %u, page_count(): %u\n",
2716 mapcount, count);
2717 if (PageTail(page))
2718 dump_page(head, NULL);
2719 dump_page(page, "total_mapcount(head) > 0");
2720 BUG();
2721 }
2722 spin_unlock(&pgdata->split_queue_lock);
2723 fail: if (mapping)
2724 xa_unlock(&mapping->i_pages);
2725 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2726 remap_page(head);
2727 ret = -EBUSY;
2728 }
2729
2730 out_unlock:
2731 if (anon_vma) {
2732 anon_vma_unlock_write(anon_vma);
2733 put_anon_vma(anon_vma);
2734 }
2735 if (mapping)
2736 i_mmap_unlock_read(mapping);
2737 out:
2738 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2739 return ret;
2740 }
2741
2742 void free_transhuge_page(struct page *page)
2743 {
2744 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2745 unsigned long flags;
2746
2747 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2748 if (!list_empty(page_deferred_list(page))) {
2749 pgdata->split_queue_len--;
2750 list_del(page_deferred_list(page));
2751 }
2752 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2753 free_compound_page(page);
2754 }
2755
2756 void deferred_split_huge_page(struct page *page)
2757 {
2758 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2759 unsigned long flags;
2760
2761 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2762
2763 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2764 if (list_empty(page_deferred_list(page))) {
2765 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2766 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2767 pgdata->split_queue_len++;
2768 }
2769 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2770 }
2771
2772 static unsigned long deferred_split_count(struct shrinker *shrink,
2773 struct shrink_control *sc)
2774 {
2775 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2776 return READ_ONCE(pgdata->split_queue_len);
2777 }
2778
2779 static unsigned long deferred_split_scan(struct shrinker *shrink,
2780 struct shrink_control *sc)
2781 {
2782 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2783 unsigned long flags;
2784 LIST_HEAD(list), *pos, *next;
2785 struct page *page;
2786 int split = 0;
2787
2788 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2789 /* Take pin on all head pages to avoid freeing them under us */
2790 list_for_each_safe(pos, next, &pgdata->split_queue) {
2791 page = list_entry((void *)pos, struct page, mapping);
2792 page = compound_head(page);
2793 if (get_page_unless_zero(page)) {
2794 list_move(page_deferred_list(page), &list);
2795 } else {
2796 /* We lost race with put_compound_page() */
2797 list_del_init(page_deferred_list(page));
2798 pgdata->split_queue_len--;
2799 }
2800 if (!--sc->nr_to_scan)
2801 break;
2802 }
2803 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2804
2805 list_for_each_safe(pos, next, &list) {
2806 page = list_entry((void *)pos, struct page, mapping);
2807 if (!trylock_page(page))
2808 goto next;
2809 /* split_huge_page() removes page from list on success */
2810 if (!split_huge_page(page))
2811 split++;
2812 unlock_page(page);
2813 next:
2814 put_page(page);
2815 }
2816
2817 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2818 list_splice_tail(&list, &pgdata->split_queue);
2819 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2820
2821 /*
2822 * Stop shrinker if we didn't split any page, but the queue is empty.
2823 * This can happen if pages were freed under us.
2824 */
2825 if (!split && list_empty(&pgdata->split_queue))
2826 return SHRINK_STOP;
2827 return split;
2828 }
2829
2830 static struct shrinker deferred_split_shrinker = {
2831 .count_objects = deferred_split_count,
2832 .scan_objects = deferred_split_scan,
2833 .seeks = DEFAULT_SEEKS,
2834 .flags = SHRINKER_NUMA_AWARE,
2835 };
2836
2837 #ifdef CONFIG_DEBUG_FS
2838 static int split_huge_pages_set(void *data, u64 val)
2839 {
2840 struct zone *zone;
2841 struct page *page;
2842 unsigned long pfn, max_zone_pfn;
2843 unsigned long total = 0, split = 0;
2844
2845 if (val != 1)
2846 return -EINVAL;
2847
2848 for_each_populated_zone(zone) {
2849 max_zone_pfn = zone_end_pfn(zone);
2850 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2851 if (!pfn_valid(pfn))
2852 continue;
2853
2854 page = pfn_to_page(pfn);
2855 if (!get_page_unless_zero(page))
2856 continue;
2857
2858 if (zone != page_zone(page))
2859 goto next;
2860
2861 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2862 goto next;
2863
2864 total++;
2865 lock_page(page);
2866 if (!split_huge_page(page))
2867 split++;
2868 unlock_page(page);
2869 next:
2870 put_page(page);
2871 }
2872 }
2873
2874 pr_info("%lu of %lu THP split\n", split, total);
2875
2876 return 0;
2877 }
2878 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2879 "%llu\n");
2880
2881 static int __init split_huge_pages_debugfs(void)
2882 {
2883 void *ret;
2884
2885 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2886 &split_huge_pages_fops);
2887 if (!ret)
2888 pr_warn("Failed to create split_huge_pages in debugfs");
2889 return 0;
2890 }
2891 late_initcall(split_huge_pages_debugfs);
2892 #endif
2893
2894 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2895 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2896 struct page *page)
2897 {
2898 struct vm_area_struct *vma = pvmw->vma;
2899 struct mm_struct *mm = vma->vm_mm;
2900 unsigned long address = pvmw->address;
2901 pmd_t pmdval;
2902 swp_entry_t entry;
2903 pmd_t pmdswp;
2904
2905 if (!(pvmw->pmd && !pvmw->pte))
2906 return;
2907
2908 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2909 pmdval = *pvmw->pmd;
2910 pmdp_invalidate(vma, address, pvmw->pmd);
2911 if (pmd_dirty(pmdval))
2912 set_page_dirty(page);
2913 entry = make_migration_entry(page, pmd_write(pmdval));
2914 pmdswp = swp_entry_to_pmd(entry);
2915 if (pmd_soft_dirty(pmdval))
2916 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2917 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2918 page_remove_rmap(page, true);
2919 put_page(page);
2920 }
2921
2922 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2923 {
2924 struct vm_area_struct *vma = pvmw->vma;
2925 struct mm_struct *mm = vma->vm_mm;
2926 unsigned long address = pvmw->address;
2927 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2928 pmd_t pmde;
2929 swp_entry_t entry;
2930
2931 if (!(pvmw->pmd && !pvmw->pte))
2932 return;
2933
2934 entry = pmd_to_swp_entry(*pvmw->pmd);
2935 get_page(new);
2936 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2937 if (pmd_swp_soft_dirty(*pvmw->pmd))
2938 pmde = pmd_mksoft_dirty(pmde);
2939 if (is_write_migration_entry(entry))
2940 pmde = maybe_pmd_mkwrite(pmde, vma);
2941
2942 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2943 if (PageAnon(new))
2944 page_add_anon_rmap(new, vma, mmun_start, true);
2945 else
2946 page_add_file_rmap(new, true);
2947 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2948 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2949 mlock_vma_page(new);
2950 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2951 }
2952 #endif