]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/huge_memory.c
mm, shmem: add vmstat for hugepage fallback
[thirdparty/linux.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
76
77 return false;
78 }
79
80 static struct page *get_huge_zero_page(void)
81 {
82 struct page *zero_page;
83 retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 HPAGE_PMD_ORDER);
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 return NULL;
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
94 preempt_disable();
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 preempt_enable();
97 __free_pages(zero_page, compound_order(zero_page));
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
104 return READ_ONCE(huge_zero_page);
105 }
106
107 static void put_huge_zero_page(void)
108 {
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128 }
129
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134 }
135
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
138 {
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145 {
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
150 return HPAGE_PMD_NR;
151 }
152
153 return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165 {
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
172 }
173
174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177 {
178 ssize_t ret = count;
179
180 if (sysfs_streq(buf, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (sysfs_streq(buf, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
191
192 if (ret > 0) {
193 int err = start_stop_khugepaged();
194 if (err)
195 ret = err;
196 }
197 return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205 {
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
208 }
209
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214 {
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
225 set_bit(flag, &transparent_hugepage_flags);
226 else
227 clear_bit(flag, &transparent_hugepage_flags);
228
229 return count;
230 }
231
232 static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234 {
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245
246 static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249 {
250 if (sysfs_streq(buf, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (sysfs_streq(buf, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 } else if (sysfs_streq(buf, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 } else if (sysfs_streq(buf, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else if (sysfs_streq(buf, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285 {
286 return single_hugepage_flag_show(kobj, attr, buf,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 return single_hugepage_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309 {
310 return single_hugepage_flag_show(kobj, attr, buf,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
316 {
317 return single_hugepage_flag_store(kobj, attr, buf, count,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319 }
320 static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322 #endif /* CONFIG_DEBUG_VM */
323
324 static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
327 &use_zero_page_attr.attr,
328 &hpage_pmd_size_attr.attr,
329 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 &shmem_enabled_attr.attr,
331 #endif
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334 #endif
335 NULL,
336 };
337
338 static const struct attribute_group hugepage_attr_group = {
339 .attrs = hugepage_attr,
340 };
341
342 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
343 {
344 int err;
345
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
348 pr_err("failed to create transparent hugepage kobject\n");
349 return -ENOMEM;
350 }
351
352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
353 if (err) {
354 pr_err("failed to register transparent hugepage group\n");
355 goto delete_obj;
356 }
357
358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
359 if (err) {
360 pr_err("failed to register transparent hugepage group\n");
361 goto remove_hp_group;
362 }
363
364 return 0;
365
366 remove_hp_group:
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368 delete_obj:
369 kobject_put(*hugepage_kobj);
370 return err;
371 }
372
373 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374 {
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
378 }
379 #else
380 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381 {
382 return 0;
383 }
384
385 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386 {
387 }
388 #endif /* CONFIG_SYSFS */
389
390 static int __init hugepage_init(void)
391 {
392 int err;
393 struct kobject *hugepage_kobj;
394
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
397 return -EINVAL;
398 }
399
400 /*
401 * hugepages can't be allocated by the buddy allocator
402 */
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 /*
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
407 */
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409
410 err = hugepage_init_sysfs(&hugepage_kobj);
411 if (err)
412 goto err_sysfs;
413
414 err = khugepaged_init();
415 if (err)
416 goto err_slab;
417
418 err = register_shrinker(&huge_zero_page_shrinker);
419 if (err)
420 goto err_hzp_shrinker;
421 err = register_shrinker(&deferred_split_shrinker);
422 if (err)
423 goto err_split_shrinker;
424
425 /*
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
429 */
430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
431 transparent_hugepage_flags = 0;
432 return 0;
433 }
434
435 err = start_stop_khugepaged();
436 if (err)
437 goto err_khugepaged;
438
439 return 0;
440 err_khugepaged:
441 unregister_shrinker(&deferred_split_shrinker);
442 err_split_shrinker:
443 unregister_shrinker(&huge_zero_page_shrinker);
444 err_hzp_shrinker:
445 khugepaged_destroy();
446 err_slab:
447 hugepage_exit_sysfs(hugepage_kobj);
448 err_sysfs:
449 return err;
450 }
451 subsys_initcall(hugepage_init);
452
453 static int __init setup_transparent_hugepage(char *str)
454 {
455 int ret = 0;
456 if (!str)
457 goto out;
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
475 ret = 1;
476 }
477 out:
478 if (!ret)
479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
480 return ret;
481 }
482 __setup("transparent_hugepage=", setup_transparent_hugepage);
483
484 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
485 {
486 if (likely(vma->vm_flags & VM_WRITE))
487 pmd = pmd_mkwrite(pmd);
488 return pmd;
489 }
490
491 #ifdef CONFIG_MEMCG
492 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
493 {
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496
497 if (memcg)
498 return &memcg->deferred_split_queue;
499 else
500 return &pgdat->deferred_split_queue;
501 }
502 #else
503 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504 {
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 return &pgdat->deferred_split_queue;
508 }
509 #endif
510
511 void prep_transhuge_page(struct page *page)
512 {
513 /*
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
516 */
517
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520 }
521
522 bool is_transparent_hugepage(struct page *page)
523 {
524 if (!PageCompound(page))
525 return 0;
526
527 page = compound_head(page);
528 return is_huge_zero_page(page) ||
529 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
530 }
531 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
532
533 static unsigned long __thp_get_unmapped_area(struct file *filp,
534 unsigned long addr, unsigned long len,
535 loff_t off, unsigned long flags, unsigned long size)
536 {
537 loff_t off_end = off + len;
538 loff_t off_align = round_up(off, size);
539 unsigned long len_pad, ret;
540
541 if (off_end <= off_align || (off_end - off_align) < size)
542 return 0;
543
544 len_pad = len + size;
545 if (len_pad < len || (off + len_pad) < off)
546 return 0;
547
548 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
549 off >> PAGE_SHIFT, flags);
550
551 /*
552 * The failure might be due to length padding. The caller will retry
553 * without the padding.
554 */
555 if (IS_ERR_VALUE(ret))
556 return 0;
557
558 /*
559 * Do not try to align to THP boundary if allocation at the address
560 * hint succeeds.
561 */
562 if (ret == addr)
563 return addr;
564
565 ret += (off - ret) & (size - 1);
566 return ret;
567 }
568
569 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
570 unsigned long len, unsigned long pgoff, unsigned long flags)
571 {
572 unsigned long ret;
573 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
574
575 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
576 goto out;
577
578 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
579 if (ret)
580 return ret;
581 out:
582 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
583 }
584 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
585
586 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
587 struct page *page, gfp_t gfp)
588 {
589 struct vm_area_struct *vma = vmf->vma;
590 struct mem_cgroup *memcg;
591 pgtable_t pgtable;
592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
593 vm_fault_t ret = 0;
594
595 VM_BUG_ON_PAGE(!PageCompound(page), page);
596
597 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
598 put_page(page);
599 count_vm_event(THP_FAULT_FALLBACK);
600 return VM_FAULT_FALLBACK;
601 }
602
603 pgtable = pte_alloc_one(vma->vm_mm);
604 if (unlikely(!pgtable)) {
605 ret = VM_FAULT_OOM;
606 goto release;
607 }
608
609 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
610 /*
611 * The memory barrier inside __SetPageUptodate makes sure that
612 * clear_huge_page writes become visible before the set_pmd_at()
613 * write.
614 */
615 __SetPageUptodate(page);
616
617 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
618 if (unlikely(!pmd_none(*vmf->pmd))) {
619 goto unlock_release;
620 } else {
621 pmd_t entry;
622
623 ret = check_stable_address_space(vma->vm_mm);
624 if (ret)
625 goto unlock_release;
626
627 /* Deliver the page fault to userland */
628 if (userfaultfd_missing(vma)) {
629 vm_fault_t ret2;
630
631 spin_unlock(vmf->ptl);
632 mem_cgroup_cancel_charge(page, memcg, true);
633 put_page(page);
634 pte_free(vma->vm_mm, pgtable);
635 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
636 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
637 return ret2;
638 }
639
640 entry = mk_huge_pmd(page, vma->vm_page_prot);
641 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
642 page_add_new_anon_rmap(page, vma, haddr, true);
643 mem_cgroup_commit_charge(page, memcg, false, true);
644 lru_cache_add_active_or_unevictable(page, vma);
645 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
646 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
647 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
648 mm_inc_nr_ptes(vma->vm_mm);
649 spin_unlock(vmf->ptl);
650 count_vm_event(THP_FAULT_ALLOC);
651 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
652 }
653
654 return 0;
655 unlock_release:
656 spin_unlock(vmf->ptl);
657 release:
658 if (pgtable)
659 pte_free(vma->vm_mm, pgtable);
660 mem_cgroup_cancel_charge(page, memcg, true);
661 put_page(page);
662 return ret;
663
664 }
665
666 /*
667 * always: directly stall for all thp allocations
668 * defer: wake kswapd and fail if not immediately available
669 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
670 * fail if not immediately available
671 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
672 * available
673 * never: never stall for any thp allocation
674 */
675 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
676 {
677 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
678
679 /* Always do synchronous compaction */
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
681 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
682
683 /* Kick kcompactd and fail quickly */
684 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
685 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
686
687 /* Synchronous compaction if madvised, otherwise kick kcompactd */
688 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
689 return GFP_TRANSHUGE_LIGHT |
690 (vma_madvised ? __GFP_DIRECT_RECLAIM :
691 __GFP_KSWAPD_RECLAIM);
692
693 /* Only do synchronous compaction if madvised */
694 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
695 return GFP_TRANSHUGE_LIGHT |
696 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
697
698 return GFP_TRANSHUGE_LIGHT;
699 }
700
701 /* Caller must hold page table lock. */
702 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
703 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
704 struct page *zero_page)
705 {
706 pmd_t entry;
707 if (!pmd_none(*pmd))
708 return false;
709 entry = mk_pmd(zero_page, vma->vm_page_prot);
710 entry = pmd_mkhuge(entry);
711 if (pgtable)
712 pgtable_trans_huge_deposit(mm, pmd, pgtable);
713 set_pmd_at(mm, haddr, pmd, entry);
714 mm_inc_nr_ptes(mm);
715 return true;
716 }
717
718 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
719 {
720 struct vm_area_struct *vma = vmf->vma;
721 gfp_t gfp;
722 struct page *page;
723 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
724
725 if (!transhuge_vma_suitable(vma, haddr))
726 return VM_FAULT_FALLBACK;
727 if (unlikely(anon_vma_prepare(vma)))
728 return VM_FAULT_OOM;
729 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
730 return VM_FAULT_OOM;
731 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
732 !mm_forbids_zeropage(vma->vm_mm) &&
733 transparent_hugepage_use_zero_page()) {
734 pgtable_t pgtable;
735 struct page *zero_page;
736 bool set;
737 vm_fault_t ret;
738 pgtable = pte_alloc_one(vma->vm_mm);
739 if (unlikely(!pgtable))
740 return VM_FAULT_OOM;
741 zero_page = mm_get_huge_zero_page(vma->vm_mm);
742 if (unlikely(!zero_page)) {
743 pte_free(vma->vm_mm, pgtable);
744 count_vm_event(THP_FAULT_FALLBACK);
745 return VM_FAULT_FALLBACK;
746 }
747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
748 ret = 0;
749 set = false;
750 if (pmd_none(*vmf->pmd)) {
751 ret = check_stable_address_space(vma->vm_mm);
752 if (ret) {
753 spin_unlock(vmf->ptl);
754 } else if (userfaultfd_missing(vma)) {
755 spin_unlock(vmf->ptl);
756 ret = handle_userfault(vmf, VM_UFFD_MISSING);
757 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
758 } else {
759 set_huge_zero_page(pgtable, vma->vm_mm, vma,
760 haddr, vmf->pmd, zero_page);
761 spin_unlock(vmf->ptl);
762 set = true;
763 }
764 } else
765 spin_unlock(vmf->ptl);
766 if (!set)
767 pte_free(vma->vm_mm, pgtable);
768 return ret;
769 }
770 gfp = alloc_hugepage_direct_gfpmask(vma);
771 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
772 if (unlikely(!page)) {
773 count_vm_event(THP_FAULT_FALLBACK);
774 return VM_FAULT_FALLBACK;
775 }
776 prep_transhuge_page(page);
777 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
778 }
779
780 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
781 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
782 pgtable_t pgtable)
783 {
784 struct mm_struct *mm = vma->vm_mm;
785 pmd_t entry;
786 spinlock_t *ptl;
787
788 ptl = pmd_lock(mm, pmd);
789 if (!pmd_none(*pmd)) {
790 if (write) {
791 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
793 goto out_unlock;
794 }
795 entry = pmd_mkyoung(*pmd);
796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
797 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
798 update_mmu_cache_pmd(vma, addr, pmd);
799 }
800
801 goto out_unlock;
802 }
803
804 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
805 if (pfn_t_devmap(pfn))
806 entry = pmd_mkdevmap(entry);
807 if (write) {
808 entry = pmd_mkyoung(pmd_mkdirty(entry));
809 entry = maybe_pmd_mkwrite(entry, vma);
810 }
811
812 if (pgtable) {
813 pgtable_trans_huge_deposit(mm, pmd, pgtable);
814 mm_inc_nr_ptes(mm);
815 pgtable = NULL;
816 }
817
818 set_pmd_at(mm, addr, pmd, entry);
819 update_mmu_cache_pmd(vma, addr, pmd);
820
821 out_unlock:
822 spin_unlock(ptl);
823 if (pgtable)
824 pte_free(mm, pgtable);
825 }
826
827 /**
828 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
829 * @vmf: Structure describing the fault
830 * @pfn: pfn to insert
831 * @pgprot: page protection to use
832 * @write: whether it's a write fault
833 *
834 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
835 * also consult the vmf_insert_mixed_prot() documentation when
836 * @pgprot != @vmf->vma->vm_page_prot.
837 *
838 * Return: vm_fault_t value.
839 */
840 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
841 pgprot_t pgprot, bool write)
842 {
843 unsigned long addr = vmf->address & PMD_MASK;
844 struct vm_area_struct *vma = vmf->vma;
845 pgtable_t pgtable = NULL;
846
847 /*
848 * If we had pmd_special, we could avoid all these restrictions,
849 * but we need to be consistent with PTEs and architectures that
850 * can't support a 'special' bit.
851 */
852 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
853 !pfn_t_devmap(pfn));
854 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
855 (VM_PFNMAP|VM_MIXEDMAP));
856 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
857
858 if (addr < vma->vm_start || addr >= vma->vm_end)
859 return VM_FAULT_SIGBUS;
860
861 if (arch_needs_pgtable_deposit()) {
862 pgtable = pte_alloc_one(vma->vm_mm);
863 if (!pgtable)
864 return VM_FAULT_OOM;
865 }
866
867 track_pfn_insert(vma, &pgprot, pfn);
868
869 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
870 return VM_FAULT_NOPAGE;
871 }
872 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
873
874 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
875 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
876 {
877 if (likely(vma->vm_flags & VM_WRITE))
878 pud = pud_mkwrite(pud);
879 return pud;
880 }
881
882 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
883 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
884 {
885 struct mm_struct *mm = vma->vm_mm;
886 pud_t entry;
887 spinlock_t *ptl;
888
889 ptl = pud_lock(mm, pud);
890 if (!pud_none(*pud)) {
891 if (write) {
892 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
893 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
894 goto out_unlock;
895 }
896 entry = pud_mkyoung(*pud);
897 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
898 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
899 update_mmu_cache_pud(vma, addr, pud);
900 }
901 goto out_unlock;
902 }
903
904 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
905 if (pfn_t_devmap(pfn))
906 entry = pud_mkdevmap(entry);
907 if (write) {
908 entry = pud_mkyoung(pud_mkdirty(entry));
909 entry = maybe_pud_mkwrite(entry, vma);
910 }
911 set_pud_at(mm, addr, pud, entry);
912 update_mmu_cache_pud(vma, addr, pud);
913
914 out_unlock:
915 spin_unlock(ptl);
916 }
917
918 /**
919 * vmf_insert_pfn_pud_prot - insert a pud size pfn
920 * @vmf: Structure describing the fault
921 * @pfn: pfn to insert
922 * @pgprot: page protection to use
923 * @write: whether it's a write fault
924 *
925 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
926 * also consult the vmf_insert_mixed_prot() documentation when
927 * @pgprot != @vmf->vma->vm_page_prot.
928 *
929 * Return: vm_fault_t value.
930 */
931 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
932 pgprot_t pgprot, bool write)
933 {
934 unsigned long addr = vmf->address & PUD_MASK;
935 struct vm_area_struct *vma = vmf->vma;
936
937 /*
938 * If we had pud_special, we could avoid all these restrictions,
939 * but we need to be consistent with PTEs and architectures that
940 * can't support a 'special' bit.
941 */
942 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
943 !pfn_t_devmap(pfn));
944 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
945 (VM_PFNMAP|VM_MIXEDMAP));
946 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
947
948 if (addr < vma->vm_start || addr >= vma->vm_end)
949 return VM_FAULT_SIGBUS;
950
951 track_pfn_insert(vma, &pgprot, pfn);
952
953 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
954 return VM_FAULT_NOPAGE;
955 }
956 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
957 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
958
959 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
960 pmd_t *pmd, int flags)
961 {
962 pmd_t _pmd;
963
964 _pmd = pmd_mkyoung(*pmd);
965 if (flags & FOLL_WRITE)
966 _pmd = pmd_mkdirty(_pmd);
967 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
968 pmd, _pmd, flags & FOLL_WRITE))
969 update_mmu_cache_pmd(vma, addr, pmd);
970 }
971
972 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
973 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
974 {
975 unsigned long pfn = pmd_pfn(*pmd);
976 struct mm_struct *mm = vma->vm_mm;
977 struct page *page;
978
979 assert_spin_locked(pmd_lockptr(mm, pmd));
980
981 /*
982 * When we COW a devmap PMD entry, we split it into PTEs, so we should
983 * not be in this function with `flags & FOLL_COW` set.
984 */
985 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
986
987 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
988 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
989 (FOLL_PIN | FOLL_GET)))
990 return NULL;
991
992 if (flags & FOLL_WRITE && !pmd_write(*pmd))
993 return NULL;
994
995 if (pmd_present(*pmd) && pmd_devmap(*pmd))
996 /* pass */;
997 else
998 return NULL;
999
1000 if (flags & FOLL_TOUCH)
1001 touch_pmd(vma, addr, pmd, flags);
1002
1003 /*
1004 * device mapped pages can only be returned if the
1005 * caller will manage the page reference count.
1006 */
1007 if (!(flags & (FOLL_GET | FOLL_PIN)))
1008 return ERR_PTR(-EEXIST);
1009
1010 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1011 *pgmap = get_dev_pagemap(pfn, *pgmap);
1012 if (!*pgmap)
1013 return ERR_PTR(-EFAULT);
1014 page = pfn_to_page(pfn);
1015 if (!try_grab_page(page, flags))
1016 page = ERR_PTR(-ENOMEM);
1017
1018 return page;
1019 }
1020
1021 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1023 struct vm_area_struct *vma)
1024 {
1025 spinlock_t *dst_ptl, *src_ptl;
1026 struct page *src_page;
1027 pmd_t pmd;
1028 pgtable_t pgtable = NULL;
1029 int ret = -ENOMEM;
1030
1031 /* Skip if can be re-fill on fault */
1032 if (!vma_is_anonymous(vma))
1033 return 0;
1034
1035 pgtable = pte_alloc_one(dst_mm);
1036 if (unlikely(!pgtable))
1037 goto out;
1038
1039 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1040 src_ptl = pmd_lockptr(src_mm, src_pmd);
1041 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042
1043 ret = -EAGAIN;
1044 pmd = *src_pmd;
1045
1046 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1047 if (unlikely(is_swap_pmd(pmd))) {
1048 swp_entry_t entry = pmd_to_swp_entry(pmd);
1049
1050 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1051 if (is_write_migration_entry(entry)) {
1052 make_migration_entry_read(&entry);
1053 pmd = swp_entry_to_pmd(entry);
1054 if (pmd_swp_soft_dirty(*src_pmd))
1055 pmd = pmd_swp_mksoft_dirty(pmd);
1056 set_pmd_at(src_mm, addr, src_pmd, pmd);
1057 }
1058 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1059 mm_inc_nr_ptes(dst_mm);
1060 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1061 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1062 ret = 0;
1063 goto out_unlock;
1064 }
1065 #endif
1066
1067 if (unlikely(!pmd_trans_huge(pmd))) {
1068 pte_free(dst_mm, pgtable);
1069 goto out_unlock;
1070 }
1071 /*
1072 * When page table lock is held, the huge zero pmd should not be
1073 * under splitting since we don't split the page itself, only pmd to
1074 * a page table.
1075 */
1076 if (is_huge_zero_pmd(pmd)) {
1077 struct page *zero_page;
1078 /*
1079 * get_huge_zero_page() will never allocate a new page here,
1080 * since we already have a zero page to copy. It just takes a
1081 * reference.
1082 */
1083 zero_page = mm_get_huge_zero_page(dst_mm);
1084 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1085 zero_page);
1086 ret = 0;
1087 goto out_unlock;
1088 }
1089
1090 src_page = pmd_page(pmd);
1091 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1092 get_page(src_page);
1093 page_dup_rmap(src_page, true);
1094 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1095 mm_inc_nr_ptes(dst_mm);
1096 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1097
1098 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1099 pmd = pmd_mkold(pmd_wrprotect(pmd));
1100 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1101
1102 ret = 0;
1103 out_unlock:
1104 spin_unlock(src_ptl);
1105 spin_unlock(dst_ptl);
1106 out:
1107 return ret;
1108 }
1109
1110 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1111 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1112 pud_t *pud, int flags)
1113 {
1114 pud_t _pud;
1115
1116 _pud = pud_mkyoung(*pud);
1117 if (flags & FOLL_WRITE)
1118 _pud = pud_mkdirty(_pud);
1119 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1120 pud, _pud, flags & FOLL_WRITE))
1121 update_mmu_cache_pud(vma, addr, pud);
1122 }
1123
1124 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1125 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1126 {
1127 unsigned long pfn = pud_pfn(*pud);
1128 struct mm_struct *mm = vma->vm_mm;
1129 struct page *page;
1130
1131 assert_spin_locked(pud_lockptr(mm, pud));
1132
1133 if (flags & FOLL_WRITE && !pud_write(*pud))
1134 return NULL;
1135
1136 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1137 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1138 (FOLL_PIN | FOLL_GET)))
1139 return NULL;
1140
1141 if (pud_present(*pud) && pud_devmap(*pud))
1142 /* pass */;
1143 else
1144 return NULL;
1145
1146 if (flags & FOLL_TOUCH)
1147 touch_pud(vma, addr, pud, flags);
1148
1149 /*
1150 * device mapped pages can only be returned if the
1151 * caller will manage the page reference count.
1152 *
1153 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1154 */
1155 if (!(flags & (FOLL_GET | FOLL_PIN)))
1156 return ERR_PTR(-EEXIST);
1157
1158 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1159 *pgmap = get_dev_pagemap(pfn, *pgmap);
1160 if (!*pgmap)
1161 return ERR_PTR(-EFAULT);
1162 page = pfn_to_page(pfn);
1163 if (!try_grab_page(page, flags))
1164 page = ERR_PTR(-ENOMEM);
1165
1166 return page;
1167 }
1168
1169 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1170 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1171 struct vm_area_struct *vma)
1172 {
1173 spinlock_t *dst_ptl, *src_ptl;
1174 pud_t pud;
1175 int ret;
1176
1177 dst_ptl = pud_lock(dst_mm, dst_pud);
1178 src_ptl = pud_lockptr(src_mm, src_pud);
1179 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1180
1181 ret = -EAGAIN;
1182 pud = *src_pud;
1183 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1184 goto out_unlock;
1185
1186 /*
1187 * When page table lock is held, the huge zero pud should not be
1188 * under splitting since we don't split the page itself, only pud to
1189 * a page table.
1190 */
1191 if (is_huge_zero_pud(pud)) {
1192 /* No huge zero pud yet */
1193 }
1194
1195 pudp_set_wrprotect(src_mm, addr, src_pud);
1196 pud = pud_mkold(pud_wrprotect(pud));
1197 set_pud_at(dst_mm, addr, dst_pud, pud);
1198
1199 ret = 0;
1200 out_unlock:
1201 spin_unlock(src_ptl);
1202 spin_unlock(dst_ptl);
1203 return ret;
1204 }
1205
1206 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1207 {
1208 pud_t entry;
1209 unsigned long haddr;
1210 bool write = vmf->flags & FAULT_FLAG_WRITE;
1211
1212 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1213 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1214 goto unlock;
1215
1216 entry = pud_mkyoung(orig_pud);
1217 if (write)
1218 entry = pud_mkdirty(entry);
1219 haddr = vmf->address & HPAGE_PUD_MASK;
1220 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1221 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1222
1223 unlock:
1224 spin_unlock(vmf->ptl);
1225 }
1226 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1227
1228 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1229 {
1230 pmd_t entry;
1231 unsigned long haddr;
1232 bool write = vmf->flags & FAULT_FLAG_WRITE;
1233
1234 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1235 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1236 goto unlock;
1237
1238 entry = pmd_mkyoung(orig_pmd);
1239 if (write)
1240 entry = pmd_mkdirty(entry);
1241 haddr = vmf->address & HPAGE_PMD_MASK;
1242 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1243 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1244
1245 unlock:
1246 spin_unlock(vmf->ptl);
1247 }
1248
1249 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1250 pmd_t orig_pmd, struct page *page)
1251 {
1252 struct vm_area_struct *vma = vmf->vma;
1253 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1254 struct mem_cgroup *memcg;
1255 pgtable_t pgtable;
1256 pmd_t _pmd;
1257 int i;
1258 vm_fault_t ret = 0;
1259 struct page **pages;
1260 struct mmu_notifier_range range;
1261
1262 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1263 GFP_KERNEL);
1264 if (unlikely(!pages)) {
1265 ret |= VM_FAULT_OOM;
1266 goto out;
1267 }
1268
1269 for (i = 0; i < HPAGE_PMD_NR; i++) {
1270 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1271 vmf->address, page_to_nid(page));
1272 if (unlikely(!pages[i] ||
1273 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1274 GFP_KERNEL, &memcg, false))) {
1275 if (pages[i])
1276 put_page(pages[i]);
1277 while (--i >= 0) {
1278 memcg = (void *)page_private(pages[i]);
1279 set_page_private(pages[i], 0);
1280 mem_cgroup_cancel_charge(pages[i], memcg,
1281 false);
1282 put_page(pages[i]);
1283 }
1284 kfree(pages);
1285 ret |= VM_FAULT_OOM;
1286 goto out;
1287 }
1288 set_page_private(pages[i], (unsigned long)memcg);
1289 }
1290
1291 for (i = 0; i < HPAGE_PMD_NR; i++) {
1292 copy_user_highpage(pages[i], page + i,
1293 haddr + PAGE_SIZE * i, vma);
1294 __SetPageUptodate(pages[i]);
1295 cond_resched();
1296 }
1297
1298 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1299 haddr, haddr + HPAGE_PMD_SIZE);
1300 mmu_notifier_invalidate_range_start(&range);
1301
1302 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1303 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1304 goto out_free_pages;
1305 VM_BUG_ON_PAGE(!PageHead(page), page);
1306
1307 /*
1308 * Leave pmd empty until pte is filled note we must notify here as
1309 * concurrent CPU thread might write to new page before the call to
1310 * mmu_notifier_invalidate_range_end() happens which can lead to a
1311 * device seeing memory write in different order than CPU.
1312 *
1313 * See Documentation/vm/mmu_notifier.rst
1314 */
1315 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1316
1317 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1318 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1319
1320 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1321 pte_t entry;
1322 entry = mk_pte(pages[i], vma->vm_page_prot);
1323 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1324 memcg = (void *)page_private(pages[i]);
1325 set_page_private(pages[i], 0);
1326 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1327 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1328 lru_cache_add_active_or_unevictable(pages[i], vma);
1329 vmf->pte = pte_offset_map(&_pmd, haddr);
1330 VM_BUG_ON(!pte_none(*vmf->pte));
1331 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1332 pte_unmap(vmf->pte);
1333 }
1334 kfree(pages);
1335
1336 smp_wmb(); /* make pte visible before pmd */
1337 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1338 page_remove_rmap(page, true);
1339 spin_unlock(vmf->ptl);
1340
1341 /*
1342 * No need to double call mmu_notifier->invalidate_range() callback as
1343 * the above pmdp_huge_clear_flush_notify() did already call it.
1344 */
1345 mmu_notifier_invalidate_range_only_end(&range);
1346
1347 ret |= VM_FAULT_WRITE;
1348 put_page(page);
1349
1350 out:
1351 return ret;
1352
1353 out_free_pages:
1354 spin_unlock(vmf->ptl);
1355 mmu_notifier_invalidate_range_end(&range);
1356 for (i = 0; i < HPAGE_PMD_NR; i++) {
1357 memcg = (void *)page_private(pages[i]);
1358 set_page_private(pages[i], 0);
1359 mem_cgroup_cancel_charge(pages[i], memcg, false);
1360 put_page(pages[i]);
1361 }
1362 kfree(pages);
1363 goto out;
1364 }
1365
1366 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1367 {
1368 struct vm_area_struct *vma = vmf->vma;
1369 struct page *page = NULL, *new_page;
1370 struct mem_cgroup *memcg;
1371 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1372 struct mmu_notifier_range range;
1373 gfp_t huge_gfp; /* for allocation and charge */
1374 vm_fault_t ret = 0;
1375
1376 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1377 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1378 if (is_huge_zero_pmd(orig_pmd))
1379 goto alloc;
1380 spin_lock(vmf->ptl);
1381 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1382 goto out_unlock;
1383
1384 page = pmd_page(orig_pmd);
1385 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1386 /*
1387 * We can only reuse the page if nobody else maps the huge page or it's
1388 * part.
1389 */
1390 if (!trylock_page(page)) {
1391 get_page(page);
1392 spin_unlock(vmf->ptl);
1393 lock_page(page);
1394 spin_lock(vmf->ptl);
1395 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1396 unlock_page(page);
1397 put_page(page);
1398 goto out_unlock;
1399 }
1400 put_page(page);
1401 }
1402 if (reuse_swap_page(page, NULL)) {
1403 pmd_t entry;
1404 entry = pmd_mkyoung(orig_pmd);
1405 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1406 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1407 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1408 ret |= VM_FAULT_WRITE;
1409 unlock_page(page);
1410 goto out_unlock;
1411 }
1412 unlock_page(page);
1413 get_page(page);
1414 spin_unlock(vmf->ptl);
1415 alloc:
1416 if (__transparent_hugepage_enabled(vma) &&
1417 !transparent_hugepage_debug_cow()) {
1418 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1419 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1420 } else
1421 new_page = NULL;
1422
1423 if (likely(new_page)) {
1424 prep_transhuge_page(new_page);
1425 } else {
1426 if (!page) {
1427 split_huge_pmd(vma, vmf->pmd, vmf->address);
1428 ret |= VM_FAULT_FALLBACK;
1429 } else {
1430 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1431 if (ret & VM_FAULT_OOM) {
1432 split_huge_pmd(vma, vmf->pmd, vmf->address);
1433 ret |= VM_FAULT_FALLBACK;
1434 }
1435 put_page(page);
1436 }
1437 count_vm_event(THP_FAULT_FALLBACK);
1438 goto out;
1439 }
1440
1441 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1442 huge_gfp, &memcg, true))) {
1443 put_page(new_page);
1444 split_huge_pmd(vma, vmf->pmd, vmf->address);
1445 if (page)
1446 put_page(page);
1447 ret |= VM_FAULT_FALLBACK;
1448 count_vm_event(THP_FAULT_FALLBACK);
1449 goto out;
1450 }
1451
1452 count_vm_event(THP_FAULT_ALLOC);
1453 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1454
1455 if (!page)
1456 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1457 else
1458 copy_user_huge_page(new_page, page, vmf->address,
1459 vma, HPAGE_PMD_NR);
1460 __SetPageUptodate(new_page);
1461
1462 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1463 haddr, haddr + HPAGE_PMD_SIZE);
1464 mmu_notifier_invalidate_range_start(&range);
1465
1466 spin_lock(vmf->ptl);
1467 if (page)
1468 put_page(page);
1469 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1470 spin_unlock(vmf->ptl);
1471 mem_cgroup_cancel_charge(new_page, memcg, true);
1472 put_page(new_page);
1473 goto out_mn;
1474 } else {
1475 pmd_t entry;
1476 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1477 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1478 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1479 page_add_new_anon_rmap(new_page, vma, haddr, true);
1480 mem_cgroup_commit_charge(new_page, memcg, false, true);
1481 lru_cache_add_active_or_unevictable(new_page, vma);
1482 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1483 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1484 if (!page) {
1485 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1486 } else {
1487 VM_BUG_ON_PAGE(!PageHead(page), page);
1488 page_remove_rmap(page, true);
1489 put_page(page);
1490 }
1491 ret |= VM_FAULT_WRITE;
1492 }
1493 spin_unlock(vmf->ptl);
1494 out_mn:
1495 /*
1496 * No need to double call mmu_notifier->invalidate_range() callback as
1497 * the above pmdp_huge_clear_flush_notify() did already call it.
1498 */
1499 mmu_notifier_invalidate_range_only_end(&range);
1500 out:
1501 return ret;
1502 out_unlock:
1503 spin_unlock(vmf->ptl);
1504 return ret;
1505 }
1506
1507 /*
1508 * FOLL_FORCE can write to even unwritable pmd's, but only
1509 * after we've gone through a COW cycle and they are dirty.
1510 */
1511 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1512 {
1513 return pmd_write(pmd) ||
1514 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1515 }
1516
1517 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1518 unsigned long addr,
1519 pmd_t *pmd,
1520 unsigned int flags)
1521 {
1522 struct mm_struct *mm = vma->vm_mm;
1523 struct page *page = NULL;
1524
1525 assert_spin_locked(pmd_lockptr(mm, pmd));
1526
1527 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1528 goto out;
1529
1530 /* Avoid dumping huge zero page */
1531 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1532 return ERR_PTR(-EFAULT);
1533
1534 /* Full NUMA hinting faults to serialise migration in fault paths */
1535 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1536 goto out;
1537
1538 page = pmd_page(*pmd);
1539 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1540
1541 if (!try_grab_page(page, flags))
1542 return ERR_PTR(-ENOMEM);
1543
1544 if (flags & FOLL_TOUCH)
1545 touch_pmd(vma, addr, pmd, flags);
1546
1547 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1548 /*
1549 * We don't mlock() pte-mapped THPs. This way we can avoid
1550 * leaking mlocked pages into non-VM_LOCKED VMAs.
1551 *
1552 * For anon THP:
1553 *
1554 * In most cases the pmd is the only mapping of the page as we
1555 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1556 * writable private mappings in populate_vma_page_range().
1557 *
1558 * The only scenario when we have the page shared here is if we
1559 * mlocking read-only mapping shared over fork(). We skip
1560 * mlocking such pages.
1561 *
1562 * For file THP:
1563 *
1564 * We can expect PageDoubleMap() to be stable under page lock:
1565 * for file pages we set it in page_add_file_rmap(), which
1566 * requires page to be locked.
1567 */
1568
1569 if (PageAnon(page) && compound_mapcount(page) != 1)
1570 goto skip_mlock;
1571 if (PageDoubleMap(page) || !page->mapping)
1572 goto skip_mlock;
1573 if (!trylock_page(page))
1574 goto skip_mlock;
1575 lru_add_drain();
1576 if (page->mapping && !PageDoubleMap(page))
1577 mlock_vma_page(page);
1578 unlock_page(page);
1579 }
1580 skip_mlock:
1581 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1582 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1583
1584 out:
1585 return page;
1586 }
1587
1588 /* NUMA hinting page fault entry point for trans huge pmds */
1589 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1590 {
1591 struct vm_area_struct *vma = vmf->vma;
1592 struct anon_vma *anon_vma = NULL;
1593 struct page *page;
1594 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1595 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1596 int target_nid, last_cpupid = -1;
1597 bool page_locked;
1598 bool migrated = false;
1599 bool was_writable;
1600 int flags = 0;
1601
1602 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1603 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1604 goto out_unlock;
1605
1606 /*
1607 * If there are potential migrations, wait for completion and retry
1608 * without disrupting NUMA hinting information. Do not relock and
1609 * check_same as the page may no longer be mapped.
1610 */
1611 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1612 page = pmd_page(*vmf->pmd);
1613 if (!get_page_unless_zero(page))
1614 goto out_unlock;
1615 spin_unlock(vmf->ptl);
1616 put_and_wait_on_page_locked(page);
1617 goto out;
1618 }
1619
1620 page = pmd_page(pmd);
1621 BUG_ON(is_huge_zero_page(page));
1622 page_nid = page_to_nid(page);
1623 last_cpupid = page_cpupid_last(page);
1624 count_vm_numa_event(NUMA_HINT_FAULTS);
1625 if (page_nid == this_nid) {
1626 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1627 flags |= TNF_FAULT_LOCAL;
1628 }
1629
1630 /* See similar comment in do_numa_page for explanation */
1631 if (!pmd_savedwrite(pmd))
1632 flags |= TNF_NO_GROUP;
1633
1634 /*
1635 * Acquire the page lock to serialise THP migrations but avoid dropping
1636 * page_table_lock if at all possible
1637 */
1638 page_locked = trylock_page(page);
1639 target_nid = mpol_misplaced(page, vma, haddr);
1640 if (target_nid == NUMA_NO_NODE) {
1641 /* If the page was locked, there are no parallel migrations */
1642 if (page_locked)
1643 goto clear_pmdnuma;
1644 }
1645
1646 /* Migration could have started since the pmd_trans_migrating check */
1647 if (!page_locked) {
1648 page_nid = NUMA_NO_NODE;
1649 if (!get_page_unless_zero(page))
1650 goto out_unlock;
1651 spin_unlock(vmf->ptl);
1652 put_and_wait_on_page_locked(page);
1653 goto out;
1654 }
1655
1656 /*
1657 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1658 * to serialises splits
1659 */
1660 get_page(page);
1661 spin_unlock(vmf->ptl);
1662 anon_vma = page_lock_anon_vma_read(page);
1663
1664 /* Confirm the PMD did not change while page_table_lock was released */
1665 spin_lock(vmf->ptl);
1666 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1667 unlock_page(page);
1668 put_page(page);
1669 page_nid = NUMA_NO_NODE;
1670 goto out_unlock;
1671 }
1672
1673 /* Bail if we fail to protect against THP splits for any reason */
1674 if (unlikely(!anon_vma)) {
1675 put_page(page);
1676 page_nid = NUMA_NO_NODE;
1677 goto clear_pmdnuma;
1678 }
1679
1680 /*
1681 * Since we took the NUMA fault, we must have observed the !accessible
1682 * bit. Make sure all other CPUs agree with that, to avoid them
1683 * modifying the page we're about to migrate.
1684 *
1685 * Must be done under PTL such that we'll observe the relevant
1686 * inc_tlb_flush_pending().
1687 *
1688 * We are not sure a pending tlb flush here is for a huge page
1689 * mapping or not. Hence use the tlb range variant
1690 */
1691 if (mm_tlb_flush_pending(vma->vm_mm)) {
1692 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1693 /*
1694 * change_huge_pmd() released the pmd lock before
1695 * invalidating the secondary MMUs sharing the primary
1696 * MMU pagetables (with ->invalidate_range()). The
1697 * mmu_notifier_invalidate_range_end() (which
1698 * internally calls ->invalidate_range()) in
1699 * change_pmd_range() will run after us, so we can't
1700 * rely on it here and we need an explicit invalidate.
1701 */
1702 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1703 haddr + HPAGE_PMD_SIZE);
1704 }
1705
1706 /*
1707 * Migrate the THP to the requested node, returns with page unlocked
1708 * and access rights restored.
1709 */
1710 spin_unlock(vmf->ptl);
1711
1712 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1713 vmf->pmd, pmd, vmf->address, page, target_nid);
1714 if (migrated) {
1715 flags |= TNF_MIGRATED;
1716 page_nid = target_nid;
1717 } else
1718 flags |= TNF_MIGRATE_FAIL;
1719
1720 goto out;
1721 clear_pmdnuma:
1722 BUG_ON(!PageLocked(page));
1723 was_writable = pmd_savedwrite(pmd);
1724 pmd = pmd_modify(pmd, vma->vm_page_prot);
1725 pmd = pmd_mkyoung(pmd);
1726 if (was_writable)
1727 pmd = pmd_mkwrite(pmd);
1728 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1729 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1730 unlock_page(page);
1731 out_unlock:
1732 spin_unlock(vmf->ptl);
1733
1734 out:
1735 if (anon_vma)
1736 page_unlock_anon_vma_read(anon_vma);
1737
1738 if (page_nid != NUMA_NO_NODE)
1739 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1740 flags);
1741
1742 return 0;
1743 }
1744
1745 /*
1746 * Return true if we do MADV_FREE successfully on entire pmd page.
1747 * Otherwise, return false.
1748 */
1749 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1750 pmd_t *pmd, unsigned long addr, unsigned long next)
1751 {
1752 spinlock_t *ptl;
1753 pmd_t orig_pmd;
1754 struct page *page;
1755 struct mm_struct *mm = tlb->mm;
1756 bool ret = false;
1757
1758 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1759
1760 ptl = pmd_trans_huge_lock(pmd, vma);
1761 if (!ptl)
1762 goto out_unlocked;
1763
1764 orig_pmd = *pmd;
1765 if (is_huge_zero_pmd(orig_pmd))
1766 goto out;
1767
1768 if (unlikely(!pmd_present(orig_pmd))) {
1769 VM_BUG_ON(thp_migration_supported() &&
1770 !is_pmd_migration_entry(orig_pmd));
1771 goto out;
1772 }
1773
1774 page = pmd_page(orig_pmd);
1775 /*
1776 * If other processes are mapping this page, we couldn't discard
1777 * the page unless they all do MADV_FREE so let's skip the page.
1778 */
1779 if (page_mapcount(page) != 1)
1780 goto out;
1781
1782 if (!trylock_page(page))
1783 goto out;
1784
1785 /*
1786 * If user want to discard part-pages of THP, split it so MADV_FREE
1787 * will deactivate only them.
1788 */
1789 if (next - addr != HPAGE_PMD_SIZE) {
1790 get_page(page);
1791 spin_unlock(ptl);
1792 split_huge_page(page);
1793 unlock_page(page);
1794 put_page(page);
1795 goto out_unlocked;
1796 }
1797
1798 if (PageDirty(page))
1799 ClearPageDirty(page);
1800 unlock_page(page);
1801
1802 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1803 pmdp_invalidate(vma, addr, pmd);
1804 orig_pmd = pmd_mkold(orig_pmd);
1805 orig_pmd = pmd_mkclean(orig_pmd);
1806
1807 set_pmd_at(mm, addr, pmd, orig_pmd);
1808 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1809 }
1810
1811 mark_page_lazyfree(page);
1812 ret = true;
1813 out:
1814 spin_unlock(ptl);
1815 out_unlocked:
1816 return ret;
1817 }
1818
1819 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1820 {
1821 pgtable_t pgtable;
1822
1823 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1824 pte_free(mm, pgtable);
1825 mm_dec_nr_ptes(mm);
1826 }
1827
1828 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1829 pmd_t *pmd, unsigned long addr)
1830 {
1831 pmd_t orig_pmd;
1832 spinlock_t *ptl;
1833
1834 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1835
1836 ptl = __pmd_trans_huge_lock(pmd, vma);
1837 if (!ptl)
1838 return 0;
1839 /*
1840 * For architectures like ppc64 we look at deposited pgtable
1841 * when calling pmdp_huge_get_and_clear. So do the
1842 * pgtable_trans_huge_withdraw after finishing pmdp related
1843 * operations.
1844 */
1845 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1846 tlb->fullmm);
1847 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1848 if (vma_is_special_huge(vma)) {
1849 if (arch_needs_pgtable_deposit())
1850 zap_deposited_table(tlb->mm, pmd);
1851 spin_unlock(ptl);
1852 if (is_huge_zero_pmd(orig_pmd))
1853 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1854 } else if (is_huge_zero_pmd(orig_pmd)) {
1855 zap_deposited_table(tlb->mm, pmd);
1856 spin_unlock(ptl);
1857 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1858 } else {
1859 struct page *page = NULL;
1860 int flush_needed = 1;
1861
1862 if (pmd_present(orig_pmd)) {
1863 page = pmd_page(orig_pmd);
1864 page_remove_rmap(page, true);
1865 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1866 VM_BUG_ON_PAGE(!PageHead(page), page);
1867 } else if (thp_migration_supported()) {
1868 swp_entry_t entry;
1869
1870 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1871 entry = pmd_to_swp_entry(orig_pmd);
1872 page = pfn_to_page(swp_offset(entry));
1873 flush_needed = 0;
1874 } else
1875 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1876
1877 if (PageAnon(page)) {
1878 zap_deposited_table(tlb->mm, pmd);
1879 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1880 } else {
1881 if (arch_needs_pgtable_deposit())
1882 zap_deposited_table(tlb->mm, pmd);
1883 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1884 }
1885
1886 spin_unlock(ptl);
1887 if (flush_needed)
1888 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1889 }
1890 return 1;
1891 }
1892
1893 #ifndef pmd_move_must_withdraw
1894 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1895 spinlock_t *old_pmd_ptl,
1896 struct vm_area_struct *vma)
1897 {
1898 /*
1899 * With split pmd lock we also need to move preallocated
1900 * PTE page table if new_pmd is on different PMD page table.
1901 *
1902 * We also don't deposit and withdraw tables for file pages.
1903 */
1904 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1905 }
1906 #endif
1907
1908 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1909 {
1910 #ifdef CONFIG_MEM_SOFT_DIRTY
1911 if (unlikely(is_pmd_migration_entry(pmd)))
1912 pmd = pmd_swp_mksoft_dirty(pmd);
1913 else if (pmd_present(pmd))
1914 pmd = pmd_mksoft_dirty(pmd);
1915 #endif
1916 return pmd;
1917 }
1918
1919 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1920 unsigned long new_addr, unsigned long old_end,
1921 pmd_t *old_pmd, pmd_t *new_pmd)
1922 {
1923 spinlock_t *old_ptl, *new_ptl;
1924 pmd_t pmd;
1925 struct mm_struct *mm = vma->vm_mm;
1926 bool force_flush = false;
1927
1928 if ((old_addr & ~HPAGE_PMD_MASK) ||
1929 (new_addr & ~HPAGE_PMD_MASK) ||
1930 old_end - old_addr < HPAGE_PMD_SIZE)
1931 return false;
1932
1933 /*
1934 * The destination pmd shouldn't be established, free_pgtables()
1935 * should have release it.
1936 */
1937 if (WARN_ON(!pmd_none(*new_pmd))) {
1938 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1939 return false;
1940 }
1941
1942 /*
1943 * We don't have to worry about the ordering of src and dst
1944 * ptlocks because exclusive mmap_sem prevents deadlock.
1945 */
1946 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1947 if (old_ptl) {
1948 new_ptl = pmd_lockptr(mm, new_pmd);
1949 if (new_ptl != old_ptl)
1950 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1951 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1952 if (pmd_present(pmd))
1953 force_flush = true;
1954 VM_BUG_ON(!pmd_none(*new_pmd));
1955
1956 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1957 pgtable_t pgtable;
1958 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1959 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1960 }
1961 pmd = move_soft_dirty_pmd(pmd);
1962 set_pmd_at(mm, new_addr, new_pmd, pmd);
1963 if (force_flush)
1964 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1965 if (new_ptl != old_ptl)
1966 spin_unlock(new_ptl);
1967 spin_unlock(old_ptl);
1968 return true;
1969 }
1970 return false;
1971 }
1972
1973 /*
1974 * Returns
1975 * - 0 if PMD could not be locked
1976 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1977 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1978 */
1979 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1980 unsigned long addr, pgprot_t newprot, int prot_numa)
1981 {
1982 struct mm_struct *mm = vma->vm_mm;
1983 spinlock_t *ptl;
1984 pmd_t entry;
1985 bool preserve_write;
1986 int ret;
1987
1988 ptl = __pmd_trans_huge_lock(pmd, vma);
1989 if (!ptl)
1990 return 0;
1991
1992 preserve_write = prot_numa && pmd_write(*pmd);
1993 ret = 1;
1994
1995 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1996 if (is_swap_pmd(*pmd)) {
1997 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1998
1999 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2000 if (is_write_migration_entry(entry)) {
2001 pmd_t newpmd;
2002 /*
2003 * A protection check is difficult so
2004 * just be safe and disable write
2005 */
2006 make_migration_entry_read(&entry);
2007 newpmd = swp_entry_to_pmd(entry);
2008 if (pmd_swp_soft_dirty(*pmd))
2009 newpmd = pmd_swp_mksoft_dirty(newpmd);
2010 set_pmd_at(mm, addr, pmd, newpmd);
2011 }
2012 goto unlock;
2013 }
2014 #endif
2015
2016 /*
2017 * Avoid trapping faults against the zero page. The read-only
2018 * data is likely to be read-cached on the local CPU and
2019 * local/remote hits to the zero page are not interesting.
2020 */
2021 if (prot_numa && is_huge_zero_pmd(*pmd))
2022 goto unlock;
2023
2024 if (prot_numa && pmd_protnone(*pmd))
2025 goto unlock;
2026
2027 /*
2028 * In case prot_numa, we are under down_read(mmap_sem). It's critical
2029 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2030 * which is also under down_read(mmap_sem):
2031 *
2032 * CPU0: CPU1:
2033 * change_huge_pmd(prot_numa=1)
2034 * pmdp_huge_get_and_clear_notify()
2035 * madvise_dontneed()
2036 * zap_pmd_range()
2037 * pmd_trans_huge(*pmd) == 0 (without ptl)
2038 * // skip the pmd
2039 * set_pmd_at();
2040 * // pmd is re-established
2041 *
2042 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2043 * which may break userspace.
2044 *
2045 * pmdp_invalidate() is required to make sure we don't miss
2046 * dirty/young flags set by hardware.
2047 */
2048 entry = pmdp_invalidate(vma, addr, pmd);
2049
2050 entry = pmd_modify(entry, newprot);
2051 if (preserve_write)
2052 entry = pmd_mk_savedwrite(entry);
2053 ret = HPAGE_PMD_NR;
2054 set_pmd_at(mm, addr, pmd, entry);
2055 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2056 unlock:
2057 spin_unlock(ptl);
2058 return ret;
2059 }
2060
2061 /*
2062 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2063 *
2064 * Note that if it returns page table lock pointer, this routine returns without
2065 * unlocking page table lock. So callers must unlock it.
2066 */
2067 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2068 {
2069 spinlock_t *ptl;
2070 ptl = pmd_lock(vma->vm_mm, pmd);
2071 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2072 pmd_devmap(*pmd)))
2073 return ptl;
2074 spin_unlock(ptl);
2075 return NULL;
2076 }
2077
2078 /*
2079 * Returns true if a given pud maps a thp, false otherwise.
2080 *
2081 * Note that if it returns true, this routine returns without unlocking page
2082 * table lock. So callers must unlock it.
2083 */
2084 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2085 {
2086 spinlock_t *ptl;
2087
2088 ptl = pud_lock(vma->vm_mm, pud);
2089 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2090 return ptl;
2091 spin_unlock(ptl);
2092 return NULL;
2093 }
2094
2095 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2096 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2097 pud_t *pud, unsigned long addr)
2098 {
2099 spinlock_t *ptl;
2100
2101 ptl = __pud_trans_huge_lock(pud, vma);
2102 if (!ptl)
2103 return 0;
2104 /*
2105 * For architectures like ppc64 we look at deposited pgtable
2106 * when calling pudp_huge_get_and_clear. So do the
2107 * pgtable_trans_huge_withdraw after finishing pudp related
2108 * operations.
2109 */
2110 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2111 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2112 if (vma_is_special_huge(vma)) {
2113 spin_unlock(ptl);
2114 /* No zero page support yet */
2115 } else {
2116 /* No support for anonymous PUD pages yet */
2117 BUG();
2118 }
2119 return 1;
2120 }
2121
2122 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2123 unsigned long haddr)
2124 {
2125 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2126 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2127 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2128 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2129
2130 count_vm_event(THP_SPLIT_PUD);
2131
2132 pudp_huge_clear_flush_notify(vma, haddr, pud);
2133 }
2134
2135 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2136 unsigned long address)
2137 {
2138 spinlock_t *ptl;
2139 struct mmu_notifier_range range;
2140
2141 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2142 address & HPAGE_PUD_MASK,
2143 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2144 mmu_notifier_invalidate_range_start(&range);
2145 ptl = pud_lock(vma->vm_mm, pud);
2146 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2147 goto out;
2148 __split_huge_pud_locked(vma, pud, range.start);
2149
2150 out:
2151 spin_unlock(ptl);
2152 /*
2153 * No need to double call mmu_notifier->invalidate_range() callback as
2154 * the above pudp_huge_clear_flush_notify() did already call it.
2155 */
2156 mmu_notifier_invalidate_range_only_end(&range);
2157 }
2158 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2159
2160 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2161 unsigned long haddr, pmd_t *pmd)
2162 {
2163 struct mm_struct *mm = vma->vm_mm;
2164 pgtable_t pgtable;
2165 pmd_t _pmd;
2166 int i;
2167
2168 /*
2169 * Leave pmd empty until pte is filled note that it is fine to delay
2170 * notification until mmu_notifier_invalidate_range_end() as we are
2171 * replacing a zero pmd write protected page with a zero pte write
2172 * protected page.
2173 *
2174 * See Documentation/vm/mmu_notifier.rst
2175 */
2176 pmdp_huge_clear_flush(vma, haddr, pmd);
2177
2178 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2179 pmd_populate(mm, &_pmd, pgtable);
2180
2181 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2182 pte_t *pte, entry;
2183 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2184 entry = pte_mkspecial(entry);
2185 pte = pte_offset_map(&_pmd, haddr);
2186 VM_BUG_ON(!pte_none(*pte));
2187 set_pte_at(mm, haddr, pte, entry);
2188 pte_unmap(pte);
2189 }
2190 smp_wmb(); /* make pte visible before pmd */
2191 pmd_populate(mm, pmd, pgtable);
2192 }
2193
2194 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2195 unsigned long haddr, bool freeze)
2196 {
2197 struct mm_struct *mm = vma->vm_mm;
2198 struct page *page;
2199 pgtable_t pgtable;
2200 pmd_t old_pmd, _pmd;
2201 bool young, write, soft_dirty, pmd_migration = false;
2202 unsigned long addr;
2203 int i;
2204
2205 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2206 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2207 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2208 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2209 && !pmd_devmap(*pmd));
2210
2211 count_vm_event(THP_SPLIT_PMD);
2212
2213 if (!vma_is_anonymous(vma)) {
2214 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2215 /*
2216 * We are going to unmap this huge page. So
2217 * just go ahead and zap it
2218 */
2219 if (arch_needs_pgtable_deposit())
2220 zap_deposited_table(mm, pmd);
2221 if (vma_is_special_huge(vma))
2222 return;
2223 page = pmd_page(_pmd);
2224 if (!PageDirty(page) && pmd_dirty(_pmd))
2225 set_page_dirty(page);
2226 if (!PageReferenced(page) && pmd_young(_pmd))
2227 SetPageReferenced(page);
2228 page_remove_rmap(page, true);
2229 put_page(page);
2230 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2231 return;
2232 } else if (is_huge_zero_pmd(*pmd)) {
2233 /*
2234 * FIXME: Do we want to invalidate secondary mmu by calling
2235 * mmu_notifier_invalidate_range() see comments below inside
2236 * __split_huge_pmd() ?
2237 *
2238 * We are going from a zero huge page write protected to zero
2239 * small page also write protected so it does not seems useful
2240 * to invalidate secondary mmu at this time.
2241 */
2242 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2243 }
2244
2245 /*
2246 * Up to this point the pmd is present and huge and userland has the
2247 * whole access to the hugepage during the split (which happens in
2248 * place). If we overwrite the pmd with the not-huge version pointing
2249 * to the pte here (which of course we could if all CPUs were bug
2250 * free), userland could trigger a small page size TLB miss on the
2251 * small sized TLB while the hugepage TLB entry is still established in
2252 * the huge TLB. Some CPU doesn't like that.
2253 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2254 * 383 on page 93. Intel should be safe but is also warns that it's
2255 * only safe if the permission and cache attributes of the two entries
2256 * loaded in the two TLB is identical (which should be the case here).
2257 * But it is generally safer to never allow small and huge TLB entries
2258 * for the same virtual address to be loaded simultaneously. So instead
2259 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2260 * current pmd notpresent (atomically because here the pmd_trans_huge
2261 * must remain set at all times on the pmd until the split is complete
2262 * for this pmd), then we flush the SMP TLB and finally we write the
2263 * non-huge version of the pmd entry with pmd_populate.
2264 */
2265 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2266
2267 pmd_migration = is_pmd_migration_entry(old_pmd);
2268 if (unlikely(pmd_migration)) {
2269 swp_entry_t entry;
2270
2271 entry = pmd_to_swp_entry(old_pmd);
2272 page = pfn_to_page(swp_offset(entry));
2273 write = is_write_migration_entry(entry);
2274 young = false;
2275 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2276 } else {
2277 page = pmd_page(old_pmd);
2278 if (pmd_dirty(old_pmd))
2279 SetPageDirty(page);
2280 write = pmd_write(old_pmd);
2281 young = pmd_young(old_pmd);
2282 soft_dirty = pmd_soft_dirty(old_pmd);
2283 }
2284 VM_BUG_ON_PAGE(!page_count(page), page);
2285 page_ref_add(page, HPAGE_PMD_NR - 1);
2286
2287 /*
2288 * Withdraw the table only after we mark the pmd entry invalid.
2289 * This's critical for some architectures (Power).
2290 */
2291 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2292 pmd_populate(mm, &_pmd, pgtable);
2293
2294 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2295 pte_t entry, *pte;
2296 /*
2297 * Note that NUMA hinting access restrictions are not
2298 * transferred to avoid any possibility of altering
2299 * permissions across VMAs.
2300 */
2301 if (freeze || pmd_migration) {
2302 swp_entry_t swp_entry;
2303 swp_entry = make_migration_entry(page + i, write);
2304 entry = swp_entry_to_pte(swp_entry);
2305 if (soft_dirty)
2306 entry = pte_swp_mksoft_dirty(entry);
2307 } else {
2308 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2309 entry = maybe_mkwrite(entry, vma);
2310 if (!write)
2311 entry = pte_wrprotect(entry);
2312 if (!young)
2313 entry = pte_mkold(entry);
2314 if (soft_dirty)
2315 entry = pte_mksoft_dirty(entry);
2316 }
2317 pte = pte_offset_map(&_pmd, addr);
2318 BUG_ON(!pte_none(*pte));
2319 set_pte_at(mm, addr, pte, entry);
2320 atomic_inc(&page[i]._mapcount);
2321 pte_unmap(pte);
2322 }
2323
2324 /*
2325 * Set PG_double_map before dropping compound_mapcount to avoid
2326 * false-negative page_mapped().
2327 */
2328 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2329 for (i = 0; i < HPAGE_PMD_NR; i++)
2330 atomic_inc(&page[i]._mapcount);
2331 }
2332
2333 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2334 /* Last compound_mapcount is gone. */
2335 __dec_node_page_state(page, NR_ANON_THPS);
2336 if (TestClearPageDoubleMap(page)) {
2337 /* No need in mapcount reference anymore */
2338 for (i = 0; i < HPAGE_PMD_NR; i++)
2339 atomic_dec(&page[i]._mapcount);
2340 }
2341 }
2342
2343 smp_wmb(); /* make pte visible before pmd */
2344 pmd_populate(mm, pmd, pgtable);
2345
2346 if (freeze) {
2347 for (i = 0; i < HPAGE_PMD_NR; i++) {
2348 page_remove_rmap(page + i, false);
2349 put_page(page + i);
2350 }
2351 }
2352 }
2353
2354 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2355 unsigned long address, bool freeze, struct page *page)
2356 {
2357 spinlock_t *ptl;
2358 struct mmu_notifier_range range;
2359
2360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2361 address & HPAGE_PMD_MASK,
2362 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2363 mmu_notifier_invalidate_range_start(&range);
2364 ptl = pmd_lock(vma->vm_mm, pmd);
2365
2366 /*
2367 * If caller asks to setup a migration entries, we need a page to check
2368 * pmd against. Otherwise we can end up replacing wrong page.
2369 */
2370 VM_BUG_ON(freeze && !page);
2371 if (page && page != pmd_page(*pmd))
2372 goto out;
2373
2374 if (pmd_trans_huge(*pmd)) {
2375 page = pmd_page(*pmd);
2376 if (PageMlocked(page))
2377 clear_page_mlock(page);
2378 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2379 goto out;
2380 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2381 out:
2382 spin_unlock(ptl);
2383 /*
2384 * No need to double call mmu_notifier->invalidate_range() callback.
2385 * They are 3 cases to consider inside __split_huge_pmd_locked():
2386 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2387 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2388 * fault will trigger a flush_notify before pointing to a new page
2389 * (it is fine if the secondary mmu keeps pointing to the old zero
2390 * page in the meantime)
2391 * 3) Split a huge pmd into pte pointing to the same page. No need
2392 * to invalidate secondary tlb entry they are all still valid.
2393 * any further changes to individual pte will notify. So no need
2394 * to call mmu_notifier->invalidate_range()
2395 */
2396 mmu_notifier_invalidate_range_only_end(&range);
2397 }
2398
2399 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2400 bool freeze, struct page *page)
2401 {
2402 pgd_t *pgd;
2403 p4d_t *p4d;
2404 pud_t *pud;
2405 pmd_t *pmd;
2406
2407 pgd = pgd_offset(vma->vm_mm, address);
2408 if (!pgd_present(*pgd))
2409 return;
2410
2411 p4d = p4d_offset(pgd, address);
2412 if (!p4d_present(*p4d))
2413 return;
2414
2415 pud = pud_offset(p4d, address);
2416 if (!pud_present(*pud))
2417 return;
2418
2419 pmd = pmd_offset(pud, address);
2420
2421 __split_huge_pmd(vma, pmd, address, freeze, page);
2422 }
2423
2424 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2425 unsigned long start,
2426 unsigned long end,
2427 long adjust_next)
2428 {
2429 /*
2430 * If the new start address isn't hpage aligned and it could
2431 * previously contain an hugepage: check if we need to split
2432 * an huge pmd.
2433 */
2434 if (start & ~HPAGE_PMD_MASK &&
2435 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2436 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2437 split_huge_pmd_address(vma, start, false, NULL);
2438
2439 /*
2440 * If the new end address isn't hpage aligned and it could
2441 * previously contain an hugepage: check if we need to split
2442 * an huge pmd.
2443 */
2444 if (end & ~HPAGE_PMD_MASK &&
2445 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2446 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2447 split_huge_pmd_address(vma, end, false, NULL);
2448
2449 /*
2450 * If we're also updating the vma->vm_next->vm_start, if the new
2451 * vm_next->vm_start isn't page aligned and it could previously
2452 * contain an hugepage: check if we need to split an huge pmd.
2453 */
2454 if (adjust_next > 0) {
2455 struct vm_area_struct *next = vma->vm_next;
2456 unsigned long nstart = next->vm_start;
2457 nstart += adjust_next << PAGE_SHIFT;
2458 if (nstart & ~HPAGE_PMD_MASK &&
2459 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2460 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2461 split_huge_pmd_address(next, nstart, false, NULL);
2462 }
2463 }
2464
2465 static void unmap_page(struct page *page)
2466 {
2467 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2468 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2469 bool unmap_success;
2470
2471 VM_BUG_ON_PAGE(!PageHead(page), page);
2472
2473 if (PageAnon(page))
2474 ttu_flags |= TTU_SPLIT_FREEZE;
2475
2476 unmap_success = try_to_unmap(page, ttu_flags);
2477 VM_BUG_ON_PAGE(!unmap_success, page);
2478 }
2479
2480 static void remap_page(struct page *page)
2481 {
2482 int i;
2483 if (PageTransHuge(page)) {
2484 remove_migration_ptes(page, page, true);
2485 } else {
2486 for (i = 0; i < HPAGE_PMD_NR; i++)
2487 remove_migration_ptes(page + i, page + i, true);
2488 }
2489 }
2490
2491 static void __split_huge_page_tail(struct page *head, int tail,
2492 struct lruvec *lruvec, struct list_head *list)
2493 {
2494 struct page *page_tail = head + tail;
2495
2496 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2497
2498 /*
2499 * Clone page flags before unfreezing refcount.
2500 *
2501 * After successful get_page_unless_zero() might follow flags change,
2502 * for exmaple lock_page() which set PG_waiters.
2503 */
2504 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2505 page_tail->flags |= (head->flags &
2506 ((1L << PG_referenced) |
2507 (1L << PG_swapbacked) |
2508 (1L << PG_swapcache) |
2509 (1L << PG_mlocked) |
2510 (1L << PG_uptodate) |
2511 (1L << PG_active) |
2512 (1L << PG_workingset) |
2513 (1L << PG_locked) |
2514 (1L << PG_unevictable) |
2515 (1L << PG_dirty)));
2516
2517 /* ->mapping in first tail page is compound_mapcount */
2518 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2519 page_tail);
2520 page_tail->mapping = head->mapping;
2521 page_tail->index = head->index + tail;
2522
2523 /* Page flags must be visible before we make the page non-compound. */
2524 smp_wmb();
2525
2526 /*
2527 * Clear PageTail before unfreezing page refcount.
2528 *
2529 * After successful get_page_unless_zero() might follow put_page()
2530 * which needs correct compound_head().
2531 */
2532 clear_compound_head(page_tail);
2533
2534 /* Finally unfreeze refcount. Additional reference from page cache. */
2535 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2536 PageSwapCache(head)));
2537
2538 if (page_is_young(head))
2539 set_page_young(page_tail);
2540 if (page_is_idle(head))
2541 set_page_idle(page_tail);
2542
2543 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2544
2545 /*
2546 * always add to the tail because some iterators expect new
2547 * pages to show after the currently processed elements - e.g.
2548 * migrate_pages
2549 */
2550 lru_add_page_tail(head, page_tail, lruvec, list);
2551 }
2552
2553 static void __split_huge_page(struct page *page, struct list_head *list,
2554 pgoff_t end, unsigned long flags)
2555 {
2556 struct page *head = compound_head(page);
2557 pg_data_t *pgdat = page_pgdat(head);
2558 struct lruvec *lruvec;
2559 struct address_space *swap_cache = NULL;
2560 unsigned long offset = 0;
2561 int i;
2562
2563 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2564
2565 /* complete memcg works before add pages to LRU */
2566 mem_cgroup_split_huge_fixup(head);
2567
2568 if (PageAnon(head) && PageSwapCache(head)) {
2569 swp_entry_t entry = { .val = page_private(head) };
2570
2571 offset = swp_offset(entry);
2572 swap_cache = swap_address_space(entry);
2573 xa_lock(&swap_cache->i_pages);
2574 }
2575
2576 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2577 __split_huge_page_tail(head, i, lruvec, list);
2578 /* Some pages can be beyond i_size: drop them from page cache */
2579 if (head[i].index >= end) {
2580 ClearPageDirty(head + i);
2581 __delete_from_page_cache(head + i, NULL);
2582 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2583 shmem_uncharge(head->mapping->host, 1);
2584 put_page(head + i);
2585 } else if (!PageAnon(page)) {
2586 __xa_store(&head->mapping->i_pages, head[i].index,
2587 head + i, 0);
2588 } else if (swap_cache) {
2589 __xa_store(&swap_cache->i_pages, offset + i,
2590 head + i, 0);
2591 }
2592 }
2593
2594 ClearPageCompound(head);
2595
2596 split_page_owner(head, HPAGE_PMD_ORDER);
2597
2598 /* See comment in __split_huge_page_tail() */
2599 if (PageAnon(head)) {
2600 /* Additional pin to swap cache */
2601 if (PageSwapCache(head)) {
2602 page_ref_add(head, 2);
2603 xa_unlock(&swap_cache->i_pages);
2604 } else {
2605 page_ref_inc(head);
2606 }
2607 } else {
2608 /* Additional pin to page cache */
2609 page_ref_add(head, 2);
2610 xa_unlock(&head->mapping->i_pages);
2611 }
2612
2613 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2614
2615 remap_page(head);
2616
2617 for (i = 0; i < HPAGE_PMD_NR; i++) {
2618 struct page *subpage = head + i;
2619 if (subpage == page)
2620 continue;
2621 unlock_page(subpage);
2622
2623 /*
2624 * Subpages may be freed if there wasn't any mapping
2625 * like if add_to_swap() is running on a lru page that
2626 * had its mapping zapped. And freeing these pages
2627 * requires taking the lru_lock so we do the put_page
2628 * of the tail pages after the split is complete.
2629 */
2630 put_page(subpage);
2631 }
2632 }
2633
2634 int total_mapcount(struct page *page)
2635 {
2636 int i, compound, ret;
2637
2638 VM_BUG_ON_PAGE(PageTail(page), page);
2639
2640 if (likely(!PageCompound(page)))
2641 return atomic_read(&page->_mapcount) + 1;
2642
2643 compound = compound_mapcount(page);
2644 if (PageHuge(page))
2645 return compound;
2646 ret = compound;
2647 for (i = 0; i < HPAGE_PMD_NR; i++)
2648 ret += atomic_read(&page[i]._mapcount) + 1;
2649 /* File pages has compound_mapcount included in _mapcount */
2650 if (!PageAnon(page))
2651 return ret - compound * HPAGE_PMD_NR;
2652 if (PageDoubleMap(page))
2653 ret -= HPAGE_PMD_NR;
2654 return ret;
2655 }
2656
2657 /*
2658 * This calculates accurately how many mappings a transparent hugepage
2659 * has (unlike page_mapcount() which isn't fully accurate). This full
2660 * accuracy is primarily needed to know if copy-on-write faults can
2661 * reuse the page and change the mapping to read-write instead of
2662 * copying them. At the same time this returns the total_mapcount too.
2663 *
2664 * The function returns the highest mapcount any one of the subpages
2665 * has. If the return value is one, even if different processes are
2666 * mapping different subpages of the transparent hugepage, they can
2667 * all reuse it, because each process is reusing a different subpage.
2668 *
2669 * The total_mapcount is instead counting all virtual mappings of the
2670 * subpages. If the total_mapcount is equal to "one", it tells the
2671 * caller all mappings belong to the same "mm" and in turn the
2672 * anon_vma of the transparent hugepage can become the vma->anon_vma
2673 * local one as no other process may be mapping any of the subpages.
2674 *
2675 * It would be more accurate to replace page_mapcount() with
2676 * page_trans_huge_mapcount(), however we only use
2677 * page_trans_huge_mapcount() in the copy-on-write faults where we
2678 * need full accuracy to avoid breaking page pinning, because
2679 * page_trans_huge_mapcount() is slower than page_mapcount().
2680 */
2681 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2682 {
2683 int i, ret, _total_mapcount, mapcount;
2684
2685 /* hugetlbfs shouldn't call it */
2686 VM_BUG_ON_PAGE(PageHuge(page), page);
2687
2688 if (likely(!PageTransCompound(page))) {
2689 mapcount = atomic_read(&page->_mapcount) + 1;
2690 if (total_mapcount)
2691 *total_mapcount = mapcount;
2692 return mapcount;
2693 }
2694
2695 page = compound_head(page);
2696
2697 _total_mapcount = ret = 0;
2698 for (i = 0; i < HPAGE_PMD_NR; i++) {
2699 mapcount = atomic_read(&page[i]._mapcount) + 1;
2700 ret = max(ret, mapcount);
2701 _total_mapcount += mapcount;
2702 }
2703 if (PageDoubleMap(page)) {
2704 ret -= 1;
2705 _total_mapcount -= HPAGE_PMD_NR;
2706 }
2707 mapcount = compound_mapcount(page);
2708 ret += mapcount;
2709 _total_mapcount += mapcount;
2710 if (total_mapcount)
2711 *total_mapcount = _total_mapcount;
2712 return ret;
2713 }
2714
2715 /* Racy check whether the huge page can be split */
2716 bool can_split_huge_page(struct page *page, int *pextra_pins)
2717 {
2718 int extra_pins;
2719
2720 /* Additional pins from page cache */
2721 if (PageAnon(page))
2722 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2723 else
2724 extra_pins = HPAGE_PMD_NR;
2725 if (pextra_pins)
2726 *pextra_pins = extra_pins;
2727 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2728 }
2729
2730 /*
2731 * This function splits huge page into normal pages. @page can point to any
2732 * subpage of huge page to split. Split doesn't change the position of @page.
2733 *
2734 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2735 * The huge page must be locked.
2736 *
2737 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2738 *
2739 * Both head page and tail pages will inherit mapping, flags, and so on from
2740 * the hugepage.
2741 *
2742 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2743 * they are not mapped.
2744 *
2745 * Returns 0 if the hugepage is split successfully.
2746 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2747 * us.
2748 */
2749 int split_huge_page_to_list(struct page *page, struct list_head *list)
2750 {
2751 struct page *head = compound_head(page);
2752 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2753 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2754 struct anon_vma *anon_vma = NULL;
2755 struct address_space *mapping = NULL;
2756 int count, mapcount, extra_pins, ret;
2757 bool mlocked;
2758 unsigned long flags;
2759 pgoff_t end;
2760
2761 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2762 VM_BUG_ON_PAGE(!PageLocked(head), head);
2763 VM_BUG_ON_PAGE(!PageCompound(head), head);
2764
2765 if (PageWriteback(head))
2766 return -EBUSY;
2767
2768 if (PageAnon(head)) {
2769 /*
2770 * The caller does not necessarily hold an mmap_sem that would
2771 * prevent the anon_vma disappearing so we first we take a
2772 * reference to it and then lock the anon_vma for write. This
2773 * is similar to page_lock_anon_vma_read except the write lock
2774 * is taken to serialise against parallel split or collapse
2775 * operations.
2776 */
2777 anon_vma = page_get_anon_vma(head);
2778 if (!anon_vma) {
2779 ret = -EBUSY;
2780 goto out;
2781 }
2782 end = -1;
2783 mapping = NULL;
2784 anon_vma_lock_write(anon_vma);
2785 } else {
2786 mapping = head->mapping;
2787
2788 /* Truncated ? */
2789 if (!mapping) {
2790 ret = -EBUSY;
2791 goto out;
2792 }
2793
2794 anon_vma = NULL;
2795 i_mmap_lock_read(mapping);
2796
2797 /*
2798 *__split_huge_page() may need to trim off pages beyond EOF:
2799 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2800 * which cannot be nested inside the page tree lock. So note
2801 * end now: i_size itself may be changed at any moment, but
2802 * head page lock is good enough to serialize the trimming.
2803 */
2804 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2805 }
2806
2807 /*
2808 * Racy check if we can split the page, before unmap_page() will
2809 * split PMDs
2810 */
2811 if (!can_split_huge_page(head, &extra_pins)) {
2812 ret = -EBUSY;
2813 goto out_unlock;
2814 }
2815
2816 mlocked = PageMlocked(head);
2817 unmap_page(head);
2818 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2819
2820 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2821 if (mlocked)
2822 lru_add_drain();
2823
2824 /* prevent PageLRU to go away from under us, and freeze lru stats */
2825 spin_lock_irqsave(&pgdata->lru_lock, flags);
2826
2827 if (mapping) {
2828 XA_STATE(xas, &mapping->i_pages, page_index(head));
2829
2830 /*
2831 * Check if the head page is present in page cache.
2832 * We assume all tail are present too, if head is there.
2833 */
2834 xa_lock(&mapping->i_pages);
2835 if (xas_load(&xas) != head)
2836 goto fail;
2837 }
2838
2839 /* Prevent deferred_split_scan() touching ->_refcount */
2840 spin_lock(&ds_queue->split_queue_lock);
2841 count = page_count(head);
2842 mapcount = total_mapcount(head);
2843 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2844 if (!list_empty(page_deferred_list(head))) {
2845 ds_queue->split_queue_len--;
2846 list_del(page_deferred_list(head));
2847 }
2848 spin_unlock(&ds_queue->split_queue_lock);
2849 if (mapping) {
2850 if (PageSwapBacked(head))
2851 __dec_node_page_state(head, NR_SHMEM_THPS);
2852 else
2853 __dec_node_page_state(head, NR_FILE_THPS);
2854 }
2855
2856 __split_huge_page(page, list, end, flags);
2857 if (PageSwapCache(head)) {
2858 swp_entry_t entry = { .val = page_private(head) };
2859
2860 ret = split_swap_cluster(entry);
2861 } else
2862 ret = 0;
2863 } else {
2864 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2865 pr_alert("total_mapcount: %u, page_count(): %u\n",
2866 mapcount, count);
2867 if (PageTail(page))
2868 dump_page(head, NULL);
2869 dump_page(page, "total_mapcount(head) > 0");
2870 BUG();
2871 }
2872 spin_unlock(&ds_queue->split_queue_lock);
2873 fail: if (mapping)
2874 xa_unlock(&mapping->i_pages);
2875 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2876 remap_page(head);
2877 ret = -EBUSY;
2878 }
2879
2880 out_unlock:
2881 if (anon_vma) {
2882 anon_vma_unlock_write(anon_vma);
2883 put_anon_vma(anon_vma);
2884 }
2885 if (mapping)
2886 i_mmap_unlock_read(mapping);
2887 out:
2888 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2889 return ret;
2890 }
2891
2892 void free_transhuge_page(struct page *page)
2893 {
2894 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2895 unsigned long flags;
2896
2897 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2898 if (!list_empty(page_deferred_list(page))) {
2899 ds_queue->split_queue_len--;
2900 list_del(page_deferred_list(page));
2901 }
2902 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2903 free_compound_page(page);
2904 }
2905
2906 void deferred_split_huge_page(struct page *page)
2907 {
2908 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2909 #ifdef CONFIG_MEMCG
2910 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2911 #endif
2912 unsigned long flags;
2913
2914 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2915
2916 /*
2917 * The try_to_unmap() in page reclaim path might reach here too,
2918 * this may cause a race condition to corrupt deferred split queue.
2919 * And, if page reclaim is already handling the same page, it is
2920 * unnecessary to handle it again in shrinker.
2921 *
2922 * Check PageSwapCache to determine if the page is being
2923 * handled by page reclaim since THP swap would add the page into
2924 * swap cache before calling try_to_unmap().
2925 */
2926 if (PageSwapCache(page))
2927 return;
2928
2929 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2930 if (list_empty(page_deferred_list(page))) {
2931 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2932 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2933 ds_queue->split_queue_len++;
2934 #ifdef CONFIG_MEMCG
2935 if (memcg)
2936 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2937 deferred_split_shrinker.id);
2938 #endif
2939 }
2940 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2941 }
2942
2943 static unsigned long deferred_split_count(struct shrinker *shrink,
2944 struct shrink_control *sc)
2945 {
2946 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2947 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2948
2949 #ifdef CONFIG_MEMCG
2950 if (sc->memcg)
2951 ds_queue = &sc->memcg->deferred_split_queue;
2952 #endif
2953 return READ_ONCE(ds_queue->split_queue_len);
2954 }
2955
2956 static unsigned long deferred_split_scan(struct shrinker *shrink,
2957 struct shrink_control *sc)
2958 {
2959 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2960 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2961 unsigned long flags;
2962 LIST_HEAD(list), *pos, *next;
2963 struct page *page;
2964 int split = 0;
2965
2966 #ifdef CONFIG_MEMCG
2967 if (sc->memcg)
2968 ds_queue = &sc->memcg->deferred_split_queue;
2969 #endif
2970
2971 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2972 /* Take pin on all head pages to avoid freeing them under us */
2973 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2974 page = list_entry((void *)pos, struct page, mapping);
2975 page = compound_head(page);
2976 if (get_page_unless_zero(page)) {
2977 list_move(page_deferred_list(page), &list);
2978 } else {
2979 /* We lost race with put_compound_page() */
2980 list_del_init(page_deferred_list(page));
2981 ds_queue->split_queue_len--;
2982 }
2983 if (!--sc->nr_to_scan)
2984 break;
2985 }
2986 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2987
2988 list_for_each_safe(pos, next, &list) {
2989 page = list_entry((void *)pos, struct page, mapping);
2990 if (!trylock_page(page))
2991 goto next;
2992 /* split_huge_page() removes page from list on success */
2993 if (!split_huge_page(page))
2994 split++;
2995 unlock_page(page);
2996 next:
2997 put_page(page);
2998 }
2999
3000 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3001 list_splice_tail(&list, &ds_queue->split_queue);
3002 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3003
3004 /*
3005 * Stop shrinker if we didn't split any page, but the queue is empty.
3006 * This can happen if pages were freed under us.
3007 */
3008 if (!split && list_empty(&ds_queue->split_queue))
3009 return SHRINK_STOP;
3010 return split;
3011 }
3012
3013 static struct shrinker deferred_split_shrinker = {
3014 .count_objects = deferred_split_count,
3015 .scan_objects = deferred_split_scan,
3016 .seeks = DEFAULT_SEEKS,
3017 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3018 SHRINKER_NONSLAB,
3019 };
3020
3021 #ifdef CONFIG_DEBUG_FS
3022 static int split_huge_pages_set(void *data, u64 val)
3023 {
3024 struct zone *zone;
3025 struct page *page;
3026 unsigned long pfn, max_zone_pfn;
3027 unsigned long total = 0, split = 0;
3028
3029 if (val != 1)
3030 return -EINVAL;
3031
3032 for_each_populated_zone(zone) {
3033 max_zone_pfn = zone_end_pfn(zone);
3034 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3035 if (!pfn_valid(pfn))
3036 continue;
3037
3038 page = pfn_to_page(pfn);
3039 if (!get_page_unless_zero(page))
3040 continue;
3041
3042 if (zone != page_zone(page))
3043 goto next;
3044
3045 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3046 goto next;
3047
3048 total++;
3049 lock_page(page);
3050 if (!split_huge_page(page))
3051 split++;
3052 unlock_page(page);
3053 next:
3054 put_page(page);
3055 }
3056 }
3057
3058 pr_info("%lu of %lu THP split\n", split, total);
3059
3060 return 0;
3061 }
3062 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3063 "%llu\n");
3064
3065 static int __init split_huge_pages_debugfs(void)
3066 {
3067 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3068 &split_huge_pages_fops);
3069 return 0;
3070 }
3071 late_initcall(split_huge_pages_debugfs);
3072 #endif
3073
3074 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3075 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3076 struct page *page)
3077 {
3078 struct vm_area_struct *vma = pvmw->vma;
3079 struct mm_struct *mm = vma->vm_mm;
3080 unsigned long address = pvmw->address;
3081 pmd_t pmdval;
3082 swp_entry_t entry;
3083 pmd_t pmdswp;
3084
3085 if (!(pvmw->pmd && !pvmw->pte))
3086 return;
3087
3088 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3089 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3090 if (pmd_dirty(pmdval))
3091 set_page_dirty(page);
3092 entry = make_migration_entry(page, pmd_write(pmdval));
3093 pmdswp = swp_entry_to_pmd(entry);
3094 if (pmd_soft_dirty(pmdval))
3095 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3096 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3097 page_remove_rmap(page, true);
3098 put_page(page);
3099 }
3100
3101 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3102 {
3103 struct vm_area_struct *vma = pvmw->vma;
3104 struct mm_struct *mm = vma->vm_mm;
3105 unsigned long address = pvmw->address;
3106 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3107 pmd_t pmde;
3108 swp_entry_t entry;
3109
3110 if (!(pvmw->pmd && !pvmw->pte))
3111 return;
3112
3113 entry = pmd_to_swp_entry(*pvmw->pmd);
3114 get_page(new);
3115 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3116 if (pmd_swp_soft_dirty(*pvmw->pmd))
3117 pmde = pmd_mksoft_dirty(pmde);
3118 if (is_write_migration_entry(entry))
3119 pmde = maybe_pmd_mkwrite(pmde, vma);
3120
3121 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3122 if (PageAnon(new))
3123 page_add_anon_rmap(new, vma, mmun_start, true);
3124 else
3125 page_add_file_rmap(new, true);
3126 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3127 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3128 mlock_vma_page(new);
3129 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3130 }
3131 #endif