]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/hugetlb.c
powerpc/603: Don't handle kernel page TLB misses when not need
[thirdparty/kernel/stable.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include <linux/page_owner.h>
39 #include "internal.h"
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
61 */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
88 }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
93 {
94 struct hugepage_subpool *spool;
95
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
111
112 return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121 }
122
123 /*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
133 {
134 long ret = delta;
135
136 if (!spool)
137 return ret;
138
139 spin_lock(&spool->lock);
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
148 }
149
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165 unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
168 }
169
170 /*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
178 {
179 long ret = delta;
180
181 if (!spool)
182 return delta;
183
184 spin_lock(&spool->lock);
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
205 unlock_or_release_subpool(spool);
206
207 return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
223 *
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
238 */
239 struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243 };
244
245 /*
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
258 */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
264
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
320
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
325
326 out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
331 }
332
333 /*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
354 */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
360
361 retry:
362 spin_lock(&resv->lock);
363 retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
382 }
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
411
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
428
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
438
439 out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444 out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
447 }
448
449 /*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466 }
467
468 /*
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
481 */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
488
489 retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
501
502 if (rg->from >= t)
503 break;
504
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
518
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
556 }
557
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
561 }
562
563 /*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583 }
584
585 /*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
594
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
611 spin_unlock(&resv->lock);
612
613 return chg;
614 }
615
616 /*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
622 {
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629 {
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 if (vma->vm_ops && vma->vm_ops->pagesize)
641 return vma->vm_ops->pagesize(vma);
642 return PAGE_SIZE;
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific 'strong'
650 * version of this symbol is required.
651 */
652 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654 return vma_kernel_pagesize(vma);
655 }
656
657 /*
658 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
659 * bits of the reservation map pointer, which are always clear due to
660 * alignment.
661 */
662 #define HPAGE_RESV_OWNER (1UL << 0)
663 #define HPAGE_RESV_UNMAPPED (1UL << 1)
664 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
665
666 /*
667 * These helpers are used to track how many pages are reserved for
668 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
669 * is guaranteed to have their future faults succeed.
670 *
671 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
672 * the reserve counters are updated with the hugetlb_lock held. It is safe
673 * to reset the VMA at fork() time as it is not in use yet and there is no
674 * chance of the global counters getting corrupted as a result of the values.
675 *
676 * The private mapping reservation is represented in a subtly different
677 * manner to a shared mapping. A shared mapping has a region map associated
678 * with the underlying file, this region map represents the backing file
679 * pages which have ever had a reservation assigned which this persists even
680 * after the page is instantiated. A private mapping has a region map
681 * associated with the original mmap which is attached to all VMAs which
682 * reference it, this region map represents those offsets which have consumed
683 * reservation ie. where pages have been instantiated.
684 */
685 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
686 {
687 return (unsigned long)vma->vm_private_data;
688 }
689
690 static void set_vma_private_data(struct vm_area_struct *vma,
691 unsigned long value)
692 {
693 vma->vm_private_data = (void *)value;
694 }
695
696 struct resv_map *resv_map_alloc(void)
697 {
698 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
699 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
700
701 if (!resv_map || !rg) {
702 kfree(resv_map);
703 kfree(rg);
704 return NULL;
705 }
706
707 kref_init(&resv_map->refs);
708 spin_lock_init(&resv_map->lock);
709 INIT_LIST_HEAD(&resv_map->regions);
710
711 resv_map->adds_in_progress = 0;
712
713 INIT_LIST_HEAD(&resv_map->region_cache);
714 list_add(&rg->link, &resv_map->region_cache);
715 resv_map->region_cache_count = 1;
716
717 return resv_map;
718 }
719
720 void resv_map_release(struct kref *ref)
721 {
722 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
723 struct list_head *head = &resv_map->region_cache;
724 struct file_region *rg, *trg;
725
726 /* Clear out any active regions before we release the map. */
727 region_del(resv_map, 0, LONG_MAX);
728
729 /* ... and any entries left in the cache */
730 list_for_each_entry_safe(rg, trg, head, link) {
731 list_del(&rg->link);
732 kfree(rg);
733 }
734
735 VM_BUG_ON(resv_map->adds_in_progress);
736
737 kfree(resv_map);
738 }
739
740 static inline struct resv_map *inode_resv_map(struct inode *inode)
741 {
742 return inode->i_mapping->private_data;
743 }
744
745 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
746 {
747 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
748 if (vma->vm_flags & VM_MAYSHARE) {
749 struct address_space *mapping = vma->vm_file->f_mapping;
750 struct inode *inode = mapping->host;
751
752 return inode_resv_map(inode);
753
754 } else {
755 return (struct resv_map *)(get_vma_private_data(vma) &
756 ~HPAGE_RESV_MASK);
757 }
758 }
759
760 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
761 {
762 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
763 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
764
765 set_vma_private_data(vma, (get_vma_private_data(vma) &
766 HPAGE_RESV_MASK) | (unsigned long)map);
767 }
768
769 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
770 {
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
773
774 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
775 }
776
777 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
778 {
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780
781 return (get_vma_private_data(vma) & flag) != 0;
782 }
783
784 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
785 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
786 {
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788 if (!(vma->vm_flags & VM_MAYSHARE))
789 vma->vm_private_data = (void *)0;
790 }
791
792 /* Returns true if the VMA has associated reserve pages */
793 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
794 {
795 if (vma->vm_flags & VM_NORESERVE) {
796 /*
797 * This address is already reserved by other process(chg == 0),
798 * so, we should decrement reserved count. Without decrementing,
799 * reserve count remains after releasing inode, because this
800 * allocated page will go into page cache and is regarded as
801 * coming from reserved pool in releasing step. Currently, we
802 * don't have any other solution to deal with this situation
803 * properly, so add work-around here.
804 */
805 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
806 return true;
807 else
808 return false;
809 }
810
811 /* Shared mappings always use reserves */
812 if (vma->vm_flags & VM_MAYSHARE) {
813 /*
814 * We know VM_NORESERVE is not set. Therefore, there SHOULD
815 * be a region map for all pages. The only situation where
816 * there is no region map is if a hole was punched via
817 * fallocate. In this case, there really are no reverves to
818 * use. This situation is indicated if chg != 0.
819 */
820 if (chg)
821 return false;
822 else
823 return true;
824 }
825
826 /*
827 * Only the process that called mmap() has reserves for
828 * private mappings.
829 */
830 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
831 /*
832 * Like the shared case above, a hole punch or truncate
833 * could have been performed on the private mapping.
834 * Examine the value of chg to determine if reserves
835 * actually exist or were previously consumed.
836 * Very Subtle - The value of chg comes from a previous
837 * call to vma_needs_reserves(). The reserve map for
838 * private mappings has different (opposite) semantics
839 * than that of shared mappings. vma_needs_reserves()
840 * has already taken this difference in semantics into
841 * account. Therefore, the meaning of chg is the same
842 * as in the shared case above. Code could easily be
843 * combined, but keeping it separate draws attention to
844 * subtle differences.
845 */
846 if (chg)
847 return false;
848 else
849 return true;
850 }
851
852 return false;
853 }
854
855 static void enqueue_huge_page(struct hstate *h, struct page *page)
856 {
857 int nid = page_to_nid(page);
858 list_move(&page->lru, &h->hugepage_freelists[nid]);
859 h->free_huge_pages++;
860 h->free_huge_pages_node[nid]++;
861 }
862
863 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
864 {
865 struct page *page;
866
867 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
868 if (!PageHWPoison(page))
869 break;
870 /*
871 * if 'non-isolated free hugepage' not found on the list,
872 * the allocation fails.
873 */
874 if (&h->hugepage_freelists[nid] == &page->lru)
875 return NULL;
876 list_move(&page->lru, &h->hugepage_activelist);
877 set_page_refcounted(page);
878 h->free_huge_pages--;
879 h->free_huge_pages_node[nid]--;
880 return page;
881 }
882
883 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
884 nodemask_t *nmask)
885 {
886 unsigned int cpuset_mems_cookie;
887 struct zonelist *zonelist;
888 struct zone *zone;
889 struct zoneref *z;
890 int node = -1;
891
892 zonelist = node_zonelist(nid, gfp_mask);
893
894 retry_cpuset:
895 cpuset_mems_cookie = read_mems_allowed_begin();
896 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
897 struct page *page;
898
899 if (!cpuset_zone_allowed(zone, gfp_mask))
900 continue;
901 /*
902 * no need to ask again on the same node. Pool is node rather than
903 * zone aware
904 */
905 if (zone_to_nid(zone) == node)
906 continue;
907 node = zone_to_nid(zone);
908
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
913 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
914 goto retry_cpuset;
915
916 return NULL;
917 }
918
919 /* Movability of hugepages depends on migration support. */
920 static inline gfp_t htlb_alloc_mask(struct hstate *h)
921 {
922 if (hugepage_migration_supported(h))
923 return GFP_HIGHUSER_MOVABLE;
924 else
925 return GFP_HIGHUSER;
926 }
927
928 static struct page *dequeue_huge_page_vma(struct hstate *h,
929 struct vm_area_struct *vma,
930 unsigned long address, int avoid_reserve,
931 long chg)
932 {
933 struct page *page;
934 struct mempolicy *mpol;
935 gfp_t gfp_mask;
936 nodemask_t *nodemask;
937 int nid;
938
939 /*
940 * A child process with MAP_PRIVATE mappings created by their parent
941 * have no page reserves. This check ensures that reservations are
942 * not "stolen". The child may still get SIGKILLed
943 */
944 if (!vma_has_reserves(vma, chg) &&
945 h->free_huge_pages - h->resv_huge_pages == 0)
946 goto err;
947
948 /* If reserves cannot be used, ensure enough pages are in the pool */
949 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
950 goto err;
951
952 gfp_mask = htlb_alloc_mask(h);
953 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
954 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
955 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
956 SetPagePrivate(page);
957 h->resv_huge_pages--;
958 }
959
960 mpol_cond_put(mpol);
961 return page;
962
963 err:
964 return NULL;
965 }
966
967 /*
968 * common helper functions for hstate_next_node_to_{alloc|free}.
969 * We may have allocated or freed a huge page based on a different
970 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
971 * be outside of *nodes_allowed. Ensure that we use an allowed
972 * node for alloc or free.
973 */
974 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
975 {
976 nid = next_node_in(nid, *nodes_allowed);
977 VM_BUG_ON(nid >= MAX_NUMNODES);
978
979 return nid;
980 }
981
982 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984 if (!node_isset(nid, *nodes_allowed))
985 nid = next_node_allowed(nid, nodes_allowed);
986 return nid;
987 }
988
989 /*
990 * returns the previously saved node ["this node"] from which to
991 * allocate a persistent huge page for the pool and advance the
992 * next node from which to allocate, handling wrap at end of node
993 * mask.
994 */
995 static int hstate_next_node_to_alloc(struct hstate *h,
996 nodemask_t *nodes_allowed)
997 {
998 int nid;
999
1000 VM_BUG_ON(!nodes_allowed);
1001
1002 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1003 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1004
1005 return nid;
1006 }
1007
1008 /*
1009 * helper for free_pool_huge_page() - return the previously saved
1010 * node ["this node"] from which to free a huge page. Advance the
1011 * next node id whether or not we find a free huge page to free so
1012 * that the next attempt to free addresses the next node.
1013 */
1014 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1015 {
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1021 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024 }
1025
1026 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1027 for (nr_nodes = nodes_weight(*mask); \
1028 nr_nodes > 0 && \
1029 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1030 nr_nodes--)
1031
1032 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1036 nr_nodes--)
1037
1038 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1039 static void destroy_compound_gigantic_page(struct page *page,
1040 unsigned int order)
1041 {
1042 int i;
1043 int nr_pages = 1 << order;
1044 struct page *p = page + 1;
1045
1046 atomic_set(compound_mapcount_ptr(page), 0);
1047 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1048 clear_compound_head(p);
1049 set_page_refcounted(p);
1050 }
1051
1052 set_compound_order(page, 0);
1053 __ClearPageHead(page);
1054 }
1055
1056 static void free_gigantic_page(struct page *page, unsigned int order)
1057 {
1058 free_contig_range(page_to_pfn(page), 1 << order);
1059 }
1060
1061 static int __alloc_gigantic_page(unsigned long start_pfn,
1062 unsigned long nr_pages, gfp_t gfp_mask)
1063 {
1064 unsigned long end_pfn = start_pfn + nr_pages;
1065 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1066 gfp_mask);
1067 }
1068
1069 static bool pfn_range_valid_gigantic(struct zone *z,
1070 unsigned long start_pfn, unsigned long nr_pages)
1071 {
1072 unsigned long i, end_pfn = start_pfn + nr_pages;
1073 struct page *page;
1074
1075 for (i = start_pfn; i < end_pfn; i++) {
1076 if (!pfn_valid(i))
1077 return false;
1078
1079 page = pfn_to_page(i);
1080
1081 if (page_zone(page) != z)
1082 return false;
1083
1084 if (PageReserved(page))
1085 return false;
1086
1087 if (page_count(page) > 0)
1088 return false;
1089
1090 if (PageHuge(page))
1091 return false;
1092 }
1093
1094 return true;
1095 }
1096
1097 static bool zone_spans_last_pfn(const struct zone *zone,
1098 unsigned long start_pfn, unsigned long nr_pages)
1099 {
1100 unsigned long last_pfn = start_pfn + nr_pages - 1;
1101 return zone_spans_pfn(zone, last_pfn);
1102 }
1103
1104 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1105 int nid, nodemask_t *nodemask)
1106 {
1107 unsigned int order = huge_page_order(h);
1108 unsigned long nr_pages = 1 << order;
1109 unsigned long ret, pfn, flags;
1110 struct zonelist *zonelist;
1111 struct zone *zone;
1112 struct zoneref *z;
1113
1114 zonelist = node_zonelist(nid, gfp_mask);
1115 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1116 spin_lock_irqsave(&zone->lock, flags);
1117
1118 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1119 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1120 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1121 /*
1122 * We release the zone lock here because
1123 * alloc_contig_range() will also lock the zone
1124 * at some point. If there's an allocation
1125 * spinning on this lock, it may win the race
1126 * and cause alloc_contig_range() to fail...
1127 */
1128 spin_unlock_irqrestore(&zone->lock, flags);
1129 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1130 if (!ret)
1131 return pfn_to_page(pfn);
1132 spin_lock_irqsave(&zone->lock, flags);
1133 }
1134 pfn += nr_pages;
1135 }
1136
1137 spin_unlock_irqrestore(&zone->lock, flags);
1138 }
1139
1140 return NULL;
1141 }
1142
1143 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1144 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1145
1146 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1147 static inline bool gigantic_page_supported(void) { return false; }
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask) { return NULL; }
1150 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1151 static inline void destroy_compound_gigantic_page(struct page *page,
1152 unsigned int order) { }
1153 #endif
1154
1155 static void update_and_free_page(struct hstate *h, struct page *page)
1156 {
1157 int i;
1158
1159 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1160 return;
1161
1162 h->nr_huge_pages--;
1163 h->nr_huge_pages_node[page_to_nid(page)]--;
1164 for (i = 0; i < pages_per_huge_page(h); i++) {
1165 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1166 1 << PG_referenced | 1 << PG_dirty |
1167 1 << PG_active | 1 << PG_private |
1168 1 << PG_writeback);
1169 }
1170 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1171 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1172 set_page_refcounted(page);
1173 if (hstate_is_gigantic(h)) {
1174 destroy_compound_gigantic_page(page, huge_page_order(h));
1175 free_gigantic_page(page, huge_page_order(h));
1176 } else {
1177 __free_pages(page, huge_page_order(h));
1178 }
1179 }
1180
1181 struct hstate *size_to_hstate(unsigned long size)
1182 {
1183 struct hstate *h;
1184
1185 for_each_hstate(h) {
1186 if (huge_page_size(h) == size)
1187 return h;
1188 }
1189 return NULL;
1190 }
1191
1192 /*
1193 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1194 * to hstate->hugepage_activelist.)
1195 *
1196 * This function can be called for tail pages, but never returns true for them.
1197 */
1198 bool page_huge_active(struct page *page)
1199 {
1200 VM_BUG_ON_PAGE(!PageHuge(page), page);
1201 return PageHead(page) && PagePrivate(&page[1]);
1202 }
1203
1204 /* never called for tail page */
1205 static void set_page_huge_active(struct page *page)
1206 {
1207 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1208 SetPagePrivate(&page[1]);
1209 }
1210
1211 static void clear_page_huge_active(struct page *page)
1212 {
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 ClearPagePrivate(&page[1]);
1215 }
1216
1217 /*
1218 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1219 * code
1220 */
1221 static inline bool PageHugeTemporary(struct page *page)
1222 {
1223 if (!PageHuge(page))
1224 return false;
1225
1226 return (unsigned long)page[2].mapping == -1U;
1227 }
1228
1229 static inline void SetPageHugeTemporary(struct page *page)
1230 {
1231 page[2].mapping = (void *)-1U;
1232 }
1233
1234 static inline void ClearPageHugeTemporary(struct page *page)
1235 {
1236 page[2].mapping = NULL;
1237 }
1238
1239 void free_huge_page(struct page *page)
1240 {
1241 /*
1242 * Can't pass hstate in here because it is called from the
1243 * compound page destructor.
1244 */
1245 struct hstate *h = page_hstate(page);
1246 int nid = page_to_nid(page);
1247 struct hugepage_subpool *spool =
1248 (struct hugepage_subpool *)page_private(page);
1249 bool restore_reserve;
1250
1251 VM_BUG_ON_PAGE(page_count(page), page);
1252 VM_BUG_ON_PAGE(page_mapcount(page), page);
1253
1254 set_page_private(page, 0);
1255 page->mapping = NULL;
1256 restore_reserve = PagePrivate(page);
1257 ClearPagePrivate(page);
1258
1259 /*
1260 * A return code of zero implies that the subpool will be under its
1261 * minimum size if the reservation is not restored after page is free.
1262 * Therefore, force restore_reserve operation.
1263 */
1264 if (hugepage_subpool_put_pages(spool, 1) == 0)
1265 restore_reserve = true;
1266
1267 spin_lock(&hugetlb_lock);
1268 clear_page_huge_active(page);
1269 hugetlb_cgroup_uncharge_page(hstate_index(h),
1270 pages_per_huge_page(h), page);
1271 if (restore_reserve)
1272 h->resv_huge_pages++;
1273
1274 if (PageHugeTemporary(page)) {
1275 list_del(&page->lru);
1276 ClearPageHugeTemporary(page);
1277 update_and_free_page(h, page);
1278 } else if (h->surplus_huge_pages_node[nid]) {
1279 /* remove the page from active list */
1280 list_del(&page->lru);
1281 update_and_free_page(h, page);
1282 h->surplus_huge_pages--;
1283 h->surplus_huge_pages_node[nid]--;
1284 } else {
1285 arch_clear_hugepage_flags(page);
1286 enqueue_huge_page(h, page);
1287 }
1288 spin_unlock(&hugetlb_lock);
1289 }
1290
1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1292 {
1293 INIT_LIST_HEAD(&page->lru);
1294 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1295 spin_lock(&hugetlb_lock);
1296 set_hugetlb_cgroup(page, NULL);
1297 h->nr_huge_pages++;
1298 h->nr_huge_pages_node[nid]++;
1299 spin_unlock(&hugetlb_lock);
1300 }
1301
1302 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1303 {
1304 int i;
1305 int nr_pages = 1 << order;
1306 struct page *p = page + 1;
1307
1308 /* we rely on prep_new_huge_page to set the destructor */
1309 set_compound_order(page, order);
1310 __ClearPageReserved(page);
1311 __SetPageHead(page);
1312 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1313 /*
1314 * For gigantic hugepages allocated through bootmem at
1315 * boot, it's safer to be consistent with the not-gigantic
1316 * hugepages and clear the PG_reserved bit from all tail pages
1317 * too. Otherwse drivers using get_user_pages() to access tail
1318 * pages may get the reference counting wrong if they see
1319 * PG_reserved set on a tail page (despite the head page not
1320 * having PG_reserved set). Enforcing this consistency between
1321 * head and tail pages allows drivers to optimize away a check
1322 * on the head page when they need know if put_page() is needed
1323 * after get_user_pages().
1324 */
1325 __ClearPageReserved(p);
1326 set_page_count(p, 0);
1327 set_compound_head(p, page);
1328 }
1329 atomic_set(compound_mapcount_ptr(page), -1);
1330 }
1331
1332 /*
1333 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1334 * transparent huge pages. See the PageTransHuge() documentation for more
1335 * details.
1336 */
1337 int PageHuge(struct page *page)
1338 {
1339 if (!PageCompound(page))
1340 return 0;
1341
1342 page = compound_head(page);
1343 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1344 }
1345 EXPORT_SYMBOL_GPL(PageHuge);
1346
1347 /*
1348 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1349 * normal or transparent huge pages.
1350 */
1351 int PageHeadHuge(struct page *page_head)
1352 {
1353 if (!PageHead(page_head))
1354 return 0;
1355
1356 return get_compound_page_dtor(page_head) == free_huge_page;
1357 }
1358
1359 pgoff_t __basepage_index(struct page *page)
1360 {
1361 struct page *page_head = compound_head(page);
1362 pgoff_t index = page_index(page_head);
1363 unsigned long compound_idx;
1364
1365 if (!PageHuge(page_head))
1366 return page_index(page);
1367
1368 if (compound_order(page_head) >= MAX_ORDER)
1369 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1370 else
1371 compound_idx = page - page_head;
1372
1373 return (index << compound_order(page_head)) + compound_idx;
1374 }
1375
1376 static struct page *alloc_buddy_huge_page(struct hstate *h,
1377 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1378 {
1379 int order = huge_page_order(h);
1380 struct page *page;
1381
1382 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1383 if (nid == NUMA_NO_NODE)
1384 nid = numa_mem_id();
1385 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1386 if (page)
1387 __count_vm_event(HTLB_BUDDY_PGALLOC);
1388 else
1389 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1390
1391 return page;
1392 }
1393
1394 /*
1395 * Common helper to allocate a fresh hugetlb page. All specific allocators
1396 * should use this function to get new hugetlb pages
1397 */
1398 static struct page *alloc_fresh_huge_page(struct hstate *h,
1399 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1400 {
1401 struct page *page;
1402
1403 if (hstate_is_gigantic(h))
1404 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1405 else
1406 page = alloc_buddy_huge_page(h, gfp_mask,
1407 nid, nmask);
1408 if (!page)
1409 return NULL;
1410
1411 if (hstate_is_gigantic(h))
1412 prep_compound_gigantic_page(page, huge_page_order(h));
1413 prep_new_huge_page(h, page, page_to_nid(page));
1414
1415 return page;
1416 }
1417
1418 /*
1419 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1420 * manner.
1421 */
1422 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1423 {
1424 struct page *page;
1425 int nr_nodes, node;
1426 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1427
1428 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1429 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1430 if (page)
1431 break;
1432 }
1433
1434 if (!page)
1435 return 0;
1436
1437 put_page(page); /* free it into the hugepage allocator */
1438
1439 return 1;
1440 }
1441
1442 /*
1443 * Free huge page from pool from next node to free.
1444 * Attempt to keep persistent huge pages more or less
1445 * balanced over allowed nodes.
1446 * Called with hugetlb_lock locked.
1447 */
1448 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1449 bool acct_surplus)
1450 {
1451 int nr_nodes, node;
1452 int ret = 0;
1453
1454 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1455 /*
1456 * If we're returning unused surplus pages, only examine
1457 * nodes with surplus pages.
1458 */
1459 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1460 !list_empty(&h->hugepage_freelists[node])) {
1461 struct page *page =
1462 list_entry(h->hugepage_freelists[node].next,
1463 struct page, lru);
1464 list_del(&page->lru);
1465 h->free_huge_pages--;
1466 h->free_huge_pages_node[node]--;
1467 if (acct_surplus) {
1468 h->surplus_huge_pages--;
1469 h->surplus_huge_pages_node[node]--;
1470 }
1471 update_and_free_page(h, page);
1472 ret = 1;
1473 break;
1474 }
1475 }
1476
1477 return ret;
1478 }
1479
1480 /*
1481 * Dissolve a given free hugepage into free buddy pages. This function does
1482 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1483 * dissolution fails because a give page is not a free hugepage, or because
1484 * free hugepages are fully reserved.
1485 */
1486 int dissolve_free_huge_page(struct page *page)
1487 {
1488 int rc = -EBUSY;
1489
1490 spin_lock(&hugetlb_lock);
1491 if (PageHuge(page) && !page_count(page)) {
1492 struct page *head = compound_head(page);
1493 struct hstate *h = page_hstate(head);
1494 int nid = page_to_nid(head);
1495 if (h->free_huge_pages - h->resv_huge_pages == 0)
1496 goto out;
1497 /*
1498 * Move PageHWPoison flag from head page to the raw error page,
1499 * which makes any subpages rather than the error page reusable.
1500 */
1501 if (PageHWPoison(head) && page != head) {
1502 SetPageHWPoison(page);
1503 ClearPageHWPoison(head);
1504 }
1505 list_del(&head->lru);
1506 h->free_huge_pages--;
1507 h->free_huge_pages_node[nid]--;
1508 h->max_huge_pages--;
1509 update_and_free_page(h, head);
1510 rc = 0;
1511 }
1512 out:
1513 spin_unlock(&hugetlb_lock);
1514 return rc;
1515 }
1516
1517 /*
1518 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1519 * make specified memory blocks removable from the system.
1520 * Note that this will dissolve a free gigantic hugepage completely, if any
1521 * part of it lies within the given range.
1522 * Also note that if dissolve_free_huge_page() returns with an error, all
1523 * free hugepages that were dissolved before that error are lost.
1524 */
1525 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1526 {
1527 unsigned long pfn;
1528 struct page *page;
1529 int rc = 0;
1530
1531 if (!hugepages_supported())
1532 return rc;
1533
1534 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1535 page = pfn_to_page(pfn);
1536 if (PageHuge(page) && !page_count(page)) {
1537 rc = dissolve_free_huge_page(page);
1538 if (rc)
1539 break;
1540 }
1541 }
1542
1543 return rc;
1544 }
1545
1546 /*
1547 * Allocates a fresh surplus page from the page allocator.
1548 */
1549 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1550 int nid, nodemask_t *nmask)
1551 {
1552 struct page *page = NULL;
1553
1554 if (hstate_is_gigantic(h))
1555 return NULL;
1556
1557 spin_lock(&hugetlb_lock);
1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559 goto out_unlock;
1560 spin_unlock(&hugetlb_lock);
1561
1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1563 if (!page)
1564 return NULL;
1565
1566 spin_lock(&hugetlb_lock);
1567 /*
1568 * We could have raced with the pool size change.
1569 * Double check that and simply deallocate the new page
1570 * if we would end up overcommiting the surpluses. Abuse
1571 * temporary page to workaround the nasty free_huge_page
1572 * codeflow
1573 */
1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575 SetPageHugeTemporary(page);
1576 put_page(page);
1577 page = NULL;
1578 } else {
1579 h->surplus_huge_pages++;
1580 h->surplus_huge_pages_node[page_to_nid(page)]++;
1581 }
1582
1583 out_unlock:
1584 spin_unlock(&hugetlb_lock);
1585
1586 return page;
1587 }
1588
1589 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1590 int nid, nodemask_t *nmask)
1591 {
1592 struct page *page;
1593
1594 if (hstate_is_gigantic(h))
1595 return NULL;
1596
1597 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1598 if (!page)
1599 return NULL;
1600
1601 /*
1602 * We do not account these pages as surplus because they are only
1603 * temporary and will be released properly on the last reference
1604 */
1605 SetPageHugeTemporary(page);
1606
1607 return page;
1608 }
1609
1610 /*
1611 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612 */
1613 static
1614 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1615 struct vm_area_struct *vma, unsigned long addr)
1616 {
1617 struct page *page;
1618 struct mempolicy *mpol;
1619 gfp_t gfp_mask = htlb_alloc_mask(h);
1620 int nid;
1621 nodemask_t *nodemask;
1622
1623 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1624 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1625 mpol_cond_put(mpol);
1626
1627 return page;
1628 }
1629
1630 /* page migration callback function */
1631 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1632 {
1633 gfp_t gfp_mask = htlb_alloc_mask(h);
1634 struct page *page = NULL;
1635
1636 if (nid != NUMA_NO_NODE)
1637 gfp_mask |= __GFP_THISNODE;
1638
1639 spin_lock(&hugetlb_lock);
1640 if (h->free_huge_pages - h->resv_huge_pages > 0)
1641 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1642 spin_unlock(&hugetlb_lock);
1643
1644 if (!page)
1645 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1646
1647 return page;
1648 }
1649
1650 /* page migration callback function */
1651 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1652 nodemask_t *nmask)
1653 {
1654 gfp_t gfp_mask = htlb_alloc_mask(h);
1655
1656 spin_lock(&hugetlb_lock);
1657 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1658 struct page *page;
1659
1660 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1661 if (page) {
1662 spin_unlock(&hugetlb_lock);
1663 return page;
1664 }
1665 }
1666 spin_unlock(&hugetlb_lock);
1667
1668 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1669 }
1670
1671 /* mempolicy aware migration callback */
1672 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1673 unsigned long address)
1674 {
1675 struct mempolicy *mpol;
1676 nodemask_t *nodemask;
1677 struct page *page;
1678 gfp_t gfp_mask;
1679 int node;
1680
1681 gfp_mask = htlb_alloc_mask(h);
1682 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1683 page = alloc_huge_page_nodemask(h, node, nodemask);
1684 mpol_cond_put(mpol);
1685
1686 return page;
1687 }
1688
1689 /*
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1691 * of size 'delta'.
1692 */
1693 static int gather_surplus_pages(struct hstate *h, int delta)
1694 {
1695 struct list_head surplus_list;
1696 struct page *page, *tmp;
1697 int ret, i;
1698 int needed, allocated;
1699 bool alloc_ok = true;
1700
1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702 if (needed <= 0) {
1703 h->resv_huge_pages += delta;
1704 return 0;
1705 }
1706
1707 allocated = 0;
1708 INIT_LIST_HEAD(&surplus_list);
1709
1710 ret = -ENOMEM;
1711 retry:
1712 spin_unlock(&hugetlb_lock);
1713 for (i = 0; i < needed; i++) {
1714 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1715 NUMA_NO_NODE, NULL);
1716 if (!page) {
1717 alloc_ok = false;
1718 break;
1719 }
1720 list_add(&page->lru, &surplus_list);
1721 cond_resched();
1722 }
1723 allocated += i;
1724
1725 /*
1726 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 * because either resv_huge_pages or free_huge_pages may have changed.
1728 */
1729 spin_lock(&hugetlb_lock);
1730 needed = (h->resv_huge_pages + delta) -
1731 (h->free_huge_pages + allocated);
1732 if (needed > 0) {
1733 if (alloc_ok)
1734 goto retry;
1735 /*
1736 * We were not able to allocate enough pages to
1737 * satisfy the entire reservation so we free what
1738 * we've allocated so far.
1739 */
1740 goto free;
1741 }
1742 /*
1743 * The surplus_list now contains _at_least_ the number of extra pages
1744 * needed to accommodate the reservation. Add the appropriate number
1745 * of pages to the hugetlb pool and free the extras back to the buddy
1746 * allocator. Commit the entire reservation here to prevent another
1747 * process from stealing the pages as they are added to the pool but
1748 * before they are reserved.
1749 */
1750 needed += allocated;
1751 h->resv_huge_pages += delta;
1752 ret = 0;
1753
1754 /* Free the needed pages to the hugetlb pool */
1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756 if ((--needed) < 0)
1757 break;
1758 /*
1759 * This page is now managed by the hugetlb allocator and has
1760 * no users -- drop the buddy allocator's reference.
1761 */
1762 put_page_testzero(page);
1763 VM_BUG_ON_PAGE(page_count(page), page);
1764 enqueue_huge_page(h, page);
1765 }
1766 free:
1767 spin_unlock(&hugetlb_lock);
1768
1769 /* Free unnecessary surplus pages to the buddy allocator */
1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 put_page(page);
1772 spin_lock(&hugetlb_lock);
1773
1774 return ret;
1775 }
1776
1777 /*
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 * in unused_resv_pages. This corresponds to the prior adjustments made
1781 * to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 * the reservation. As many as unused_resv_pages may be freed.
1784 *
1785 * Called with hugetlb_lock held. However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing. Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1790 */
1791 static void return_unused_surplus_pages(struct hstate *h,
1792 unsigned long unused_resv_pages)
1793 {
1794 unsigned long nr_pages;
1795
1796 /* Cannot return gigantic pages currently */
1797 if (hstate_is_gigantic(h))
1798 goto out;
1799
1800 /*
1801 * Part (or even all) of the reservation could have been backed
1802 * by pre-allocated pages. Only free surplus pages.
1803 */
1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805
1806 /*
1807 * We want to release as many surplus pages as possible, spread
1808 * evenly across all nodes with memory. Iterate across these nodes
1809 * until we can no longer free unreserved surplus pages. This occurs
1810 * when the nodes with surplus pages have no free pages.
1811 * free_pool_huge_page() will balance the the freed pages across the
1812 * on-line nodes with memory and will handle the hstate accounting.
1813 *
1814 * Note that we decrement resv_huge_pages as we free the pages. If
1815 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 * to cover subsequent pages we may free.
1817 */
1818 while (nr_pages--) {
1819 h->resv_huge_pages--;
1820 unused_resv_pages--;
1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822 goto out;
1823 cond_resched_lock(&hugetlb_lock);
1824 }
1825
1826 out:
1827 /* Fully uncommit the reservation */
1828 h->resv_huge_pages -= unused_resv_pages;
1829 }
1830
1831
1832 /*
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1835 *
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation. If a reservation is
1838 * needed, the value 1 is returned. The caller is then responsible for
1839 * managing the global reservation and subpool usage counts. After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map. If the page allocation fails,
1842 * the reservation must be ended instead of committed. vma_end_reservation
1843 * is called in such cases.
1844 *
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call. The only time this
1847 * is not the case is if a reserve map was changed between calls. It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1850 *
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed. It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1855 */
1856 enum vma_resv_mode {
1857 VMA_NEEDS_RESV,
1858 VMA_COMMIT_RESV,
1859 VMA_END_RESV,
1860 VMA_ADD_RESV,
1861 };
1862 static long __vma_reservation_common(struct hstate *h,
1863 struct vm_area_struct *vma, unsigned long addr,
1864 enum vma_resv_mode mode)
1865 {
1866 struct resv_map *resv;
1867 pgoff_t idx;
1868 long ret;
1869
1870 resv = vma_resv_map(vma);
1871 if (!resv)
1872 return 1;
1873
1874 idx = vma_hugecache_offset(h, vma, addr);
1875 switch (mode) {
1876 case VMA_NEEDS_RESV:
1877 ret = region_chg(resv, idx, idx + 1);
1878 break;
1879 case VMA_COMMIT_RESV:
1880 ret = region_add(resv, idx, idx + 1);
1881 break;
1882 case VMA_END_RESV:
1883 region_abort(resv, idx, idx + 1);
1884 ret = 0;
1885 break;
1886 case VMA_ADD_RESV:
1887 if (vma->vm_flags & VM_MAYSHARE)
1888 ret = region_add(resv, idx, idx + 1);
1889 else {
1890 region_abort(resv, idx, idx + 1);
1891 ret = region_del(resv, idx, idx + 1);
1892 }
1893 break;
1894 default:
1895 BUG();
1896 }
1897
1898 if (vma->vm_flags & VM_MAYSHARE)
1899 return ret;
1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 /*
1902 * In most cases, reserves always exist for private mappings.
1903 * However, a file associated with mapping could have been
1904 * hole punched or truncated after reserves were consumed.
1905 * As subsequent fault on such a range will not use reserves.
1906 * Subtle - The reserve map for private mappings has the
1907 * opposite meaning than that of shared mappings. If NO
1908 * entry is in the reserve map, it means a reservation exists.
1909 * If an entry exists in the reserve map, it means the
1910 * reservation has already been consumed. As a result, the
1911 * return value of this routine is the opposite of the
1912 * value returned from reserve map manipulation routines above.
1913 */
1914 if (ret)
1915 return 0;
1916 else
1917 return 1;
1918 }
1919 else
1920 return ret < 0 ? ret : 0;
1921 }
1922
1923 static long vma_needs_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1925 {
1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927 }
1928
1929 static long vma_commit_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1931 {
1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933 }
1934
1935 static void vma_end_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1937 {
1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939 }
1940
1941 static long vma_add_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1943 {
1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945 }
1946
1947 /*
1948 * This routine is called to restore a reservation on error paths. In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed. If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page. When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map. Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1957 */
1958 static void restore_reserve_on_error(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long address,
1960 struct page *page)
1961 {
1962 if (unlikely(PagePrivate(page))) {
1963 long rc = vma_needs_reservation(h, vma, address);
1964
1965 if (unlikely(rc < 0)) {
1966 /*
1967 * Rare out of memory condition in reserve map
1968 * manipulation. Clear PagePrivate so that
1969 * global reserve count will not be incremented
1970 * by free_huge_page. This will make it appear
1971 * as though the reservation for this page was
1972 * consumed. This may prevent the task from
1973 * faulting in the page at a later time. This
1974 * is better than inconsistent global huge page
1975 * accounting of reserve counts.
1976 */
1977 ClearPagePrivate(page);
1978 } else if (rc) {
1979 rc = vma_add_reservation(h, vma, address);
1980 if (unlikely(rc < 0))
1981 /*
1982 * See above comment about rare out of
1983 * memory condition.
1984 */
1985 ClearPagePrivate(page);
1986 } else
1987 vma_end_reservation(h, vma, address);
1988 }
1989 }
1990
1991 struct page *alloc_huge_page(struct vm_area_struct *vma,
1992 unsigned long addr, int avoid_reserve)
1993 {
1994 struct hugepage_subpool *spool = subpool_vma(vma);
1995 struct hstate *h = hstate_vma(vma);
1996 struct page *page;
1997 long map_chg, map_commit;
1998 long gbl_chg;
1999 int ret, idx;
2000 struct hugetlb_cgroup *h_cg;
2001
2002 idx = hstate_index(h);
2003 /*
2004 * Examine the region/reserve map to determine if the process
2005 * has a reservation for the page to be allocated. A return
2006 * code of zero indicates a reservation exists (no change).
2007 */
2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 if (map_chg < 0)
2010 return ERR_PTR(-ENOMEM);
2011
2012 /*
2013 * Processes that did not create the mapping will have no
2014 * reserves as indicated by the region/reserve map. Check
2015 * that the allocation will not exceed the subpool limit.
2016 * Allocations for MAP_NORESERVE mappings also need to be
2017 * checked against any subpool limit.
2018 */
2019 if (map_chg || avoid_reserve) {
2020 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 if (gbl_chg < 0) {
2022 vma_end_reservation(h, vma, addr);
2023 return ERR_PTR(-ENOSPC);
2024 }
2025
2026 /*
2027 * Even though there was no reservation in the region/reserve
2028 * map, there could be reservations associated with the
2029 * subpool that can be used. This would be indicated if the
2030 * return value of hugepage_subpool_get_pages() is zero.
2031 * However, if avoid_reserve is specified we still avoid even
2032 * the subpool reservations.
2033 */
2034 if (avoid_reserve)
2035 gbl_chg = 1;
2036 }
2037
2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039 if (ret)
2040 goto out_subpool_put;
2041
2042 spin_lock(&hugetlb_lock);
2043 /*
2044 * glb_chg is passed to indicate whether or not a page must be taken
2045 * from the global free pool (global change). gbl_chg == 0 indicates
2046 * a reservation exists for the allocation.
2047 */
2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049 if (!page) {
2050 spin_unlock(&hugetlb_lock);
2051 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052 if (!page)
2053 goto out_uncharge_cgroup;
2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 SetPagePrivate(page);
2056 h->resv_huge_pages--;
2057 }
2058 spin_lock(&hugetlb_lock);
2059 list_move(&page->lru, &h->hugepage_activelist);
2060 /* Fall through */
2061 }
2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 spin_unlock(&hugetlb_lock);
2064
2065 set_page_private(page, (unsigned long)spool);
2066
2067 map_commit = vma_commit_reservation(h, vma, addr);
2068 if (unlikely(map_chg > map_commit)) {
2069 /*
2070 * The page was added to the reservation map between
2071 * vma_needs_reservation and vma_commit_reservation.
2072 * This indicates a race with hugetlb_reserve_pages.
2073 * Adjust for the subpool count incremented above AND
2074 * in hugetlb_reserve_pages for the same page. Also,
2075 * the reservation count added in hugetlb_reserve_pages
2076 * no longer applies.
2077 */
2078 long rsv_adjust;
2079
2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 hugetlb_acct_memory(h, -rsv_adjust);
2082 }
2083 return page;
2084
2085 out_uncharge_cgroup:
2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 out_subpool_put:
2088 if (map_chg || avoid_reserve)
2089 hugepage_subpool_put_pages(spool, 1);
2090 vma_end_reservation(h, vma, addr);
2091 return ERR_PTR(-ENOSPC);
2092 }
2093
2094 int alloc_bootmem_huge_page(struct hstate *h)
2095 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2096 int __alloc_bootmem_huge_page(struct hstate *h)
2097 {
2098 struct huge_bootmem_page *m;
2099 int nr_nodes, node;
2100
2101 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2102 void *addr;
2103
2104 addr = memblock_alloc_try_nid_raw(
2105 huge_page_size(h), huge_page_size(h),
2106 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2107 if (addr) {
2108 /*
2109 * Use the beginning of the huge page to store the
2110 * huge_bootmem_page struct (until gather_bootmem
2111 * puts them into the mem_map).
2112 */
2113 m = addr;
2114 goto found;
2115 }
2116 }
2117 return 0;
2118
2119 found:
2120 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2121 /* Put them into a private list first because mem_map is not up yet */
2122 INIT_LIST_HEAD(&m->list);
2123 list_add(&m->list, &huge_boot_pages);
2124 m->hstate = h;
2125 return 1;
2126 }
2127
2128 static void __init prep_compound_huge_page(struct page *page,
2129 unsigned int order)
2130 {
2131 if (unlikely(order > (MAX_ORDER - 1)))
2132 prep_compound_gigantic_page(page, order);
2133 else
2134 prep_compound_page(page, order);
2135 }
2136
2137 /* Put bootmem huge pages into the standard lists after mem_map is up */
2138 static void __init gather_bootmem_prealloc(void)
2139 {
2140 struct huge_bootmem_page *m;
2141
2142 list_for_each_entry(m, &huge_boot_pages, list) {
2143 struct page *page = virt_to_page(m);
2144 struct hstate *h = m->hstate;
2145
2146 WARN_ON(page_count(page) != 1);
2147 prep_compound_huge_page(page, h->order);
2148 WARN_ON(PageReserved(page));
2149 prep_new_huge_page(h, page, page_to_nid(page));
2150 put_page(page); /* free it into the hugepage allocator */
2151
2152 /*
2153 * If we had gigantic hugepages allocated at boot time, we need
2154 * to restore the 'stolen' pages to totalram_pages in order to
2155 * fix confusing memory reports from free(1) and another
2156 * side-effects, like CommitLimit going negative.
2157 */
2158 if (hstate_is_gigantic(h))
2159 adjust_managed_page_count(page, 1 << h->order);
2160 cond_resched();
2161 }
2162 }
2163
2164 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2165 {
2166 unsigned long i;
2167
2168 for (i = 0; i < h->max_huge_pages; ++i) {
2169 if (hstate_is_gigantic(h)) {
2170 if (!alloc_bootmem_huge_page(h))
2171 break;
2172 } else if (!alloc_pool_huge_page(h,
2173 &node_states[N_MEMORY]))
2174 break;
2175 cond_resched();
2176 }
2177 if (i < h->max_huge_pages) {
2178 char buf[32];
2179
2180 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2181 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2182 h->max_huge_pages, buf, i);
2183 h->max_huge_pages = i;
2184 }
2185 }
2186
2187 static void __init hugetlb_init_hstates(void)
2188 {
2189 struct hstate *h;
2190
2191 for_each_hstate(h) {
2192 if (minimum_order > huge_page_order(h))
2193 minimum_order = huge_page_order(h);
2194
2195 /* oversize hugepages were init'ed in early boot */
2196 if (!hstate_is_gigantic(h))
2197 hugetlb_hstate_alloc_pages(h);
2198 }
2199 VM_BUG_ON(minimum_order == UINT_MAX);
2200 }
2201
2202 static void __init report_hugepages(void)
2203 {
2204 struct hstate *h;
2205
2206 for_each_hstate(h) {
2207 char buf[32];
2208
2209 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2210 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2211 buf, h->free_huge_pages);
2212 }
2213 }
2214
2215 #ifdef CONFIG_HIGHMEM
2216 static void try_to_free_low(struct hstate *h, unsigned long count,
2217 nodemask_t *nodes_allowed)
2218 {
2219 int i;
2220
2221 if (hstate_is_gigantic(h))
2222 return;
2223
2224 for_each_node_mask(i, *nodes_allowed) {
2225 struct page *page, *next;
2226 struct list_head *freel = &h->hugepage_freelists[i];
2227 list_for_each_entry_safe(page, next, freel, lru) {
2228 if (count >= h->nr_huge_pages)
2229 return;
2230 if (PageHighMem(page))
2231 continue;
2232 list_del(&page->lru);
2233 update_and_free_page(h, page);
2234 h->free_huge_pages--;
2235 h->free_huge_pages_node[page_to_nid(page)]--;
2236 }
2237 }
2238 }
2239 #else
2240 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2241 nodemask_t *nodes_allowed)
2242 {
2243 }
2244 #endif
2245
2246 /*
2247 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2248 * balanced by operating on them in a round-robin fashion.
2249 * Returns 1 if an adjustment was made.
2250 */
2251 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2252 int delta)
2253 {
2254 int nr_nodes, node;
2255
2256 VM_BUG_ON(delta != -1 && delta != 1);
2257
2258 if (delta < 0) {
2259 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2260 if (h->surplus_huge_pages_node[node])
2261 goto found;
2262 }
2263 } else {
2264 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2265 if (h->surplus_huge_pages_node[node] <
2266 h->nr_huge_pages_node[node])
2267 goto found;
2268 }
2269 }
2270 return 0;
2271
2272 found:
2273 h->surplus_huge_pages += delta;
2274 h->surplus_huge_pages_node[node] += delta;
2275 return 1;
2276 }
2277
2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2280 nodemask_t *nodes_allowed)
2281 {
2282 unsigned long min_count, ret;
2283
2284 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2285 return h->max_huge_pages;
2286
2287 /*
2288 * Increase the pool size
2289 * First take pages out of surplus state. Then make up the
2290 * remaining difference by allocating fresh huge pages.
2291 *
2292 * We might race with alloc_surplus_huge_page() here and be unable
2293 * to convert a surplus huge page to a normal huge page. That is
2294 * not critical, though, it just means the overall size of the
2295 * pool might be one hugepage larger than it needs to be, but
2296 * within all the constraints specified by the sysctls.
2297 */
2298 spin_lock(&hugetlb_lock);
2299 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2300 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2301 break;
2302 }
2303
2304 while (count > persistent_huge_pages(h)) {
2305 /*
2306 * If this allocation races such that we no longer need the
2307 * page, free_huge_page will handle it by freeing the page
2308 * and reducing the surplus.
2309 */
2310 spin_unlock(&hugetlb_lock);
2311
2312 /* yield cpu to avoid soft lockup */
2313 cond_resched();
2314
2315 ret = alloc_pool_huge_page(h, nodes_allowed);
2316 spin_lock(&hugetlb_lock);
2317 if (!ret)
2318 goto out;
2319
2320 /* Bail for signals. Probably ctrl-c from user */
2321 if (signal_pending(current))
2322 goto out;
2323 }
2324
2325 /*
2326 * Decrease the pool size
2327 * First return free pages to the buddy allocator (being careful
2328 * to keep enough around to satisfy reservations). Then place
2329 * pages into surplus state as needed so the pool will shrink
2330 * to the desired size as pages become free.
2331 *
2332 * By placing pages into the surplus state independent of the
2333 * overcommit value, we are allowing the surplus pool size to
2334 * exceed overcommit. There are few sane options here. Since
2335 * alloc_surplus_huge_page() is checking the global counter,
2336 * though, we'll note that we're not allowed to exceed surplus
2337 * and won't grow the pool anywhere else. Not until one of the
2338 * sysctls are changed, or the surplus pages go out of use.
2339 */
2340 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2341 min_count = max(count, min_count);
2342 try_to_free_low(h, min_count, nodes_allowed);
2343 while (min_count < persistent_huge_pages(h)) {
2344 if (!free_pool_huge_page(h, nodes_allowed, 0))
2345 break;
2346 cond_resched_lock(&hugetlb_lock);
2347 }
2348 while (count < persistent_huge_pages(h)) {
2349 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2350 break;
2351 }
2352 out:
2353 ret = persistent_huge_pages(h);
2354 spin_unlock(&hugetlb_lock);
2355 return ret;
2356 }
2357
2358 #define HSTATE_ATTR_RO(_name) \
2359 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2360
2361 #define HSTATE_ATTR(_name) \
2362 static struct kobj_attribute _name##_attr = \
2363 __ATTR(_name, 0644, _name##_show, _name##_store)
2364
2365 static struct kobject *hugepages_kobj;
2366 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2367
2368 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2369
2370 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2371 {
2372 int i;
2373
2374 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2375 if (hstate_kobjs[i] == kobj) {
2376 if (nidp)
2377 *nidp = NUMA_NO_NODE;
2378 return &hstates[i];
2379 }
2380
2381 return kobj_to_node_hstate(kobj, nidp);
2382 }
2383
2384 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2385 struct kobj_attribute *attr, char *buf)
2386 {
2387 struct hstate *h;
2388 unsigned long nr_huge_pages;
2389 int nid;
2390
2391 h = kobj_to_hstate(kobj, &nid);
2392 if (nid == NUMA_NO_NODE)
2393 nr_huge_pages = h->nr_huge_pages;
2394 else
2395 nr_huge_pages = h->nr_huge_pages_node[nid];
2396
2397 return sprintf(buf, "%lu\n", nr_huge_pages);
2398 }
2399
2400 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2401 struct hstate *h, int nid,
2402 unsigned long count, size_t len)
2403 {
2404 int err;
2405 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2406
2407 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2408 err = -EINVAL;
2409 goto out;
2410 }
2411
2412 if (nid == NUMA_NO_NODE) {
2413 /*
2414 * global hstate attribute
2415 */
2416 if (!(obey_mempolicy &&
2417 init_nodemask_of_mempolicy(nodes_allowed))) {
2418 NODEMASK_FREE(nodes_allowed);
2419 nodes_allowed = &node_states[N_MEMORY];
2420 }
2421 } else if (nodes_allowed) {
2422 /*
2423 * per node hstate attribute: adjust count to global,
2424 * but restrict alloc/free to the specified node.
2425 */
2426 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2427 init_nodemask_of_node(nodes_allowed, nid);
2428 } else
2429 nodes_allowed = &node_states[N_MEMORY];
2430
2431 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2432
2433 if (nodes_allowed != &node_states[N_MEMORY])
2434 NODEMASK_FREE(nodes_allowed);
2435
2436 return len;
2437 out:
2438 NODEMASK_FREE(nodes_allowed);
2439 return err;
2440 }
2441
2442 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2443 struct kobject *kobj, const char *buf,
2444 size_t len)
2445 {
2446 struct hstate *h;
2447 unsigned long count;
2448 int nid;
2449 int err;
2450
2451 err = kstrtoul(buf, 10, &count);
2452 if (err)
2453 return err;
2454
2455 h = kobj_to_hstate(kobj, &nid);
2456 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2457 }
2458
2459 static ssize_t nr_hugepages_show(struct kobject *kobj,
2460 struct kobj_attribute *attr, char *buf)
2461 {
2462 return nr_hugepages_show_common(kobj, attr, buf);
2463 }
2464
2465 static ssize_t nr_hugepages_store(struct kobject *kobj,
2466 struct kobj_attribute *attr, const char *buf, size_t len)
2467 {
2468 return nr_hugepages_store_common(false, kobj, buf, len);
2469 }
2470 HSTATE_ATTR(nr_hugepages);
2471
2472 #ifdef CONFIG_NUMA
2473
2474 /*
2475 * hstate attribute for optionally mempolicy-based constraint on persistent
2476 * huge page alloc/free.
2477 */
2478 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2479 struct kobj_attribute *attr, char *buf)
2480 {
2481 return nr_hugepages_show_common(kobj, attr, buf);
2482 }
2483
2484 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2485 struct kobj_attribute *attr, const char *buf, size_t len)
2486 {
2487 return nr_hugepages_store_common(true, kobj, buf, len);
2488 }
2489 HSTATE_ATTR(nr_hugepages_mempolicy);
2490 #endif
2491
2492
2493 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2494 struct kobj_attribute *attr, char *buf)
2495 {
2496 struct hstate *h = kobj_to_hstate(kobj, NULL);
2497 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2498 }
2499
2500 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2501 struct kobj_attribute *attr, const char *buf, size_t count)
2502 {
2503 int err;
2504 unsigned long input;
2505 struct hstate *h = kobj_to_hstate(kobj, NULL);
2506
2507 if (hstate_is_gigantic(h))
2508 return -EINVAL;
2509
2510 err = kstrtoul(buf, 10, &input);
2511 if (err)
2512 return err;
2513
2514 spin_lock(&hugetlb_lock);
2515 h->nr_overcommit_huge_pages = input;
2516 spin_unlock(&hugetlb_lock);
2517
2518 return count;
2519 }
2520 HSTATE_ATTR(nr_overcommit_hugepages);
2521
2522 static ssize_t free_hugepages_show(struct kobject *kobj,
2523 struct kobj_attribute *attr, char *buf)
2524 {
2525 struct hstate *h;
2526 unsigned long free_huge_pages;
2527 int nid;
2528
2529 h = kobj_to_hstate(kobj, &nid);
2530 if (nid == NUMA_NO_NODE)
2531 free_huge_pages = h->free_huge_pages;
2532 else
2533 free_huge_pages = h->free_huge_pages_node[nid];
2534
2535 return sprintf(buf, "%lu\n", free_huge_pages);
2536 }
2537 HSTATE_ATTR_RO(free_hugepages);
2538
2539 static ssize_t resv_hugepages_show(struct kobject *kobj,
2540 struct kobj_attribute *attr, char *buf)
2541 {
2542 struct hstate *h = kobj_to_hstate(kobj, NULL);
2543 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2544 }
2545 HSTATE_ATTR_RO(resv_hugepages);
2546
2547 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2548 struct kobj_attribute *attr, char *buf)
2549 {
2550 struct hstate *h;
2551 unsigned long surplus_huge_pages;
2552 int nid;
2553
2554 h = kobj_to_hstate(kobj, &nid);
2555 if (nid == NUMA_NO_NODE)
2556 surplus_huge_pages = h->surplus_huge_pages;
2557 else
2558 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2559
2560 return sprintf(buf, "%lu\n", surplus_huge_pages);
2561 }
2562 HSTATE_ATTR_RO(surplus_hugepages);
2563
2564 static struct attribute *hstate_attrs[] = {
2565 &nr_hugepages_attr.attr,
2566 &nr_overcommit_hugepages_attr.attr,
2567 &free_hugepages_attr.attr,
2568 &resv_hugepages_attr.attr,
2569 &surplus_hugepages_attr.attr,
2570 #ifdef CONFIG_NUMA
2571 &nr_hugepages_mempolicy_attr.attr,
2572 #endif
2573 NULL,
2574 };
2575
2576 static const struct attribute_group hstate_attr_group = {
2577 .attrs = hstate_attrs,
2578 };
2579
2580 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2581 struct kobject **hstate_kobjs,
2582 const struct attribute_group *hstate_attr_group)
2583 {
2584 int retval;
2585 int hi = hstate_index(h);
2586
2587 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2588 if (!hstate_kobjs[hi])
2589 return -ENOMEM;
2590
2591 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2592 if (retval)
2593 kobject_put(hstate_kobjs[hi]);
2594
2595 return retval;
2596 }
2597
2598 static void __init hugetlb_sysfs_init(void)
2599 {
2600 struct hstate *h;
2601 int err;
2602
2603 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2604 if (!hugepages_kobj)
2605 return;
2606
2607 for_each_hstate(h) {
2608 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2609 hstate_kobjs, &hstate_attr_group);
2610 if (err)
2611 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2612 }
2613 }
2614
2615 #ifdef CONFIG_NUMA
2616
2617 /*
2618 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2619 * with node devices in node_devices[] using a parallel array. The array
2620 * index of a node device or _hstate == node id.
2621 * This is here to avoid any static dependency of the node device driver, in
2622 * the base kernel, on the hugetlb module.
2623 */
2624 struct node_hstate {
2625 struct kobject *hugepages_kobj;
2626 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2627 };
2628 static struct node_hstate node_hstates[MAX_NUMNODES];
2629
2630 /*
2631 * A subset of global hstate attributes for node devices
2632 */
2633 static struct attribute *per_node_hstate_attrs[] = {
2634 &nr_hugepages_attr.attr,
2635 &free_hugepages_attr.attr,
2636 &surplus_hugepages_attr.attr,
2637 NULL,
2638 };
2639
2640 static const struct attribute_group per_node_hstate_attr_group = {
2641 .attrs = per_node_hstate_attrs,
2642 };
2643
2644 /*
2645 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2646 * Returns node id via non-NULL nidp.
2647 */
2648 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2649 {
2650 int nid;
2651
2652 for (nid = 0; nid < nr_node_ids; nid++) {
2653 struct node_hstate *nhs = &node_hstates[nid];
2654 int i;
2655 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2656 if (nhs->hstate_kobjs[i] == kobj) {
2657 if (nidp)
2658 *nidp = nid;
2659 return &hstates[i];
2660 }
2661 }
2662
2663 BUG();
2664 return NULL;
2665 }
2666
2667 /*
2668 * Unregister hstate attributes from a single node device.
2669 * No-op if no hstate attributes attached.
2670 */
2671 static void hugetlb_unregister_node(struct node *node)
2672 {
2673 struct hstate *h;
2674 struct node_hstate *nhs = &node_hstates[node->dev.id];
2675
2676 if (!nhs->hugepages_kobj)
2677 return; /* no hstate attributes */
2678
2679 for_each_hstate(h) {
2680 int idx = hstate_index(h);
2681 if (nhs->hstate_kobjs[idx]) {
2682 kobject_put(nhs->hstate_kobjs[idx]);
2683 nhs->hstate_kobjs[idx] = NULL;
2684 }
2685 }
2686
2687 kobject_put(nhs->hugepages_kobj);
2688 nhs->hugepages_kobj = NULL;
2689 }
2690
2691
2692 /*
2693 * Register hstate attributes for a single node device.
2694 * No-op if attributes already registered.
2695 */
2696 static void hugetlb_register_node(struct node *node)
2697 {
2698 struct hstate *h;
2699 struct node_hstate *nhs = &node_hstates[node->dev.id];
2700 int err;
2701
2702 if (nhs->hugepages_kobj)
2703 return; /* already allocated */
2704
2705 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2706 &node->dev.kobj);
2707 if (!nhs->hugepages_kobj)
2708 return;
2709
2710 for_each_hstate(h) {
2711 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2712 nhs->hstate_kobjs,
2713 &per_node_hstate_attr_group);
2714 if (err) {
2715 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2716 h->name, node->dev.id);
2717 hugetlb_unregister_node(node);
2718 break;
2719 }
2720 }
2721 }
2722
2723 /*
2724 * hugetlb init time: register hstate attributes for all registered node
2725 * devices of nodes that have memory. All on-line nodes should have
2726 * registered their associated device by this time.
2727 */
2728 static void __init hugetlb_register_all_nodes(void)
2729 {
2730 int nid;
2731
2732 for_each_node_state(nid, N_MEMORY) {
2733 struct node *node = node_devices[nid];
2734 if (node->dev.id == nid)
2735 hugetlb_register_node(node);
2736 }
2737
2738 /*
2739 * Let the node device driver know we're here so it can
2740 * [un]register hstate attributes on node hotplug.
2741 */
2742 register_hugetlbfs_with_node(hugetlb_register_node,
2743 hugetlb_unregister_node);
2744 }
2745 #else /* !CONFIG_NUMA */
2746
2747 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2748 {
2749 BUG();
2750 if (nidp)
2751 *nidp = -1;
2752 return NULL;
2753 }
2754
2755 static void hugetlb_register_all_nodes(void) { }
2756
2757 #endif
2758
2759 static int __init hugetlb_init(void)
2760 {
2761 int i;
2762
2763 if (!hugepages_supported())
2764 return 0;
2765
2766 if (!size_to_hstate(default_hstate_size)) {
2767 if (default_hstate_size != 0) {
2768 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2769 default_hstate_size, HPAGE_SIZE);
2770 }
2771
2772 default_hstate_size = HPAGE_SIZE;
2773 if (!size_to_hstate(default_hstate_size))
2774 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2775 }
2776 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2777 if (default_hstate_max_huge_pages) {
2778 if (!default_hstate.max_huge_pages)
2779 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2780 }
2781
2782 hugetlb_init_hstates();
2783 gather_bootmem_prealloc();
2784 report_hugepages();
2785
2786 hugetlb_sysfs_init();
2787 hugetlb_register_all_nodes();
2788 hugetlb_cgroup_file_init();
2789
2790 #ifdef CONFIG_SMP
2791 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2792 #else
2793 num_fault_mutexes = 1;
2794 #endif
2795 hugetlb_fault_mutex_table =
2796 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2797 GFP_KERNEL);
2798 BUG_ON(!hugetlb_fault_mutex_table);
2799
2800 for (i = 0; i < num_fault_mutexes; i++)
2801 mutex_init(&hugetlb_fault_mutex_table[i]);
2802 return 0;
2803 }
2804 subsys_initcall(hugetlb_init);
2805
2806 /* Should be called on processing a hugepagesz=... option */
2807 void __init hugetlb_bad_size(void)
2808 {
2809 parsed_valid_hugepagesz = false;
2810 }
2811
2812 void __init hugetlb_add_hstate(unsigned int order)
2813 {
2814 struct hstate *h;
2815 unsigned long i;
2816
2817 if (size_to_hstate(PAGE_SIZE << order)) {
2818 pr_warn("hugepagesz= specified twice, ignoring\n");
2819 return;
2820 }
2821 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2822 BUG_ON(order == 0);
2823 h = &hstates[hugetlb_max_hstate++];
2824 h->order = order;
2825 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2826 h->nr_huge_pages = 0;
2827 h->free_huge_pages = 0;
2828 for (i = 0; i < MAX_NUMNODES; ++i)
2829 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2830 INIT_LIST_HEAD(&h->hugepage_activelist);
2831 h->next_nid_to_alloc = first_memory_node;
2832 h->next_nid_to_free = first_memory_node;
2833 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2834 huge_page_size(h)/1024);
2835
2836 parsed_hstate = h;
2837 }
2838
2839 static int __init hugetlb_nrpages_setup(char *s)
2840 {
2841 unsigned long *mhp;
2842 static unsigned long *last_mhp;
2843
2844 if (!parsed_valid_hugepagesz) {
2845 pr_warn("hugepages = %s preceded by "
2846 "an unsupported hugepagesz, ignoring\n", s);
2847 parsed_valid_hugepagesz = true;
2848 return 1;
2849 }
2850 /*
2851 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2852 * so this hugepages= parameter goes to the "default hstate".
2853 */
2854 else if (!hugetlb_max_hstate)
2855 mhp = &default_hstate_max_huge_pages;
2856 else
2857 mhp = &parsed_hstate->max_huge_pages;
2858
2859 if (mhp == last_mhp) {
2860 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2861 return 1;
2862 }
2863
2864 if (sscanf(s, "%lu", mhp) <= 0)
2865 *mhp = 0;
2866
2867 /*
2868 * Global state is always initialized later in hugetlb_init.
2869 * But we need to allocate >= MAX_ORDER hstates here early to still
2870 * use the bootmem allocator.
2871 */
2872 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2873 hugetlb_hstate_alloc_pages(parsed_hstate);
2874
2875 last_mhp = mhp;
2876
2877 return 1;
2878 }
2879 __setup("hugepages=", hugetlb_nrpages_setup);
2880
2881 static int __init hugetlb_default_setup(char *s)
2882 {
2883 default_hstate_size = memparse(s, &s);
2884 return 1;
2885 }
2886 __setup("default_hugepagesz=", hugetlb_default_setup);
2887
2888 static unsigned int cpuset_mems_nr(unsigned int *array)
2889 {
2890 int node;
2891 unsigned int nr = 0;
2892
2893 for_each_node_mask(node, cpuset_current_mems_allowed)
2894 nr += array[node];
2895
2896 return nr;
2897 }
2898
2899 #ifdef CONFIG_SYSCTL
2900 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2901 struct ctl_table *table, int write,
2902 void __user *buffer, size_t *length, loff_t *ppos)
2903 {
2904 struct hstate *h = &default_hstate;
2905 unsigned long tmp = h->max_huge_pages;
2906 int ret;
2907
2908 if (!hugepages_supported())
2909 return -EOPNOTSUPP;
2910
2911 table->data = &tmp;
2912 table->maxlen = sizeof(unsigned long);
2913 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2914 if (ret)
2915 goto out;
2916
2917 if (write)
2918 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2919 NUMA_NO_NODE, tmp, *length);
2920 out:
2921 return ret;
2922 }
2923
2924 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2925 void __user *buffer, size_t *length, loff_t *ppos)
2926 {
2927
2928 return hugetlb_sysctl_handler_common(false, table, write,
2929 buffer, length, ppos);
2930 }
2931
2932 #ifdef CONFIG_NUMA
2933 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2934 void __user *buffer, size_t *length, loff_t *ppos)
2935 {
2936 return hugetlb_sysctl_handler_common(true, table, write,
2937 buffer, length, ppos);
2938 }
2939 #endif /* CONFIG_NUMA */
2940
2941 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2942 void __user *buffer,
2943 size_t *length, loff_t *ppos)
2944 {
2945 struct hstate *h = &default_hstate;
2946 unsigned long tmp;
2947 int ret;
2948
2949 if (!hugepages_supported())
2950 return -EOPNOTSUPP;
2951
2952 tmp = h->nr_overcommit_huge_pages;
2953
2954 if (write && hstate_is_gigantic(h))
2955 return -EINVAL;
2956
2957 table->data = &tmp;
2958 table->maxlen = sizeof(unsigned long);
2959 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2960 if (ret)
2961 goto out;
2962
2963 if (write) {
2964 spin_lock(&hugetlb_lock);
2965 h->nr_overcommit_huge_pages = tmp;
2966 spin_unlock(&hugetlb_lock);
2967 }
2968 out:
2969 return ret;
2970 }
2971
2972 #endif /* CONFIG_SYSCTL */
2973
2974 void hugetlb_report_meminfo(struct seq_file *m)
2975 {
2976 struct hstate *h;
2977 unsigned long total = 0;
2978
2979 if (!hugepages_supported())
2980 return;
2981
2982 for_each_hstate(h) {
2983 unsigned long count = h->nr_huge_pages;
2984
2985 total += (PAGE_SIZE << huge_page_order(h)) * count;
2986
2987 if (h == &default_hstate)
2988 seq_printf(m,
2989 "HugePages_Total: %5lu\n"
2990 "HugePages_Free: %5lu\n"
2991 "HugePages_Rsvd: %5lu\n"
2992 "HugePages_Surp: %5lu\n"
2993 "Hugepagesize: %8lu kB\n",
2994 count,
2995 h->free_huge_pages,
2996 h->resv_huge_pages,
2997 h->surplus_huge_pages,
2998 (PAGE_SIZE << huge_page_order(h)) / 1024);
2999 }
3000
3001 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3002 }
3003
3004 int hugetlb_report_node_meminfo(int nid, char *buf)
3005 {
3006 struct hstate *h = &default_hstate;
3007 if (!hugepages_supported())
3008 return 0;
3009 return sprintf(buf,
3010 "Node %d HugePages_Total: %5u\n"
3011 "Node %d HugePages_Free: %5u\n"
3012 "Node %d HugePages_Surp: %5u\n",
3013 nid, h->nr_huge_pages_node[nid],
3014 nid, h->free_huge_pages_node[nid],
3015 nid, h->surplus_huge_pages_node[nid]);
3016 }
3017
3018 void hugetlb_show_meminfo(void)
3019 {
3020 struct hstate *h;
3021 int nid;
3022
3023 if (!hugepages_supported())
3024 return;
3025
3026 for_each_node_state(nid, N_MEMORY)
3027 for_each_hstate(h)
3028 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3029 nid,
3030 h->nr_huge_pages_node[nid],
3031 h->free_huge_pages_node[nid],
3032 h->surplus_huge_pages_node[nid],
3033 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3034 }
3035
3036 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3037 {
3038 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3039 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3040 }
3041
3042 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3043 unsigned long hugetlb_total_pages(void)
3044 {
3045 struct hstate *h;
3046 unsigned long nr_total_pages = 0;
3047
3048 for_each_hstate(h)
3049 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3050 return nr_total_pages;
3051 }
3052
3053 static int hugetlb_acct_memory(struct hstate *h, long delta)
3054 {
3055 int ret = -ENOMEM;
3056
3057 spin_lock(&hugetlb_lock);
3058 /*
3059 * When cpuset is configured, it breaks the strict hugetlb page
3060 * reservation as the accounting is done on a global variable. Such
3061 * reservation is completely rubbish in the presence of cpuset because
3062 * the reservation is not checked against page availability for the
3063 * current cpuset. Application can still potentially OOM'ed by kernel
3064 * with lack of free htlb page in cpuset that the task is in.
3065 * Attempt to enforce strict accounting with cpuset is almost
3066 * impossible (or too ugly) because cpuset is too fluid that
3067 * task or memory node can be dynamically moved between cpusets.
3068 *
3069 * The change of semantics for shared hugetlb mapping with cpuset is
3070 * undesirable. However, in order to preserve some of the semantics,
3071 * we fall back to check against current free page availability as
3072 * a best attempt and hopefully to minimize the impact of changing
3073 * semantics that cpuset has.
3074 */
3075 if (delta > 0) {
3076 if (gather_surplus_pages(h, delta) < 0)
3077 goto out;
3078
3079 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3080 return_unused_surplus_pages(h, delta);
3081 goto out;
3082 }
3083 }
3084
3085 ret = 0;
3086 if (delta < 0)
3087 return_unused_surplus_pages(h, (unsigned long) -delta);
3088
3089 out:
3090 spin_unlock(&hugetlb_lock);
3091 return ret;
3092 }
3093
3094 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3095 {
3096 struct resv_map *resv = vma_resv_map(vma);
3097
3098 /*
3099 * This new VMA should share its siblings reservation map if present.
3100 * The VMA will only ever have a valid reservation map pointer where
3101 * it is being copied for another still existing VMA. As that VMA
3102 * has a reference to the reservation map it cannot disappear until
3103 * after this open call completes. It is therefore safe to take a
3104 * new reference here without additional locking.
3105 */
3106 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3107 kref_get(&resv->refs);
3108 }
3109
3110 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3111 {
3112 struct hstate *h = hstate_vma(vma);
3113 struct resv_map *resv = vma_resv_map(vma);
3114 struct hugepage_subpool *spool = subpool_vma(vma);
3115 unsigned long reserve, start, end;
3116 long gbl_reserve;
3117
3118 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3119 return;
3120
3121 start = vma_hugecache_offset(h, vma, vma->vm_start);
3122 end = vma_hugecache_offset(h, vma, vma->vm_end);
3123
3124 reserve = (end - start) - region_count(resv, start, end);
3125
3126 kref_put(&resv->refs, resv_map_release);
3127
3128 if (reserve) {
3129 /*
3130 * Decrement reserve counts. The global reserve count may be
3131 * adjusted if the subpool has a minimum size.
3132 */
3133 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3134 hugetlb_acct_memory(h, -gbl_reserve);
3135 }
3136 }
3137
3138 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3139 {
3140 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3141 return -EINVAL;
3142 return 0;
3143 }
3144
3145 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3146 {
3147 struct hstate *hstate = hstate_vma(vma);
3148
3149 return 1UL << huge_page_shift(hstate);
3150 }
3151
3152 /*
3153 * We cannot handle pagefaults against hugetlb pages at all. They cause
3154 * handle_mm_fault() to try to instantiate regular-sized pages in the
3155 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3156 * this far.
3157 */
3158 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3159 {
3160 BUG();
3161 return 0;
3162 }
3163
3164 /*
3165 * When a new function is introduced to vm_operations_struct and added
3166 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3167 * This is because under System V memory model, mappings created via
3168 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3169 * their original vm_ops are overwritten with shm_vm_ops.
3170 */
3171 const struct vm_operations_struct hugetlb_vm_ops = {
3172 .fault = hugetlb_vm_op_fault,
3173 .open = hugetlb_vm_op_open,
3174 .close = hugetlb_vm_op_close,
3175 .split = hugetlb_vm_op_split,
3176 .pagesize = hugetlb_vm_op_pagesize,
3177 };
3178
3179 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3180 int writable)
3181 {
3182 pte_t entry;
3183
3184 if (writable) {
3185 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3186 vma->vm_page_prot)));
3187 } else {
3188 entry = huge_pte_wrprotect(mk_huge_pte(page,
3189 vma->vm_page_prot));
3190 }
3191 entry = pte_mkyoung(entry);
3192 entry = pte_mkhuge(entry);
3193 entry = arch_make_huge_pte(entry, vma, page, writable);
3194
3195 return entry;
3196 }
3197
3198 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3199 unsigned long address, pte_t *ptep)
3200 {
3201 pte_t entry;
3202
3203 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3204 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3205 update_mmu_cache(vma, address, ptep);
3206 }
3207
3208 bool is_hugetlb_entry_migration(pte_t pte)
3209 {
3210 swp_entry_t swp;
3211
3212 if (huge_pte_none(pte) || pte_present(pte))
3213 return false;
3214 swp = pte_to_swp_entry(pte);
3215 if (non_swap_entry(swp) && is_migration_entry(swp))
3216 return true;
3217 else
3218 return false;
3219 }
3220
3221 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3222 {
3223 swp_entry_t swp;
3224
3225 if (huge_pte_none(pte) || pte_present(pte))
3226 return 0;
3227 swp = pte_to_swp_entry(pte);
3228 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3229 return 1;
3230 else
3231 return 0;
3232 }
3233
3234 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3235 struct vm_area_struct *vma)
3236 {
3237 pte_t *src_pte, *dst_pte, entry, dst_entry;
3238 struct page *ptepage;
3239 unsigned long addr;
3240 int cow;
3241 struct hstate *h = hstate_vma(vma);
3242 unsigned long sz = huge_page_size(h);
3243 struct mmu_notifier_range range;
3244 int ret = 0;
3245
3246 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3247
3248 if (cow) {
3249 mmu_notifier_range_init(&range, src, vma->vm_start,
3250 vma->vm_end);
3251 mmu_notifier_invalidate_range_start(&range);
3252 }
3253
3254 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3255 spinlock_t *src_ptl, *dst_ptl;
3256 src_pte = huge_pte_offset(src, addr, sz);
3257 if (!src_pte)
3258 continue;
3259 dst_pte = huge_pte_alloc(dst, addr, sz);
3260 if (!dst_pte) {
3261 ret = -ENOMEM;
3262 break;
3263 }
3264
3265 /*
3266 * If the pagetables are shared don't copy or take references.
3267 * dst_pte == src_pte is the common case of src/dest sharing.
3268 *
3269 * However, src could have 'unshared' and dst shares with
3270 * another vma. If dst_pte !none, this implies sharing.
3271 * Check here before taking page table lock, and once again
3272 * after taking the lock below.
3273 */
3274 dst_entry = huge_ptep_get(dst_pte);
3275 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3276 continue;
3277
3278 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3279 src_ptl = huge_pte_lockptr(h, src, src_pte);
3280 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3281 entry = huge_ptep_get(src_pte);
3282 dst_entry = huge_ptep_get(dst_pte);
3283 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3284 /*
3285 * Skip if src entry none. Also, skip in the
3286 * unlikely case dst entry !none as this implies
3287 * sharing with another vma.
3288 */
3289 ;
3290 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3291 is_hugetlb_entry_hwpoisoned(entry))) {
3292 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3293
3294 if (is_write_migration_entry(swp_entry) && cow) {
3295 /*
3296 * COW mappings require pages in both
3297 * parent and child to be set to read.
3298 */
3299 make_migration_entry_read(&swp_entry);
3300 entry = swp_entry_to_pte(swp_entry);
3301 set_huge_swap_pte_at(src, addr, src_pte,
3302 entry, sz);
3303 }
3304 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3305 } else {
3306 if (cow) {
3307 /*
3308 * No need to notify as we are downgrading page
3309 * table protection not changing it to point
3310 * to a new page.
3311 *
3312 * See Documentation/vm/mmu_notifier.rst
3313 */
3314 huge_ptep_set_wrprotect(src, addr, src_pte);
3315 }
3316 entry = huge_ptep_get(src_pte);
3317 ptepage = pte_page(entry);
3318 get_page(ptepage);
3319 page_dup_rmap(ptepage, true);
3320 set_huge_pte_at(dst, addr, dst_pte, entry);
3321 hugetlb_count_add(pages_per_huge_page(h), dst);
3322 }
3323 spin_unlock(src_ptl);
3324 spin_unlock(dst_ptl);
3325 }
3326
3327 if (cow)
3328 mmu_notifier_invalidate_range_end(&range);
3329
3330 return ret;
3331 }
3332
3333 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3334 unsigned long start, unsigned long end,
3335 struct page *ref_page)
3336 {
3337 struct mm_struct *mm = vma->vm_mm;
3338 unsigned long address;
3339 pte_t *ptep;
3340 pte_t pte;
3341 spinlock_t *ptl;
3342 struct page *page;
3343 struct hstate *h = hstate_vma(vma);
3344 unsigned long sz = huge_page_size(h);
3345 struct mmu_notifier_range range;
3346
3347 WARN_ON(!is_vm_hugetlb_page(vma));
3348 BUG_ON(start & ~huge_page_mask(h));
3349 BUG_ON(end & ~huge_page_mask(h));
3350
3351 /*
3352 * This is a hugetlb vma, all the pte entries should point
3353 * to huge page.
3354 */
3355 tlb_remove_check_page_size_change(tlb, sz);
3356 tlb_start_vma(tlb, vma);
3357
3358 /*
3359 * If sharing possible, alert mmu notifiers of worst case.
3360 */
3361 mmu_notifier_range_init(&range, mm, start, end);
3362 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3363 mmu_notifier_invalidate_range_start(&range);
3364 address = start;
3365 for (; address < end; address += sz) {
3366 ptep = huge_pte_offset(mm, address, sz);
3367 if (!ptep)
3368 continue;
3369
3370 ptl = huge_pte_lock(h, mm, ptep);
3371 if (huge_pmd_unshare(mm, &address, ptep)) {
3372 spin_unlock(ptl);
3373 /*
3374 * We just unmapped a page of PMDs by clearing a PUD.
3375 * The caller's TLB flush range should cover this area.
3376 */
3377 continue;
3378 }
3379
3380 pte = huge_ptep_get(ptep);
3381 if (huge_pte_none(pte)) {
3382 spin_unlock(ptl);
3383 continue;
3384 }
3385
3386 /*
3387 * Migrating hugepage or HWPoisoned hugepage is already
3388 * unmapped and its refcount is dropped, so just clear pte here.
3389 */
3390 if (unlikely(!pte_present(pte))) {
3391 huge_pte_clear(mm, address, ptep, sz);
3392 spin_unlock(ptl);
3393 continue;
3394 }
3395
3396 page = pte_page(pte);
3397 /*
3398 * If a reference page is supplied, it is because a specific
3399 * page is being unmapped, not a range. Ensure the page we
3400 * are about to unmap is the actual page of interest.
3401 */
3402 if (ref_page) {
3403 if (page != ref_page) {
3404 spin_unlock(ptl);
3405 continue;
3406 }
3407 /*
3408 * Mark the VMA as having unmapped its page so that
3409 * future faults in this VMA will fail rather than
3410 * looking like data was lost
3411 */
3412 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3413 }
3414
3415 pte = huge_ptep_get_and_clear(mm, address, ptep);
3416 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3417 if (huge_pte_dirty(pte))
3418 set_page_dirty(page);
3419
3420 hugetlb_count_sub(pages_per_huge_page(h), mm);
3421 page_remove_rmap(page, true);
3422
3423 spin_unlock(ptl);
3424 tlb_remove_page_size(tlb, page, huge_page_size(h));
3425 /*
3426 * Bail out after unmapping reference page if supplied
3427 */
3428 if (ref_page)
3429 break;
3430 }
3431 mmu_notifier_invalidate_range_end(&range);
3432 tlb_end_vma(tlb, vma);
3433 }
3434
3435 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3436 struct vm_area_struct *vma, unsigned long start,
3437 unsigned long end, struct page *ref_page)
3438 {
3439 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3440
3441 /*
3442 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3443 * test will fail on a vma being torn down, and not grab a page table
3444 * on its way out. We're lucky that the flag has such an appropriate
3445 * name, and can in fact be safely cleared here. We could clear it
3446 * before the __unmap_hugepage_range above, but all that's necessary
3447 * is to clear it before releasing the i_mmap_rwsem. This works
3448 * because in the context this is called, the VMA is about to be
3449 * destroyed and the i_mmap_rwsem is held.
3450 */
3451 vma->vm_flags &= ~VM_MAYSHARE;
3452 }
3453
3454 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3455 unsigned long end, struct page *ref_page)
3456 {
3457 struct mm_struct *mm;
3458 struct mmu_gather tlb;
3459 unsigned long tlb_start = start;
3460 unsigned long tlb_end = end;
3461
3462 /*
3463 * If shared PMDs were possibly used within this vma range, adjust
3464 * start/end for worst case tlb flushing.
3465 * Note that we can not be sure if PMDs are shared until we try to
3466 * unmap pages. However, we want to make sure TLB flushing covers
3467 * the largest possible range.
3468 */
3469 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3470
3471 mm = vma->vm_mm;
3472
3473 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3474 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3475 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3476 }
3477
3478 /*
3479 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3480 * mappping it owns the reserve page for. The intention is to unmap the page
3481 * from other VMAs and let the children be SIGKILLed if they are faulting the
3482 * same region.
3483 */
3484 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3485 struct page *page, unsigned long address)
3486 {
3487 struct hstate *h = hstate_vma(vma);
3488 struct vm_area_struct *iter_vma;
3489 struct address_space *mapping;
3490 pgoff_t pgoff;
3491
3492 /*
3493 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3494 * from page cache lookup which is in HPAGE_SIZE units.
3495 */
3496 address = address & huge_page_mask(h);
3497 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3498 vma->vm_pgoff;
3499 mapping = vma->vm_file->f_mapping;
3500
3501 /*
3502 * Take the mapping lock for the duration of the table walk. As
3503 * this mapping should be shared between all the VMAs,
3504 * __unmap_hugepage_range() is called as the lock is already held
3505 */
3506 i_mmap_lock_write(mapping);
3507 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3508 /* Do not unmap the current VMA */
3509 if (iter_vma == vma)
3510 continue;
3511
3512 /*
3513 * Shared VMAs have their own reserves and do not affect
3514 * MAP_PRIVATE accounting but it is possible that a shared
3515 * VMA is using the same page so check and skip such VMAs.
3516 */
3517 if (iter_vma->vm_flags & VM_MAYSHARE)
3518 continue;
3519
3520 /*
3521 * Unmap the page from other VMAs without their own reserves.
3522 * They get marked to be SIGKILLed if they fault in these
3523 * areas. This is because a future no-page fault on this VMA
3524 * could insert a zeroed page instead of the data existing
3525 * from the time of fork. This would look like data corruption
3526 */
3527 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3528 unmap_hugepage_range(iter_vma, address,
3529 address + huge_page_size(h), page);
3530 }
3531 i_mmap_unlock_write(mapping);
3532 }
3533
3534 /*
3535 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3536 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3537 * cannot race with other handlers or page migration.
3538 * Keep the pte_same checks anyway to make transition from the mutex easier.
3539 */
3540 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3541 unsigned long address, pte_t *ptep,
3542 struct page *pagecache_page, spinlock_t *ptl)
3543 {
3544 pte_t pte;
3545 struct hstate *h = hstate_vma(vma);
3546 struct page *old_page, *new_page;
3547 int outside_reserve = 0;
3548 vm_fault_t ret = 0;
3549 unsigned long haddr = address & huge_page_mask(h);
3550 struct mmu_notifier_range range;
3551
3552 pte = huge_ptep_get(ptep);
3553 old_page = pte_page(pte);
3554
3555 retry_avoidcopy:
3556 /* If no-one else is actually using this page, avoid the copy
3557 * and just make the page writable */
3558 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3559 page_move_anon_rmap(old_page, vma);
3560 set_huge_ptep_writable(vma, haddr, ptep);
3561 return 0;
3562 }
3563
3564 /*
3565 * If the process that created a MAP_PRIVATE mapping is about to
3566 * perform a COW due to a shared page count, attempt to satisfy
3567 * the allocation without using the existing reserves. The pagecache
3568 * page is used to determine if the reserve at this address was
3569 * consumed or not. If reserves were used, a partial faulted mapping
3570 * at the time of fork() could consume its reserves on COW instead
3571 * of the full address range.
3572 */
3573 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3574 old_page != pagecache_page)
3575 outside_reserve = 1;
3576
3577 get_page(old_page);
3578
3579 /*
3580 * Drop page table lock as buddy allocator may be called. It will
3581 * be acquired again before returning to the caller, as expected.
3582 */
3583 spin_unlock(ptl);
3584 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3585
3586 if (IS_ERR(new_page)) {
3587 /*
3588 * If a process owning a MAP_PRIVATE mapping fails to COW,
3589 * it is due to references held by a child and an insufficient
3590 * huge page pool. To guarantee the original mappers
3591 * reliability, unmap the page from child processes. The child
3592 * may get SIGKILLed if it later faults.
3593 */
3594 if (outside_reserve) {
3595 put_page(old_page);
3596 BUG_ON(huge_pte_none(pte));
3597 unmap_ref_private(mm, vma, old_page, haddr);
3598 BUG_ON(huge_pte_none(pte));
3599 spin_lock(ptl);
3600 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3601 if (likely(ptep &&
3602 pte_same(huge_ptep_get(ptep), pte)))
3603 goto retry_avoidcopy;
3604 /*
3605 * race occurs while re-acquiring page table
3606 * lock, and our job is done.
3607 */
3608 return 0;
3609 }
3610
3611 ret = vmf_error(PTR_ERR(new_page));
3612 goto out_release_old;
3613 }
3614
3615 /*
3616 * When the original hugepage is shared one, it does not have
3617 * anon_vma prepared.
3618 */
3619 if (unlikely(anon_vma_prepare(vma))) {
3620 ret = VM_FAULT_OOM;
3621 goto out_release_all;
3622 }
3623
3624 copy_user_huge_page(new_page, old_page, address, vma,
3625 pages_per_huge_page(h));
3626 __SetPageUptodate(new_page);
3627 set_page_huge_active(new_page);
3628
3629 mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3630 mmu_notifier_invalidate_range_start(&range);
3631
3632 /*
3633 * Retake the page table lock to check for racing updates
3634 * before the page tables are altered
3635 */
3636 spin_lock(ptl);
3637 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3638 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3639 ClearPagePrivate(new_page);
3640
3641 /* Break COW */
3642 huge_ptep_clear_flush(vma, haddr, ptep);
3643 mmu_notifier_invalidate_range(mm, range.start, range.end);
3644 set_huge_pte_at(mm, haddr, ptep,
3645 make_huge_pte(vma, new_page, 1));
3646 page_remove_rmap(old_page, true);
3647 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3648 /* Make the old page be freed below */
3649 new_page = old_page;
3650 }
3651 spin_unlock(ptl);
3652 mmu_notifier_invalidate_range_end(&range);
3653 out_release_all:
3654 restore_reserve_on_error(h, vma, haddr, new_page);
3655 put_page(new_page);
3656 out_release_old:
3657 put_page(old_page);
3658
3659 spin_lock(ptl); /* Caller expects lock to be held */
3660 return ret;
3661 }
3662
3663 /* Return the pagecache page at a given address within a VMA */
3664 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3665 struct vm_area_struct *vma, unsigned long address)
3666 {
3667 struct address_space *mapping;
3668 pgoff_t idx;
3669
3670 mapping = vma->vm_file->f_mapping;
3671 idx = vma_hugecache_offset(h, vma, address);
3672
3673 return find_lock_page(mapping, idx);
3674 }
3675
3676 /*
3677 * Return whether there is a pagecache page to back given address within VMA.
3678 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3679 */
3680 static bool hugetlbfs_pagecache_present(struct hstate *h,
3681 struct vm_area_struct *vma, unsigned long address)
3682 {
3683 struct address_space *mapping;
3684 pgoff_t idx;
3685 struct page *page;
3686
3687 mapping = vma->vm_file->f_mapping;
3688 idx = vma_hugecache_offset(h, vma, address);
3689
3690 page = find_get_page(mapping, idx);
3691 if (page)
3692 put_page(page);
3693 return page != NULL;
3694 }
3695
3696 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3697 pgoff_t idx)
3698 {
3699 struct inode *inode = mapping->host;
3700 struct hstate *h = hstate_inode(inode);
3701 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3702
3703 if (err)
3704 return err;
3705 ClearPagePrivate(page);
3706
3707 /*
3708 * set page dirty so that it will not be removed from cache/file
3709 * by non-hugetlbfs specific code paths.
3710 */
3711 set_page_dirty(page);
3712
3713 spin_lock(&inode->i_lock);
3714 inode->i_blocks += blocks_per_huge_page(h);
3715 spin_unlock(&inode->i_lock);
3716 return 0;
3717 }
3718
3719 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3720 struct vm_area_struct *vma,
3721 struct address_space *mapping, pgoff_t idx,
3722 unsigned long address, pte_t *ptep, unsigned int flags)
3723 {
3724 struct hstate *h = hstate_vma(vma);
3725 vm_fault_t ret = VM_FAULT_SIGBUS;
3726 int anon_rmap = 0;
3727 unsigned long size;
3728 struct page *page;
3729 pte_t new_pte;
3730 spinlock_t *ptl;
3731 unsigned long haddr = address & huge_page_mask(h);
3732
3733 /*
3734 * Currently, we are forced to kill the process in the event the
3735 * original mapper has unmapped pages from the child due to a failed
3736 * COW. Warn that such a situation has occurred as it may not be obvious
3737 */
3738 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3739 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3740 current->pid);
3741 return ret;
3742 }
3743
3744 /*
3745 * Use page lock to guard against racing truncation
3746 * before we get page_table_lock.
3747 */
3748 retry:
3749 page = find_lock_page(mapping, idx);
3750 if (!page) {
3751 size = i_size_read(mapping->host) >> huge_page_shift(h);
3752 if (idx >= size)
3753 goto out;
3754
3755 /*
3756 * Check for page in userfault range
3757 */
3758 if (userfaultfd_missing(vma)) {
3759 u32 hash;
3760 struct vm_fault vmf = {
3761 .vma = vma,
3762 .address = haddr,
3763 .flags = flags,
3764 /*
3765 * Hard to debug if it ends up being
3766 * used by a callee that assumes
3767 * something about the other
3768 * uninitialized fields... same as in
3769 * memory.c
3770 */
3771 };
3772
3773 /*
3774 * hugetlb_fault_mutex must be dropped before
3775 * handling userfault. Reacquire after handling
3776 * fault to make calling code simpler.
3777 */
3778 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3779 idx, haddr);
3780 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3781 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3782 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3783 goto out;
3784 }
3785
3786 page = alloc_huge_page(vma, haddr, 0);
3787 if (IS_ERR(page)) {
3788 ret = vmf_error(PTR_ERR(page));
3789 goto out;
3790 }
3791 clear_huge_page(page, address, pages_per_huge_page(h));
3792 __SetPageUptodate(page);
3793 set_page_huge_active(page);
3794
3795 if (vma->vm_flags & VM_MAYSHARE) {
3796 int err = huge_add_to_page_cache(page, mapping, idx);
3797 if (err) {
3798 put_page(page);
3799 if (err == -EEXIST)
3800 goto retry;
3801 goto out;
3802 }
3803 } else {
3804 lock_page(page);
3805 if (unlikely(anon_vma_prepare(vma))) {
3806 ret = VM_FAULT_OOM;
3807 goto backout_unlocked;
3808 }
3809 anon_rmap = 1;
3810 }
3811 } else {
3812 /*
3813 * If memory error occurs between mmap() and fault, some process
3814 * don't have hwpoisoned swap entry for errored virtual address.
3815 * So we need to block hugepage fault by PG_hwpoison bit check.
3816 */
3817 if (unlikely(PageHWPoison(page))) {
3818 ret = VM_FAULT_HWPOISON |
3819 VM_FAULT_SET_HINDEX(hstate_index(h));
3820 goto backout_unlocked;
3821 }
3822 }
3823
3824 /*
3825 * If we are going to COW a private mapping later, we examine the
3826 * pending reservations for this page now. This will ensure that
3827 * any allocations necessary to record that reservation occur outside
3828 * the spinlock.
3829 */
3830 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3831 if (vma_needs_reservation(h, vma, haddr) < 0) {
3832 ret = VM_FAULT_OOM;
3833 goto backout_unlocked;
3834 }
3835 /* Just decrements count, does not deallocate */
3836 vma_end_reservation(h, vma, haddr);
3837 }
3838
3839 ptl = huge_pte_lock(h, mm, ptep);
3840 size = i_size_read(mapping->host) >> huge_page_shift(h);
3841 if (idx >= size)
3842 goto backout;
3843
3844 ret = 0;
3845 if (!huge_pte_none(huge_ptep_get(ptep)))
3846 goto backout;
3847
3848 if (anon_rmap) {
3849 ClearPagePrivate(page);
3850 hugepage_add_new_anon_rmap(page, vma, haddr);
3851 } else
3852 page_dup_rmap(page, true);
3853 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3854 && (vma->vm_flags & VM_SHARED)));
3855 set_huge_pte_at(mm, haddr, ptep, new_pte);
3856
3857 hugetlb_count_add(pages_per_huge_page(h), mm);
3858 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3859 /* Optimization, do the COW without a second fault */
3860 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3861 }
3862
3863 spin_unlock(ptl);
3864 unlock_page(page);
3865 out:
3866 return ret;
3867
3868 backout:
3869 spin_unlock(ptl);
3870 backout_unlocked:
3871 unlock_page(page);
3872 restore_reserve_on_error(h, vma, haddr, page);
3873 put_page(page);
3874 goto out;
3875 }
3876
3877 #ifdef CONFIG_SMP
3878 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3879 struct vm_area_struct *vma,
3880 struct address_space *mapping,
3881 pgoff_t idx, unsigned long address)
3882 {
3883 unsigned long key[2];
3884 u32 hash;
3885
3886 if (vma->vm_flags & VM_SHARED) {
3887 key[0] = (unsigned long) mapping;
3888 key[1] = idx;
3889 } else {
3890 key[0] = (unsigned long) mm;
3891 key[1] = address >> huge_page_shift(h);
3892 }
3893
3894 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3895
3896 return hash & (num_fault_mutexes - 1);
3897 }
3898 #else
3899 /*
3900 * For uniprocesor systems we always use a single mutex, so just
3901 * return 0 and avoid the hashing overhead.
3902 */
3903 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3904 struct vm_area_struct *vma,
3905 struct address_space *mapping,
3906 pgoff_t idx, unsigned long address)
3907 {
3908 return 0;
3909 }
3910 #endif
3911
3912 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3913 unsigned long address, unsigned int flags)
3914 {
3915 pte_t *ptep, entry;
3916 spinlock_t *ptl;
3917 vm_fault_t ret;
3918 u32 hash;
3919 pgoff_t idx;
3920 struct page *page = NULL;
3921 struct page *pagecache_page = NULL;
3922 struct hstate *h = hstate_vma(vma);
3923 struct address_space *mapping;
3924 int need_wait_lock = 0;
3925 unsigned long haddr = address & huge_page_mask(h);
3926
3927 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3928 if (ptep) {
3929 entry = huge_ptep_get(ptep);
3930 if (unlikely(is_hugetlb_entry_migration(entry))) {
3931 migration_entry_wait_huge(vma, mm, ptep);
3932 return 0;
3933 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3934 return VM_FAULT_HWPOISON_LARGE |
3935 VM_FAULT_SET_HINDEX(hstate_index(h));
3936 } else {
3937 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3938 if (!ptep)
3939 return VM_FAULT_OOM;
3940 }
3941
3942 mapping = vma->vm_file->f_mapping;
3943 idx = vma_hugecache_offset(h, vma, haddr);
3944
3945 /*
3946 * Serialize hugepage allocation and instantiation, so that we don't
3947 * get spurious allocation failures if two CPUs race to instantiate
3948 * the same page in the page cache.
3949 */
3950 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3951 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3952
3953 entry = huge_ptep_get(ptep);
3954 if (huge_pte_none(entry)) {
3955 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3956 goto out_mutex;
3957 }
3958
3959 ret = 0;
3960
3961 /*
3962 * entry could be a migration/hwpoison entry at this point, so this
3963 * check prevents the kernel from going below assuming that we have
3964 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3965 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3966 * handle it.
3967 */
3968 if (!pte_present(entry))
3969 goto out_mutex;
3970
3971 /*
3972 * If we are going to COW the mapping later, we examine the pending
3973 * reservations for this page now. This will ensure that any
3974 * allocations necessary to record that reservation occur outside the
3975 * spinlock. For private mappings, we also lookup the pagecache
3976 * page now as it is used to determine if a reservation has been
3977 * consumed.
3978 */
3979 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3980 if (vma_needs_reservation(h, vma, haddr) < 0) {
3981 ret = VM_FAULT_OOM;
3982 goto out_mutex;
3983 }
3984 /* Just decrements count, does not deallocate */
3985 vma_end_reservation(h, vma, haddr);
3986
3987 if (!(vma->vm_flags & VM_MAYSHARE))
3988 pagecache_page = hugetlbfs_pagecache_page(h,
3989 vma, haddr);
3990 }
3991
3992 ptl = huge_pte_lock(h, mm, ptep);
3993
3994 /* Check for a racing update before calling hugetlb_cow */
3995 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3996 goto out_ptl;
3997
3998 /*
3999 * hugetlb_cow() requires page locks of pte_page(entry) and
4000 * pagecache_page, so here we need take the former one
4001 * when page != pagecache_page or !pagecache_page.
4002 */
4003 page = pte_page(entry);
4004 if (page != pagecache_page)
4005 if (!trylock_page(page)) {
4006 need_wait_lock = 1;
4007 goto out_ptl;
4008 }
4009
4010 get_page(page);
4011
4012 if (flags & FAULT_FLAG_WRITE) {
4013 if (!huge_pte_write(entry)) {
4014 ret = hugetlb_cow(mm, vma, address, ptep,
4015 pagecache_page, ptl);
4016 goto out_put_page;
4017 }
4018 entry = huge_pte_mkdirty(entry);
4019 }
4020 entry = pte_mkyoung(entry);
4021 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4022 flags & FAULT_FLAG_WRITE))
4023 update_mmu_cache(vma, haddr, ptep);
4024 out_put_page:
4025 if (page != pagecache_page)
4026 unlock_page(page);
4027 put_page(page);
4028 out_ptl:
4029 spin_unlock(ptl);
4030
4031 if (pagecache_page) {
4032 unlock_page(pagecache_page);
4033 put_page(pagecache_page);
4034 }
4035 out_mutex:
4036 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4037 /*
4038 * Generally it's safe to hold refcount during waiting page lock. But
4039 * here we just wait to defer the next page fault to avoid busy loop and
4040 * the page is not used after unlocked before returning from the current
4041 * page fault. So we are safe from accessing freed page, even if we wait
4042 * here without taking refcount.
4043 */
4044 if (need_wait_lock)
4045 wait_on_page_locked(page);
4046 return ret;
4047 }
4048
4049 /*
4050 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4051 * modifications for huge pages.
4052 */
4053 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4054 pte_t *dst_pte,
4055 struct vm_area_struct *dst_vma,
4056 unsigned long dst_addr,
4057 unsigned long src_addr,
4058 struct page **pagep)
4059 {
4060 struct address_space *mapping;
4061 pgoff_t idx;
4062 unsigned long size;
4063 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4064 struct hstate *h = hstate_vma(dst_vma);
4065 pte_t _dst_pte;
4066 spinlock_t *ptl;
4067 int ret;
4068 struct page *page;
4069
4070 if (!*pagep) {
4071 ret = -ENOMEM;
4072 page = alloc_huge_page(dst_vma, dst_addr, 0);
4073 if (IS_ERR(page))
4074 goto out;
4075
4076 ret = copy_huge_page_from_user(page,
4077 (const void __user *) src_addr,
4078 pages_per_huge_page(h), false);
4079
4080 /* fallback to copy_from_user outside mmap_sem */
4081 if (unlikely(ret)) {
4082 ret = -ENOENT;
4083 *pagep = page;
4084 /* don't free the page */
4085 goto out;
4086 }
4087 } else {
4088 page = *pagep;
4089 *pagep = NULL;
4090 }
4091
4092 /*
4093 * The memory barrier inside __SetPageUptodate makes sure that
4094 * preceding stores to the page contents become visible before
4095 * the set_pte_at() write.
4096 */
4097 __SetPageUptodate(page);
4098 set_page_huge_active(page);
4099
4100 mapping = dst_vma->vm_file->f_mapping;
4101 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4102
4103 /*
4104 * If shared, add to page cache
4105 */
4106 if (vm_shared) {
4107 size = i_size_read(mapping->host) >> huge_page_shift(h);
4108 ret = -EFAULT;
4109 if (idx >= size)
4110 goto out_release_nounlock;
4111
4112 /*
4113 * Serialization between remove_inode_hugepages() and
4114 * huge_add_to_page_cache() below happens through the
4115 * hugetlb_fault_mutex_table that here must be hold by
4116 * the caller.
4117 */
4118 ret = huge_add_to_page_cache(page, mapping, idx);
4119 if (ret)
4120 goto out_release_nounlock;
4121 }
4122
4123 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4124 spin_lock(ptl);
4125
4126 /*
4127 * Recheck the i_size after holding PT lock to make sure not
4128 * to leave any page mapped (as page_mapped()) beyond the end
4129 * of the i_size (remove_inode_hugepages() is strict about
4130 * enforcing that). If we bail out here, we'll also leave a
4131 * page in the radix tree in the vm_shared case beyond the end
4132 * of the i_size, but remove_inode_hugepages() will take care
4133 * of it as soon as we drop the hugetlb_fault_mutex_table.
4134 */
4135 size = i_size_read(mapping->host) >> huge_page_shift(h);
4136 ret = -EFAULT;
4137 if (idx >= size)
4138 goto out_release_unlock;
4139
4140 ret = -EEXIST;
4141 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4142 goto out_release_unlock;
4143
4144 if (vm_shared) {
4145 page_dup_rmap(page, true);
4146 } else {
4147 ClearPagePrivate(page);
4148 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4149 }
4150
4151 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4152 if (dst_vma->vm_flags & VM_WRITE)
4153 _dst_pte = huge_pte_mkdirty(_dst_pte);
4154 _dst_pte = pte_mkyoung(_dst_pte);
4155
4156 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4157
4158 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4159 dst_vma->vm_flags & VM_WRITE);
4160 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4161
4162 /* No need to invalidate - it was non-present before */
4163 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4164
4165 spin_unlock(ptl);
4166 if (vm_shared)
4167 unlock_page(page);
4168 ret = 0;
4169 out:
4170 return ret;
4171 out_release_unlock:
4172 spin_unlock(ptl);
4173 if (vm_shared)
4174 unlock_page(page);
4175 out_release_nounlock:
4176 put_page(page);
4177 goto out;
4178 }
4179
4180 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4181 struct page **pages, struct vm_area_struct **vmas,
4182 unsigned long *position, unsigned long *nr_pages,
4183 long i, unsigned int flags, int *nonblocking)
4184 {
4185 unsigned long pfn_offset;
4186 unsigned long vaddr = *position;
4187 unsigned long remainder = *nr_pages;
4188 struct hstate *h = hstate_vma(vma);
4189 int err = -EFAULT;
4190
4191 while (vaddr < vma->vm_end && remainder) {
4192 pte_t *pte;
4193 spinlock_t *ptl = NULL;
4194 int absent;
4195 struct page *page;
4196
4197 /*
4198 * If we have a pending SIGKILL, don't keep faulting pages and
4199 * potentially allocating memory.
4200 */
4201 if (fatal_signal_pending(current)) {
4202 remainder = 0;
4203 break;
4204 }
4205
4206 /*
4207 * Some archs (sparc64, sh*) have multiple pte_ts to
4208 * each hugepage. We have to make sure we get the
4209 * first, for the page indexing below to work.
4210 *
4211 * Note that page table lock is not held when pte is null.
4212 */
4213 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4214 huge_page_size(h));
4215 if (pte)
4216 ptl = huge_pte_lock(h, mm, pte);
4217 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4218
4219 /*
4220 * When coredumping, it suits get_dump_page if we just return
4221 * an error where there's an empty slot with no huge pagecache
4222 * to back it. This way, we avoid allocating a hugepage, and
4223 * the sparse dumpfile avoids allocating disk blocks, but its
4224 * huge holes still show up with zeroes where they need to be.
4225 */
4226 if (absent && (flags & FOLL_DUMP) &&
4227 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4228 if (pte)
4229 spin_unlock(ptl);
4230 remainder = 0;
4231 break;
4232 }
4233
4234 /*
4235 * We need call hugetlb_fault for both hugepages under migration
4236 * (in which case hugetlb_fault waits for the migration,) and
4237 * hwpoisoned hugepages (in which case we need to prevent the
4238 * caller from accessing to them.) In order to do this, we use
4239 * here is_swap_pte instead of is_hugetlb_entry_migration and
4240 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4241 * both cases, and because we can't follow correct pages
4242 * directly from any kind of swap entries.
4243 */
4244 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4245 ((flags & FOLL_WRITE) &&
4246 !huge_pte_write(huge_ptep_get(pte)))) {
4247 vm_fault_t ret;
4248 unsigned int fault_flags = 0;
4249
4250 if (pte)
4251 spin_unlock(ptl);
4252 if (flags & FOLL_WRITE)
4253 fault_flags |= FAULT_FLAG_WRITE;
4254 if (nonblocking)
4255 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4256 if (flags & FOLL_NOWAIT)
4257 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4258 FAULT_FLAG_RETRY_NOWAIT;
4259 if (flags & FOLL_TRIED) {
4260 VM_WARN_ON_ONCE(fault_flags &
4261 FAULT_FLAG_ALLOW_RETRY);
4262 fault_flags |= FAULT_FLAG_TRIED;
4263 }
4264 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4265 if (ret & VM_FAULT_ERROR) {
4266 err = vm_fault_to_errno(ret, flags);
4267 remainder = 0;
4268 break;
4269 }
4270 if (ret & VM_FAULT_RETRY) {
4271 if (nonblocking)
4272 *nonblocking = 0;
4273 *nr_pages = 0;
4274 /*
4275 * VM_FAULT_RETRY must not return an
4276 * error, it will return zero
4277 * instead.
4278 *
4279 * No need to update "position" as the
4280 * caller will not check it after
4281 * *nr_pages is set to 0.
4282 */
4283 return i;
4284 }
4285 continue;
4286 }
4287
4288 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4289 page = pte_page(huge_ptep_get(pte));
4290 same_page:
4291 if (pages) {
4292 pages[i] = mem_map_offset(page, pfn_offset);
4293 get_page(pages[i]);
4294 }
4295
4296 if (vmas)
4297 vmas[i] = vma;
4298
4299 vaddr += PAGE_SIZE;
4300 ++pfn_offset;
4301 --remainder;
4302 ++i;
4303 if (vaddr < vma->vm_end && remainder &&
4304 pfn_offset < pages_per_huge_page(h)) {
4305 /*
4306 * We use pfn_offset to avoid touching the pageframes
4307 * of this compound page.
4308 */
4309 goto same_page;
4310 }
4311 spin_unlock(ptl);
4312 }
4313 *nr_pages = remainder;
4314 /*
4315 * setting position is actually required only if remainder is
4316 * not zero but it's faster not to add a "if (remainder)"
4317 * branch.
4318 */
4319 *position = vaddr;
4320
4321 return i ? i : err;
4322 }
4323
4324 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4325 /*
4326 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4327 * implement this.
4328 */
4329 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4330 #endif
4331
4332 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4333 unsigned long address, unsigned long end, pgprot_t newprot)
4334 {
4335 struct mm_struct *mm = vma->vm_mm;
4336 unsigned long start = address;
4337 pte_t *ptep;
4338 pte_t pte;
4339 struct hstate *h = hstate_vma(vma);
4340 unsigned long pages = 0;
4341 bool shared_pmd = false;
4342 struct mmu_notifier_range range;
4343
4344 /*
4345 * In the case of shared PMDs, the area to flush could be beyond
4346 * start/end. Set range.start/range.end to cover the maximum possible
4347 * range if PMD sharing is possible.
4348 */
4349 mmu_notifier_range_init(&range, mm, start, end);
4350 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4351
4352 BUG_ON(address >= end);
4353 flush_cache_range(vma, range.start, range.end);
4354
4355 mmu_notifier_invalidate_range_start(&range);
4356 i_mmap_lock_write(vma->vm_file->f_mapping);
4357 for (; address < end; address += huge_page_size(h)) {
4358 spinlock_t *ptl;
4359 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4360 if (!ptep)
4361 continue;
4362 ptl = huge_pte_lock(h, mm, ptep);
4363 if (huge_pmd_unshare(mm, &address, ptep)) {
4364 pages++;
4365 spin_unlock(ptl);
4366 shared_pmd = true;
4367 continue;
4368 }
4369 pte = huge_ptep_get(ptep);
4370 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4371 spin_unlock(ptl);
4372 continue;
4373 }
4374 if (unlikely(is_hugetlb_entry_migration(pte))) {
4375 swp_entry_t entry = pte_to_swp_entry(pte);
4376
4377 if (is_write_migration_entry(entry)) {
4378 pte_t newpte;
4379
4380 make_migration_entry_read(&entry);
4381 newpte = swp_entry_to_pte(entry);
4382 set_huge_swap_pte_at(mm, address, ptep,
4383 newpte, huge_page_size(h));
4384 pages++;
4385 }
4386 spin_unlock(ptl);
4387 continue;
4388 }
4389 if (!huge_pte_none(pte)) {
4390 pte = huge_ptep_get_and_clear(mm, address, ptep);
4391 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4392 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4393 set_huge_pte_at(mm, address, ptep, pte);
4394 pages++;
4395 }
4396 spin_unlock(ptl);
4397 }
4398 /*
4399 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4400 * may have cleared our pud entry and done put_page on the page table:
4401 * once we release i_mmap_rwsem, another task can do the final put_page
4402 * and that page table be reused and filled with junk. If we actually
4403 * did unshare a page of pmds, flush the range corresponding to the pud.
4404 */
4405 if (shared_pmd)
4406 flush_hugetlb_tlb_range(vma, range.start, range.end);
4407 else
4408 flush_hugetlb_tlb_range(vma, start, end);
4409 /*
4410 * No need to call mmu_notifier_invalidate_range() we are downgrading
4411 * page table protection not changing it to point to a new page.
4412 *
4413 * See Documentation/vm/mmu_notifier.rst
4414 */
4415 i_mmap_unlock_write(vma->vm_file->f_mapping);
4416 mmu_notifier_invalidate_range_end(&range);
4417
4418 return pages << h->order;
4419 }
4420
4421 int hugetlb_reserve_pages(struct inode *inode,
4422 long from, long to,
4423 struct vm_area_struct *vma,
4424 vm_flags_t vm_flags)
4425 {
4426 long ret, chg;
4427 struct hstate *h = hstate_inode(inode);
4428 struct hugepage_subpool *spool = subpool_inode(inode);
4429 struct resv_map *resv_map;
4430 long gbl_reserve;
4431
4432 /* This should never happen */
4433 if (from > to) {
4434 VM_WARN(1, "%s called with a negative range\n", __func__);
4435 return -EINVAL;
4436 }
4437
4438 /*
4439 * Only apply hugepage reservation if asked. At fault time, an
4440 * attempt will be made for VM_NORESERVE to allocate a page
4441 * without using reserves
4442 */
4443 if (vm_flags & VM_NORESERVE)
4444 return 0;
4445
4446 /*
4447 * Shared mappings base their reservation on the number of pages that
4448 * are already allocated on behalf of the file. Private mappings need
4449 * to reserve the full area even if read-only as mprotect() may be
4450 * called to make the mapping read-write. Assume !vma is a shm mapping
4451 */
4452 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4453 resv_map = inode_resv_map(inode);
4454
4455 chg = region_chg(resv_map, from, to);
4456
4457 } else {
4458 resv_map = resv_map_alloc();
4459 if (!resv_map)
4460 return -ENOMEM;
4461
4462 chg = to - from;
4463
4464 set_vma_resv_map(vma, resv_map);
4465 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4466 }
4467
4468 if (chg < 0) {
4469 ret = chg;
4470 goto out_err;
4471 }
4472
4473 /*
4474 * There must be enough pages in the subpool for the mapping. If
4475 * the subpool has a minimum size, there may be some global
4476 * reservations already in place (gbl_reserve).
4477 */
4478 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4479 if (gbl_reserve < 0) {
4480 ret = -ENOSPC;
4481 goto out_err;
4482 }
4483
4484 /*
4485 * Check enough hugepages are available for the reservation.
4486 * Hand the pages back to the subpool if there are not
4487 */
4488 ret = hugetlb_acct_memory(h, gbl_reserve);
4489 if (ret < 0) {
4490 /* put back original number of pages, chg */
4491 (void)hugepage_subpool_put_pages(spool, chg);
4492 goto out_err;
4493 }
4494
4495 /*
4496 * Account for the reservations made. Shared mappings record regions
4497 * that have reservations as they are shared by multiple VMAs.
4498 * When the last VMA disappears, the region map says how much
4499 * the reservation was and the page cache tells how much of
4500 * the reservation was consumed. Private mappings are per-VMA and
4501 * only the consumed reservations are tracked. When the VMA
4502 * disappears, the original reservation is the VMA size and the
4503 * consumed reservations are stored in the map. Hence, nothing
4504 * else has to be done for private mappings here
4505 */
4506 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4507 long add = region_add(resv_map, from, to);
4508
4509 if (unlikely(chg > add)) {
4510 /*
4511 * pages in this range were added to the reserve
4512 * map between region_chg and region_add. This
4513 * indicates a race with alloc_huge_page. Adjust
4514 * the subpool and reserve counts modified above
4515 * based on the difference.
4516 */
4517 long rsv_adjust;
4518
4519 rsv_adjust = hugepage_subpool_put_pages(spool,
4520 chg - add);
4521 hugetlb_acct_memory(h, -rsv_adjust);
4522 }
4523 }
4524 return 0;
4525 out_err:
4526 if (!vma || vma->vm_flags & VM_MAYSHARE)
4527 /* Don't call region_abort if region_chg failed */
4528 if (chg >= 0)
4529 region_abort(resv_map, from, to);
4530 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4531 kref_put(&resv_map->refs, resv_map_release);
4532 return ret;
4533 }
4534
4535 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4536 long freed)
4537 {
4538 struct hstate *h = hstate_inode(inode);
4539 struct resv_map *resv_map = inode_resv_map(inode);
4540 long chg = 0;
4541 struct hugepage_subpool *spool = subpool_inode(inode);
4542 long gbl_reserve;
4543
4544 if (resv_map) {
4545 chg = region_del(resv_map, start, end);
4546 /*
4547 * region_del() can fail in the rare case where a region
4548 * must be split and another region descriptor can not be
4549 * allocated. If end == LONG_MAX, it will not fail.
4550 */
4551 if (chg < 0)
4552 return chg;
4553 }
4554
4555 spin_lock(&inode->i_lock);
4556 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4557 spin_unlock(&inode->i_lock);
4558
4559 /*
4560 * If the subpool has a minimum size, the number of global
4561 * reservations to be released may be adjusted.
4562 */
4563 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4564 hugetlb_acct_memory(h, -gbl_reserve);
4565
4566 return 0;
4567 }
4568
4569 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4570 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4571 struct vm_area_struct *vma,
4572 unsigned long addr, pgoff_t idx)
4573 {
4574 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4575 svma->vm_start;
4576 unsigned long sbase = saddr & PUD_MASK;
4577 unsigned long s_end = sbase + PUD_SIZE;
4578
4579 /* Allow segments to share if only one is marked locked */
4580 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4581 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4582
4583 /*
4584 * match the virtual addresses, permission and the alignment of the
4585 * page table page.
4586 */
4587 if (pmd_index(addr) != pmd_index(saddr) ||
4588 vm_flags != svm_flags ||
4589 sbase < svma->vm_start || svma->vm_end < s_end)
4590 return 0;
4591
4592 return saddr;
4593 }
4594
4595 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4596 {
4597 unsigned long base = addr & PUD_MASK;
4598 unsigned long end = base + PUD_SIZE;
4599
4600 /*
4601 * check on proper vm_flags and page table alignment
4602 */
4603 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4604 return true;
4605 return false;
4606 }
4607
4608 /*
4609 * Determine if start,end range within vma could be mapped by shared pmd.
4610 * If yes, adjust start and end to cover range associated with possible
4611 * shared pmd mappings.
4612 */
4613 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4614 unsigned long *start, unsigned long *end)
4615 {
4616 unsigned long check_addr = *start;
4617
4618 if (!(vma->vm_flags & VM_MAYSHARE))
4619 return;
4620
4621 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4622 unsigned long a_start = check_addr & PUD_MASK;
4623 unsigned long a_end = a_start + PUD_SIZE;
4624
4625 /*
4626 * If sharing is possible, adjust start/end if necessary.
4627 */
4628 if (range_in_vma(vma, a_start, a_end)) {
4629 if (a_start < *start)
4630 *start = a_start;
4631 if (a_end > *end)
4632 *end = a_end;
4633 }
4634 }
4635 }
4636
4637 /*
4638 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4639 * and returns the corresponding pte. While this is not necessary for the
4640 * !shared pmd case because we can allocate the pmd later as well, it makes the
4641 * code much cleaner. pmd allocation is essential for the shared case because
4642 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4643 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4644 * bad pmd for sharing.
4645 */
4646 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4647 {
4648 struct vm_area_struct *vma = find_vma(mm, addr);
4649 struct address_space *mapping = vma->vm_file->f_mapping;
4650 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4651 vma->vm_pgoff;
4652 struct vm_area_struct *svma;
4653 unsigned long saddr;
4654 pte_t *spte = NULL;
4655 pte_t *pte;
4656 spinlock_t *ptl;
4657
4658 if (!vma_shareable(vma, addr))
4659 return (pte_t *)pmd_alloc(mm, pud, addr);
4660
4661 i_mmap_lock_write(mapping);
4662 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4663 if (svma == vma)
4664 continue;
4665
4666 saddr = page_table_shareable(svma, vma, addr, idx);
4667 if (saddr) {
4668 spte = huge_pte_offset(svma->vm_mm, saddr,
4669 vma_mmu_pagesize(svma));
4670 if (spte) {
4671 get_page(virt_to_page(spte));
4672 break;
4673 }
4674 }
4675 }
4676
4677 if (!spte)
4678 goto out;
4679
4680 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4681 if (pud_none(*pud)) {
4682 pud_populate(mm, pud,
4683 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4684 mm_inc_nr_pmds(mm);
4685 } else {
4686 put_page(virt_to_page(spte));
4687 }
4688 spin_unlock(ptl);
4689 out:
4690 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4691 i_mmap_unlock_write(mapping);
4692 return pte;
4693 }
4694
4695 /*
4696 * unmap huge page backed by shared pte.
4697 *
4698 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4699 * indicated by page_count > 1, unmap is achieved by clearing pud and
4700 * decrementing the ref count. If count == 1, the pte page is not shared.
4701 *
4702 * called with page table lock held.
4703 *
4704 * returns: 1 successfully unmapped a shared pte page
4705 * 0 the underlying pte page is not shared, or it is the last user
4706 */
4707 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4708 {
4709 pgd_t *pgd = pgd_offset(mm, *addr);
4710 p4d_t *p4d = p4d_offset(pgd, *addr);
4711 pud_t *pud = pud_offset(p4d, *addr);
4712
4713 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4714 if (page_count(virt_to_page(ptep)) == 1)
4715 return 0;
4716
4717 pud_clear(pud);
4718 put_page(virt_to_page(ptep));
4719 mm_dec_nr_pmds(mm);
4720 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4721 return 1;
4722 }
4723 #define want_pmd_share() (1)
4724 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4725 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4726 {
4727 return NULL;
4728 }
4729
4730 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4731 {
4732 return 0;
4733 }
4734
4735 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4736 unsigned long *start, unsigned long *end)
4737 {
4738 }
4739 #define want_pmd_share() (0)
4740 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4741
4742 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4743 pte_t *huge_pte_alloc(struct mm_struct *mm,
4744 unsigned long addr, unsigned long sz)
4745 {
4746 pgd_t *pgd;
4747 p4d_t *p4d;
4748 pud_t *pud;
4749 pte_t *pte = NULL;
4750
4751 pgd = pgd_offset(mm, addr);
4752 p4d = p4d_alloc(mm, pgd, addr);
4753 if (!p4d)
4754 return NULL;
4755 pud = pud_alloc(mm, p4d, addr);
4756 if (pud) {
4757 if (sz == PUD_SIZE) {
4758 pte = (pte_t *)pud;
4759 } else {
4760 BUG_ON(sz != PMD_SIZE);
4761 if (want_pmd_share() && pud_none(*pud))
4762 pte = huge_pmd_share(mm, addr, pud);
4763 else
4764 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4765 }
4766 }
4767 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4768
4769 return pte;
4770 }
4771
4772 /*
4773 * huge_pte_offset() - Walk the page table to resolve the hugepage
4774 * entry at address @addr
4775 *
4776 * Return: Pointer to page table or swap entry (PUD or PMD) for
4777 * address @addr, or NULL if a p*d_none() entry is encountered and the
4778 * size @sz doesn't match the hugepage size at this level of the page
4779 * table.
4780 */
4781 pte_t *huge_pte_offset(struct mm_struct *mm,
4782 unsigned long addr, unsigned long sz)
4783 {
4784 pgd_t *pgd;
4785 p4d_t *p4d;
4786 pud_t *pud;
4787 pmd_t *pmd;
4788
4789 pgd = pgd_offset(mm, addr);
4790 if (!pgd_present(*pgd))
4791 return NULL;
4792 p4d = p4d_offset(pgd, addr);
4793 if (!p4d_present(*p4d))
4794 return NULL;
4795
4796 pud = pud_offset(p4d, addr);
4797 if (sz != PUD_SIZE && pud_none(*pud))
4798 return NULL;
4799 /* hugepage or swap? */
4800 if (pud_huge(*pud) || !pud_present(*pud))
4801 return (pte_t *)pud;
4802
4803 pmd = pmd_offset(pud, addr);
4804 if (sz != PMD_SIZE && pmd_none(*pmd))
4805 return NULL;
4806 /* hugepage or swap? */
4807 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4808 return (pte_t *)pmd;
4809
4810 return NULL;
4811 }
4812
4813 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4814
4815 /*
4816 * These functions are overwritable if your architecture needs its own
4817 * behavior.
4818 */
4819 struct page * __weak
4820 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4821 int write)
4822 {
4823 return ERR_PTR(-EINVAL);
4824 }
4825
4826 struct page * __weak
4827 follow_huge_pd(struct vm_area_struct *vma,
4828 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4829 {
4830 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4831 return NULL;
4832 }
4833
4834 struct page * __weak
4835 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4836 pmd_t *pmd, int flags)
4837 {
4838 struct page *page = NULL;
4839 spinlock_t *ptl;
4840 pte_t pte;
4841 retry:
4842 ptl = pmd_lockptr(mm, pmd);
4843 spin_lock(ptl);
4844 /*
4845 * make sure that the address range covered by this pmd is not
4846 * unmapped from other threads.
4847 */
4848 if (!pmd_huge(*pmd))
4849 goto out;
4850 pte = huge_ptep_get((pte_t *)pmd);
4851 if (pte_present(pte)) {
4852 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4853 if (flags & FOLL_GET)
4854 get_page(page);
4855 } else {
4856 if (is_hugetlb_entry_migration(pte)) {
4857 spin_unlock(ptl);
4858 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4859 goto retry;
4860 }
4861 /*
4862 * hwpoisoned entry is treated as no_page_table in
4863 * follow_page_mask().
4864 */
4865 }
4866 out:
4867 spin_unlock(ptl);
4868 return page;
4869 }
4870
4871 struct page * __weak
4872 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4873 pud_t *pud, int flags)
4874 {
4875 if (flags & FOLL_GET)
4876 return NULL;
4877
4878 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4879 }
4880
4881 struct page * __weak
4882 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4883 {
4884 if (flags & FOLL_GET)
4885 return NULL;
4886
4887 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4888 }
4889
4890 bool isolate_huge_page(struct page *page, struct list_head *list)
4891 {
4892 bool ret = true;
4893
4894 VM_BUG_ON_PAGE(!PageHead(page), page);
4895 spin_lock(&hugetlb_lock);
4896 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4897 ret = false;
4898 goto unlock;
4899 }
4900 clear_page_huge_active(page);
4901 list_move_tail(&page->lru, list);
4902 unlock:
4903 spin_unlock(&hugetlb_lock);
4904 return ret;
4905 }
4906
4907 void putback_active_hugepage(struct page *page)
4908 {
4909 VM_BUG_ON_PAGE(!PageHead(page), page);
4910 spin_lock(&hugetlb_lock);
4911 set_page_huge_active(page);
4912 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4913 spin_unlock(&hugetlb_lock);
4914 put_page(page);
4915 }
4916
4917 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4918 {
4919 struct hstate *h = page_hstate(oldpage);
4920
4921 hugetlb_cgroup_migrate(oldpage, newpage);
4922 set_page_owner_migrate_reason(newpage, reason);
4923
4924 /*
4925 * transfer temporary state of the new huge page. This is
4926 * reverse to other transitions because the newpage is going to
4927 * be final while the old one will be freed so it takes over
4928 * the temporary status.
4929 *
4930 * Also note that we have to transfer the per-node surplus state
4931 * here as well otherwise the global surplus count will not match
4932 * the per-node's.
4933 */
4934 if (PageHugeTemporary(newpage)) {
4935 int old_nid = page_to_nid(oldpage);
4936 int new_nid = page_to_nid(newpage);
4937
4938 SetPageHugeTemporary(oldpage);
4939 ClearPageHugeTemporary(newpage);
4940
4941 spin_lock(&hugetlb_lock);
4942 if (h->surplus_huge_pages_node[old_nid]) {
4943 h->surplus_huge_pages_node[old_nid]--;
4944 h->surplus_huge_pages_node[new_nid]++;
4945 }
4946 spin_unlock(&hugetlb_lock);
4947 }
4948 }