]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - mm/hugetlb.c
hugetlb: add generic definition of NUMA_NO_NODE
[thirdparty/kernel/stable.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/seq_file.h>
11 #include <linux/sysctl.h>
12 #include <linux/highmem.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/nodemask.h>
15 #include <linux/pagemap.h>
16 #include <linux/mempolicy.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21
22 #include <asm/page.h>
23 #include <asm/pgtable.h>
24 #include <asm/io.h>
25
26 #include <linux/hugetlb.h>
27 #include "internal.h"
28
29 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 static int max_hstate;
34 unsigned int default_hstate_idx;
35 struct hstate hstates[HUGE_MAX_HSTATE];
36
37 __initdata LIST_HEAD(huge_boot_pages);
38
39 /* for command line parsing */
40 static struct hstate * __initdata parsed_hstate;
41 static unsigned long __initdata default_hstate_max_huge_pages;
42 static unsigned long __initdata default_hstate_size;
43
44 #define for_each_hstate(h) \
45 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46
47 /*
48 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
49 */
50 static DEFINE_SPINLOCK(hugetlb_lock);
51
52 /*
53 * Region tracking -- allows tracking of reservations and instantiated pages
54 * across the pages in a mapping.
55 *
56 * The region data structures are protected by a combination of the mmap_sem
57 * and the hugetlb_instantion_mutex. To access or modify a region the caller
58 * must either hold the mmap_sem for write, or the mmap_sem for read and
59 * the hugetlb_instantiation mutex:
60 *
61 * down_write(&mm->mmap_sem);
62 * or
63 * down_read(&mm->mmap_sem);
64 * mutex_lock(&hugetlb_instantiation_mutex);
65 */
66 struct file_region {
67 struct list_head link;
68 long from;
69 long to;
70 };
71
72 static long region_add(struct list_head *head, long f, long t)
73 {
74 struct file_region *rg, *nrg, *trg;
75
76 /* Locate the region we are either in or before. */
77 list_for_each_entry(rg, head, link)
78 if (f <= rg->to)
79 break;
80
81 /* Round our left edge to the current segment if it encloses us. */
82 if (f > rg->from)
83 f = rg->from;
84
85 /* Check for and consume any regions we now overlap with. */
86 nrg = rg;
87 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
88 if (&rg->link == head)
89 break;
90 if (rg->from > t)
91 break;
92
93 /* If this area reaches higher then extend our area to
94 * include it completely. If this is not the first area
95 * which we intend to reuse, free it. */
96 if (rg->to > t)
97 t = rg->to;
98 if (rg != nrg) {
99 list_del(&rg->link);
100 kfree(rg);
101 }
102 }
103 nrg->from = f;
104 nrg->to = t;
105 return 0;
106 }
107
108 static long region_chg(struct list_head *head, long f, long t)
109 {
110 struct file_region *rg, *nrg;
111 long chg = 0;
112
113 /* Locate the region we are before or in. */
114 list_for_each_entry(rg, head, link)
115 if (f <= rg->to)
116 break;
117
118 /* If we are below the current region then a new region is required.
119 * Subtle, allocate a new region at the position but make it zero
120 * size such that we can guarantee to record the reservation. */
121 if (&rg->link == head || t < rg->from) {
122 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
123 if (!nrg)
124 return -ENOMEM;
125 nrg->from = f;
126 nrg->to = f;
127 INIT_LIST_HEAD(&nrg->link);
128 list_add(&nrg->link, rg->link.prev);
129
130 return t - f;
131 }
132
133 /* Round our left edge to the current segment if it encloses us. */
134 if (f > rg->from)
135 f = rg->from;
136 chg = t - f;
137
138 /* Check for and consume any regions we now overlap with. */
139 list_for_each_entry(rg, rg->link.prev, link) {
140 if (&rg->link == head)
141 break;
142 if (rg->from > t)
143 return chg;
144
145 /* We overlap with this area, if it extends futher than
146 * us then we must extend ourselves. Account for its
147 * existing reservation. */
148 if (rg->to > t) {
149 chg += rg->to - t;
150 t = rg->to;
151 }
152 chg -= rg->to - rg->from;
153 }
154 return chg;
155 }
156
157 static long region_truncate(struct list_head *head, long end)
158 {
159 struct file_region *rg, *trg;
160 long chg = 0;
161
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (end <= rg->to)
165 break;
166 if (&rg->link == head)
167 return 0;
168
169 /* If we are in the middle of a region then adjust it. */
170 if (end > rg->from) {
171 chg = rg->to - end;
172 rg->to = end;
173 rg = list_entry(rg->link.next, typeof(*rg), link);
174 }
175
176 /* Drop any remaining regions. */
177 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
178 if (&rg->link == head)
179 break;
180 chg += rg->to - rg->from;
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 return chg;
185 }
186
187 static long region_count(struct list_head *head, long f, long t)
188 {
189 struct file_region *rg;
190 long chg = 0;
191
192 /* Locate each segment we overlap with, and count that overlap. */
193 list_for_each_entry(rg, head, link) {
194 int seg_from;
195 int seg_to;
196
197 if (rg->to <= f)
198 continue;
199 if (rg->from >= t)
200 break;
201
202 seg_from = max(rg->from, f);
203 seg_to = min(rg->to, t);
204
205 chg += seg_to - seg_from;
206 }
207
208 return chg;
209 }
210
211 /*
212 * Convert the address within this vma to the page offset within
213 * the mapping, in pagecache page units; huge pages here.
214 */
215 static pgoff_t vma_hugecache_offset(struct hstate *h,
216 struct vm_area_struct *vma, unsigned long address)
217 {
218 return ((address - vma->vm_start) >> huge_page_shift(h)) +
219 (vma->vm_pgoff >> huge_page_order(h));
220 }
221
222 /*
223 * Return the size of the pages allocated when backing a VMA. In the majority
224 * cases this will be same size as used by the page table entries.
225 */
226 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
227 {
228 struct hstate *hstate;
229
230 if (!is_vm_hugetlb_page(vma))
231 return PAGE_SIZE;
232
233 hstate = hstate_vma(vma);
234
235 return 1UL << (hstate->order + PAGE_SHIFT);
236 }
237 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238
239 /*
240 * Return the page size being used by the MMU to back a VMA. In the majority
241 * of cases, the page size used by the kernel matches the MMU size. On
242 * architectures where it differs, an architecture-specific version of this
243 * function is required.
244 */
245 #ifndef vma_mmu_pagesize
246 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
247 {
248 return vma_kernel_pagesize(vma);
249 }
250 #endif
251
252 /*
253 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
254 * bits of the reservation map pointer, which are always clear due to
255 * alignment.
256 */
257 #define HPAGE_RESV_OWNER (1UL << 0)
258 #define HPAGE_RESV_UNMAPPED (1UL << 1)
259 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260
261 /*
262 * These helpers are used to track how many pages are reserved for
263 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
264 * is guaranteed to have their future faults succeed.
265 *
266 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
267 * the reserve counters are updated with the hugetlb_lock held. It is safe
268 * to reset the VMA at fork() time as it is not in use yet and there is no
269 * chance of the global counters getting corrupted as a result of the values.
270 *
271 * The private mapping reservation is represented in a subtly different
272 * manner to a shared mapping. A shared mapping has a region map associated
273 * with the underlying file, this region map represents the backing file
274 * pages which have ever had a reservation assigned which this persists even
275 * after the page is instantiated. A private mapping has a region map
276 * associated with the original mmap which is attached to all VMAs which
277 * reference it, this region map represents those offsets which have consumed
278 * reservation ie. where pages have been instantiated.
279 */
280 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
281 {
282 return (unsigned long)vma->vm_private_data;
283 }
284
285 static void set_vma_private_data(struct vm_area_struct *vma,
286 unsigned long value)
287 {
288 vma->vm_private_data = (void *)value;
289 }
290
291 struct resv_map {
292 struct kref refs;
293 struct list_head regions;
294 };
295
296 static struct resv_map *resv_map_alloc(void)
297 {
298 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
299 if (!resv_map)
300 return NULL;
301
302 kref_init(&resv_map->refs);
303 INIT_LIST_HEAD(&resv_map->regions);
304
305 return resv_map;
306 }
307
308 static void resv_map_release(struct kref *ref)
309 {
310 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
311
312 /* Clear out any active regions before we release the map. */
313 region_truncate(&resv_map->regions, 0);
314 kfree(resv_map);
315 }
316
317 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 {
319 VM_BUG_ON(!is_vm_hugetlb_page(vma));
320 if (!(vma->vm_flags & VM_MAYSHARE))
321 return (struct resv_map *)(get_vma_private_data(vma) &
322 ~HPAGE_RESV_MASK);
323 return NULL;
324 }
325
326 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 {
328 VM_BUG_ON(!is_vm_hugetlb_page(vma));
329 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330
331 set_vma_private_data(vma, (get_vma_private_data(vma) &
332 HPAGE_RESV_MASK) | (unsigned long)map);
333 }
334
335 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
336 {
337 VM_BUG_ON(!is_vm_hugetlb_page(vma));
338 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339
340 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 }
342
343 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
344 {
345 VM_BUG_ON(!is_vm_hugetlb_page(vma));
346
347 return (get_vma_private_data(vma) & flag) != 0;
348 }
349
350 /* Decrement the reserved pages in the hugepage pool by one */
351 static void decrement_hugepage_resv_vma(struct hstate *h,
352 struct vm_area_struct *vma)
353 {
354 if (vma->vm_flags & VM_NORESERVE)
355 return;
356
357 if (vma->vm_flags & VM_MAYSHARE) {
358 /* Shared mappings always use reserves */
359 h->resv_huge_pages--;
360 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361 /*
362 * Only the process that called mmap() has reserves for
363 * private mappings.
364 */
365 h->resv_huge_pages--;
366 }
367 }
368
369 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
371 {
372 VM_BUG_ON(!is_vm_hugetlb_page(vma));
373 if (!(vma->vm_flags & VM_MAYSHARE))
374 vma->vm_private_data = (void *)0;
375 }
376
377 /* Returns true if the VMA has associated reserve pages */
378 static int vma_has_reserves(struct vm_area_struct *vma)
379 {
380 if (vma->vm_flags & VM_MAYSHARE)
381 return 1;
382 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
383 return 1;
384 return 0;
385 }
386
387 static void clear_gigantic_page(struct page *page,
388 unsigned long addr, unsigned long sz)
389 {
390 int i;
391 struct page *p = page;
392
393 might_sleep();
394 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
395 cond_resched();
396 clear_user_highpage(p, addr + i * PAGE_SIZE);
397 }
398 }
399 static void clear_huge_page(struct page *page,
400 unsigned long addr, unsigned long sz)
401 {
402 int i;
403
404 if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
405 clear_gigantic_page(page, addr, sz);
406 return;
407 }
408
409 might_sleep();
410 for (i = 0; i < sz/PAGE_SIZE; i++) {
411 cond_resched();
412 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413 }
414 }
415
416 static void copy_gigantic_page(struct page *dst, struct page *src,
417 unsigned long addr, struct vm_area_struct *vma)
418 {
419 int i;
420 struct hstate *h = hstate_vma(vma);
421 struct page *dst_base = dst;
422 struct page *src_base = src;
423 might_sleep();
424 for (i = 0; i < pages_per_huge_page(h); ) {
425 cond_resched();
426 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
427
428 i++;
429 dst = mem_map_next(dst, dst_base, i);
430 src = mem_map_next(src, src_base, i);
431 }
432 }
433 static void copy_huge_page(struct page *dst, struct page *src,
434 unsigned long addr, struct vm_area_struct *vma)
435 {
436 int i;
437 struct hstate *h = hstate_vma(vma);
438
439 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
440 copy_gigantic_page(dst, src, addr, vma);
441 return;
442 }
443
444 might_sleep();
445 for (i = 0; i < pages_per_huge_page(h); i++) {
446 cond_resched();
447 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448 }
449 }
450
451 static void enqueue_huge_page(struct hstate *h, struct page *page)
452 {
453 int nid = page_to_nid(page);
454 list_add(&page->lru, &h->hugepage_freelists[nid]);
455 h->free_huge_pages++;
456 h->free_huge_pages_node[nid]++;
457 }
458
459 static struct page *dequeue_huge_page_vma(struct hstate *h,
460 struct vm_area_struct *vma,
461 unsigned long address, int avoid_reserve)
462 {
463 int nid;
464 struct page *page = NULL;
465 struct mempolicy *mpol;
466 nodemask_t *nodemask;
467 struct zonelist *zonelist = huge_zonelist(vma, address,
468 htlb_alloc_mask, &mpol, &nodemask);
469 struct zone *zone;
470 struct zoneref *z;
471
472 /*
473 * A child process with MAP_PRIVATE mappings created by their parent
474 * have no page reserves. This check ensures that reservations are
475 * not "stolen". The child may still get SIGKILLed
476 */
477 if (!vma_has_reserves(vma) &&
478 h->free_huge_pages - h->resv_huge_pages == 0)
479 return NULL;
480
481 /* If reserves cannot be used, ensure enough pages are in the pool */
482 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483 return NULL;
484
485 for_each_zone_zonelist_nodemask(zone, z, zonelist,
486 MAX_NR_ZONES - 1, nodemask) {
487 nid = zone_to_nid(zone);
488 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489 !list_empty(&h->hugepage_freelists[nid])) {
490 page = list_entry(h->hugepage_freelists[nid].next,
491 struct page, lru);
492 list_del(&page->lru);
493 h->free_huge_pages--;
494 h->free_huge_pages_node[nid]--;
495
496 if (!avoid_reserve)
497 decrement_hugepage_resv_vma(h, vma);
498
499 break;
500 }
501 }
502 mpol_cond_put(mpol);
503 return page;
504 }
505
506 static void update_and_free_page(struct hstate *h, struct page *page)
507 {
508 int i;
509
510 VM_BUG_ON(h->order >= MAX_ORDER);
511
512 h->nr_huge_pages--;
513 h->nr_huge_pages_node[page_to_nid(page)]--;
514 for (i = 0; i < pages_per_huge_page(h); i++) {
515 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
516 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
517 1 << PG_private | 1<< PG_writeback);
518 }
519 set_compound_page_dtor(page, NULL);
520 set_page_refcounted(page);
521 arch_release_hugepage(page);
522 __free_pages(page, huge_page_order(h));
523 }
524
525 struct hstate *size_to_hstate(unsigned long size)
526 {
527 struct hstate *h;
528
529 for_each_hstate(h) {
530 if (huge_page_size(h) == size)
531 return h;
532 }
533 return NULL;
534 }
535
536 static void free_huge_page(struct page *page)
537 {
538 /*
539 * Can't pass hstate in here because it is called from the
540 * compound page destructor.
541 */
542 struct hstate *h = page_hstate(page);
543 int nid = page_to_nid(page);
544 struct address_space *mapping;
545
546 mapping = (struct address_space *) page_private(page);
547 set_page_private(page, 0);
548 BUG_ON(page_count(page));
549 INIT_LIST_HEAD(&page->lru);
550
551 spin_lock(&hugetlb_lock);
552 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553 update_and_free_page(h, page);
554 h->surplus_huge_pages--;
555 h->surplus_huge_pages_node[nid]--;
556 } else {
557 enqueue_huge_page(h, page);
558 }
559 spin_unlock(&hugetlb_lock);
560 if (mapping)
561 hugetlb_put_quota(mapping, 1);
562 }
563
564 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
565 {
566 set_compound_page_dtor(page, free_huge_page);
567 spin_lock(&hugetlb_lock);
568 h->nr_huge_pages++;
569 h->nr_huge_pages_node[nid]++;
570 spin_unlock(&hugetlb_lock);
571 put_page(page); /* free it into the hugepage allocator */
572 }
573
574 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
575 {
576 int i;
577 int nr_pages = 1 << order;
578 struct page *p = page + 1;
579
580 /* we rely on prep_new_huge_page to set the destructor */
581 set_compound_order(page, order);
582 __SetPageHead(page);
583 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
584 __SetPageTail(p);
585 p->first_page = page;
586 }
587 }
588
589 int PageHuge(struct page *page)
590 {
591 compound_page_dtor *dtor;
592
593 if (!PageCompound(page))
594 return 0;
595
596 page = compound_head(page);
597 dtor = get_compound_page_dtor(page);
598
599 return dtor == free_huge_page;
600 }
601
602 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
603 {
604 struct page *page;
605
606 if (h->order >= MAX_ORDER)
607 return NULL;
608
609 page = alloc_pages_exact_node(nid,
610 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
611 __GFP_REPEAT|__GFP_NOWARN,
612 huge_page_order(h));
613 if (page) {
614 if (arch_prepare_hugepage(page)) {
615 __free_pages(page, huge_page_order(h));
616 return NULL;
617 }
618 prep_new_huge_page(h, page, nid);
619 }
620
621 return page;
622 }
623
624 /*
625 * common helper functions for hstate_next_node_to_{alloc|free}.
626 * We may have allocated or freed a huge page based on a different
627 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
628 * be outside of *nodes_allowed. Ensure that we use an allowed
629 * node for alloc or free.
630 */
631 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
632 {
633 nid = next_node(nid, *nodes_allowed);
634 if (nid == MAX_NUMNODES)
635 nid = first_node(*nodes_allowed);
636 VM_BUG_ON(nid >= MAX_NUMNODES);
637
638 return nid;
639 }
640
641 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
642 {
643 if (!node_isset(nid, *nodes_allowed))
644 nid = next_node_allowed(nid, nodes_allowed);
645 return nid;
646 }
647
648 /*
649 * returns the previously saved node ["this node"] from which to
650 * allocate a persistent huge page for the pool and advance the
651 * next node from which to allocate, handling wrap at end of node
652 * mask.
653 */
654 static int hstate_next_node_to_alloc(struct hstate *h,
655 nodemask_t *nodes_allowed)
656 {
657 int nid;
658
659 VM_BUG_ON(!nodes_allowed);
660
661 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
662 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
663
664 return nid;
665 }
666
667 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
668 {
669 struct page *page;
670 int start_nid;
671 int next_nid;
672 int ret = 0;
673
674 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
675 next_nid = start_nid;
676
677 do {
678 page = alloc_fresh_huge_page_node(h, next_nid);
679 if (page) {
680 ret = 1;
681 break;
682 }
683 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
684 } while (next_nid != start_nid);
685
686 if (ret)
687 count_vm_event(HTLB_BUDDY_PGALLOC);
688 else
689 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
690
691 return ret;
692 }
693
694 /*
695 * helper for free_pool_huge_page() - return the previously saved
696 * node ["this node"] from which to free a huge page. Advance the
697 * next node id whether or not we find a free huge page to free so
698 * that the next attempt to free addresses the next node.
699 */
700 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
701 {
702 int nid;
703
704 VM_BUG_ON(!nodes_allowed);
705
706 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
707 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
708
709 return nid;
710 }
711
712 /*
713 * Free huge page from pool from next node to free.
714 * Attempt to keep persistent huge pages more or less
715 * balanced over allowed nodes.
716 * Called with hugetlb_lock locked.
717 */
718 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
719 bool acct_surplus)
720 {
721 int start_nid;
722 int next_nid;
723 int ret = 0;
724
725 start_nid = hstate_next_node_to_free(h, nodes_allowed);
726 next_nid = start_nid;
727
728 do {
729 /*
730 * If we're returning unused surplus pages, only examine
731 * nodes with surplus pages.
732 */
733 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
734 !list_empty(&h->hugepage_freelists[next_nid])) {
735 struct page *page =
736 list_entry(h->hugepage_freelists[next_nid].next,
737 struct page, lru);
738 list_del(&page->lru);
739 h->free_huge_pages--;
740 h->free_huge_pages_node[next_nid]--;
741 if (acct_surplus) {
742 h->surplus_huge_pages--;
743 h->surplus_huge_pages_node[next_nid]--;
744 }
745 update_and_free_page(h, page);
746 ret = 1;
747 break;
748 }
749 next_nid = hstate_next_node_to_free(h, nodes_allowed);
750 } while (next_nid != start_nid);
751
752 return ret;
753 }
754
755 static struct page *alloc_buddy_huge_page(struct hstate *h,
756 struct vm_area_struct *vma, unsigned long address)
757 {
758 struct page *page;
759 unsigned int nid;
760
761 if (h->order >= MAX_ORDER)
762 return NULL;
763
764 /*
765 * Assume we will successfully allocate the surplus page to
766 * prevent racing processes from causing the surplus to exceed
767 * overcommit
768 *
769 * This however introduces a different race, where a process B
770 * tries to grow the static hugepage pool while alloc_pages() is
771 * called by process A. B will only examine the per-node
772 * counters in determining if surplus huge pages can be
773 * converted to normal huge pages in adjust_pool_surplus(). A
774 * won't be able to increment the per-node counter, until the
775 * lock is dropped by B, but B doesn't drop hugetlb_lock until
776 * no more huge pages can be converted from surplus to normal
777 * state (and doesn't try to convert again). Thus, we have a
778 * case where a surplus huge page exists, the pool is grown, and
779 * the surplus huge page still exists after, even though it
780 * should just have been converted to a normal huge page. This
781 * does not leak memory, though, as the hugepage will be freed
782 * once it is out of use. It also does not allow the counters to
783 * go out of whack in adjust_pool_surplus() as we don't modify
784 * the node values until we've gotten the hugepage and only the
785 * per-node value is checked there.
786 */
787 spin_lock(&hugetlb_lock);
788 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
789 spin_unlock(&hugetlb_lock);
790 return NULL;
791 } else {
792 h->nr_huge_pages++;
793 h->surplus_huge_pages++;
794 }
795 spin_unlock(&hugetlb_lock);
796
797 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
798 __GFP_REPEAT|__GFP_NOWARN,
799 huge_page_order(h));
800
801 if (page && arch_prepare_hugepage(page)) {
802 __free_pages(page, huge_page_order(h));
803 return NULL;
804 }
805
806 spin_lock(&hugetlb_lock);
807 if (page) {
808 /*
809 * This page is now managed by the hugetlb allocator and has
810 * no users -- drop the buddy allocator's reference.
811 */
812 put_page_testzero(page);
813 VM_BUG_ON(page_count(page));
814 nid = page_to_nid(page);
815 set_compound_page_dtor(page, free_huge_page);
816 /*
817 * We incremented the global counters already
818 */
819 h->nr_huge_pages_node[nid]++;
820 h->surplus_huge_pages_node[nid]++;
821 __count_vm_event(HTLB_BUDDY_PGALLOC);
822 } else {
823 h->nr_huge_pages--;
824 h->surplus_huge_pages--;
825 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
826 }
827 spin_unlock(&hugetlb_lock);
828
829 return page;
830 }
831
832 /*
833 * Increase the hugetlb pool such that it can accomodate a reservation
834 * of size 'delta'.
835 */
836 static int gather_surplus_pages(struct hstate *h, int delta)
837 {
838 struct list_head surplus_list;
839 struct page *page, *tmp;
840 int ret, i;
841 int needed, allocated;
842
843 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
844 if (needed <= 0) {
845 h->resv_huge_pages += delta;
846 return 0;
847 }
848
849 allocated = 0;
850 INIT_LIST_HEAD(&surplus_list);
851
852 ret = -ENOMEM;
853 retry:
854 spin_unlock(&hugetlb_lock);
855 for (i = 0; i < needed; i++) {
856 page = alloc_buddy_huge_page(h, NULL, 0);
857 if (!page) {
858 /*
859 * We were not able to allocate enough pages to
860 * satisfy the entire reservation so we free what
861 * we've allocated so far.
862 */
863 spin_lock(&hugetlb_lock);
864 needed = 0;
865 goto free;
866 }
867
868 list_add(&page->lru, &surplus_list);
869 }
870 allocated += needed;
871
872 /*
873 * After retaking hugetlb_lock, we need to recalculate 'needed'
874 * because either resv_huge_pages or free_huge_pages may have changed.
875 */
876 spin_lock(&hugetlb_lock);
877 needed = (h->resv_huge_pages + delta) -
878 (h->free_huge_pages + allocated);
879 if (needed > 0)
880 goto retry;
881
882 /*
883 * The surplus_list now contains _at_least_ the number of extra pages
884 * needed to accomodate the reservation. Add the appropriate number
885 * of pages to the hugetlb pool and free the extras back to the buddy
886 * allocator. Commit the entire reservation here to prevent another
887 * process from stealing the pages as they are added to the pool but
888 * before they are reserved.
889 */
890 needed += allocated;
891 h->resv_huge_pages += delta;
892 ret = 0;
893 free:
894 /* Free the needed pages to the hugetlb pool */
895 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
896 if ((--needed) < 0)
897 break;
898 list_del(&page->lru);
899 enqueue_huge_page(h, page);
900 }
901
902 /* Free unnecessary surplus pages to the buddy allocator */
903 if (!list_empty(&surplus_list)) {
904 spin_unlock(&hugetlb_lock);
905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 list_del(&page->lru);
907 /*
908 * The page has a reference count of zero already, so
909 * call free_huge_page directly instead of using
910 * put_page. This must be done with hugetlb_lock
911 * unlocked which is safe because free_huge_page takes
912 * hugetlb_lock before deciding how to free the page.
913 */
914 free_huge_page(page);
915 }
916 spin_lock(&hugetlb_lock);
917 }
918
919 return ret;
920 }
921
922 /*
923 * When releasing a hugetlb pool reservation, any surplus pages that were
924 * allocated to satisfy the reservation must be explicitly freed if they were
925 * never used.
926 * Called with hugetlb_lock held.
927 */
928 static void return_unused_surplus_pages(struct hstate *h,
929 unsigned long unused_resv_pages)
930 {
931 unsigned long nr_pages;
932
933 /* Uncommit the reservation */
934 h->resv_huge_pages -= unused_resv_pages;
935
936 /* Cannot return gigantic pages currently */
937 if (h->order >= MAX_ORDER)
938 return;
939
940 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
941
942 /*
943 * We want to release as many surplus pages as possible, spread
944 * evenly across all nodes. Iterate across all nodes until we
945 * can no longer free unreserved surplus pages. This occurs when
946 * the nodes with surplus pages have no free pages.
947 * free_pool_huge_page() will balance the the frees across the
948 * on-line nodes for us and will handle the hstate accounting.
949 */
950 while (nr_pages--) {
951 if (!free_pool_huge_page(h, &node_online_map, 1))
952 break;
953 }
954 }
955
956 /*
957 * Determine if the huge page at addr within the vma has an associated
958 * reservation. Where it does not we will need to logically increase
959 * reservation and actually increase quota before an allocation can occur.
960 * Where any new reservation would be required the reservation change is
961 * prepared, but not committed. Once the page has been quota'd allocated
962 * an instantiated the change should be committed via vma_commit_reservation.
963 * No action is required on failure.
964 */
965 static long vma_needs_reservation(struct hstate *h,
966 struct vm_area_struct *vma, unsigned long addr)
967 {
968 struct address_space *mapping = vma->vm_file->f_mapping;
969 struct inode *inode = mapping->host;
970
971 if (vma->vm_flags & VM_MAYSHARE) {
972 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
973 return region_chg(&inode->i_mapping->private_list,
974 idx, idx + 1);
975
976 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
977 return 1;
978
979 } else {
980 long err;
981 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982 struct resv_map *reservations = vma_resv_map(vma);
983
984 err = region_chg(&reservations->regions, idx, idx + 1);
985 if (err < 0)
986 return err;
987 return 0;
988 }
989 }
990 static void vma_commit_reservation(struct hstate *h,
991 struct vm_area_struct *vma, unsigned long addr)
992 {
993 struct address_space *mapping = vma->vm_file->f_mapping;
994 struct inode *inode = mapping->host;
995
996 if (vma->vm_flags & VM_MAYSHARE) {
997 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
998 region_add(&inode->i_mapping->private_list, idx, idx + 1);
999
1000 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1002 struct resv_map *reservations = vma_resv_map(vma);
1003
1004 /* Mark this page used in the map. */
1005 region_add(&reservations->regions, idx, idx + 1);
1006 }
1007 }
1008
1009 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1010 unsigned long addr, int avoid_reserve)
1011 {
1012 struct hstate *h = hstate_vma(vma);
1013 struct page *page;
1014 struct address_space *mapping = vma->vm_file->f_mapping;
1015 struct inode *inode = mapping->host;
1016 long chg;
1017
1018 /*
1019 * Processes that did not create the mapping will have no reserves and
1020 * will not have accounted against quota. Check that the quota can be
1021 * made before satisfying the allocation
1022 * MAP_NORESERVE mappings may also need pages and quota allocated
1023 * if no reserve mapping overlaps.
1024 */
1025 chg = vma_needs_reservation(h, vma, addr);
1026 if (chg < 0)
1027 return ERR_PTR(chg);
1028 if (chg)
1029 if (hugetlb_get_quota(inode->i_mapping, chg))
1030 return ERR_PTR(-ENOSPC);
1031
1032 spin_lock(&hugetlb_lock);
1033 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1034 spin_unlock(&hugetlb_lock);
1035
1036 if (!page) {
1037 page = alloc_buddy_huge_page(h, vma, addr);
1038 if (!page) {
1039 hugetlb_put_quota(inode->i_mapping, chg);
1040 return ERR_PTR(-VM_FAULT_OOM);
1041 }
1042 }
1043
1044 set_page_refcounted(page);
1045 set_page_private(page, (unsigned long) mapping);
1046
1047 vma_commit_reservation(h, vma, addr);
1048
1049 return page;
1050 }
1051
1052 int __weak alloc_bootmem_huge_page(struct hstate *h)
1053 {
1054 struct huge_bootmem_page *m;
1055 int nr_nodes = nodes_weight(node_online_map);
1056
1057 while (nr_nodes) {
1058 void *addr;
1059
1060 addr = __alloc_bootmem_node_nopanic(
1061 NODE_DATA(hstate_next_node_to_alloc(h,
1062 &node_online_map)),
1063 huge_page_size(h), huge_page_size(h), 0);
1064
1065 if (addr) {
1066 /*
1067 * Use the beginning of the huge page to store the
1068 * huge_bootmem_page struct (until gather_bootmem
1069 * puts them into the mem_map).
1070 */
1071 m = addr;
1072 goto found;
1073 }
1074 nr_nodes--;
1075 }
1076 return 0;
1077
1078 found:
1079 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1080 /* Put them into a private list first because mem_map is not up yet */
1081 list_add(&m->list, &huge_boot_pages);
1082 m->hstate = h;
1083 return 1;
1084 }
1085
1086 static void prep_compound_huge_page(struct page *page, int order)
1087 {
1088 if (unlikely(order > (MAX_ORDER - 1)))
1089 prep_compound_gigantic_page(page, order);
1090 else
1091 prep_compound_page(page, order);
1092 }
1093
1094 /* Put bootmem huge pages into the standard lists after mem_map is up */
1095 static void __init gather_bootmem_prealloc(void)
1096 {
1097 struct huge_bootmem_page *m;
1098
1099 list_for_each_entry(m, &huge_boot_pages, list) {
1100 struct page *page = virt_to_page(m);
1101 struct hstate *h = m->hstate;
1102 __ClearPageReserved(page);
1103 WARN_ON(page_count(page) != 1);
1104 prep_compound_huge_page(page, h->order);
1105 prep_new_huge_page(h, page, page_to_nid(page));
1106 }
1107 }
1108
1109 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1110 {
1111 unsigned long i;
1112
1113 for (i = 0; i < h->max_huge_pages; ++i) {
1114 if (h->order >= MAX_ORDER) {
1115 if (!alloc_bootmem_huge_page(h))
1116 break;
1117 } else if (!alloc_fresh_huge_page(h, &node_online_map))
1118 break;
1119 }
1120 h->max_huge_pages = i;
1121 }
1122
1123 static void __init hugetlb_init_hstates(void)
1124 {
1125 struct hstate *h;
1126
1127 for_each_hstate(h) {
1128 /* oversize hugepages were init'ed in early boot */
1129 if (h->order < MAX_ORDER)
1130 hugetlb_hstate_alloc_pages(h);
1131 }
1132 }
1133
1134 static char * __init memfmt(char *buf, unsigned long n)
1135 {
1136 if (n >= (1UL << 30))
1137 sprintf(buf, "%lu GB", n >> 30);
1138 else if (n >= (1UL << 20))
1139 sprintf(buf, "%lu MB", n >> 20);
1140 else
1141 sprintf(buf, "%lu KB", n >> 10);
1142 return buf;
1143 }
1144
1145 static void __init report_hugepages(void)
1146 {
1147 struct hstate *h;
1148
1149 for_each_hstate(h) {
1150 char buf[32];
1151 printk(KERN_INFO "HugeTLB registered %s page size, "
1152 "pre-allocated %ld pages\n",
1153 memfmt(buf, huge_page_size(h)),
1154 h->free_huge_pages);
1155 }
1156 }
1157
1158 #ifdef CONFIG_HIGHMEM
1159 static void try_to_free_low(struct hstate *h, unsigned long count,
1160 nodemask_t *nodes_allowed)
1161 {
1162 int i;
1163
1164 if (h->order >= MAX_ORDER)
1165 return;
1166
1167 for_each_node_mask(i, *nodes_allowed) {
1168 struct page *page, *next;
1169 struct list_head *freel = &h->hugepage_freelists[i];
1170 list_for_each_entry_safe(page, next, freel, lru) {
1171 if (count >= h->nr_huge_pages)
1172 return;
1173 if (PageHighMem(page))
1174 continue;
1175 list_del(&page->lru);
1176 update_and_free_page(h, page);
1177 h->free_huge_pages--;
1178 h->free_huge_pages_node[page_to_nid(page)]--;
1179 }
1180 }
1181 }
1182 #else
1183 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1184 nodemask_t *nodes_allowed)
1185 {
1186 }
1187 #endif
1188
1189 /*
1190 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1191 * balanced by operating on them in a round-robin fashion.
1192 * Returns 1 if an adjustment was made.
1193 */
1194 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1195 int delta)
1196 {
1197 int start_nid, next_nid;
1198 int ret = 0;
1199
1200 VM_BUG_ON(delta != -1 && delta != 1);
1201
1202 if (delta < 0)
1203 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1204 else
1205 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1206 next_nid = start_nid;
1207
1208 do {
1209 int nid = next_nid;
1210 if (delta < 0) {
1211 /*
1212 * To shrink on this node, there must be a surplus page
1213 */
1214 if (!h->surplus_huge_pages_node[nid]) {
1215 next_nid = hstate_next_node_to_alloc(h,
1216 nodes_allowed);
1217 continue;
1218 }
1219 }
1220 if (delta > 0) {
1221 /*
1222 * Surplus cannot exceed the total number of pages
1223 */
1224 if (h->surplus_huge_pages_node[nid] >=
1225 h->nr_huge_pages_node[nid]) {
1226 next_nid = hstate_next_node_to_free(h,
1227 nodes_allowed);
1228 continue;
1229 }
1230 }
1231
1232 h->surplus_huge_pages += delta;
1233 h->surplus_huge_pages_node[nid] += delta;
1234 ret = 1;
1235 break;
1236 } while (next_nid != start_nid);
1237
1238 return ret;
1239 }
1240
1241 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1242 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1243 nodemask_t *nodes_allowed)
1244 {
1245 unsigned long min_count, ret;
1246
1247 if (h->order >= MAX_ORDER)
1248 return h->max_huge_pages;
1249
1250 /*
1251 * Increase the pool size
1252 * First take pages out of surplus state. Then make up the
1253 * remaining difference by allocating fresh huge pages.
1254 *
1255 * We might race with alloc_buddy_huge_page() here and be unable
1256 * to convert a surplus huge page to a normal huge page. That is
1257 * not critical, though, it just means the overall size of the
1258 * pool might be one hugepage larger than it needs to be, but
1259 * within all the constraints specified by the sysctls.
1260 */
1261 spin_lock(&hugetlb_lock);
1262 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1263 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1264 break;
1265 }
1266
1267 while (count > persistent_huge_pages(h)) {
1268 /*
1269 * If this allocation races such that we no longer need the
1270 * page, free_huge_page will handle it by freeing the page
1271 * and reducing the surplus.
1272 */
1273 spin_unlock(&hugetlb_lock);
1274 ret = alloc_fresh_huge_page(h, nodes_allowed);
1275 spin_lock(&hugetlb_lock);
1276 if (!ret)
1277 goto out;
1278
1279 }
1280
1281 /*
1282 * Decrease the pool size
1283 * First return free pages to the buddy allocator (being careful
1284 * to keep enough around to satisfy reservations). Then place
1285 * pages into surplus state as needed so the pool will shrink
1286 * to the desired size as pages become free.
1287 *
1288 * By placing pages into the surplus state independent of the
1289 * overcommit value, we are allowing the surplus pool size to
1290 * exceed overcommit. There are few sane options here. Since
1291 * alloc_buddy_huge_page() is checking the global counter,
1292 * though, we'll note that we're not allowed to exceed surplus
1293 * and won't grow the pool anywhere else. Not until one of the
1294 * sysctls are changed, or the surplus pages go out of use.
1295 */
1296 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1297 min_count = max(count, min_count);
1298 try_to_free_low(h, min_count, nodes_allowed);
1299 while (min_count < persistent_huge_pages(h)) {
1300 if (!free_pool_huge_page(h, nodes_allowed, 0))
1301 break;
1302 }
1303 while (count < persistent_huge_pages(h)) {
1304 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1305 break;
1306 }
1307 out:
1308 ret = persistent_huge_pages(h);
1309 spin_unlock(&hugetlb_lock);
1310 return ret;
1311 }
1312
1313 #define HSTATE_ATTR_RO(_name) \
1314 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1315
1316 #define HSTATE_ATTR(_name) \
1317 static struct kobj_attribute _name##_attr = \
1318 __ATTR(_name, 0644, _name##_show, _name##_store)
1319
1320 static struct kobject *hugepages_kobj;
1321 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1322
1323 static struct hstate *kobj_to_hstate(struct kobject *kobj)
1324 {
1325 int i;
1326 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1327 if (hstate_kobjs[i] == kobj)
1328 return &hstates[i];
1329 BUG();
1330 return NULL;
1331 }
1332
1333 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1334 struct kobj_attribute *attr, char *buf)
1335 {
1336 struct hstate *h = kobj_to_hstate(kobj);
1337 return sprintf(buf, "%lu\n", h->nr_huge_pages);
1338 }
1339 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1340 struct kobject *kobj, struct kobj_attribute *attr,
1341 const char *buf, size_t len)
1342 {
1343 int err;
1344 unsigned long count;
1345 struct hstate *h = kobj_to_hstate(kobj);
1346 NODEMASK_ALLOC(nodemask_t, nodes_allowed);
1347
1348 err = strict_strtoul(buf, 10, &count);
1349 if (err)
1350 return 0;
1351
1352 if (!(obey_mempolicy && init_nodemask_of_mempolicy(nodes_allowed))) {
1353 NODEMASK_FREE(nodes_allowed);
1354 nodes_allowed = &node_online_map;
1355 }
1356 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1357
1358 if (nodes_allowed != &node_online_map)
1359 NODEMASK_FREE(nodes_allowed);
1360
1361 return len;
1362 }
1363
1364 static ssize_t nr_hugepages_show(struct kobject *kobj,
1365 struct kobj_attribute *attr, char *buf)
1366 {
1367 return nr_hugepages_show_common(kobj, attr, buf);
1368 }
1369
1370 static ssize_t nr_hugepages_store(struct kobject *kobj,
1371 struct kobj_attribute *attr, const char *buf, size_t len)
1372 {
1373 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1374 }
1375 HSTATE_ATTR(nr_hugepages);
1376
1377 #ifdef CONFIG_NUMA
1378
1379 /*
1380 * hstate attribute for optionally mempolicy-based constraint on persistent
1381 * huge page alloc/free.
1382 */
1383 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1384 struct kobj_attribute *attr, char *buf)
1385 {
1386 return nr_hugepages_show_common(kobj, attr, buf);
1387 }
1388
1389 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1390 struct kobj_attribute *attr, const char *buf, size_t len)
1391 {
1392 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1393 }
1394 HSTATE_ATTR(nr_hugepages_mempolicy);
1395 #endif
1396
1397
1398 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1399 struct kobj_attribute *attr, char *buf)
1400 {
1401 struct hstate *h = kobj_to_hstate(kobj);
1402 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1403 }
1404 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1405 struct kobj_attribute *attr, const char *buf, size_t count)
1406 {
1407 int err;
1408 unsigned long input;
1409 struct hstate *h = kobj_to_hstate(kobj);
1410
1411 err = strict_strtoul(buf, 10, &input);
1412 if (err)
1413 return 0;
1414
1415 spin_lock(&hugetlb_lock);
1416 h->nr_overcommit_huge_pages = input;
1417 spin_unlock(&hugetlb_lock);
1418
1419 return count;
1420 }
1421 HSTATE_ATTR(nr_overcommit_hugepages);
1422
1423 static ssize_t free_hugepages_show(struct kobject *kobj,
1424 struct kobj_attribute *attr, char *buf)
1425 {
1426 struct hstate *h = kobj_to_hstate(kobj);
1427 return sprintf(buf, "%lu\n", h->free_huge_pages);
1428 }
1429 HSTATE_ATTR_RO(free_hugepages);
1430
1431 static ssize_t resv_hugepages_show(struct kobject *kobj,
1432 struct kobj_attribute *attr, char *buf)
1433 {
1434 struct hstate *h = kobj_to_hstate(kobj);
1435 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1436 }
1437 HSTATE_ATTR_RO(resv_hugepages);
1438
1439 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1440 struct kobj_attribute *attr, char *buf)
1441 {
1442 struct hstate *h = kobj_to_hstate(kobj);
1443 return sprintf(buf, "%lu\n", h->surplus_huge_pages);
1444 }
1445 HSTATE_ATTR_RO(surplus_hugepages);
1446
1447 static struct attribute *hstate_attrs[] = {
1448 &nr_hugepages_attr.attr,
1449 &nr_overcommit_hugepages_attr.attr,
1450 &free_hugepages_attr.attr,
1451 &resv_hugepages_attr.attr,
1452 &surplus_hugepages_attr.attr,
1453 #ifdef CONFIG_NUMA
1454 &nr_hugepages_mempolicy_attr.attr,
1455 #endif
1456 NULL,
1457 };
1458
1459 static struct attribute_group hstate_attr_group = {
1460 .attrs = hstate_attrs,
1461 };
1462
1463 static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
1464 {
1465 int retval;
1466
1467 hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
1468 hugepages_kobj);
1469 if (!hstate_kobjs[h - hstates])
1470 return -ENOMEM;
1471
1472 retval = sysfs_create_group(hstate_kobjs[h - hstates],
1473 &hstate_attr_group);
1474 if (retval)
1475 kobject_put(hstate_kobjs[h - hstates]);
1476
1477 return retval;
1478 }
1479
1480 static void __init hugetlb_sysfs_init(void)
1481 {
1482 struct hstate *h;
1483 int err;
1484
1485 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1486 if (!hugepages_kobj)
1487 return;
1488
1489 for_each_hstate(h) {
1490 err = hugetlb_sysfs_add_hstate(h);
1491 if (err)
1492 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1493 h->name);
1494 }
1495 }
1496
1497 static void __exit hugetlb_exit(void)
1498 {
1499 struct hstate *h;
1500
1501 for_each_hstate(h) {
1502 kobject_put(hstate_kobjs[h - hstates]);
1503 }
1504
1505 kobject_put(hugepages_kobj);
1506 }
1507 module_exit(hugetlb_exit);
1508
1509 static int __init hugetlb_init(void)
1510 {
1511 /* Some platform decide whether they support huge pages at boot
1512 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1513 * there is no such support
1514 */
1515 if (HPAGE_SHIFT == 0)
1516 return 0;
1517
1518 if (!size_to_hstate(default_hstate_size)) {
1519 default_hstate_size = HPAGE_SIZE;
1520 if (!size_to_hstate(default_hstate_size))
1521 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1522 }
1523 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1524 if (default_hstate_max_huge_pages)
1525 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1526
1527 hugetlb_init_hstates();
1528
1529 gather_bootmem_prealloc();
1530
1531 report_hugepages();
1532
1533 hugetlb_sysfs_init();
1534
1535 return 0;
1536 }
1537 module_init(hugetlb_init);
1538
1539 /* Should be called on processing a hugepagesz=... option */
1540 void __init hugetlb_add_hstate(unsigned order)
1541 {
1542 struct hstate *h;
1543 unsigned long i;
1544
1545 if (size_to_hstate(PAGE_SIZE << order)) {
1546 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1547 return;
1548 }
1549 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1550 BUG_ON(order == 0);
1551 h = &hstates[max_hstate++];
1552 h->order = order;
1553 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1554 h->nr_huge_pages = 0;
1555 h->free_huge_pages = 0;
1556 for (i = 0; i < MAX_NUMNODES; ++i)
1557 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1558 h->next_nid_to_alloc = first_node(node_online_map);
1559 h->next_nid_to_free = first_node(node_online_map);
1560 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1561 huge_page_size(h)/1024);
1562
1563 parsed_hstate = h;
1564 }
1565
1566 static int __init hugetlb_nrpages_setup(char *s)
1567 {
1568 unsigned long *mhp;
1569 static unsigned long *last_mhp;
1570
1571 /*
1572 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1573 * so this hugepages= parameter goes to the "default hstate".
1574 */
1575 if (!max_hstate)
1576 mhp = &default_hstate_max_huge_pages;
1577 else
1578 mhp = &parsed_hstate->max_huge_pages;
1579
1580 if (mhp == last_mhp) {
1581 printk(KERN_WARNING "hugepages= specified twice without "
1582 "interleaving hugepagesz=, ignoring\n");
1583 return 1;
1584 }
1585
1586 if (sscanf(s, "%lu", mhp) <= 0)
1587 *mhp = 0;
1588
1589 /*
1590 * Global state is always initialized later in hugetlb_init.
1591 * But we need to allocate >= MAX_ORDER hstates here early to still
1592 * use the bootmem allocator.
1593 */
1594 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1595 hugetlb_hstate_alloc_pages(parsed_hstate);
1596
1597 last_mhp = mhp;
1598
1599 return 1;
1600 }
1601 __setup("hugepages=", hugetlb_nrpages_setup);
1602
1603 static int __init hugetlb_default_setup(char *s)
1604 {
1605 default_hstate_size = memparse(s, &s);
1606 return 1;
1607 }
1608 __setup("default_hugepagesz=", hugetlb_default_setup);
1609
1610 static unsigned int cpuset_mems_nr(unsigned int *array)
1611 {
1612 int node;
1613 unsigned int nr = 0;
1614
1615 for_each_node_mask(node, cpuset_current_mems_allowed)
1616 nr += array[node];
1617
1618 return nr;
1619 }
1620
1621 #ifdef CONFIG_SYSCTL
1622 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1623 struct ctl_table *table, int write,
1624 void __user *buffer, size_t *length, loff_t *ppos)
1625 {
1626 struct hstate *h = &default_hstate;
1627 unsigned long tmp;
1628
1629 if (!write)
1630 tmp = h->max_huge_pages;
1631
1632 table->data = &tmp;
1633 table->maxlen = sizeof(unsigned long);
1634 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1635
1636 if (write) {
1637 NODEMASK_ALLOC(nodemask_t, nodes_allowed);
1638 if (!(obey_mempolicy &&
1639 init_nodemask_of_mempolicy(nodes_allowed))) {
1640 NODEMASK_FREE(nodes_allowed);
1641 nodes_allowed = &node_states[N_HIGH_MEMORY];
1642 }
1643 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1644
1645 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1646 NODEMASK_FREE(nodes_allowed);
1647 }
1648
1649 return 0;
1650 }
1651
1652 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1653 void __user *buffer, size_t *length, loff_t *ppos)
1654 {
1655
1656 return hugetlb_sysctl_handler_common(false, table, write,
1657 buffer, length, ppos);
1658 }
1659
1660 #ifdef CONFIG_NUMA
1661 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1662 void __user *buffer, size_t *length, loff_t *ppos)
1663 {
1664 return hugetlb_sysctl_handler_common(true, table, write,
1665 buffer, length, ppos);
1666 }
1667 #endif /* CONFIG_NUMA */
1668
1669 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1670 void __user *buffer,
1671 size_t *length, loff_t *ppos)
1672 {
1673 proc_dointvec(table, write, buffer, length, ppos);
1674 if (hugepages_treat_as_movable)
1675 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1676 else
1677 htlb_alloc_mask = GFP_HIGHUSER;
1678 return 0;
1679 }
1680
1681 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1682 void __user *buffer,
1683 size_t *length, loff_t *ppos)
1684 {
1685 struct hstate *h = &default_hstate;
1686 unsigned long tmp;
1687
1688 if (!write)
1689 tmp = h->nr_overcommit_huge_pages;
1690
1691 table->data = &tmp;
1692 table->maxlen = sizeof(unsigned long);
1693 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1694
1695 if (write) {
1696 spin_lock(&hugetlb_lock);
1697 h->nr_overcommit_huge_pages = tmp;
1698 spin_unlock(&hugetlb_lock);
1699 }
1700
1701 return 0;
1702 }
1703
1704 #endif /* CONFIG_SYSCTL */
1705
1706 void hugetlb_report_meminfo(struct seq_file *m)
1707 {
1708 struct hstate *h = &default_hstate;
1709 seq_printf(m,
1710 "HugePages_Total: %5lu\n"
1711 "HugePages_Free: %5lu\n"
1712 "HugePages_Rsvd: %5lu\n"
1713 "HugePages_Surp: %5lu\n"
1714 "Hugepagesize: %8lu kB\n",
1715 h->nr_huge_pages,
1716 h->free_huge_pages,
1717 h->resv_huge_pages,
1718 h->surplus_huge_pages,
1719 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1720 }
1721
1722 int hugetlb_report_node_meminfo(int nid, char *buf)
1723 {
1724 struct hstate *h = &default_hstate;
1725 return sprintf(buf,
1726 "Node %d HugePages_Total: %5u\n"
1727 "Node %d HugePages_Free: %5u\n"
1728 "Node %d HugePages_Surp: %5u\n",
1729 nid, h->nr_huge_pages_node[nid],
1730 nid, h->free_huge_pages_node[nid],
1731 nid, h->surplus_huge_pages_node[nid]);
1732 }
1733
1734 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1735 unsigned long hugetlb_total_pages(void)
1736 {
1737 struct hstate *h = &default_hstate;
1738 return h->nr_huge_pages * pages_per_huge_page(h);
1739 }
1740
1741 static int hugetlb_acct_memory(struct hstate *h, long delta)
1742 {
1743 int ret = -ENOMEM;
1744
1745 spin_lock(&hugetlb_lock);
1746 /*
1747 * When cpuset is configured, it breaks the strict hugetlb page
1748 * reservation as the accounting is done on a global variable. Such
1749 * reservation is completely rubbish in the presence of cpuset because
1750 * the reservation is not checked against page availability for the
1751 * current cpuset. Application can still potentially OOM'ed by kernel
1752 * with lack of free htlb page in cpuset that the task is in.
1753 * Attempt to enforce strict accounting with cpuset is almost
1754 * impossible (or too ugly) because cpuset is too fluid that
1755 * task or memory node can be dynamically moved between cpusets.
1756 *
1757 * The change of semantics for shared hugetlb mapping with cpuset is
1758 * undesirable. However, in order to preserve some of the semantics,
1759 * we fall back to check against current free page availability as
1760 * a best attempt and hopefully to minimize the impact of changing
1761 * semantics that cpuset has.
1762 */
1763 if (delta > 0) {
1764 if (gather_surplus_pages(h, delta) < 0)
1765 goto out;
1766
1767 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
1768 return_unused_surplus_pages(h, delta);
1769 goto out;
1770 }
1771 }
1772
1773 ret = 0;
1774 if (delta < 0)
1775 return_unused_surplus_pages(h, (unsigned long) -delta);
1776
1777 out:
1778 spin_unlock(&hugetlb_lock);
1779 return ret;
1780 }
1781
1782 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
1783 {
1784 struct resv_map *reservations = vma_resv_map(vma);
1785
1786 /*
1787 * This new VMA should share its siblings reservation map if present.
1788 * The VMA will only ever have a valid reservation map pointer where
1789 * it is being copied for another still existing VMA. As that VMA
1790 * has a reference to the reservation map it cannot dissappear until
1791 * after this open call completes. It is therefore safe to take a
1792 * new reference here without additional locking.
1793 */
1794 if (reservations)
1795 kref_get(&reservations->refs);
1796 }
1797
1798 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
1799 {
1800 struct hstate *h = hstate_vma(vma);
1801 struct resv_map *reservations = vma_resv_map(vma);
1802 unsigned long reserve;
1803 unsigned long start;
1804 unsigned long end;
1805
1806 if (reservations) {
1807 start = vma_hugecache_offset(h, vma, vma->vm_start);
1808 end = vma_hugecache_offset(h, vma, vma->vm_end);
1809
1810 reserve = (end - start) -
1811 region_count(&reservations->regions, start, end);
1812
1813 kref_put(&reservations->refs, resv_map_release);
1814
1815 if (reserve) {
1816 hugetlb_acct_memory(h, -reserve);
1817 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
1818 }
1819 }
1820 }
1821
1822 /*
1823 * We cannot handle pagefaults against hugetlb pages at all. They cause
1824 * handle_mm_fault() to try to instantiate regular-sized pages in the
1825 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1826 * this far.
1827 */
1828 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1829 {
1830 BUG();
1831 return 0;
1832 }
1833
1834 const struct vm_operations_struct hugetlb_vm_ops = {
1835 .fault = hugetlb_vm_op_fault,
1836 .open = hugetlb_vm_op_open,
1837 .close = hugetlb_vm_op_close,
1838 };
1839
1840 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
1841 int writable)
1842 {
1843 pte_t entry;
1844
1845 if (writable) {
1846 entry =
1847 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
1848 } else {
1849 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
1850 }
1851 entry = pte_mkyoung(entry);
1852 entry = pte_mkhuge(entry);
1853
1854 return entry;
1855 }
1856
1857 static void set_huge_ptep_writable(struct vm_area_struct *vma,
1858 unsigned long address, pte_t *ptep)
1859 {
1860 pte_t entry;
1861
1862 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
1863 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1864 update_mmu_cache(vma, address, entry);
1865 }
1866 }
1867
1868
1869 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
1870 struct vm_area_struct *vma)
1871 {
1872 pte_t *src_pte, *dst_pte, entry;
1873 struct page *ptepage;
1874 unsigned long addr;
1875 int cow;
1876 struct hstate *h = hstate_vma(vma);
1877 unsigned long sz = huge_page_size(h);
1878
1879 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1880
1881 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
1882 src_pte = huge_pte_offset(src, addr);
1883 if (!src_pte)
1884 continue;
1885 dst_pte = huge_pte_alloc(dst, addr, sz);
1886 if (!dst_pte)
1887 goto nomem;
1888
1889 /* If the pagetables are shared don't copy or take references */
1890 if (dst_pte == src_pte)
1891 continue;
1892
1893 spin_lock(&dst->page_table_lock);
1894 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1895 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1896 if (cow)
1897 huge_ptep_set_wrprotect(src, addr, src_pte);
1898 entry = huge_ptep_get(src_pte);
1899 ptepage = pte_page(entry);
1900 get_page(ptepage);
1901 set_huge_pte_at(dst, addr, dst_pte, entry);
1902 }
1903 spin_unlock(&src->page_table_lock);
1904 spin_unlock(&dst->page_table_lock);
1905 }
1906 return 0;
1907
1908 nomem:
1909 return -ENOMEM;
1910 }
1911
1912 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1913 unsigned long end, struct page *ref_page)
1914 {
1915 struct mm_struct *mm = vma->vm_mm;
1916 unsigned long address;
1917 pte_t *ptep;
1918 pte_t pte;
1919 struct page *page;
1920 struct page *tmp;
1921 struct hstate *h = hstate_vma(vma);
1922 unsigned long sz = huge_page_size(h);
1923
1924 /*
1925 * A page gathering list, protected by per file i_mmap_lock. The
1926 * lock is used to avoid list corruption from multiple unmapping
1927 * of the same page since we are using page->lru.
1928 */
1929 LIST_HEAD(page_list);
1930
1931 WARN_ON(!is_vm_hugetlb_page(vma));
1932 BUG_ON(start & ~huge_page_mask(h));
1933 BUG_ON(end & ~huge_page_mask(h));
1934
1935 mmu_notifier_invalidate_range_start(mm, start, end);
1936 spin_lock(&mm->page_table_lock);
1937 for (address = start; address < end; address += sz) {
1938 ptep = huge_pte_offset(mm, address);
1939 if (!ptep)
1940 continue;
1941
1942 if (huge_pmd_unshare(mm, &address, ptep))
1943 continue;
1944
1945 /*
1946 * If a reference page is supplied, it is because a specific
1947 * page is being unmapped, not a range. Ensure the page we
1948 * are about to unmap is the actual page of interest.
1949 */
1950 if (ref_page) {
1951 pte = huge_ptep_get(ptep);
1952 if (huge_pte_none(pte))
1953 continue;
1954 page = pte_page(pte);
1955 if (page != ref_page)
1956 continue;
1957
1958 /*
1959 * Mark the VMA as having unmapped its page so that
1960 * future faults in this VMA will fail rather than
1961 * looking like data was lost
1962 */
1963 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
1964 }
1965
1966 pte = huge_ptep_get_and_clear(mm, address, ptep);
1967 if (huge_pte_none(pte))
1968 continue;
1969
1970 page = pte_page(pte);
1971 if (pte_dirty(pte))
1972 set_page_dirty(page);
1973 list_add(&page->lru, &page_list);
1974 }
1975 spin_unlock(&mm->page_table_lock);
1976 flush_tlb_range(vma, start, end);
1977 mmu_notifier_invalidate_range_end(mm, start, end);
1978 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1979 list_del(&page->lru);
1980 put_page(page);
1981 }
1982 }
1983
1984 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1985 unsigned long end, struct page *ref_page)
1986 {
1987 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1988 __unmap_hugepage_range(vma, start, end, ref_page);
1989 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1990 }
1991
1992 /*
1993 * This is called when the original mapper is failing to COW a MAP_PRIVATE
1994 * mappping it owns the reserve page for. The intention is to unmap the page
1995 * from other VMAs and let the children be SIGKILLed if they are faulting the
1996 * same region.
1997 */
1998 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
1999 struct page *page, unsigned long address)
2000 {
2001 struct hstate *h = hstate_vma(vma);
2002 struct vm_area_struct *iter_vma;
2003 struct address_space *mapping;
2004 struct prio_tree_iter iter;
2005 pgoff_t pgoff;
2006
2007 /*
2008 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2009 * from page cache lookup which is in HPAGE_SIZE units.
2010 */
2011 address = address & huge_page_mask(h);
2012 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2013 + (vma->vm_pgoff >> PAGE_SHIFT);
2014 mapping = (struct address_space *)page_private(page);
2015
2016 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2017 /* Do not unmap the current VMA */
2018 if (iter_vma == vma)
2019 continue;
2020
2021 /*
2022 * Unmap the page from other VMAs without their own reserves.
2023 * They get marked to be SIGKILLed if they fault in these
2024 * areas. This is because a future no-page fault on this VMA
2025 * could insert a zeroed page instead of the data existing
2026 * from the time of fork. This would look like data corruption
2027 */
2028 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2029 unmap_hugepage_range(iter_vma,
2030 address, address + huge_page_size(h),
2031 page);
2032 }
2033
2034 return 1;
2035 }
2036
2037 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2038 unsigned long address, pte_t *ptep, pte_t pte,
2039 struct page *pagecache_page)
2040 {
2041 struct hstate *h = hstate_vma(vma);
2042 struct page *old_page, *new_page;
2043 int avoidcopy;
2044 int outside_reserve = 0;
2045
2046 old_page = pte_page(pte);
2047
2048 retry_avoidcopy:
2049 /* If no-one else is actually using this page, avoid the copy
2050 * and just make the page writable */
2051 avoidcopy = (page_count(old_page) == 1);
2052 if (avoidcopy) {
2053 set_huge_ptep_writable(vma, address, ptep);
2054 return 0;
2055 }
2056
2057 /*
2058 * If the process that created a MAP_PRIVATE mapping is about to
2059 * perform a COW due to a shared page count, attempt to satisfy
2060 * the allocation without using the existing reserves. The pagecache
2061 * page is used to determine if the reserve at this address was
2062 * consumed or not. If reserves were used, a partial faulted mapping
2063 * at the time of fork() could consume its reserves on COW instead
2064 * of the full address range.
2065 */
2066 if (!(vma->vm_flags & VM_MAYSHARE) &&
2067 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2068 old_page != pagecache_page)
2069 outside_reserve = 1;
2070
2071 page_cache_get(old_page);
2072 new_page = alloc_huge_page(vma, address, outside_reserve);
2073
2074 if (IS_ERR(new_page)) {
2075 page_cache_release(old_page);
2076
2077 /*
2078 * If a process owning a MAP_PRIVATE mapping fails to COW,
2079 * it is due to references held by a child and an insufficient
2080 * huge page pool. To guarantee the original mappers
2081 * reliability, unmap the page from child processes. The child
2082 * may get SIGKILLed if it later faults.
2083 */
2084 if (outside_reserve) {
2085 BUG_ON(huge_pte_none(pte));
2086 if (unmap_ref_private(mm, vma, old_page, address)) {
2087 BUG_ON(page_count(old_page) != 1);
2088 BUG_ON(huge_pte_none(pte));
2089 goto retry_avoidcopy;
2090 }
2091 WARN_ON_ONCE(1);
2092 }
2093
2094 return -PTR_ERR(new_page);
2095 }
2096
2097 spin_unlock(&mm->page_table_lock);
2098 copy_huge_page(new_page, old_page, address, vma);
2099 __SetPageUptodate(new_page);
2100 spin_lock(&mm->page_table_lock);
2101
2102 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2103 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2104 /* Break COW */
2105 huge_ptep_clear_flush(vma, address, ptep);
2106 set_huge_pte_at(mm, address, ptep,
2107 make_huge_pte(vma, new_page, 1));
2108 /* Make the old page be freed below */
2109 new_page = old_page;
2110 }
2111 page_cache_release(new_page);
2112 page_cache_release(old_page);
2113 return 0;
2114 }
2115
2116 /* Return the pagecache page at a given address within a VMA */
2117 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2118 struct vm_area_struct *vma, unsigned long address)
2119 {
2120 struct address_space *mapping;
2121 pgoff_t idx;
2122
2123 mapping = vma->vm_file->f_mapping;
2124 idx = vma_hugecache_offset(h, vma, address);
2125
2126 return find_lock_page(mapping, idx);
2127 }
2128
2129 /*
2130 * Return whether there is a pagecache page to back given address within VMA.
2131 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2132 */
2133 static bool hugetlbfs_pagecache_present(struct hstate *h,
2134 struct vm_area_struct *vma, unsigned long address)
2135 {
2136 struct address_space *mapping;
2137 pgoff_t idx;
2138 struct page *page;
2139
2140 mapping = vma->vm_file->f_mapping;
2141 idx = vma_hugecache_offset(h, vma, address);
2142
2143 page = find_get_page(mapping, idx);
2144 if (page)
2145 put_page(page);
2146 return page != NULL;
2147 }
2148
2149 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2150 unsigned long address, pte_t *ptep, unsigned int flags)
2151 {
2152 struct hstate *h = hstate_vma(vma);
2153 int ret = VM_FAULT_SIGBUS;
2154 pgoff_t idx;
2155 unsigned long size;
2156 struct page *page;
2157 struct address_space *mapping;
2158 pte_t new_pte;
2159
2160 /*
2161 * Currently, we are forced to kill the process in the event the
2162 * original mapper has unmapped pages from the child due to a failed
2163 * COW. Warn that such a situation has occured as it may not be obvious
2164 */
2165 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2166 printk(KERN_WARNING
2167 "PID %d killed due to inadequate hugepage pool\n",
2168 current->pid);
2169 return ret;
2170 }
2171
2172 mapping = vma->vm_file->f_mapping;
2173 idx = vma_hugecache_offset(h, vma, address);
2174
2175 /*
2176 * Use page lock to guard against racing truncation
2177 * before we get page_table_lock.
2178 */
2179 retry:
2180 page = find_lock_page(mapping, idx);
2181 if (!page) {
2182 size = i_size_read(mapping->host) >> huge_page_shift(h);
2183 if (idx >= size)
2184 goto out;
2185 page = alloc_huge_page(vma, address, 0);
2186 if (IS_ERR(page)) {
2187 ret = -PTR_ERR(page);
2188 goto out;
2189 }
2190 clear_huge_page(page, address, huge_page_size(h));
2191 __SetPageUptodate(page);
2192
2193 if (vma->vm_flags & VM_MAYSHARE) {
2194 int err;
2195 struct inode *inode = mapping->host;
2196
2197 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2198 if (err) {
2199 put_page(page);
2200 if (err == -EEXIST)
2201 goto retry;
2202 goto out;
2203 }
2204
2205 spin_lock(&inode->i_lock);
2206 inode->i_blocks += blocks_per_huge_page(h);
2207 spin_unlock(&inode->i_lock);
2208 } else
2209 lock_page(page);
2210 }
2211
2212 /*
2213 * If we are going to COW a private mapping later, we examine the
2214 * pending reservations for this page now. This will ensure that
2215 * any allocations necessary to record that reservation occur outside
2216 * the spinlock.
2217 */
2218 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2219 if (vma_needs_reservation(h, vma, address) < 0) {
2220 ret = VM_FAULT_OOM;
2221 goto backout_unlocked;
2222 }
2223
2224 spin_lock(&mm->page_table_lock);
2225 size = i_size_read(mapping->host) >> huge_page_shift(h);
2226 if (idx >= size)
2227 goto backout;
2228
2229 ret = 0;
2230 if (!huge_pte_none(huge_ptep_get(ptep)))
2231 goto backout;
2232
2233 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2234 && (vma->vm_flags & VM_SHARED)));
2235 set_huge_pte_at(mm, address, ptep, new_pte);
2236
2237 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2238 /* Optimization, do the COW without a second fault */
2239 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2240 }
2241
2242 spin_unlock(&mm->page_table_lock);
2243 unlock_page(page);
2244 out:
2245 return ret;
2246
2247 backout:
2248 spin_unlock(&mm->page_table_lock);
2249 backout_unlocked:
2250 unlock_page(page);
2251 put_page(page);
2252 goto out;
2253 }
2254
2255 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2256 unsigned long address, unsigned int flags)
2257 {
2258 pte_t *ptep;
2259 pte_t entry;
2260 int ret;
2261 struct page *pagecache_page = NULL;
2262 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2263 struct hstate *h = hstate_vma(vma);
2264
2265 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2266 if (!ptep)
2267 return VM_FAULT_OOM;
2268
2269 /*
2270 * Serialize hugepage allocation and instantiation, so that we don't
2271 * get spurious allocation failures if two CPUs race to instantiate
2272 * the same page in the page cache.
2273 */
2274 mutex_lock(&hugetlb_instantiation_mutex);
2275 entry = huge_ptep_get(ptep);
2276 if (huge_pte_none(entry)) {
2277 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2278 goto out_mutex;
2279 }
2280
2281 ret = 0;
2282
2283 /*
2284 * If we are going to COW the mapping later, we examine the pending
2285 * reservations for this page now. This will ensure that any
2286 * allocations necessary to record that reservation occur outside the
2287 * spinlock. For private mappings, we also lookup the pagecache
2288 * page now as it is used to determine if a reservation has been
2289 * consumed.
2290 */
2291 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2292 if (vma_needs_reservation(h, vma, address) < 0) {
2293 ret = VM_FAULT_OOM;
2294 goto out_mutex;
2295 }
2296
2297 if (!(vma->vm_flags & VM_MAYSHARE))
2298 pagecache_page = hugetlbfs_pagecache_page(h,
2299 vma, address);
2300 }
2301
2302 spin_lock(&mm->page_table_lock);
2303 /* Check for a racing update before calling hugetlb_cow */
2304 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2305 goto out_page_table_lock;
2306
2307
2308 if (flags & FAULT_FLAG_WRITE) {
2309 if (!pte_write(entry)) {
2310 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2311 pagecache_page);
2312 goto out_page_table_lock;
2313 }
2314 entry = pte_mkdirty(entry);
2315 }
2316 entry = pte_mkyoung(entry);
2317 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2318 flags & FAULT_FLAG_WRITE))
2319 update_mmu_cache(vma, address, entry);
2320
2321 out_page_table_lock:
2322 spin_unlock(&mm->page_table_lock);
2323
2324 if (pagecache_page) {
2325 unlock_page(pagecache_page);
2326 put_page(pagecache_page);
2327 }
2328
2329 out_mutex:
2330 mutex_unlock(&hugetlb_instantiation_mutex);
2331
2332 return ret;
2333 }
2334
2335 /* Can be overriden by architectures */
2336 __attribute__((weak)) struct page *
2337 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2338 pud_t *pud, int write)
2339 {
2340 BUG();
2341 return NULL;
2342 }
2343
2344 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2345 struct page **pages, struct vm_area_struct **vmas,
2346 unsigned long *position, int *length, int i,
2347 unsigned int flags)
2348 {
2349 unsigned long pfn_offset;
2350 unsigned long vaddr = *position;
2351 int remainder = *length;
2352 struct hstate *h = hstate_vma(vma);
2353
2354 spin_lock(&mm->page_table_lock);
2355 while (vaddr < vma->vm_end && remainder) {
2356 pte_t *pte;
2357 int absent;
2358 struct page *page;
2359
2360 /*
2361 * Some archs (sparc64, sh*) have multiple pte_ts to
2362 * each hugepage. We have to make sure we get the
2363 * first, for the page indexing below to work.
2364 */
2365 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2366 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2367
2368 /*
2369 * When coredumping, it suits get_dump_page if we just return
2370 * an error where there's an empty slot with no huge pagecache
2371 * to back it. This way, we avoid allocating a hugepage, and
2372 * the sparse dumpfile avoids allocating disk blocks, but its
2373 * huge holes still show up with zeroes where they need to be.
2374 */
2375 if (absent && (flags & FOLL_DUMP) &&
2376 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2377 remainder = 0;
2378 break;
2379 }
2380
2381 if (absent ||
2382 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2383 int ret;
2384
2385 spin_unlock(&mm->page_table_lock);
2386 ret = hugetlb_fault(mm, vma, vaddr,
2387 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2388 spin_lock(&mm->page_table_lock);
2389 if (!(ret & VM_FAULT_ERROR))
2390 continue;
2391
2392 remainder = 0;
2393 break;
2394 }
2395
2396 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2397 page = pte_page(huge_ptep_get(pte));
2398 same_page:
2399 if (pages) {
2400 pages[i] = mem_map_offset(page, pfn_offset);
2401 get_page(pages[i]);
2402 }
2403
2404 if (vmas)
2405 vmas[i] = vma;
2406
2407 vaddr += PAGE_SIZE;
2408 ++pfn_offset;
2409 --remainder;
2410 ++i;
2411 if (vaddr < vma->vm_end && remainder &&
2412 pfn_offset < pages_per_huge_page(h)) {
2413 /*
2414 * We use pfn_offset to avoid touching the pageframes
2415 * of this compound page.
2416 */
2417 goto same_page;
2418 }
2419 }
2420 spin_unlock(&mm->page_table_lock);
2421 *length = remainder;
2422 *position = vaddr;
2423
2424 return i ? i : -EFAULT;
2425 }
2426
2427 void hugetlb_change_protection(struct vm_area_struct *vma,
2428 unsigned long address, unsigned long end, pgprot_t newprot)
2429 {
2430 struct mm_struct *mm = vma->vm_mm;
2431 unsigned long start = address;
2432 pte_t *ptep;
2433 pte_t pte;
2434 struct hstate *h = hstate_vma(vma);
2435
2436 BUG_ON(address >= end);
2437 flush_cache_range(vma, address, end);
2438
2439 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2440 spin_lock(&mm->page_table_lock);
2441 for (; address < end; address += huge_page_size(h)) {
2442 ptep = huge_pte_offset(mm, address);
2443 if (!ptep)
2444 continue;
2445 if (huge_pmd_unshare(mm, &address, ptep))
2446 continue;
2447 if (!huge_pte_none(huge_ptep_get(ptep))) {
2448 pte = huge_ptep_get_and_clear(mm, address, ptep);
2449 pte = pte_mkhuge(pte_modify(pte, newprot));
2450 set_huge_pte_at(mm, address, ptep, pte);
2451 }
2452 }
2453 spin_unlock(&mm->page_table_lock);
2454 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2455
2456 flush_tlb_range(vma, start, end);
2457 }
2458
2459 int hugetlb_reserve_pages(struct inode *inode,
2460 long from, long to,
2461 struct vm_area_struct *vma,
2462 int acctflag)
2463 {
2464 long ret, chg;
2465 struct hstate *h = hstate_inode(inode);
2466
2467 /*
2468 * Only apply hugepage reservation if asked. At fault time, an
2469 * attempt will be made for VM_NORESERVE to allocate a page
2470 * and filesystem quota without using reserves
2471 */
2472 if (acctflag & VM_NORESERVE)
2473 return 0;
2474
2475 /*
2476 * Shared mappings base their reservation on the number of pages that
2477 * are already allocated on behalf of the file. Private mappings need
2478 * to reserve the full area even if read-only as mprotect() may be
2479 * called to make the mapping read-write. Assume !vma is a shm mapping
2480 */
2481 if (!vma || vma->vm_flags & VM_MAYSHARE)
2482 chg = region_chg(&inode->i_mapping->private_list, from, to);
2483 else {
2484 struct resv_map *resv_map = resv_map_alloc();
2485 if (!resv_map)
2486 return -ENOMEM;
2487
2488 chg = to - from;
2489
2490 set_vma_resv_map(vma, resv_map);
2491 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2492 }
2493
2494 if (chg < 0)
2495 return chg;
2496
2497 /* There must be enough filesystem quota for the mapping */
2498 if (hugetlb_get_quota(inode->i_mapping, chg))
2499 return -ENOSPC;
2500
2501 /*
2502 * Check enough hugepages are available for the reservation.
2503 * Hand back the quota if there are not
2504 */
2505 ret = hugetlb_acct_memory(h, chg);
2506 if (ret < 0) {
2507 hugetlb_put_quota(inode->i_mapping, chg);
2508 return ret;
2509 }
2510
2511 /*
2512 * Account for the reservations made. Shared mappings record regions
2513 * that have reservations as they are shared by multiple VMAs.
2514 * When the last VMA disappears, the region map says how much
2515 * the reservation was and the page cache tells how much of
2516 * the reservation was consumed. Private mappings are per-VMA and
2517 * only the consumed reservations are tracked. When the VMA
2518 * disappears, the original reservation is the VMA size and the
2519 * consumed reservations are stored in the map. Hence, nothing
2520 * else has to be done for private mappings here
2521 */
2522 if (!vma || vma->vm_flags & VM_MAYSHARE)
2523 region_add(&inode->i_mapping->private_list, from, to);
2524 return 0;
2525 }
2526
2527 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2528 {
2529 struct hstate *h = hstate_inode(inode);
2530 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2531
2532 spin_lock(&inode->i_lock);
2533 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2534 spin_unlock(&inode->i_lock);
2535
2536 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2537 hugetlb_acct_memory(h, -(chg - freed));
2538 }