]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - mm/hugetlb_vmemmap.c
crypto: s5p-sss - remove unnecessary alignmask for ahashes
[thirdparty/kernel/linux.git] / mm / hugetlb_vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * HugeTLB Vmemmap Optimization (HVO)
4 *
5 * Copyright (c) 2020, ByteDance. All rights reserved.
6 *
7 * Author: Muchun Song <songmuchun@bytedance.com>
8 *
9 * See Documentation/mm/vmemmap_dedup.rst
10 */
11 #define pr_fmt(fmt) "HugeTLB: " fmt
12
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include "hugetlb_vmemmap.h"
19
20 /**
21 * struct vmemmap_remap_walk - walk vmemmap page table
22 *
23 * @remap_pte: called for each lowest-level entry (PTE).
24 * @nr_walked: the number of walked pte.
25 * @reuse_page: the page which is reused for the tail vmemmap pages.
26 * @reuse_addr: the virtual address of the @reuse_page page.
27 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
28 * or is mapped from.
29 */
30 struct vmemmap_remap_walk {
31 void (*remap_pte)(pte_t *pte, unsigned long addr,
32 struct vmemmap_remap_walk *walk);
33 unsigned long nr_walked;
34 struct page *reuse_page;
35 unsigned long reuse_addr;
36 struct list_head *vmemmap_pages;
37 };
38
39 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
40 {
41 pmd_t __pmd;
42 int i;
43 unsigned long addr = start;
44 struct page *head;
45 pte_t *pgtable;
46
47 spin_lock(&init_mm.page_table_lock);
48 head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
49 spin_unlock(&init_mm.page_table_lock);
50
51 if (!head)
52 return 0;
53
54 pgtable = pte_alloc_one_kernel(&init_mm);
55 if (!pgtable)
56 return -ENOMEM;
57
58 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
59
60 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
61 pte_t entry, *pte;
62 pgprot_t pgprot = PAGE_KERNEL;
63
64 entry = mk_pte(head + i, pgprot);
65 pte = pte_offset_kernel(&__pmd, addr);
66 set_pte_at(&init_mm, addr, pte, entry);
67 }
68
69 spin_lock(&init_mm.page_table_lock);
70 if (likely(pmd_leaf(*pmd))) {
71 /*
72 * Higher order allocations from buddy allocator must be able to
73 * be treated as indepdenent small pages (as they can be freed
74 * individually).
75 */
76 if (!PageReserved(head))
77 split_page(head, get_order(PMD_SIZE));
78
79 /* Make pte visible before pmd. See comment in pmd_install(). */
80 smp_wmb();
81 pmd_populate_kernel(&init_mm, pmd, pgtable);
82 flush_tlb_kernel_range(start, start + PMD_SIZE);
83 } else {
84 pte_free_kernel(&init_mm, pgtable);
85 }
86 spin_unlock(&init_mm.page_table_lock);
87
88 return 0;
89 }
90
91 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
92 unsigned long end,
93 struct vmemmap_remap_walk *walk)
94 {
95 pte_t *pte = pte_offset_kernel(pmd, addr);
96
97 /*
98 * The reuse_page is found 'first' in table walk before we start
99 * remapping (which is calling @walk->remap_pte).
100 */
101 if (!walk->reuse_page) {
102 walk->reuse_page = pte_page(ptep_get(pte));
103 /*
104 * Because the reuse address is part of the range that we are
105 * walking, skip the reuse address range.
106 */
107 addr += PAGE_SIZE;
108 pte++;
109 walk->nr_walked++;
110 }
111
112 for (; addr != end; addr += PAGE_SIZE, pte++) {
113 walk->remap_pte(pte, addr, walk);
114 walk->nr_walked++;
115 }
116 }
117
118 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
119 unsigned long end,
120 struct vmemmap_remap_walk *walk)
121 {
122 pmd_t *pmd;
123 unsigned long next;
124
125 pmd = pmd_offset(pud, addr);
126 do {
127 int ret;
128
129 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
130 if (ret)
131 return ret;
132
133 next = pmd_addr_end(addr, end);
134 vmemmap_pte_range(pmd, addr, next, walk);
135 } while (pmd++, addr = next, addr != end);
136
137 return 0;
138 }
139
140 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
141 unsigned long end,
142 struct vmemmap_remap_walk *walk)
143 {
144 pud_t *pud;
145 unsigned long next;
146
147 pud = pud_offset(p4d, addr);
148 do {
149 int ret;
150
151 next = pud_addr_end(addr, end);
152 ret = vmemmap_pmd_range(pud, addr, next, walk);
153 if (ret)
154 return ret;
155 } while (pud++, addr = next, addr != end);
156
157 return 0;
158 }
159
160 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
161 unsigned long end,
162 struct vmemmap_remap_walk *walk)
163 {
164 p4d_t *p4d;
165 unsigned long next;
166
167 p4d = p4d_offset(pgd, addr);
168 do {
169 int ret;
170
171 next = p4d_addr_end(addr, end);
172 ret = vmemmap_pud_range(p4d, addr, next, walk);
173 if (ret)
174 return ret;
175 } while (p4d++, addr = next, addr != end);
176
177 return 0;
178 }
179
180 static int vmemmap_remap_range(unsigned long start, unsigned long end,
181 struct vmemmap_remap_walk *walk)
182 {
183 unsigned long addr = start;
184 unsigned long next;
185 pgd_t *pgd;
186
187 VM_BUG_ON(!PAGE_ALIGNED(start));
188 VM_BUG_ON(!PAGE_ALIGNED(end));
189
190 pgd = pgd_offset_k(addr);
191 do {
192 int ret;
193
194 next = pgd_addr_end(addr, end);
195 ret = vmemmap_p4d_range(pgd, addr, next, walk);
196 if (ret)
197 return ret;
198 } while (pgd++, addr = next, addr != end);
199
200 flush_tlb_kernel_range(start, end);
201
202 return 0;
203 }
204
205 /*
206 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
207 * allocator or buddy allocator. If the PG_reserved flag is set, it means
208 * that it allocated from the memblock allocator, just free it via the
209 * free_bootmem_page(). Otherwise, use __free_page().
210 */
211 static inline void free_vmemmap_page(struct page *page)
212 {
213 if (PageReserved(page))
214 free_bootmem_page(page);
215 else
216 __free_page(page);
217 }
218
219 /* Free a list of the vmemmap pages */
220 static void free_vmemmap_page_list(struct list_head *list)
221 {
222 struct page *page, *next;
223
224 list_for_each_entry_safe(page, next, list, lru)
225 free_vmemmap_page(page);
226 }
227
228 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
229 struct vmemmap_remap_walk *walk)
230 {
231 /*
232 * Remap the tail pages as read-only to catch illegal write operation
233 * to the tail pages.
234 */
235 pgprot_t pgprot = PAGE_KERNEL_RO;
236 struct page *page = pte_page(ptep_get(pte));
237 pte_t entry;
238
239 /* Remapping the head page requires r/w */
240 if (unlikely(addr == walk->reuse_addr)) {
241 pgprot = PAGE_KERNEL;
242 list_del(&walk->reuse_page->lru);
243
244 /*
245 * Makes sure that preceding stores to the page contents from
246 * vmemmap_remap_free() become visible before the set_pte_at()
247 * write.
248 */
249 smp_wmb();
250 }
251
252 entry = mk_pte(walk->reuse_page, pgprot);
253 list_add_tail(&page->lru, walk->vmemmap_pages);
254 set_pte_at(&init_mm, addr, pte, entry);
255 }
256
257 /*
258 * How many struct page structs need to be reset. When we reuse the head
259 * struct page, the special metadata (e.g. page->flags or page->mapping)
260 * cannot copy to the tail struct page structs. The invalid value will be
261 * checked in the free_tail_page_prepare(). In order to avoid the message
262 * of "corrupted mapping in tail page". We need to reset at least 3 (one
263 * head struct page struct and two tail struct page structs) struct page
264 * structs.
265 */
266 #define NR_RESET_STRUCT_PAGE 3
267
268 static inline void reset_struct_pages(struct page *start)
269 {
270 struct page *from = start + NR_RESET_STRUCT_PAGE;
271
272 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
273 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
274 }
275
276 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
277 struct vmemmap_remap_walk *walk)
278 {
279 pgprot_t pgprot = PAGE_KERNEL;
280 struct page *page;
281 void *to;
282
283 BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
284
285 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
286 list_del(&page->lru);
287 to = page_to_virt(page);
288 copy_page(to, (void *)walk->reuse_addr);
289 reset_struct_pages(to);
290
291 /*
292 * Makes sure that preceding stores to the page contents become visible
293 * before the set_pte_at() write.
294 */
295 smp_wmb();
296 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
297 }
298
299 /**
300 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
301 * to the page which @reuse is mapped to, then free vmemmap
302 * which the range are mapped to.
303 * @start: start address of the vmemmap virtual address range that we want
304 * to remap.
305 * @end: end address of the vmemmap virtual address range that we want to
306 * remap.
307 * @reuse: reuse address.
308 *
309 * Return: %0 on success, negative error code otherwise.
310 */
311 static int vmemmap_remap_free(unsigned long start, unsigned long end,
312 unsigned long reuse)
313 {
314 int ret;
315 LIST_HEAD(vmemmap_pages);
316 struct vmemmap_remap_walk walk = {
317 .remap_pte = vmemmap_remap_pte,
318 .reuse_addr = reuse,
319 .vmemmap_pages = &vmemmap_pages,
320 };
321 int nid = page_to_nid((struct page *)start);
322 gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY |
323 __GFP_NOWARN;
324
325 /*
326 * Allocate a new head vmemmap page to avoid breaking a contiguous
327 * block of struct page memory when freeing it back to page allocator
328 * in free_vmemmap_page_list(). This will allow the likely contiguous
329 * struct page backing memory to be kept contiguous and allowing for
330 * more allocations of hugepages. Fallback to the currently
331 * mapped head page in case should it fail to allocate.
332 */
333 walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
334 if (walk.reuse_page) {
335 copy_page(page_to_virt(walk.reuse_page),
336 (void *)walk.reuse_addr);
337 list_add(&walk.reuse_page->lru, &vmemmap_pages);
338 }
339
340 /*
341 * In order to make remapping routine most efficient for the huge pages,
342 * the routine of vmemmap page table walking has the following rules
343 * (see more details from the vmemmap_pte_range()):
344 *
345 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
346 * should be continuous.
347 * - The @reuse address is part of the range [@reuse, @end) that we are
348 * walking which is passed to vmemmap_remap_range().
349 * - The @reuse address is the first in the complete range.
350 *
351 * So we need to make sure that @start and @reuse meet the above rules.
352 */
353 BUG_ON(start - reuse != PAGE_SIZE);
354
355 mmap_read_lock(&init_mm);
356 ret = vmemmap_remap_range(reuse, end, &walk);
357 if (ret && walk.nr_walked) {
358 end = reuse + walk.nr_walked * PAGE_SIZE;
359 /*
360 * vmemmap_pages contains pages from the previous
361 * vmemmap_remap_range call which failed. These
362 * are pages which were removed from the vmemmap.
363 * They will be restored in the following call.
364 */
365 walk = (struct vmemmap_remap_walk) {
366 .remap_pte = vmemmap_restore_pte,
367 .reuse_addr = reuse,
368 .vmemmap_pages = &vmemmap_pages,
369 };
370
371 vmemmap_remap_range(reuse, end, &walk);
372 }
373 mmap_read_unlock(&init_mm);
374
375 free_vmemmap_page_list(&vmemmap_pages);
376
377 return ret;
378 }
379
380 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
381 struct list_head *list)
382 {
383 gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_THISNODE;
384 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
385 int nid = page_to_nid((struct page *)start);
386 struct page *page, *next;
387
388 while (nr_pages--) {
389 page = alloc_pages_node(nid, gfp_mask, 0);
390 if (!page)
391 goto out;
392 list_add_tail(&page->lru, list);
393 }
394
395 return 0;
396 out:
397 list_for_each_entry_safe(page, next, list, lru)
398 __free_page(page);
399 return -ENOMEM;
400 }
401
402 /**
403 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
404 * to the page which is from the @vmemmap_pages
405 * respectively.
406 * @start: start address of the vmemmap virtual address range that we want
407 * to remap.
408 * @end: end address of the vmemmap virtual address range that we want to
409 * remap.
410 * @reuse: reuse address.
411 *
412 * Return: %0 on success, negative error code otherwise.
413 */
414 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
415 unsigned long reuse)
416 {
417 LIST_HEAD(vmemmap_pages);
418 struct vmemmap_remap_walk walk = {
419 .remap_pte = vmemmap_restore_pte,
420 .reuse_addr = reuse,
421 .vmemmap_pages = &vmemmap_pages,
422 };
423
424 /* See the comment in the vmemmap_remap_free(). */
425 BUG_ON(start - reuse != PAGE_SIZE);
426
427 if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
428 return -ENOMEM;
429
430 mmap_read_lock(&init_mm);
431 vmemmap_remap_range(reuse, end, &walk);
432 mmap_read_unlock(&init_mm);
433
434 return 0;
435 }
436
437 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
438 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
439
440 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
441 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
442
443 /**
444 * hugetlb_vmemmap_restore - restore previously optimized (by
445 * hugetlb_vmemmap_optimize()) vmemmap pages which
446 * will be reallocated and remapped.
447 * @h: struct hstate.
448 * @head: the head page whose vmemmap pages will be restored.
449 *
450 * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
451 * negative error code otherwise.
452 */
453 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
454 {
455 int ret;
456 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
457 unsigned long vmemmap_reuse;
458
459 if (!HPageVmemmapOptimized(head))
460 return 0;
461
462 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
463 vmemmap_reuse = vmemmap_start;
464 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
465
466 /*
467 * The pages which the vmemmap virtual address range [@vmemmap_start,
468 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
469 * the range is mapped to the page which @vmemmap_reuse is mapped to.
470 * When a HugeTLB page is freed to the buddy allocator, previously
471 * discarded vmemmap pages must be allocated and remapping.
472 */
473 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse);
474 if (!ret) {
475 ClearHPageVmemmapOptimized(head);
476 static_branch_dec(&hugetlb_optimize_vmemmap_key);
477 }
478
479 return ret;
480 }
481
482 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
483 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
484 {
485 if (!READ_ONCE(vmemmap_optimize_enabled))
486 return false;
487
488 if (!hugetlb_vmemmap_optimizable(h))
489 return false;
490
491 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
492 pmd_t *pmdp, pmd;
493 struct page *vmemmap_page;
494 unsigned long vaddr = (unsigned long)head;
495
496 /*
497 * Only the vmemmap page's vmemmap page can be self-hosted.
498 * Walking the page tables to find the backing page of the
499 * vmemmap page.
500 */
501 pmdp = pmd_off_k(vaddr);
502 /*
503 * The READ_ONCE() is used to stabilize *pmdp in a register or
504 * on the stack so that it will stop changing under the code.
505 * The only concurrent operation where it can be changed is
506 * split_vmemmap_huge_pmd() (*pmdp will be stable after this
507 * operation).
508 */
509 pmd = READ_ONCE(*pmdp);
510 if (pmd_leaf(pmd))
511 vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
512 else
513 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
514 /*
515 * Due to HugeTLB alignment requirements and the vmemmap pages
516 * being at the start of the hotplugged memory region in
517 * memory_hotplug.memmap_on_memory case. Checking any vmemmap
518 * page's vmemmap page if it is marked as VmemmapSelfHosted is
519 * sufficient.
520 *
521 * [ hotplugged memory ]
522 * [ section ][...][ section ]
523 * [ vmemmap ][ usable memory ]
524 * ^ | | |
525 * +---+ | |
526 * ^ | |
527 * +-------+ |
528 * ^ |
529 * +-------------------------------------------+
530 */
531 if (PageVmemmapSelfHosted(vmemmap_page))
532 return false;
533 }
534
535 return true;
536 }
537
538 /**
539 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
540 * @h: struct hstate.
541 * @head: the head page whose vmemmap pages will be optimized.
542 *
543 * This function only tries to optimize @head's vmemmap pages and does not
544 * guarantee that the optimization will succeed after it returns. The caller
545 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
546 * have been optimized.
547 */
548 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
549 {
550 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
551 unsigned long vmemmap_reuse;
552
553 if (!vmemmap_should_optimize(h, head))
554 return;
555
556 static_branch_inc(&hugetlb_optimize_vmemmap_key);
557
558 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
559 vmemmap_reuse = vmemmap_start;
560 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
561
562 /*
563 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
564 * to the page which @vmemmap_reuse is mapped to, then free the pages
565 * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
566 */
567 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
568 static_branch_dec(&hugetlb_optimize_vmemmap_key);
569 else
570 SetHPageVmemmapOptimized(head);
571 }
572
573 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
574 {
575 .procname = "hugetlb_optimize_vmemmap",
576 .data = &vmemmap_optimize_enabled,
577 .maxlen = sizeof(vmemmap_optimize_enabled),
578 .mode = 0644,
579 .proc_handler = proc_dobool,
580 },
581 { }
582 };
583
584 static int __init hugetlb_vmemmap_init(void)
585 {
586 const struct hstate *h;
587
588 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
589 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
590
591 for_each_hstate(h) {
592 if (hugetlb_vmemmap_optimizable(h)) {
593 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
594 break;
595 }
596 }
597 return 0;
598 }
599 late_initcall(hugetlb_vmemmap_init);