]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/internal.h
dt-bindings: arm: tegra: ahb: Convert to json-schema
[thirdparty/linux.git] / mm / internal.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15
16 struct folio_batch;
17
18 /*
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
23 */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27 __GFP_NOLOCKDEP)
28
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37
38 /*
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
41 */
42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
45 \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47 __warned = true; \
48 WARN_ON(1); \
49 } \
50 unlikely(__ret_warn_once); \
51 })
52
53 void page_writeback_init(void);
54
55 /*
56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60 */
61 #define COMPOUND_MAPPED 0x800000
62 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1)
63
64 /*
65 * How many individual pages have an elevated _mapcount. Excludes
66 * the folio's entire_mapcount.
67 */
68 static inline int folio_nr_pages_mapped(struct folio *folio)
69 {
70 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
71 }
72
73 static inline void *folio_raw_mapping(struct folio *folio)
74 {
75 unsigned long mapping = (unsigned long)folio->mapping;
76
77 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
78 }
79
80 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
81 int nr_throttled);
82 static inline void acct_reclaim_writeback(struct folio *folio)
83 {
84 pg_data_t *pgdat = folio_pgdat(folio);
85 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
86
87 if (nr_throttled)
88 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
89 }
90
91 static inline void wake_throttle_isolated(pg_data_t *pgdat)
92 {
93 wait_queue_head_t *wqh;
94
95 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
96 if (waitqueue_active(wqh))
97 wake_up(wqh);
98 }
99
100 vm_fault_t do_swap_page(struct vm_fault *vmf);
101 void folio_rotate_reclaimable(struct folio *folio);
102 bool __folio_end_writeback(struct folio *folio);
103 void deactivate_file_folio(struct folio *folio);
104 void folio_activate(struct folio *folio);
105
106 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
107 struct vm_area_struct *start_vma, unsigned long floor,
108 unsigned long ceiling, bool mm_wr_locked);
109 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
110
111 struct zap_details;
112 void unmap_page_range(struct mmu_gather *tlb,
113 struct vm_area_struct *vma,
114 unsigned long addr, unsigned long end,
115 struct zap_details *details);
116
117 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
118 unsigned int order);
119 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
120 static inline void force_page_cache_readahead(struct address_space *mapping,
121 struct file *file, pgoff_t index, unsigned long nr_to_read)
122 {
123 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
124 force_page_cache_ra(&ractl, nr_to_read);
125 }
126
127 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
128 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
129 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
130 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
131 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
132 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
133 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
134 loff_t end);
135 long invalidate_inode_page(struct page *page);
136 unsigned long mapping_try_invalidate(struct address_space *mapping,
137 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
138
139 /**
140 * folio_evictable - Test whether a folio is evictable.
141 * @folio: The folio to test.
142 *
143 * Test whether @folio is evictable -- i.e., should be placed on
144 * active/inactive lists vs unevictable list.
145 *
146 * Reasons folio might not be evictable:
147 * 1. folio's mapping marked unevictable
148 * 2. One of the pages in the folio is part of an mlocked VMA
149 */
150 static inline bool folio_evictable(struct folio *folio)
151 {
152 bool ret;
153
154 /* Prevent address_space of inode and swap cache from being freed */
155 rcu_read_lock();
156 ret = !mapping_unevictable(folio_mapping(folio)) &&
157 !folio_test_mlocked(folio);
158 rcu_read_unlock();
159 return ret;
160 }
161
162 /*
163 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
164 * a count of one.
165 */
166 static inline void set_page_refcounted(struct page *page)
167 {
168 VM_BUG_ON_PAGE(PageTail(page), page);
169 VM_BUG_ON_PAGE(page_ref_count(page), page);
170 set_page_count(page, 1);
171 }
172
173 extern unsigned long highest_memmap_pfn;
174
175 /*
176 * Maximum number of reclaim retries without progress before the OOM
177 * killer is consider the only way forward.
178 */
179 #define MAX_RECLAIM_RETRIES 16
180
181 /*
182 * in mm/vmscan.c:
183 */
184 bool isolate_lru_page(struct page *page);
185 bool folio_isolate_lru(struct folio *folio);
186 void putback_lru_page(struct page *page);
187 void folio_putback_lru(struct folio *folio);
188 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
189
190 /*
191 * in mm/rmap.c:
192 */
193 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
194
195 /*
196 * in mm/page_alloc.c
197 */
198 #define K(x) ((x) << (PAGE_SHIFT-10))
199
200 extern char * const zone_names[MAX_NR_ZONES];
201
202 /* perform sanity checks on struct pages being allocated or freed */
203 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
204
205 extern int min_free_kbytes;
206
207 void setup_per_zone_wmarks(void);
208 void calculate_min_free_kbytes(void);
209 int __meminit init_per_zone_wmark_min(void);
210 void page_alloc_sysctl_init(void);
211
212 /*
213 * Structure for holding the mostly immutable allocation parameters passed
214 * between functions involved in allocations, including the alloc_pages*
215 * family of functions.
216 *
217 * nodemask, migratetype and highest_zoneidx are initialized only once in
218 * __alloc_pages() and then never change.
219 *
220 * zonelist, preferred_zone and highest_zoneidx are set first in
221 * __alloc_pages() for the fast path, and might be later changed
222 * in __alloc_pages_slowpath(). All other functions pass the whole structure
223 * by a const pointer.
224 */
225 struct alloc_context {
226 struct zonelist *zonelist;
227 nodemask_t *nodemask;
228 struct zoneref *preferred_zoneref;
229 int migratetype;
230
231 /*
232 * highest_zoneidx represents highest usable zone index of
233 * the allocation request. Due to the nature of the zone,
234 * memory on lower zone than the highest_zoneidx will be
235 * protected by lowmem_reserve[highest_zoneidx].
236 *
237 * highest_zoneidx is also used by reclaim/compaction to limit
238 * the target zone since higher zone than this index cannot be
239 * usable for this allocation request.
240 */
241 enum zone_type highest_zoneidx;
242 bool spread_dirty_pages;
243 };
244
245 /*
246 * This function returns the order of a free page in the buddy system. In
247 * general, page_zone(page)->lock must be held by the caller to prevent the
248 * page from being allocated in parallel and returning garbage as the order.
249 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
250 * page cannot be allocated or merged in parallel. Alternatively, it must
251 * handle invalid values gracefully, and use buddy_order_unsafe() below.
252 */
253 static inline unsigned int buddy_order(struct page *page)
254 {
255 /* PageBuddy() must be checked by the caller */
256 return page_private(page);
257 }
258
259 /*
260 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
261 * PageBuddy() should be checked first by the caller to minimize race window,
262 * and invalid values must be handled gracefully.
263 *
264 * READ_ONCE is used so that if the caller assigns the result into a local
265 * variable and e.g. tests it for valid range before using, the compiler cannot
266 * decide to remove the variable and inline the page_private(page) multiple
267 * times, potentially observing different values in the tests and the actual
268 * use of the result.
269 */
270 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
271
272 /*
273 * This function checks whether a page is free && is the buddy
274 * we can coalesce a page and its buddy if
275 * (a) the buddy is not in a hole (check before calling!) &&
276 * (b) the buddy is in the buddy system &&
277 * (c) a page and its buddy have the same order &&
278 * (d) a page and its buddy are in the same zone.
279 *
280 * For recording whether a page is in the buddy system, we set PageBuddy.
281 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
282 *
283 * For recording page's order, we use page_private(page).
284 */
285 static inline bool page_is_buddy(struct page *page, struct page *buddy,
286 unsigned int order)
287 {
288 if (!page_is_guard(buddy) && !PageBuddy(buddy))
289 return false;
290
291 if (buddy_order(buddy) != order)
292 return false;
293
294 /*
295 * zone check is done late to avoid uselessly calculating
296 * zone/node ids for pages that could never merge.
297 */
298 if (page_zone_id(page) != page_zone_id(buddy))
299 return false;
300
301 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
302
303 return true;
304 }
305
306 /*
307 * Locate the struct page for both the matching buddy in our
308 * pair (buddy1) and the combined O(n+1) page they form (page).
309 *
310 * 1) Any buddy B1 will have an order O twin B2 which satisfies
311 * the following equation:
312 * B2 = B1 ^ (1 << O)
313 * For example, if the starting buddy (buddy2) is #8 its order
314 * 1 buddy is #10:
315 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
316 *
317 * 2) Any buddy B will have an order O+1 parent P which
318 * satisfies the following equation:
319 * P = B & ~(1 << O)
320 *
321 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
322 */
323 static inline unsigned long
324 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
325 {
326 return page_pfn ^ (1 << order);
327 }
328
329 /*
330 * Find the buddy of @page and validate it.
331 * @page: The input page
332 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
333 * function is used in the performance-critical __free_one_page().
334 * @order: The order of the page
335 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
336 * page_to_pfn().
337 *
338 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
339 * not the same as @page. The validation is necessary before use it.
340 *
341 * Return: the found buddy page or NULL if not found.
342 */
343 static inline struct page *find_buddy_page_pfn(struct page *page,
344 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
345 {
346 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
347 struct page *buddy;
348
349 buddy = page + (__buddy_pfn - pfn);
350 if (buddy_pfn)
351 *buddy_pfn = __buddy_pfn;
352
353 if (page_is_buddy(page, buddy, order))
354 return buddy;
355 return NULL;
356 }
357
358 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
359 unsigned long end_pfn, struct zone *zone);
360
361 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
362 unsigned long end_pfn, struct zone *zone)
363 {
364 if (zone->contiguous)
365 return pfn_to_page(start_pfn);
366
367 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
368 }
369
370 void set_zone_contiguous(struct zone *zone);
371
372 static inline void clear_zone_contiguous(struct zone *zone)
373 {
374 zone->contiguous = false;
375 }
376
377 extern int __isolate_free_page(struct page *page, unsigned int order);
378 extern void __putback_isolated_page(struct page *page, unsigned int order,
379 int mt);
380 extern void memblock_free_pages(struct page *page, unsigned long pfn,
381 unsigned int order);
382 extern void __free_pages_core(struct page *page, unsigned int order);
383
384 /*
385 * This will have no effect, other than possibly generating a warning, if the
386 * caller passes in a non-large folio.
387 */
388 static inline void folio_set_order(struct folio *folio, unsigned int order)
389 {
390 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
391 return;
392
393 folio->_folio_order = order;
394 #ifdef CONFIG_64BIT
395 folio->_folio_nr_pages = 1U << order;
396 #endif
397 }
398
399 static inline void prep_compound_head(struct page *page, unsigned int order)
400 {
401 struct folio *folio = (struct folio *)page;
402
403 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
404 folio_set_order(folio, order);
405 atomic_set(&folio->_entire_mapcount, -1);
406 atomic_set(&folio->_nr_pages_mapped, 0);
407 atomic_set(&folio->_pincount, 0);
408 }
409
410 static inline void prep_compound_tail(struct page *head, int tail_idx)
411 {
412 struct page *p = head + tail_idx;
413
414 p->mapping = TAIL_MAPPING;
415 set_compound_head(p, head);
416 set_page_private(p, 0);
417 }
418
419 extern void prep_compound_page(struct page *page, unsigned int order);
420
421 extern void post_alloc_hook(struct page *page, unsigned int order,
422 gfp_t gfp_flags);
423 extern int user_min_free_kbytes;
424
425 extern void free_unref_page(struct page *page, unsigned int order);
426 extern void free_unref_page_list(struct list_head *list);
427
428 extern void zone_pcp_reset(struct zone *zone);
429 extern void zone_pcp_disable(struct zone *zone);
430 extern void zone_pcp_enable(struct zone *zone);
431 extern void zone_pcp_init(struct zone *zone);
432
433 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
434 phys_addr_t min_addr,
435 int nid, bool exact_nid);
436
437 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
438 unsigned long, enum meminit_context, struct vmem_altmap *, int);
439
440
441 int split_free_page(struct page *free_page,
442 unsigned int order, unsigned long split_pfn_offset);
443
444 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
445
446 /*
447 * in mm/compaction.c
448 */
449 /*
450 * compact_control is used to track pages being migrated and the free pages
451 * they are being migrated to during memory compaction. The free_pfn starts
452 * at the end of a zone and migrate_pfn begins at the start. Movable pages
453 * are moved to the end of a zone during a compaction run and the run
454 * completes when free_pfn <= migrate_pfn
455 */
456 struct compact_control {
457 struct list_head freepages; /* List of free pages to migrate to */
458 struct list_head migratepages; /* List of pages being migrated */
459 unsigned int nr_freepages; /* Number of isolated free pages */
460 unsigned int nr_migratepages; /* Number of pages to migrate */
461 unsigned long free_pfn; /* isolate_freepages search base */
462 /*
463 * Acts as an in/out parameter to page isolation for migration.
464 * isolate_migratepages uses it as a search base.
465 * isolate_migratepages_block will update the value to the next pfn
466 * after the last isolated one.
467 */
468 unsigned long migrate_pfn;
469 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
470 struct zone *zone;
471 unsigned long total_migrate_scanned;
472 unsigned long total_free_scanned;
473 unsigned short fast_search_fail;/* failures to use free list searches */
474 short search_order; /* order to start a fast search at */
475 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
476 int order; /* order a direct compactor needs */
477 int migratetype; /* migratetype of direct compactor */
478 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
479 const int highest_zoneidx; /* zone index of a direct compactor */
480 enum migrate_mode mode; /* Async or sync migration mode */
481 bool ignore_skip_hint; /* Scan blocks even if marked skip */
482 bool no_set_skip_hint; /* Don't mark blocks for skipping */
483 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
484 bool direct_compaction; /* False from kcompactd or /proc/... */
485 bool proactive_compaction; /* kcompactd proactive compaction */
486 bool whole_zone; /* Whole zone should/has been scanned */
487 bool contended; /* Signal lock contention */
488 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
489 * when there are potentially transient
490 * isolation or migration failures to
491 * ensure forward progress.
492 */
493 bool alloc_contig; /* alloc_contig_range allocation */
494 };
495
496 /*
497 * Used in direct compaction when a page should be taken from the freelists
498 * immediately when one is created during the free path.
499 */
500 struct capture_control {
501 struct compact_control *cc;
502 struct page *page;
503 };
504
505 unsigned long
506 isolate_freepages_range(struct compact_control *cc,
507 unsigned long start_pfn, unsigned long end_pfn);
508 int
509 isolate_migratepages_range(struct compact_control *cc,
510 unsigned long low_pfn, unsigned long end_pfn);
511
512 int __alloc_contig_migrate_range(struct compact_control *cc,
513 unsigned long start, unsigned long end);
514
515 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
516 void init_cma_reserved_pageblock(struct page *page);
517
518 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
519
520 int find_suitable_fallback(struct free_area *area, unsigned int order,
521 int migratetype, bool only_stealable, bool *can_steal);
522
523 static inline bool free_area_empty(struct free_area *area, int migratetype)
524 {
525 return list_empty(&area->free_list[migratetype]);
526 }
527
528 /*
529 * These three helpers classifies VMAs for virtual memory accounting.
530 */
531
532 /*
533 * Executable code area - executable, not writable, not stack
534 */
535 static inline bool is_exec_mapping(vm_flags_t flags)
536 {
537 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
538 }
539
540 /*
541 * Stack area - automatically grows in one direction
542 *
543 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
544 * do_mmap() forbids all other combinations.
545 */
546 static inline bool is_stack_mapping(vm_flags_t flags)
547 {
548 return (flags & VM_STACK) == VM_STACK;
549 }
550
551 /*
552 * Data area - private, writable, not stack
553 */
554 static inline bool is_data_mapping(vm_flags_t flags)
555 {
556 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
557 }
558
559 /* mm/util.c */
560 struct anon_vma *folio_anon_vma(struct folio *folio);
561
562 #ifdef CONFIG_MMU
563 void unmap_mapping_folio(struct folio *folio);
564 extern long populate_vma_page_range(struct vm_area_struct *vma,
565 unsigned long start, unsigned long end, int *locked);
566 extern long faultin_vma_page_range(struct vm_area_struct *vma,
567 unsigned long start, unsigned long end,
568 bool write, int *locked);
569 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
570 unsigned long bytes);
571 /*
572 * mlock_vma_folio() and munlock_vma_folio():
573 * should be called with vma's mmap_lock held for read or write,
574 * under page table lock for the pte/pmd being added or removed.
575 *
576 * mlock is usually called at the end of page_add_*_rmap(), munlock at
577 * the end of page_remove_rmap(); but new anon folios are managed by
578 * folio_add_lru_vma() calling mlock_new_folio().
579 *
580 * @compound is used to include pmd mappings of THPs, but filter out
581 * pte mappings of THPs, which cannot be consistently counted: a pte
582 * mapping of the THP head cannot be distinguished by the page alone.
583 */
584 void mlock_folio(struct folio *folio);
585 static inline void mlock_vma_folio(struct folio *folio,
586 struct vm_area_struct *vma, bool compound)
587 {
588 /*
589 * The VM_SPECIAL check here serves two purposes.
590 * 1) VM_IO check prevents migration from double-counting during mlock.
591 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
592 * is never left set on a VM_SPECIAL vma, there is an interval while
593 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
594 * still be set while VM_SPECIAL bits are added: so ignore it then.
595 */
596 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
597 (compound || !folio_test_large(folio)))
598 mlock_folio(folio);
599 }
600
601 void munlock_folio(struct folio *folio);
602 static inline void munlock_vma_folio(struct folio *folio,
603 struct vm_area_struct *vma, bool compound)
604 {
605 if (unlikely(vma->vm_flags & VM_LOCKED) &&
606 (compound || !folio_test_large(folio)))
607 munlock_folio(folio);
608 }
609
610 void mlock_new_folio(struct folio *folio);
611 bool need_mlock_drain(int cpu);
612 void mlock_drain_local(void);
613 void mlock_drain_remote(int cpu);
614
615 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
616
617 /*
618 * Return the start of user virtual address at the specific offset within
619 * a vma.
620 */
621 static inline unsigned long
622 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
623 struct vm_area_struct *vma)
624 {
625 unsigned long address;
626
627 if (pgoff >= vma->vm_pgoff) {
628 address = vma->vm_start +
629 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
630 /* Check for address beyond vma (or wrapped through 0?) */
631 if (address < vma->vm_start || address >= vma->vm_end)
632 address = -EFAULT;
633 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
634 /* Test above avoids possibility of wrap to 0 on 32-bit */
635 address = vma->vm_start;
636 } else {
637 address = -EFAULT;
638 }
639 return address;
640 }
641
642 /*
643 * Return the start of user virtual address of a page within a vma.
644 * Returns -EFAULT if all of the page is outside the range of vma.
645 * If page is a compound head, the entire compound page is considered.
646 */
647 static inline unsigned long
648 vma_address(struct page *page, struct vm_area_struct *vma)
649 {
650 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
651 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
652 }
653
654 /*
655 * Then at what user virtual address will none of the range be found in vma?
656 * Assumes that vma_address() already returned a good starting address.
657 */
658 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
659 {
660 struct vm_area_struct *vma = pvmw->vma;
661 pgoff_t pgoff;
662 unsigned long address;
663
664 /* Common case, plus ->pgoff is invalid for KSM */
665 if (pvmw->nr_pages == 1)
666 return pvmw->address + PAGE_SIZE;
667
668 pgoff = pvmw->pgoff + pvmw->nr_pages;
669 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
670 /* Check for address beyond vma (or wrapped through 0?) */
671 if (address < vma->vm_start || address > vma->vm_end)
672 address = vma->vm_end;
673 return address;
674 }
675
676 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
677 struct file *fpin)
678 {
679 int flags = vmf->flags;
680
681 if (fpin)
682 return fpin;
683
684 /*
685 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
686 * anything, so we only pin the file and drop the mmap_lock if only
687 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
688 */
689 if (fault_flag_allow_retry_first(flags) &&
690 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
691 fpin = get_file(vmf->vma->vm_file);
692 mmap_read_unlock(vmf->vma->vm_mm);
693 }
694 return fpin;
695 }
696 #else /* !CONFIG_MMU */
697 static inline void unmap_mapping_folio(struct folio *folio) { }
698 static inline void mlock_new_folio(struct folio *folio) { }
699 static inline bool need_mlock_drain(int cpu) { return false; }
700 static inline void mlock_drain_local(void) { }
701 static inline void mlock_drain_remote(int cpu) { }
702 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
703 {
704 }
705 #endif /* !CONFIG_MMU */
706
707 /* Memory initialisation debug and verification */
708 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
709 DECLARE_STATIC_KEY_TRUE(deferred_pages);
710
711 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
712 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
713
714 enum mminit_level {
715 MMINIT_WARNING,
716 MMINIT_VERIFY,
717 MMINIT_TRACE
718 };
719
720 #ifdef CONFIG_DEBUG_MEMORY_INIT
721
722 extern int mminit_loglevel;
723
724 #define mminit_dprintk(level, prefix, fmt, arg...) \
725 do { \
726 if (level < mminit_loglevel) { \
727 if (level <= MMINIT_WARNING) \
728 pr_warn("mminit::" prefix " " fmt, ##arg); \
729 else \
730 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
731 } \
732 } while (0)
733
734 extern void mminit_verify_pageflags_layout(void);
735 extern void mminit_verify_zonelist(void);
736 #else
737
738 static inline void mminit_dprintk(enum mminit_level level,
739 const char *prefix, const char *fmt, ...)
740 {
741 }
742
743 static inline void mminit_verify_pageflags_layout(void)
744 {
745 }
746
747 static inline void mminit_verify_zonelist(void)
748 {
749 }
750 #endif /* CONFIG_DEBUG_MEMORY_INIT */
751
752 #define NODE_RECLAIM_NOSCAN -2
753 #define NODE_RECLAIM_FULL -1
754 #define NODE_RECLAIM_SOME 0
755 #define NODE_RECLAIM_SUCCESS 1
756
757 #ifdef CONFIG_NUMA
758 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
759 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
760 #else
761 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
762 unsigned int order)
763 {
764 return NODE_RECLAIM_NOSCAN;
765 }
766 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
767 {
768 return NUMA_NO_NODE;
769 }
770 #endif
771
772 /*
773 * mm/memory-failure.c
774 */
775 extern int hwpoison_filter(struct page *p);
776
777 extern u32 hwpoison_filter_dev_major;
778 extern u32 hwpoison_filter_dev_minor;
779 extern u64 hwpoison_filter_flags_mask;
780 extern u64 hwpoison_filter_flags_value;
781 extern u64 hwpoison_filter_memcg;
782 extern u32 hwpoison_filter_enable;
783
784 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
785 unsigned long, unsigned long,
786 unsigned long, unsigned long);
787
788 extern void set_pageblock_order(void);
789 unsigned long reclaim_pages(struct list_head *folio_list);
790 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
791 struct list_head *folio_list);
792 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
793 #define ALLOC_WMARK_MIN WMARK_MIN
794 #define ALLOC_WMARK_LOW WMARK_LOW
795 #define ALLOC_WMARK_HIGH WMARK_HIGH
796 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
797
798 /* Mask to get the watermark bits */
799 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
800
801 /*
802 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
803 * cannot assume a reduced access to memory reserves is sufficient for
804 * !MMU
805 */
806 #ifdef CONFIG_MMU
807 #define ALLOC_OOM 0x08
808 #else
809 #define ALLOC_OOM ALLOC_NO_WATERMARKS
810 #endif
811
812 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
813 * to 25% of the min watermark or
814 * 62.5% if __GFP_HIGH is set.
815 */
816 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
817 * of the min watermark.
818 */
819 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
820 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
821 #ifdef CONFIG_ZONE_DMA32
822 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
823 #else
824 #define ALLOC_NOFRAGMENT 0x0
825 #endif
826 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
827 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
828
829 /* Flags that allow allocations below the min watermark. */
830 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
831
832 enum ttu_flags;
833 struct tlbflush_unmap_batch;
834
835
836 /*
837 * only for MM internal work items which do not depend on
838 * any allocations or locks which might depend on allocations
839 */
840 extern struct workqueue_struct *mm_percpu_wq;
841
842 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
843 void try_to_unmap_flush(void);
844 void try_to_unmap_flush_dirty(void);
845 void flush_tlb_batched_pending(struct mm_struct *mm);
846 #else
847 static inline void try_to_unmap_flush(void)
848 {
849 }
850 static inline void try_to_unmap_flush_dirty(void)
851 {
852 }
853 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
854 {
855 }
856 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
857
858 extern const struct trace_print_flags pageflag_names[];
859 extern const struct trace_print_flags pagetype_names[];
860 extern const struct trace_print_flags vmaflag_names[];
861 extern const struct trace_print_flags gfpflag_names[];
862
863 static inline bool is_migrate_highatomic(enum migratetype migratetype)
864 {
865 return migratetype == MIGRATE_HIGHATOMIC;
866 }
867
868 static inline bool is_migrate_highatomic_page(struct page *page)
869 {
870 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
871 }
872
873 void setup_zone_pageset(struct zone *zone);
874
875 struct migration_target_control {
876 int nid; /* preferred node id */
877 nodemask_t *nmask;
878 gfp_t gfp_mask;
879 };
880
881 /*
882 * mm/filemap.c
883 */
884 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
885 struct folio *folio, loff_t fpos, size_t size);
886
887 /*
888 * mm/vmalloc.c
889 */
890 #ifdef CONFIG_MMU
891 void __init vmalloc_init(void);
892 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
893 pgprot_t prot, struct page **pages, unsigned int page_shift);
894 #else
895 static inline void vmalloc_init(void)
896 {
897 }
898
899 static inline
900 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
901 pgprot_t prot, struct page **pages, unsigned int page_shift)
902 {
903 return -EINVAL;
904 }
905 #endif
906
907 int __must_check __vmap_pages_range_noflush(unsigned long addr,
908 unsigned long end, pgprot_t prot,
909 struct page **pages, unsigned int page_shift);
910
911 void vunmap_range_noflush(unsigned long start, unsigned long end);
912
913 void __vunmap_range_noflush(unsigned long start, unsigned long end);
914
915 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
916 unsigned long addr, int page_nid, int *flags);
917
918 void free_zone_device_page(struct page *page);
919 int migrate_device_coherent_page(struct page *page);
920
921 /*
922 * mm/gup.c
923 */
924 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
925 int __must_check try_grab_page(struct page *page, unsigned int flags);
926
927 enum {
928 /* mark page accessed */
929 FOLL_TOUCH = 1 << 16,
930 /* a retry, previous pass started an IO */
931 FOLL_TRIED = 1 << 17,
932 /* we are working on non-current tsk/mm */
933 FOLL_REMOTE = 1 << 18,
934 /* pages must be released via unpin_user_page */
935 FOLL_PIN = 1 << 19,
936 /* gup_fast: prevent fall-back to slow gup */
937 FOLL_FAST_ONLY = 1 << 20,
938 /* allow unlocking the mmap lock */
939 FOLL_UNLOCKABLE = 1 << 21,
940 };
941
942 /*
943 * Indicates for which pages that are write-protected in the page table,
944 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
945 * GUP pin will remain consistent with the pages mapped into the page tables
946 * of the MM.
947 *
948 * Temporary unmapping of PageAnonExclusive() pages or clearing of
949 * PageAnonExclusive() has to protect against concurrent GUP:
950 * * Ordinary GUP: Using the PT lock
951 * * GUP-fast and fork(): mm->write_protect_seq
952 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
953 * page_try_share_anon_rmap()
954 *
955 * Must be called with the (sub)page that's actually referenced via the
956 * page table entry, which might not necessarily be the head page for a
957 * PTE-mapped THP.
958 *
959 * If the vma is NULL, we're coming from the GUP-fast path and might have
960 * to fallback to the slow path just to lookup the vma.
961 */
962 static inline bool gup_must_unshare(struct vm_area_struct *vma,
963 unsigned int flags, struct page *page)
964 {
965 /*
966 * FOLL_WRITE is implicitly handled correctly as the page table entry
967 * has to be writable -- and if it references (part of) an anonymous
968 * folio, that part is required to be marked exclusive.
969 */
970 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
971 return false;
972 /*
973 * Note: PageAnon(page) is stable until the page is actually getting
974 * freed.
975 */
976 if (!PageAnon(page)) {
977 /*
978 * We only care about R/O long-term pining: R/O short-term
979 * pinning does not have the semantics to observe successive
980 * changes through the process page tables.
981 */
982 if (!(flags & FOLL_LONGTERM))
983 return false;
984
985 /* We really need the vma ... */
986 if (!vma)
987 return true;
988
989 /*
990 * ... because we only care about writable private ("COW")
991 * mappings where we have to break COW early.
992 */
993 return is_cow_mapping(vma->vm_flags);
994 }
995
996 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
997 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
998 smp_rmb();
999
1000 /*
1001 * Note that PageKsm() pages cannot be exclusive, and consequently,
1002 * cannot get pinned.
1003 */
1004 return !PageAnonExclusive(page);
1005 }
1006
1007 extern bool mirrored_kernelcore;
1008
1009 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1010 {
1011 /*
1012 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1013 * enablements, because when without soft-dirty being compiled in,
1014 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1015 * will be constantly true.
1016 */
1017 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1018 return false;
1019
1020 /*
1021 * Soft-dirty is kind of special: its tracking is enabled when the
1022 * vma flags not set.
1023 */
1024 return !(vma->vm_flags & VM_SOFTDIRTY);
1025 }
1026
1027 /*
1028 * VMA Iterator functions shared between nommu and mmap
1029 */
1030 static inline int vma_iter_prealloc(struct vma_iterator *vmi)
1031 {
1032 return mas_preallocate(&vmi->mas, GFP_KERNEL);
1033 }
1034
1035 static inline void vma_iter_clear(struct vma_iterator *vmi,
1036 unsigned long start, unsigned long end)
1037 {
1038 mas_set_range(&vmi->mas, start, end - 1);
1039 mas_store_prealloc(&vmi->mas, NULL);
1040 }
1041
1042 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1043 {
1044 return mas_walk(&vmi->mas);
1045 }
1046
1047 /* Store a VMA with preallocated memory */
1048 static inline void vma_iter_store(struct vma_iterator *vmi,
1049 struct vm_area_struct *vma)
1050 {
1051
1052 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1053 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1054 vmi->mas.index > vma->vm_start)) {
1055 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1056 vmi->mas.index, vma->vm_start, vma->vm_start,
1057 vma->vm_end, vmi->mas.index, vmi->mas.last);
1058 }
1059 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1060 vmi->mas.last < vma->vm_start)) {
1061 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1062 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1063 vmi->mas.index, vmi->mas.last);
1064 }
1065 #endif
1066
1067 if (vmi->mas.node != MAS_START &&
1068 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1069 vma_iter_invalidate(vmi);
1070
1071 vmi->mas.index = vma->vm_start;
1072 vmi->mas.last = vma->vm_end - 1;
1073 mas_store_prealloc(&vmi->mas, vma);
1074 }
1075
1076 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1077 struct vm_area_struct *vma, gfp_t gfp)
1078 {
1079 if (vmi->mas.node != MAS_START &&
1080 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1081 vma_iter_invalidate(vmi);
1082
1083 vmi->mas.index = vma->vm_start;
1084 vmi->mas.last = vma->vm_end - 1;
1085 mas_store_gfp(&vmi->mas, vma, gfp);
1086 if (unlikely(mas_is_err(&vmi->mas)))
1087 return -ENOMEM;
1088
1089 return 0;
1090 }
1091
1092 /*
1093 * VMA lock generalization
1094 */
1095 struct vma_prepare {
1096 struct vm_area_struct *vma;
1097 struct vm_area_struct *adj_next;
1098 struct file *file;
1099 struct address_space *mapping;
1100 struct anon_vma *anon_vma;
1101 struct vm_area_struct *insert;
1102 struct vm_area_struct *remove;
1103 struct vm_area_struct *remove2;
1104 };
1105 #endif /* __MM_INTERNAL_H */